WO2013114778A1 - Optical component inspecting apparatus - Google Patents

Optical component inspecting apparatus Download PDF

Info

Publication number
WO2013114778A1
WO2013114778A1 PCT/JP2012/083777 JP2012083777W WO2013114778A1 WO 2013114778 A1 WO2013114778 A1 WO 2013114778A1 JP 2012083777 W JP2012083777 W JP 2012083777W WO 2013114778 A1 WO2013114778 A1 WO 2013114778A1
Authority
WO
WIPO (PCT)
Prior art keywords
pallet
imaging
optical component
optical components
optical
Prior art date
Application number
PCT/JP2012/083777
Other languages
French (fr)
Japanese (ja)
Inventor
浩彦 関
明 湯瀬
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013114778A1 publication Critical patent/WO2013114778A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • G01M11/0214Details of devices holding the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Definitions

  • the present invention relates to an optical component inspection apparatus that performs optical component defect inspection.
  • FIG. 7 shows a cross-sectional view of the pallet.
  • the pallet 80 includes a tray 81 on which the optical component 1 is placed on the upper surface side, and a lid 82 that is superimposed on the tray 81 from above, and the optical component 1 is interposed therebetween. Is to hold.
  • the optical component 1 includes two parts, a lens part 2 and a flange part 3 that surrounds the outer periphery of the lens part 2.
  • the tray 81 has a plurality of recesses 81a, and a through hole 81b is formed in the center of each recess 81a. And the flange part 3 of the optical component 1 is mounted in each recessed part 81a, and one surface of the lens part 2 is exposed from the through-hole 81b.
  • a plurality of concave portions 82 a and through holes 82 b are also formed in the lid 82 of the pallet 80, similarly to the tray 81.
  • the lid 82 is placed on the tray 81 on which the optical component 1 is placed so that the concave portion 82a is on the lower side, and the flange portion 3 of the optical component 1 is pressed from above.
  • Patent Document 1 performs an operation of frequently repeating the movement and stop of the pallet. For this reason, when inspecting both the lens part and flange part of the optical component, if the lid of the pallet is removed and the optical component is simply placed on the tray, the press from the top by the lid In some cases, the optical components vibrate and image blurring occurs. Further, the vibration of the optical component sometimes causes the flange portion 3 of the optical component 1 to ride on the upper surface of the tray 81 as shown in FIG. Such a problem tends to become more prominent as the flange portion becomes thinner as the optical component becomes smaller, or as the moving speed increases in order to increase the inspection speed. And when a shift
  • An object of the present invention is to provide an optical component inspection apparatus capable of preventing a variation in inspection accuracy without causing a displacement of the position of the optical component when performing a defect inspection of the optical component held on the pallet. Is to provide.
  • an optical component inspection apparatus that performs defect inspection of a plurality of optical components held on a pallet
  • An illuminating device that irradiates light to the plurality of optical components held on the pallet
  • an imaging unit that includes a camera device that captures images of the plurality of optical components irradiated with light by the illuminating device;
  • Moving means for moving the imaging means parallel to the top surface of the pallet
  • Imaging control means for capturing images of each of the plurality of optical components while moving the imaging means by the moving means with respect to the pallet in a stationary state at a predetermined position
  • the imaging means moves in parallel with the top surface of the pallet and the plurality of optical components held on the pallet.
  • Each image of is taken.
  • the optical component held on the pallet does not vibrate, and the position of the optical component does not shift. Therefore, it is possible to perform a stable inspection with no variation in inspection accuracy.
  • FIG. 1 It is a perspective view which shows the optical component inspection apparatus concerning embodiment of this invention. It is a side view which shows the optical component inspection apparatus of FIG. It is a block diagram which shows the control structure of the optical component inspection apparatus of FIG. It is a perspective view which shows a pallet. It is sectional drawing which shows the principal part structure of a pallet. It is a figure for demonstrating the movement path
  • An optical component inspection apparatus 100 is an apparatus that is used to perform defect inspections such as scratches and cracks in the optical component K and on the surface, and contamination with foreign matter.
  • the optical component inspection apparatus 100 transports a pallet 10 (also referred to as 10A to 10D) holding a plurality of optical components K as a group while pausing at a predetermined position.
  • images for defect inspection of each optical component K are taken in order by the three imaging devices 40A to 40C.
  • the conveyance direction of the pallet 10 is the X direction
  • the horizontal direction orthogonal to the X direction is the Y direction
  • the vertical direction orthogonal to the X and Y directions is the Z direction.
  • the optical component inspection apparatus 100 is placed on a transport device 20 that transports the pallet 10, a lid body detaching device 30 that detaches the lid body 12 of the pallet 10, and the tray 11 of the pallet 10.
  • An imaging device 40 (a first imaging device 40A, a second imaging device 40B, and a third imaging device 40C) that captures an image of the optical component K, and a moving device 50 that moves the imaging device 40 in the XY directions.
  • the reversing device 60 for reversing the pallet 10 and the control unit 70 for controlling these components overall are provided.
  • the pallet 10 will be described. As shown in FIGS. 4 and 5, the pallet 10 is configured by stacking a tray 11 and a lid 12 that are two plates having a substantially rectangular shape in plan view, and a plurality of pallets 10 are arranged between the tray 11 and the lid 12.
  • the optical parts K ... are held.
  • Examples of the optical component K held on the pallet 10 include resin optical lenses used for glasses, cameras, image sensors, optical pickup devices, and the like.
  • the optical component K includes two parts, a lens part R having an optical function and a flange part F surrounding the outer periphery of the lens part R.
  • the front surface and the back surface of the lens portion R are referred to as an optical surface R1 and an optical surface R2, respectively.
  • the optical surfaces R1 and R2 are more convex than the flange portion F.
  • the size of the optical component K that can be inspected by the optical component inspection apparatus 100 of the present embodiment is not particularly limited.
  • the diameter (including the flange portion F) in plan view is 10 mm or less, particularly 8 mm or less.
  • the flange portion F is suitably used for a thickness designed to be 2 mm or less, particularly 1 mm or less.
  • the tray 11 is formed with a plurality of circular recesses 11a that are recessed from the upper surface toward the lower surface in a matrix shape, and a flat surface that penetrates the upper and lower surfaces at the center of each recess 11a.
  • a through-hole 11b having a circular shape is formed.
  • the flange part F of the optical component K is mounted in each recessed part 11a, and one optical surface R2 of the lens part R of the optical component K is arrange
  • a plurality of optical components K are placed on the surface.
  • the lid 12 has the concave portion 12a on the lower side, and the other optical surface R1 of the lens portion R of the optical component K placed on the tray 11 is disposed in the through hole 12b. It is designed to be placed on the top surface. In this way, a plurality of optical components K are placed on the tray 11, and the lid 12 presses against the flange portion F of the optical component K by being overlaid on the tray 11. A plurality of optical components K are held.
  • the number of optical components K held on the pallet 10 is not particularly limited.
  • the conveying device (conveying means) 20 extends a pair of guide frames 21 and 21 extending in the X direction and spaced apart in the Y direction, and the pallet 10 along the guide frames 21 and 21.
  • a pallet driving mechanism 23 to be conveyed is provided.
  • the first imaging device 40A, the second imaging device 40B, the inverting device 60, and the reversing device 60 are arranged outside the guide frames 21 and 21 in order from the upstream side along the conveyance direction (X direction) of the pallet 10.
  • a third imaging device 40C is installed.
  • Both ends of the guide frames 21 and 21 are supported by the columns 22.
  • pillar 22 is abbreviate
  • groove portions 21a and 21a for installing the pallet 10 are formed in the X direction on the inner surface side of the guide frames 21 and 21, and the pallet 10 is slidably fitted in the groove portions 21a and 21a. .
  • the pallet driving mechanism 23 includes, for example, a conveyance belt and belt driving rollers (both not shown) disposed in the grooves 21a and 21a.
  • the pallet driving mechanism 23 drives the belt driving rollers under the control of the control unit 70, and guides them.
  • the pallet 10 fitted in the grooves 21a and 21a of the frames 21 and 21 is conveyed in the X direction.
  • the pallet driving mechanism 23 is controlled by the control unit 70 to stop the conveyance when the pallet 10 being conveyed reaches a predetermined position, and to resume the conveyance after a lapse of a certain time from the stop. .
  • the pallet driving mechanism 23 stops the conveyance when the pallet 10 being conveyed reaches a predetermined position corresponding to the imaging device 40 provided along the X direction.
  • the pallet driving mechanism 23 resumes the conveyance of the pallet 10 after a certain time has elapsed from the stop, that is, after the imaging by the imaging device 40 is completed. Thereby, the pallet 10 moves intermittently on the guide frames 21 and 21.
  • the lid body detaching device (lid body detaching means) 30 includes a head portion 31 extending in the X direction and a head portion 31 connected to the head portion 31 in the Y direction and Z direction.
  • An arm 32 that moves in the direction and an arm drive mechanism 33 that drives the arm 32 are provided.
  • the head unit 31 has a suction port (not shown) on its lower surface, and includes a vacuum generator (not shown) that generates a vacuum state at the suction port.
  • the head unit 31 can move in the Y direction and the Z direction above the pallet 10 stopped at a predetermined position corresponding to the imaging device 40 on the guide frame 21. Yes.
  • the head portion 31 is initially located outside the guide frames 21 and 21.
  • the head unit 31 moves to a position facing the pallet 10 inside the guide frames 21, 21, and the lid 12 of the pallet 10 by the suction port. And move to the outside of the guide frames 21 and 21. As a result, the lid 12 is removed from the tray 11.
  • the head unit 31 moves to a position facing the pallet 10 inside the guide frames 21 and 21 to release the suction of the suction port, and the guide frame It moves to the outside of 21 and 21. Thereby, the lid body 12 is put on the tray 11.
  • the arm 32 is a support member having an L shape in sectional view, and is connected to the head portion 31 to support the head portion 31 so as to be movable in the Y direction and the Z direction.
  • the arm 32 is driven by an arm drive mechanism 33.
  • the arm drive mechanism 33 includes a motor (not shown), and drives the motor 32 in the Y direction and the Z direction under the control of the control unit 70.
  • the imaging device (imaging means) 40 includes a first imaging device 40A, a second imaging device 40B, and a third imaging device 40C. These imaging devices 40A to 40C are arranged outside the guide frames 21 and 21 in order from the upstream side along the X direction. Each of the imaging devices 40A to 40C includes an illumination device 41, a camera device 42, a frame 43 that supports them, a lifting mechanism 44 that adjusts the position in the Z direction, and the like.
  • the image pickup apparatuses 40A to 40C have the same basic configuration, but the first image pickup apparatus 40A takes an image for defect determination inside the optical component K (first inspection), and performs the second image pickup.
  • the device 40B captures a defect determination image on one surface of the optical component K (second inspection), and the third imaging device 40C captures a defect determination image on the other surface of the optical component K (third inspection). It is like that.
  • the imaging devices 40A to 40C capture images of the lens portion R and the flange portion F of the optical component K. Since the tray 11 is stationary, the optical component K on the tray 11 does not vibrate even when the lid 12 is removed. It should be noted that the images taken by each of the imaging devices 40A to 40C are managed together for each optical component K.
  • the illuminating device 41 includes a light source that emits light of a predetermined wavelength, and irradiates the optical component K held on the pallet 10 with light.
  • a light source that emits light of a predetermined wavelength, and irradiates the optical component K held on the pallet 10 with light.
  • surface emitting illumination LED (Light Emitting Diode) spot illumination, coaxial epi-illumination, etc. are used, for example.
  • the illumination device 41 is connected to the camera device 42 via the frame 43 and moves in the XY directions simultaneously with the camera device 42.
  • the camera device 42 includes a CCD (Charge Coupled Device) camera and a CMOS (Complementary Metal Oxide Semiconductor) camera, and takes an image of the optical component K irradiated with light by the illumination device 41. Specifically, the camera device 42 keeps parallel to the placement surface 11c of the tray 11 of the pallet 10 while the transport of the pallet 10 by the transport device 20 is stopped and the lid 12 is removed from the pallet 10. Then, it moves so as to pass above all the optical components K on the mounting surface 11c (see FIG. 6), and an image of the optical component K is taken at a position facing each optical component K during this movement.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the camera device 42 performs imaging while moving along the X direction with respect to the first row of optical components in the stopped pallet 10, and when imaging of the first row of optical components ends, the second row Move to the position where the optical component of the eye can be imaged in the Y direction, and perform imaging while moving in the opposite direction to the first row with respect to the second row of optical components. The same operation is repeated until imaging is completed.
  • the frame 43 is a support member having an upright portion 43a and support portions 43b and 43c extending in the horizontal direction from the upper end and the lower end of the upright portion 43a.
  • a camera device 42 is mounted on the support portion 43b extending from the upper end portion of the frame 43, and an illumination device 41 is mounted on the support portion 43c extending from the lower end portion of the frame 43.
  • the pallet 10 is conveyed between the devices 42.
  • the frame 43 is moved up and down in the Z direction by the lifting mechanism 44, and thereby the camera device 42 is focused.
  • the frame 43 is moved in the XY direction by the moving device 50, whereby the illumination device 41 and the camera device 42 are simultaneously moved in the XY direction.
  • the elevating mechanism 44 includes a motor (not shown), and controls the camera device 42 by driving the motor and moving the frame 43 in the Z direction under the control of the control unit 70.
  • the camera device 42 and the illumination device 41 are installed above and below the frame 43, and the pallet 10 is conveyed between the camera device 42 and the illumination device 41.
  • the illumination device 41 can also be configured to be positioned above the pallet 10.
  • the illumination device 41 in this case, for example, dome illumination, ring illumination, or the like is used.
  • the moving device (moving means) 50 is an orthogonal robot that includes an X-direction drive mechanism 51, a Y-direction drive mechanism 52, and the like, and the imaging device 40 is placed in parallel with the placement surface 11c of the tray 11 of the pallet 10. Move.
  • the X-direction drive mechanism 51 and the Y-direction drive mechanism 52 include a motor (not shown), and the control unit 70 controls the motor to move the frame 43 in the XY direction, thereby moving the camera device 42 during imaging. I do.
  • the reversing device (reversing means) 60 includes a clamping member 61 and a clamping member drive mechanism 62.
  • the reversing device 60 is installed between the second imaging device 40B and the third imaging device 40C, and sandwiches the pallet 10 to invert the pallet 10.
  • the clamping member 61 includes an upper member that contacts the upper surface of the pallet 10 (lid 12) and a lower member that contacts the lower surface of the pallet 10 (tray 11), and holds the pallet 10 by the upper member and the lower member.
  • the clamping member drive mechanism 62 includes a rotation motor (not shown), and the rotation motor is driven under the control of the control unit 70 to rotate the clamping member 61 in a state of clamping the pallet 10 by 180 °. Is reversed.
  • control unit 70 includes a CPU (Central Processing Unit) 71, a RAM (Random Access Memory) 72, a storage unit 73, and the like, and is stored in the storage unit 73.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • storage unit 73 a storage unit 73, and the like, and is stored in the storage unit 73.
  • the program When executed, it has a function of performing operation control for performing a predetermined operation.
  • the CPU 71 controls the entire optical component inspection apparatus 100 by reading out a processing program or the like stored in the storage unit 73, developing the program in the RAM 72, and executing it.
  • the RAM 72 develops the processing program executed by the CPU 71 in the program storage area in the RAM 72, and stores the input data and the processing result generated when the processing program is executed in the data storage area.
  • the storage unit 73 includes, for example, a recording medium (not shown) that stores programs, data, and the like, and this recording medium is configured by a semiconductor memory or the like. Further, the storage unit 73 stores various data, various processing programs, data processed by executing these programs, and the like for realizing the function of the CPU 71 controlling the entire optical component inspection apparatus 100. Specifically, the storage unit 73 stores, for example, an imaging control program 731, a conveyance control program 732, a determination program 733, a captured image storage unit 734, a reference image storage unit 735, and the like.
  • the imaging control program 731 is a program that causes the CPU 71 to realize a function of capturing an image of each optical component K while moving the imaging device 40 by the moving device 50 with respect to the pallet 10 in a stationary state at a predetermined position, for example. is there.
  • the CPU 71 functions as an imaging control unit by executing the imaging control program 731.
  • the conveyance control program 732 is a program that causes the CPU 71 to realize a function of stopping the conveyance of the pallet 10 by the conveyance device 20 when the pallet 10 reaches a predetermined position, for example. That is, the CPU 71 executes the conveyance control program 732 to cause the conveyance device 20 to convey the pallet 10 to a predetermined position corresponding to the imaging devices 40A to 40C, and the pallet 10 to a predetermined position corresponding to the imaging devices 40A to 40C. When it reaches, the conveyance of the pallet 10 by the conveyance device 20 is stopped.
  • the CPU 71 functions as a conveyance control unit by executing the conveyance control program 732.
  • the determination program 733 compares, for example, an image captured by each of the imaging devices 40A to 40C with a reference image stored in advance in the reference image storage unit 735 for each of the plurality of optical components K.
  • This is a program for causing the CPU 71 to realize the function of determining the presence or absence of defects for each optical component K. That is, the CPU 71 executes the determination program 733 to compare the three images stored in the captured image storage unit 734 for each optical component K with the reference image stored in the reference image storage unit 735, and The presence or absence of a defect in each optical component is determined.
  • the CPU 71 functions as a determination unit by executing the determination program 733.
  • images captured by the imaging devices 40A to 40C are stored for each optical component K.
  • references image storage unit 735 images (internal images and surface images) obtained when normal optical components are imaged are stored as reference images.
  • the operation of the optical component inspection apparatus 100 as described above will be described. Such an operation is executed under the control of the control unit 70. Moreover, in the following description, the pallet 10 inspected by the optical component inspection apparatus 100 is referred to as a pallet 10A, a pallet 10B,.
  • the pallet 10A is transported on the guide frames 21 and 21 by the transport device 20, reaches a predetermined position corresponding to the first imaging device 40A, and the transport is stopped.
  • the lid body 12 of the pallet 10 ⁇ / b> A is removed by the lid body detaching device 30.
  • the removed lid 12 is retracted outside the guide frames 21 and 21.
  • the frame 43 is moved in the Z direction by the lifting mechanism 44, and the imaging apparatus 40A is focused.
  • the imaging device 40A is moved in parallel with the placement surface 11c of the tray 11 of the pallet 10A by moving the frame 43 in the XY directions by the X direction driving mechanism 51 and the Y direction driving mechanism 52 of the moving device 50. .
  • imaging is performed at the timing when the camera device 42 reaches right above each optical component K.
  • the lid 12 of the pallet 10A is put on the tray 11 again by the lid removing device 30.
  • the pallets 10A and 10B are transported on the guide frames 21 and 21 by the transport device 20. This conveyance is stopped when the pallet 10A reaches a predetermined position corresponding to the second imaging device 40B and the pallet 10B reaches a predetermined position corresponding to the first imaging device 40A.
  • lid bodies 12 and 12 of the pallets 10 ⁇ / b> A and 10 ⁇ / b> B are simultaneously removed by the lid body detaching device 30.
  • the removed lids 12 and 12 are retracted outside the guide frames 21 and 21.
  • each imaging device 40A, 40B is focusing of each imaging device 40A, 40B is performed by the raising / lowering mechanism 44, respectively.
  • the imaging device 40B is moved in parallel with the placement surface 11c of the tray 11 of the pallet 10A by the X direction driving mechanism 51 and the Y direction driving mechanism 52 of the moving device 50, and the imaging device 40A is moved to the tray 11 of the pallet 10B. It is moved parallel to the mounting surface 11c.
  • imaging is performed at the timing when the camera device 42 of the imaging devices 40A and 40B reaches directly above each optical component K.
  • the lids 12 and 12 of the pallets 10A and 10B are again put on the trays 11 and 11 by the lid removing device 30.
  • the pallets 10A, 10B, and 10C are transported on the guide frames 21 and 21 by the transport device 20.
  • the pallet 10A reaches a predetermined position corresponding to the reversing device 60
  • the pallet 10B reaches a predetermined position corresponding to the second imaging device 40B
  • the pallet 10C reaches a predetermined position corresponding to the first imaging device 40A. Stopped when reached.
  • the pallet 10A is inverted by the reversing device 60, and the lids 12 and 12 of the pallets 10B and 10C are simultaneously removed by the lid removing device 30 at almost the same timing.
  • the removed lids 12 and 12 are retracted outside the guide frames 21 and 21.
  • the imaging mechanism 40A, 40B is focused by the lifting mechanism 44.
  • the imaging device 40B is moved in parallel with the placement surface 11c of the tray 11 of the pallet 10B by the X direction driving mechanism 51 and the Y direction driving mechanism 52 of the moving device 50, and the imaging device 40A is moved to the tray 11 of the pallet 10C. It is moved parallel to the mounting surface 11c.
  • imaging is performed at the timing when the camera device 42 of the imaging devices 40A and 40B reaches directly above each optical component K.
  • the lids 12 and 12 of the pallets 10B and 10C are put on the trays 11 and 11 again by the lid removing device 30.
  • the pallets 10 ⁇ / b> A, 10 ⁇ / b> B, 10 ⁇ / b> C, 10 ⁇ / b> D are transported on the guide frames 21, 21 by the transport device 20.
  • the pallet 10A reaches a predetermined position corresponding to the third imaging device 40C
  • the pallet 10B reaches a predetermined position corresponding to the reversing device 60
  • the pallet 10C reaches a predetermined position corresponding to the second imaging device 40B.
  • the pallet 10D reaches a predetermined position corresponding to the first imaging device 40A, the pallet 10D is stopped.
  • the pallet 10B is reversed by the reversing device 60, and the lids 12, 12, and 12 of the pallets 10A, 10C, and 10D are simultaneously removed by the lid removing device 30 at substantially the same timing.
  • the removed lid bodies 12, 12, 12 are retracted to the outside of the guide frames 21, 21.
  • each imaging device 40A, 40B, 40C is performed by the raising / lowering mechanism 44, respectively.
  • the X direction driving mechanism 51 and the Y direction driving mechanism 52 of the moving device 50 move the imaging device 40C in parallel with the placement surface 11c of the tray 11 of the pallet 10A, and the imaging device 40B is moved to the tray 11 of the pallet 10C.
  • the imaging device 40A is moved in parallel with the placement surface 11c of the tray 11 of the pallet 10D.
  • imaging is performed at the timing when the camera device 42 of the imaging devices 40A, 40B, and 40C reaches directly above each optical component K.
  • the lids 12, 12, 12 of the pallets 10 ⁇ / b> A, 10 ⁇ / b> C, 10 ⁇ / b> D are again put on the trays 11, 11, 11 by the lid removing device 30.
  • image capturing for the palette 10A is completed. Thereafter, the same operation is repeated for the subsequent pallets 10B to 10D. Note that images captured by the imaging devices 40A to 40C are stored in the captured image storage unit 734 for each optical component K.
  • the presence / absence of a defect is determined for each optical component based on images captured by the imaging devices 40A to 40C. Note that the optical component determined to have a defect is discarded.
  • the illumination device 41 that irradiates light to the plurality of optical components K held on the pallet 10, and the illumination device 41 emits light.
  • An imaging device 40 having a camera device 42 for capturing images of each of the plurality of optical components, a moving device 50 for moving the imaging device 40 in parallel with the upper surface of the pallet 10 (the placement surface 11c of the tray 11), Imaging control means (a CPU 71 and an imaging control program 731) for capturing images of each of the plurality of optical components K while moving the imaging device 40 by the moving device 50 with respect to the pallet 10 in a stationary state at a predetermined position; It is prepared for.
  • the imaging device 40 moves in parallel with the upper surface of the pallet 10 (the placement surface 11c of the tray 11).
  • the images of the plurality of optical components K held on the pallet 10 are taken. Therefore, since the pallet 10 is in a stationary state at the time of image pickup by the image pickup device 40, the optical component K held on the pallet 10 does not vibrate and no positional deviation occurs. For this reason, it is possible to prevent a variation in inspection accuracy and perform a stable inspection.
  • the conveyance device 20 that conveys the pallet 10 and the conveyance control means (the CPU 71 and the conveyance control program) that stop conveyance of the pallet 10 by the conveyance device 20 when the pallet 10 reaches a predetermined position. 732). For this reason, the pallet 10 being conveyed can be stopped at a predetermined position and imaged by the imaging device 40.
  • a plurality of imaging devices 40 are provided along the conveyance direction (X direction) of the conveyance device 20, and the conveyance control unit uses the conveyance device 20 to add a plurality of pallets 10 to each of the imaging devices 40.
  • the conveyance of the plurality of pallets 10 by the conveyance device 20 is stopped.
  • the equipment is compared with a case where a plurality of images are picked up using a plurality of optical component inspection apparatuses. Can be simplified, the apparatus size can be reduced, and the apparatus cost can be reduced.
  • the pallet 10 includes a tray 11 on which a plurality of optical components are placed, and a lid body 12 that holds the plurality of optical components between the tray 11 by overlapping the tray 11.
  • the lid body 12 is removed before imaging by the imaging device 40 is started, and the lid body detaching device 30 that covers the tray 12 on the tray 11 after imaging by the imaging device 40 is completed.
  • the optical component K is suppressed by the tray 11 and the lid body 12, and therefore the position of the optical component K is caused by vibration during transportation.
  • the lens portion R and the flange portion F of the optical component K can be inspected while preventing the displacement.
  • the imaging device 40 the first imaging device 40A that captures an image for defect determination inside the optical component K, and the second imaging that captures a defect determination image on one surface of the optical component.
  • Device 40B and a third image pickup device 40C for picking up an image for defect determination on the other surface of the optical component.
  • a lid is attached to the tray 11 between the second image pickup device 40B and the third image pickup device 40C.
  • a reversing device 60 for reversing the pallet 10 on which the body 12 is superposed is provided. For this reason, the front and back images of the optical component K can be captured by one optical component inspection apparatus 100, and a plurality of images necessary for defect inspection of one optical component K are stored in one optical component inspection apparatus 100.
  • each of the optical components is compared with the image captured by each of the plurality of imaging units 40A to 40C and the reference image stored in advance.
  • Determination means (CPU 71 and determination program 733) for determining the presence or absence of a defect for each component K is provided. For this reason, it is possible to sort the defective optical components K together.
  • the optical surfaces R1 and R2 of the lens portion R have been described by exemplifying the configuration in which both are convex from the flange portion F.
  • the optical surfaces R1 and R2 of the lens portion R are It is not necessarily convex.
  • the configuration including the transport device 20 has been described as an example, but a configuration without the transport device 20 may be employed.
  • the user may manually place the pallet 10 at a predetermined position corresponding to the imaging device 40 instead of the transport device 20.
  • desorption apparatus 30 was demonstrated, removing the cover body 12 Alternatively, only the lens portion R of the optical component K may be inspected. In this case, the imaging device 40 moves in parallel with the upper surface of the pallet 10 (the upper surface of the lid body 12).
  • the configuration including the three imaging devices 40 has been described as an example.
  • the number of the imaging devices 40 is not limited to this, and for example, a defect determination image on one surface of the optical component is captured. It is also possible to adopt a configuration including two imaging devices that capture an image for performing defect determination on the other surface of the optical component, and other imaging devices.
  • the lid body detaching device 30 is a mechanism that removes the lid body 12 of the pallet 10 by suction, but is not limited to this mechanism as long as the lid body 12 can be removed.
  • a configuration in which both ends of the lid 12 are gripped and lifted may be used.
  • the present invention can be used as an optical component inspection apparatus that performs optical component defect inspection.

