WO2013114639A1 - 超音波探傷方法、超音波探傷装置、および管材製造方法 - Google Patents

超音波探傷方法、超音波探傷装置、および管材製造方法 Download PDF

Info

Publication number
WO2013114639A1
WO2013114639A1 PCT/JP2012/061836 JP2012061836W WO2013114639A1 WO 2013114639 A1 WO2013114639 A1 WO 2013114639A1 JP 2012061836 W JP2012061836 W JP 2012061836W WO 2013114639 A1 WO2013114639 A1 WO 2013114639A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
defect
threshold
equal
change rate
Prior art date
Application number
PCT/JP2012/061836
Other languages
English (en)
French (fr)
Inventor
飯塚 幸理
孝文 尾関
穣 松井
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP12867508.9A priority Critical patent/EP2811294B1/en
Priority to US14/374,989 priority patent/US9341599B2/en
Priority to CN201280068720.0A priority patent/CN104081196B/zh
Priority to KR1020147021328A priority patent/KR101671084B1/ko
Priority to ES12867508T priority patent/ES2785074T3/es
Publication of WO2013114639A1 publication Critical patent/WO2013114639A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating

Definitions

  • the present invention relates to an ultrasonic flaw detection method, an ultrasonic flaw detection apparatus, and a pipe material manufacturing method that detect defects on the inner surface of a subject such as a metal tube using ultrasonic waves.
  • an ultrasonic flaw detection method using ultrasonic waves has been widely applied as a quality assurance means for detecting defects generated during the manufacture of metal steel materials such as steel pipes, bar steel, shaped steel, and thick plates.
  • oblique inspection and vertical inspection are generally used for metal pipes such as steel pipes.
  • Bevel inspection is mainly used to detect cracked defects on the inner and outer surfaces of a metal tube, and the ultrasonic beam direction is used to detect defects parallel to the axial or circumferential direction of the tube.
  • the oblique angle probes are arranged in two directions in each of the axial direction and the circumferential direction, that is, a total of four directions.
  • the vertical flaw detection is applied to the detection of the inclusions contained in the inside of the metal tube and the thickness measurement.
  • the entire length of the subject is inspected in a spiral shape while rotating the steel pipe or the probe.
  • defect detection is performed in which the presence / absence of a defect echo is determined every time an ultrasonic wave is transmitted / received.
  • Patent Document 1 describes that a defect near the surface of a metal tube is detected by an ultrasonic flaw detection method.
  • a two-dimensional image obtained by combining the flaw detection signals obtained while moving by adjusting the position so that the bottom echoes are aligned is created, and defects are extracted from the two-dimensional image.
  • the present invention has been made in view of the above, and an ultrasonic flaw detection method that can detect even a dent defect or a wrap-shaped shallow defect generated on the inner surface of a metal pipe such as a steel pipe.
  • An object of the present invention is to provide an ultrasonic flaw detector and a pipe material manufacturing method.
  • an ultrasonic flaw detection method for detecting defects on the inner surface of a metal tube using ultrasonic waves, wherein the inner surface A waveform holding step for acquiring and holding waveform data of an echo signal when the ultrasonic probe for generating an ultrasonic signal and the metal tube are relatively moved toward the waveform, and the held waveform data A signal analysis step for calculating a path until the echo signal is received from the inner surface and a rate of change of the path, and a defect of the inner surface based on the path and the rate of change of the path. And a defect detection step of detecting.
  • the defect detection step is a portion in which the path is less than a predetermined path threshold or a change rate of the path is more than a predetermined path change rate threshold. It is determined that there is a defect, and it is determined that there is no defect in a portion that does not satisfy the condition.
  • the signal analysis step further calculates a height of an echo signal from the inner surface based on the held waveform data, and the defect
  • the detection step it is determined that there is a defect in a portion that satisfies the condition that the path is less than or equal to a predetermined path threshold, or the rate of change of the path is greater than or equal to a predetermined path change rate threshold and the height is less than or equal to a predetermined height threshold. , It is determined that there is no defect in a portion that does not satisfy the condition.
  • the signal analysis step further calculates a height of an echo signal from the inner surface based on the held waveform data, and the defect
  • the detecting step uses the position where the path is less than a predetermined path threshold, or the rate of change of the path is greater than or equal to a predetermined path change rate threshold, and the rate of change of the path is greater than or equal to a predetermined path change rate threshold as a reference position. Determining that there is a defect in a portion where the height within the search range preset with respect to the reference position satisfies a condition not exceeding the predetermined height threshold, and determining that there is no defect in the portion that does not satisfy the condition It is characterized by.
  • the signal analysis step analyzes a noise level of a noise component in a portion where there is no echo signal based on the held waveform data, and the analysis is performed.
  • a threshold value for echo signal detection is determined based on the result, and the path length is calculated by detecting the echo signal based on the determined threshold value.
  • the ultrasonic flaw detector according to the present invention is an ultrasonic flaw detector that detects defects on the inner surface of a metal tube using ultrasonic waves, and generates an ultrasonic signal toward the inner surface.
  • a waveform holding unit that acquires and holds waveform data of an echo signal when the probe and the metal tube are relatively moved, and an echo signal from the inner surface based on the held waveform data
  • a signal analysis unit that calculates a path until the path is received and a rate of change of the path, and a defect detection unit that detects a defect of the inner surface based on the path and the rate of change of the path. It is characterized by.
  • the defect detection unit is a portion that satisfies a condition that the path is less than a predetermined path threshold or a change rate of the path is greater than or equal to a predetermined path change rate threshold. It is determined that there is a defect, and it is determined that there is no defect in a portion that does not satisfy the condition.
  • the signal analysis unit further calculates a height of an echo signal from the inner surface based on the held waveform data, and the defect
  • the detecting unit determines that there is a defect in a portion that satisfies the condition that the path is equal to or less than a predetermined path threshold, or the rate of change of the path is equal to or higher than a predetermined path change rate threshold and the height is equal to or lower than a predetermined height threshold. , It is determined that there is no defect in a portion that does not satisfy the condition.
  • the signal analysis unit further calculates a height of an echo signal from the inner surface based on the held waveform data, and the defect
  • the detection unit uses the position where the path is equal to or less than a predetermined path threshold or the rate of change of the path is equal to or higher than a predetermined path rate of change threshold and the rate of change of the path is equal to or higher than a predetermined path change rate as a reference position. Determining that there is a defect in a portion where the height within the search range preset with respect to the reference position satisfies a condition not exceeding the predetermined height threshold, and determining that there is no defect in the portion that does not satisfy the condition It is characterized by.
  • the signal analysis unit analyzes a noise level of a noise component in a portion where there is no echo signal based on the held waveform data, and the analysis is performed.
  • a threshold value for echo signal detection is determined based on the result, and the path length is calculated by detecting the echo signal based on the determined threshold value.
  • the tube material manufacturing method is a tube material manufacturing method for manufacturing a tube material by subjecting a metal material to at least a heating step, a punching step, a rolling step, a reheating step, a molding step, and an inspection step.
  • the inspection step the waveform holding for acquiring and holding the waveform data of the echo signal when the ultrasonic probe generating the ultrasonic signal toward the inner surface of the pipe and the pipe is relatively moved
  • a step a signal analysis step for calculating a path until the echo signal from the inner surface is received based on the held waveform data, and a rate of change of the path, and the path and the rate of change of the path
  • a defect detection step of detecting a defect on the inner surface the waveform holding for acquiring and holding the waveform data of the echo signal when the ultrasonic probe generating the ultrasonic signal toward the inner surface of the pipe and the pipe is relatively moved
  • a step a signal analysis step for calculating a path until the echo signal from the inner surface is received based on the held wave
  • the defect detection step is a portion where the path is less than a predetermined path threshold or a change rate of the path is more than a predetermined path change rate threshold. It is determined that there is a defect, and it is determined that there is no defect in a portion that does not satisfy the condition.
  • the signal analysis step further calculates a height of an echo signal from the inner surface based on the held waveform data, and detects the defect.
  • the process determines that there is a defect in a portion that satisfies the condition that the path is less than or equal to a predetermined path threshold, or the change rate of the path is greater than or equal to a predetermined path change rate threshold and the height is less than or equal to a predetermined height threshold, It is determined that there is no defect in a portion that does not satisfy the condition.
  • the signal analysis step further calculates a height of an echo signal from the inner surface based on the held waveform data, and detects the defect.
  • the step includes setting a reference position at a position where the path is less than or equal to a predetermined path threshold, or a change rate of the path is greater than or equal to a predetermined path change rate threshold and the path change rate is greater than or equal to a predetermined path change rate threshold. Determining that there is a defect in a part that satisfies the condition that the height within a search range preset for a position satisfies a predetermined height threshold value or less, and determining that there is no defect in a part that does not satisfy the condition Features.
  • the signal analysis step analyzes a noise level of a noise component in a portion where there is no echo signal based on the held waveform data, and the analysis result A threshold for echo signal detection is determined based on the threshold, and the path is calculated by detecting the echo signal based on the determined threshold.
  • FIG. 1 is a schematic diagram showing a configuration of an ultrasonic flaw detector according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an ultrasonic flaw detection processing procedure by the processing apparatus of the first embodiment.
  • FIG. 3 is a diagram illustrating an example of ultrasonic data stored in the waveform memory.
  • FIG. 4 is a diagram showing the beam path length, the beam path length change rate, and the defect detection result obtained based on the ultrasonic data shown in FIG.
  • FIG. 5 is a diagram illustrating an example of the B scope in the vicinity of the bottom surface echo in the defect portion.
  • FIG. 6 is a flowchart showing an ultrasonic flaw detection processing procedure by the processing apparatus of the second embodiment.
  • FIG. 1 is a schematic diagram showing a configuration of an ultrasonic flaw detector according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an ultrasonic flaw detection processing procedure by the processing apparatus of the first embodiment.
  • FIG. 7 is a diagram showing the echo height, beam path length, beam path length change rate, and defect detection result obtained in the second embodiment based on the ultrasound data shown in FIG.
  • FIG. 8 is a flowchart showing an ultrasonic flaw detection processing procedure by the processing apparatus according to the third embodiment.
  • FIG. 9 is a diagram showing an example of ultrasonic data to which the third embodiment is applied.
  • FIG. 10 is an explanatory diagram for explaining threshold values for detecting bottom surface echoes according to the third embodiment.
  • FIG. 11 is a diagram showing a change in the beam path length change rate with respect to the defect when the threshold shown in FIG. 10 is changed.
  • FIG. 12 is a schematic diagram showing a state of ultrasonic flaw detection with respect to a wrap-like defect.
  • FIG. 13 is a flowchart showing an ultrasonic flaw detection processing procedure by the processing apparatus according to the fourth embodiment.
  • FIG. 14 is a diagram showing a detection state of a wrap-like defect according to the fourth embodiment.
  • FIG. 15 is a diagram showing an example of a tube material manufacturing method having an inspection process to which the ultrasonic flaw detection methods of Embodiments 1 to 4 are applied.
  • FIG. 1 is a schematic diagram showing a configuration of an ultrasonic flaw detector according to Embodiment 1 of the present invention.
  • the defect BW which exists in the inner surface B of the steel pipe 1 as a metal pipe material which is a test object is detected.
  • the defect BW includes a dent defect due to foreign matter biting during rolling and a shallow wrap-like defect.
  • an ultrasonic probe 2 for transmitting and receiving ultrasonic signals is provided in the vicinity of the outer surface S of the steel pipe 1, an ultrasonic probe 2 for transmitting and receiving ultrasonic signals is provided.
  • the steel pipe 1 and the ultrasonic probe 2 relatively move around the steel pipe 1 in a spiral shape. This relative movement may be performed by fixing the ultrasonic probe 2 and rotating the steel pipe 1, or fixing the steel pipe 1 and rotating the ultrasonic probe 2 around the steel pipe 1. Alternatively, both the steel pipe 1 and the ultrasonic probe 2 may be moved.
  • the ultrasonic control device 3 controls transmission / reception of ultrasonic signals by the ultrasonic probe 2 and outputs ultrasonic signals received at a predetermined pitch to the A / D converter 4.
  • the A / D conversion unit 4 converts the received ultrasonic signal, which is an analog signal, into a digital signal and outputs the digital signal to the processing device 10.
  • the analog ultrasonic signal is a received RF signal or a signal after detection by the ultrasonic control device 3, and the horizontal axis is time (distance) information and the vertical axis is signal amplitude information.
  • a scope data The A / D converter 4 has a sampling frequency and resolution sufficient to sample the A scope data.
  • the processing apparatus 10 includes a waveform memory 11, a signal analysis unit 12, a defect detection unit 13, an input / output unit 14, and a control unit 15.
  • the waveform memory 11 holds the A scope data in a predetermined section including the entire length of the steel pipe 1 or a specific range as B scope data under the control of the control unit 15 (see FIG. 3).
  • the B scope data is drawn as a tomographic image in which the horizontal axis is the azimuth (movement distance) and the vertical axis is the distance in the transmission / reception direction of the ultrasonic signal. Therefore, the waveform memory has a capacity capable of holding the B scope data in the entire length of the steel pipe 1 or in a predetermined section.
  • the waveform memory 11 needs to have a memory capacity capable of storing 250 ⁇ 10,000 two-dimensional data.
  • the control unit 15 acquires ultrasonic data (B scope data) of a predetermined section input from the A / D conversion unit 4 and sequentially stores it in the waveform memory 11 (step S101).
  • the signal analysis unit 12 calculates the beam path of each pulse waveform from the ultrasonic data stored in the waveform memory 11 (step S102).
  • the beam path length is a distance obtained from the time from reception of the surface echo ES reflected by the outer surface S of the steel pipe 1 to reception of the bottom echo EB reflected by the inner surface B of the steel pipe 1 (FIG. 1, see FIG.
  • the transmission pulse generation position generation time
  • the path may be obtained as the time until EB is received.
  • the obtained path length of each pulse is as shown in FIG.
  • the detection position of the bottom echo EB may be a peak position of the bottom echo or a position that crosses a predetermined threshold.
  • the signal analysis unit 12 calculates the change amount of the beam path, that is, the beam path change rate with respect to the relative movement amount of the steel pipe 1 and the ultrasonic probe 2 (step S103).
  • the beam path length change rate can be obtained as the following equation (1).
  • Beam path length change rate (beam path length—beam path length before 1 pulse) / movement amount of 1 pulse (1)
  • the obtained beam path length change rate is as shown in FIG.
  • the defect detection unit 13 has a beam path length equal to or less than a threshold DB (see FIG. 7E), or an absolute value of the beam path length change rate is equal to or more than a threshold DC (see FIG. 7D). It is determined whether or not there is a part (step S104). If there is a location where the beam path is less than or equal to the threshold DB or the absolute value of the rate of change of the beam path is greater than or equal to the threshold DC (step S104, Yes), it is determined that a location (position) that satisfies this condition is defective. (Step S105).
  • step S104 if there is no portion where the beam path length is equal to or less than the threshold DB or the absolute value of the beam path length change rate is equal to or greater than the threshold DC (step S104, No), it is determined that there is no defect in the predetermined section (step S106) .
  • the defect detection unit 13 determines whether or not there is a next predetermined section (step S107). If there is a next predetermined section (step S107, Yes), the process proceeds to step S101 and the above-described processing. Is performed for the next predetermined section, and when there is no next predetermined section (step S107, No), this processing is terminated.
  • the input / output unit 14 outputs the detection result of the defect detection unit 13 and inputs various operations necessary for the processing apparatus 10.
  • the determination as to whether or not the beam path length is equal to or less than the threshold value DB is suitable for detecting a thickness defect of the steel pipe 1, and the determination as to whether or not the absolute value of the beam path length change rate is equal to or greater than the threshold value DC. It is suitable for detecting a portion having a steep wall thickness variation. By using such a beam path length and a beam path length change rate, it is possible to accurately detect a dent and a wrap-shaped shallow defect due to foreign matter biting during rolling.
  • FIG. 4 shows the result of obtaining the beam path length and the beam path length change rate for the ultrasonic data stored in the waveform memory 11 shown in FIG.
  • FIG. 4 is a result of obtaining a measurement length of 500 mm as a predetermined section, and determination is made that a defect exists in the areas E1 and E2.
  • FIG. 4B defects having a depth of 0.4 mm or more exist in the regions E1 and E2.
  • 4A shows a plan view of the defect
  • FIG. 4B shows a cross-sectional view of the steel pipe 1.
  • FIG. 4C shows the echo height which is the maximum amplitude value of the bottom echo EB for reference.
  • the defect detection process is performed by adding the echo height to the determination process of the beam path length change rate in the process of the first embodiment.
  • the threshold value DC of the absolute value of the change rate of the beam path length is made stricter (smaller) and set to the threshold value DC2.
  • the control unit 15 acquires ultrasonic data (B scope data) of a predetermined section input from the A / D conversion unit 4 and sequentially stores it in the waveform memory 11 (step S201). ).
  • the signal analysis unit 12 calculates the echo height of the bottom surface echo EB within the predetermined section from the ultrasonic data stored in the waveform memory 11 (step S202). Further, as in the first embodiment, the beam path length in the predetermined section is calculated in step S203, and the beam path length change rate in the predetermined section is calculated in step S204.
  • the defect detection unit 13 has a beam path length equal to or less than the threshold DB (see FIG. 7D), or the absolute value of the beam path length change rate is equal to or greater than the threshold DC2 (see FIG. 7E). Further, it is determined whether or not there is a portion where the echo height is equal to or less than the threshold value DA (see FIG. 7C) (step S205).
  • the threshold value DC2 is a value smaller than the threshold value DC.
  • Step S205 If there is a spot where the beam path is less than or equal to the threshold DB or the absolute value of the beam path change rate is greater than or equal to the threshold DC2 and the echo height is less than or equal to the threshold DA (step S205, Yes), the spot (position) that satisfies this condition Is determined to have a defect (step S206).
  • the beam path length is equal to or less than the threshold DB or there is no portion where the absolute value of the beam path distance change rate is equal to or greater than the threshold DC2 and the echo height is equal to or less than the threshold DA (step S205, No)
  • Step S207 In the B scope data shown in FIG. 7, it is determined that there are defects in two places of the areas E11 and E12.
  • step S208 determines whether or not there is a next predetermined section (step S208), and when there is a next predetermined section (step S208, Yes), the process proceeds to step S201 and is described above. Is performed for the next predetermined section, and when there is no next predetermined section (step S208, No), this processing is terminated.
  • the areas E11 and E12 shown in FIG. 7 detect defects in a wider range than the areas E1 and E2 shown in FIG.
  • the detection position of the bottom echo EB may be either the peak position of the bottom echo EB or a position that crosses a predetermined threshold.
  • the detection position of the bottom echo EB is weak.
  • the predetermined threshold is small.
  • the threshold value for detecting the bottom echo EB is set to a value slightly exceeding the maximum noise value.
  • the control unit 15 acquires ultrasonic data (B scope data) of a predetermined section input from the A / D conversion unit 4 and sequentially stores it in the waveform memory 11 (step S301). ).
  • the noise level is analyzed from the ultrasonic data stored in the waveform memory 11 (step S302). Specifically, the maximum value of noise is obtained.
  • This noise level analysis target is an area where there is no echo signal, and is, for example, ultrasonic data of the area EN shown in FIG.
  • a threshold value for detecting the bottom echo is determined (step S303).
  • the normal threshold is a relatively large threshold L1 as shown in FIG. 10, but the threshold determined here is determined as a threshold L2 slightly exceeding the noise level LN.
  • the bottom echo is detected at the point P1 when the normal threshold value L1 is detected, and is detected at the point P2 slightly exceeding the noise level when the threshold value is L2. As a result, even a weak bottom echo can be detected.
  • the signal analysis unit 12 calculates the echo height of the bottom surface echo EB within a predetermined section from the ultrasonic data stored in the waveform memory 11 as in the second embodiment (step S304). Further, as in the second embodiment, the beam path length in the predetermined section is calculated in step S305, and the beam path length change rate in the predetermined section is calculated in step S306.
  • the defect detection unit 13 determines whether there is a portion where the beam path is equal to or less than the threshold DB, or the absolute value of the beam path change rate is equal to or greater than the threshold DC2 and the echo height is equal to or less than the threshold DA. Is determined (step S307).
  • the threshold value DC2 is a value smaller than the threshold value DC.
  • step S308 if the beam path length is equal to or less than the threshold DB, or there is no portion where the absolute value of the beam path distance change rate is equal to or greater than the threshold DC2 and the echo height is equal to or less than the threshold DA (step S307, No), there is no defect in this predetermined section. Is determined (step S309).
  • step S310 determines whether or not there is a next predetermined section (step S310), and when there is a next predetermined section (step S310, Yes), the process proceeds to step S301 and is described above. Is performed for the next predetermined section, and when there is no next predetermined section (step S310, No), this processing is terminated.
  • the bottom surface echo since the bottom surface echo is detected with a small threshold L2 slightly exceeding this noise level in consideration of the noise level, the bottom surface echo can detect a minute defect.
  • the bottom echoes at the defects 31 and 32 are small, but a small threshold L2 is used so that the bottom echoes at the defects 31 and 32 can be detected.
  • the defects 31 and 32 as shown in the beam path change rate of FIG. Defects 31 and 32 are detected in areas E31 and E32 corresponding to 32.
  • the defects 31 and 32 are artificial defects having a 5% depth rounded by ⁇ 6 mm and ⁇ 4.5 mm, respectively, by electric discharge machining.
  • the healthy portion shown in FIG. 9 there is a portion where the echo height of the bottom surface echo is gently increased, but as shown in FIG. 11, the beam path length change rate of the portion corresponding to this healthy portion is large. No change is seen and it is determined that it is not a defect.
  • defect detection is performed by taking the logical product of the beam path length change rate and the echo height.
  • the defect may not be detected even if the methods of the second and third embodiments are applied. For example, as shown in FIG. 12, when a wrap-like defect BW1 such as a lap wrinkle or a fog exists on the inner surface of the steel pipe 1, the position where the echo height is equal to or less than the threshold value DA and the absolute value of the beam path change rate.
  • the wrap-like defect BW1 may not be detected as a defect without satisfying the defect detection condition.
  • the detection position is set in advance as a reference point.
  • the defect detection process is performed in consideration of the echo height within the search range.
  • the control unit 15 acquires ultrasonic data (B scope data) of a predetermined section input from the A / D conversion unit 4 and sequentially stores it in the waveform memory 11 (step S401). ).
  • the noise level is analyzed from the ultrasonic data stored in the waveform memory 11 as in the third embodiment (step S402). Further, a threshold value for detecting the bottom echo is determined based on the analyzed noise level (step S403).
  • the signal analysis unit 12 calculates the echo height of the bottom surface echo EB within a predetermined section from the ultrasonic data stored in the waveform memory 11 as in the second embodiment (step S404). Further, as in the second embodiment, the beam path length in the predetermined section is calculated in step S405, and the beam path length change rate in the predetermined section is calculated in step S406.
  • the defect detection unit 13 is set in advance with the beam path being equal to or less than the threshold DB or the absolute value of the beam path change rate being equal to or greater than the threshold DC2 and greater than or equal to the threshold DC2. It is determined whether or not there is a location where the echo height within the search range W is equal to or less than the threshold value DA (step S407).
  • the beam path length is equal to or less than the threshold value DB, or the absolute value of the beam path length change rate is equal to or greater than the threshold value DC. It is determined whether or not there is a portion where the echo height within the preset search range W is equal to or less than the threshold value DA with a position equal to or greater than the threshold value DC as a reference point.
  • step S407 A position where the echo height within the preset search range W is equal to or less than the threshold value DA with a beam path length equal to or less than the threshold DB or a position where the absolute value of the beam path change rate is equal to or greater than the threshold value DC2 and the threshold value DC2 or more. If there is any (step S407, Yes), it is determined that there is a defect at a location (position) that satisfies this condition (step S408). On the other hand, the echo height within the preset search range W is less than or equal to the threshold value DA with the beam path length being equal to or less than the threshold value DB or the absolute value of the beam path change rate being equal to or greater than the threshold value DC2 and the threshold value DC2 or more. When there is no part (step S407, No), it is determined that there is no defect in this predetermined section (step S409).
  • step S410 determines whether or not there is a next predetermined section. If there is a next predetermined section (step S410, Yes), the defect detection unit 13 proceeds to step S401 and performs the processing described above. Is performed for the next predetermined section, and when there is no next predetermined section (step S410, No), this processing is terminated.
  • FIG. 14 is a diagram illustrating an example of defect detection to which the fourth embodiment is applied.
  • the horizontal axis represents the waveform No. in scanning order. Is shown.
  • the beam path length change rate shown in FIG. Although the threshold value DC2 is greater than or equal to DC2 at 371, the echo height shown in FIG. Since it is not less than or equal to the threshold value DA at 371, it is not detected as a defect. Further, the echo height shown in FIG. The beam path length change rate shown in FIG. Since it is not more than threshold DC2 in 370, it is not detected as a defect.
  • the waveform no is not more than threshold DC2 in 370.
  • the echo height is searched with respect to this reference point as two search points before and after in the scanning direction, that is, a total of five points as a preset search range W. Since the echo heights of 370 and 369 are below the threshold value DA, this waveform No. It is determined that 371 has a defect.
  • the beam path is equal to or less than the threshold DB, or the absolute value of the beam path change rate is equal to or greater than the threshold DC2, and the position within the threshold DC or DC2 is set as a reference point within the preset search range W. Since a defect is determined when there is a portion where the echo height is equal to or less than the threshold value DA, the position where the echo height is equal to or less than the threshold value DA and the absolute value of the beam path change rate are the threshold value DC or the threshold value DC2. It is possible to detect with high accuracy a defect such as a wrap-like defect that may slightly shift from the above position.
  • the signal analysis unit 12 calculates the beam path length change rate by the equation (1).
  • the beam path length in a predetermined section is defined as a one-dimensional signal. Therefore, a removal signal obtained by removing a steep change through the one-dimensional signal through the low-pass filter may be obtained, and a value obtained by subtracting the removal signal from the one-dimensional signal (beam path signal) may be calculated as the beam path change rate.
  • a high pass filter may be used instead of the low pass filter. In this case, the signal itself that has passed through the high-pass filter is calculated as the beam path change rate.
  • the ultrasonic flaw detection method described in the first to fourth embodiments is applied to a method for manufacturing a metal pipe material such as the steel pipe 1.
  • the present invention is applied to an inspection process in the method of manufacturing a seamless steel pipe (seamless steel pipe) shown in FIG.
  • the seamless steel pipe is, first, round steel pieces such as billets are heated as a material in a rotary hearth type heating furnace (heating process: ST1), and then formed into a hollow shell with a piercer. (Perforation process: ST2).
  • the hollow shell is then rolled by a mandrel mill, and the outer diameter and thickness are reduced to form a long blank (rolling step: ST3).
  • reheating process: ST4 reheating process: ST4
  • formed into finished dimensions with a stretch reducer hot rolling is completed through cooling, correction, and cutting
  • ST5 reheating process: ST5
  • a seamless steel pipe which is a final finished product is obtained through a refining step (ST6) and an inspection step (ST7).
  • this inspection process an overview inspection, a thickness inspection, a wrinkle inspection, and the like are performed, and the ultrasonic flaw detection method described in the first to fourth embodiments is applied to this wrinkle inspection.
  • defect detection processing is performed after acquiring ultrasonic data for every predetermined section of, for example, 500 mm.
  • a predetermined number of ultrasonic data for example, scanning You may make it perform the near real-time detection process which performs a defect detection process for every ultrasonic data of 5 points
  • defect detection may be performed using the 5 points of ultrasonic data, or every time 1 point of ultrasonic data is acquired, 1 point is shifted.
  • Defect detection may be performed using five points of ultrasonic data.
  • Embodiments 1 to 4 and Modifications 1 to 3 described above can be combined as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 鋼管などの金属の管材の内側表面上に生じた凹み欠陥や、ラップ状の浅い欠陥であっても検出することができる超音波探傷方法、超音波探傷装置、および管材製造方法を提供するため、鋼管1の内側表面Bに向けて超音波信号を発生する超音波探触子2と鋼管1とを相対的に移動した時のエコー信号の波形データを取得して保持する波形メモリ11と、保持された波形データをもとに内側表面Bからのエコー信号を受信するまでの路程と該路程の変化率とを算出する信号解析部12と、前記路程および前記路程の変化率をもとに内側表面Bの欠陥BWを検出する欠陥検出部13と、を備える。

Description

超音波探傷方法、超音波探傷装置、および管材製造方法
 本発明は、超音波を用いて金属の管材などの被検体の内側表面の欠陥を検出する超音波探傷方法、超音波探傷装置、および管材製造方法に関する。
 従来から、鋼管、棒鋼、形鋼、厚板などの金属の鋼材の製造中に生じた欠陥を検出する品質保証手段として、超音波を用いる超音波探傷法が広く適用されている。たとえば、鋼管などの金属の管材に対しては、通常、斜角探傷と垂直探傷とが用いられる。斜角探傷は、主に金属の管材の内外表面に生じた割れ状の欠陥の検出に適用され、管軸方向あるいは周方向に平行な欠陥を検出しやすいように、超音波のビーム方向が管軸方向あるいは周方向のそれぞれに2方向、すなわち計4方向に、斜角探触子が配置される。一方、垂直探傷は、金属の管材内部に含まれる介在物の検出と肉厚測定とに適用される。このような超音波探傷法を用いて、鋼管あるいは探触子を回転させながら、スパイラル状に被検体の全長全面の検査が行われる。なお、従来の超音波探傷法では、1回の超音波送受信毎に、その都度、欠陥エコーの有無を判定するという欠陥検出を行っている。
 しかし、上述した金属の管材に対する従来の超音波探傷法では、圧延時の異物噛み込みによる凹み欠陥や、ラップ状の浅い欠陥については、その反射面が断面方向と長手方向との両面に対して角度をもっているため、斜角探傷や垂直探傷のいずれの場合も欠陥エコー信号が弱いという問題があった。また、このような凹み欠陥やラップ状の浅い欠陥は、深さが浅いことから、垂直探傷では、底面エコーの分離が容易ではない。この結果、斜角探傷や垂直探傷では、圧延時の異物噛み込みによる凹み欠陥や、ラップ状の浅い欠陥を検出することが困難であった。なお、金属の管材の外側表面に対しては、漏洩磁束探傷や渦流探傷の併用によって上述した欠陥を検出することが可能であるが、金属の管材の内側表面に対しては適切な検出手段がなく、目視検査に頼らざるを得なかった。
 ここで、特許文献1には、金属の管材の表面近傍の欠陥を超音波探傷法で検出するものが記載されている。この特許文献1では、移動しながら得た探傷信号を、底面エコーが揃うように位置調整して合成した2次元画像を作成し、この2次元画像から欠陥を抽出するようにしている。
特開2008-70325号公報
 ところで、欠陥の形状によっては、欠陥エコーがなく、底面エコー自体が変化することがある。この場合、上述した特許文献1に記載された超音波探傷法では、表面近傍の表面下の欠陥を検出するために、ビーム路程を底面エコーの検出位置で揃えた2次元画像を得ている。そして、この2次元画像では、底面エコーの検出位置を基準としていることから、金属の管材の内側表面にある欠陥を検出することができない。また、底面で入射された超音波が散乱して底面エコー自体が弱くなると、特許文献1のものを適用しようとしても、底面エコー自体の検出が難しいので、ビーム路程を底面エコーの検出位置で揃えることができないことになる。この結果、このような鋼管などの金属の管材の内側表面上の欠陥の検出は、目視検査に頼らざるを得なかった。
 本発明は、上記に鑑みてなされたものであって、鋼管などの金属の管材の内側表面上に生じた凹み欠陥や、ラップ状の浅い欠陥であっても検出することができる超音波探傷方法、超音波探傷装置、および管材製造方法を提供することを目的とする。
 上記課題を解決し、目的を達成するために、本発明にかかる超音波探傷方法は、超音波を用いて金属の管材の内側表面の欠陥を検出する超音波探傷方法であって、前記内側表面に向けて超音波信号を発生する超音波探触子と前記金属の管材とを相対的に移動した時のエコー信号の波形データを取得して保持する波形保持ステップと、前記保持された波形データをもとに前記内側表面からのエコー信号を受信するまでの路程と該路程の変化率とを算出する信号解析ステップと、前記路程および前記路程の変化率をもとに前記内側表面の欠陥を検出する欠陥検出ステップと、を含むことを特徴とする。
 また、本発明にかかる超音波探傷方法は、上記の発明において、前記欠陥検出ステップは、前記路程が所定の路程閾値以下あるいは前記路程の変化率が所定の路程変化率閾値以上の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする。
 また、本発明にかかる超音波探傷方法は、上記の発明において、前記信号解析ステップは、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、前記欠陥検出ステップは、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上かつ前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする。
 また、本発明にかかる超音波探傷方法は、上記の発明において、前記信号解析ステップは、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、前記欠陥検出ステップは、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上、かつ前記路程の変化率が所定の路程変化率閾値以上の位置を基準位置として、該基準位置に対して予め設定された探索範囲内の前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする。
 また、本発明にかかる超音波探傷方法は、上記の発明において、前記信号解析ステップは、前記保持された波形データをもとにエコー信号がない部分におけるノイズ成分のノイズレベルを解析し、該解析結果をもとにエコー信号検出の閾値を決定し、該決定された閾値をもとに前記エコー信号を検出して前記路程を算出することを特徴とする。
 また、本発明にかかる超音波探傷装置は、超音波を用いて金属の管材の内側表面の欠陥を検出する超音波探傷装置であって、前記内側表面に向けて超音波信号を発生する超音波探触子と前記金属の管材とを相対的に移動した時のエコー信号の波形データを取得して保持する波形保持部と、前記保持された波形データをもとに前記内側表面からのエコー信号を受信するまでの路程と該路程の変化率とを算出する信号解析部と、前記路程および前記路程の変化率をもとに前記内側表面の欠陥を検出する欠陥検出部と、を備えたことを特徴とする。
 また、本発明にかかる超音波探傷装置は、上記の発明において、前記欠陥検出部は、前記路程が所定の路程閾値以下あるいは前記路程の変化率が所定の路程変化率閾値以上の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする。
 また、本発明にかかる超音波探傷装置は、上記の発明において、前記信号解析部は、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、前記欠陥検出部は、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上かつ前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする。
 また、本発明にかかる超音波探傷装置は、上記の発明において、前記信号解析部は、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、前記欠陥検出部は、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上、かつ前記路程の変化率が所定の路程変化率閾値以上の位置を基準位置として、該基準位置に対して予め設定された探索範囲内の前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする。
 また、本発明にかかる超音波探傷装置は、上記の発明において、前記信号解析部は、前記保持された波形データをもとにエコー信号がない部分におけるノイズ成分のノイズレベルを解析し、該解析結果をもとにエコー信号検出の閾値を決定し、該決定された閾値をもとに前記エコー信号を検出して前記路程を算出することを特徴とする。
 また、本発明にかかる管材製造方法は、金属材料に対して、少なくとも加熱工程、穿孔工程、圧延工程、再加熱工程、成型工程、および検査工程を施して管材を製造する管材製造方法であって、前記検査工程は、前記管材の内側表面に向けて超音波信号を発生する超音波探触子と前記管材とを相対的に移動した時のエコー信号の波形データを取得して保持する波形保持工程と、前記保持された波形データをもとに前記内側表面からのエコー信号を受信するまでの路程と該路程の変化率とを算出する信号解析工程と、前記路程および前記路程の変化率をもとに前記内側表面の欠陥を検出する欠陥検出工程と、を含むことを特徴とする。
 また、本発明にかかる管材製造方法は、上記の発明において、前記欠陥検出工程は、前記路程が所定の路程閾値以下あるいは前記路程の変化率が所定の路程変化率閾値以上の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする。
 また、本発明にかかる管材製造方法は、上記の発明において、前記信号解析工程は、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、前記欠陥検出工程は、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上かつ前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする。
 また、本発明にかかる管材製造方法は、上記の発明において、前記信号解析工程は、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、前記欠陥検出工程は、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上、かつ前記路程の変化率が所定の路程変化率閾値以上の位置を基準位置として、該基準位置に対して予め設定された探索範囲内の前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする。
 また、本発明にかかる管材製造方法は、上記の発明において、前記信号解析工程は、前記保持された波形データをもとにエコー信号がない部分におけるノイズ成分のノイズレベルを解析し、該解析結果をもとにエコー信号検出の閾値を決定し、該決定された閾値をもとに前記エコー信号を検出して前記路程を算出することを特徴とする。
 本発明によれば、金属の管材と超音波探触子とを相対的に移動した時のエコー信号の波形データをもとに鋼材の内側表面からのエコー信号を受信するまでの路程と該路程の変化率とを算出し、この算出した前記路程および前記路程の変化率をもとに前記内側表面の欠陥を検出するようにしているので、鋼管などの金属の管材の内部表面上に生じた凹み欠陥や、ラップ状の浅い欠陥であっても検出することができる。
図1は、本発明の実施の形態1である超音波探傷装置の構成を示す模式図である。 図2は、この実施の形態1の処理装置による超音波探傷処理手順を示すフローチャートである。 図3は、波形メモリに格納される超音波データの一例を示す図である。 図4は、図3に示した超音波データをもとに求めたビーム路程、ビーム路程変化率、および欠陥検出結果を示す図である。 図5は、欠陥部における底面エコー近傍のBスコープの一例を示す図である。 図6は、この実施の形態2の処理装置による超音波探傷処理手順を示すフローチャートである。 図7は、図3に示した超音波データをもとに本実施の形態2で求めたエコー高さ、ビーム路程、ビーム路程変化率、および欠陥検出結果を示す図である。 図8は、この実施の形態3の処理装置による超音波探傷処理手順を示すフローチャートである。 図9は、この実施の形態3が適用される超音波データの一例を示す図である。 図10は、この実施の形態3による底面エコーを検出するための閾値を説明する説明図である。 図11は、図10に示した閾値を変えた場合の欠陥に対するビーム路程変化率の変化を示す図である。 図12は、ラップ状欠陥に対する超音波探傷の状態を示す模式図である。 図13は、この実施の形態4の処理装置による超音波探傷処理手順を示すフローチャートである。 図14は、この実施の形態4によるラップ状欠陥の検出状態を示す図である。 図15は、この実施の形態1~4の超音波探傷方法が適用された検査工程を有する管材製造方法の一例を示す図である。
 以下、図面を参照して、本発明の実施の形態である超音波探傷方法、超音波探傷装置、および管材製造方法について説明する。
(実施の形態1)
 図1は、本発明の実施の形態1である超音波探傷装置の構成を示す模式図である。図1に示すように、この実施の形態1では、被検体である金属の管材としての鋼管1の内側表面Bに存在する欠陥BWを検出するものである。この欠陥BWは、圧延時の異物噛み込みによる凹み欠陥や、ラップ状の浅い欠陥を含む。鋼管1の外側表面S近傍には、超音波信号を送受信する超音波探触子2が設けられる。鋼管1と超音波探触子2とは、鋼管1の周りをスパイラル状に相対的に移動する。この相対的移動は、超音波探触子2を固定して鋼管1を回転移動させてもよいし、鋼管1を固定して超音波探触子2を鋼管1の周りに回転移動させてもよいし、鋼管1および超音波探触子2の双方を移動させてもよい。
 超音波制御装置3は、超音波探触子2による超音波信号の送受信を制御し、所定ピッチで受信した超音波信号をA/D変換部4に出力する。A/D変換部4は、受信したアナログ信号である超音波信号をデジタル信号に変換して処理装置10に出力する。ここで、アナログの超音波信号は、受信されたそのままのRF信号あるいは超音波制御装置3による検波後の信号であり、横軸を時間(距離)情報とし、縦軸を信号の振幅情報として描いたAスコープデータである。A/D変換部4は、このAスコープデータをサンプリングするのに十分なサンプリング周波数と分解能とをもたせている。
 処理装置10は、波形メモリ11、信号解析部12、欠陥検出部13、入出力部14、および制御部15を備える。波形メモリ11は、制御部15による制御のもと、鋼管1の全長または特定の範囲を含む所定区間におけるAスコープデータをBスコープデータとして保持する(図3参照)。Bスコープデータは、横軸を方位(移動距離)とし、縦軸を超音波信号の送受信方向の距離として描いたものであり、断層像として描かれる。したがって、波形メモリは、鋼管1の全長あるいは所定区間におけるBスコープデータを保持できる容量を有する。たとえば、厚さ20mmの鋼管10mを、5MHzの超音波で、ピッチ1mmで探傷を行う場合、サンプリング周波数は、25MHz(サンプリング周期=0.04μs)、A/D変換の時間は、厚さの1.5倍として10μsが必要であり、1波形に250点(10μs/0.04μs=250)計測し、全長で10,000パルス波形(スパイラル状でなく長手方向に直線状に検査した場合)となる。この場合、波形メモリ11は、250×10,000点の2次元データを格納できるメモリ容量をもたせる必要がある。
 ここで、図2に示したフローチャートを参照して、この実施の形態1の処理装置10による超音波探傷処理手順について説明する。まず、制御部15は、A/D変換部4から入力された所定区間の超音波データ(Bスコープデータ)を取得し、波形メモリ11に順次格納する(ステップS101)。
 信号解析部12は、波形メモリ11に格納された超音波データから、各パルス波形のビーム路程を算出する(ステップS102)。このビーム路程とは、鋼管1の外側表面Sで反射した表面エコーESを受信してから、鋼管1の内側表面Bで反射した底面エコーEBを受信するまでの時間から求められる距離である(図1,図3参照)。なお、超音波探触子2と鋼管1の外側表面Sとの距離が保持されている場合には、表面エコーESに替えて送信パルスの発生位置(発生時間)とし、この時間から、底面エコーEBを受信するまでの時間として路程を求めてもよい。この求められた各パルスの路程は、図4(d)に示すようになる。また、底面エコーEBの検出位置は、底面エコーのピーク位置であっても、所定の閾値を横切る位置であってもよい。
 つぎに、信号解析部12は、鋼管1と超音波探触子2との相対的移動量に対するビーム路程の変化量、すなわちビーム路程変化率を算出する(ステップS103)。たとえば、ビーム路程変化率は、次式(1)として求めることができる。
 ビーム路程変化率=(ビーム路程-1パルス前のビーム路程)/1パルスの移動量 …(1)
この求められたビーム路程変化率は、図4(e)に示すようになる。
 その後、欠陥検出部13は、図4に示すように、ビーム路程が閾値DB以下(図7(e)参照)、あるいはビーム路程変化率の絶対値が閾値DC以上(図7(d)参照)の箇所があるか否かを判断する(ステップS104)。ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC以上である箇所がある場合(ステップS104,Yes)には、この条件を満足する箇所(位置)に欠陥があると判定する(ステップS105)。一方、ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC以上である箇所がない場合(ステップS104,No)には、この所定区間に欠陥がないと判定する(ステップS106)。
 その後、欠陥検出部13は、次の所定区間があるか否かを判断し(ステップS107)、次の所定区間がある場合(ステップS107,Yes)には、ステップS101に移行して上述した処理を次の所定区間に対して行い、次の所定区間がない場合(ステップS107,No)には、本処理を終了する。なお、入出力部14は、欠陥検出部13の検出結果を出力するとともに、処理装置10に必要な各種操作入力を行うものである。
 ここで、ビーム路程が閾値DB以下であるか否かの判断は、鋼管1の肉厚不良を検出するのに適し、ビーム路程変化率の絶対値が閾値DC以上であるか否かの判断は、急峻な肉厚変動のある箇所を検出するのに適している。このようなビーム路程およびビーム路程変化率を用いると、圧延時の異物噛み込みによる凹みやラップ状の浅い欠陥を精度良く検出することができる。
 図4は、図3に示した波形メモリ11に格納された超音波データに対してビーム路程とビーム路程変化率とを求めた結果を示している。図4は、計測長500mmを所定区間として求めた結果であり、領域E1,E2に欠陥が存在するとした判定が行われる。実際、この領域E1,E2には、図4(b)に示すように、深さが0.4mm以上の欠陥が存在する。なお、図4(a)は、欠陥の平面図を示し、図4(b)は、鋼管1の断面図を示している。また、図4(c)は、参考のために、底面エコーEBの最大振幅値であるエコー高さを示している。
(実施の形態2)
 ところで、ビーム路程変化率は、一種の微分処理であるからノイズの影響で大きな値を出力してしまう虞がある。一方、欠陥部では、欠陥面が底面に対して傾いていることから、底面エコーEBの最大振幅値であるエコー高さが急激に低下する。たとえば、図5に示すように、底面エコーEBは、欠陥がある部分でなくなるとともに、微弱なエコー21が底面エコーEBよりも手前(路程の短い方向(図5では上方向))に現れている。したがって、エコー高さを加味して欠陥検出を行うことが好ましいが、エコー高さは、超音波接触子2と鋼管1との接触媒質の状況などによって、ばらつきが生じる。このため、ビーム路程変化率とエコー高さとの論理積をとることによって、両者の弱点を補い、欠陥の検出精度を向上させることが好ましい。この実施の形態2では、実施の形態1の処理におけるビーム路程変化率の判断処理にエコー高さを加味して欠陥検出処理を行うようにしている。この際、ビーム路程変化率の絶対値の閾値DCは、さらに厳しく(小さく)し、閾値DC2としている。
 ここで、図6に示したフローチャートを参照して、この実施の形態2の処理装置10による超音波探傷処理手順について説明する。まず、制御部15は、実施の形態1と同様に、A/D変換部4から入力された所定区間の超音波データ(Bスコープデータ)を取得し、波形メモリ11に順次格納する(ステップS201)。
 その後、信号解析部12は、波形メモリ11に格納された超音波データから、所定区間内の底面エコーEBのエコー高さを算出する(ステップS202)。さらに、実施の形態1と同様に、ステップS203で所定区間内のビーム路程を算出し、ステップS204で所定区間内のビーム路程変化率を算出する。
 その後、欠陥検出部13は、図7に示すように、ビーム路程が閾値DB以下(図7(d)参照)、あるいはビーム路程変化率の絶対値が閾値DC2以上(図7(e)参照)かつエコー高さが閾値DA以下(図7(c)参照)の箇所があるか否かを判断する(ステップS205)。ここで、上述したように、閾値DC2は、閾値DCよりも小さい値である。ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC2以上かつエコー高さが閾値DA以下の箇所がある場合(ステップS205,Yes)には、この条件を満足する箇所(位置)に欠陥があると判定する(ステップS206)。一方、ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC2以上かつエコー高さが閾値DA以下の箇所がない場合(ステップS205,No)には、この所定区間に欠陥がないと判定する(ステップS207)。図7に示すBスコープデータでは、領域E11,E12の2箇所に欠陥があると判定している。
 その後、欠陥検出部13は、次の所定区間があるか否かを判断し(ステップS208)、次の所定区間がある場合(ステップS208,Yes)には、ステップS201に移行して上述した処理を次の所定区間に対して行い、次の所定区間がない場合(ステップS208,No)には、本処理を終了する。
 この実施の形態2では、ビーム路程変化率のみでなく、ビーム路程変化率とエコー高さとの論理積をとっているので、さらに精度の高い欠陥検出を行うことができる。具体的に、図7に示した領域E11,E12は、図4に示した領域E1,E2よりも広い範囲で欠陥を検出している。
(実施の形態3)
 ところで、上述した実施の形態1,2において、底面エコーEBの検出位置は、底面エコーEBのピーク位置あるいは所定の閾値を横切る位置のいずれでもよいとしたが、底面エコーEBの検出位置は、微弱な底面エコーであっても検出できるようにするため、所定の閾値は小さい方が好ましい。このため、実施の形態3では、底面エコーEBを検出する閾値をノイズの最大値をわずかに超えた値としている。
 ここで、図8に示したフローチャートを参照して、この実施の形態3の処理装置10による超音波探傷処理手順について説明する。まず、制御部15は、実施の形態2と同様に、A/D変換部4から入力された所定区間の超音波データ(Bスコープデータ)を取得し、波形メモリ11に順次格納する(ステップS301)。
 その後、波形メモリ11に格納された超音波データから、ノイズレベルを解析する(ステップS302)。具体的には、ノイズの最大値を求める。このノイズレベルの解析対象は、エコー信号がない領域であり、たとえば、図9に示す領域ENの超音波データである。その後、解析されたノイズレベルをもとに、底面エコーを検出するための閾値を決定する(ステップS303)。通常の閾値は、図10に示すように比較的大きな閾値L1であるが、ここで決定される閾値は、ノイズレベルLNをわずかに超える閾値L2として決定される。図10に示すように、底面エコーに対しては、通常の閾値L1のときは点P1で検出され、閾値L2のときはノイズレベルをわずかに超えた点P2で検出される。この結果、微弱な底面エコーであっても検出することができる。
 その後、信号解析部12は、実施の形態2と同様に、波形メモリ11に格納された超音波データから、所定区間内の底面エコーEBのエコー高さを算出する(ステップS304)。さらに、実施の形態2と同様に、ステップS305で所定区間内のビーム路程を算出し、ステップS306で所定区間内のビーム路程変化率を算出する。
 その後、欠陥検出部13は、実施の形態2と同様に、ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC2以上かつエコー高さが閾値DA以下の箇所があるか否かを判断する(ステップS307)。ここで、上述したように、閾値DC2は、閾値DCよりも小さい値である。ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC2以上かつエコー高さが閾値DA以下の箇所がある場合(ステップS307,Yes)には、この条件を満足する箇所(位置)に欠陥があると判定する(ステップS308)。一方、ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC2以上かつエコー高さが閾値DA以下の箇所がない場合(ステップS307,No)には、この所定区間に欠陥がないと判定する(ステップS309)。
 その後、欠陥検出部13は、次の所定区間があるか否かを判断し(ステップS310)、次の所定区間がある場合(ステップS310,Yes)には、ステップS301に移行して上述した処理を次の所定区間に対して行い、次の所定区間がない場合(ステップS310,No)には、本処理を終了する。
 この実施の形態3では、ノイズレベルを考慮し、このノイズレベルをわずかに超える小さな閾値L2で底面エコーを検出するようにしているため、底面エコーが微小な欠陥を検出することができる。
 たとえば、図9に示した超音波データにおいて、欠陥31,32での底面エコーは小さいが、小さい閾値L2を用いて、このような欠陥31,32での底面エコーを検出できるようにしているため、図11(b)のビーム路程変化率に示すように大きな閾値L1では検出できなかった欠陥31,32であっても、図11(d)のビーム路程変化率に示すように、欠陥31,32に対応する領域E31,E32で欠陥31,32を検出している。なお、欠陥31,32は、それぞれ放電加工によってφ6mmおよびφ4.5mmの丸みを帯びた5%深さをもった人工欠陥である。また、図9に示した健全部では、底面エコーのエコー高さがゆるやかに高くなっている部分があるが、図11に示すように、この健全部に対応する部分のビーム路程変化率に大きな変化はみられず、欠陥でないと判別している。
(実施の形態4)
 上述した実施の形態2,3では、ビーム路程変化率とエコー高さとの論理積をとって欠陥検出を行っている。ここで、鋼管1の内側表面上に生じた凹み欠陥やラップ状欠陥の影響によっては実施の形態2,3の方法を適用しても欠陥を検出できない場合がある。たとえば、図12に示すように、鋼管1の内側表面に、ラップ疵やカブレなどのラップ状欠陥BW1が存在する場合、エコー高さが閾値DA以下となる位置と、ビーム路程変化率の絶対値が閾値DCまたはDC2以上となる位置とが、わずかにずれ、ビーム路程変化率とエコー高さとの論理積をとっても欠陥として判定されない場合があった。具体的に、図12では、超音波ビームSB1が照射されるラップ状欠陥BW1の先端側では表面が斜めになっているため、エコー高さが低くなり、一方、超音波ビームSB3が照射されるラップ状欠陥BW1基部側では、鋼管1の肉厚が大きく変化し、ビーム路程変化率が大きくなる。すなわち、エコー高さが閾値DA以下となる位置(超音波ビームSB1の照射位置)と、ビーム路程変化率の絶対値が閾値DCまたはDC2以上となる位置(超音波ビームSB3の照射位置)とが異なるため、欠陥検出の条件を満足せずに、ラップ状欠陥BW1を欠陥として検出できない場合がある。
 このため、この実施の形態4では、実施の形態2,3の処理において、ビーム路程変化率の絶対値が閾値DCまたはDC2以上となった場合に、この検出位置を基準点として、予め設定された探索範囲内でのエコー高さを加味して欠陥検出処理を行うようにしている。
 ここで、図13に示したフローチャートを参照して、この実施の形態4の処理装置10による超音波探傷処理手順について説明する。まず、制御部15は、実施の形態2と同様に、A/D変換部4から入力された所定区間の超音波データ(Bスコープデータ)を取得し、波形メモリ11に順次格納する(ステップS401)。
 その後、波形メモリ11に格納された超音波データから、実施の形態3と同様に、ノイズレベルを解析する(ステップS402)。さらに、解析されたノイズレベルをもとに、底面エコーを検出するための閾値を決定する(ステップS403)。その後、信号解析部12は、実施の形態2と同様に、波形メモリ11に格納された超音波データから、所定区間内の底面エコーEBのエコー高さを算出する(ステップS404)。さらに、実施の形態2と同様に、ステップS405で所定区間内のビーム路程を算出し、ステップS406で所定区間内のビーム路程変化率を算出する。
 その後、欠陥検出部13は、実施の形態2と同様に、ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC2以上かつ該閾値DC2以上の位置を基準点として、予め設定された探索範囲W内のエコー高さが閾値DA以下の箇所があるか否かを判断する(ステップS407)。なお、実施の形態2と同様に、ステップS402のノイズレベルの解析処理を行わない場合には、ステップS407で、ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC以上かつ該閾値DC以上の位置を基準点として、予め設定された探索範囲W内のエコー高さが閾値DA以下の箇所があるか否かを判断する。
 ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC2以上かつ該閾値DC2以上の位置を基準点として、予め設定された探索範囲W内のエコー高さが閾値DA以下の箇所がある場合(ステップS407,Yes)には、この条件を満足する箇所(位置)に欠陥があると判定する(ステップS408)。一方、ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC2以上かつ該閾値DC2以上の位置を基準点として、予め設定された探索範囲W内のエコー高さが閾値DA以下の箇所がない場合(ステップS407,No)には、この所定区間に欠陥がないと判定する(ステップS409)。
 その後、欠陥検出部13は、次の所定区間があるか否かを判断し(ステップS410)、次の所定区間がある場合(ステップS410,Yes)には、ステップS401に移行して上述した処理を次の所定区間に対して行い、次の所定区間がない場合(ステップS410,No)には、本処理を終了する。
 図14は、実施の形態4を適用した欠陥検出例を示す図である。図14では、横軸に走査順の波形No.を示している。上述した実施の形態2,3を適用すると、図14(b)に示したビーム路程変化率は、波形No.371で閾値DC2以上となっているが、図14(a)に示したエコー高さは、波形No.371で閾値DA以下となっていないため、欠陥として検出されない。また、図14(a)に示したエコー高さは、波形No.370で閾値DA以下となっているが、図14(b)に示したビーム路程変化率は、波形No.370で閾値DC2以上となっていないため、欠陥として検出されない。これに対して、この実施の形態4では、ビーム路程変化率が閾値DC2以上となった波形No.371を基準点として、この基準点に対して走査方向の前後2点、すなわち計5点を予め設定された探索範囲Wとしてエコー高さを探索し、その結果、波形No.370,369のエコー高さが閾値DA以下となっているため、この波形No.371に欠陥があると判定する。
 この実施の形態4では、ビーム路程が閾値DB以下、あるいはビーム路程変化率の絶対値が閾値DC2以上、かつ該閾値DCまたはDC2以上の位置を基準点として、予め設定された探索範囲W内のエコー高さが閾値DA以下の箇所がある場合に欠陥があると判定するようにしているので、エコー高さが閾値DA以下となる位置と、ビーム路程変化率の絶対値が閾値DCまたは閾値DC2以上となる位置とが、わずかにずれる可能性のある、ラップ状欠陥などの欠陥を高い精度で検出することができる。
(変形例1)
 上述した実施の形態1~4では、信号解析部12が式(1)によってビーム路程変化率を算出するようにしていたが、これに限らず、たとえば、所定区間のビーム路程を1次元信号とみなし、ローパスフィルタにこの1次元信号を通して急峻な変化を除去した除去信号を得て、1次元信号(ビーム路程信号)から除去信号を減算したものをビーム路程変化率として算出してもよい。また、ローパスフィルタに替えてハイパスフィルタを用いてもよい。この場合、ハイパスフィルタを通った信号自体がビーム路程変化率として算出される。
(変形例2)
 この変形例2では、上述した実施の形態1~4に示した超音波探傷方法を、鋼管1などの金属の管材の製造方法に適用したものである。たとえば、図15に示した継目無鋼管(シームレス鋼管)の製造方法における検査工程に適用される。継目無鋼管は、たとえば、図15に示すように、まず、ビレットなどの丸鋼片が材料として回転炉床式加熱炉で加熱され(加熱工程:ST1)、その後、ピアサーで中空素管に成形される(穿孔工程:ST2)。この中空素管は、その後、マンドレルミルで圧延され、外径と厚さとを減少させて長尺素管に成形される(圧延工程:ST3)。その後、再加熱炉で再加熱され(再加熱工程:ST4)、ストレッチレデューサーで仕上がり寸法に成型し、冷却、矯正、切断を経て熱間圧延を完了する(成型工程:ST5)。その後、精製工程(ST6)および検査工程(ST7)を経て、最終的な完成品である継目無鋼管を得る。この検査工程には、概観検査、肉厚検査、疵検査などを行うが、この疵検査に上述した実施の形態1~4で述べた超音波探傷方法が適用される。
(変形例3)
 上述した実施の形態1~4では、たとえば500mmの所定区間毎の超音波データを取得した後に欠陥検出処理を行うようにしていたが、これに限らず、たとえば所定数の超音波データ、たとえば走査方向に連続する5点の超音波データ毎に欠陥検出処理を行う準リアルタイム検出処理を行うようにしてもよい。この場合、5点の超音波データが取得される毎に、5点の超音波データを用いて欠陥検出を行ってもよいし、1点の超音波データを取得する毎に、1点シフトした5点の超音波データを用いて欠陥検出を行ってもよい。
 なお、上述した実施の形態1~4および変形例1~3の各構成要素は、適宜組合せ可能である。
 以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。
   1 鋼管
   2 超音波探触子
   3 超音波制御装置
   4 A/D変換部
  10 処理装置
  11 波形メモリ
  12 信号解析部
  13 欠陥検出部
  14 入出力部
  15 制御部
  ES 表面エコー
  EB 底面エコー
   S 外側表面
   B 内側表面
  BW,31,32 欠陥
  DA,DB,DC,DC2,L1,L2 閾値
  LN ノイズレベル

Claims (15)

  1.  超音波を用いて金属の管材の内側表面の欠陥を検出する超音波探傷方法であって、
     前記内側表面に向けて超音波信号を発生する超音波探触子と前記金属の管材とを相対的に移動した時のエコー信号の波形データを取得して保持する波形保持ステップと、
     前記保持された波形データをもとに前記内側表面からのエコー信号を受信するまでの路程と該路程の変化率とを算出する信号解析ステップと、
     前記路程および前記路程の変化率をもとに前記内側表面の欠陥を検出する欠陥検出ステップと、
     を含むことを特徴とする超音波探傷方法。
  2.  前記欠陥検出ステップは、前記路程が所定の路程閾値以下あるいは前記路程の変化率が所定の路程変化率閾値以上の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする請求項1に記載の超音波探傷方法。
  3.  前記信号解析ステップは、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、
     前記欠陥検出ステップは、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上かつ前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする請求項1に記載の超音波探傷方法。
  4.  前記信号解析ステップは、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、
     前記欠陥検出ステップは、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上、かつ前記路程の変化率が所定の路程変化率閾値以上の位置を基準位置として、該基準位置に対して予め設定された探索範囲内の前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする請求項1に記載の超音波探傷方法。
  5.  前記信号解析ステップは、前記保持された波形データをもとにエコー信号がない部分におけるノイズ成分のノイズレベルを解析し、該解析結果をもとにエコー信号検出の閾値を決定し、該決定された閾値をもとに前記エコー信号を検出して前記路程を算出することを特徴とする請求項1~4のいずれか一つに記載の超音波探傷方法。
  6.  超音波を用いて金属の管材の内側表面の欠陥を検出する超音波探傷装置であって、
     前記内側表面に向けて超音波信号を発生する超音波探触子と前記金属の管材とを相対的に移動した時のエコー信号の波形データを取得して保持する波形保持部と、
     前記保持された波形データをもとに前記内側表面からのエコー信号を受信するまでの路程と該路程の変化率とを算出する信号解析部と、
     前記路程および前記路程の変化率をもとに前記内側表面の欠陥を検出する欠陥検出部と、
     を備えたことを特徴とする超音波探傷装置。
  7.  前記欠陥検出部は、前記路程が所定の路程閾値以下あるいは前記路程の変化率が所定の路程変化率閾値以上の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする請求項6に記載の超音波探傷装置。
  8.  前記信号解析部は、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、
     前記欠陥検出部は、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上かつ前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする請求項6に記載の超音波探傷装置。
  9.  前記信号解析部は、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、
     前記欠陥検出部は、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上、かつ前記路程の変化率が所定の路程変化率閾値以上の位置を基準位置として、該基準位置に対して予め設定された探索範囲内の前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする請求項6に記載の超音波探傷装置。
  10.  前記信号解析部は、前記保持された波形データをもとにエコー信号がない部分におけるノイズ成分のノイズレベルを解析し、該解析結果をもとにエコー信号検出の閾値を決定し、該決定された閾値をもとに前記エコー信号を検出して前記路程を算出することを特徴とする請求項6~9のいずれか一つに記載の超音波探傷装置。
  11.  金属材料に対して、少なくとも加熱工程、穿孔工程、圧延工程、再加熱工程、成型工程、および検査工程を施して管材を製造する管材製造方法であって、
     前記検査工程は、
     前記管材の内側表面に向けて超音波信号を発生する超音波探触子と前記管材とを相対的に移動した時のエコー信号の波形データを取得して保持する波形保持工程と、
     前記保持された波形データをもとに前記内側表面からのエコー信号を受信するまでの路程と該路程の変化率とを算出する信号解析工程と、
     前記路程および前記路程の変化率をもとに前記内側表面の欠陥を検出する欠陥検出工程と、
     を含むことを特徴とする管材製造方法。
  12.  前記欠陥検出工程は、前記路程が所定の路程閾値以下あるいは前記路程の変化率が所定の路程変化率閾値以上の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする請求項11に記載の管材製造方法。
  13.  前記信号解析工程は、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、
     前記欠陥検出工程は、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上かつ前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする請求項11に記載の管材製造方法。
  14.  前記信号解析工程は、さらに前記保持された波形データをもとに前記内側表面からのエコー信号の高さを算出し、
     前記欠陥検出工程は、前記路程が所定の路程閾値以下、あるいは前記路程の変化率が所定の路程変化率閾値以上、かつ前記路程の変化率が所定の路程変化率閾値以上の位置を基準位置として、該基準位置に対して予め設定された探索範囲内の前記高さが所定の高さ閾値以下の条件を満たす部分に欠陥があると判定し、該条件を満たさない部分に欠陥がないと判定することを特徴とする請求項11に記載の管材製造方法。
  15.  前記信号解析工程は、前記保持された波形データをもとにエコー信号がない部分におけるノイズ成分のノイズレベルを解析し、該解析結果をもとにエコー信号検出の閾値を決定し、該決定された閾値をもとに前記エコー信号を検出して前記路程を算出することを特徴とする請求項11~14のいずれか一つに記載の管材製造方法。
PCT/JP2012/061836 2012-01-31 2012-05-09 超音波探傷方法、超音波探傷装置、および管材製造方法 WO2013114639A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12867508.9A EP2811294B1 (en) 2012-01-31 2012-05-09 Ultrasonic flaw-detection method, ultrasonic flaw-detection device, and method for producing pipe material
US14/374,989 US9341599B2 (en) 2012-01-31 2012-05-09 Ultrasonic flaw detection method, ultrasonic flaw detection apparatus, and pipe manufacturing method
CN201280068720.0A CN104081196B (zh) 2012-01-31 2012-05-09 超声波探伤方法、超声波探伤装置、以及管材制造方法
KR1020147021328A KR101671084B1 (ko) 2012-01-31 2012-05-09 초음파 탐상 방법, 초음파 탐상 장치, 및 관재 제조 방법
ES12867508T ES2785074T3 (es) 2012-01-31 2012-05-09 Método de detección de defectos por ultrasonidos, dispositivo de detección de defectos por ultrasonidos y método para producir material de tuberías

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-017895 2012-01-31
JP2012017895A JP5887964B2 (ja) 2011-02-04 2012-01-31 超音波探傷方法、超音波探傷装置、および管材製造方法

Publications (1)

Publication Number Publication Date
WO2013114639A1 true WO2013114639A1 (ja) 2013-08-08

Family

ID=48905781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061836 WO2013114639A1 (ja) 2012-01-31 2012-05-09 超音波探傷方法、超音波探傷装置、および管材製造方法

Country Status (7)

Country Link
US (1) US9341599B2 (ja)
EP (1) EP2811294B1 (ja)
JP (1) JP5887964B2 (ja)
KR (1) KR101671084B1 (ja)
CN (1) CN104081196B (ja)
ES (1) ES2785074T3 (ja)
WO (1) WO2013114639A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998796B2 (en) 2012-03-09 2015-04-07 Robert M Green Sexual stimulation device
CN103163221A (zh) * 2013-02-22 2013-06-19 南宁奥博斯检测科技有限责任公司 一种大型物体检测装置
KR101738803B1 (ko) * 2013-04-02 2017-05-22 제이에프이 스틸 가부시키가이샤 초음파 탐상 방법 및 초음파 탐상 장치
JP6524884B2 (ja) * 2015-10-21 2019-06-05 日本製鉄株式会社 管状体の内面検査方法
CN106124620A (zh) * 2016-06-14 2016-11-16 北京理工大学 一种螺纹管内外表面纵向裂纹的横纵波无损检测方法
JP6776913B2 (ja) * 2017-01-27 2020-10-28 日本製鉄株式会社 管の内面検査方法
JP7080583B2 (ja) * 2017-02-28 2022-06-06 臼井国際産業株式会社 スチール製燃料圧送配管の製造方法
JP6896489B2 (ja) * 2017-04-03 2021-06-30 株式会社東芝 超音波探傷装置、超音波探傷方法および製品の製造方法
EP3388827B1 (en) * 2017-04-12 2019-05-15 Fujitsu Limited Defect detection using ultrasound scan data
CN109324122B (zh) * 2017-07-31 2021-05-11 常州常瑞轨道交通科技有限公司 一种针对空心轴的纵波垂直探伤法的c型显示方法
CN111855813B (zh) * 2019-04-26 2024-08-09 中国石油化工股份有限公司 一种检测装置及检测方法
JP7316888B2 (ja) * 2019-09-19 2023-07-28 日立造船株式会社 超音波検査方法および超音波検査装置
CN111220701B (zh) * 2019-10-17 2022-09-13 中国人民解放军陆军炮兵防空兵学院 一种身管损伤状态超声导波诊断方法
CN111007144B (zh) * 2019-11-21 2022-09-16 广西电网有限责任公司电力科学研究院 一种铝套管的超声检测方法
CN116018517A (zh) * 2020-09-03 2023-04-25 柯尼卡美能达株式会社 超声波式检查装置、支承体的检查方法以及支承体的检查程序
JP7294283B2 (ja) * 2020-09-10 2023-06-20 Jfeスチール株式会社 超音波探傷方法、超音波探傷装置、及び鋼材の製造方法
CN113820390A (zh) * 2021-08-16 2021-12-21 西安热工研究院有限公司 一种金属内壁腐蚀缺陷超声波射频信号特征识别及测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049659A (ja) * 1990-04-27 1992-01-14 Nkk Corp 鋼管の内面欠陥検出方法
JPH06317418A (ja) * 1993-05-10 1994-11-15 Mitsubishi Electric Corp 超音波計測装置
JP2002031625A (ja) * 2000-07-17 2002-01-31 Daido Steel Co Ltd 硬さ測定方法
JP2003302381A (ja) * 2002-04-11 2003-10-24 Daido Steel Co Ltd 超音波検査方法
JP2006132981A (ja) * 2004-11-02 2006-05-25 Mitsubishi Heavy Ind Ltd 超音波肉厚測定装置及びその方法
JP2008070325A (ja) 2006-09-15 2008-03-27 Sumitomo Metal Ind Ltd 超音波探傷方法、超音波探傷装置および鋼材
JP2011153974A (ja) * 2010-01-28 2011-08-11 Jfe Steel Corp 管厚測定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150714A (en) * 1991-05-10 1992-09-29 Sri International Ultrasonic inspection method and apparatus with audible output
US5557970A (en) * 1994-01-10 1996-09-24 The United States Of America As Represented By The Secretary Of The Army Automated thickness measurement system
JP3699028B2 (ja) * 2001-10-10 2005-09-28 日立エンジニアリング株式会社 超音波探傷装置及び方法
JP5042153B2 (ja) * 2008-07-22 2012-10-03 関西エックス線株式会社 超音波探傷法による検査方法及び超音波探傷法による検査システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049659A (ja) * 1990-04-27 1992-01-14 Nkk Corp 鋼管の内面欠陥検出方法
JPH06317418A (ja) * 1993-05-10 1994-11-15 Mitsubishi Electric Corp 超音波計測装置
JP2002031625A (ja) * 2000-07-17 2002-01-31 Daido Steel Co Ltd 硬さ測定方法
JP2003302381A (ja) * 2002-04-11 2003-10-24 Daido Steel Co Ltd 超音波検査方法
JP2006132981A (ja) * 2004-11-02 2006-05-25 Mitsubishi Heavy Ind Ltd 超音波肉厚測定装置及びその方法
JP2008070325A (ja) 2006-09-15 2008-03-27 Sumitomo Metal Ind Ltd 超音波探傷方法、超音波探傷装置および鋼材
JP2011153974A (ja) * 2010-01-28 2011-08-11 Jfe Steel Corp 管厚測定装置

Also Published As

Publication number Publication date
EP2811294A1 (en) 2014-12-10
US9341599B2 (en) 2016-05-17
CN104081196B (zh) 2017-03-15
US20150000095A1 (en) 2015-01-01
EP2811294A4 (en) 2015-08-12
CN104081196A (zh) 2014-10-01
JP2012177685A (ja) 2012-09-13
ES2785074T3 (es) 2020-10-05
EP2811294B1 (en) 2020-03-25
KR101671084B1 (ko) 2016-10-31
JP5887964B2 (ja) 2016-03-16
KR20140107659A (ko) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5887964B2 (ja) 超音波探傷方法、超音波探傷装置、および管材製造方法
EP3054291B1 (en) Method and apparatus for imaging a welding area
CN112098526B (zh) 基于激光超声技术的增材制件近表面缺陷特征提取方法
Lévesque et al. Inspection of thick welded joints using laser-ultrasonic SAFT
CN111751448B (zh) 一种漏表面波超声合成孔径聚焦成像方法
JP2011027571A (ja) 配管減肉検査装置および配管減肉検査方法
JP2007085949A (ja) 超音波による組織変化の検出方法及び検出装置
JP6197458B2 (ja) 欠陥検査装置、欠陥検査方法、プログラム及び記憶媒体
JP7410723B2 (ja) 複雑な形状を有する管状製品の欠陥を検出するための自動非破壊検査装置および方法
JP2005331404A (ja) 鉄筋コンクリート構造物診断装置および鉄筋コンクリート構造物診断方法
JP6776913B2 (ja) 管の内面検査方法
JP4826950B2 (ja) 超音波探傷方法および超音波探傷装置
JP4364031B2 (ja) 超音波探傷画像処理装置及びその処理方法
CN103460030B (zh) 钢材的钢种判定方法
CN115389623A (zh) 一种连铸坯超声波探伤检测工艺
JP2011047655A (ja) 超音波を用いた欠陥識別方法及び欠陥識別装置
CN103207240B (zh) 一种斜探头超声场纵向声压分布的测量方法
JP2017078662A (ja) 管状体の内面検査方法
JP2019191062A (ja) 超音波探傷方法および超音波探傷装置
JP2008111742A (ja) ホイール溶接部の非破壊検査方法及び装置
JP2008197003A (ja) 超音波探傷検査方法
JP5645428B2 (ja) 超音波探傷方法
Cheong et al. Application of a magnetostrictive guided wave technique to monitor the evolution of defect signals
JP4736716B2 (ja) 鋼管の熱間肉厚測定方法
Yao et al. Lateral wave removal of time-of-flight diffraction based on peak detection and correlation analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374989

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147021328

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012867508

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE