WO2013114846A1 - Heat exchanger and method for producing same, and sanitary washing apparatus provided with heat exchanger - Google Patents

Heat exchanger and method for producing same, and sanitary washing apparatus provided with heat exchanger Download PDF

Info

Publication number
WO2013114846A1
WO2013114846A1 PCT/JP2013/000415 JP2013000415W WO2013114846A1 WO 2013114846 A1 WO2013114846 A1 WO 2013114846A1 JP 2013000415 W JP2013000415 W JP 2013000415W WO 2013114846 A1 WO2013114846 A1 WO 2013114846A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat exchanger
heater
forming member
rib
Prior art date
Application number
PCT/JP2013/000415
Other languages
French (fr)
Japanese (ja)
Inventor
良一 古閑
靖博 國木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013556255A priority Critical patent/JP5534117B2/en
Publication of WO2013114846A1 publication Critical patent/WO2013114846A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
    • E03D9/08Devices in the bowl producing upwardly-directed sprays; Modifications of the bowl for use with such devices ; Bidets; Combinations of bowls with urinals or bidets; Hot-air or other devices mounted in or on the bowl, urinal or bidet for cleaning or disinfecting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present invention relates to an instantaneous heating type heat exchanger used in a sanitary washing apparatus for washing a human body part with warm water after a toilet, a manufacturing method thereof, and a sanitary washing apparatus provided with them.
  • sanitary washing devices have been equipped with a heat exchanger for making the wash water an appropriate temperature when washing the human body part after the toilet with water.
  • a heat exchanger for making the wash water an appropriate temperature when washing the human body part after the toilet with water.
  • Various types of heat exchangers have been developed, and for example, a flat plate heat exchanger is disclosed (see, for example, Patent Document 1).
  • a flat heater is housed vertically in a rectangular parallelepiped casing having a small thickness dimension, and the horizontal direction along each of the heat transfer surfaces on the front and back of the flat heater. Two flow paths are formed which meander to each other and go upward. Then, the cleaning water that flows is heated to an appropriate temperature by allowing the cleaning water to flow along each flow path while heating the flat heater. At this time, the heat exchanger disclosed in Patent Document 1 speeds up and equalizes the flow rate of the washing water by reducing the flow path cross-sectional area. Thereby, while improving the heat transfer rate to washing water, it is supposed that size reduction can be attained.
  • the maximum flow rate passing through the heat exchanger is as low as about 0.5 L / min. For this reason, there are problems such as stability of operation in the heat exchanger and adhesion of scale to the heater surface when used in a hard water area.
  • a conventional heat exchanger using a flat heater induces forced convection on the heater surface and ensures that the flow rate is maintained while flowing cleaning water uniformly over the heater surface, thereby transferring heat on the heater surface. It is configured to promote
  • the main surface which is a meandering heat exchange channel composed of the channel rib and the heater surface, and the tip of the heater surface and the channel rib (heater so as to leak from between adjacent main channels)
  • the tip of the heater surface and the channel rib (heater so as to leak from between adjacent main channels)
  • the flow path rib provided close to the flat heater is formed by injection molding of a resin material integrally with the casing of the heat exchanger. For this reason, a uniform gap cannot be formed between the tip of the flow path rib and the flat heater surface due to heat shrinkage or molding warpage during the molding of the casing. Thereby, at the time of heat exchange, since washing water flows as a leak flow through a non-uniform gap, temperature unevenness occurs on the surface of the flat heater. In addition, when the leakage flow increases, the direction of the leakage flow flows in a direction perpendicular to the main flow path direction, so bubbles generated in the main flow path do not flow out along the main flow path, and flow obstructions in the flow path. May remain.
  • the scale means a component in which components such as calcium and magnesium contained in cleaning water such as tap water are deposited and deposited as oxides, carbonates and the like, and the same applies to the following.
  • FIG. 1 is an external perspective view showing a sanitary washing apparatus including a heat exchanger according to an embodiment of the present invention.
  • the washing unit when the user operates the operation unit 6 to perform a predetermined input, the washing unit is driven and the nozzle of the washing unit has a shower-like shape with respect to the human body part.
  • the washing water is jetted.
  • FIG. 2 is a front view showing an external configuration of the heat exchanger according to the embodiment of the present invention.
  • FIG. 3 is a right side view of the heat exchanger shown in FIG. 4 is a cross-sectional view of the heat exchanger shown in FIG. 2 taken along line 4-4.
  • FIG. 5 is an enlarged cross-sectional view of a part A in FIG.
  • FIG. 6 is an exploded perspective view of the heat exchanger shown in FIG.
  • the heat exchanger 10 shown in FIG. 4 has one surface (hereinafter referred to as “first heat transfer surface”) 20 a and the other surface (hereinafter referred to as “second heat transfer surface”) of the flat heater 20. ”)" Will be described in a state where 20b is placed vertically so as to be parallel to the vertical direction, but it is needless to say that the present invention is not limited to this.
  • the vertical direction is the Z direction
  • the direction perpendicular to the Z direction and parallel to the first heat transfer surface 20a and the second heat transfer surface 20b of the flat heater 20 is the X direction
  • FIG. As shown, a direction perpendicular to both the Z direction and the X direction (direction perpendicular to the first heat transfer surface 20a) will be described as the Y direction.
  • the heat exchanger 10 of the present embodiment has a small thickness dimension (Y direction), and has a substantially rectangular (including rectangular) plate-like appearance in front view as shown in FIG. It is composed of shapes.
  • the first flow path forming member 21 includes a rectangular flat plate-like base portion 30 that faces the first heat transfer surface 20 a of the flat plate heater 20, and a flat plate shape of the base portion 30.
  • a plurality of first flow path ribs 31a formed on a surface (hereinafter referred to as “first base surface”) 30a facing the first heat transfer surface 20a of the heater 20 is provided.
  • the second flow path forming member 22 includes a rectangular flat plate-like base portion 40 facing the second heat transfer surface 20 b of the flat plate heater 20 and a second heat transfer surface 20 b of the flat plate heater 20 of the base portion 40.
  • second base surface a surface 40a (hereinafter referred to as "second base surface”.
  • the 1st flow path rib 31a and the 2nd flow path rib 31b are comprised from the base 44 and the front-end
  • a liquid such as tap water is provided in the heat exchanger 10 from a water inlet 23 a provided at the lower end of the casing 23 in the X direction and connected to an external water supply facility. Inflow.
  • the liquid that flows in from the water inlet 23a of the casing 23 mainly passes through the concave main channel 25 provided to meander.
  • the gap between the main flow paths 25 via the leak flow paths 41 formed by the gaps Hc between the upper surfaces of the tips 45 of the first flow path ribs 31a and the second flow path ribs 31b and the flat plate heater 20 is simultaneously achieved.
  • the flat heater 20 includes a ceramic base 20 k made of, for example, aluminum oxide (Al 2 O 3 ), and is composed of a ceramic heater formed by sandwiching a heating resistor.
  • the heating resistor is configured by a printing pattern 20p having a predetermined heater line width 20s formed by printing a paste containing tungsten, molybdenum, manganese, or the like.
  • a heating resistor is formed on one ceramic base 20k, and the other ceramic base is omitted. The same applies to the subsequent drawings.
  • the printed pattern 20p constituting the heater wire of the heating resistor is such that the heater wire width 20s is narrow in the portion of the flat heater 20 on the side near the water inlet 23a of the heat exchanger 10 and the side near the water outlet 23b.
  • the heater line width 20s is configured to gradually increase, for example.
  • the surface temperature of the flat heater 20 facing the main flow path 25 (side close to the outlet side flow path 25b) on the side close to the water outlet 23b of the casing 23 and the leak flow path 41 is higher than that on the side close to the water inlet 23a. High temperature.
  • the liquid contacting the first heat transfer surface 20 a and the second heat transfer surface 20 b of the flat heater 20 is already heated while flowing through the heat exchanger 10. For this reason, less heat is taken away from the surface of the flat heater 20 by the liquid. That is, the subcool value is reduced.
  • the heat generation density on the side close to the water outlet 23b is made smaller than the heat generation density on the inlet side flow path 25a side near the water inlet 23a. Therefore, the temperature of the liquid flowing through the outlet-side flow path 25b on the side close to the water outlet 23b of the heat exchanger 10 does not become high enough to cause a local boiling phenomenon.
  • the heater wire interval 20h of the printed pattern 20p having a uniform width constituting the heater wire of the heating resistor is the side closer to the water inlet 23a of the heat exchanger 10 of the flat heater 20 (for example, the lower side in FIG. 2). By making it so narrow, the heat generation density of the heating resistor is increased. On the other hand, by increasing the heater line interval 20h of the printed pattern 20p toward the side closer to the water outlet 23b (for example, the upper side in FIG. 2), the heat generation density of the heating resistor is lowered.
  • a spacer jig made of a metal material such as stainless steel is disposed or inserted so as to cover the first flow path rib 31a of the first flow path forming member 21 (step S20).
  • the spacer jig has a thickness Hc between the upper surface of the tip 45 of the first flow path rib 31a and the second flow path rib 31b and the flat heater 20 to the thickness of the flat heater 20 to be inserted later. (For example, 0.1 mm).
  • This configuration makes it possible to increase the amount of heat generated in the portion facing the channel space on the channel side close to the water inlet where the gaps between the printed pattern lines are narrow, that is, to increase the heat generation density.
  • the amount of heat generated in the portion facing the flow path space on the side close to the water outlet where the gaps between the printed pattern lines are wide can be reduced, that is, the heat generation density can be reduced.
  • the heat exchanger manufactured by the above-described heat exchanger manufacturing method is provided.
  • a sanitary washing apparatus having a heat exchanger having a small size and a stable heat exchange performance, excellent scale resistance, and a long-life heat exchanger can be produced.

Abstract

This heat exchanger is provided with: a casing comprising a first flow path forming member (21) and a second flow path forming member (22), which are provided with flow path ribs on at least one inner wall surface; and a flat plate-like heater (20) enclosed inside the casing. Furthermore, the heat exchanger has: recessed main flow paths (25) formed by the flow path ribs and flat plate-like heater (20); and leakage flow paths (41) formed by the gaps between the upper surfaces of the flow path ribs and the surfaces of the flat plate-like heater (20). The leakage flow path (41) gaps are from 0.05 mm to 15 mm. A heat exchanger that prevents the generation of local boiling of washing water at the surfaces of the flat plate-like heater (20), and has excellent stable heat exchanging performance and scaling resistance can thus be achieved.

Description

熱交換器とその製造方法およびそれらを備えた衛生洗浄装置HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND SANITARY CLEANING DEVICE PROVIDED WITH THE SAME
 本発明は、用便後に人体局部を温水により洗浄する衛生洗浄装置に用いる瞬間加熱式の熱交換器とその製造方法およびそれらを備えた衛生洗浄装置に関する。 The present invention relates to an instantaneous heating type heat exchanger used in a sanitary washing apparatus for washing a human body part with warm water after a toilet, a manufacturing method thereof, and a sanitary washing apparatus provided with them.
 従来から、衛生洗浄装置は、用便後の人体局部を水で洗浄する際に洗浄水を適温にするための熱交換器を備えている。そして、様々なタイプの熱交換器が開発され、例えば平板状の熱交換器が開示されている(例えば、特許文献1参照)。 Conventionally, sanitary washing devices have been equipped with a heat exchanger for making the wash water an appropriate temperature when washing the human body part after the toilet with water. Various types of heat exchangers have been developed, and for example, a flat plate heat exchanger is disclosed (see, for example, Patent Document 1).
 特許文献1に記載の熱交換器は、厚み寸法の小さい直方体形状のケーシング内に平板状のヒータが縦置きに収納され、平板状のヒータの表裏各々の伝熱面のそれぞれに沿って水平方向に蛇行して上方へ向かう2つの流路が形成されている。そして、平板状のヒータを加熱している間に各流路に沿って洗浄水を通流させることにより、通流する洗浄水を適温にまで昇温させている。このとき、特許文献1に開示された熱交換器は、流路断面積を小さくすることにより、洗浄水の流速を高速化、かつ均一化している。これにより、洗浄水への熱伝達率を高めるとともに、コンパクト化が図れるとしている。 In the heat exchanger described in Patent Document 1, a flat heater is housed vertically in a rectangular parallelepiped casing having a small thickness dimension, and the horizontal direction along each of the heat transfer surfaces on the front and back of the flat heater. Two flow paths are formed which meander to each other and go upward. Then, the cleaning water that flows is heated to an appropriate temperature by allowing the cleaning water to flow along each flow path while heating the flat heater. At this time, the heat exchanger disclosed in Patent Document 1 speeds up and equalizes the flow rate of the washing water by reducing the flow path cross-sectional area. Thereby, while improving the heat transfer rate to washing water, it is supposed that size reduction can be attained.
 通常、衛生洗浄装置の洗浄用の水を加熱する瞬間湯沸し用の熱交換器は、最大流量が0.5L/min程度の水を、5℃入水で40℃出湯まで加熱するために、ヒータの入力電力として1200W程度が必要である。そのため、平板状のヒータに、ワット密度が20W/cmから50W/cm程度の比較的ワット密度の大きなヒータを使用している。 Usually, a heat exchanger for instant water heating that heats cleaning water in a sanitary washing device is used to heat water at a maximum flow rate of about 0.5 L / min to 40 ° C. hot water with 5 ° C. incoming water. About 1200W is required as input power. Therefore, a heater having a relatively high watt density with a watt density of about 20 W / cm 2 to 50 W / cm 2 is used for the flat heater.
 しかし、従来の熱交換器では、熱交換器を通過する最大流量が0.5L/min程度と少ない。そのため、熱交換器内の動作の安定性や、さらに硬水地域で使用した場合のヒータ表面へのスケールの付着などの課題があった。 However, in the conventional heat exchanger, the maximum flow rate passing through the heat exchanger is as low as about 0.5 L / min. For this reason, there are problems such as stability of operation in the heat exchanger and adhesion of scale to the heater surface when used in a hard water area.
 また、熱交換器の熱交換条件を安定化するには、沸騰熱伝達を伴わない強制対流熱伝達で熱交換を行う必要がある。そこで、熱交換器内のヒータの表面上を流れる洗浄水の流速を確保するために、平板状のヒータと近接して、熱交換器の外枠を構成するケーシングの内壁側に流路リブを設け、流路リブと平板状のヒータとの間で構成される流路に洗浄水を通過させる構成としている。これにより、強制対流熱交換による熱伝達の促進を図っている。 Also, in order to stabilize the heat exchange conditions of the heat exchanger, it is necessary to perform heat exchange by forced convection heat transfer without boiling heat transfer. Therefore, in order to ensure the flow rate of the washing water flowing on the surface of the heater in the heat exchanger, a flow path rib is provided on the inner wall side of the casing constituting the outer frame of the heat exchanger in the vicinity of the flat heater. The cleaning water is passed through a flow path provided between the flow path ribs and the flat heater. Thereby, the heat transfer by forced convection heat exchange is promoted.
 つまり、平板状のヒータを用いた従来の熱交換器は、ヒータ表面に強制対流を誘起し、流速を確保しつつ、ヒータ表面上に均一に洗浄水を流すことにより、ヒータ表面での熱伝達の促進を図るように構成している。 In other words, a conventional heat exchanger using a flat heater induces forced convection on the heater surface and ensures that the flow rate is maintained while flowing cleaning water uniformly over the heater surface, thereby transferring heat on the heater surface. It is configured to promote
 しかし、従来の熱交換器では、流路リブとヒータ表面で構成される蛇行した熱交換流路である主流路と、隣接する主流路間から漏れるようにヒータ表面と流路リブの先端(ヒータと対向する部分)との隙間を流れる漏れ流によって、強制対流熱交換が阻害されるという課題がある。 However, in the conventional heat exchanger, the main surface, which is a meandering heat exchange channel composed of the channel rib and the heater surface, and the tip of the heater surface and the channel rib (heater so as to leak from between adjacent main channels) There is a problem that forced convection heat exchange is hindered by a leak flow that flows through a gap between the first and second portions.
 つまり、従来の熱交換器は、平板状のヒータと近接して設けられる流路リブを、熱交換器のケーシングと一体に樹脂材料の射出成形により形成している。そのため、ケーシングの成形時の熱収縮や成形そりなどにより、流路リブの先端と平板状のヒータ表面との間に均一な隙間が形成できない。これにより、熱交換時に、不均一な隙間を介して洗浄水が漏れ流として流れるため、平板状のヒータの表面に温度ムラが発生する。また漏れ流が多くなると、漏れ流れの方向が主流路方向と直角方向に流れるため、主流路に発生した泡が、主流路に沿って流れて排除されず、流路中に流れの障害物として残存する場合がある。そして、主流路に発生した泡は伝熱の障害となるため、泡の存在する部分のヒータの表面の温度が過熱する結果となる。これらの原因で、平板状のヒータの表面で局所的に生じる温度の高い部分にスケールが発生して付着し、熱交換器の動作が不安定になるという課題があった。なお、スケールとは、水道水などの洗浄水に含まれるカルシウムやマグネシウムなどの成分が、酸化物、炭酸化物などとして析出、堆積したものを意味し、以下も同様である。 That is, in the conventional heat exchanger, the flow path rib provided close to the flat heater is formed by injection molding of a resin material integrally with the casing of the heat exchanger. For this reason, a uniform gap cannot be formed between the tip of the flow path rib and the flat heater surface due to heat shrinkage or molding warpage during the molding of the casing. Thereby, at the time of heat exchange, since washing water flows as a leak flow through a non-uniform gap, temperature unevenness occurs on the surface of the flat heater. In addition, when the leakage flow increases, the direction of the leakage flow flows in a direction perpendicular to the main flow path direction, so bubbles generated in the main flow path do not flow out along the main flow path, and flow obstructions in the flow path. May remain. And since the bubble which generate | occur | produced in the main flow path becomes an obstacle of heat transfer, it will result in the temperature of the surface of the heater of the part in which a bubble exists overheating. For these reasons, there has been a problem that scale is generated and adhered to a portion of the flat heater where the temperature is locally generated and the operation of the heat exchanger becomes unstable. The scale means a component in which components such as calcium and magnesium contained in cleaning water such as tap water are deposited and deposited as oxides, carbonates and the like, and the same applies to the following.
 また、特に、硬度の高い水質地域では、平板状のヒータの表面へのスケールの付着量が多くなるため、スケールの付着によりヒータの表面温度差が大きくなる。そのため、表面温度差により、ヒータに割れが生じるなどの課題があった。 In particular, in a water quality area with high hardness, the amount of scale attached to the surface of the flat heater increases, so the difference in surface temperature of the heater increases due to the adhesion of the scale. For this reason, there are problems such as cracks in the heater due to surface temperature differences.
特開平10-220876号公報(特に、図2参照)Japanese Patent Laid-Open No. 10-220876 (see in particular FIG. 2)
 上記課題を解決するために、本発明の熱交換器は、入水口と出水口を有し、少なくとも一方の内壁面に流路リブを備える第1流路形成部材と第2流路形成部材とからなるケーシングと、ケーシング内に内包される平板状ヒータと、を備え、流路リブと、平板状ヒータとにより形成される凹部状の主流路と、流路リブの上面と、平板状ヒータの表面との隙間で形成される漏れ流路と、を有し、漏れ流路の隙間が、0.05mmから0.15mmである。 In order to solve the above problems, a heat exchanger according to the present invention includes a first flow path forming member and a second flow path forming member having a water inlet and a water outlet, and having a channel rib on at least one inner wall surface. A flat plate heater enclosed in the casing, a flow path rib, a concave main flow path formed by the flat plate heater, an upper surface of the flow path rib, and a flat plate heater A leakage channel formed by a gap with the surface, and the gap of the leakage channel is 0.05 mm to 0.15 mm.
 これにより、平板状ヒータの表面での洗浄水の局部沸騰の発生を防止するとともに、ヒータの表面温度差を抑制することができる。その結果、安定した熱交換性能と耐スケール性に優れた熱交換器を実現できる。 Thereby, it is possible to prevent the local boiling of the cleaning water on the surface of the flat heater and to suppress the difference in the heater surface temperature. As a result, a heat exchanger having stable heat exchange performance and scale resistance can be realized.
 また、本発明の衛生洗浄装置は、上記熱交換器を備える。これにより、小型で安定した熱交換性能と、耐スケール性に優れ、長寿命な熱交換器を備えた衛生洗浄装置を実現できる。 Moreover, the sanitary washing apparatus of the present invention includes the heat exchanger. Thereby, it is possible to realize a sanitary washing apparatus equipped with a heat exchanger having a small size and stable heat exchange performance and scale resistance and having a long life.
 また、本発明の熱交換器の製造方法は、第1流路形成部材を溶着治具に固定する固定ステップと、第1流路形成部材の内壁面にスペーサ治具を挿入する挿入ステップと、第2流路形成部材の内壁面でスペーサ治具を内包するように第1流路形成部材に装着する装着ステップと、を含む。さらに、第1流路形成部材と第2流路形成部材の少なくとも一方の内壁面に設けられた流路リブをスペーサ治具との圧接により変形させるとともに、第1流路形成部材と第2流路形成部材とを溶着してケーシングを形成する溶着ステップと、ケーシングからスペーサ治具を取り外すステップと、取り外したスペーサ治具の位置にヒータを挿入して、ケーシングとシールするシールステップを、含む。 Moreover, the manufacturing method of the heat exchanger of the present invention includes a fixing step of fixing the first flow path forming member to the welding jig, an insertion step of inserting the spacer jig into the inner wall surface of the first flow path forming member, A mounting step of mounting on the first flow path forming member so as to enclose the spacer jig on the inner wall surface of the second flow path forming member. Further, the flow path rib provided on the inner wall surface of at least one of the first flow path forming member and the second flow path forming member is deformed by pressure contact with the spacer jig, and the first flow path forming member and the second flow path member are deformed. A welding step of welding the path forming member to form a casing, a step of removing the spacer jig from the casing, and a sealing step of inserting a heater at the position of the removed spacer jig and sealing the casing.
 これにより、平板状ヒータの表面での洗浄水の局部沸騰の発生を防止するとともに、ヒータの表面温度差を抑制することができる。その結果、安定した熱交換性能と耐スケール性に優れた熱交換効率を有する熱交換器を作製できる。 Thereby, it is possible to prevent the local boiling of the cleaning water on the surface of the flat heater and to suppress the difference in the heater surface temperature. As a result, a heat exchanger having stable heat exchange performance and heat exchange efficiency excellent in scale resistance can be produced.
 また、本発明の衛生洗浄装置は、上記熱交換器の製造方法により製造した熱交換器を備える。これにより、小型で安定した熱交換性能と、耐スケール性に優れ、長寿命な熱交換器を備えた衛生洗浄装置を作製できる。 Moreover, the sanitary washing device of the present invention includes a heat exchanger manufactured by the above heat exchanger manufacturing method. As a result, a sanitary washing apparatus having a heat exchanger having a small size and a stable heat exchange performance, excellent scale resistance, and a long-life heat exchanger can be produced.
図1は、本発明の実施の形態に係る熱交換器を備える衛生洗浄装置を示す外観斜視図である。FIG. 1 is an external perspective view showing a sanitary washing apparatus including a heat exchanger according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る熱交換器の外観構成を示す正面図である。FIG. 2 is a front view showing an external configuration of the heat exchanger according to the embodiment of the present invention. 図3は、図2に示す熱交換器の右側面図である。FIG. 3 is a right side view of the heat exchanger shown in FIG. 図4は、図2に示す熱交換器の4-4線断面図である。4 is a cross-sectional view of the heat exchanger shown in FIG. 2 taken along line 4-4. 図5は、図4のA部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a part A in FIG. 図6は、図2に示す熱交換器の分解斜視図である。FIG. 6 is an exploded perspective view of the heat exchanger shown in FIG. 図7は、図4に示す熱交換器の平板状ヒータに形成された発熱抵抗体の印刷パターンの例を示す平面図である。FIG. 7 is a plan view showing an example of a print pattern of a heating resistor formed on the flat heater of the heat exchanger shown in FIG. 図8は、図4に示す熱交換器の平板状ヒータに形成された発熱抵抗体の印刷パターンの別の例を示す平面図である。FIG. 8 is a plan view showing another example of the print pattern of the heating resistor formed on the flat heater of the heat exchanger shown in FIG. 図9は、図2に示す熱交換器の第2流路形成部材の斜視図である。FIG. 9 is a perspective view of a second flow path forming member of the heat exchanger shown in FIG. 図10は、リブピッチPが14mm、リブ高さH1が1.9mmの場合における隙間Hcの影響をシミュレーションした結果を示すグラフである。FIG. 10 is a graph showing a result of simulating the influence of the gap Hc when the rib pitch P is 14 mm and the rib height H1 is 1.9 mm. 図11は、リブピッチPが7mm、リブ高さH1が1.9mmの場合における隙間Hcの影響をシミュレーションした結果を示すグラフである。FIG. 11 is a graph showing a result of simulating the influence of the gap Hc when the rib pitch P is 7 mm and the rib height H1 is 1.9 mm. 図12は、リブピッチPが3.5mm、リブ高さH1が1.9mmの場合における隙間Hcの影響をシミュレーションした結果を示すグラフである。FIG. 12 is a graph showing a result of simulating the influence of the gap Hc when the rib pitch P is 3.5 mm and the rib height H1 is 1.9 mm. 図13は、リブピッチPが3.5mm、リブ高さH1が0.95mmの場合における隙間Hcの影響をシミュレーションした結果を示すグラフである。FIG. 13 is a graph showing a result of simulating the influence of the gap Hc when the rib pitch P is 3.5 mm and the rib height H1 is 0.95 mm. 図14は、実際の熱交換器における、隙間Hcと平板状ヒータのヒータ線温度との関係を示すグラフである。FIG. 14 is a graph showing the relationship between the gap Hc and the heater wire temperature of the flat heater in an actual heat exchanger. 図15は、実際の熱交換器における、隙間Hcと、図14に示すヒータ線温度から評価した熱交換器の平均熱伝達率との関係を示す図である。FIG. 15 is a diagram showing the relationship between the gap Hc and the average heat transfer coefficient of the heat exchanger evaluated from the heater wire temperature shown in FIG. 14 in an actual heat exchanger. 図16は、本発明の実施の形態に係る熱交換器の製造方法の一例を説明するフローチャートである。FIG. 16 is a flowchart illustrating an example of a method for manufacturing a heat exchanger according to an embodiment of the present invention. 図17は、本発明の実施の形態に係る熱交換器の流路リブの形状の一例を示す斜視図である。FIG. 17 is a perspective view showing an example of the shape of the channel rib of the heat exchanger according to the embodiment of the present invention. 図18は、図17に示すB部拡大斜視図である。18 is an enlarged perspective view of a portion B shown in FIG. 図19は、本発明の実施の形態に係る熱交換器の流路リブの形状の別の例を示す斜視図である。FIG. 19 is a perspective view showing another example of the shape of the channel rib of the heat exchanger according to the embodiment of the present invention. 図20は、本発明の実施の形態に係る熱交換器の流路リブの形状のさらに別の例を示す斜視図である。FIG. 20 is a perspective view showing still another example of the shape of the channel rib of the heat exchanger according to the embodiment of the present invention. 図21は、図2に示す別の例の熱交換器の4-4線断面図である。FIG. 21 is a sectional view taken along line 4-4 of the heat exchanger of another example shown in FIG.
 以下、本発明の実施の形態に係る熱交換器について、衛生洗浄装置に適用した例を用いて、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, a heat exchanger according to an embodiment of the present invention will be described using an example applied to a sanitary washing device with reference to the drawings. Note that the present invention is not limited to the present embodiment.
 (実施の形態)
 以下、本発明の実施の形態に係る熱交換器およびそれを備えた衛生洗浄装置について、図1を用いて説明する。
(Embodiment)
Hereinafter, a heat exchanger according to an embodiment of the present invention and a sanitary washing apparatus including the heat exchanger will be described with reference to FIG.
 図1は、本発明の実施の形態に係る熱交換器を備える衛生洗浄装置を示す外観斜視図である。 FIG. 1 is an external perspective view showing a sanitary washing apparatus including a heat exchanger according to an embodiment of the present invention.
 図1に示すように、本実施の形態の衛生洗浄装置1は、少なくとも本体部3、便座部4、便蓋部5および操作部6などから構成され、便器2の上面に配設されている。本体部3は、便座部4の後側(着座した使用者から見て背後側)に配設されている。そして、本体部3は、横長で中空の筐体3a内に、図示しない洗浄ユニット、乾燥ユニット、およびこれらの動作を制御する制御ユニットと、本実施の形態の熱交換器10(破線で図示)などを収納している。なお、熱交換器10は、便器2の設置建物に付随する水道設備から導入される水道水(流体、液体、洗浄水)を内部で適温まで暖める機能を備えている。 As shown in FIG. 1, the sanitary washing device 1 according to the present embodiment includes at least a main body 3, a toilet seat 4, a toilet lid 5, an operation unit 6, and the like, and is disposed on the upper surface of the toilet 2. . The main body 3 is disposed on the rear side of the toilet seat 4 (back side as viewed from the seated user). And the main-body part 3 is in the horizontally long and hollow housing | casing 3a, the washing | cleaning unit which is not shown in figure, the drying unit, the control unit which controls these operation | movement, and the heat exchanger 10 of this Embodiment (illustrated with a broken line) And so on. The heat exchanger 10 has a function of internally warming tap water (fluid, liquid, washing water) introduced from the water supply facility attached to the building where the toilet 2 is installed to an appropriate temperature.
 そして、本実施の形態の衛生洗浄装置1は、使用者が操作部6を操作して所定の入力を行うと、洗浄ユニットが駆動して、洗浄ユニットが有するノズルからシャワー状に人体局部に対して洗浄水が噴射するように構成されている。 Then, in the sanitary washing device 1 of the present embodiment, when the user operates the operation unit 6 to perform a predetermined input, the washing unit is driven and the nozzle of the washing unit has a shower-like shape with respect to the human body part. The washing water is jetted.
 以下に、本実施の形態の衛生洗浄装置に組み込まれる熱交換器について、図2から図6を用いて説明する。 Hereinafter, the heat exchanger incorporated in the sanitary washing apparatus of the present embodiment will be described with reference to FIGS.
 図2は、本発明の実施の形態に係る熱交換器の外観構成を示す正面図である。図3は、図2に示す熱交換器の右側面図である。図4は、図2に示す熱交換器の4-4線断面図である。図5は、図4のA部拡大断面図である。図6は、図2に示す熱交換器の分解斜視図である。 FIG. 2 is a front view showing an external configuration of the heat exchanger according to the embodiment of the present invention. FIG. 3 is a right side view of the heat exchanger shown in FIG. 4 is a cross-sectional view of the heat exchanger shown in FIG. 2 taken along line 4-4. FIG. 5 is an enlarged cross-sectional view of a part A in FIG. FIG. 6 is an exploded perspective view of the heat exchanger shown in FIG.
 なお、以下では、図4に示す熱交換器10を、平板状ヒータ20の一方の表面(以下、「第1伝熱面」と記す)20aおよび他方の表面(以下、「第2伝熱面」と記す)20bが鉛直方向に平行になるように縦置きした状態について説明するが、これに限られないことは言うまでもない。また、図2に示すように鉛直方向をZ方向、Z方向と直交して平板状ヒータ20の第1伝熱面20aおよび第2伝熱面20bに平行な方向をX方向とし、図3に示すように、Z方向とX方向の2方向の何れとも直交する方向(第1伝熱面20aに垂直な方向)をY方向として説明する。 In the following description, the heat exchanger 10 shown in FIG. 4 has one surface (hereinafter referred to as “first heat transfer surface”) 20 a and the other surface (hereinafter referred to as “second heat transfer surface”) of the flat heater 20. ")" Will be described in a state where 20b is placed vertically so as to be parallel to the vertical direction, but it is needless to say that the present invention is not limited to this. Further, as shown in FIG. 2, the vertical direction is the Z direction, the direction perpendicular to the Z direction and parallel to the first heat transfer surface 20a and the second heat transfer surface 20b of the flat heater 20 is the X direction, and FIG. As shown, a direction perpendicular to both the Z direction and the X direction (direction perpendicular to the first heat transfer surface 20a) will be described as the Y direction.
 図3に示すように、本実施の形態の熱交換器10は、厚み寸法(Y方向)が小さく、図2に示すように正面視で略長方形状(長方形状を含む)の平板状の外観形状で構成されている。 As shown in FIG. 3, the heat exchanger 10 of the present embodiment has a small thickness dimension (Y direction), and has a substantially rectangular (including rectangular) plate-like appearance in front view as shown in FIG. It is composed of shapes.
 また、熱交換器10は、入水口23aおよび出水口23bを有するケーシング23内に、例えば矩形平板状の平板状ヒータ20と、第1流路形成部材21と、第2流路形成部材22とを収納して構成されている。なお、平板状ヒータ20は、例えばセラミック製で構成されている。また、第1流路形成部材21および第2流路形成部材22は、例えばABS樹脂にガラス繊維をコンパウンドした強化ABS樹脂製で構成されている。 In addition, the heat exchanger 10 includes, for example, a rectangular flat plate heater 20, a first flow path forming member 21, and a second flow path forming member 22 in a casing 23 having a water inlet 23 a and a water outlet 23 b. It is configured to store. The flat heater 20 is made of, for example, ceramic. Moreover, the 1st flow path formation member 21 and the 2nd flow path formation member 22 are comprised by the product made from the reinforced ABS resin which compounded the glass fiber in ABS resin, for example.
 そして、図4に示すように、第1流路形成部材21は、平板状ヒータ20の第1伝熱面20aに対向して配置されている。第2流路形成部材22は、平板状ヒータ20の第2伝熱面20bに対向して配置されている。 And as shown in FIG. 4, the 1st flow-path formation member 21 is arrange | positioned facing the 1st heat-transfer surface 20a of the flat heater 20. As shown in FIG. The second flow path forming member 22 is disposed to face the second heat transfer surface 20 b of the flat heater 20.
 また、図4から図6に示すように、第1流路形成部材21は、平板状ヒータ20の第1伝熱面20aに対向する矩形平板状のベース部30と、ベース部30の平板状ヒータ20の第1伝熱面20aに対向する面(以下、「第1ベース面」と記す)30aに形成された複数の第1流路リブ31aを備えている。同様に、第2流路形成部材22は、平板状ヒータ20の第2伝熱面20bに対向する矩形平板状のベース部40と、ベース部40の平板状ヒータ20の第2伝熱面20bに対向する面(以下、「第2ベース面」と記す)40aに形成された複数の第2流路リブ31bを備えている。なお、第1流路リブ31aおよび第2流路リブ31bは、例えば基部44と先端部45とから構成されている。 As shown in FIGS. 4 to 6, the first flow path forming member 21 includes a rectangular flat plate-like base portion 30 that faces the first heat transfer surface 20 a of the flat plate heater 20, and a flat plate shape of the base portion 30. A plurality of first flow path ribs 31a formed on a surface (hereinafter referred to as “first base surface”) 30a facing the first heat transfer surface 20a of the heater 20 is provided. Similarly, the second flow path forming member 22 includes a rectangular flat plate-like base portion 40 facing the second heat transfer surface 20 b of the flat plate heater 20 and a second heat transfer surface 20 b of the flat plate heater 20 of the base portion 40. Is provided with a plurality of second flow path ribs 31b formed on a surface 40a (hereinafter referred to as "second base surface"). In addition, the 1st flow path rib 31a and the 2nd flow path rib 31b are comprised from the base 44 and the front-end | tip part 45, for example.
 そして、第1流路形成部材21の第1流路リブ31aおよび第2流路形成部材22の第2流路リブ31bと、平板状ヒータ20とによって、入水口23aにつながる入口側流路25aから出水口23bにつながる出口側流路25bに、例えば蛇行して液体が流れる凹部状の主流路25が形成されている。 The inlet channel 25a connected to the water inlet 23a by the first channel rib 31a of the first channel forming member 21, the second channel rib 31b of the second channel forming member 22, and the flat heater 20. For example, a concave main flow path 25 that snakes and flows through the liquid is formed in the flow path 25b that is connected to the water outlet 23b.
 また、図5に示すように、第1流路形成部材21の第1流路リブ31aの先端部45の上面および第2流路形成部材22の第2流路リブ31bの先端部45の上面と、平板状ヒータ20の第1伝熱面20aおよび第2伝熱面20bの表面との間に、例えば0.1mm程度の隙間(クリアランス)Hcを設けている。これにより、隣接する主流路25間を横断して液体が流れる漏れ流路41を形成している。このとき、漏れ流路41を形成する隙間Hcは、以下で述べるように、0.05mmから0.15mmの範囲で、略均一(均一を含む)に設けることが好ましい。 Further, as shown in FIG. 5, the upper surface of the front end portion 45 of the first flow path rib 31 a of the first flow path forming member 21 and the upper surface of the front end portion 45 of the second flow path rib 31 b of the second flow path forming member 22. And a clearance (clearance) Hc of about 0.1 mm, for example, is provided between the first heat transfer surface 20a and the second heat transfer surface 20b of the flat heater 20. As a result, a leakage channel 41 through which the liquid flows across the adjacent main channels 25 is formed. At this time, the gap Hc forming the leakage channel 41 is preferably provided substantially uniformly (including uniform) in the range of 0.05 mm to 0.15 mm as described below.
 また、図4に示すように、第1流路形成部材21のベース部30の周縁部には、第2流路形成部材22に近接する方向へ向かって所定寸法だけ延設された壁状のフランジ部32が周設されている、そして、フランジ部32の先端部にはフランジ部32に沿って周回する係合溝33が形成されている。 Further, as shown in FIG. 4, the peripheral portion of the base portion 30 of the first flow path forming member 21 is a wall-like shape extending by a predetermined dimension toward the direction close to the second flow path forming member 22. A flange portion 32 is provided around the flange portion 32, and an engagement groove 33 that circulates along the flange portion 32 is formed at the distal end portion of the flange portion 32.
 一方、第2流路形成部材22のベース部40の周縁部には、第1流路形成部材21から離隔する方向へ向かって所定寸法だけ延設された壁状のフランジ部42が周設されている。そして、フランジ部42の先端部には第1流路形成部材21側へ折り返され、端部にフランジ部42に沿って周回する係合突起43が形成されている。 On the other hand, a wall-shaped flange portion 42 extending around a predetermined dimension in a direction away from the first flow path forming member 21 is provided around the periphery of the base portion 40 of the second flow path forming member 22. ing. An engagement protrusion 43 that is folded back toward the first flow path forming member 21 side and circulates along the flange portion 42 is formed at the tip of the flange portion 42.
 これにより、第1流路形成部材21のベース面30aが、第2流路形成部材22のベース面40aに対向し、平板状ヒータ20を内包するように、第2流路形成部材22に外嵌装着される。具体的に説明すると、まず、第1流路形成部材21のフランジ部32が、第2流路形成部材22のフランジ部42に外嵌される。このとき、第1流路形成部材21の係合溝33に第2流路形成部材22の係合突起43が嵌入される。そして、例えば超音波溶着などで、係合突起43と係合溝33を溶着することにより、第1流路形成部材21と第2流路形成部材22とが固定されてケーシング23が形成される。これにより、第1流路形成部材21と第2流路形成部材22とは液密的に接合され、内部に挟み込まれた平板状ヒータ20とにより、主流路25および漏れ流路41が形成される。 As a result, the base surface 30 a of the first flow path forming member 21 faces the base surface 40 a of the second flow path forming member 22 and is externally attached to the second flow path forming member 22 so as to contain the flat heater 20. Fitted. Specifically, first, the flange portion 32 of the first flow path forming member 21 is externally fitted to the flange portion 42 of the second flow path forming member 22. At this time, the engaging protrusion 43 of the second flow path forming member 22 is fitted into the engaging groove 33 of the first flow path forming member 21. Then, the first flow path forming member 21 and the second flow path forming member 22 are fixed and the casing 23 is formed by welding the engaging protrusion 43 and the engaging groove 33 by, for example, ultrasonic welding. . As a result, the first flow path forming member 21 and the second flow path forming member 22 are joined in a liquid-tight manner, and the main flow path 25 and the leakage flow path 41 are formed by the flat heater 20 sandwiched between them. The
 そして、図2と図3に示すように、ケーシング23のX方向の一端の下部に設けられ、外部の水道設備に接続された入水口23aから、水道水などの液体が熱交換器10内に流入する。ケーシング23の入水口23aから流入した液体は、主に、蛇行するように設けられた凹部状の主流路25を通過する。このとき、同時に、第1流路リブ31aおよび第2流路リブ31bの先端部45の上面と、平板状ヒータ20との隙間Hcで形成された漏れ流路41を介して、主流路25間を通過する液体の一部が通流する。そして、主流路25および漏れ流路41を流れる液体が、入口側流路25aから出口側流路25bへ通過する間に、平板状ヒータ20で適温に加熱されて出水口23bから流出する。これにより、適温に加熱された液体が、衛生洗浄装置1の洗浄ユニットに供給され、洗浄ユニットのノズルからシャワー状に噴射して人体局部を洗浄する。 As shown in FIGS. 2 and 3, a liquid such as tap water is provided in the heat exchanger 10 from a water inlet 23 a provided at the lower end of the casing 23 in the X direction and connected to an external water supply facility. Inflow. The liquid that flows in from the water inlet 23a of the casing 23 mainly passes through the concave main channel 25 provided to meander. At the same time, the gap between the main flow paths 25 via the leak flow paths 41 formed by the gaps Hc between the upper surfaces of the tips 45 of the first flow path ribs 31a and the second flow path ribs 31b and the flat plate heater 20 is simultaneously achieved. Part of the liquid passing through Then, while the liquid flowing through the main flow path 25 and the leakage flow path 41 passes from the inlet side flow path 25a to the outlet side flow path 25b, it is heated to an appropriate temperature by the flat heater 20 and flows out from the water outlet 23b. Thereby, the liquid heated to appropriate temperature is supplied to the washing | cleaning unit of the sanitary washing apparatus 1, and it sprays in a shower form from the nozzle of a washing | cleaning unit, and wash | cleans a human body part.
 以上で説明したように、本実施の形態の熱交換器および、熱交換器を備えた衛生洗浄装置が構成される。 As described above, the heat exchanger according to the present embodiment and the sanitary washing apparatus including the heat exchanger are configured.
 つまり、本実施の形態の熱交換器10によれば、第1流路リブ31aおよび第2流路リブ31bと平板状ヒータ20の表面(第1伝熱面20aおよび第2伝熱面20b)とにより、液体が蛇行して流れる凹部状の主流路25が形成される。さらに、第1流路リブ31aの先端部45の上面および第2流路リブ31bの先端部45の上面と平板状ヒータ20の表面(第1伝熱面20aおよび第2伝熱面20b)との間に均一な所定の隙間Hcを有する漏れ流路41が形成される。これにより、主流路25に液体を通流させて、漏れ流路41への漏れ流を抑えることにより温度ムラを抑制して加熱することができる。その結果、平板状ヒータ20の表面での局部沸騰の発生を抑制するとともに、平板状ヒータ20の表面温度を低下させることができる。そして、安定した熱交換性能と耐スケール性に優れた熱交換器10を実現できる。 That is, according to the heat exchanger 10 of the present embodiment, the first flow path rib 31a and the second flow path rib 31b and the surface of the flat heater 20 (the first heat transfer surface 20a and the second heat transfer surface 20b). As a result, a concave main channel 25 in which the liquid meanders and flows is formed. Furthermore, the upper surface of the front end portion 45 of the first flow path rib 31a, the upper surface of the front end portion 45 of the second flow path rib 31b, and the surface of the flat heater 20 (the first heat transfer surface 20a and the second heat transfer surface 20b) A leak channel 41 having a uniform predetermined gap Hc is formed between the two. As a result, the liquid can be passed through the main flow path 25 to suppress the leakage flow to the leakage flow path 41, thereby suppressing the temperature unevenness and heating. As a result, the occurrence of local boiling on the surface of the flat heater 20 can be suppressed, and the surface temperature of the flat heater 20 can be reduced. And the heat exchanger 10 excellent in the stable heat exchange performance and scale resistance is realizable.
 また、本実施の形態の熱交換器10を備えた衛生洗浄装置1によれば、小型で安定した熱交換性能と耐スケール性に優れ、長寿命な熱交換器10を備えることにより、小型で、狭いトイレ空間にも容易に設置できる衛生洗浄装置1を実現できる。さらに、熱交換器10内のスケールの生成および付着を防止することにより、洗浄ノズルがスケールの破片により詰まることを防止できる。その結果、特に、硬水地域においても、長期間にわたって使用できる衛生洗浄装置1を実現できる。 Moreover, according to the sanitary washing apparatus 1 provided with the heat exchanger 10 of the present embodiment, the heat exchanger 10 is small and stable, has excellent heat exchange performance and scale resistance, and has a long life. Thus, the sanitary washing device 1 that can be easily installed in a narrow toilet space can be realized. Furthermore, by preventing the generation and adhesion of the scale in the heat exchanger 10, it is possible to prevent the cleaning nozzle from being clogged with debris of the scale. As a result, the sanitary washing device 1 that can be used for a long period of time can be realized particularly in hard water areas.
 以下に、本実施の形態の熱交換器の平板状ヒータの構成および動作について、図7を用いて詳細に説明する。 Hereinafter, the configuration and operation of the flat heater of the heat exchanger according to the present embodiment will be described in detail with reference to FIG.
 図7は、図4に示す熱交換器の平板状ヒータに形成された発熱抵抗体の印刷パターンの例を示す平面図である。 FIG. 7 is a plan view showing an example of a print pattern of the heating resistor formed on the flat heater of the heat exchanger shown in FIG.
 図7に示すように、平板状ヒータ20は、例えば酸化アルミニウム(Al)からなるセラミック基体20kで、発熱抵抗体を挟み込んで形成したセラミックヒータで構成されている。なお、発熱抵抗体は、例えばタングステン、モリブデンやマンガンなどを含有するペーストを印刷して形成した所定のヒータ線幅20sを有する印刷パターン20pで構成される。また、図7では、理解を助けるために一方のセラミック基体20k上に発熱抵抗体を形成し、他方のセラミック基体を省略した状態で示している。以降の図においても同様である。 As shown in FIG. 7, the flat heater 20 includes a ceramic base 20 k made of, for example, aluminum oxide (Al 2 O 3 ), and is composed of a ceramic heater formed by sandwiching a heating resistor. The heating resistor is configured by a printing pattern 20p having a predetermined heater line width 20s formed by printing a paste containing tungsten, molybdenum, manganese, or the like. Further, in FIG. 7, in order to help understanding, a heating resistor is formed on one ceramic base 20k, and the other ceramic base is omitted. The same applies to the subsequent drawings.
 このとき、発熱抵抗体のヒータ線を構成する印刷パターン20pは、熱交換器10の入水口23aに近い側の平板状ヒータ20の部分ではヒータ線幅20sが細く、出水口23bに近い側の平板状ヒータ20の部分ではヒータ線幅20sが、例えば順次、太くなるように構成している。 At this time, the printed pattern 20p constituting the heater wire of the heating resistor is such that the heater wire width 20s is narrow in the portion of the flat heater 20 on the side near the water inlet 23a of the heat exchanger 10 and the side near the water outlet 23b. In the portion of the flat heater 20, the heater line width 20s is configured to gradually increase, for example.
 つまり、発熱抵抗体のヒータ線を構成する印刷パターン20pのヒータ線幅20sを、平板状ヒータ20の入水口23aに近い側(例えば、図2の下部側)ほど細くすることにより、発熱抵抗体の抵抗値を高くして発熱密度を高めている。一方、印刷パターン20pのヒータ線幅20sを出水口23bに近い側(例えば、図2の上部側)ほど太くすることにより、発熱抵抗体の抵抗値を低くして発熱密度を低くしている。つまり、平板状ヒータ20は、熱交換器10の出水口23bに近い側の出口側流路25bに面する部分の発熱密度が、入水口23aに近い側の入口側流路25aに面する部分の発熱密度より低くなるように構成されている。 That is, by reducing the heater line width 20s of the printed pattern 20p constituting the heater wire of the heating resistor toward the side closer to the water inlet 23a of the flat heater 20 (for example, the lower side in FIG. 2), the heating resistor is formed. The resistance value is increased to increase the heat generation density. On the other hand, by increasing the heater line width 20s of the printed pattern 20p toward the side closer to the water outlet 23b (for example, the upper side in FIG. 2), the resistance value of the heating resistor is lowered and the heating density is lowered. That is, the flat heater 20 is a portion where the heat generation density of the portion facing the outlet-side channel 25b near the water outlet 23b of the heat exchanger 10 faces the inlet-side channel 25a near the inlet 23a. It is configured to be lower than the heat generation density.
 これにより、ケーシング23の入水口23aから流入した液体は、主流路25および漏れ流路41を流れながら、平板状ヒータ20の第1伝熱面20aおよび第2伝熱面20bにより加熱され、出水口23bに近づくにしたがって液体の温度が次第に上昇する。このとき、入口側流路25aに近い側の主流路25(入口側流路25aに近い側)および漏れ流路41に面した平板状ヒータ20の表面温度は、平板状ヒータ20の高い発熱密度によって高温になろうとする。しかし、ケーシング23の入水口23aから流入する加熱されていない低い温度の液体に、平板状ヒータ20の熱が多く奪われる。すなわち、サブクール(水の沸騰温度に対しての冷却度)の値が大きく、入口側流路25aに近いため、温度境界層の厚さが薄く、平板状ヒータ20から液体に伝わる熱伝達率が高くなる。そのため、熱交換器10の入水口23aに近い側の入口側流路25aに面する部分の発熱密度を高くしても、局所的な沸騰現象が生じるほどの高温にはならない。 As a result, the liquid flowing in from the water inlet 23a of the casing 23 is heated by the first heat transfer surface 20a and the second heat transfer surface 20b of the flat heater 20 while flowing through the main flow path 25 and the leak flow path 41, and is discharged. As the temperature approaches the water port 23b, the temperature of the liquid gradually increases. At this time, the surface temperature of the flat heater 20 facing the main flow path 25 (side close to the inlet flow path 25a) close to the inlet flow path 25a and the leakage flow path 41 is high in heat generation density of the flat heater 20. Tries to reach a high temperature. However, a large amount of heat from the flat heater 20 is taken away by the unheated low-temperature liquid flowing from the water inlet 23a of the casing 23. That is, since the value of the subcool (cooling degree with respect to the boiling temperature of water) is large and close to the inlet-side flow path 25a, the thickness of the temperature boundary layer is thin, and the heat transfer coefficient transferred from the flat heater 20 to the liquid is low. Get higher. Therefore, even if the heat generation density of the portion facing the inlet-side flow path 25a on the side close to the water inlet 23a of the heat exchanger 10 is increased, the temperature does not become high enough to cause local boiling.
 一方、ケーシング23の出水口23bに近い側の主流路25(出口側流路25bに近い側)および漏れ流路41に面した平板状ヒータ20の表面温度は、入水口23aに近い側に比べて高い温度になりやすい。その理由は、平板状ヒータ20の第1伝熱面20aおよび第2伝熱面20bに接触する液体は、熱交換器10を通流する間に、既に加熱されているためである。そのため、平板状ヒータ20の表面から液体に奪われる熱が少なくなる。すなわち、サブクールの値が小さくなる。しかし、平板状ヒータ20は出水口23bに近い側の発熱密度を、入水口23aに近い入口側流路25a側の発熱密度より小さくしている。そのため、熱交換器10の出水口23bに近い側の出口側流路25bに通流してきた液体の温度は、局所的な沸騰現象が生じるほどの高温にはならない。 On the other hand, the surface temperature of the flat heater 20 facing the main flow path 25 (side close to the outlet side flow path 25b) on the side close to the water outlet 23b of the casing 23 and the leak flow path 41 is higher than that on the side close to the water inlet 23a. High temperature. The reason is that the liquid contacting the first heat transfer surface 20 a and the second heat transfer surface 20 b of the flat heater 20 is already heated while flowing through the heat exchanger 10. For this reason, less heat is taken away from the surface of the flat heater 20 by the liquid. That is, the subcool value is reduced. However, in the flat heater 20, the heat generation density on the side close to the water outlet 23b is made smaller than the heat generation density on the inlet side flow path 25a side near the water inlet 23a. Therefore, the temperature of the liquid flowing through the outlet-side flow path 25b on the side close to the water outlet 23b of the heat exchanger 10 does not become high enough to cause a local boiling phenomenon.
 これにより、液体の温度が高くなる出水口23bに近い側の平板状ヒータ20と水などの液体との境界面においても、局所的な沸騰現象が生じるような高温になることが抑制される。その結果、平板状ヒータ20の表面へのスケールの生成および付着を防止できるとともに、長寿命で高い信頼性の熱交換器10を実現できる。そのため、平板状ヒータ20に、金属と比較して耐腐食性に優れ、熱容量は小さい特長を有するが割れやすいセラミックヒータを用いることができる。さらに、温度差に起因するセラミックヒータの割れを防止して、長寿命で高い信頼性の熱交換器10を実現できる。 Thereby, even at the boundary surface between the flat heater 20 on the side close to the water outlet 23b where the temperature of the liquid becomes high and the liquid such as water, it is suppressed that the temperature becomes high enough to cause a local boiling phenomenon. As a result, it is possible to prevent the generation and adhesion of scale to the surface of the flat heater 20, and to realize a long-life and highly reliable heat exchanger 10. For this reason, a ceramic heater that has excellent characteristics of corrosion resistance and a small heat capacity as compared with metal, but is easily cracked, can be used for the flat heater 20. Furthermore, cracking of the ceramic heater due to the temperature difference can be prevented, and the long-life and highly reliable heat exchanger 10 can be realized.
 なお、通常の平板状ヒータの伝熱面の発熱密度が均一な場合には、平板状ヒータの出水口に近い側が最高温度となる。そのため、通常の平板状ヒータでは、伝熱面の温度が100℃を超えて、液体が核沸騰熱伝達状態となった場合、核沸騰熱伝達状態の部分にスケールが生成される可能性がある。 In addition, when the heat generation density of the heat transfer surface of a normal flat heater is uniform, the side close to the water outlet of the flat heater becomes the maximum temperature. Therefore, in a normal flat heater, when the temperature of the heat transfer surface exceeds 100 ° C. and the liquid enters the nucleate boiling heat transfer state, there is a possibility that scale is generated in the nucleate boiling heat transfer portion. .
 また、平板状ヒータ20の両面に主流路25および漏れ流路41を設けることにより、平板状ヒータ20の熱を表裏の第1伝熱面20aおよび第2伝熱面20bに接触して流れる水道水などの液体に伝熱できる。これにより、放熱ロスがほとんどない熱効率の高い熱交換を行うことができる。また、平板状ヒータ20の表裏の第1伝熱面20aおよび第2伝熱面20bを伝熱面として活用することにより、より小型でコンパクトな熱交換器10を実現できる。 Moreover, by providing the main flow path 25 and the leakage flow path 41 on both surfaces of the flat heater 20, the water flowing through the heat of the flat heater 20 in contact with the first and second heat transfer surfaces 20a and 20b on the front and back sides. Heat can be transferred to liquids such as water. Thereby, heat exchange with high thermal efficiency with almost no heat dissipation loss can be performed. Further, by utilizing the first and second heat transfer surfaces 20a and 20b on the front and back of the flat heater 20 as heat transfer surfaces, a smaller and more compact heat exchanger 10 can be realized.
 以下に、本実施の形態の熱交換器の平板状ヒータの別の例に係る構成および動作について、図8を用いて詳細に説明する。 Hereinafter, the configuration and operation according to another example of the flat heater of the heat exchanger according to the present embodiment will be described in detail with reference to FIG.
 図8は、図4に示す熱交換器の平板状ヒータに形成された発熱抵抗体の印刷パターンの別の例を示す平面図である。なお、平板状ヒータ20の構成は、図7と同じであるので、説明は省略する。 FIG. 8 is a plan view showing another example of the print pattern of the heating resistor formed on the flat heater of the heat exchanger shown in FIG. In addition, since the structure of the flat heater 20 is the same as FIG. 7, description is abbreviate | omitted.
 すなわち、図8に示す発熱抵抗体の印刷パターン20pは、平板状ヒータ20の入水口23aに近い側の部分では隣接するヒータ線間隔20hが狭く、出水口23bに近い側の部分ではヒータ線間隔20hを広くした点で、図7に示す平板状ヒータ20とは異なる。 That is, in the heating resistor printed pattern 20p shown in FIG. 8, the adjacent heater line interval 20h is narrow in the portion near the water inlet 23a of the flat heater 20, and the heater line interval is close to the outlet 23b. It differs from the flat heater 20 shown in FIG. 7 in that 20h is widened.
 つまり、発熱抵抗体のヒータ線を構成する均一な幅からなる印刷パターン20pのヒータ線間隔20hを平板状ヒータ20の熱交換器10の入水口23aに近い側(例えば、図2の下部側)ほど狭くすることにより、発熱抵抗体の発熱密度を高くしている。一方、印刷パターン20pのヒータ線間隔20hを出水口23bに近い側(例えば、図2の上部側)ほど広くすることにより、発熱抵抗体の発熱密度を低くしている。 That is, the heater wire interval 20h of the printed pattern 20p having a uniform width constituting the heater wire of the heating resistor is the side closer to the water inlet 23a of the heat exchanger 10 of the flat heater 20 (for example, the lower side in FIG. 2). By making it so narrow, the heat generation density of the heating resistor is increased. On the other hand, by increasing the heater line interval 20h of the printed pattern 20p toward the side closer to the water outlet 23b (for example, the upper side in FIG. 2), the heat generation density of the heating resistor is lowered.
 これにより、上述したヒータ線幅20sを変えて発熱密度を変えた場合と同様に、スケールの生成および付着を防止できるとともに、セラミックヒータの割れを防止して、長寿命で高い信頼性の熱交換器を実現できる。 As a result, as in the case where the heating line width is changed by changing the heater line width 20s described above, scale generation and adhesion can be prevented, and cracking of the ceramic heater can be prevented to achieve long life and high reliability heat exchange. Can be realized.
 以下に、本実施の形態に係る熱交換器の漏れ流路の効果について、図9から図15を用いて説明する。 Hereinafter, the effect of the leakage flow path of the heat exchanger according to the present embodiment will be described with reference to FIGS. 9 to 15.
 まず、本実施の形態の熱交換器10内の主流路25を流れる流量(Qmain)と、漏れ流路41を流れる流量(Qleak)との関係を、漏れ流路41の隙間Hcを変化させてシミュレーションした。 First, the relationship between the flow rate (Qmain) flowing through the main channel 25 in the heat exchanger 10 of the present embodiment and the flow rate (Qleak) flowing through the leak channel 41 is changed by changing the gap Hc of the leak channel 41. Simulated.
 なお、上記シミュレーションは、図9に示す形状パラメータの組み合わせを4種類で変更した構成で、熱交換器内に500cc/minの流量を流した場合について行っている。また、以下では、第2流路形成部材22の第2流路リブ31bで形成される主流路25および漏れ流路41を例に説明するが、第1流路形成部材21の第1流路リブ31aで形成される主流路25および漏れ流路41でも同様であることは言うまでもない。 In addition, the said simulation is performed about the case where the flow rate of 500 cc / min is flowed in the heat exchanger by the structure which changed the combination of the shape parameter shown in FIG. 9 with four types. Hereinafter, the main flow path 25 and the leakage flow path 41 formed by the second flow path ribs 31b of the second flow path forming member 22 will be described as an example, but the first flow path of the first flow path forming member 21 will be described. It goes without saying that the same applies to the main flow path 25 and the leakage flow path 41 formed by the ribs 31a.
 具体的には、図9に示すように、主流路25を形成する第2流路形成部材22の第2流路リブ31bのリブピッチPと、第2流路リブ31bのリブ高さH1の組み合わせを変えて、シミュレーションした。その結果を、図10から図13に示す。 Specifically, as shown in FIG. 9, the combination of the rib pitch P of the second flow path rib 31b of the second flow path forming member 22 forming the main flow path 25 and the rib height H1 of the second flow path rib 31b. The simulation was changed. The results are shown in FIGS.
 図10は、リブピッチPが14mm、リブ高さH1が1.9mmの場合における隙間Hcの影響をシミュレーションした結果を示すグラフである。図11は、リブピッチPが7mm、リブ高さH1が1.9mmの場合における隙間Hcの影響をシミュレーションした結果を示すグラフである。図12は、リブピッチPが3.5mm、リブ高さH1が1.9mmの場合における隙間Hcの影響をシミュレーションした結果を示すグラフである。図13は、リブピッチPが3.5mm、リブ高さH1が0.95mmの場合における隙間Hcの影響をシミュレーションした結果を示すグラフである。 FIG. 10 is a graph showing a result of simulating the influence of the gap Hc when the rib pitch P is 14 mm and the rib height H1 is 1.9 mm. FIG. 11 is a graph showing a result of simulating the influence of the gap Hc when the rib pitch P is 7 mm and the rib height H1 is 1.9 mm. FIG. 12 is a graph showing a result of simulating the influence of the gap Hc when the rib pitch P is 3.5 mm and the rib height H1 is 1.9 mm. FIG. 13 is a graph showing a result of simulating the influence of the gap Hc when the rib pitch P is 3.5 mm and the rib height H1 is 0.95 mm.
 なお、図10の場合、通常使用する流量範囲となる主流路25の流速は0.16m/secで、図11の場合、流速は0.32m/secで、図12の場合、流速は0.64m/secで、図13の場合、流速は1.25m/secに相当する。 In the case of FIG. 10, the flow rate of the main flow path 25 that is a flow rate range that is normally used is 0.16 m / sec, in the case of FIG. 11, the flow rate is 0.32 m / sec, and in the case of FIG. In the case of FIG. 13 at 64 m / sec, the flow velocity corresponds to 1.25 m / sec.
 上記図10から図13に示すシミュレーションの結果から、主流路25の断面積が小さくなり、流速が速くなるにしたがって、隙間Hcの変化に対する漏れ流路41の流量の、主流路25の流量に対する影響が大きくなることがわかる。 From the simulation results shown in FIGS. 10 to 13, the influence of the flow rate of the leakage flow channel 41 on the change of the gap Hc on the flow rate of the main flow channel 25 as the cross-sectional area of the main flow channel 25 decreases and the flow velocity increases. It turns out that becomes large.
 つまり、上記パラメータの範囲内において、漏れ流路41の流量を全流量500cc/minの、例えば10%である50cc/min以下とするには、隙間Hcを、0.05mmから0.15mmの範囲に設定すればよいことがわかる。その理由は、漏れ流路41を流れる流量を50cc/min以下になるよう設定すれば、強制対流熱伝達に主として寄与する主流路25の流れが支配的となることによるものである。そのため、平板状ヒータ20の表面温度を低下させるとともに、流路中に発生した泡を主流路25の流れで効果的に排除することができる。 That is, within the range of the above parameters, in order to set the flow rate of the leakage flow path 41 to a total flow rate of 500 cc / min, for example, 10 cc, 50 cc / min or less, the gap Hc is in the range of 0.05 mm to 0.15 mm. It turns out that it should just set to. The reason is that if the flow rate flowing through the leakage flow path 41 is set to 50 cc / min or less, the flow of the main flow path 25 that mainly contributes to forced convection heat transfer becomes dominant. Therefore, the surface temperature of the flat heater 20 can be lowered, and bubbles generated in the flow path can be effectively eliminated by the flow of the main flow path 25.
 以下に、上記シミュレーションの結果に基づいて、実際の熱交換器で、隙間Hcの影響について、ヒータ線温度と平均熱伝達率から検討した結果を図14と図15に示す。 Hereinafter, based on the results of the above simulation, the results of examination of the influence of the gap Hc from the heater wire temperature and the average heat transfer coefficient with an actual heat exchanger are shown in FIGS.
 図14は、実際の熱交換器における、隙間Hcと平板状ヒータのヒータ線温度との関係を示すグラフである。このとき、熱交換器10の形状パラメータとして、第2流路リブ31bのリブピッチPを7mm、第2流路リブ31bのリブ高さH1を1.9mmに設定した熱交換器で行った。 FIG. 14 is a graph showing the relationship between the gap Hc and the heater wire temperature of the flat heater in an actual heat exchanger. At this time, as a shape parameter of the heat exchanger 10, a heat exchanger was used in which the rib pitch P of the second flow path rib 31b was set to 7 mm and the rib height H1 of the second flow path rib 31b was set to 1.9 mm.
 そして、上記構成の熱交換器10に、入水温度が5℃で、500cc/minの流量を流したときのヒータ線温度を測定した。 Then, the heater wire temperature when the incoming water temperature was 5 ° C. and a flow rate of 500 cc / min was passed through the heat exchanger 10 having the above configuration was measured.
 なお、熱交換器内の液体の状態を把握するために、熱交換器を透明の材料で作製し、平板状ヒータと液体との熱交換の状態を評価した。 In addition, in order to grasp the state of the liquid in the heat exchanger, the heat exchanger was made of a transparent material, and the state of heat exchange between the flat heater and the liquid was evaluated.
 その結果、図14に示すように、隙間Hcを0.2mm程度から0.05mm程度まで小さくすると、ヒータ線温度が急激に低下することがわかった。これは、漏れ流路41を介した液体の漏れ流量が、この範囲で大幅に低下することを示している。それは、隙間Hcが狭くなると、流速があがって、液体への熱伝達率が高まるからである。 As a result, as shown in FIG. 14, it was found that when the gap Hc was reduced from about 0.2 mm to about 0.05 mm, the heater wire temperature rapidly decreased. This indicates that the liquid leakage flow rate through the leakage flow path 41 is significantly reduced in this range. This is because when the gap Hc is narrowed, the flow rate increases and the heat transfer rate to the liquid increases.
 また、図15は、実際の熱交換器における、隙間Hcと、図14に示すヒータ線温度から評価した熱交換器の平均熱伝達率との関係を示す図である。このとき、図中には、熱交換器内を流れる液体の状態を示すために、強制対流熱伝達と沸騰熱伝達との割合を模式的に示している。 FIG. 15 is a view showing the relationship between the gap Hc in the actual heat exchanger and the average heat transfer coefficient of the heat exchanger evaluated from the heater wire temperature shown in FIG. At this time, in the drawing, in order to show the state of the liquid flowing in the heat exchanger, the ratio of forced convection heat transfer and boiling heat transfer is schematically shown.
 図15に示すように、隙間Hcが0.05mm付近では、熱交換器10内で局所的な沸騰は認められなかった。つまり、隙間Hcが0.05mm付近では、ほぼ全域で、液体に強制対流熱伝達で熱が伝達されていると考えられる。その結果、熱交換器10の出水口23bから、安定した出湯動作が行われていると考えられる。 As shown in FIG. 15, when the gap Hc is around 0.05 mm, local boiling in the heat exchanger 10 was not recognized. That is, when the gap Hc is near 0.05 mm, it is considered that heat is transmitted to the liquid by forced convection heat transfer in almost the entire region. As a result, it is considered that a stable hot water operation is performed from the water outlet 23b of the heat exchanger 10.
 また、隙間Hcが0.15mm付近では、熱交換器10内で一部、局所的な沸騰が認められ、強制対流熱伝達のほかに沸騰熱伝達が発生している。しかし、通常、強制対流熱伝達に対して沸騰熱伝達の割合が小さい場合、水蒸気などの気泡の発生が抑えられ、発生した気泡も強制対流により容易に搬出されるため熱交換器10の出水口23bからの出湯動作は安定する。そのため、一部沸騰熱伝達が発生した状態においても、熱交換器10の出水口23bから安定した出湯が可能である。 In addition, when the gap Hc is around 0.15 mm, local boiling is partially observed in the heat exchanger 10, and boiling heat transfer occurs in addition to forced convection heat transfer. However, normally, when the ratio of boiling heat transfer to forced convection heat transfer is small, the generation of bubbles such as water vapor is suppressed, and the generated bubbles are also easily carried out by forced convection, so the outlet of the heat exchanger 10 The hot water operation from 23b is stable. Therefore, stable hot water can be discharged from the water outlet 23b of the heat exchanger 10 even in a state where some boiling heat transfer has occurred.
 一方、図15に示すように、隙間Hcが0.3mm付近では、熱交換器10内で沸騰が発生し、強制対流熱伝達に対して沸騰熱伝達の割合が大きい場合、沸騰熱伝達の影響が大きくなる。そのため、熱交換器10内の液体の流れが、例えば水蒸気などの気泡などが発生し、この発生した気泡が強制対流により搬出されにくくなるため不安定となる。 On the other hand, as shown in FIG. 15, when the gap Hc is around 0.3 mm, boiling occurs in the heat exchanger 10, and when the ratio of boiling heat transfer to forced convection heat transfer is large, the influence of boiling heat transfer Becomes larger. Therefore, the flow of the liquid in the heat exchanger 10 becomes unstable because, for example, bubbles such as water vapor are generated and the generated bubbles are not easily carried out by forced convection.
 つまり、図14と図15に示すように、第2流路リブ31bの先端部45の上面と平板状ヒータ20との間の漏れ流路41の隙間Hcが変化すると、ヒータ線温度や熱伝達の状態が変化する。そこで、隙間Hcを0.15mm以下に、好ましくは0.05mmから0.1mm程度とすることにより、熱交換器10から安定した出湯が可能となる。これにより、安定した熱交換性能と耐スケール性に優れた熱交換器10およびそれを備えた衛生洗浄装置1を実現できる。 That is, as shown in FIGS. 14 and 15, if the gap Hc of the leakage flow path 41 between the upper surface of the tip 45 of the second flow path rib 31 b and the flat heater 20 changes, the heater wire temperature and heat transfer The state of changes. Therefore, by setting the gap Hc to 0.15 mm or less, preferably about 0.05 mm to 0.1 mm, stable hot water can be discharged from the heat exchanger 10. Thereby, the heat exchanger 10 excellent in stable heat exchange performance and scale resistance and the sanitary washing device 1 including the heat exchanger 10 can be realized.
 しかし、従来、熱交換器の外郭のケーシング23を構成する樹脂成形品である第1流路形成部材21および第2流路形成部材22は、成形時の反りの発生や、超音波溶着時において溶着寸法がばらつく。そのため、従来、第1流路リブ31aおよび第2流路リブ31bの先端部45の上面と平板状ヒータ20との隙間Hcを0.05mmから0.15mm、好ましくは0.05mmから0.1mmに設定することが困難である。 However, conventionally, the first flow path forming member 21 and the second flow path forming member 22, which are resin molded products constituting the outer casing 23 of the heat exchanger, cause warpage during molding or ultrasonic welding. Welding dimensions vary. Therefore, conventionally, the clearance Hc between the upper surface of the tip 45 of the first flow path rib 31a and the second flow path rib 31b and the flat heater 20 is 0.05 mm to 0.15 mm, preferably 0.05 mm to 0.1 mm. Difficult to set.
 そこで、以下に、上記隙間Hcを実現する熱交換器の製造方法について、図4および図6を参照しながら、図16を用いて説明する。 Therefore, a method of manufacturing a heat exchanger that realizes the gap Hc will be described below with reference to FIGS. 4 and 6 and FIG.
 図16は、本発明の実施の形態に係る熱交換器の製造方法の一例を説明するフローチャートである。 FIG. 16 is a flowchart for explaining an example of a method for manufacturing a heat exchanger according to an embodiment of the present invention.
 図16に示すように、まず、例えばABS樹脂などの樹脂の射出成形により成形した第1流路リブ31aを内壁面に有する第1流路形成部材21を、超音波溶着治具に装着し固定する(ステップS10)。このとき、第1流路リブ31aは、基部44と先端部45から構成され、先端部45の断面幅が基部44の断面幅よりも小さい形状を有している。そして、溶着前の第1流路リブ31aは、所定のリブピッチP、所定の溶着前のリブ高さH1を有し、蛇行する主流路25を形成するように互い違いに交互に形成されている。なお、溶着前の第1流路リブ31aのリブ高さH1とは、最終的に形成される隙間Hcよりも高い、例えば挿入される平板状ヒータ20と当接する程度の寸法である。 As shown in FIG. 16, first, the first flow path forming member 21 having the first flow path ribs 31a formed by injection molding of a resin such as ABS resin on the inner wall surface is attached to an ultrasonic welding jig and fixed. (Step S10). At this time, the first flow path rib 31 a includes a base portion 44 and a tip portion 45, and the cross-sectional width of the tip portion 45 is smaller than the cross-sectional width of the base portion 44. The first flow path ribs 31a before welding have a predetermined rib pitch P and a predetermined rib height H1 before welding, and are alternately formed so as to form a meandering main flow path 25. Note that the rib height H1 of the first flow path rib 31a before welding is higher than the finally formed gap Hc, for example, a dimension that contacts the flat plate heater 20 to be inserted.
 つぎに、第1流路形成部材21の第1流路リブ31aを覆うように、例えばステンレスなどの金属材料からなるスペーサ治具を配置または挿入する(ステップS20)。このとき、スペーサ治具は、以降で挿入される平板状ヒータ20の厚さに、第1流路リブ31aおよび第2流路リブ31bの先端部45の上面と平板状ヒータ20との隙間Hc(例えば0.1mm)を付加した厚みを有する。 Next, a spacer jig made of a metal material such as stainless steel is disposed or inserted so as to cover the first flow path rib 31a of the first flow path forming member 21 (step S20). At this time, the spacer jig has a thickness Hc between the upper surface of the tip 45 of the first flow path rib 31a and the second flow path rib 31b and the flat heater 20 to the thickness of the flat heater 20 to be inserted later. (For example, 0.1 mm).
 つぎに、例えばABS樹脂などの樹脂の射出成形により成形した第2流路リブ31bを内壁面に有する第2流路形成部材22の第2流路リブ31bを、第1流路形成部材21の第1流路リブ31a側に配置したスペーサ治具を内包するように装着する(ステップS30)。 Next, the second flow path rib 31b of the second flow path forming member 22 having the second flow path rib 31b formed by injection molding of a resin such as ABS resin on the inner wall surface is provided on the first flow path forming member 21. A spacer jig disposed on the first flow path rib 31a side is mounted so as to be included (step S30).
 つぎに、上記の状態で、超音波溶着機に装着し、第1流路形成部材21のベース面30aおよび第2流路形成部材22のベース面40a側から、超音波治具を介して、超音波振動を加える。これにより、第1流路形成部材21のフランジ部32の係合溝33と、第2流路形成部材22のフランジ部42の係合突起43が溶着される(ステップS40)。そして、ケーシング23が形成される。 Next, in the state described above, the ultrasonic welder is mounted, and from the base surface 30a of the first flow path forming member 21 and the base surface 40a side of the second flow path forming member 22, via an ultrasonic jig, Apply ultrasonic vibration. Thereby, the engagement groove 33 of the flange portion 32 of the first flow path forming member 21 and the engagement protrusion 43 of the flange portion 42 of the second flow path forming member 22 are welded (step S40). And the casing 23 is formed.
 このとき、スペーサ治具に当接する、第1流路形成部材21の第1流路リブ31aおよび第2流路形成部材22の第2流路リブ31bは、超音波溶着時の超音波振動により発生する熱によって、例えば先端部45の先端が、スペーサ治具に沿って変形する。つまり、対向する第1流路形成部材21の第1流路リブ31aと第2流路形成部材22の第2流路リブ31bとの間隔は、スペーサ治具の厚みとなるように変形する。これにより、ケーシングを構成する第1流路形成部材21および第2流路形成部材22の寸法ばらつきや成形反りなどを吸収して、均一な間隔で形成される。 At this time, the first flow path rib 31a of the first flow path forming member 21 and the second flow path rib 31b of the second flow path forming member 22 that are in contact with the spacer jig are subjected to ultrasonic vibration during ultrasonic welding. Due to the generated heat, for example, the tip of the tip 45 is deformed along the spacer jig. That is, the distance between the first flow path rib 31a of the first flow path forming member 21 and the second flow path rib 31b of the second flow path forming member 22 which are opposed to each other is deformed to be the thickness of the spacer jig. Thereby, the dimensional variation of the 1st flow path formation member 21 and the 2nd flow path formation member 22 which comprise a casing, a shaping | molding curvature, etc. are absorbed, and it forms at a uniform space | interval.
 つぎに、形成されたケーシングから、スペーサ治具を取り除く(ステップS50)。これにより、第1流路形成部材21の第1流路リブ31aと第2流路形成部材22の第2流路リブ31bとの間隔が均一に形成されたケーシングが作製される。 Next, the spacer jig is removed from the formed casing (step S50). As a result, a casing in which the distance between the first flow path rib 31a of the first flow path forming member 21 and the second flow path rib 31b of the second flow path forming member 22 is formed uniformly is produced.
 つぎに、平板状ヒータ20を、ケーシングを取り除いたスペーサ治具の位置に挿入し、平板状ヒータ20の側面とケーシングとを、例えばシリコ-ンシーラントなどのシール材で、液密にシールする(ステップS60)。これにより、第1流路リブ31aおよび第2流路リブ31bと、平板状ヒータ20の表面(第1伝熱面20aおよび第2伝熱面20b)とにより、液体が蛇行して流れる凹部状の主流路25が形成される。さらに、第1流路リブ31aの先端部45の上面および第2流路リブ31bの先端部45の上面と、平板状ヒータ20の表面(第1伝熱面および第2伝熱面)との間に、所定の隙間Hc(例えば0.1mm)を有する漏れ流路41が形成される。つまり、スペーサ治具により、高精度で、目標とする0.05mmから0.15mmの、所定の隙間Hcの漏れ流路41を形成することができる。このとき、さらに、作製した熱交換器10のシール性を検査する、例えば液漏れ検査などを実行しても良い(ステップS70)。 Next, the flat heater 20 is inserted into the position of the spacer jig from which the casing is removed, and the side surface of the flat heater 20 and the casing are sealed in a liquid-tight manner with a sealant such as a silicone sealant (for example). Step S60). Accordingly, the first flow path rib 31a and the second flow path rib 31b and the surface of the flat heater 20 (the first heat transfer surface 20a and the second heat transfer surface 20b) have a concave shape in which the liquid flows in a meandering manner. Main flow path 25 is formed. Furthermore, the upper surface of the front end portion 45 of the first flow path rib 31a, the upper surface of the front end portion 45 of the second flow path rib 31b, and the surface of the flat heater 20 (first heat transfer surface and second heat transfer surface). A leakage channel 41 having a predetermined gap Hc (for example, 0.1 mm) is formed therebetween. In other words, the leakage jig 41 having a predetermined gap Hc of 0.05 to 0.15 mm as a target can be formed with high accuracy by the spacer jig. At this time, the sealing performance of the manufactured heat exchanger 10 may be inspected, for example, a liquid leakage inspection may be performed (step S70).
 以上により、本実施の形態の熱交換器が作製される。 Thus, the heat exchanger of the present embodiment is manufactured.
 つまり、本実施の形態の熱交換器の製造方法は、平板状ヒータ20の厚みより、所定の漏れ流路41の隙間Hcに相当する分だけ厚いスペーサ治具の両面に、第1流路形成部材21の第1流路リブ31aと第2流路形成部材22の第2流路リブ31bとを対向させた方向で溶着する。そして、第1流路リブ31aと第2流路リブ31bの、スペーサ治具と対向する先端部45を溶着時に変形させてケーシングを作製する。このとき、ケーシングを構成する第1流路形成部材21および第2流路形成部材22の寸法ばらつきや成形反りなどにより、スペーサ治具と当接する第1流路リブ31aおよび第2流路リブ31bの先端部45が溶着時の熱で部分的に溶ける。その結果、第1流路リブ31aおよび第2流路リブ31bの先端部45は、スペーサ治具に沿って、すなわちスペーサ治具の厚みで離間して変形し、先端部45に上面が形成される。 That is, in the heat exchanger manufacturing method of the present embodiment, the first flow path is formed on both surfaces of the spacer jig that is thicker than the thickness of the flat heater 20 by the amount corresponding to the gap Hc of the predetermined leak flow path 41. The first flow path rib 31a of the member 21 and the second flow path rib 31b of the second flow path forming member 22 are welded in a facing direction. And the front-end | tip part 45 which opposes a spacer jig | tool of the 1st flow path rib 31a and the 2nd flow path rib 31b is changed at the time of welding, and a casing is produced. At this time, the first flow path rib 31a and the second flow path rib 31b that come into contact with the spacer jig due to dimensional variations or molding warpage of the first flow path forming member 21 and the second flow path forming member 22 constituting the casing. The tip portion 45 of the metal is partially melted by heat during welding. As a result, the tip portions 45 of the first channel rib 31a and the second channel rib 31b are deformed along the spacer jig, that is, spaced apart by the thickness of the spacer jig, and an upper surface is formed on the tip portion 45. The
 そして、溶着後、スペーサ治具を抜き取って、平板状ヒータ20を装着する。このとき、第1流路形成部材21の第1流路リブ31aおよび第2流路形成部材22の第2流路リブ31bにより、平板状ヒータ20の表面を蛇行して流れる凹部状の主流路25と、第1流路リブ31aおよび第2流路リブ31bと、平板状ヒータ20の表面との間に、均一な隙間Hcを備えた漏れ流路41とが形成される。これにより、漏れ流路41を構成する第1流路リブ31aおよび第2流路リブ31bの先端部45の上面と、平板状ヒータ20の表面との間に高精度で均一な隙間Hcが形成される。 Then, after welding, the spacer jig is removed and the flat heater 20 is mounted. At this time, a concave main flow path that meanders on the surface of the flat heater 20 by the first flow path rib 31a of the first flow path forming member 21 and the second flow path rib 31b of the second flow path forming member 22. 25, a leakage flow path 41 having a uniform gap Hc is formed between the first flow path rib 31a and the second flow path rib 31b and the surface of the flat heater 20. As a result, a highly accurate and uniform gap Hc is formed between the upper surfaces of the front end portions 45 of the first flow path rib 31a and the second flow path rib 31b constituting the leakage flow path 41 and the surface of the flat heater 20. Is done.
 その結果、平板状ヒータ20の表面での局部沸騰の発生を抑制するとともに、平板状ヒータ20の表面温度を低下させることができ、安定した熱交換性能と耐スケール性の優れた熱交換器10を作製することができる。 As a result, the occurrence of local boiling on the surface of the flat heater 20 can be suppressed, and the surface temperature of the flat heater 20 can be lowered, and the heat exchanger 10 has stable heat exchange performance and excellent scale resistance. Can be produced.
 また、本実施の形態の熱交換器の製造方法では、第1流路リブ31aおよび第2流路リブ31bが、基部44と先端部45とからなり、先端部45は基部44より断面幅を小さく構成している。これにより、ケーシング23を作製する際の超音波溶着時において、断面幅が大きい基部44が折れることなく、断面幅が小さい先端部45だけが溶けて変形する。その結果、第1流路リブ31aと第2流路リブ31bの成形をスムーズに、かつ安定して行うことができる。そして、安定した品質の熱交換器10を作製することができる。 Further, in the heat exchanger manufacturing method of the present embodiment, the first flow path rib 31 a and the second flow path rib 31 b are composed of the base portion 44 and the tip portion 45, and the tip portion 45 has a cross-sectional width wider than that of the base portion 44. It is small. Thereby, only the front-end | tip part 45 with a small cross-sectional width melt | dissolves and deform | transforms at the time of the ultrasonic welding at the time of producing the casing 23, without breaking the base 44 with a large cross-sectional width. As a result, the first channel rib 31a and the second channel rib 31b can be molded smoothly and stably. And the heat exchanger 10 of the stable quality can be produced.
 なお、上記熱交換器の製造方法では、第1流路リブ31aおよび第2流路リブ31bの先端部45が基部44より断面幅が小さい構成で説明した。以下に、第1流路リブ31aおよび第2流路リブ31bの具体的な形状について、図17から図20を用いて説明する。 In addition, in the manufacturing method of the said heat exchanger, it demonstrated by the structure where the front-end | tip part 45 of the 1st flow path rib 31a and the 2nd flow path rib 31b has a cross-sectional width smaller than the base 44. Below, the specific shape of the 1st flow path rib 31a and the 2nd flow path rib 31b is demonstrated using FIGS. 17-20.
 図17は、熱交換器の第1流路リブおよび第2流路リブの形状の一例を示す斜視図である。図18は、図17のB部拡大斜視図である。図19は、熱交換器の第1流路リブおよび第2流路リブの形状の別の例を示す斜視図である。図20は、熱交換器の第1流路リブおよび第2流路リブの形状のさらに別の例を示す斜視図である。なお、以下では、第2流路リブ31bを例に示すが、第1流路リブ31aも同様であることは言うまでもない。 FIG. 17 is a perspective view showing an example of the shape of the first flow path rib and the second flow path rib of the heat exchanger. 18 is an enlarged perspective view of a portion B in FIG. FIG. 19 is a perspective view showing another example of the shape of the first flow path rib and the second flow path rib of the heat exchanger. FIG. 20 is a perspective view showing still another example of the shape of the first flow path rib and the second flow path rib of the heat exchanger. In the following, the second flow path rib 31b is shown as an example, but it goes without saying that the first flow path rib 31a is the same.
 まず、図17と図18に示すように、第2流路リブ31bは、先端部45と基部44から構成され、基部44は断面が矩形形状で形成され、先端部45は断面が略三角エッジ形状(三角エッジ形状を含む)で形成されている。このとき、先端部45の底面の幅は、基部44の幅より小さく構成されている。 First, as shown in FIGS. 17 and 18, the second flow path rib 31 b is composed of a tip portion 45 and a base portion 44. The base portion 44 is formed in a rectangular shape in cross section, and the tip portion 45 has a substantially triangular edge in cross section. It is formed in a shape (including a triangular edge shape). At this time, the width of the bottom surface of the distal end portion 45 is configured to be smaller than the width of the base portion 44.
 また、図19に示すように、第2流路リブ31bは、先端部45と基部44から構成され、先端部45と基部44との接続部分の幅が等しい形状を有している。そして、先端部45は、断面が直角三角形で形成されている。 Further, as shown in FIG. 19, the second flow path rib 31 b is composed of a tip portion 45 and a base portion 44, and has a shape in which the width of the connection portion between the tip portion 45 and the base portion 44 is equal. And the front-end | tip part 45 is formed in the cross section by the right triangle.
 また、図20に示すように、第2流路リブ31bは、先端部45と基部44から構成され、先端部45と基部44とが、例えば直角三角形や三角形の一部を構成する形状で形成されている。 Further, as shown in FIG. 20, the second flow path rib 31b is composed of a tip portion 45 and a base portion 44, and the tip portion 45 and the base portion 44 are formed in a shape that forms, for example, a right triangle or a part of a triangle. Has been.
 これらの形状により、超音波溶着時において、第1流路リブ31aおよび第2流路リブ31bの先端部45を容易に変形させることができる。また、超音波溶着時において、第1流路リブ31aおよび第2流路リブ31bの先端部45の高さ調整を容易に行うことができる。その結果、例えば図4に示す先端部45に上面が形成され、平板状ヒータ20との間で、所定の隙間Hcを均一に形成できる。 These shapes allow the tip portions 45 of the first flow path rib 31a and the second flow path rib 31b to be easily deformed during ultrasonic welding. Further, at the time of ultrasonic welding, it is possible to easily adjust the heights of the tip portions 45 of the first channel rib 31a and the second channel rib 31b. As a result, for example, an upper surface is formed at the tip 45 shown in FIG. 4, and a predetermined gap Hc can be formed uniformly with the flat heater 20.
 なお、本実施の形態では、ケーシング23を、第1流路形成部材21と第2流路形成部材22とを超音波溶着で形成する例で説明したが、これに限られない。例えば、熱を加えて溶着する熱溶着で形成してもよい。この場合、熱溶着作業時に、第1流路形成部材21の第1流路リブ31aと第2流路形成部材22の第2流路リブ31bとの間に、例えば第1流路リブ31aおよび第2流路リブ31bの先端部45が熱変形する以上の温度で、かつ溶融しない範囲の温度に加熱したスペーサ治具を挿入した状態でケーシング23の熱溶着をする。これにより、加熱したスペーサ治具に当接する第1流路リブ31aおよび第2流路リブ31bの先端部45が、スペーサ治具の熱で部分的に熱変形する。その結果、成形そりや寸法ばらつきを吸収して、超音波溶着と同様の作用効果を得ることができる。 In the present embodiment, the casing 23 is described as an example in which the first flow path forming member 21 and the second flow path forming member 22 are formed by ultrasonic welding. However, the present invention is not limited to this. For example, you may form by the heat welding which heats and welds. In this case, during the heat welding operation, for example, between the first channel rib 31a of the first channel forming member 21 and the second channel rib 31b of the second channel forming member 22, for example, the first channel rib 31a and The casing 23 is thermally welded in a state where a spacer jig heated to a temperature at which the tip 45 of the second flow path rib 31b is thermally deformed and not melted is inserted. Thereby, the front-end | tip parts 45 of the 1st flow path rib 31a and the 2nd flow path rib 31b which contact | abut to the heated spacer jig | tool are partially thermally deformed with the heat | fever of a spacer jig | tool. As a result, it is possible to absorb the molding warp and dimensional variations and obtain the same effects as ultrasonic welding.
 また、本実施の形態の熱交換器およびその製造方法では、第1流路形成部材21に第1流路リブ31aおよび第2流路形成部材22に第2流路リブ31bを設け、主流路25と漏れ流路41を形成した例で説明したが、これに限られない。第1流路形成部材21または第2流路形成部材22のいずれか一方に流路リブを設けた構成でもよい。例えば、図21に示すように、第1流路形成部材21に流路リブ31を設けて主流路25と漏れ流路41を形成し、第2流路形成部材22には流路リブを設けない構成でもよい。この場合、平板状ヒータ20は、流路リブ31を備える第1流路形成部材21のベース面30aと対向する面に発熱抵抗体を設けることが好ましい。これにより、主流路25と漏れ流路41に、液体を均一に通流させて、平板状ヒータ20の表面での局部沸騰の発生を抑制し、平板状ヒータ20の表面温度を低下させることができる。その結果、安定した熱交換性能と耐スケール性に優れた、より小型でコンパクトな熱交換器10を実現できる。 In the heat exchanger and the manufacturing method thereof according to the present embodiment, the first flow path forming member 21 is provided with the first flow path rib 31a and the second flow path forming member 22 is provided with the second flow path rib 31b. Although the example which formed 25 and the leakage flow path 41 was demonstrated, it is not restricted to this. The structure which provided the flow path rib in any one of the 1st flow path formation member 21 or the 2nd flow path formation member 22 may be sufficient. For example, as shown in FIG. 21, the first channel forming member 21 is provided with channel ribs 31 to form the main channel 25 and the leakage channel 41, and the second channel forming member 22 is provided with channel ribs. There may be no configuration. In this case, it is preferable that the flat heater 20 is provided with a heating resistor on a surface facing the base surface 30 a of the first flow path forming member 21 including the flow path ribs 31. Thereby, the liquid is allowed to flow uniformly through the main flow path 25 and the leakage flow path 41, the occurrence of local boiling on the surface of the flat heater 20 is suppressed, and the surface temperature of the flat heater 20 is lowered. it can. As a result, a more compact and compact heat exchanger 10 having excellent stable heat exchange performance and scale resistance can be realized.
 また、上記熱交換器10を備えることにより、熱交換性能と耐スケール性に優れ、長寿命で、さらに小型で、狭いトイレ空間にも容易に設置できる衛生洗浄装置1を実現できる。 Also, by providing the heat exchanger 10, the sanitary washing device 1 can be realized that has excellent heat exchange performance and scale resistance, has a long life, is small, and can be easily installed in a narrow toilet space.
 以上で説明したように、本発明の熱交換器は、入水口と出水口を有し、少なくとも一方の内壁面に流路リブを備える第1流路形成部材と第2流路形成部材とからなるケーシングと、ケーシング内に内包される平板状ヒータと、を備え、流路リブと、平板状ヒータとにより形成される凹部状の主流路と、流路リブの上面と、平板状ヒータの表面との隙間で形成される漏れ流路と、を有し、漏れ流路の隙間が、0.05mmから0.15mmである。 As described above, the heat exchanger according to the present invention has a water inlet and a water outlet, and includes a first flow path forming member and a second flow path forming member having flow path ribs on at least one inner wall surface. A flat plate heater included in the casing, a flow path rib, a concave main flow path formed by the flat plate heater, an upper surface of the flow path rib, and a surface of the flat plate heater And a leak channel formed by a gap between the leak channel and the leak channel is 0.05 mm to 0.15 mm.
 これにより、平板状ヒータの表面での洗浄水の局部沸騰の発生を防止するとともに、ヒータの表面温度差を抑制することができる。その結果、安定した熱交換性能と耐スケール性の優れた熱交換効率の熱交換器を実現できる。 Thereby, it is possible to prevent the local boiling of the cleaning water on the surface of the flat heater and to suppress the difference in the heater surface temperature. As a result, it is possible to realize a heat exchanger with stable heat exchange performance and heat exchange efficiency with excellent scale resistance.
 また、本発明の熱交換器によれば、第1流路リブおよび第2流路リブが、基部と先端部とから構成され、先端部は基部より断面幅が小さい構成を有する。 Further, according to the heat exchanger of the present invention, the first flow path rib and the second flow path rib are configured by the base portion and the tip portion, and the tip portion has a configuration having a smaller cross-sectional width than the base portion.
 これにより、漏れ流路の隙間をより均一に構成することができる。その結果、平板状ヒータの表面での洗浄水の局部沸騰の発生や、ヒータの表面温度差の発生を、さらに効率的に抑制できる。 This makes it possible to configure the gaps of the leakage flow path more uniformly. As a result, the occurrence of local boiling of cleaning water on the surface of the flat heater and the occurrence of a heater surface temperature difference can be more efficiently suppressed.
 また、本発明の熱交換器によれば、平板状ヒータの、出水口に近い側の流路スペースに面した発熱密度が入水口に近い側の流路スペースに面した発熱密度より小さい構成を有する。 Further, according to the heat exchanger of the present invention, the heat generation density facing the flow path space near the water outlet of the flat heater is smaller than the heat generation density facing the flow path space near the water inlet. Have.
 これにより、平板状ヒータの熱を、平板状ヒータに伝熱面に接触して流れる洗浄水に効率よく伝熱され、放熱ロスの無駄を低減できる。その結果、熱交換効率が高く、小型でコンパクト、かつスケールの付着が抑制できる熱交換器を実現できる。 This makes it possible to efficiently transfer the heat of the flat heater to the washing water that flows in contact with the heat transfer surface of the flat heater, thereby reducing waste of heat dissipation. As a result, it is possible to realize a heat exchanger that has high heat exchange efficiency, is small and compact, and can suppress adhesion of scale.
 また、本発明の熱交換器によれば、平板状ヒータが、セラミック基体と、セラミック基体上に所定のヒータ線幅の印刷パターンで形成した抵抗体からなる発熱抵抗体と、電極と、からなるセラミックヒータで構成される。 According to the heat exchanger of the present invention, the flat heater includes a ceramic base, a heating resistor formed of a resistor formed on the ceramic base with a print pattern having a predetermined heater line width, and an electrode. It consists of a ceramic heater.
 さらに、本発明の熱交換器によれば、平板状ヒータの印刷パターンのヒータ線幅が、入水口に近い部分より出水口に近い側の部分の方が太い構成を有する。 Furthermore, according to the heat exchanger of the present invention, the heater line width of the printing pattern of the flat heater has a configuration in which the portion closer to the water outlet is thicker than the portion closer to the water inlet.
 これらの構成により、発熱抵抗体である印刷パターンのヒータ線幅が太いほど電流を流したときの電気抵抗が小さくなるため、発熱量を調整できるセラミックヒータを実現できる。つまり、印刷パターンのヒータ線幅が細い入水口に近い流路側の流路スペースに面した部分の発熱量を大きく、すなわち発熱密度を大きくできる。一方、印刷パターンのヒータ線幅が太い出水口に近い側の流路スペースに面した部分の発熱量を小さく、すなわち発熱密度を小さくできる。 These configurations make it possible to realize a ceramic heater capable of adjusting the amount of heat generation because the electric resistance when a current is passed decreases as the heater line width of the printed pattern, which is a heating resistor, increases. That is, it is possible to increase the amount of heat generated in the portion facing the channel space on the channel side near the water inlet where the heater line width of the print pattern is narrow, that is, increase the heat generation density. On the other hand, the amount of heat generated in the portion facing the flow path space on the side close to the water outlet where the heater line width of the printed pattern is large can be reduced, that is, the heat generation density can be reduced.
 これにより、液体の温度が高くなる出水口に近い側の平板状ヒータと水道水などの液体との境界面においても、平板状ヒータの温度を、液体が局所的に沸騰現象が生じる高温になることを抑制できる。その結果、平板状ヒータへのスケールの生成および付着を防止して、高い熱交換効率を維持できる。さらに、平板状ヒータとして、金属と比較して耐腐食性が優れ、熱容量が小さい特長を有するが、一方で割れやすいセラミックヒータを用いても、平板状ヒータの発熱温度差に起因する割れを防止できる。その結果、長寿命で、高い信頼性の熱交換器を実現できる。 As a result, the temperature of the flat heater is raised to a high temperature at which the liquid locally boils even at the boundary surface between the flat heater near the water outlet and the liquid such as tap water where the liquid temperature increases. This can be suppressed. As a result, scale generation and adhesion to the flat heater can be prevented, and high heat exchange efficiency can be maintained. In addition, as a flat heater, it has excellent corrosion resistance and small heat capacity compared to metal, but on the other hand, even if a ceramic heater that is easy to crack is used, cracking due to the temperature difference of the flat heater is prevented. it can. As a result, a long-life and highly reliable heat exchanger can be realized.
 また、本発明の熱交換器によれば、平板状ヒータの印刷パターンの線間の隙間は、入水口に近い部分より出水口に近い側の部分の方が広い構成を有する。 Further, according to the heat exchanger of the present invention, the gap between the printed pattern lines of the flat heater has a configuration in which the portion closer to the water outlet is wider than the portion closer to the water inlet.
 この構成により、印刷パターンの線間の隙間が狭い入水口に近い流路側の流路スペースに面した部分の発熱量を大きく、すなわち発熱密度を大きくできる。一方、印刷パターンの線間の隙間が広い出水口に近い側の流路スペースに面した部分の発熱量を小さく、すなわち発熱密度を小さくできる。 This configuration makes it possible to increase the amount of heat generated in the portion facing the channel space on the channel side close to the water inlet where the gaps between the printed pattern lines are narrow, that is, to increase the heat generation density. On the other hand, the amount of heat generated in the portion facing the flow path space on the side close to the water outlet where the gaps between the printed pattern lines are wide can be reduced, that is, the heat generation density can be reduced.
 これにより、上述のヒータ線幅で説明した理由と同様に、平板状ヒータへのスケールの生成および付着を防止して、高い熱交換効率を維持できる。さらに、平板状ヒータの発熱温度差に起因するセラミックヒータの割れを防止して、長寿命で、高い信頼性の熱交換器を実現できる。 Thus, for the same reason as described above for the heater line width, scale generation and adhesion to the flat heater can be prevented, and high heat exchange efficiency can be maintained. Furthermore, the ceramic heater can be prevented from cracking due to the heating temperature difference of the flat heater, and a long-life and highly reliable heat exchanger can be realized.
 また、本発明の衛生洗浄装置によれば、上記熱交換器を備える。 Moreover, according to the sanitary washing apparatus of the present invention, the above heat exchanger is provided.
 この構成により、小型で安定した熱交換性能と、耐スケール性に優れ、長寿命な熱交換器により、衛生洗浄装置本体を小型化できる。その結果、狭いトイレ空間にも容易に衛生洗浄装置を設置することができる。また、熱交換器内のスケールの生成および付着を防止することにより、硬水地域で使用できる衛生洗浄装置を実現できる。さらに、熱交換器から剥離したスケールの破片が洗浄ノズルに詰まることを防止して、長寿命で高い信頼性の衛生洗浄装置を実現できる。 This configuration makes it possible to reduce the size of the main body of the sanitary washing device with a heat exchanger that is small and stable, has excellent scale resistance, and has a long life. As a result, the sanitary washing device can be easily installed in a narrow toilet space. Moreover, the sanitary washing apparatus which can be used in a hard water area is realizable by preventing the production | generation and adhesion of the scale in a heat exchanger. Furthermore, the scale nozzle peeled off from the heat exchanger can be prevented from clogging the cleaning nozzle, and a long-life and highly reliable sanitary cleaning apparatus can be realized.
 また、本発明の熱交換器の製造方法によれば、第1流路形成部材に溶着治具に固定する固定ステップと、第1流路形成部材の内壁面にスペーサ治具を挿入する挿入ステップと、第2流路形成部材の内壁面でスペーサ治具を内包するように第1流路形成部材に装着する装着ステップと、を含む。さらに、第1流路形成部材と第2流路形成部材の少なくとも一方の内壁面に設けられた流路リブをスペーサ治具との圧接により変形させるとともに、第1流路形成部材と第2流路形成部材とを溶着してケーシングを形成する溶着ステップと、ケーシングからスペーサ治具を取り外すステップと、取り外したスペーサ治具の位置にヒータを挿入して、ケーシングとシールするシールステップを、含む。 In addition, according to the method for manufacturing a heat exchanger of the present invention, a fixing step of fixing the first flow path forming member to the welding jig, and an insertion step of inserting the spacer jig into the inner wall surface of the first flow path forming member. And a mounting step of mounting on the first flow path forming member so as to enclose the spacer jig on the inner wall surface of the second flow path forming member. Further, the flow path rib provided on the inner wall surface of at least one of the first flow path forming member and the second flow path forming member is deformed by pressure contact with the spacer jig, and the first flow path forming member and the second flow path member are deformed. A welding step of welding the path forming member to form a casing, a step of removing the spacer jig from the casing, and a sealing step of inserting a heater at the position of the removed spacer jig and sealing the casing.
 これにより、漏れ流路を構成する流路リブの先端部と、平板状ヒータの表面との間に高精度で均一な隙間の漏れ流路を形成できる。その結果、平板状ヒータの表面での洗浄水の局部沸騰の発生を防止するとともに、ヒータの表面温度差を抑制することができる。その結果、安定した熱交換性能と耐スケール性の優れた熱交換効率の熱交換器を作製できる。 This makes it possible to form a highly accurate and uniform leak channel between the tip of the channel rib constituting the leak channel and the surface of the flat heater. As a result, it is possible to prevent the local boiling of the washing water from occurring on the surface of the flat heater and to suppress the surface temperature difference of the heater. As a result, a heat exchanger having stable heat exchange performance and excellent heat exchange efficiency with excellent scale resistance can be produced.
 また、本発明の熱交換器の製造方法によれば、熱交換器の漏れを検査するステップを、さらに含む。これにより、長期間にわたって、高い信頼性を有する熱交換器を作製できる。 Moreover, according to the heat exchanger manufacturing method of the present invention, the method further includes the step of inspecting the heat exchanger for leakage. Thereby, a heat exchanger having high reliability can be manufactured over a long period of time.
 また、本発明の熱交換器の製造方法によれば、溶着ステップが、超音波溶着により行われる。これにより、短時間で、スペーサ治具に当接する流路リブを均一に離間して作製できる。その結果、安定した品質の熱交換器を容易に作製できる。 Moreover, according to the method for manufacturing a heat exchanger of the present invention, the welding step is performed by ultrasonic welding. As a result, the flow path ribs that contact the spacer jig can be uniformly spaced in a short time. As a result, a stable quality heat exchanger can be easily manufactured.
 また、本発明の熱交換器の製造方法によれば、流路リブは、基部と先端部とから構成され、先端部は基部より断面幅が小さい。これにより、溶着時に断面幅が大きい基部が折れることなく、断面幅が小さい先端部だけを溶かして変形させ、成形することができる。その結果、溶着時の流路リブの成形をスムーズに安定して行うことができる。 Further, according to the method for manufacturing a heat exchanger of the present invention, the flow path rib is composed of a base portion and a tip portion, and the tip portion has a smaller cross-sectional width than the base portion. Thereby, only the front-end | tip part with a small cross-sectional width can be melt | dissolved and deform | transformed and molded, without the base part with a large cross-sectional width breaking at the time of welding. As a result, the flow path rib can be formed smoothly and stably during welding.
 また、本発明の熱交換器の製造方法によれば、流路リブの、先端部が略三角エッジの断面形状を有する。これにより、溶着時の流路リブの先端部の成形をよりスムーズに行うことができる。その結果、より安定した品質の熱交換器を容易に作製できる。 Further, according to the method for manufacturing a heat exchanger of the present invention, the tip end portion of the flow path rib has a substantially triangular edge cross-sectional shape. Thereby, the front-end | tip part of the flow path rib at the time of welding can be shape | molded more smoothly. As a result, a more stable quality heat exchanger can be easily manufactured.
 さらに、本発明の熱交換器の製造方法によれば、流路リブの、先端部が鋭角の断面形状を有する。これにより、溶着時の流路リブの先端部の高さ調整を容易に行うことができる。 Furthermore, according to the method for manufacturing a heat exchanger of the present invention, the tip end portion of the flow path rib has an acute-angle cross-sectional shape. Thereby, the height adjustment of the front-end | tip part of the flow path rib at the time of welding can be performed easily.
 また、本発明の衛生洗浄装置によれば、上記熱交換器の製造方法により製造した熱交換器を備える。これにより、小型で安定した熱交換性能と、耐スケール性に優れ、長寿命な熱交換器を備えた衛生洗浄装置を作製できる。 Moreover, according to the sanitary washing apparatus of the present invention, the heat exchanger manufactured by the above-described heat exchanger manufacturing method is provided. As a result, a sanitary washing apparatus having a heat exchanger having a small size and a stable heat exchange performance, excellent scale resistance, and a long-life heat exchanger can be produced.
 本発明は、安定した熱交換性能と耐スケール性が要望される熱交換器および熱交換器を備える技術分野に有用である。 The present invention is useful in a technical field including a heat exchanger and a heat exchanger that require stable heat exchange performance and scale resistance.
 1  衛生洗浄装置
 2  便器
 3  本体部
 3a  筐体
 4  便座部
 5  便蓋部
 6  操作部
 10  熱交換器
 20  平板状ヒータ
 20a  第1伝熱面
 20b  第2伝熱面
 20h  ヒータ線間隔
 20k  セラミック基体
 20p  印刷パターン
 20s  ヒータ線幅
 21  第1流路形成部材
 22  第2流路形成部材
 23  ケーシング
 23a  入水口
 23b  出水口
 25  主流路
 25a  入口側流路
 25b  出口側流路
 30,40  ベース部
 30a,40a  ベース面
 31  流路リブ
 31a  第1流路リブ
 31b  第2流路リブ
 32,42  フランジ部
 33  係合溝
 41  漏れ流路
 43  係合突起
 44  基部
 45  先端部
DESCRIPTION OF SYMBOLS 1 Sanitary washing apparatus 2 Toilet bowl 3 Main body part 3a Case 4 Toilet seat part 5 Toilet lid part 6 Operation part 10 Heat exchanger 20 Flat heater 20a First heat transfer surface 20b Second heat transfer surface 20h Heater wire interval 20k Ceramic base 20p Print pattern 20s Heater line width 21 First flow path forming member 22 Second flow path forming member 23 Casing 23a Water inlet 23b Water outlet 25 Main flow path 25a Inlet side flow path 25b Outlet side flow path 30, 40 Base portion 30a, 40a Base Surface 31 Channel rib 31a First channel rib 31b Second channel rib 32, 42 Flange portion 33 Engagement groove 41 Leakage channel 43 Engagement projection 44 Base 45 Tip

Claims (14)

  1. 入水口と出水口を有し、少なくとも一方の内壁面に流路リブを備える第1流路形成部材と第2流路形成部材とからなるケーシングと、
    前記ケーシング内に内包される平板状ヒータと、
    を備え、
    前記流路リブと、前記平板状ヒータとにより形成される凹部状の主流路と、
    前記流路リブの上面と、前記平板状ヒータの表面との隙間で形成される漏れ流路とを有し、
    前記漏れ流路の前記隙間が、0.05mmから0.15mmである熱交換器。
    A casing comprising a first flow path forming member and a second flow path forming member having a water inlet and a water outlet and having a channel rib on at least one inner wall surface;
    A flat heater contained in the casing;
    With
    A concave main channel formed by the channel ribs and the flat heater;
    A leakage channel formed by a gap between the upper surface of the channel rib and the surface of the flat heater,
    The heat exchanger in which the gap in the leakage channel is 0.05 mm to 0.15 mm.
  2. 前記流路リブは、基部と先端部とから構成され、前記先端部は前記基部より断面幅が小さい請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the flow path rib includes a base portion and a tip portion, and the tip portion has a smaller cross-sectional width than the base portion.
  3. 前記平板状ヒータは、前記出水口に近い側の流路スペースに面した発熱密度が前記入水口に近い側の流路スペースに面した発熱密度より小さい請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein the flat plate heater has a heat generation density facing a flow path space near the water outlet smaller than a heat generation density facing a flow path space near the water inlet.
  4. 前記平板状ヒータは、セラミック基体と、セラミック基体上に所定のヒータ線幅の印刷パターンで形成した抵抗体からなる発熱抵抗体と、電極と、からなるセラミックヒータで構成される請求項1に記載の熱交換器。 The said flat heater is comprised by the ceramic heater which consists of a ceramic base | substrate, the heating resistor which consists of a resistor formed in the printed pattern of the predetermined heater line width on the ceramic base | substrate, and an electrode. Heat exchanger.
  5. 前記平板状ヒータの前記印刷パターンの前記ヒータ線幅は、前記入水口に近い部分より前記出水口に近い側の部分の方が太い請求項4に記載の熱交換器。 5. The heat exchanger according to claim 4, wherein the heater line width of the printed pattern of the flat heater is thicker in a portion closer to the water outlet than a portion close to the water inlet.
  6. 前記平板状ヒータの前記印刷パターンの線間の隙間は、前記入水口に近い部分より前記出水口に近い側の部分の方が広い請求項4に記載の熱交換器。 5. The heat exchanger according to claim 4, wherein a gap between the printed pattern lines of the flat heater is wider at a portion closer to the water outlet than a portion near the water inlet.
  7. 請求項1に記載の熱交換器を備えた衛生洗浄装置。 A sanitary washing apparatus comprising the heat exchanger according to claim 1.
  8. 第1流路形成部材に溶着治具に固定する固定ステップと、
    前記第1流路形成部材の内壁面にスペーサ治具を挿入する挿入ステップと、
    第2流路形成部材の内壁面で前記スペーサ治具を内包するように前記第1流路形成部材に装着する装着ステップと、
    前記第1流路形成部材と前記第2流路形成部材の少なくとも一方の内壁面に設けられた流路リブを前記スペーサ治具との圧接により変形させるとともに、前記第1流路形成部材と前記第2流路形成部材とを溶着してケーシングを形成する溶着ステップと、
    前記ケーシングから前記スペーサ治具を取り外すステップと、
    取り外した前記スペーサ治具の位置にヒータを挿入して、前記ケーシングとシールするシールステップを、
    含む熱交換器の製造方法。
    A fixing step for fixing the first flow path forming member to the welding jig;
    An insertion step of inserting a spacer jig into the inner wall surface of the first flow path forming member;
    A mounting step of mounting on the first flow path forming member so as to enclose the spacer jig on the inner wall surface of the second flow path forming member;
    The flow path rib provided on at least one inner wall surface of the first flow path forming member and the second flow path forming member is deformed by pressure contact with the spacer jig, and the first flow path forming member and the A welding step of welding the second flow path forming member to form a casing;
    Removing the spacer jig from the casing;
    Inserting a heater at the position of the removed spacer jig, sealing step to seal the casing,
    A method for manufacturing a heat exchanger.
  9. 前記熱交換器の漏れを検査するステップを、さらに含む請求項8に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 8, further comprising a step of inspecting leakage of the heat exchanger.
  10. 前記溶着ステップは、超音波溶着により行われる請求項8に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 8, wherein the welding step is performed by ultrasonic welding.
  11. 前記流路リブは、基部と先端部とから構成され、前記先端部は前記基部より断面幅が小さい請求項8に記載の熱交換器の製造方法。 The heat exchanger manufacturing method according to claim 8, wherein the flow path rib includes a base portion and a tip portion, and the tip portion has a smaller cross-sectional width than the base portion.
  12. 前記流路リブは、前記先端部が略三角エッジの断面形状を有する請求項8に記載の熱交換器の製造方法。 The method of manufacturing a heat exchanger according to claim 8, wherein the flow path rib has a cross-sectional shape with a substantially triangular edge at the tip.
  13. 前記流路リブは、前記先端部が鋭角の断面形状を有する請求項8に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 8, wherein the flow path rib has a cross-sectional shape with an acute angle at the tip.
  14. 請求項8に記載の熱交換器の製造方法により製造した熱交換器を備えた衛生洗浄装置。 The sanitary washing apparatus provided with the heat exchanger manufactured by the manufacturing method of the heat exchanger of Claim 8.
PCT/JP2013/000415 2012-02-03 2013-01-28 Heat exchanger and method for producing same, and sanitary washing apparatus provided with heat exchanger WO2013114846A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556255A JP5534117B2 (en) 2012-02-03 2013-01-28 Manufacturing method of heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021913 2012-02-03
JP2012-021913 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013114846A1 true WO2013114846A1 (en) 2013-08-08

Family

ID=48904893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000415 WO2013114846A1 (en) 2012-02-03 2013-01-28 Heat exchanger and method for producing same, and sanitary washing apparatus provided with heat exchanger

Country Status (2)

Country Link
JP (1) JP5534117B2 (en)
WO (1) WO2013114846A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764189A (en) * 2015-03-30 2015-07-08 黄应林 Electric water heater
US20180080482A1 (en) * 2015-03-09 2018-03-22 Denso Corporation Ejector and ejector-type refrigeration cycle
US20190277578A1 (en) * 2018-03-07 2019-09-12 Dana Canada Corporation Heat exchangers with integrated electrical heating elements and with multiple fluid flow passages

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027576A1 (en) * 2009-09-07 2011-03-10 パナソニック株式会社 Heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027576A1 (en) * 2009-09-07 2011-03-10 パナソニック株式会社 Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180080482A1 (en) * 2015-03-09 2018-03-22 Denso Corporation Ejector and ejector-type refrigeration cycle
CN104764189A (en) * 2015-03-30 2015-07-08 黄应林 Electric water heater
US20190277578A1 (en) * 2018-03-07 2019-09-12 Dana Canada Corporation Heat exchangers with integrated electrical heating elements and with multiple fluid flow passages

Also Published As

Publication number Publication date
JPWO2013114846A1 (en) 2015-05-11
JP5534117B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5534117B2 (en) Manufacturing method of heat exchanger
JP6270533B2 (en) Liquid ejection head, recording apparatus, and heat dissipation method for liquid ejection head
TWI489598B (en) A heater for a bonding device and a cooling method thereof
TW201114398A (en) Heat exchanger
CN104179231A (en) Heat exchange unit and human body local cleaning device
US20220316757A1 (en) Inner pipe for liquid heating apparatus, and liquid heating apparatus and manufacturing method therefor
KR100553969B1 (en) Electric fluids heater
WO2014010142A1 (en) Heat exchanger and sanitary cleansing device with same
CN104903658A (en) Heating apparatus for instantaneous water heating
WO2013150696A1 (en) Heat exchanger and hygienic cleaning device provided therewith
KR101552643B1 (en) Heating device for instant warm water
JP4411954B2 (en) Heat exchanger and sanitary washing device equipped with the same
CA3033427C (en) Plate heat exchanger for solar heating
KR101399717B1 (en) Sanitary washing device
JP3715785B2 (en) Liquid heating device
JP4423955B2 (en) Heat exchanger and sanitary washing device equipped with the same
JP2012233677A (en) Heat exchanger
US20120148220A1 (en) Heat exchanger
JP5786129B2 (en) Heat exchanger
JPH116651A (en) Water flow heating device
KR101795422B1 (en) Ceramic heater and heating apparatus having the same
CN101010778A (en) Wafer having thermal circuit and its power supplier
KR20200045649A (en) Heater device using instantaneous hot water system
JP5460937B1 (en) Heat exchanger and sanitary washing apparatus provided with the same
KR20100052289A (en) Finned tube for heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13742844

Country of ref document: EP

Kind code of ref document: A1