Abstract

An optical component inspecting apparatus (100) inspects defects of a plurality of optical components held by means of a pallet (10). The optical component inspecting apparatus is provided with: an image pickup apparatus (40) that has an illuminating apparatus (41), which irradiates optical components (K) with light, said optical components being held by means of the pallet (10), and a camera apparatus (42), which picks up image of respective optical components (K) irradiated with light by means of the illuminating apparatus (41); a moving apparatus (50), which moves the image pickup apparatus (40) parallel to an upper surface of the pallet (10); and an image pickup control means, which picks up the images of the optical components (K), while moving the image pickup apparatus (40) by means of the moving apparatus (50) with respect to the pallet (10) in the stationary state at a predetermined position. Consequently, in the cases of inspecting defects of the optical components held by means of the pallet, positional shifts of the optical components are not generated, and generation of inspection accuracy fluctuation can be eliminated.

Description

光学部品検査装置Optical component inspection equipment
 本発明は、光学部品の欠陥検査を行う光学部品検査装置に関する。 The present invention relates to an optical component inspection apparatus that performs optical component defect inspection.
 従来、各種の光学機器に使用される光学部品の製造工程において、当該光学部品を複数個ひとまとまりとしてパレットと称される治具により保持して管理する方法が知られている。
 図7に、パレットの断面図を示す。
 図7に示すように、パレット80は、上面側に光学部品1の載置されるトレー81と、当該トレー81に上部から重ね合わされる蓋体82とによって構成され、これらの間に光学部品1を保持するものである。
 光学部品1は、レンズ部2と、レンズ部2の外周を囲うフランジ部3との2つの部位を備えて構成される。
 トレー81には、複数の凹部81aが形成され、各凹部81aの中央には、貫通孔81bが形成されている。そして、各凹部81aに光学部品1のフランジ部3が載置されて、貫通孔81bからレンズ部2の一面が露出するようになっている。
 一方、パレット80の蓋体82にも、トレー81と同様に複数の凹部82a及び貫通孔82bが形成されている。この蓋体82は、凹部82aが下側となるようにして、光学部品1の載置されたトレー81上に被せられ、光学部品1のフランジ部3を上方から押さえ付けるようになっている。
2. Description of the Related Art Conventionally, in a manufacturing process of optical components used in various optical devices, a method is known in which a plurality of optical components are held together and managed by a jig called a pallet.
FIG. 7 shows a cross-sectional view of the pallet.
As shown in FIG. 7, the pallet 80 includes a tray 81 on which the optical component 1 is placed on the upper surface side, and a lid 82 that is superimposed on the tray 81 from above, and the optical component 1 is interposed therebetween. Is to hold.
The optical component 1 includes two parts, a lens part 2 and a flange part 3 that surrounds the outer periphery of the lens part 2.
The tray 81 has a plurality of recesses 81a, and a through hole 81b is formed in the center of each recess 81a. And the flange part 3 of the optical component 1 is mounted in each recessed part 81a, and one surface of the lens part 2 is exposed from the through-hole 81b.
On the other hand, a plurality of concave portions 82 a and through holes 82 b are also formed in the lid 82 of the pallet 80, similarly to the tray 81. The lid 82 is placed on the tray 81 on which the optical component 1 is placed so that the concave portion 82a is on the lower side, and the flange portion 3 of the optical component 1 is pressed from above.
 ところで、光学部品には、その製造過程においてキズや割れ等の各種の欠陥が生じることがある。こうした欠陥は、光学部品の性能に甚大な影響を及ぼす恐れがあるため、欠陥検査を入念に行う必要がある。
 欠陥検査は、光学部品がパレットに保持された状態のまま行う方法が一般的に用いられる。かかる方法であれば、当該欠陥検査終了後にも、光学部品がパレットに整列された状態となっているため好ましい。
 近年では、こうした欠陥検査を自動的に行う装置が提案されており、例えば、特許文献1には、パレットをXY方向に移動可能なテーブルや位置決め機能を備えたロボットにセットし、固定された検査用カメラと検査用光源に対してパレットを移動させて、当該パレットに保持された光学部品の欠陥検査用の画像を得る装置が開示されている。
By the way, various defects such as scratches and cracks may occur in the optical component during the manufacturing process. Such defects can have a significant impact on the performance of the optical components, so it is necessary to carefully perform defect inspection.
In general, the defect inspection is performed while the optical component is held on the pallet. This method is preferable because the optical components are aligned on the pallet even after the defect inspection is completed.
In recent years, an apparatus for automatically performing such a defect inspection has been proposed. For example, in Patent Document 1, a pallet is set on a table capable of moving in the XY directions and a robot having a positioning function, and fixed inspection is performed. An apparatus is disclosed in which a pallet is moved with respect to a camera and an inspection light source to obtain an image for defect inspection of optical components held on the pallet.
特許第4550610号公報Japanese Patent No. 4550610
 しかしながら、上記特許文献1の装置では、パレットの移動と停止を頻繁に繰り返す動作を行っている。
 このため、光学部品のレンズ部とフランジ部の両方の検査をする場合に、パレットの蓋体を外し、光学部品がトレー上に載置されただけの状態とすると、蓋体による上部からの押さえがないため光学部品が振動し、撮像ブレが発生することがあった。
 また、かかる光学部品の振動により、図8に示すように、光学部品1のフランジ部3がトレー81の上面に乗り上げてしまうことがあった。
 かかる問題は、特に、光学部品の小型化に伴うフランジ部の薄型化が進むほど、或いは検査速度を上げるために移動速度を速くするほど顕著となる傾向にある。
 そして、このように光学部品の位置にずれが発生すると、検査精度にもばらつきが生じる。
However, the apparatus of Patent Document 1 performs an operation of frequently repeating the movement and stop of the pallet.
For this reason, when inspecting both the lens part and flange part of the optical component, if the lid of the pallet is removed and the optical component is simply placed on the tray, the press from the top by the lid In some cases, the optical components vibrate and image blurring occurs.
Further, the vibration of the optical component sometimes causes the flange portion 3 of the optical component 1 to ride on the upper surface of the tray 81 as shown in FIG.
Such a problem tends to become more prominent as the flange portion becomes thinner as the optical component becomes smaller, or as the moving speed increases in order to increase the inspection speed.
And when a shift | offset | difference arises in the position of an optical component in this way, variation will arise also in inspection accuracy.
 本発明の課題は、パレットに保持した光学部品の欠陥検査を行う場合に、当該光学部品の位置のずれが発生せず、検査精度にばらつきが生じるのを防止することのできる光学部品検査装置を提供することである。 An object of the present invention is to provide an optical component inspection apparatus capable of preventing a variation in inspection accuracy without causing a displacement of the position of the optical component when performing a defect inspection of the optical component held on the pallet. Is to provide.
 本発明の一の態様によれば、
 パレットに保持された複数の光学部品の欠陥検査を行う光学部品検査装置において、
 前記パレットに保持された前記複数の光学部品に対して光を照射する照明装置、及び当該照明装置により光が照射された前記複数の光学部品の各々の画像を撮像するカメラ装置を有する撮像手段と、
 前記撮像手段を前記パレットの上面と平行に移動させる移動手段と、
 所定位置において静止した状態の前記パレットに対して、前記移動手段により前記撮像手段を移動させつつ前記複数の光学部品の各々の画像を撮像させる撮像制御手段と、
を備えることを特徴とする。
According to one aspect of the invention,
In an optical component inspection apparatus that performs defect inspection of a plurality of optical components held on a pallet,
An illuminating device that irradiates light to the plurality of optical components held on the pallet; and an imaging unit that includes a camera device that captures images of the plurality of optical components irradiated with light by the illuminating device; ,
Moving means for moving the imaging means parallel to the top surface of the pallet;
Imaging control means for capturing images of each of the plurality of optical components while moving the imaging means by the moving means with respect to the pallet in a stationary state at a predetermined position;
It is characterized by providing.
 本発明によれば、複数の光学部品が保持されたパレットが所定位置において静止した状態であるときに、撮像手段が当該パレットの上面と平行に移動して、パレットに保持された複数の光学部品の各々の画像が撮像される。
 このため、撮像手段の撮像時にパレットが静止した状態であるので、パレットに保持された光学部品が振動することがなく、光学部品の位置のずれが発生しない。よって、検査精度にばらつきの生じない安定した検査を行うことができる。
According to the present invention, when the pallet holding a plurality of optical components is in a stationary state at a predetermined position, the imaging means moves in parallel with the top surface of the pallet and the plurality of optical components held on the pallet. Each image of is taken.
For this reason, since the pallet is in a stationary state at the time of image pickup by the image pickup means, the optical component held on the pallet does not vibrate, and the position of the optical component does not shift. Therefore, it is possible to perform a stable inspection with no variation in inspection accuracy.
本発明の実施の形態にかかる光学部品検査装置を示す斜視図である。It is a perspective view which shows the optical component inspection apparatus concerning embodiment of this invention. 図1の光学部品検査装置を示す側面図である。It is a side view which shows the optical component inspection apparatus of FIG. 図1の光学部品検査装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the optical component inspection apparatus of FIG. パレットを示す斜視図である。It is a perspective view which shows a pallet. パレットの要部構成を示す断面図である。It is sectional drawing which shows the principal part structure of a pallet. 撮像装置の移動経路を説明するための図である。It is a figure for demonstrating the movement path | route of an imaging device. パレットの構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of a pallet. 従来の問題点を説明するための図である。It is a figure for demonstrating the conventional problem.
 以下、本発明の実施形態について図面を参照して説明する。ただし、発明の範囲は、図示例に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the scope of the invention is not limited to the illustrated examples.
 先ず、構成について説明する。
 本発明の実施の形態にかかる光学部品検査装置100は、光学部品Kの内部及び表面におけるキズや割れ、異物混入などの欠陥検査を行うために用いられる装置である。
 この光学部品検査装置100は、複数の光学部品Kをひとまとまりとして保持したパレット10(10A~10Dともいう)を所定位置で一時停止させつつ搬送し、一時停止した際に、パレット10上の各光学部品Kに対して、3つの撮像装置40A~40Cにより順番に各光学部品Kの欠陥検査用の画像を撮像する。
 なお、以下の説明において、パレット10の搬送方向をX方向、X方向に直交する水平方向をY方向とし、X及びY方向と直交する垂直方向をZ方向とする。
First, the configuration will be described.
An optical component inspection apparatus 100 according to an embodiment of the present invention is an apparatus that is used to perform defect inspections such as scratches and cracks in the optical component K and on the surface, and contamination with foreign matter.
The optical component inspection apparatus 100 transports a pallet 10 (also referred to as 10A to 10D) holding a plurality of optical components K as a group while pausing at a predetermined position. With respect to the optical component K, images for defect inspection of each optical component K are taken in order by the three imaging devices 40A to 40C.
In the following description, the conveyance direction of the pallet 10 is the X direction, the horizontal direction orthogonal to the X direction is the Y direction, and the vertical direction orthogonal to the X and Y directions is the Z direction.
 光学部品検査装置100は、図1~3に示すように、パレット10を搬送する搬送装置20と、パレット10の蓋体12を脱着する蓋体脱着装置30と、パレット10のトレー11に載置された光学部品Kの画像を撮像する撮像装置40(第1の撮像装置40A、第2の撮像装置40B、第3の撮像装置40C)と、撮像装置40をXY方向に移動させる移動装置50と、パレット10を反転させる反転装置60と、これら各部を統括制御する制御部70と等を備えて構成されている。 As shown in FIGS. 1 to 3, the optical component inspection apparatus 100 is placed on a transport device 20 that transports the pallet 10, a lid body detaching device 30 that detaches the lid body 12 of the pallet 10, and the tray 11 of the pallet 10. An imaging device 40 (a first imaging device 40A, a second imaging device 40B, and a third imaging device 40C) that captures an image of the optical component K, and a moving device 50 that moves the imaging device 40 in the XY directions. The reversing device 60 for reversing the pallet 10 and the control unit 70 for controlling these components overall are provided.
 ここで、パレット10について説明する。
 パレット10は、図4、5に示すように、平面視略矩形状の2枚のプレートであるトレー11及び蓋体12を重ね合わせることによって構成され、トレー11及び蓋体12の間に、複数の光学部品K・・・を保持するものである。
 パレット10に保持される光学部品Kとしては、例えば、眼鏡、カメラ、撮像素子、光ピックアップ装置等に使用される樹脂製の光学レンズなどが挙げられる。
 光学部品Kは、光学機能を有するレンズ部Rと、レンズ部Rの外周を囲うフランジ部Fとの2つの部位を備えている。以下の説明において、レンズ部Rの表面及び裏面を、それぞれ光学面R1及び光学面R2と称する。光学面R1,R2は、フランジ部Fより凸となっている。
 なお、本実施形態の光学部品検査装置100において検査可能な光学部品Kの大きさに特に制限はないが、例えば、平面視における直径(フランジ部Fまで含む)が10mm以下、特に8mm以下であって、フランジ部Fの厚さが2mm以下、特に1mm以下に設計されたものなどに好適に用いられる。
Here, the pallet 10 will be described.
As shown in FIGS. 4 and 5, the pallet 10 is configured by stacking a tray 11 and a lid 12 that are two plates having a substantially rectangular shape in plan view, and a plurality of pallets 10 are arranged between the tray 11 and the lid 12. The optical parts K ... are held.
Examples of the optical component K held on the pallet 10 include resin optical lenses used for glasses, cameras, image sensors, optical pickup devices, and the like.
The optical component K includes two parts, a lens part R having an optical function and a flange part F surrounding the outer periphery of the lens part R. In the following description, the front surface and the back surface of the lens portion R are referred to as an optical surface R1 and an optical surface R2, respectively. The optical surfaces R1 and R2 are more convex than the flange portion F.
The size of the optical component K that can be inspected by the optical component inspection apparatus 100 of the present embodiment is not particularly limited. For example, the diameter (including the flange portion F) in plan view is 10 mm or less, particularly 8 mm or less. Thus, the flange portion F is suitably used for a thickness designed to be 2 mm or less, particularly 1 mm or less.
 トレー11には、その上面から下面側に向けて窪む平面視円形状の凹部11aがマトリックス状を成して複数形成されており、各凹部11aの中央には、その上下面を貫通する平面視円形状の貫通孔11bが形成されている。
 そして、トレー11においては、各凹部11aに光学部品Kのフランジ部Fが載置され、貫通孔11bに光学部品Kのレンズ部Rの一方の光学面R2が配置されるようにして、上面側に複数の光学部品Kが載置されるようになっている。
 また、蓋体12は、その凹部12aを下側とし、トレー11に載置された光学部品Kのレンズ部Rの他方の光学面R1がその貫通孔12bに配置されるようにして、トレー11の上面に被せられるようになっている。
 このようにして、トレー11には、複数の光学部品Kが載置され、蓋体12は、トレー11に重ね合わされることにより光学部品Kのフランジ部Fを押さえ付け、当該トレー11との間で複数の光学部品Kを保持している。
 なお、パレット10に保持される光学部品Kの数に特に限定はない。
The tray 11 is formed with a plurality of circular recesses 11a that are recessed from the upper surface toward the lower surface in a matrix shape, and a flat surface that penetrates the upper and lower surfaces at the center of each recess 11a. A through-hole 11b having a circular shape is formed.
And in the tray 11, the flange part F of the optical component K is mounted in each recessed part 11a, and one optical surface R2 of the lens part R of the optical component K is arrange | positioned in the through-hole 11b, and an upper surface side is arrange | positioned. A plurality of optical components K are placed on the surface.
In addition, the lid 12 has the concave portion 12a on the lower side, and the other optical surface R1 of the lens portion R of the optical component K placed on the tray 11 is disposed in the through hole 12b. It is designed to be placed on the top surface.
In this way, a plurality of optical components K are placed on the tray 11, and the lid 12 presses against the flange portion F of the optical component K by being overlaid on the tray 11. A plurality of optical components K are held.
The number of optical components K held on the pallet 10 is not particularly limited.
 搬送装置(搬送手段)20は、図1~3に示すように、X方向に延設され、Y方向に離間した一対のガイドフレーム21,21と、ガイドフレーム21,21に沿ってパレット10を搬送させるパレット駆動機構23と等を備えている。
 なお、ガイドフレーム21,21の外側には、パレット10の搬送方向(X方向)に沿うように、上流側から順に、第1の撮像装置40A、第2の撮像装置40B、反転装置60、及び第3の撮像装置40Cが設置されている。
As shown in FIGS. 1 to 3, the conveying device (conveying means) 20 extends a pair of guide frames 21 and 21 extending in the X direction and spaced apart in the Y direction, and the pallet 10 along the guide frames 21 and 21. A pallet driving mechanism 23 to be conveyed is provided.
The first imaging device 40A, the second imaging device 40B, the inverting device 60, and the reversing device 60 are arranged outside the guide frames 21 and 21 in order from the upstream side along the conveyance direction (X direction) of the pallet 10. A third imaging device 40C is installed.
 ガイドフレーム21,21は、それぞれ、その両端が支柱22により支持されている。なお、図2においては、支柱22の図示は省略している。また、ガイドフレーム21,21の内面側には、パレット10を設置するための溝部21a,21aがX方向に亘って形成され、パレット10は、この溝部21a,21aに摺動可能に嵌めこまれる。 Both ends of the guide frames 21 and 21 are supported by the columns 22. In addition, illustration of the support | pillar 22 is abbreviate | omitted in FIG. Further, groove portions 21a and 21a for installing the pallet 10 are formed in the X direction on the inner surface side of the guide frames 21 and 21, and the pallet 10 is slidably fitted in the groove portions 21a and 21a. .
 パレット駆動機構23は、例えば、溝部21a,21aに配設された搬送ベルト及びベルト駆動ローラ(何れも図示省略)等により構成され、制御部70の制御によって、ベルト駆動ローラを駆動して、ガイドフレーム21,21の溝部21a,21aに嵌めこまれたパレット10を、X方向に搬送させる。
 ここで、このパレット駆動機構23は、搬送中のパレット10が所定位置に達した場合にその搬送を停止させ、停止から一定時間経過後、搬送を再開させるように制御部70に制御されている。
 具体的には、パレット駆動機構23は、搬送中のパレット10が、X方向に沿って備えられた撮像装置40に対応した所定位置に達した場合に、その搬送を停止させる。また、パレット駆動機構23は、停止から一定時間経過後、即ち、撮像装置40による撮像の終了後、パレット10の搬送を再開させる。
 これにより、パレット10は、ガイドフレーム21,21上を間欠的に移動していく。
The pallet driving mechanism 23 includes, for example, a conveyance belt and belt driving rollers (both not shown) disposed in the grooves 21a and 21a. The pallet driving mechanism 23 drives the belt driving rollers under the control of the control unit 70, and guides them. The pallet 10 fitted in the grooves 21a and 21a of the frames 21 and 21 is conveyed in the X direction.
Here, the pallet driving mechanism 23 is controlled by the control unit 70 to stop the conveyance when the pallet 10 being conveyed reaches a predetermined position, and to resume the conveyance after a lapse of a certain time from the stop. .
Specifically, the pallet driving mechanism 23 stops the conveyance when the pallet 10 being conveyed reaches a predetermined position corresponding to the imaging device 40 provided along the X direction. Further, the pallet driving mechanism 23 resumes the conveyance of the pallet 10 after a certain time has elapsed from the stop, that is, after the imaging by the imaging device 40 is completed.
Thereby, the pallet 10 moves intermittently on the guide frames 21 and 21.
 蓋体脱着装置(蓋体脱着手段)30は、図1、2に示すように、X方向に延設されたヘッド部31と、ヘッド部31に連結されて当該ヘッド部31をY方向及びZ方向に移動させるアーム32と、アーム32を駆動させるアーム駆動機構33と等を備えている。 As shown in FIGS. 1 and 2, the lid body detaching device (lid body detaching means) 30 includes a head portion 31 extending in the X direction and a head portion 31 connected to the head portion 31 in the Y direction and Z direction. An arm 32 that moves in the direction and an arm drive mechanism 33 that drives the arm 32 are provided.
 ヘッド部31は、その下面に吸着口(図示省略)を有し、当該吸着口に真空状態を発生する真空発生装置(図示省略)を備えている。
 このヘッド部31は、アーム32の駆動に伴って、ガイドフレーム21上に撮像装置40に対応した所定位置にて停止しているパレット10の上方を、Y方向及びZ方向に移動可能となっている。
 具体的に、ヘッド部31は、当初、ガイドフレーム21,21の外側に位置している。そして、搬送されてきたパレット10が前記した所定位置にて停止すると、ヘッド部31は、ガイドフレーム21,21内側のパレット10に対向する位置まで移動して、吸着口によりパレット10の蓋体12を吸着し、ガイドフレーム21,21の外側まで移動する。これにより、蓋体12がトレー11から取り外される。
 また、所定時間経過後、即ち、撮像装置40による撮像が終了すると、ヘッド部31は、ガイドフレーム21,21内側のパレット10に対向する位置まで移動して吸着口の吸着を解除し、ガイドフレーム21,21の外側まで移動する。これにより、蓋体12がトレー11に被せられる。
The head unit 31 has a suction port (not shown) on its lower surface, and includes a vacuum generator (not shown) that generates a vacuum state at the suction port.
As the arm 32 is driven, the head unit 31 can move in the Y direction and the Z direction above the pallet 10 stopped at a predetermined position corresponding to the imaging device 40 on the guide frame 21. Yes.
Specifically, the head portion 31 is initially located outside the guide frames 21 and 21. When the conveyed pallet 10 stops at the predetermined position described above, the head unit 31 moves to a position facing the pallet 10 inside the guide frames 21, 21, and the lid 12 of the pallet 10 by the suction port. And move to the outside of the guide frames 21 and 21. As a result, the lid 12 is removed from the tray 11.
Further, after a predetermined time has elapsed, that is, when the imaging by the imaging device 40 is completed, the head unit 31 moves to a position facing the pallet 10 inside the guide frames 21 and 21 to release the suction of the suction port, and the guide frame It moves to the outside of 21 and 21. Thereby, the lid body 12 is put on the tray 11.
 アーム32は、断面視L字形状の支持部材であって、ヘッド部31に連結されて当該ヘッド部31をY方向及びZ方向に移動可能に支持している。アーム32は、アーム駆動機構33によって駆動される。 The arm 32 is a support member having an L shape in sectional view, and is connected to the head portion 31 to support the head portion 31 so as to be movable in the Y direction and the Z direction. The arm 32 is driven by an arm drive mechanism 33.
 アーム駆動機構33は、図示しないモーターを備え、制御部70の制御によって、モーターを駆動してアーム32をY方向及びZ方向に駆動させる。 The arm drive mechanism 33 includes a motor (not shown), and drives the motor 32 in the Y direction and the Z direction under the control of the control unit 70.
 撮像装置(撮像手段)40は、第1の撮像装置40A、第2の撮像装置40B、及び第3の撮像装置40Cを備えている。
 これら撮像装置40A~40Cは、ガイドフレーム21,21の外側に、X方向に沿って上流側から順に配置されている。
 各撮像装置40A~40Cは、何れも、照明装置41、カメラ装置42、これらを支持するフレーム43、及びZ方向の位置調整を行う昇降機構44等を備えて構成される。
 また、各撮像装置40A~40Cは、基本的構成は同一であるが、第1の撮像装置40Aは、光学部品Kの内部の欠陥判定用画像を撮像し(第1検査)、第2の撮像装置40Bは、光学部品Kの一面の欠陥判定用画像を撮像し(第2検査)、第3の撮像装置40Cは、光学部品Kの他面の欠陥判定用画像を撮像する(第3検査)ようになっている。
 このとき、パレット10から蓋体12が取り外された状態で撮像が行われるため、撮像装置40A~40Cでは、光学部品Kのレンズ部R及びフランジ部Fの画像が撮像されることとなる。
 そして、トレー11は静止しているため、蓋体12が取り外された状態であってもトレー11上の光学部品Kが振動することがない。
 なお、撮像装置40A~40Cの各々で撮影された画像は、光学部品K毎にまとめられて管理されるようになっている。
The imaging device (imaging means) 40 includes a first imaging device 40A, a second imaging device 40B, and a third imaging device 40C.
These imaging devices 40A to 40C are arranged outside the guide frames 21 and 21 in order from the upstream side along the X direction.
Each of the imaging devices 40A to 40C includes an illumination device 41, a camera device 42, a frame 43 that supports them, a lifting mechanism 44 that adjusts the position in the Z direction, and the like.
The image pickup apparatuses 40A to 40C have the same basic configuration, but the first image pickup apparatus 40A takes an image for defect determination inside the optical component K (first inspection), and performs the second image pickup. The device 40B captures a defect determination image on one surface of the optical component K (second inspection), and the third imaging device 40C captures a defect determination image on the other surface of the optical component K (third inspection). It is like that.
At this time, since imaging is performed with the lid 12 removed from the pallet 10, the imaging devices 40A to 40C capture images of the lens portion R and the flange portion F of the optical component K.
Since the tray 11 is stationary, the optical component K on the tray 11 does not vibrate even when the lid 12 is removed.
It should be noted that the images taken by each of the imaging devices 40A to 40C are managed together for each optical component K.
 照明装置41は、所定波長の光を出射する光源を備え、パレット10に保持された光学部品Kに対して光を照射する。なお、照明装置41としては、例えば、面発光照明、LED(Light Emitting Diode)スポット照明、同軸落射照明等が用いられる。
 照明装置41は、フレーム43を介してカメラ装置42と連結され、カメラ装置42と同時にXY方向に移動するようになっている。
The illuminating device 41 includes a light source that emits light of a predetermined wavelength, and irradiates the optical component K held on the pallet 10 with light. In addition, as the illuminating device 41, surface emitting illumination, LED (Light Emitting Diode) spot illumination, coaxial epi-illumination, etc. are used, for example.
The illumination device 41 is connected to the camera device 42 via the frame 43 and moves in the XY directions simultaneously with the camera device 42.
 カメラ装置42は、CCD(Charge Coupled Device)カメラやCMOS(Complementary Metal Oxide Semiconductor)カメラを備え、照明装置41により光が照射された光学部品Kの画像を撮像する。
 具体的に、カメラ装置42は、搬送装置20によるパレット10の搬送が停止し、パレット10から蓋体12が取り外されている間に、パレット10のトレー11の載置面11cと平行を保ちつつ、載置面11c上の全光学部品Kの上方を通るように移動し(図6参照)、この移動時に、各光学部品Kと対向する位置において当該光学部品Kの画像を撮像する。
 より具体的には、カメラ装置42は、停止したパレット10の一列目の光学部品に対して、X方向に沿って移動しつつ撮像を行い、一列目の光学部品の撮像が終了すると、二列目の光学部品の撮像が可能となる位置までY方向に移動して、二列目の光学部品に対して、一列目と逆方向に移動しつつ撮像を行い、その後、最終列の光学部品の撮像が終了するまで同様の動作を繰り返す。
The camera device 42 includes a CCD (Charge Coupled Device) camera and a CMOS (Complementary Metal Oxide Semiconductor) camera, and takes an image of the optical component K irradiated with light by the illumination device 41.
Specifically, the camera device 42 keeps parallel to the placement surface 11c of the tray 11 of the pallet 10 while the transport of the pallet 10 by the transport device 20 is stopped and the lid 12 is removed from the pallet 10. Then, it moves so as to pass above all the optical components K on the mounting surface 11c (see FIG. 6), and an image of the optical component K is taken at a position facing each optical component K during this movement.
More specifically, the camera device 42 performs imaging while moving along the X direction with respect to the first row of optical components in the stopped pallet 10, and when imaging of the first row of optical components ends, the second row Move to the position where the optical component of the eye can be imaged in the Y direction, and perform imaging while moving in the opposite direction to the first row with respect to the second row of optical components. The same operation is repeated until imaging is completed.
 フレーム43は、立設部43aと、当該立設部43aの上端部及び下端部からそれぞれ水平方向に延出した支持部43b,43cとを有する支持部材である。
 フレーム43の上端部から延出した支持部43bには、カメラ装置42が搭載され、フレーム43の下端部から延出した支持部43cには、照明装置41が搭載され、こうした照明装置41及びカメラ装置42の間をパレット10が搬送されるようになっている。
 フレーム43は、昇降機構44によりZ方向に昇降し、これによりカメラ装置42の焦点が合わせられることとなる。
 また、フレーム43は、移動装置50によってXY方向に移動され、これにより照明装置41及びカメラ装置42が同時にXY方向に移動することとなる。
The frame 43 is a support member having an upright portion 43a and support portions 43b and 43c extending in the horizontal direction from the upper end and the lower end of the upright portion 43a.
A camera device 42 is mounted on the support portion 43b extending from the upper end portion of the frame 43, and an illumination device 41 is mounted on the support portion 43c extending from the lower end portion of the frame 43. The pallet 10 is conveyed between the devices 42.
The frame 43 is moved up and down in the Z direction by the lifting mechanism 44, and thereby the camera device 42 is focused.
In addition, the frame 43 is moved in the XY direction by the moving device 50, whereby the illumination device 41 and the camera device 42 are simultaneously moved in the XY direction.
 昇降機構44は、図示しないモーターを備え、制御部70の制御によって、モーターを駆動してフレーム43をZ方向に移動させることで、カメラ装置42の焦点合わせを行う。 The elevating mechanism 44 includes a motor (not shown), and controls the camera device 42 by driving the motor and moving the frame 43 in the Z direction under the control of the control unit 70.
 なお、本実施形態においては、上述したように、フレーム43の上下にカメラ装置42及び照明装置41を設置し、カメラ装置42及び照明装置41の間をパレット10が搬送される構成であるが、照明装置41もパレット10の上方に位置する構成とすることもできる。
 この場合の照明装置41としては、例えば、ドーム照明、リング照明等が用いられる。
In the present embodiment, as described above, the camera device 42 and the illumination device 41 are installed above and below the frame 43, and the pallet 10 is conveyed between the camera device 42 and the illumination device 41. The illumination device 41 can also be configured to be positioned above the pallet 10.
As the illumination device 41 in this case, for example, dome illumination, ring illumination, or the like is used.
 移動装置(移動手段)50は、X方向駆動機構51及びY方向駆動機構52等を備えて構成された直交ロボットであり、撮像装置40を、パレット10のトレー11の載置面11cと平行に移動させる。
 X方向駆動機構51及びY方向駆動機構52は、図示しないモーターを備え、制御部70の制御によって、モーターを駆動してフレーム43をXY方向に移動させることで、カメラ装置42の撮像時の移動を行う。
The moving device (moving means) 50 is an orthogonal robot that includes an X-direction drive mechanism 51, a Y-direction drive mechanism 52, and the like, and the imaging device 40 is placed in parallel with the placement surface 11c of the tray 11 of the pallet 10. Move.
The X-direction drive mechanism 51 and the Y-direction drive mechanism 52 include a motor (not shown), and the control unit 70 controls the motor to move the frame 43 in the XY direction, thereby moving the camera device 42 during imaging. I do.
 反転装置(反転手段)60は、挟持部材61と、挟持部材駆動機構62とを備えて構成される。
 反転装置60は、第2の撮像装置40Bと第3の撮像装置40Cとの間に設置され、パレット10を挟持して、当該パレット10を反転させる。
 挟持部材61は、パレット10(蓋体12)の上面に当接する上部材と、パレット10(トレー11)の下面に当接する下部材を備え、上部材及び下部材によりパレット10を挟持する。
 また、挟持部材駆動機構62は、図示しない回転モーターを備え、制御部70の制御によって、回転モーターを駆動して、パレット10を挟持した状態の挟持部材61を180°回転させることで当該パレット10を反転させる。
The reversing device (reversing means) 60 includes a clamping member 61 and a clamping member drive mechanism 62.
The reversing device 60 is installed between the second imaging device 40B and the third imaging device 40C, and sandwiches the pallet 10 to invert the pallet 10.
The clamping member 61 includes an upper member that contacts the upper surface of the pallet 10 (lid 12) and a lower member that contacts the lower surface of the pallet 10 (tray 11), and holds the pallet 10 by the upper member and the lower member.
The clamping member drive mechanism 62 includes a rotation motor (not shown), and the rotation motor is driven under the control of the control unit 70 to rotate the clamping member 61 in a state of clamping the pallet 10 by 180 °. Is reversed.
 制御部(制御手段)70は、図3に示すように、CPU(Central Processing Unit)71、RAM(Random Access Memory)72、記憶部73等を備えて構成され、記憶部73に記憶された所定のプログラムが実行されることにより、所定の動作を行うための動作制御等を行う機能を有する。 As shown in FIG. 3, the control unit (control unit) 70 includes a CPU (Central Processing Unit) 71, a RAM (Random Access Memory) 72, a storage unit 73, and the like, and is stored in the storage unit 73. When the program is executed, it has a function of performing operation control for performing a predetermined operation.
 CPU71は、記憶部73に格納された処理プログラム等を読み出して、RAM72に展開して実行することにより、光学部品検査装置100全体の制御を行う。 The CPU 71 controls the entire optical component inspection apparatus 100 by reading out a processing program or the like stored in the storage unit 73, developing the program in the RAM 72, and executing it.
 RAM72は、CPU71により実行された処理プログラム等を、RAM72内のプログラム格納領域に展開するとともに、入力データや上記処理プログラムが実行される際に生じる処理結果等をデータ格納領域に格納する。 The RAM 72 develops the processing program executed by the CPU 71 in the program storage area in the RAM 72, and stores the input data and the processing result generated when the processing program is executed in the data storage area.
 記憶部73は、例えば、プログラムやデータ等を記憶する記録媒体(図示省略)を有しており、この記録媒体は、半導体メモリ等で構成されている。
 また、記憶部73は、CPU71が光学部品検査装置100全体を制御する機能を実現させるための各種データ、各種処理プログラム、これらプログラムの実行により処理されたデータ等を記憶する。具体的には、記憶部73は、例えば、撮像制御プログラム731、搬送制御プログラム732、判定プログラム733、撮像画像記憶部734、基準画像記憶部735、等を格納している。
The storage unit 73 includes, for example, a recording medium (not shown) that stores programs, data, and the like, and this recording medium is configured by a semiconductor memory or the like.
Further, the storage unit 73 stores various data, various processing programs, data processed by executing these programs, and the like for realizing the function of the CPU 71 controlling the entire optical component inspection apparatus 100. Specifically, the storage unit 73 stores, for example, an imaging control program 731, a conveyance control program 732, a determination program 733, a captured image storage unit 734, a reference image storage unit 735, and the like.
 撮像制御プログラム731は、例えば、所定位置において静止した状態のパレット10に対して、移動装置50により撮像装置40を移動させつつ各光学部品Kの画像を撮像させる機能を、CPU71に実現させるプログラムである。
 CPU71は、かかる撮像制御プログラム731を実行することにより、撮像制御手段として機能する。
The imaging control program 731 is a program that causes the CPU 71 to realize a function of capturing an image of each optical component K while moving the imaging device 40 by the moving device 50 with respect to the pallet 10 in a stationary state at a predetermined position, for example. is there.
The CPU 71 functions as an imaging control unit by executing the imaging control program 731.
 また、搬送制御プログラム732は、例えば、パレット10が所定位置に達した場合に、搬送装置20によるパレット10の搬送を停止させる機能を、CPU71に実現させるプログラムである。
 即ち、CPU71は、搬送制御プログラム732を実行することにより、搬送装置20によりパレット10を撮像装置40A~40Cに対応した所定位置に搬送させ、パレット10が撮像装置40A~40Cに対応した所定位置に達した場合に、搬送装置20によるパレット10の搬送を停止させる。
 CPU71は、かかる搬送制御プログラム732を実行することにより、搬送制御手段として機能する。
Further, the conveyance control program 732 is a program that causes the CPU 71 to realize a function of stopping the conveyance of the pallet 10 by the conveyance device 20 when the pallet 10 reaches a predetermined position, for example.
That is, the CPU 71 executes the conveyance control program 732 to cause the conveyance device 20 to convey the pallet 10 to a predetermined position corresponding to the imaging devices 40A to 40C, and the pallet 10 to a predetermined position corresponding to the imaging devices 40A to 40C. When it reaches, the conveyance of the pallet 10 by the conveyance device 20 is stopped.
The CPU 71 functions as a conveyance control unit by executing the conveyance control program 732.
 また、判定プログラム733は、例えば、複数の光学部品Kの各々に対して、撮像装置40A~40Cの各々で撮像された画像と、基準画像記憶部735に予め記憶された基準画像と比較して、各々の光学部品K毎に欠陥の有無を判定する機能を、CPU71に実現させるプログラムである。
 即ち、CPU71は、判定プログラム733を実行することにより、光学部品K毎に、撮像画像記憶部734に記憶された3つの画像を、基準画像記憶部735に記憶された基準画像と比較して、各光学部品の欠陥の有無を判定する。
 CPU71は、かかる判定プログラム733を実行することにより、判定手段として機能する。
Further, the determination program 733 compares, for example, an image captured by each of the imaging devices 40A to 40C with a reference image stored in advance in the reference image storage unit 735 for each of the plurality of optical components K. This is a program for causing the CPU 71 to realize the function of determining the presence or absence of defects for each optical component K.
That is, the CPU 71 executes the determination program 733 to compare the three images stored in the captured image storage unit 734 for each optical component K with the reference image stored in the reference image storage unit 735, and The presence or absence of a defect in each optical component is determined.
The CPU 71 functions as a determination unit by executing the determination program 733.
 また、撮像画像記憶部734には、撮像装置40A~Cにて撮像された画像が、光学部品K毎に記憶されている。 In the captured image storage unit 734, images captured by the imaging devices 40A to 40C are stored for each optical component K.
 また、基準画像記憶部735には、正常な光学部品を撮像した場合に得られる画像(内部画像及び表面画像)が、基準画像として記憶されている。 In the reference image storage unit 735, images (internal images and surface images) obtained when normal optical components are imaged are stored as reference images.
 次に、上述のような光学部品検査装置100の動作について説明する。
 かかる動作は、制御部70の制御により実行されるものである。
 また、下記の説明において、光学部品検査装置100により検査されるパレット10を、その搬送順にパレット10A、パレット10B、・・・と称する。
Next, the operation of the optical component inspection apparatus 100 as described above will be described.
Such an operation is executed under the control of the control unit 70.
Moreover, in the following description, the pallet 10 inspected by the optical component inspection apparatus 100 is referred to as a pallet 10A, a pallet 10B,.
 先ず、搬送装置20により、パレット10Aがガイドフレーム21,21上を搬送され、第1の撮像装置40Aに対応した所定位置に達して搬送が停止される。 First, the pallet 10A is transported on the guide frames 21 and 21 by the transport device 20, reaches a predetermined position corresponding to the first imaging device 40A, and the transport is stopped.
 次に、蓋体脱着装置30により、パレット10Aの蓋体12が取り外される。取り外された蓋体12は、ガイドフレーム21,21の外側に退避している。 Next, the lid body 12 of the pallet 10 </ b> A is removed by the lid body detaching device 30. The removed lid 12 is retracted outside the guide frames 21 and 21.
 次に、昇降機構44により、フレーム43をZ方向に移動させ、撮像装置40Aの焦点合わせが行われる。
 次に、移動装置50のX方向駆動機構51及びY方向駆動機構52により、フレーム43をXY方向に移動させることで、撮像装置40Aをパレット10Aのトレー11の載置面11cと平行に移動させる。
 この際、カメラ装置42が各光学部品Kの真上に達するタイミングで撮像が行われる。
Next, the frame 43 is moved in the Z direction by the lifting mechanism 44, and the imaging apparatus 40A is focused.
Next, the imaging device 40A is moved in parallel with the placement surface 11c of the tray 11 of the pallet 10A by moving the frame 43 in the XY directions by the X direction driving mechanism 51 and the Y direction driving mechanism 52 of the moving device 50. .
At this time, imaging is performed at the timing when the camera device 42 reaches right above each optical component K.
 次に、パレット10Aに保持された全ての光学部品Kの撮像が終了すると、蓋体脱着装置30により、パレット10Aの蓋体12が再びトレー11に被せられる。 Next, when the imaging of all the optical components K held on the pallet 10A is completed, the lid 12 of the pallet 10A is put on the tray 11 again by the lid removing device 30.
 次に、搬送装置20により、パレット10A,10Bがガイドフレーム21,21上を搬送される。この搬送は、パレット10Aが第2の撮像装置40Bに対応した所定位置に達し、パレット10Bが第1の撮像装置40Aに対応した所定位置に達した場合に停止される。 Next, the pallets 10A and 10B are transported on the guide frames 21 and 21 by the transport device 20. This conveyance is stopped when the pallet 10A reaches a predetermined position corresponding to the second imaging device 40B and the pallet 10B reaches a predetermined position corresponding to the first imaging device 40A.
 次に、蓋体脱着装置30により、パレット10A,10Bの蓋体12,12が同時に取り外される。取り外された蓋体12,12は、ガイドフレーム21,21の外側に退避している。 Next, the lid bodies 12 and 12 of the pallets 10 </ b> A and 10 </ b> B are simultaneously removed by the lid body detaching device 30. The removed lids 12 and 12 are retracted outside the guide frames 21 and 21.
 次に、昇降機構44により、各撮像装置40A,40Bの焦点合わせがそれぞれ行われる。
 次に、移動装置50のX方向駆動機構51及びY方向駆動機構52により、撮像装置40Bをパレット10Aのトレー11の載置面11cと平行に移動させ、撮像装置40Aをパレット10Bのトレー11の載置面11cと平行に移動させる。
 この際、撮像装置40A,40Bのカメラ装置42が各光学部品Kの真上に達するタイミングで撮像が行われる。
Next, focusing of each imaging device 40A, 40B is performed by the raising / lowering mechanism 44, respectively.
Next, the imaging device 40B is moved in parallel with the placement surface 11c of the tray 11 of the pallet 10A by the X direction driving mechanism 51 and the Y direction driving mechanism 52 of the moving device 50, and the imaging device 40A is moved to the tray 11 of the pallet 10B. It is moved parallel to the mounting surface 11c.
At this time, imaging is performed at the timing when the camera device 42 of the imaging devices 40A and 40B reaches directly above each optical component K.
 次に、撮像が終了すると、蓋体脱着装置30により、パレット10A,10Bの蓋体12,12が再びトレー11,11に被せられる。 Next, when the imaging is finished, the lids 12 and 12 of the pallets 10A and 10B are again put on the trays 11 and 11 by the lid removing device 30.
 次に、搬送装置20により、パレット10A,10B,10Cがガイドフレーム21,21上を搬送される。この搬送は、パレット10Aが反転装置60に対応した所定位置に達し、パレット10Bが第2の撮像装置40Bに対応した所定位置に達し、パレット10Cが第1の撮像装置40Aに対応した所定位置に達した場合に停止される。 Next, the pallets 10A, 10B, and 10C are transported on the guide frames 21 and 21 by the transport device 20. In this conveyance, the pallet 10A reaches a predetermined position corresponding to the reversing device 60, the pallet 10B reaches a predetermined position corresponding to the second imaging device 40B, and the pallet 10C reaches a predetermined position corresponding to the first imaging device 40A. Stopped when reached.
 次に、反転装置60により、パレット10Aが反転され、これとほぼ同じタイミングで、蓋体脱着装置30により、パレット10B,10Cの蓋体12,12が同時に取り外される。取り外された蓋体12,12は、ガイドフレーム21,21の外側に退避している。 Next, the pallet 10A is inverted by the reversing device 60, and the lids 12 and 12 of the pallets 10B and 10C are simultaneously removed by the lid removing device 30 at almost the same timing. The removed lids 12 and 12 are retracted outside the guide frames 21 and 21.
 次に、昇降機構44により、各撮像装置40A,40Bの焦点合わせが行われる。
 次に、移動装置50のX方向駆動機構51及びY方向駆動機構52により、撮像装置40Bをパレット10Bのトレー11の載置面11cと平行に移動させ、撮像装置40Aをパレット10Cのトレー11の載置面11cと平行に移動させる。
 この際、撮像装置40A,40Bのカメラ装置42が各光学部品Kの真上に達するタイミングで撮像が行われる。
Next, the imaging mechanism 40A, 40B is focused by the lifting mechanism 44.
Next, the imaging device 40B is moved in parallel with the placement surface 11c of the tray 11 of the pallet 10B by the X direction driving mechanism 51 and the Y direction driving mechanism 52 of the moving device 50, and the imaging device 40A is moved to the tray 11 of the pallet 10C. It is moved parallel to the mounting surface 11c.
At this time, imaging is performed at the timing when the camera device 42 of the imaging devices 40A and 40B reaches directly above each optical component K.
 次に、撮像が終了すると、蓋体脱着装置30により、パレット10B,10Cの蓋体12,12が再びトレー11,11に被せられる。 Next, when the imaging is finished, the lids 12 and 12 of the pallets 10B and 10C are put on the trays 11 and 11 again by the lid removing device 30.
 次に、搬送装置20により、パレット10A,10B,10C,10Dがガイドフレーム21,21上を搬送される。この搬送は、パレット10Aが第3の撮像装置40Cに対応した所定位置に達し、パレット10Bが反転装置60に対応した所定位置に達し、パレット10Cが第2の撮像装置40Bに対応した所定位置に達し、パレット10Dが第1の撮像装置40Aに対応した所定位置に達した場合に停止される。 Next, the pallets 10 </ b> A, 10 </ b> B, 10 </ b> C, 10 </ b> D are transported on the guide frames 21, 21 by the transport device 20. In this conveyance, the pallet 10A reaches a predetermined position corresponding to the third imaging device 40C, the pallet 10B reaches a predetermined position corresponding to the reversing device 60, and the pallet 10C reaches a predetermined position corresponding to the second imaging device 40B. When the pallet 10D reaches a predetermined position corresponding to the first imaging device 40A, the pallet 10D is stopped.
 次に、反転装置60により、パレット10Bが反転され、これとほぼ同じタイミングで、蓋体脱着装置30により、パレット10A,10C,10Dの蓋体12,12,12が同時に取り外される。取り外された蓋体12,12,12は、ガイドフレーム21,21の外側に退避している。 Next, the pallet 10B is reversed by the reversing device 60, and the lids 12, 12, and 12 of the pallets 10A, 10C, and 10D are simultaneously removed by the lid removing device 30 at substantially the same timing. The removed lid bodies 12, 12, 12 are retracted to the outside of the guide frames 21, 21.
 次に、昇降機構44により、各撮像装置40A,40B,40Cの焦点合わせがそれぞれ行われる。
 次に、移動装置50のX方向駆動機構51及びY方向駆動機構52により、撮像装置40Cをパレット10Aのトレー11の載置面11cと平行に移動させ、撮像装置40Bをパレット10Cのトレー11の載置面11cと平行に移動させ、撮像装置40Aをパレット10Dのトレー11の載置面11cと平行に移動させる。
 この際、撮像装置40A,40B,40Cのカメラ装置42が各光学部品Kの真上に達するタイミングで撮像が行われる。
Next, focusing of each imaging device 40A, 40B, 40C is performed by the raising / lowering mechanism 44, respectively.
Next, the X direction driving mechanism 51 and the Y direction driving mechanism 52 of the moving device 50 move the imaging device 40C in parallel with the placement surface 11c of the tray 11 of the pallet 10A, and the imaging device 40B is moved to the tray 11 of the pallet 10C. The imaging device 40A is moved in parallel with the placement surface 11c of the tray 11 of the pallet 10D.
At this time, imaging is performed at the timing when the camera device 42 of the imaging devices 40A, 40B, and 40C reaches directly above each optical component K.
 次に、撮像が終了すると、蓋体脱着装置30により、パレット10A,10C,10Dの蓋体12,12,12が再びトレー11,11,11に被せられる。 Next, when the imaging is completed, the lids 12, 12, 12 of the pallets 10 </ b> A, 10 </ b> C, 10 </ b> D are again put on the trays 11, 11, 11 by the lid removing device 30.
 上述した一連の動作により、パレット10Aに対する画像撮影は終了となる。以下、後続のパレット10B~10Dに対して同様の動作を繰り返す。
 なお、撮像装置40A~40Cにより撮像された画像は、光学部品K毎に撮像画像記憶部734に記憶される。
With the series of operations described above, image capturing for the palette 10A is completed. Thereafter, the same operation is repeated for the subsequent pallets 10B to 10D.
Note that images captured by the imaging devices 40A to 40C are stored in the captured image storage unit 734 for each optical component K.
 次に、上述した動作終了後、撮像装置40A~40Cにより撮像された画像に基づいて、光学部品毎に欠陥の有無が判断される。
 なお、欠陥が有ると判断された光学部品は、廃棄されることとなる。
Next, after the above-described operation is completed, the presence / absence of a defect is determined for each optical component based on images captured by the imaging devices 40A to 40C.
Note that the optical component determined to have a defect is discarded.
 以上のように、本実施形態によれば、光学部品検査装置100において、パレット10に保持された複数の光学部品Kに対して光を照射する照明装置41、及び当該照明装置41により光が照射された複数の光学部品の各々の画像を撮像するカメラ装置42を有する撮像装置40と、撮像装置40をパレット10の上面(トレー11の載置面11c)と平行に移動させる移動装置50と、所定位置において静止した状態のパレット10に対して、移動装置50により撮像装置40を移動させつつ複数の光学部品Kの各々の画像を撮像させる撮像制御手段(CPU71及び撮像制御プログラム731)と、を備えて構成される。
 このため、複数の光学部品Kが保持されたパレット10が所定位置において静止した状態であるときに、撮像装置40が当該パレット10の上面(トレー11の載置面11c)と平行に移動して、パレット10に保持された複数の光学部品Kの各々の画像が撮像されることとなる。
 よって、撮像装置40の撮像時にパレット10が静止した状態であるので、パレット10に保持された光学部品Kが振動することがなく、位置ずれが起こらない。このため、検査精度にばらつきが生じるのを防止し安定した検査を行うことができる。
As described above, according to this embodiment, in the optical component inspection apparatus 100, the illumination device 41 that irradiates light to the plurality of optical components K held on the pallet 10, and the illumination device 41 emits light. An imaging device 40 having a camera device 42 for capturing images of each of the plurality of optical components, a moving device 50 for moving the imaging device 40 in parallel with the upper surface of the pallet 10 (the placement surface 11c of the tray 11), Imaging control means (a CPU 71 and an imaging control program 731) for capturing images of each of the plurality of optical components K while moving the imaging device 40 by the moving device 50 with respect to the pallet 10 in a stationary state at a predetermined position; It is prepared for.
For this reason, when the pallet 10 holding the plurality of optical components K is stationary at a predetermined position, the imaging device 40 moves in parallel with the upper surface of the pallet 10 (the placement surface 11c of the tray 11). The images of the plurality of optical components K held on the pallet 10 are taken.
Therefore, since the pallet 10 is in a stationary state at the time of image pickup by the image pickup device 40, the optical component K held on the pallet 10 does not vibrate and no positional deviation occurs. For this reason, it is possible to prevent a variation in inspection accuracy and perform a stable inspection.
 また、本実施形態によれば、パレット10を搬送する搬送装置20と、パレット10が所定位置に達した場合に、搬送装置20によるパレット10の搬送を停止させる搬送制御手段(CPU71及び搬送制御プログラム732)と、を備えている。
 このため、搬送されているパレット10を所定位置において静止させ、撮像装置40により撮像させることができる。
Further, according to the present embodiment, the conveyance device 20 that conveys the pallet 10 and the conveyance control means (the CPU 71 and the conveyance control program) that stop conveyance of the pallet 10 by the conveyance device 20 when the pallet 10 reaches a predetermined position. 732).
For this reason, the pallet 10 being conveyed can be stopped at a predetermined position and imaged by the imaging device 40.
 また、本実施形態によれば、撮像装置40は、搬送装置20による搬送方向(X方向)に沿って複数備えられ、搬送制御手段は、搬送装置20により複数のパレット10を各々の撮像装置40に対応した所定位置に搬送させ、複数のパレット10が各々の撮像装置40に対応した所定位置に達した場合に、搬送装置20による複数のパレット10の搬送を停止させる。
 このため、複数の画像を一台の光学部品検査装置100にて撮像することができることとなるので、複数台の光学部品検査装置を使用して複数の画像を撮像する場合と比較して、設備の簡素化、装置サイズの縮小化、装置コストの低減を図ることができる。
In addition, according to the present embodiment, a plurality of imaging devices 40 are provided along the conveyance direction (X direction) of the conveyance device 20, and the conveyance control unit uses the conveyance device 20 to add a plurality of pallets 10 to each of the imaging devices 40. When the plurality of pallets 10 reach a predetermined position corresponding to each imaging device 40, the conveyance of the plurality of pallets 10 by the conveyance device 20 is stopped.
For this reason, since a plurality of images can be picked up by one optical component inspection apparatus 100, the equipment is compared with a case where a plurality of images are picked up using a plurality of optical component inspection apparatuses. Can be simplified, the apparatus size can be reduced, and the apparatus cost can be reduced.
 また、本実施形態によれば、パレット10は、複数の光学部品を載置するトレー11と、トレー11に重ね合わせることにより当該トレー11との間で複数の光学部品を保持する蓋体12と、を備え、撮像装置40による撮像が開始する前に蓋体12を取り外すと共に、撮像装置40による撮像が終了した後に蓋体12をトレー11に被せる蓋体脱着装置30を備える。
 このため、複数の撮像装置40の間をパレット10が搬送される際には、光学部品Kがトレー11及び蓋体12により抑えられることとなるので、搬送時の振動により光学部品Kの位置がずれるのを防止しつつ、光学部品Kのレンズ部R及びフランジ部Fの検査を行うことができる。
In addition, according to the present embodiment, the pallet 10 includes a tray 11 on which a plurality of optical components are placed, and a lid body 12 that holds the plurality of optical components between the tray 11 by overlapping the tray 11. The lid body 12 is removed before imaging by the imaging device 40 is started, and the lid body detaching device 30 that covers the tray 12 on the tray 11 after imaging by the imaging device 40 is completed.
For this reason, when the pallet 10 is transported between the plurality of imaging devices 40, the optical component K is suppressed by the tray 11 and the lid body 12, and therefore the position of the optical component K is caused by vibration during transportation. The lens portion R and the flange portion F of the optical component K can be inspected while preventing the displacement.
 また、本実施形態によれば、撮像装置40、光学部品Kの内部の欠陥判定用画像を撮像する第1の撮像装置40Aと、光学部品の一面の欠陥判定用画像を撮像する第2の撮像装置40Bと、光学部品の他面の欠陥判定用画像を撮像する第3の撮像装置40Cと、を備え、第2の撮像装置40Bと第3の撮像装置40Cとの間に、トレー11に蓋体12が重ね合わされた状態のパレット10を反転させる反転装置60を備える。
 このため、一台の光学部品検査装置100で光学部品Kの表裏の画像が撮像可能となり、1つの光学部品Kの欠陥検査に対して必要な複数の画像を一台の光学部品検査装置100にて全て撮像することができることとなる。
 よって、複数台の光学部品検査装置を使用して、光学部品Kの欠陥検査に対して必要な複数の画像を撮像する場合と比較して、設備の簡素化、装置サイズの縮小化、装置コストの低減を図ることができる。
In addition, according to the present embodiment, the imaging device 40, the first imaging device 40A that captures an image for defect determination inside the optical component K, and the second imaging that captures a defect determination image on one surface of the optical component. Device 40B and a third image pickup device 40C for picking up an image for defect determination on the other surface of the optical component. A lid is attached to the tray 11 between the second image pickup device 40B and the third image pickup device 40C. A reversing device 60 for reversing the pallet 10 on which the body 12 is superposed is provided.
For this reason, the front and back images of the optical component K can be captured by one optical component inspection apparatus 100, and a plurality of images necessary for defect inspection of one optical component K are stored in one optical component inspection apparatus 100. Thus, all images can be taken.
Therefore, compared with the case where a plurality of optical component inspection apparatuses are used to capture a plurality of images necessary for defect inspection of the optical component K, the equipment is simplified, the apparatus size is reduced, and the apparatus cost is reduced. Can be reduced.
 また、本実施形態によれば、複数の光学部品Kの各々に対して、複数の撮像手段40A~40Cの各々で撮像された画像と、予め記憶された基準画像と比較して、各々の光学部品K毎に欠陥の有無を判定する判定手段(CPU71及び判定プログラム733)を備える。
 このため、欠陥のある光学部品Kを一括して分別することができる。
Further, according to the present embodiment, for each of the plurality of optical components K, each of the optical components is compared with the image captured by each of the plurality of imaging units 40A to 40C and the reference image stored in advance. Determination means (CPU 71 and determination program 733) for determining the presence or absence of a defect for each component K is provided.
For this reason, it is possible to sort the defective optical components K together.
 なお、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。 In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change suitably.
 例えば、上記実施形態においては、レンズ部Rの光学面R1,R2は、何れもフランジ部Fより凸となっている構成を例示して説明したが、レンズ部Rの光学面R1,R2は、必ずしも凸とは限らない。 For example, in the above-described embodiment, the optical surfaces R1 and R2 of the lens portion R have been described by exemplifying the configuration in which both are convex from the flange portion F. However, the optical surfaces R1 and R2 of the lens portion R are It is not necessarily convex.
 また、上記実施形態においては、搬送装置20を備えた構成を例示して説明したが、搬送装置20を備えない構成とすることも可能である。この場合、搬送装置20の代わりに、例えば、ユーザーが手動で撮像装置40に対応する所定位置にパレット10を配置することとしても良い。 In the above embodiment, the configuration including the transport device 20 has been described as an example, but a configuration without the transport device 20 may be employed. In this case, for example, the user may manually place the pallet 10 at a predetermined position corresponding to the imaging device 40 instead of the transport device 20.
 また、上記実施形態においては、蓋体脱着装置30によりパレット10の蓋体12が取り外された状態でレンズ部Rとフランジ部Fの撮像が行われる構成について説明したが、蓋体12を取り外すことなく、光学部品Kのレンズ部Rのみ検査することとしても良い。
 この場合、撮像装置40は、パレット10の上面(蓋体12の上面)と平行に移動する。
Moreover, in the said embodiment, although the structure which imaged the lens part R and the flange part F in the state which removed the cover body 12 of the pallet 10 with the cover body removal | desorption apparatus 30 was demonstrated, removing the cover body 12 Alternatively, only the lens portion R of the optical component K may be inspected.
In this case, the imaging device 40 moves in parallel with the upper surface of the pallet 10 (the upper surface of the lid body 12).
 また、上記実施形態においては、3つの撮像装置40を備えた構成を例示して説明したが、撮像装置40の数はこれに限定されず、例えば、光学部品の一面の欠陥判定用画像を撮像する撮像装置、及び光学部品の他面の欠陥判定用画像を撮像する撮像装置の2つを備えた構成などとすることも可能である。 In the above embodiment, the configuration including the three imaging devices 40 has been described as an example. However, the number of the imaging devices 40 is not limited to this, and for example, a defect determination image on one surface of the optical component is captured. It is also possible to adopt a configuration including two imaging devices that capture an image for performing defect determination on the other surface of the optical component, and other imaging devices.
 また、上記実施形態においては、蓋体脱着装置30は、吸着によってパレット10の蓋体12を取り外す機構であるが、蓋体12を取り外せるものであればこの機構に限定されない。例えば、蓋体12の両端部を把持して持ち上げる等の構成などであっても良い。 Further, in the above embodiment, the lid body detaching device 30 is a mechanism that removes the lid body 12 of the pallet 10 by suction, but is not limited to this mechanism as long as the lid body 12 can be removed. For example, a configuration in which both ends of the lid 12 are gripped and lifted may be used.
 本発明は、光学部品の欠陥検査を行う光学部品検査装置として利用できる。 The present invention can be used as an optical component inspection apparatus that performs optical component defect inspection.
10(10A-10D) パレット
 11 トレー
 11a 凹部
 11b 貫通孔
 11c 載置面
 12 蓋体
 12a 凹部
 12b 貫通孔
20 搬送装置(搬送手段)
 21 ガイドフレーム
 21a,21a 溝部
 22 支柱
 23 パレット駆動機構
30 蓋体脱着装置(蓋体脱着手段)
 31 ヘッド部
 32 アーム
 33 アーム駆動機構
40(40A-40C) 撮像装置(撮像手段)
 41 照明装置
 42 カメラ装置
 43 フレーム
 43a 立設部
 43b,32c 支持部
 44 昇降機構
50 移動装置(移動手段)
 51 X方向駆動機構
 52 Y方向駆動機構
60 反転装置(反転手段)
 61 挟持部材
 62 挟持部材駆動機構
70 制御部(制御手段)
 71 CPU(撮像制御手段、搬送制御手段、判定手段)
 72 RAM
 73 記憶部
 731 撮像制御プログラム(撮像制御手段)
 732 搬送制御プログラム(搬送制御手段)
 733 判定プログラム(判定手段)
 734 撮像画像記憶部
 735 基準画像記憶部
K 光学部品
 R レンズ部
 R1,R2 光学面
 F フランジ部
100 光学部品検査装置
10 (10A-10D) Pallet 11 Tray 11a Recess 11b Through hole 11c Placement surface 12 Lid 12a Recess 12b Through hole 20 Conveying device (conveying means)
21 guide frame 21a, 21a groove part 22 support | pillar 23 pallet drive mechanism 30 cover body removal | desorption apparatus (lid body removal means)
31 Head part 32 Arm 33 Arm drive mechanism 40 (40A-40C) Imaging device (imaging means)
41 Illuminating device 42 Camera device 43 Frame 43a Standing portion 43b, 32c Supporting portion 44 Lifting mechanism 50 Moving device (moving means)
51 X-direction drive mechanism 52 Y-direction drive mechanism 60 Inversion device (inversion means)
61 clamping member 62 clamping member drive mechanism 70 control part (control means)
71 CPU (imaging control means, conveyance control means, determination means)
72 RAM
73 Storage Unit 731 Imaging Control Program (Imaging Control Unit)
732 Transfer control program (transfer control means)
733 Determination program (determination means)
734 Captured image storage unit 735 Reference image storage unit K Optical component R Lens unit R1, R2 Optical surface F Flange unit 100 Optical component inspection apparatus

Claims (6)

  1.  パレットに保持された複数の光学部品の欠陥検査を行う光学部品検査装置において、
     前記パレットに保持された前記複数の光学部品に対して光を照射する照明装置、及び当該照明装置により光が照射された前記複数の光学部品の各々の画像を撮像するカメラ装置を有する撮像手段と、
     前記撮像手段を前記パレットの上面と平行に移動させる移動手段と、
     所定位置において静止した状態の前記パレットに対して、前記移動手段により前記撮像手段を移動させつつ前記複数の光学部品の各々の画像を撮像させる撮像制御手段と、
    を備えることを特徴とする光学部品検査装置。
    In an optical component inspection apparatus that performs defect inspection of a plurality of optical components held on a pallet,
    An illuminating device that irradiates light to the plurality of optical components held on the pallet; and an imaging unit that includes a camera device that captures images of the plurality of optical components irradiated with light by the illuminating device; ,
    Moving means for moving the imaging means parallel to the top surface of the pallet;
    Imaging control means for capturing images of each of the plurality of optical components while moving the imaging means by the moving means with respect to the pallet in a stationary state at a predetermined position;
    An optical component inspection apparatus comprising:
  2.  前記パレットを搬送する搬送手段と、
     前記パレットが前記所定位置に達した場合に、前記搬送手段による前記パレットの搬送を停止させる搬送制御手段と、
     を備えることを特徴とする請求項1に記載の光学部品検査装置。
    Conveying means for conveying the pallet;
    Transport control means for stopping transport of the pallet by the transport means when the pallet reaches the predetermined position;
    The optical component inspection apparatus according to claim 1, further comprising:
  3.  前記撮像手段は、前記搬送手段による搬送方向に沿って複数備えられ、
     前記搬送制御手段は、
     前記搬送手段により複数の前記パレットを各々の前記撮像手段に対応した所定位置まで搬送させ、
     複数の前記パレットが各々の前記撮像手段に対応した所定位置に達した場合に、前記搬送手段による複数の前記パレットの搬送を停止させることを特徴とする請求項2に記載の光学部品検査装置。
    A plurality of the imaging means are provided along the conveyance direction by the conveyance means,
    The transport control means includes
    Transporting the plurality of pallets to a predetermined position corresponding to each of the imaging means by the transport means;
    The optical component inspection apparatus according to claim 2, wherein when the plurality of pallets reach a predetermined position corresponding to each of the imaging units, conveyance of the plurality of pallets by the conveyance unit is stopped.
  4.  前記パレットは、
     前記複数の光学部品を載置するトレーと、前記トレーに重ね合わせることにより当該トレーとの間で前記複数の光学部品を保持する蓋体と、を備え、
     前記撮像手段による撮像が開始する前に前記蓋体を取り外すと共に、前記撮像手段による撮像が終了した後に前記蓋体を前記トレーに被せる蓋体脱着手段を備えることを特徴とする請求項1~3の何れか一項に記載の光学部品検査装置。
    The pallet is
    A tray on which the plurality of optical components are placed, and a lid body that holds the plurality of optical components between the tray by overlapping the tray.
    The apparatus further comprises: a lid body detaching means for removing the lid before imaging by the imaging means and for covering the tray with the lid after imaging by the imaging means is completed. The optical component inspection apparatus according to any one of the above.
  5.  複数の前記撮像手段は、
     光学部品の内部の欠陥判定用画像を撮像する第1撮像手段と、
     光学部品の一面の欠陥判定用画像を撮像する第2撮像手段と、
     光学部品の他面の欠陥判定用画像を撮像する第3撮像手段と、
     を備え、
     前記第2撮像手段と前記第3撮像手段との間に、前記トレーに前記蓋体が重ね合わされた状態の前記パレットを反転させる反転手段を備えることを特徴とする請求項4に記載の光学部品検査装置。
    A plurality of the imaging means,
    First imaging means for imaging a defect determination image inside the optical component;
    A second imaging means for imaging a defect determination image on one surface of the optical component;
    A third imaging means for imaging a defect determination image on the other surface of the optical component;
    With
    5. The optical component according to claim 4, further comprising a reversing unit that reverses the pallet in a state in which the lid is superimposed on the tray between the second imaging unit and the third imaging unit. Inspection device.
  6.  前記複数の光学部品の各々に対して、複数の前記撮像手段の各々で撮像された画像と、予め記憶された基準画像と比較して、各々の光学部品毎に欠陥の有無を判定する判定手段を備えることを特徴とする請求項3~5の何れか一項に記載の光学部品検査装置。 Determination means for comparing each of the plurality of optical components with each of the plurality of imaging means and a reference image stored in advance to determine the presence or absence of a defect for each optical component. The optical component inspection apparatus according to any one of claims 3 to 5, further comprising:
PCT/JP2012/083777 2012-01-31 2012-12-27 Optical component inspecting apparatus WO2013114778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-018247 2012-01-31
JP2012018247A JP2015083921A (en) 2012-01-31 2012-01-31 Optical component inspection device

Publications (1)

Publication Number Publication Date
WO2013114778A1 true WO2013114778A1 (en) 2013-08-08

Family

ID=48904831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083777 WO2013114778A1 (en) 2012-01-31 2012-12-27 Optical component inspecting apparatus

Country Status (2)

Country Link
JP (1) JP2015083921A (en)
WO (1) WO2013114778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116573397A (en) * 2023-07-12 2023-08-11 前海晶方云(深圳)测试设备有限公司 Changing equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102405604B1 (en) * 2016-11-09 2022-06-07 주식회사 에스디옵틱스 Apparatus for inspecting lens assembly
JP7155825B2 (en) * 2018-09-28 2022-10-19 日本電産トーソク株式会社 Product abnormality judgment device
JP7296633B2 (en) * 2020-07-17 2023-06-23 株式会社ヒューブレイン Spherical object appearance inspection device
KR102643579B1 (en) * 2021-11-10 2024-03-05 엠피닉스 주식회사 Micro-lens exterior inspection mounted automatic transfer device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085574A (en) * 1994-06-21 1996-01-12 Rohm Co Ltd Go/no-go test equipment and test method for component thrown into cap
JP2000266691A (en) * 1999-03-16 2000-09-29 Olympus Optical Co Ltd Visual examination apparatus
JP2009243975A (en) * 2008-03-28 2009-10-22 Fujinon Corp Mask plate for inspecting lens, and lens inspection method
JP2009288121A (en) * 2008-05-30 2009-12-10 Arkwright Soft Inc Apparatus and method for inspecting lens
JP2011127993A (en) * 2009-12-17 2011-06-30 Tamron Co Ltd Apparatus and method for lens inspection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085574A (en) * 1994-06-21 1996-01-12 Rohm Co Ltd Go/no-go test equipment and test method for component thrown into cap
JP2000266691A (en) * 1999-03-16 2000-09-29 Olympus Optical Co Ltd Visual examination apparatus
JP2009243975A (en) * 2008-03-28 2009-10-22 Fujinon Corp Mask plate for inspecting lens, and lens inspection method
JP2009288121A (en) * 2008-05-30 2009-12-10 Arkwright Soft Inc Apparatus and method for inspecting lens
JP2011127993A (en) * 2009-12-17 2011-06-30 Tamron Co Ltd Apparatus and method for lens inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116573397A (en) * 2023-07-12 2023-08-11 前海晶方云(深圳)测试设备有限公司 Changing equipment
CN116573397B (en) * 2023-07-12 2023-12-08 前海晶方云(深圳)测试设备有限公司 Changing equipment

Also Published As

Publication number Publication date
JP2015083921A (en) 2015-04-30

Similar Documents

Publication Publication Date Title
WO2013114778A1 (en) Optical component inspecting apparatus
TWI411773B (en) Visual inspection apparatus, visual inspection methdo, and circumference inspection unit attachable to visual inspection apparatus
KR100936903B1 (en) Inspecting apparatus and inspecting method
TWI638426B (en) Stripping device, stripping system, stripping method and information memory medium
JP2006329714A (en) Lens inspection apparatus
KR101672523B1 (en) The visual inspection method of a lens module for a camera
JP2012171628A (en) Taping device and taping method
JP6795479B2 (en) Inspection equipment and inspection method
KR101175770B1 (en) Lense inspection system and lense inspection method using the same
US8774491B2 (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium having program for executing the substrate processing method recorded therein
JP2010126242A (en) Taping device
KR101967372B1 (en) Inspection apparatus, and inspection method using the same apparatus
JP5837150B2 (en) Substrate processing method and recording medium storing program for executing the substrate processing method
JP2005017386A (en) Device for inspecting and correcting flat plate work
JP5574193B2 (en) Mounting method and apparatus
JP2013156204A (en) Optical component inspection device
JP5825268B2 (en) Board inspection equipment
JP4495473B2 (en) Inspection system
CN220497003U (en) Automatic detection equipment and production system
JP2020051998A (en) Product irregularity determination device
KR100938492B1 (en) Inspecting apparatus and inspecting method
JP2013197278A (en) Semiconductor manufacturing apparatus
KR20220059728A (en) Shelf unit and mask storing device having the same
KR102569167B1 (en) Ultraviolet rays processing apparatus, joining system, ultraviolet rays processing method and computer recording medium
KR20220059727A (en) Vision unit and mask storing device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP