WO2013114583A9 - Production method for polarizing laminated film and production method for polarizing plate - Google Patents

Production method for polarizing laminated film and production method for polarizing plate Download PDF

Info

Publication number
WO2013114583A9
WO2013114583A9 PCT/JP2012/052234 JP2012052234W WO2013114583A9 WO 2013114583 A9 WO2013114583 A9 WO 2013114583A9 JP 2012052234 W JP2012052234 W JP 2012052234W WO 2013114583 A9 WO2013114583 A9 WO 2013114583A9
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing
width direction
layer
adhesive
Prior art date
Application number
PCT/JP2012/052234
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013114583A1 (en
Inventor
雄一朗 九内
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020147020999A priority Critical patent/KR101814865B1/en
Priority to JP2013556137A priority patent/JP6120779B2/en
Priority to CN201280068747.XA priority patent/CN104081232B/en
Priority to PCT/JP2012/052234 priority patent/WO2013114583A1/en
Priority to TW102103273A priority patent/TWI565976B/en
Publication of WO2013114583A1 publication Critical patent/WO2013114583A1/en
Publication of WO2013114583A9 publication Critical patent/WO2013114583A9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/706Anisotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to a method for producing a polarizing laminated film and a method for producing a polarizing plate.
  • the polarizing plate is widely used as a polarized light supplying element and a polarized light detecting element in a liquid crystal display device.
  • a polarizing plate a polarizing plate in which a protective film made of triacetyl cellulose or the like is bonded to a polyvinyl alcohol polarizing film through an adhesive has been used.
  • notebook personal computers for liquid crystal display devices have been used. With the development of mobile devices such as mobile phones and mobile phones, as well as the development of large televisions, there is a demand for thinner and lighter polarizing plates.
  • Patent Document 1 As a method of manufacturing a thin polarizing plate, a resin layer is formed by applying a solution containing a polyvinyl alcohol-based resin on one side of a base film, and then uniaxially. A film having a polarizer layer is obtained by stretching and then dyeing, and then a protective film is bonded to the polarizer layer side of the film via an adhesive to form a polarizing laminated film, and then a base film is prepared. A method of manufacturing a polarizing plate for peeling and removing is disclosed.
  • the film having the polarizer layer and the protective film are laminated by laminating these films via an adhesive and pressing the laminated body, for example, passing the obtained laminated body between a pair of bonding rolls. It is common to do it.
  • the adhesive protrudes (leaks out) from the end in the width direction, and the pressure bonding apparatus such as a bonding roll is contaminated.
  • This problem is particularly serious in the case of continuously producing a long polarizing laminated film and a polarizing plate using a long base film and a protective film, and in such continuous production, in a crimping device such as a bonding roll.
  • the adhering adhesive gradually transferred to the outer surface of the laminate (contact surface with the crimping device), and the polarizing laminate film and the polarizing plate itself might be contaminated.
  • the amount of adhesive supplied is reduced, and when the laminated body is crimped, the adhesive is not interposed at both ends in the width direction. In some cases, adhesion failure occurred in the portion.
  • the purpose of the present invention is to produce a polarizing laminated film and a polarizing plate that can prevent a contamination of a pressure bonding apparatus or a film surface with an adhesive while preventing adhesion failure at both end portions of the protective film when bonding. It is to provide a method.
  • a polarizer layer comprising a polyvinyl alcohol-based resin layer in which a dichroic dye is adsorbed and oriented on at least one surface of a base film, and having a width equal to or narrower than the width of the base film.
  • Preparing a polarizing film comprising: The first protection wider than the polarizing film on the one surface of the polarizing film and on the polarizer layer provided on the one surface of the base film via the first adhesive layer.
  • the width direction both ends of the first and second protective films are located outside the width direction both ends of the polarizing film, and the width direction both ends of the first adhesive layer are respectively width direction both ends of the polarizing film.
  • the manufacturing method of the light-polarizing laminated film which arrange
  • the both ends of the polarizing laminated film in the width direction are cut by cutting at the positions at the both ends of the polarizer layer in the width direction or at positions inside thereof.
  • the manufacturing method of the polarizing laminated film as described in [1] which further includes the process of removing.
  • the step of preparing the polarizing film includes: Forming a polyvinyl alcohol-based resin layer by applying a coating liquid containing a polyvinyl alcohol-based resin on at least one surface of the base film; Uniaxially stretching a substrate film having a polyvinyl alcohol-based resin layer; The method for producing a polarizing laminated film according to [1], comprising a step of dyeing a polyvinyl alcohol-based resin layer of a uniaxially stretched film with a dichroic dye to form a polarizer layer.
  • the polarizing film includes the polarizer layers on both sides of the base film,
  • the second protective film has both ends in the width direction of the second adhesive layer on the other surface of the polarizing film via the second adhesive layer.
  • Each of the polarizing films is disposed outside the both ends in the width direction, and disposed inside the both ends in the width direction of the first and second protective films,
  • the said base film is peeled and removed from the said polarizing laminated film, and the said 1st polarizing plate and the 2nd polarizing plate by which the said 2nd protective film was bonded to the said polarizer layer are obtained [4]. Manufacturing method of this polarizing plate.
  • the adhesive layer can be uniformly formed over the entire surface of the polarizing film with the protective film while preventing the adhesive from protruding from the end of the film. Therefore, according to the polarizing laminated film and the polarizing plate method of the present invention, when the protective film is bonded, it is possible to prevent the adhesion of the both ends of the film and the contamination of the pressure bonding device and the film surface by the adhesive. it can.
  • FIG. 4 is a schematic sectional view taken along line IV-IV shown in FIG. 3. It is a top view which shows typically the relationship between the peeling direction of the base film in a peeling process, and the orientation direction of a polarizer layer.
  • FIG. 1 is a flowchart showing a preferred embodiment of a method for producing a polarizing laminate film and a method for producing a polarizing plate according to the present invention.
  • the manufacturing method of the light-polarizing laminated film of the present embodiment includes a step of preparing a light-polarizing film having a polarizer layer on at least one surface of the base material film, and one surface of the light-polarizing film.
  • a first protective film is bonded and disposed on the polarizer layer provided on the one surface of the film via a first adhesive layer, and a second protective film is disposed on the other surface of the polarizing film.
  • a laminating step S40 for obtaining a polarizing laminated film and a removing step S50 for removing both end portions in the width direction of the polarizing laminated film are included in this order.
  • the step of preparing the polarizing film includes a resin layer forming step S10 for forming a polyvinyl alcohol-based resin layer on at least one surface of the substrate film, and a substrate film having a polyvinyl alcohol-based resin layer.
  • a stretching step S20 for uniaxial stretching and a staining step S30 for staining the polyvinyl alcohol resin layer of the uniaxially stretched film with a dichroic dye to form a polarizer layer are included in this order.
  • the first and second protective films are arranged on the polarizing film such that both ends in the width direction are located outside the both ends in the width direction of the polarizing film.
  • the width of the first adhesive layer is such that both ends in the width direction of the first adhesive layer are located outside both ends in the width direction of the polarizing film and both ends in the width direction of the first and second protective films. Is also adjusted to be located inside.
  • the polarizing plate can be obtained by peeling and removing the base film from the polarizing laminated film from which both end portions in the width direction obtained by carrying out the removing step S50 are removed. (Peeling step S60).
  • Resin layer forming step S10 This step is a step of forming a polyvinyl alcohol-based resin layer on at least one surface of the base film.
  • This polyvinyl alcohol-based resin layer is a layer that becomes a polarizer layer through the stretching step S20 and the dyeing step S30.
  • the base film is continuously unwound from a roll body formed by winding a long base film, and a polyvinyl alcohol-based resin layer is continuously formed on the unwound base film. It can be carried out continuously.
  • the polyvinyl alcohol-based resin layer can be formed by applying a coating liquid containing a polyvinyl alcohol-based resin on the surface of the base film and drying the coating layer as necessary. According to such a method, the thickness of the polyvinyl alcohol-based resin layer and thus the polarizer layer can be reduced, which is advantageous for thinning the polarizing laminated film and the polarizing plate.
  • the method of applying the coating liquid is: wire coating method, roll coating method such as reverse coating, gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen coating method, fountain coating method, dipping Or a known method such as a spray method.
  • a primer layer may be provided between the base film and the polyvinyl alcohol resin layer.
  • the primer layer is preferably formed from a resin composition containing a polyvinyl alcohol resin and a crosslinking agent.
  • an uncoated region where the coating liquid is not applied may be provided at both ends in the width direction of the base film.
  • region can be an area
  • This uncoated region may cause undulation that may cause the film to break in the stretching step S20 or in the case where the film is wound after that, prior to the stretching step S20 or in the stretching step S20.
  • the uncoated area may be removed by cutting after the film is wound up.
  • the width of the polyvinyl alcohol-based resin layer (and hence the polarizer layer) is the same as the width of the base film.
  • variety of a polyvinyl-alcohol-type resin layer (hence, polarizer layer) becomes narrower than the width
  • the coating layer is dried in order to remove the solvent from the coating layer when the coating solution contains the solvent.
  • the drying temperature and drying time are set according to the type of solvent.
  • the drying temperature is, for example, 50 to 200 ° C., preferably 60 to 150 ° C.
  • the drying time is, for example, 2 to 20 minutes.
  • the polyvinyl alcohol-based resin layer may be formed only on one side of the base film or on both sides, but two polarizing plates can be obtained from one polarizing laminated film. From the standpoint of improving productivity, it is preferable to form a polyvinyl alcohol-based resin layer on both sides of the base film. In this case, it is preferable to form the said primer layer on both surfaces of a base film. Moreover, when forming a polyvinyl alcohol-type resin layer on both surfaces of a base film, these polyvinyl alcohol-type resin layers are normally formed so that the formation position in a base film surface may correspond.
  • the thickness of the polyvinyl alcohol resin layer is preferably more than 3 ⁇ m and not more than 30 ⁇ m, more preferably 5 to 20 ⁇ m. If it is a polyvinyl alcohol-based resin layer having a thickness within this range, polarized light having a sufficiently small dichroic dyeing property, excellent polarization characteristics, and sufficiently small thickness through a stretching step S20 and a dyeing step S30 described later. A child layer can be obtained. When the thickness of the polyvinyl alcohol-based resin layer exceeds 30 ⁇ m, the thickness of the polarizer layer may exceed 10 ⁇ m.
  • the coating liquid is preferably a polyvinyl alcohol resin solution obtained by dissolving a polyvinyl alcohol resin powder in a good solvent (for example, water).
  • a good solvent for example, water
  • the polyvinyl alcohol resin include polyvinyl alcohol resins and derivatives thereof.
  • Derivatives of polyvinyl alcohol resin include polyvinyl formal, polyvinyl acetal, etc., olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and alkyl esters of unsaturated carboxylic acids. And those modified with acrylamide or the like.
  • the average degree of polymerization of the polyvinyl alcohol resin is preferably 100 to 10,000, and more preferably 1000 to 10,000.
  • the average saponification degree of the polyvinyl alcohol-based resin is preferably 80 to 100 mol%, and more preferably 94 mol% or more.
  • the coating liquid may contain additives such as a plasticizer and a surfactant as necessary.
  • a plasticizer a polyol or a condensate thereof can be used, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, and polyethylene glycol.
  • the blending amount of the additive is preferably 20% by weight or less of the polyvinyl alcohol resin.
  • the base film can be composed of a thermoplastic resin, and among them, it is preferably composed of a thermoplastic resin excellent in transparency, mechanical strength, thermal stability, stretchability and the like.
  • thermoplastic resins include, for example, polyolefin resins such as chain polyolefin resins and cyclic polyolefin resins (norbornene resins, etc.); polyester resins; (meth) acrylic resins; cellulose triacetate, cellulose Cellulose ester resins such as diacetate; Polycarbonate resins; Polyvinyl alcohol resins; Polyvinyl acetate resins; Polyarylate resins; Polystyrene resins; Polyethersulfone resins; Polysulfone resins; Polyamide resins; And mixtures thereof, copolymers, and the like.
  • the base film is composed of a chain polyolefin resin, a cyclic polyolefin resin, a (meth) acrylic resin for reasons such as excellent smoothness for applying the coating liquid and excellent stretchability in the stretching step S20. And at least one selected from the group consisting of cellulose ester resins.
  • the base film may have a single-layer structure composed of one resin layer composed of one or two or more thermoplastic resins, or a plurality of resin layers composed of one or two or more thermoplastic resins are laminated. It may be a multilayer structure.
  • Examples of the chain polyolefin-based resin include homopolymers of chain olefins such as polyethylene resins and polypropylene resins, and copolymers composed of two or more chain olefins.
  • a base film made of a chain polyolefin-based resin is preferable in that it is easily stretched stably at a high magnification.
  • the base film is made of polypropylene resin (polypropylene resin which is a homopolymer of propylene, copolymer mainly composed of propylene, etc.), polyethylene resin (polyethylene resin which is a homopolymer of ethylene, or ethylene). More preferably, the main component is a copolymer or the like.
  • the copolymer mainly composed of propylene which is one example suitably used as a thermoplastic resin constituting the base film, is a copolymer of propylene and another monomer copolymerizable therewith.
  • Examples of other monomers copolymerizable with propylene include ethylene and ⁇ -olefin.
  • ⁇ -olefin an ⁇ -olefin having 4 or more carbon atoms is preferably used, and more preferably an ⁇ -olefin having 4 to 10 carbon atoms.
  • Specific examples of the ⁇ -olefin having 4 to 10 carbon atoms include, for example, linear monoolefins such as 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and 1-decene; Branched monoolefins such as methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene; and vinylcyclohexane.
  • the copolymer of propylene and other monomers copolymerizable therewith may be a random copolymer or a block copolymer.
  • the content of the other monomer in the copolymer is, for example, 0.1 to 20% by weight, preferably 0.5 to 10% by weight.
  • the content of other monomers in the copolymer can be determined by measuring infrared (IR) spectrum according to the method described on page 616 of "Polymer Analysis Handbook" (1995, published by Kinokuniya Shoten). Can be sought.
  • a propylene homopolymer a propylene-ethylene random copolymer, a propylene-1-butene random copolymer or a propylene-ethylene-1-butene random copolymer is preferably used. .
  • the stereoregularity of the polypropylene resin is substantially isotactic or syndiotactic.
  • a base film made of a polypropylene-based resin having substantially isotactic or syndiotactic stereoregularity has relatively good handleability and excellent mechanical strength in a high temperature environment.
  • the base film may be composed of one type of chain polyolefin-based resin, may be composed of a mixture of two or more types of chain polyolefin-based resins, or may be composed of two or more types of chain polyolefin-based resins. You may be comprised from the copolymer of resin.
  • the cyclic polyolefin resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin.
  • cyclic polyolefin resin examples include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, copolymers of cyclic olefins and chain olefins such as ethylene and propylene (typically Random copolymers), graft polymers obtained by modifying them with an unsaturated carboxylic acid or a derivative thereof, and hydrides thereof.
  • norbornene resins using norbornene monomers such as norbornene and polycyclic norbornene monomers as cyclic olefins are preferably used.
  • cyclic polyolefin resins examples include “Topas” (TOPAS ADVANCED POLYMERS GmbH, available from Polyplastics Co., Ltd.), “Arton” (manufactured by JSR Co., Ltd.). “ZEONOR” (manufactured by Nippon Zeon Co., Ltd.), “ZEONEX” (manufactured by Nippon Zeon Co., Ltd.), “Apel” (manufactured by Mitsui Chemicals, Inc.), and the like.
  • film names such as “ESCINA” (manufactured by Sekisui Chemical Co., Ltd.), “SCA40” (manufactured by Sekisui Chemical Co., Ltd.), “ZEONOR FILM” (manufactured by Nippon Zeon Co., Ltd.), etc. You may use the commercial item of the made cyclic polyolefin resin film as a base film.
  • the base film may be composed of one kind of cyclic polyolefin-based resin, may be composed of a mixture of two or more kinds of cyclic polyolefin-based resins, or may be composed of two or more kinds of cyclic polyolefin-based resins. It may be composed of a polymer.
  • the polyester resin is a polymer having an ester bond, and is generally made of a polycondensate of a polyvalent carboxylic acid or a derivative thereof and a polyhydric alcohol.
  • a polyvalent carboxylic acid or a derivative thereof a divalent dicarboxylic acid or a derivative thereof can be used, and examples thereof include terephthalic acid, isophthalic acid, dimethyl terephthalate, and dimethyl naphthalenedicarboxylate.
  • a divalent diol can be used, and examples thereof include ethylene glycol, propanediol, butanediol, neopentyl glycol, and cyclohexanedimethanol.
  • a typical example of a polyester resin is polyethylene terephthalate, which is a polycondensate of terephthalic acid and ethylene glycol.
  • Polyethylene terephthalate is a crystalline resin, but the one in a state before the crystallization treatment is more easily stretched and is more excellent in stretchability. If necessary, it can be crystallized during stretching or by heat treatment after stretching.
  • copolymerized polyethylene terephthalate having a lowered crystallinity (or made amorphous) by further copolymerizing another monomer with the polyethylene terephthalate skeleton is excellent in stretchability and is preferably used.
  • Examples of the copolymerized polyethylene terephthalate include those obtained by copolymerizing cyclohexanedimethanol or isophthalic acid.
  • Polyester resins other than polyethylene terephthalate and copolymerized polyethylene terephthalate include polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polycyclohexane dimethyl terephthalate, polycyclohexane dimethyl naphthalate. A phthalate etc. are mentioned.
  • the base film may be composed of one kind of polyester resin, may be composed of a mixture of two or more kinds of polyester resins, or may be composed of a copolymer of two or more kinds of polyester resins. It may be configured.
  • any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin.
  • the (meth) acrylic resin include, for example, poly (meth) acrylic acid esters such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester Copolymer, methyl methacrylate-acrylic ester- (meth) acrylic acid copolymer, (meth) methyl acrylate-styrene copolymer (MS resin, etc.), polymer having an alicyclic hydrocarbon group (for example, Methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.).
  • C 1-6 alkyl poly (meth) acrylate such as poly (meth) acrylate is used, more preferably methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight). %) Is used.
  • the base film may be composed of one (meth) acrylic resin, may be composed of a mixture of two or more (meth) acrylic resins, or may be composed of two or more (meth) acrylic resins. ) It may be composed of a copolymer of acrylic resin.
  • the cellulose ester resin is an ester of cellulose and a fatty acid.
  • Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. Among these, cellulose triacetate (triacetyl cellulose) is particularly preferable. Many products of cellulose triacetate are commercially available, which is advantageous in terms of availability and cost.
  • Examples of commercially available cellulose triacetate are “Fujitac TD80” (manufactured by Fuji Film Co., Ltd.), “Fujitac TD80UF” (manufactured by Fuji Film Co., Ltd.), “Fujitac TD80UZ” (Fuji Film ( Co., Ltd.), “Fujitac TD40UZ” (manufactured by FUJIFILM Corporation), “KC8UX2M” (manufactured by Konica Minolta Opto Corporation), “KC4UY” (manufactured by Konica Minolta Opto Corporation), and the like.
  • the base film may be composed of one kind of cellulose ester resin, may be composed of a mixture of two or more kinds of cellulose ester resins, or may be composed of two or more kinds of cellulose ester resins. It may be composed of a polymer.
  • Polycarbonate resin is an engineering plastic made of a polymer in which monomer units are bonded via a carbonate group, and is a resin having high impact resistance, heat resistance, flame retardancy, and transparency.
  • the polycarbonate-based resin constituting the base film may be a resin called a modified polycarbonate in which the polymer skeleton is modified in order to lower the photoelastic coefficient, a copolymer polycarbonate having improved wavelength dependency, or the like.
  • Polycarbonate resin is available in various products. Examples of commercially available polycarbonate-based resins are all “Panlite” (manufactured by Teijin Chemicals Ltd.), “Iupilon” (manufactured by Mitsubishi Engineering Plastics), “SD Polyca” (Sumitomo Dow). (Manufactured by Dow Chemical Co., Ltd.).
  • the base film may be composed of one type of polycarbonate-based resin, may be composed of a mixture of two or more types of polycarbonate-based resins, or may be composed of a copolymer of two or more types of polycarbonate-based resins. It may be configured.
  • any appropriate additive may be added to the base film in addition to the above thermoplastic resin.
  • additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, anti-coloring agents, flame retardants, nucleating agents, antistatic agents, pigments, and coloring agents.
  • the content of the thermoplastic resin in the base film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. If the content of the thermoplastic resin in the base film is less than 50% by weight, the high transparency inherent in the thermoplastic resin may not be sufficiently exhibited.
  • the thickness of the base film can be determined as appropriate, but generally it is preferably 1 to 500 ⁇ m, more preferably 1 to 300 ⁇ m, further preferably 5 to 200 ⁇ m, and more preferably 5 to 150 ⁇ m from the viewpoint of workability such as strength and handleability. Is most preferred.
  • the base film may be subjected to corona treatment, plasma treatment, flame treatment or the like on at least the surface on which the polyvinyl alcohol resin layer is formed in order to improve the adhesion with the polyvinyl alcohol resin layer.
  • the polyvinyl alcohol-based resin layer can be formed by sticking a film made of a polyvinyl alcohol-based resin on a base film, but in this case, an adhesive is used for sticking between the films. Can be used.
  • the film made of a polyvinyl alcohol-based resin is a base material so that the width of the polarizer layer is the same as or narrower than the width of the base film.
  • a film made of a polyvinyl alcohol resin having the same width as that of the film or narrower than that of the film is used.
  • Stretching step S20 This step is a step of obtaining a stretched film by uniaxially stretching a base film having a polyvinyl alcohol-based resin layer. Also in this step, the long film obtained through the resin layer forming step S10 is continuously stretched while being conveyed, or the long film obtained through the resin layer forming step S10 is once rolled. It can carry out continuously by carrying out an extending
  • the draw ratio of the film can be appropriately selected according to the desired polarization characteristics, but is preferably more than 5 times and 17 times or less, more preferably more than 5 times and less than 8 times the original length of the film. is there.
  • the draw ratio is 5 times or less, the polyvinyl alcohol-based resin layer is not sufficiently oriented, and the degree of polarization of the polarizer layer may not be sufficiently high.
  • the draw ratio exceeds 17 times, the film is likely to break during stretching, and the thickness of the stretched film becomes unnecessarily thin, and the workability and handleability in the subsequent process may be reduced.
  • the stretching process is not limited to one-stage stretching, and can be performed in multiple stages.
  • all of the multistage stretching processes may be performed continuously before the dyeing process S30, or the second and subsequent stretching processes may be performed simultaneously with the dyeing process and / or the crosslinking process in the dyeing process S30.
  • the stretching treatment may be longitudinal stretching that extends in the film longitudinal direction (film transport direction), and may be lateral stretching or oblique stretching that extends in the film width direction.
  • Examples of the longitudinal stretching method include inter-roll stretching and compression stretching, and examples of the lateral stretching method include a tenter method.
  • the stretching treatment either a wet stretching method or a dry stretching method can be adopted, but it is preferable to use the dry stretching method because the stretching temperature can be selected from a wide range.
  • the stretching temperature is set to be equal to or higher than the temperature at which the polyvinyl alcohol-based resin layer and the entire base film can be stretched, and preferably in the range of ⁇ 30 ° C. to + 30 ° C. of the phase transition temperature of the base film. More preferably, it is in the range of ⁇ 25 ° C. to + 5 ° C. of the phase transition temperature of the base film.
  • the phase transition temperature of the base film means a glass transition temperature Tg when the resin constituting the base film is an amorphous resin, and a melting point (crystalline melting point) Tm when the resin is a crystalline resin. Both are measured according to JIS K7121.
  • the phase transition temperature means the highest phase transition temperature among the phase transition temperatures exhibited by the plurality of resin layers.
  • the stretching temperature is lower than the phase transition temperature of ⁇ 30 ° C., it is difficult to achieve high-magnification stretching of more than 5 times.
  • the stretching temperature exceeds + 30 ° C. of the phase transition temperature, the fluidity of the base film tends to be too high and stretching tends to be difficult.
  • the drawing temperature is within the above range, and more preferably 120 ° C. or higher.
  • the temperature adjustment of the stretching process is usually performed by adjusting the temperature of the heating furnace.
  • Dyeing step S30 the polyvinyl alcohol-based resin layer of the stretched film is dyed with a dichroic dye and adsorbed and oriented to form a polarizer layer. Through this step, a polarizing film in which a polarizer layer is laminated on a base film is obtained.
  • the continuous stretched film obtained through the stretching step S20 is continuously dyed while being conveyed, or the stretched film obtained through the stretching step S20 is temporarily wound into a roll, It can carry out continuously by dyeing
  • dichroic pigments include iodine and organic dyes.
  • organic dyes include, for example, Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Including Blue, Direct First Orange S, First Black.
  • a dichroic dye may be used individually by 1 type, and may use 2 or more types together.
  • the dyeing step can be performed by immersing the entire stretched film in a solution (dye solution) containing a dichroic dye.
  • a solution in which the dichroic dye is dissolved in a solvent can be used.
  • the solvent for the dyeing solution water is generally used, but an organic solvent compatible with water may be further added.
  • the concentration of the dichroic dye is preferably 0.01 to 10% by weight, more preferably 0.02 to 7% by weight, and particularly preferably 0.025 to 5% by weight.
  • iodine When iodine is used as the dichroic dye, it is preferable to further add an iodide to the dyeing solution containing iodine because the dyeing efficiency can be further improved.
  • iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Is mentioned.
  • the concentration of iodide in the dyeing solution is preferably 0.01 to 10% by weight. Of the iodides, it is preferable to add potassium iodide.
  • the ratio of iodine to potassium iodide is preferably in the range of 1: 5 to 1: 100, more preferably in the range of 1: 6 to 1:80. A range of 1: 7 to 1:70 is particularly preferable.
  • the immersion time of the stretched film in the dyeing solution is usually in the range of 15 seconds to 15 minutes, preferably 30 seconds to 3 minutes.
  • the temperature of the dyeing solution is preferably in the range of 10 to 60 ° C., more preferably in the range of 20 to 40 ° C.
  • stretching process in extending process S20 so that the dichroic dye adsorb
  • step S30 the drawing process is performed so that the total magnification becomes the target magnification.
  • step S30 A magnification lower than the target
  • the total magnification is not extended to the target magnification during the dyeing process in the dyeing process S30 (when the dyeing process S30 includes a crosslinking process, the dyeing process and / or the crosslinking process). Examples of the method include performing the treatment and then performing a stretching treatment so that the total magnification becomes a target magnification.
  • the dyeing step S30 can include a cross-linking treatment step performed subsequent to the dyeing treatment.
  • the crosslinking treatment can be performed by immersing the dyed film in a solution containing a crosslinking agent (crosslinking solution).
  • a crosslinking agent conventionally known substances can be used, and examples thereof include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde.
  • a crosslinking agent may be used individually by 1 type, and may use 2 or more types together.
  • the crosslinking solution can be a solution in which a crosslinking agent is dissolved in a solvent.
  • a solvent for example, water can be used, but an organic solvent compatible with water may be further included.
  • the concentration of the crosslinking agent in the crosslinking solution is preferably in the range of 1 to 20% by weight, more preferably in the range of 6 to 15% by weight.
  • the crosslinking solution can contain iodide.
  • iodide By adding iodide, the polarization characteristics in the plane of the polarizer layer can be made more uniform.
  • iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Is mentioned.
  • the concentration of iodide in the cross-linking solution is preferably 0.05 to 15% by weight, and more preferably 0.5 to 8% by weight.
  • the immersion time of the dyed film in the crosslinking solution is usually 15 seconds to 20 minutes, preferably 30 seconds to 15 minutes.
  • the temperature of the crosslinking solution is preferably in the range of 10 to 90 ° C.
  • the crosslinking treatment can be performed simultaneously with the dyeing treatment by blending a crosslinking agent in the dyeing solution. Moreover, you may perform a bridge
  • the specific mode for carrying out the stretching treatment during the crosslinking treatment is as described above.
  • the washing process usually includes a water washing process.
  • the water washing treatment can be performed by immersing the film after the dyeing treatment or after the crosslinking treatment in pure water such as ion exchange water or distilled water.
  • the water washing temperature is usually in the range of 3 to 50 ° C., preferably 4 to 20 ° C.
  • the immersion time in water is usually 2 to 300 seconds, preferably 3 to 240 seconds.
  • the washing step may be a combination of a water washing step and a washing step with an iodide solution.
  • cleaning process and / or an iodide solution can contain liquid alcohols, such as methanol, ethanol, isopropyl alcohol, butanol, propanol, other than water suitably.
  • drying step performed after the washing step Any appropriate method such as natural drying, blow drying, or heat drying can be adopted as the drying step performed after the washing step.
  • the drying temperature is usually 20 to 95 ° C.
  • the drying time is usually about 1 to 15 minutes.
  • Pasting step S40 This step is on one surface of a polarizing film having a polarizer layer on one side or both sides of the base film, and on the polarizer layer it has, the first protective film via the first adhesive layer Is a step of obtaining a polarizing laminated film by placing a second protective film on the other surface of the polarizing film, preferably via a second adhesive layer. Also in this step, the first and second protective films are continuously formed from the rolls formed by winding the long first and second protective films while conveying the polarizing film obtained through the dyeing step S30.
  • the polarizing film obtained through the dyeing step S30 is once wound up in a roll shape, and the long first and second protective films are wound while the polarizing film is continuously unwound from the roll body.
  • the first and second protective films are continuously unwound from each roll body, and between the polarizing film and the first protective film (or further, the polarizing film and the second protective film).
  • the adhesive was continuously fed in between) the beam can be carried out continuously by the continuous lamination.
  • the polarizing film has a polarizer layer on both surfaces of the base film, and the second protective film is polarized through the second adhesive layer in the bonding step S40.
  • the bonding step S40 will be described in detail with an embodiment in which the bonding is performed on the adhesive film as an example.
  • FIG. 2 is a perspective view schematically showing an example of the bonding step S40.
  • FIG. 3 is a schematic top view which shows an example of the state by which the 1st and 2nd protective film was bonded by the polarizing film in bonding process S40, and showed the formation area of the adhesive bond layer typically. is there. 4 is a schematic cross-sectional view taken along the line IV-IV shown in FIG.
  • the film 300 a film having a width wider than that of the polarizing film (in other words, the base film 100) is used. That is, the width W 2 of the first protective film 200> the width W 1 of the polarizing film (base film 100) is satisfied, and the width W 3 of the second protective film 300> the width of the polarizing film (base film 100). meet the W 1. 2 to 4 show the non-coated areas 120 and 130 (areas where the polarizer layer 110 is not formed) where the coating liquid is not applied to both end portions in the width direction of the base film 100 as the polarizing film. The example using what provided is shown.
  • the first and second protective films 200 and 300 are each made of an adhesive S such that both ends in the width direction are located outside the both ends in the width direction of the polarizing film (base film 100). It is bonded to the polarizing film via the first adhesive layer 250 and the second adhesive layer 350 made of the adhesive T.
  • the 1st and 2nd protective films 200 and 300 can be laminated
  • the bonding temperature is usually in the range of 15 to 40 ° C.
  • the first adhesive layer 250 and the second adhesive layer 350 have both ends in the width direction located outside the both ends in the width direction of the polarizing film, and the first and second protective films 200 and 300. These widths are adjusted and formed so as to be located inside the both ends in the width direction.
  • both end portions in the width direction are between the first protective film 200 and the second protective film 300.
  • the width of the first and second adhesive layers 250 and 350 is the width of the polarizing film (base film 100) to such an extent that the adhesive layer is formed up to a part of this portion. Is wider than.
  • the adhesive layer is uniformly distributed over the entire bonding surface of the polarizing film with the first and second protective films 200 and 300 without causing the absence of the adhesive layer. Since it is formed, the polarizing laminated film excellent in the adhesiveness between the polarizing film and the first and second protective films 200 and 300, and thus the adhesiveness between the polarizer layer 110 and the first and second protective films 200 and 300. Can be stably produced.
  • the adhesive from protruding from the end in the width direction of the laminated film at the time of film bonding and the contamination of the pressure bonding apparatus such as a bonding roll.
  • the first and second protective films 200 and 300 contamination of the crimping apparatus due to the protruding adhesive and contamination of the surface of the laminated film is prevented.
  • the polarizing laminated film, and thus the polarizing plate can be produced stably and continuously.
  • the polarizing film and the first and second protective films 200 and 300 include, for example, an adhesive S between the polarizing film and the first protective film 200, and between the polarizing film and the second protective film 300, respectively.
  • the first protective film 200 is applied on at least one film to which the adhesive T is supplied or bonded, and then the first adhesive layer 250 made of the adhesive S is provided on one surface of the polarizing film.
  • the second protective film 300 is laminated on the other surface via the second adhesive layer 350 made of the adhesive T to form a laminated film, and the laminated film is passed between a pair of bonding rolls. Bonding can be performed by a method of pressure bonding using a pressure bonding apparatus.
  • Adhesive supply method Adhesive on at least one film adhesive surface by casting method, Meyer bar coating method, gravure coating method, comma coater method, doctor plate method, die coating method, dip coating method, spraying method, etc. The method of coating etc. can be mentioned. Any of the above methods enables continuous supply and continuous coating of the adhesive.
  • the supply amount or coating amount of the adhesive In order to adjust the width of the first and second adhesive layers 250 and 350 to the predetermined width, the supply amount or coating amount of the adhesive, the pressure applied by the pressure bonding device (when using the bonding roll, the bonding What is necessary is just to adjust the distance between joint rolls), the conveyance speed of a film, etc.
  • the adhesive when continuous bonding is performed using the long polarizing film and the first and second protective films 200 and 300, the adhesive is continuously supplied between the films, while being laminated through the adhesive layer. It is possible to carry out the bonding process while continuously sucking the excess adhesive overflowing from the width direction end of the film using a suction device. In this case, adjust the suction amount of the adhesive.
  • the width of the first and second adhesive layers 250 and 350 can be adjusted.
  • the second protective film does not go through the second adhesive layer in the bonding step S40 (with the side having the polarizer layer in the polarizing film; May be disposed directly on the polarizing film (without supplying adhesive T between the opposite surface and the second protective film), but is preferably disposed via the second adhesive layer.
  • the first and second protective films 200 and 300 are polarizing at both ends in the width direction of the first adhesive layer 250, respectively. It arrange
  • first and second protective film As the first and second protection films 200 and 300, those are the width W 2, W 3 thereof, as described above wider than the width W 1 of the polarizing film (base film 100) is used (W 2, W 3> W 1).
  • the widths W 2 and W 3 may be the same or different, but are usually the same width.
  • the difference between the widths W 2 and W 3 and the width W 1 is that the portion where the polarizing film does not exist between the first protective film 200 and the second protective film 300 at the both end portions in the width direction of the laminated film is sufficient.
  • it is preferably 40 mm or more, and more preferably 80 mm or more.
  • the length in the width direction of the portion where the polarizing film does not exist is preferably 20 mm or more, and more preferably 40 mm or more for each of both end portions in the width direction of the laminated film.
  • width W 2 W 3 since there is a disadvantage in terms of productivity becomes large portion to be cut and removed in the removing step S50 to be described later (effective use of raw materials), and a width W 2, W 3
  • the difference from the width W 1 is preferably 100 cm or less, more preferably 60 cm or less, and even more preferably 40 cm or less.
  • the first and second protective films 200 and 300 are, for example, polyolefin resins such as chain polyolefin resin (polypropylene resin, etc.) and cyclic polyolefin resin (norbornene resin, etc.); cellulose triacetate, cellulose diacetate, etc. Cellulose ester-based resins; Polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; Polycarbonate resins; (Meth) acrylic resins; or a mixture or copolymer thereof. . Examples of commercially available products of cyclic polyolefin resin and film thereof, and cellulose triacetate are as described above.
  • the first protective film 200 and the second protective film 300 may be made of the same material or different materials.
  • the first and / or second protective films 200 and 300 may be protective films having an optical function such as a retardation film and a brightness enhancement film.
  • a retardation film provided with an arbitrary retardation value by stretching a transparent resin film made of the above material (uniaxial stretching or biaxial stretching) or forming a liquid crystal layer or the like on the film. It can be.
  • the thickness of the first and second protective films 200 and 300 is preferably 90 ⁇ m or less, and more preferably 50 ⁇ m or less, from the viewpoint of thinning the polarizing laminated film and the polarizing plate. On the other hand, from the viewpoint of securing strength, the thickness of the first and second protective films 200 and 300 is preferably 5 ⁇ m or more.
  • the primer surface, plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification are applied to the adhesive surfaces of the first and second protective films 200 and 300. It is preferable to perform surface treatment such as treatment. Of these, corona treatment and saponification treatment that can be carried out relatively easily are suitable. Examples of the saponification treatment include a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.
  • the surface treatment so as to obtain a sufficient effect of improving the adhesion depending on the types of resins constituting the first and second protective films 200 and 300.
  • a cellulose ester resin film is used, a saponification treatment is effective.
  • a film made of a chain polyolefin resin such as a polypropylene resin, a cyclic polyolefin resin, a polyester resin, a polycarbonate resin or a (meth) acrylic resin
  • a corona treatment is effective. .
  • a surface treatment may be applied to the adhesive surface of the polarizing film instead of or along with the surface treatment of the protective film.
  • An optical layer such as a hard coat layer, an antiglare layer, or an antireflection layer can be formed on the surface of the first and / or second protective film 200, 300 opposite to the polarizer layer.
  • the method for forming these optical layers on the surface of the protective film is not particularly limited, and a known method can be used.
  • the optical layer may be formed in advance on the protective film prior to the bonding step S40, or after the bonding step S40, after the removal step S50 or after the peeling step S60. Also good.
  • adhesive S used for bonding with the 1st protective film 200 and a polarizing film adhesive T used as needed for bonding with the 2nd protective film 300 and a polarizing film, water system adhesion An agent or a photocurable adhesive can be used.
  • the adhesive S and the adhesive T may be the same type or different types, but it is preferable to use the same type of adhesive from the viewpoint of production efficiency.
  • water-based adhesive examples include an adhesive made of a polyvinyl alcohol-based resin aqueous solution and a water-based two-component urethane emulsion adhesive.
  • an adhesive made of a polyvinyl alcohol-based resin aqueous solution and a water-based two-component urethane emulsion adhesive.
  • a water-based adhesive comprising a polyvinyl alcohol-based resin aqueous solution.
  • Polyvinyl alcohol resins include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • a polyvinyl alcohol copolymer obtained by saponifying a polymer or a modified polyvinyl alcohol polymer obtained by partially modifying a hydroxyl group thereof can be used.
  • the water-based adhesive can contain additives such as polyhydric aldehydes, water-soluble epoxy compounds, melamine compounds, zirconia compounds, and zinc compounds.
  • additives such as polyhydric aldehydes, water-soluble epoxy compounds, melamine compounds, zirconia compounds, and zinc compounds.
  • the thickness of the adhesive layer obtained therefrom is usually 1 ⁇ m or less.
  • the film is dried to remove the water contained in the aqueous adhesive. It is preferable to carry out a drying step. Drying can be performed by introducing the film into a drying oven.
  • the drying temperature (drying furnace temperature) is preferably 30 to 90 ° C. If the temperature is lower than 30 ° C., the polarizing film and the protective film tend to be peeled off. On the other hand, if the drying temperature exceeds 90 ° C., the polarization performance may be deteriorated by heat.
  • the drying time can be 10 to 1000 seconds, and from the viewpoint of productivity, it is preferably 60 to 750 seconds, and more preferably 150 to 600 seconds.
  • a curing step of curing at room temperature or slightly higher temperature, for example, at a temperature of about 20 to 45 ° C. for about 12 to 600 hours may be provided.
  • the curing temperature is generally set lower than the drying temperature.
  • the above drying step and curing step may be performed before the removal step S50 or after the removal step S50 when performing the removal step S50 described later.
  • a drying process and a curing process are performed before peeling process S60.
  • the photocurable adhesive refers to an adhesive that is cured by irradiating active energy rays such as ultraviolet rays, for example, an adhesive containing a polymerizable compound and a photopolymerization initiator, an adhesive containing a photoreactive resin, and a binder.
  • active energy rays such as ultraviolet rays
  • an adhesive containing a polymerizable compound and a photopolymerization initiator an adhesive containing a photoreactive resin
  • a binder containing resin and a photoreactive crosslinking agent
  • the thing containing resin and a photoreactive crosslinking agent can be mentioned.
  • the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable acrylic monomer, and a photocurable urethane monomer, and oligomers derived from the photopolymerizable monomer.
  • photoinitiator what contains the substance which generate
  • active species such as a neutral radical, an anion radical, and a cation radical by irradiation of active energy rays, such as an ultraviolet-ray
  • the photocurable adhesive containing a polymerizable compound and a photopolymerization initiator an adhesive containing a photocurable epoxy monomer and a photocationic polymerization initiator can be preferably used.
  • undulation may occur in the uncoated region in the stretching step S20 or the like.
  • the bonding step S40 is performed using a photocurable adhesive in a state where such undulation has occurred, a part of the photocurable adhesive accumulates in the undulated portion, and yellowing deterioration due to heat during irradiation with active energy rays There is a risk. Therefore, it is preferable to remove the uncoated region from the viewpoint of avoiding this yellowing deterioration.
  • a drying process is performed as necessary (the photocurable adhesive is Next, a curing step of curing the photocurable adhesive by irradiating active energy rays is performed.
  • the light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable.
  • the low-pressure mercury lamp, the medium-pressure mercury lamp, the high-pressure mercury lamp, the ultrahigh-pressure mercury lamp, the chemical lamp, and the black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferably used.
  • the light irradiation intensity to the photocurable adhesive is appropriately determined depending on the composition of the photocurable adhesive, and the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW / cm 2. It is preferable to set to. When the irradiation intensity is 0.1 mW / cm 2 or more, the reaction time does not become too long, and when the irradiation intensity is 6000 mW / cm 2 or less, the light emitted from the light source and the heat generated during the curing of the photocurable adhesive There is little risk of yellowing of the curable adhesive and deterioration of the polarizer layer.
  • the light irradiation time to the photocurable adhesive is also determined appropriately depending on the composition of the photocurable adhesive, and the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10 to 10,000 mJ / cm 2. It is preferable to set to. When the integrated light amount is 10 mJ / cm 2 or more, a sufficient amount of active species derived from the polymerization initiator can be generated to advance the curing reaction more reliably, and when it is 10000 mJ / cm 2 or less, the irradiation time is long. It does not become too much and good productivity can be maintained.
  • the thickness of the adhesive layer after irradiation with active energy rays is usually about 0.001 to 5 ⁇ m, preferably 0.01 to 2 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • the drying step and the curing step may be performed before the removal step S50 or after the removal step S50 when performing the removal step S50 described later.
  • a drying process and a hardening process are performed before peeling process S60.
  • Removal step S50 This step is a step of removing both ends in the width direction of the polarizing laminated film obtained through the bonding step S40 (or drying step, curing step or curing step) by cutting.
  • This process also has a long polarizing property obtained by continuously performing a removing process while conveying a long polarizing laminated film obtained through the bonding step S40 or through the bonding step S40. It can be carried out continuously by winding the laminated film once in a roll and continuously removing the polarizing laminated film from the roll body while continuously removing it.
  • This step can be omitted when the polarizing laminated film obtained through the bonding step S40 is used as it is as a polarizing element, but from the polarizing laminated film obtained through the bonding step S40. This is an essential step when a polarizing plate is produced (that is, when the peeling step S60 is performed).
  • FIG. 3 is the position at both ends in the width direction of the polarizer layer 110 or the position inside thereof, that is, the first protective film 200 and the second protective film 300. And a portion directly bonded by an adhesive layer (with no polarizing film interposed), and the polarizing film has uncoated regions 120 and 130 (regions where the polarizer layer 110 is not formed). In this case, it is a position where at least a portion where the protective film and the base film are directly bonded by the adhesive layer (without the polarizer layer 110 interposed) can be removed.
  • the base film 100 can be easily peeled from the polarizer layer 110 in the peeling step S60.
  • Removal of both end portions in the film width direction can be performed by a die cutting method or a slit method using a slitter.
  • the slit method which can perform a removal process continuously with respect to a elongate polarizing laminated film is preferable.
  • Examples of the slit method include a method using a razor blade called a leather blade as a slitter.
  • the slitting method using a razor blade includes a hollow cutting method that slits in the air without providing a backup guide; a grooved roll method that stabilizes the meandering of the slit by inserting the blade into a grooved roll as a backup guide .
  • slit method is a method in which two circular blades called shear blades are used for slitting by applying contact pressure to the lower blade with the upper blade while rotating according to the conveyance of the film; There is a method of slitting by pressing a so-called blade against a quenching roll; a method of slitting while cutting like two scissors by combining two shear blades.
  • the “groove roll method using a leather blade” which is a method that can easily change the cutting (slit) position of the film and that is easy to stabilize, is preferably used.
  • the apparatus used for the removal step S50 is not so large, it can be incorporated in the inline of any of the above steps S10 to S40. For example, if a slitter is arrange
  • a slitter may be installed in a device called a rewinder that performs roll rewinding.
  • the polarizing laminated film from which both end portions in the film width direction are removed can be used as a polarizing element as it is, and a polarizing plate comprising a polarizer layer and a protective film is prepared (subjected to a peeling step S60 described later). It is also useful as an intermediate.
  • the manufacturing method of the polarizing plate of this invention contains the process of preparing the above-mentioned polarizing film, bonding process S40, removal process S50, and peeling process S60 (refer FIG. 1). Since the steps other than the peeling step S60 are as described above, description thereof will be omitted. According to the method of the present invention, as in the case of the polarizing laminated film, the polarizer layer and the protective film are prevented from sticking out of the adhesive and accompanying contamination of the crimping device such as a bonding roll and contamination of the film surface. It is possible to stably produce a polarizing plate excellent in adhesiveness.
  • peeling step S60 In this step, referring to FIG. 4, the base film 100 is peeled off from the polarizing laminated film from which both end portions in the width direction obtained through the removing step S ⁇ b> 50 are removed, and the first protective film is formed on the polarizer layer 110. It is a step of obtaining at least a first polarizing plate to which 200 is bonded.
  • the polarizer layer 110 is formed on both surfaces of the substrate film 100, and the second protective film 300 is bonded to the polarizing film via the second adhesive layer 350 in the bonding step S ⁇ b> 40.
  • two polarizing plates that is, the first polarizing plate and the second polarizing plate in which the second protective film 300 is bonded to the polarizer layer 110 can be obtained by this step. it can.
  • the polarizer layer 110 is formed only on one surface of the base film 100 (only on the first protective film 200 side), one polarizing plate (first polarizing plate) is obtained by this step.
  • the long polarizing laminated film obtained by continuously performing the peeling treatment while carrying the long polarizing laminated film obtained through the removing step S50, or through the removing step S50. can be continuously carried out by winding the film into a roll and continuously performing a peeling treatment while continuously unwinding the polarizing laminated film from the roll.
  • the method for peeling and removing the base film is not particularly limited, and can be peeled by the same method as the separator (peeling film) peeling step performed by a normal pressure-sensitive adhesive polarizing plate.
  • FIG. 5 is a view showing an example of a peeling method of the base film in the peeling step S60, and is a top view schematically showing the relationship between the peeling direction of the base film and the orientation direction of the polarizer layer.
  • the base film 600 is peeled from the polarizing laminated film 500, and the 1st polarizing plate 700 which consists of a 1st protective film and a polarizer layer is formed.
  • the second protective film laminated on the base film 600 is omitted.
  • the orientation direction of the polarizer layer is indicated by an arrow A
  • the peeling direction of the base film 600 is indicated by an arrow B
  • the peeling direction (arrow B) of the base film 600 and the orientation direction of the polarizer layer (arrow A) are formed.
  • the angle is indicated by ⁇ .
  • the angle ⁇ formed by the peeling direction of the base film 600 (arrow B) and the orientation direction of the polarizer layer (arrow A) is 20 degrees or less, preferably 10 degrees or less, more preferably 5 degrees or less (for example, 0 It is preferable to peel so that it may become (degree).
  • the orientation direction of the polarizer layer is a direction in which the main chains of the polyvinyl alcohol-based resin constituting the polarizer layer are aligned by stretching, and is the direction having the highest refractive index in the plane of the polarizer layer.
  • the angle ⁇ p formed by the polarizing laminated film 500 and the first polarizing plate 700 before peeling the base film is It is preferable to peel the base film 600 so as to be smaller than the angle ⁇ k formed by the polarizing laminated film 500 and the base film 600 before peeling the base film.
  • ⁇ p is preferably 45 degrees or less, more preferably 0 degrees.
  • FIG. 6 shows a state in which the base film 600 and the first polarizing plate 700 are peeled off at an angle in the opposite direction with respect to the polarizing laminated film 500 at the peeling point C.
  • the base film 600 and the first polarizing plate 700 may be peeled so as to form an angle in the same direction with respect to the conductive laminated film 500. Even in this case, the above-described conditions regarding the angles ⁇ p and ⁇ k are effective. It is.
  • the base film was peeled from the light-polarizing laminated film and the method of obtaining a 1st polarizing plate was described, it peeled a base film from a light-polarizing laminated film, and was 2nd.
  • the polarizing plate produced as described above can be used as an optical film in which other optical layers are laminated in practical use. Moreover, the said protective film may have a function of these optical layers.
  • a reflective polarizing film that transmits a certain kind of polarized light and reflects polarized light having the opposite properties; a film with an antiglare function having an uneven shape on the surface; a film with a surface antireflection function A reflective film having a reflective function on the surface; a transflective film having both a reflective function and a transmissive function; and a viewing angle compensation film.
  • DBEF (available from 3M, Sumitomo 3M Co., Ltd.) can be used as a commercial product equivalent to a reflective polarizing film that transmits certain types of polarized light and reflects polarized light that exhibits the opposite properties.
  • APF (manufactured by 3M, available from Sumitomo 3M Limited).
  • the viewing angle compensation film examples include an optical compensation film in which a liquid crystal compound is applied to the substrate surface and oriented, a retardation film made of a polycarbonate resin, and a retardation film made of a cyclic polyolefin resin.
  • the total thickness of the base film was 100 ⁇ m, and the thickness ratio (FLX80E4 / W151 / FLX80E4) of each layer was 3/4/3.
  • Polyvinyl alcohol powder (“Z-200” manufactured by Nippon Synthetic Chemical Industry Co., Ltd., average polymerization degree 1100, average saponification degree 99.5 mol%) is 95 ° C. It melt
  • a crosslinking agent (“SUMILES RESIN 650” manufactured by Sumitomo Chemical Co., Ltd.)
  • polyvinyl alcohol powder (“PVA124” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, average saponification degree 98.0 to 99.0 mol%) was dissolved in hot water at 95 ° C. to obtain a polyvinyl alcohol having a concentration of 8% by weight.
  • An aqueous alcohol solution was prepared.
  • a film having a primer layer with a thickness of 0.2 ⁇ m on both sides was prepared by continuously applying the coating liquid for application and drying at 80 ° C. for 10 minutes.
  • the polyvinyl alcohol aqueous solution was continuously applied onto the primer layers on both sides using a comma coater and dried at 80 ° C. for 5 minutes to obtain a thickness of 10.
  • a 6 ⁇ m polyvinyl alcohol resin layer was formed.
  • the part of 1 cm is made into the uncoated area
  • the polarizing film is continuously unwound from the polarizing film roll obtained in the above (4), and the first protective film [transparent protective film composed of triacetylcellulose (TAC) (TAC) ( Konica Minolta Opto Co., Ltd. “KC4UY”)] was continuously unwound from the second protective film roll.
  • TAC triacetylcellulose
  • K4UY Konica Minolta Opto Co., Ltd. “KC4UY”
  • both width direction both ends of both adhesive layers are located outside the width direction both ends of the polarizing film, respectively, and so as to be located inside the width direction both ends of the first and second protective films, The supply amount of the adhesive solution on both sides was adjusted.
  • This polarizing laminated film is composed of nine layers: first protective film / adhesive layer / polarizer layer / primer layer / base film / primer layer / polarizer layer / adhesive layer / second protective film.
  • the obtained polarizing laminated film was in a good state with no sticking out of the adhesive from the end of the film and adhesion of the adhesive to the outer surfaces of the first and second protective films. Moreover, the contamination by the adhesive was not recognized also about the bonding roll.
  • the base film was continuously peeled and removed at the base film / primer layer interface, and “(first or second) protective film / adhesive layer / Two polarizing plates having a configuration of “polarizer layer / primer layer” were obtained.
  • the above angles ⁇ , ⁇ p, and ⁇ k at the peeling point between the base film and the polarizing plate are 0 degree, 0 degree, and 45 degrees, respectively. The degree.
  • the base film could be peeled relatively easily.
  • the polarizing film is continuously unwound from the polarizing film roll, and the first protective film from the first protective film roll [transparent protective film made of triacetyl cellulose (TAC) ("KC4UY” manufactured by Konica Minolta Opto Co., Ltd.)
  • TAC triacetyl cellulose
  • the second protective film [same as the first protective film] was continuously unwound from the second protective film roll.
  • the first protective film is provided on one surface of the polarizing film
  • the second protective film is provided on the other surface, and both protective films.
  • the supply amount of the adhesive solution on both sides was adjusted so that the adhesive was spread over the entire bonding surface of the polarizing film.
  • the adhesive rolls out little by little from the end in the film width direction due to the meandering of the film during transportation and fluctuations in the supply amount of the adhesive solution. I got stuck to it.
  • the adhesive attached to the bonding roll began to be transferred to the outer surfaces of the first and second protective films, and the contamination on the surfaces began to be noticeable.
  • the adhesive layer of the obtained polarizing laminated film was confirmed, in addition to the portion protruding from the end in the film width direction, despite the adjustment of the supply amount of the adhesive solution as described above, the adhesive layer The part which edge part exists inside the film width direction edge part (namely, part which an adhesive layer does not exist between a polarizer layer and a protective film) was recognized. Due to the difference in drying shrinkage due to such non-uniformity of the adhesive layer, undulation was generated at the widthwise end of the polarizing laminated film.

Abstract

Provided are a production method for a polarizing laminated film and a production method for a polarizing plate using the polarizing laminated film obtained using said method. The production method for the polarizing laminated film includes: a step in which a polarizing film comprising a polarizer layer upon a base material film is prepared; and a step in which a first protective film wider than the polarizing film is arranged upon the polarizer layer in the polarizing film via a first adhesive layer, and a second protective film wider than the polarizing film is arranged upon the other surface of the polarizing film. The first and second protective films are arranged such that: both ends in the width direction of the first and second protective films are positioned further on the outside than both ends in the width direction of the polarizing film; and both ends in the width direction of the first adhesive layer are positioned further on the outside than both ends in the width direction of the polarizing film, and further on the inside than both ends in the width direction of the first and second protective films.

Description

偏光性積層フィルムの製造方法及び偏光板の製造方法Method for producing polarizing laminated film and method for producing polarizing plate
 本発明は、偏光性積層フィルムの製造方法及び偏光板の製造方法に関する。 The present invention relates to a method for producing a polarizing laminated film and a method for producing a polarizing plate.
 偏光板は、液晶表示装置における偏光の供給素子として、また偏光の検出素子として広く用いられている。従来、偏光板としては主に、ポリビニルアルコール系偏光フィルムに接着剤を介してトリアセチルセルロースなどからなる保護フィルムを貼合したものが使用されているが、近年、液晶表示装置のノート型パーソナルコンピュータや携帯電話などモバイル機器への展開、さらには大型テレビへの展開などに伴い、偏光板の薄型軽量化が求められている。 The polarizing plate is widely used as a polarized light supplying element and a polarized light detecting element in a liquid crystal display device. Conventionally, as a polarizing plate, a polarizing plate in which a protective film made of triacetyl cellulose or the like is bonded to a polyvinyl alcohol polarizing film through an adhesive has been used. In recent years, notebook personal computers for liquid crystal display devices have been used. With the development of mobile devices such as mobile phones and mobile phones, as well as the development of large televisions, there is a demand for thinner and lighter polarizing plates.
 例えば特開2000-338329号公報(特許文献1)には、薄型の偏光板を製造する方法として、基材フィルムの片面にポリビニルアルコール系樹脂を含む溶液を塗布して樹脂層を形成した後一軸延伸し、次いで染色することにより偏光子層を有するフィルムを得、その後該フィルムの偏光子層側に接着剤を介して保護フィルムを貼合し、偏光性積層フィルムとした後、基材フィルムを剥離除去する偏光板の製造方法が開示されている。 For example, in Japanese Patent Laid-Open No. 2000-338329 (Patent Document 1), as a method of manufacturing a thin polarizing plate, a resin layer is formed by applying a solution containing a polyvinyl alcohol-based resin on one side of a base film, and then uniaxially. A film having a polarizer layer is obtained by stretching and then dyeing, and then a protective film is bonded to the polarizer layer side of the film via an adhesive to form a polarizing laminated film, and then a base film is prepared. A method of manufacturing a polarizing plate for peeling and removing is disclosed.
特開2000-338329号公報JP 2000-338329 A
 偏光子層を有するフィルムと保護フィルムとの貼合は、接着剤を介してこれらのフィルムを積層し、得られた積層体を例えば一対の貼合ロール間に通すなど、積層体を圧着して行うのが一般的である。しかしながら積層体の圧着時、その幅方向端部から接着剤がはみ出し(漏れ出し)、貼合ロールなどの圧着装置が汚染されるという問題があった。この問題は、長尺の基材フィルム及び保護フィルムを用いて長尺の偏光性積層フィルムや偏光板を連続製造する場合においてとりわけ深刻であり、かかる連続製造では、貼合ロールなどの圧着装置に付着した接着剤が次第に上記積層体の外側表面(圧着装置との接触面)に転写されるようになり、偏光性積層フィルム及び偏光板自体が汚染されてしまうことがあった。 The film having the polarizer layer and the protective film are laminated by laminating these films via an adhesive and pressing the laminated body, for example, passing the obtained laminated body between a pair of bonding rolls. It is common to do it. However, at the time of pressure bonding of the laminated body, there is a problem that the adhesive protrudes (leaks out) from the end in the width direction, and the pressure bonding apparatus such as a bonding roll is contaminated. This problem is particularly serious in the case of continuously producing a long polarizing laminated film and a polarizing plate using a long base film and a protective film, and in such continuous production, in a crimping device such as a bonding roll. The adhering adhesive gradually transferred to the outer surface of the laminate (contact surface with the crimping device), and the polarizing laminate film and the polarizing plate itself might be contaminated.
 一方、積層体端部からの接着剤のはみ出しを抑制するために、接着剤の供給量を少なくし、積層体の圧着時、幅方向の両端部分に接着剤が介在しないようにすると、当該両端部分に接着不良が生じてしまうことがあった。 On the other hand, in order to prevent the adhesive from protruding from the end of the laminated body, the amount of adhesive supplied is reduced, and when the laminated body is crimped, the adhesive is not interposed at both ends in the width direction. In some cases, adhesion failure occurred in the portion.
 そこで本発明の目的は、保護フィルム貼合の際、フィルム両端部分の接着不良を防止しながら、接着剤による圧着装置やフィルム表面の汚染を防止することができる偏光性積層フィルム及び偏光板の製造方法を提供することにある。 Therefore, the purpose of the present invention is to produce a polarizing laminated film and a polarizing plate that can prevent a contamination of a pressure bonding apparatus or a film surface with an adhesive while preventing adhesion failure at both end portions of the protective film when bonding. It is to provide a method.
 本発明は下記のものを含む。
 [1] 基材フィルムの少なくとも一方の面に、二色性色素が吸着配向されたポリビニルアルコール系樹脂層からなり、前記基材フィルムの幅と同じであるか又はこれより幅の狭い偏光子層を備える偏光性フィルムを用意する工程と、
 前記偏光性フィルムの一方の面上であって、基材フィルムの前記一方の面に設けられた偏光子層上に第1接着剤層を介して、前記偏光性フィルムよりも幅広の第1保護フィルムを配置し、前記偏光性フィルムの他方の面上に前記偏光性フィルムよりも幅広の第2保護フィルムを配置して偏光性積層フィルムを得る工程と、を含み、
 前記第1及び第2保護フィルムの幅方向両端がそれぞれ前記偏光性フィルムの幅方向両端よりも外側に位置するとともに、前記第1接着剤層の幅方向両端がそれぞれ前記偏光性フィルムの幅方向両端よりも外側に位置し、かつ前記第1及び第2保護フィルムの幅方向両端よりも内側に位置するように、前記第1及び第2保護フィルムを配置する偏光性積層フィルムの製造方法。
The present invention includes the following.
[1] A polarizer layer comprising a polyvinyl alcohol-based resin layer in which a dichroic dye is adsorbed and oriented on at least one surface of a base film, and having a width equal to or narrower than the width of the base film. Preparing a polarizing film comprising:
The first protection wider than the polarizing film on the one surface of the polarizing film and on the polarizer layer provided on the one surface of the base film via the first adhesive layer. Disposing a film, disposing a second protective film wider than the polarizing film on the other surface of the polarizing film to obtain a polarizing laminated film,
The width direction both ends of the first and second protective films are located outside the width direction both ends of the polarizing film, and the width direction both ends of the first adhesive layer are respectively width direction both ends of the polarizing film. The manufacturing method of the light-polarizing laminated film which arrange | positions the said 1st and 2nd protective film so that it may be located outside rather than the width direction both ends of the said 1st and 2nd protective film.
 [2] 前記第1及び第2保護フィルムを配置する工程の後に、前記偏光子層の幅方向両端の位置又はこれより内側の位置で切断することにより、前記偏光性積層フィルムの幅方向両端部分を除去する工程をさらに含む[1]に記載の偏光性積層フィルムの製造方法。 [2] After the step of disposing the first and second protective films, the both ends of the polarizing laminated film in the width direction are cut by cutting at the positions at the both ends of the polarizer layer in the width direction or at positions inside thereof. The manufacturing method of the polarizing laminated film as described in [1] which further includes the process of removing.
 [3] 前記偏光性フィルムを用意する工程は、
 前記基材フィルムの少なくとも一方の面にポリビニルアルコール系樹脂を含有する塗工液を塗工することによりポリビニルアルコール系樹脂層を形成する工程と、
 ポリビニルアルコール系樹脂層を有する基材フィルムを一軸延伸する工程と、
 一軸延伸されたフィルムのポリビニルアルコール系樹脂層を二色性色素で染色して偏光子層とする工程と、を含む[1]に記載の偏光性積層フィルムの製造方法。
[3] The step of preparing the polarizing film includes:
Forming a polyvinyl alcohol-based resin layer by applying a coating liquid containing a polyvinyl alcohol-based resin on at least one surface of the base film;
Uniaxially stretching a substrate film having a polyvinyl alcohol-based resin layer;
The method for producing a polarizing laminated film according to [1], comprising a step of dyeing a polyvinyl alcohol-based resin layer of a uniaxially stretched film with a dichroic dye to form a polarizer layer.
 [4] [2]に記載の方法により製造された偏光性積層フィルムを用意する工程と、
 前記偏光性積層フィルムから前記基材フィルムを剥離除去して、前記偏光子層に前記第1保護フィルムが貼合された第1偏光板を得る工程と、を含む偏光板の製造方法。
[4] A step of preparing a polarizing laminated film produced by the method according to [2];
Removing the substrate film from the polarizing laminate film to obtain a first polarizing plate in which the first protective film is bonded to the polarizer layer.
 [5] 前記偏光性フィルムは、前記基材フィルムの両面に前記偏光子層を備えており、
 前記第1及び第2保護フィルムを配置する工程において前記第2保護フィルムは、前記偏光性フィルムの他方の面上に第2接着剤層を介して、前記第2接着剤層の幅方向両端がそれぞれ前記偏光性フィルムの幅方向両端よりも外側に位置し、かつ前記第1及び第2保護フィルムの幅方向両端よりも内側に位置するように配置され、
 前記偏光性積層フィルムから前記基材フィルムを剥離除去して、前記第1偏光板と、前記偏光子層に前記第2保護フィルムが貼合された第2偏光板とを得る[4]に記載の偏光板の製造方法。
[5] The polarizing film includes the polarizer layers on both sides of the base film,
In the step of disposing the first and second protective films, the second protective film has both ends in the width direction of the second adhesive layer on the other surface of the polarizing film via the second adhesive layer. Each of the polarizing films is disposed outside the both ends in the width direction, and disposed inside the both ends in the width direction of the first and second protective films,
The said base film is peeled and removed from the said polarizing laminated film, and the said 1st polarizing plate and the 2nd polarizing plate by which the said 2nd protective film was bonded to the said polarizer layer are obtained [4]. Manufacturing method of this polarizing plate.
 本発明の方法によれば、フィルム端部からの接着剤のはみ出しを防止しつつ、偏光性フィルムの保護フィルムとの貼合面全面にわたって均一に接着剤層を形成することができる。したがって本発明の偏光性積層フィルム及び偏光板の方法によれば、保護フィルム貼合の際、フィルム両端部分の接着不良を防止しながら、接着剤による圧着装置やフィルム表面の汚染を防止することができる。 According to the method of the present invention, the adhesive layer can be uniformly formed over the entire surface of the polarizing film with the protective film while preventing the adhesive from protruding from the end of the film. Therefore, according to the polarizing laminated film and the polarizing plate method of the present invention, when the protective film is bonded, it is possible to prevent the adhesion of the both ends of the film and the contamination of the pressure bonding device and the film surface by the adhesive. it can.
本発明に係る偏光性積層フィルムの製造方法及び偏光板の製造方法の好ましい実施形態を示すフローチャートである。It is a flowchart which shows preferable embodiment of the manufacturing method of the light-polarizing laminated film which concerns on this invention, and the manufacturing method of a polarizing plate. 貼合工程の一例を模式的に示す斜視図である。It is a perspective view which shows an example of a bonding process typically. 貼合工程において偏光性フィルムに第1及び第2保護フィルムが貼合された状態の一例を示す概略上面図である。It is a schematic top view which shows an example of the state by which the 1st and 2nd protective film was bonded by the polarizing film in the bonding process. 図3に示されるIV-IV線における概略断面図である。FIG. 4 is a schematic sectional view taken along line IV-IV shown in FIG. 3. 剥離工程における基材フィルムの剥離方向と偏光子層の配向方向の関係を模式的に示す上面図である。It is a top view which shows typically the relationship between the peeling direction of the base film in a peeling process, and the orientation direction of a polarizer layer. 剥離点における、偏光性積層フィルムと第1偏光板のなす角度φpと、偏光性積層フィルムと基材フィルムのなす角度φkとの関係を模式的に示す側面図である。It is a side view which shows typically the relationship between angle (phi) p which a polarizing laminated film and a 1st polarizing plate make in a peeling point, and angle (phi) k which a polarizing laminated film and a base film form.
 以下、実施の形態を示して本発明に係る偏光性積層フィルムの製造方法及び偏光板の製造方法について詳細に説明する。 Hereinafter, embodiments of the polarizing laminate film manufacturing method and polarizing plate manufacturing method according to the present invention will be described in detail.
 <偏光性積層フィルムの製造方法>
 図1は、本発明に係る偏光性積層フィルムの製造方法及び偏光板の製造方法の好ましい実施形態を示すフローチャートである。
<Method for producing polarizing laminated film>
FIG. 1 is a flowchart showing a preferred embodiment of a method for producing a polarizing laminate film and a method for producing a polarizing plate according to the present invention.
 本実施形態の偏光性積層フィルムの製造方法は、基材フィルムの少なくとも一方の面に偏光子層を備える偏光性フィルムを用意する工程と、偏光性フィルムの一方の面上であって、基材フィルムの上記一方の面に設けられた偏光子層上に第1接着剤層を介して第1保護フィルムを貼合、配置し、偏光性フィルムの他方の面上に第2保護フィルムを配置して偏光性積層フィルムを得る貼合工程S40と、偏光性積層フィルムの幅方向両端部分を除去する除去工程S50とをこの順で含む。 The manufacturing method of the light-polarizing laminated film of the present embodiment includes a step of preparing a light-polarizing film having a polarizer layer on at least one surface of the base material film, and one surface of the light-polarizing film. A first protective film is bonded and disposed on the polarizer layer provided on the one surface of the film via a first adhesive layer, and a second protective film is disposed on the other surface of the polarizing film. Thus, a laminating step S40 for obtaining a polarizing laminated film and a removing step S50 for removing both end portions in the width direction of the polarizing laminated film are included in this order.
 また本実施形態において上記偏光性フィルムを用意する工程は、基材フィルムの少なくとも一方の面にポリビニルアルコール系樹脂層を形成する樹脂層形成工程S10と、ポリビニルアルコール系樹脂層を有する基材フィルムを一軸延伸する延伸工程S20と、一軸延伸されたフィルムのポリビニルアルコール系樹脂層を二色性色素で染色して偏光子層とする染色工程S30とをこの順で含む。 In the present embodiment, the step of preparing the polarizing film includes a resin layer forming step S10 for forming a polyvinyl alcohol-based resin layer on at least one surface of the substrate film, and a substrate film having a polyvinyl alcohol-based resin layer. A stretching step S20 for uniaxial stretching and a staining step S30 for staining the polyvinyl alcohol resin layer of the uniaxially stretched film with a dichroic dye to form a polarizer layer are included in this order.
 上記貼合工程S40において、第1及び第2保護フィルムには偏光性フィルムよりも幅広のものが用いられる。第1、第2保護フィルムは、それらの幅方向両端がそれぞれ偏光性フィルムの幅方向両端よりも外側に位置するように偏光性フィルム上に配置される。この際、第1接着剤層の幅は、第1接着剤層の幅方向両端がそれぞれ偏光性フィルムの幅方向両端よりも外側に位置し、かつ第1及び第2保護フィルムの幅方向両端よりも内側に位置するように調整される。 In the said bonding process S40, a thing wider than a polarizing film is used for a 1st and 2nd protective film. The first and second protective films are arranged on the polarizing film such that both ends in the width direction are located outside the both ends in the width direction of the polarizing film. At this time, the width of the first adhesive layer is such that both ends in the width direction of the first adhesive layer are located outside both ends in the width direction of the polarizing film and both ends in the width direction of the first and second protective films. Is also adjusted to be located inside.
 なお後述するように、本実施形態において偏光板は、除去工程S50までを実施して得られる幅方向両端部分が除去された偏光性積層フィルムから基材フィルムを剥離除去することによって得ることができる(剥離工程S60)。 As will be described later, in the present embodiment, the polarizing plate can be obtained by peeling and removing the base film from the polarizing laminated film from which both end portions in the width direction obtained by carrying out the removing step S50 are removed. (Peeling step S60).
 以下、本実施形態の偏光性積層フィルムの製造方法が備えるS10~S50の各工程についてより詳細に説明する。 Hereinafter, each step of S10 to S50 included in the method for producing a polarizing laminated film of the present embodiment will be described in more detail.
 〔1〕樹脂層形成工程S10
 本工程は、基材フィルムの少なくとも一方の表面上にポリビニルアルコール系樹脂層を形成する工程である。このポリビニルアルコール系樹脂層は、延伸工程S20及び染色工程S30を経て偏光子層となる層である。本工程は、長尺の基材フィルムを巻き回してなるロール体から基材フィルムを連続的に巻き出し、巻き出された基材フィルム上に連続的にポリビニルアルコール系樹脂層を形成することにより連続的に実施することができる。
[1] Resin layer forming step S10
This step is a step of forming a polyvinyl alcohol-based resin layer on at least one surface of the base film. This polyvinyl alcohol-based resin layer is a layer that becomes a polarizer layer through the stretching step S20 and the dyeing step S30. In this step, the base film is continuously unwound from a roll body formed by winding a long base film, and a polyvinyl alcohol-based resin layer is continuously formed on the unwound base film. It can be carried out continuously.
 ポリビニルアルコール系樹脂層は、ポリビニルアルコール系樹脂を含有する塗工液を基材フィルム表面に塗工し、必要に応じて塗工層を乾燥させることにより形成することができる。このような方法によれば、ポリビニルアルコール系樹脂層、ひいては偏光子層の厚みを小さくすることができるため、偏光性積層フィルム及び偏光板の薄型化に有利である。 The polyvinyl alcohol-based resin layer can be formed by applying a coating liquid containing a polyvinyl alcohol-based resin on the surface of the base film and drying the coating layer as necessary. According to such a method, the thickness of the polyvinyl alcohol-based resin layer and thus the polarizer layer can be reduced, which is advantageous for thinning the polarizing laminated film and the polarizing plate.
 塗工液を塗工する方法は、ワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法;ダイコート法;カンマコート法;リップコート法;スピンコーティング法;スクリーンコーティング法;ファウンテンコーティング法;ディッピング法;又はスプレー法などの公知の方法から適宜選択することができる。 The method of applying the coating liquid is: wire coating method, roll coating method such as reverse coating, gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen coating method, fountain coating method, dipping Or a known method such as a spray method.
 基材フィルムとポリビニルアルコール系樹脂層との密着性を向上させるために、基材フィルムとポリビニルアルコール系樹脂層の間にプライマー層を設けてもよい。密着性の観点から、プライマー層はポリビニルアルコール系樹脂及び架橋剤などを含有する樹脂組成物から形成することが好ましい。 In order to improve adhesion between the base film and the polyvinyl alcohol resin layer, a primer layer may be provided between the base film and the polyvinyl alcohol resin layer. From the viewpoint of adhesion, the primer layer is preferably formed from a resin composition containing a polyvinyl alcohol resin and a crosslinking agent.
 塗工液を塗工する工程において、基材フィルムの幅方向両端部分に塗工液を塗工しない未塗工領域を設けてもよい。未塗工領域は、基材フィルムの幅方向両端から内側にそれぞれ0.5cm以上、20cm以下(好ましくは10cm以下)の領域であることができる。未塗工領域を設けることにより、塗工層乾燥時に生じ得る基材フィルムの幅方向両端部分の反り返りを抑制することができる。この未塗工領域は、延伸工程S20において、またはその後にフィルムを巻き取る場合はその際に、フィルムの破断を引き起こし得る波打ちを生じることがあるので、延伸工程S20に先立って、または延伸工程S20の後であってフィルムの巻き取り前に、未塗工領域を切断により除去してもよい。 In the step of applying the coating liquid, an uncoated region where the coating liquid is not applied may be provided at both ends in the width direction of the base film. An uncoated area | region can be an area | region of 0.5 cm or more and 20 cm or less (preferably 10 cm or less) respectively from the width direction both ends of a base film inside. By providing an uncoated region, it is possible to suppress warping of both end portions in the width direction of the base film that may occur when the coating layer is dried. This uncoated region may cause undulation that may cause the film to break in the stretching step S20 or in the case where the film is wound after that, prior to the stretching step S20 or in the stretching step S20. The uncoated area may be removed by cutting after the film is wound up.
 塗工液を基材フィルムの全面に塗工した場合、ポリビニルアルコール系樹脂層(したがって偏光子層)の幅は基材フィルムの幅と同じである。一方、上記未塗工領域を設けて塗工液を塗工する場合、ポリビニルアルコール系樹脂層(したがって偏光子層)の幅は基材フィルムの幅より狭くなる。 When the coating liquid is applied to the entire surface of the base film, the width of the polyvinyl alcohol-based resin layer (and hence the polarizer layer) is the same as the width of the base film. On the other hand, when providing the said uncoated area | region and applying a coating liquid, the width | variety of a polyvinyl-alcohol-type resin layer (hence, polarizer layer) becomes narrower than the width | variety of a base film.
 塗工層の乾燥は、塗工液が溶剤を含有する場合において塗工層から溶剤を除去するために実施される。乾燥温度及び乾燥時間は溶剤の種類に応じて設定される。乾燥温度は、例えば50~200℃であり、好ましくは60~150℃である。乾燥時間は、例えば2~20分である。 The coating layer is dried in order to remove the solvent from the coating layer when the coating solution contains the solvent. The drying temperature and drying time are set according to the type of solvent. The drying temperature is, for example, 50 to 200 ° C., preferably 60 to 150 ° C. The drying time is, for example, 2 to 20 minutes.
 ポリビニルアルコール系樹脂層は、基材フィルムの一方の面のみに形成してもよく、両面に形成してもよいが、1つの偏光性積層フィルムから2つの偏光板を得ることができ、偏光板の生産性向上の面で有利であることから、基材フィルムの両面にポリビニルアルコール系樹脂層を形成することが好ましい。この場合、基材フィルムの両面に上記プライマー層を形成することが好ましい。また、基材フィルムの両面にポリビニルアルコール系樹脂層を形成する場合、これらのポリビニルアルコール系樹脂層は通常、基材フィルム面内における形成位置が一致するように形成される。 The polyvinyl alcohol-based resin layer may be formed only on one side of the base film or on both sides, but two polarizing plates can be obtained from one polarizing laminated film. From the standpoint of improving productivity, it is preferable to form a polyvinyl alcohol-based resin layer on both sides of the base film. In this case, it is preferable to form the said primer layer on both surfaces of a base film. Moreover, when forming a polyvinyl alcohol-type resin layer on both surfaces of a base film, these polyvinyl alcohol-type resin layers are normally formed so that the formation position in a base film surface may correspond.
 ポリビニルアルコール系樹脂層の厚みは、3μm超かつ30μm以下であることが好ましく、さらには5~20μmが好ましい。この範囲内の厚みを有するポリビニルアルコール系樹脂層であれば、後述する延伸工程S20及び染色工程S30を経て、二色性色素の染色性が良好で偏光特性に優れ、かつ十分に厚みの小さい偏光子層を得ることができる。ポリビニルアルコール系樹脂層の厚みが30μmを超えると、偏光子層の厚みが10μmを超えることがある。 The thickness of the polyvinyl alcohol resin layer is preferably more than 3 μm and not more than 30 μm, more preferably 5 to 20 μm. If it is a polyvinyl alcohol-based resin layer having a thickness within this range, polarized light having a sufficiently small dichroic dyeing property, excellent polarization characteristics, and sufficiently small thickness through a stretching step S20 and a dyeing step S30 described later. A child layer can be obtained. When the thickness of the polyvinyl alcohol-based resin layer exceeds 30 μm, the thickness of the polarizer layer may exceed 10 μm.
 (塗工液)
 上記塗工液は、好ましくはポリビニルアルコール系樹脂の粉末を良溶媒(例えば水)に溶解させて得られるポリビニルアルコール系樹脂溶液である。ポリビニルアルコール系樹脂としては、例えば、ポリビニルアルコール樹脂及びその誘導体が挙げられる。ポリビニルアルコール樹脂の誘導体としては、ポリビニルホルマール、ポリビニルアセタールなどの他、ポリビニルアルコール樹脂をエチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸、不飽和カルボン酸のアルキルエステル、アクリルアミドなどで変性したものが挙げられる。上述のポリビニルアルコール系樹脂のなかでも、ポリビニルアルコール樹脂を用いることが好ましい。
(Coating fluid)
The coating liquid is preferably a polyvinyl alcohol resin solution obtained by dissolving a polyvinyl alcohol resin powder in a good solvent (for example, water). Examples of the polyvinyl alcohol resin include polyvinyl alcohol resins and derivatives thereof. Derivatives of polyvinyl alcohol resin include polyvinyl formal, polyvinyl acetal, etc., olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and alkyl esters of unsaturated carboxylic acids. And those modified with acrylamide or the like. Among the above-mentioned polyvinyl alcohol resins, it is preferable to use a polyvinyl alcohol resin.
 ポリビニルアルコール系樹脂の平均重合度は、100~10000が好ましく、1000~10000がより好ましい。ポリビニルアルコール系樹脂の平均ケン化度は、80~100モル%であることが好ましく、94モル%以上であることがより好ましい。 The average degree of polymerization of the polyvinyl alcohol resin is preferably 100 to 10,000, and more preferably 1000 to 10,000. The average saponification degree of the polyvinyl alcohol-based resin is preferably 80 to 100 mol%, and more preferably 94 mol% or more.
 塗工液は必要に応じて、可塑剤、界面活性剤等の添加剤を含有していてもよい。可塑剤としては、ポリオール又はその縮合物などを用いることができ、例えばグリセリン、ジグリセリン、トリグリセリン、エチレングリコール、プロピレングリコール、ポリエチレングリコールなどが例示される。添加剤の配合量は、ポリビニルアルコール系樹脂の20重量%以下とするのが好適である。 The coating liquid may contain additives such as a plasticizer and a surfactant as necessary. As the plasticizer, a polyol or a condensate thereof can be used, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, and polyethylene glycol. The blending amount of the additive is preferably 20% by weight or less of the polyvinyl alcohol resin.
 (基材フィルム)
 基材フィルムは熱可塑性樹脂から構成することができ、なかでも透明性、機械的強度、熱安定性、延伸性などに優れる熱可塑性樹脂から構成することが好ましい。このような熱可塑性樹脂の具体例は、例えば、鎖状ポリオレフィン系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂など)等のポリオレフィン系樹脂;ポリエステル系樹脂;(メタ)アクリル系樹脂;セルローストリアセテート、セルロースジアセテート等のセルロースエステル系樹脂;ポリカーボネート系樹脂;ポリビニルアルコール系樹脂;ポリ酢酸ビニル系樹脂;ポリアリレート系樹脂;ポリスチレン系樹脂;ポリエーテルスルホン系樹脂;ポリスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;及びこれらの混合物、共重合物などを含む。
(Base film)
The base film can be composed of a thermoplastic resin, and among them, it is preferably composed of a thermoplastic resin excellent in transparency, mechanical strength, thermal stability, stretchability and the like. Specific examples of such thermoplastic resins include, for example, polyolefin resins such as chain polyolefin resins and cyclic polyolefin resins (norbornene resins, etc.); polyester resins; (meth) acrylic resins; cellulose triacetate, cellulose Cellulose ester resins such as diacetate; Polycarbonate resins; Polyvinyl alcohol resins; Polyvinyl acetate resins; Polyarylate resins; Polystyrene resins; Polyethersulfone resins; Polysulfone resins; Polyamide resins; And mixtures thereof, copolymers, and the like.
 塗工液を塗工するための平滑性に優れ、また延伸工程S20における延伸性に優れるなどの理由から、基材フィルムは、鎖状ポリオレフィン系樹脂、環状ポリオレフィン系樹脂、(メタ)アクリル系樹脂及びセルロースエステル系樹脂からなる群から選択される少なくとも1つを含むことが好ましい。 The base film is composed of a chain polyolefin resin, a cyclic polyolefin resin, a (meth) acrylic resin for reasons such as excellent smoothness for applying the coating liquid and excellent stretchability in the stretching step S20. And at least one selected from the group consisting of cellulose ester resins.
 基材フィルムは、1種又は2種以上の熱可塑性樹脂からなる1つの樹脂層からなる単層構造であってもよいし、1種又は2種以上の熱可塑性樹脂からなる樹脂層を複数積層した多層構造であってもよい。 The base film may have a single-layer structure composed of one resin layer composed of one or two or more thermoplastic resins, or a plurality of resin layers composed of one or two or more thermoplastic resins are laminated. It may be a multilayer structure.
 鎖状ポリオレフィン系樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂などの鎖状オレフィンの単独重合体の他、2種以上の鎖状オレフィンからなる共重合体を挙げることができる。鎖状ポリオレフィン系樹脂からなる基材フィルムは、安定的に高倍率に延伸しやすい点で好ましい。なかでも基材フィルムは、ポリプロピレン系樹脂(プロピレンの単独重合体であるポリプロピレン樹脂や、プロピレンを主体とする共重合体等)、ポリエチレン系樹脂(エチレンの単独重合体であるポリエチレン樹脂や、エチレンを主体とする共重合体等)などからなることがより好ましい。 Examples of the chain polyolefin-based resin include homopolymers of chain olefins such as polyethylene resins and polypropylene resins, and copolymers composed of two or more chain olefins. A base film made of a chain polyolefin-based resin is preferable in that it is easily stretched stably at a high magnification. In particular, the base film is made of polypropylene resin (polypropylene resin which is a homopolymer of propylene, copolymer mainly composed of propylene, etc.), polyethylene resin (polyethylene resin which is a homopolymer of ethylene, or ethylene). More preferably, the main component is a copolymer or the like.
 基材フィルムを構成する熱可塑性樹脂として好適に用いられる例の1つであるプロピレンを主体とする共重合体は、プロピレンとこれに共重合可能な他のモノマーとの共重合体である。 The copolymer mainly composed of propylene, which is one example suitably used as a thermoplastic resin constituting the base film, is a copolymer of propylene and another monomer copolymerizable therewith.
 プロピレンに共重合可能な他のモノマーとしては、例えば、エチレン、α-オレフィンを挙げることができる。α-オレフィンとしては、炭素数4以上のα-オレフィンが好ましく用いられ、より好ましくは、炭素数4~10のα-オレフィンである。炭素数4~10のα-オレフィンの具体例は、例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン等の直鎖状モノオレフィン類;3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン等の分岐状モノオレフィン類;ビニルシクロヘキサンなどを含む。プロピレンとこれに共重合可能な他のモノマーとの共重合体は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。 Examples of other monomers copolymerizable with propylene include ethylene and α-olefin. As the α-olefin, an α-olefin having 4 or more carbon atoms is preferably used, and more preferably an α-olefin having 4 to 10 carbon atoms. Specific examples of the α-olefin having 4 to 10 carbon atoms include, for example, linear monoolefins such as 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and 1-decene; Branched monoolefins such as methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene; and vinylcyclohexane. The copolymer of propylene and other monomers copolymerizable therewith may be a random copolymer or a block copolymer.
 上記他のモノマーの含有量は、共重合体中、例えば0.1~20重量%であり、好ましくは0.5~10重量%である。共重合体中の他のモノマーの含有量は、「高分子分析ハンドブック」(1995年、紀伊国屋書店発行)の第616頁に記載されている方法に従い、赤外線(IR)スペクトル測定を行うことにより求めることができる。 The content of the other monomer in the copolymer is, for example, 0.1 to 20% by weight, preferably 0.5 to 10% by weight. The content of other monomers in the copolymer can be determined by measuring infrared (IR) spectrum according to the method described on page 616 of "Polymer Analysis Handbook" (1995, published by Kinokuniya Shoten). Can be sought.
 上記のなかでも、ポリプロピレン系樹脂としては、プロピレンの単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-1-ブテンランダム共重合体又はプロピレン-エチレン-1-ブテンランダム共重合体が好ましく用いられる。 Among these, as the polypropylene resin, a propylene homopolymer, a propylene-ethylene random copolymer, a propylene-1-butene random copolymer or a propylene-ethylene-1-butene random copolymer is preferably used. .
 ポリプロピレン系樹脂の立体規則性は、実質的にアイソタクチック又はシンジオタクチックであることが好ましい。実質的にアイソタクチック又はシンジオタクチックの立体規則性を有するポリプロピレン系樹脂からなる基材フィルムは、その取扱性が比較的良好であるとともに、高温環境下における機械的強度に優れている。 It is preferable that the stereoregularity of the polypropylene resin is substantially isotactic or syndiotactic. A base film made of a polypropylene-based resin having substantially isotactic or syndiotactic stereoregularity has relatively good handleability and excellent mechanical strength in a high temperature environment.
 基材フィルムは、1種の鎖状ポリオレフィン系樹脂から構成されていてもよいし、2種以上の鎖状ポリオレフィン系樹脂の混合物から構成されていてもよいし、2種以上の鎖状ポリオレフィン系樹脂の共重合物から構成されていてもよい。 The base film may be composed of one type of chain polyolefin-based resin, may be composed of a mixture of two or more types of chain polyolefin-based resins, or may be composed of two or more types of chain polyolefin-based resins. You may be comprised from the copolymer of resin.
 環状ポリオレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137号公報等に記載されている樹脂が挙げられる。環状ポリオレフィン系樹脂の具体例を挙げれば、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等の鎖状オレフィンとの共重合体(代表的にはランダム共重合体)、及びこれらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、並びにそれらの水素化物などである。なかでも、環状オレフィンとしてノルボルネンや多環ノルボルネン系モノマー等のノルボルネン系モノマーを用いたノルボルネン系樹脂が好ましく用いられる。 The cyclic polyolefin resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin. Specific examples of the cyclic polyolefin resin include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, copolymers of cyclic olefins and chain olefins such as ethylene and propylene (typically Random copolymers), graft polymers obtained by modifying them with an unsaturated carboxylic acid or a derivative thereof, and hydrides thereof. Among these, norbornene resins using norbornene monomers such as norbornene and polycyclic norbornene monomers as cyclic olefins are preferably used.
 環状ポリオレフィン系樹脂は種々の製品が市販されている。環状ポリオレフィン系樹脂の市販品の例としては、いずれも商品名で、「Topas」(TOPAS ADVANCED POLYMERS GmbH社製、ポリプラスチックス(株)から入手できる)、「アートン」(JSR(株)製)、「ゼオノア(ZEONOR)」(日本ゼオン(株)製)、「ゼオネックス(ZEONEX)」(日本ゼオン(株)製)、「アペル」(三井化学(株)製)などが挙げられる。 Various products are commercially available for cyclic polyolefin resins. Examples of commercial products of cyclic polyolefin resins are “Topas” (TOPAS ADVANCED POLYMERS GmbH, available from Polyplastics Co., Ltd.), “Arton” (manufactured by JSR Co., Ltd.). “ZEONOR” (manufactured by Nippon Zeon Co., Ltd.), “ZEONEX” (manufactured by Nippon Zeon Co., Ltd.), “Apel” (manufactured by Mitsui Chemicals, Inc.), and the like.
 また、いずれも商品名で、「エスシーナ」(積水化学工業(株)製)、「SCA40」(積水化学工業(株)製)、「ゼオノアフィルム」(日本ゼオン(株)製)などの製膜された環状ポリオレフィン系樹脂フィルムの市販品を基材フィルムとして用いてもよい。 In addition, film names such as “ESCINA” (manufactured by Sekisui Chemical Co., Ltd.), “SCA40” (manufactured by Sekisui Chemical Co., Ltd.), “ZEONOR FILM” (manufactured by Nippon Zeon Co., Ltd.), etc. You may use the commercial item of the made cyclic polyolefin resin film as a base film.
 基材フィルムは、1種の環状ポリオレフィン系樹脂から構成されていてもよいし、2種以上の環状ポリオレフィン系樹脂の混合物から構成されていてもよいし、2種以上の環状ポリオレフィン系樹脂の共重合物から構成されていてもよい。 The base film may be composed of one kind of cyclic polyolefin-based resin, may be composed of a mixture of two or more kinds of cyclic polyolefin-based resins, or may be composed of two or more kinds of cyclic polyolefin-based resins. It may be composed of a polymer.
 ポリエステル系樹脂は、エステル結合を有するポリマーであり、多価カルボン酸又はその誘導体と多価アルコールとの重縮合体からなるものが一般的である。多価カルボン酸又はその誘導体としては2価のジカルボン酸又はその誘導体を用いることができ、例えばテレフタル酸、イソフタル酸、ジメチルテレフタレート、ナフタレンジカルボン酸ジメチルなどが挙げられる。多価アルコールとしては2価のジオールを用いることができ、例えばエチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノールなどが挙げられる。 The polyester resin is a polymer having an ester bond, and is generally made of a polycondensate of a polyvalent carboxylic acid or a derivative thereof and a polyhydric alcohol. As the polyvalent carboxylic acid or a derivative thereof, a divalent dicarboxylic acid or a derivative thereof can be used, and examples thereof include terephthalic acid, isophthalic acid, dimethyl terephthalate, and dimethyl naphthalenedicarboxylate. As the polyhydric alcohol, a divalent diol can be used, and examples thereof include ethylene glycol, propanediol, butanediol, neopentyl glycol, and cyclohexanedimethanol.
 ポリエステル系樹脂の代表例として、テレフタル酸とエチレングリコールとの重縮合体であるポリエチレンテレフタレートが挙げられる。ポリエチレンテレフタレートは結晶性の樹脂であるが、結晶化処理する前の状態のものの方が延伸などの処理を施しやすく延伸性により優れる。必要であれば、延伸時、又は延伸後の熱処理などによって結晶化させることができる。また、ポリエチレンテレタレートの骨格にさらに他のモノマーを共重合することで結晶性を下げた(又は非晶性とした)共重合ポリエチレンテレタレートも、延伸性に優れており好適に用いられる。共重合ポリエチレンテレタレートの例として、例えばシクロヘキサンジメタノールやイソフタル酸などを共重合したものなどが挙げられる。 A typical example of a polyester resin is polyethylene terephthalate, which is a polycondensate of terephthalic acid and ethylene glycol. Polyethylene terephthalate is a crystalline resin, but the one in a state before the crystallization treatment is more easily stretched and is more excellent in stretchability. If necessary, it can be crystallized during stretching or by heat treatment after stretching. In addition, copolymerized polyethylene terephthalate having a lowered crystallinity (or made amorphous) by further copolymerizing another monomer with the polyethylene terephthalate skeleton is excellent in stretchability and is preferably used. Examples of the copolymerized polyethylene terephthalate include those obtained by copolymerizing cyclohexanedimethanol or isophthalic acid.
 ポリエチレンテレフタレート及び共重合ポリエチレンテレタレート以外のポリエステル系樹脂としては、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリシクロへキサンジメチルテレフタレート、ポリシクロヘキサンジメチルナフタレートなどが挙げられる。 Polyester resins other than polyethylene terephthalate and copolymerized polyethylene terephthalate include polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polycyclohexane dimethyl terephthalate, polycyclohexane dimethyl naphthalate. A phthalate etc. are mentioned.
 基材フィルムは、1種のポリエステル系樹脂から構成されていてもよいし、2種以上のポリエステル系樹脂の混合物から構成されていてもよいし、2種以上のポリエステル系樹脂の共重合物から構成されていてもよい。 The base film may be composed of one kind of polyester resin, may be composed of a mixture of two or more kinds of polyester resins, or may be composed of a copolymer of two or more kinds of polyester resins. It may be configured.
 (メタ)アクリル系樹脂としては、任意の適切な(メタ)アクリル系樹脂を採用し得る。(メタ)アクリル系樹脂の具体例は、例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体など)を含む。好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1-6アルキルが用いられ、より好ましくは、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が用いられる。 Any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin. Specific examples of the (meth) acrylic resin include, for example, poly (meth) acrylic acid esters such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester Copolymer, methyl methacrylate-acrylic ester- (meth) acrylic acid copolymer, (meth) methyl acrylate-styrene copolymer (MS resin, etc.), polymer having an alicyclic hydrocarbon group (for example, Methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.). Preferably, C 1-6 alkyl poly (meth) acrylate such as poly (meth) acrylate is used, more preferably methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight). %) Is used.
 基材フィルムは、1種の(メタ)アクリル系樹脂から構成されていてもよいし、2種以上の(メタ)アクリル系樹脂の混合物から構成されていてもよいし、2種以上の(メタ)アクリル系樹脂の共重合物から構成されていてもよい。 The base film may be composed of one (meth) acrylic resin, may be composed of a mixture of two or more (meth) acrylic resins, or may be composed of two or more (meth) acrylic resins. ) It may be composed of a copolymer of acrylic resin.
 セルロースエステル系樹脂は、セルロースと脂肪酸とのエステルである。セルロースエステル系樹脂の具体例は、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネートなどを含む。これらのなかでも、セルローストリアセテート(トリアセチルセルロース)が特に好ましい。セルローストリアセテートは多くの製品が市販されており、入手容易性やコストの点でも有利である。セルローストリアセテートの市販品の例としては、いずれも商品名で、「フジタックTD80」(富士フイルム(株)製)、「フジタックTD80UF」(富士フイルム(株)製)、「フジタックTD80UZ」(富士フイルム(株)製)、「フジタックTD40UZ」(富士フイルム(株)製)、「KC8UX2M」(コニカミノルタオプト(株)製)、「KC4UY」(コニカミノルタオプト(株)製)などが挙げられる。 The cellulose ester resin is an ester of cellulose and a fatty acid. Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. Among these, cellulose triacetate (triacetyl cellulose) is particularly preferable. Many products of cellulose triacetate are commercially available, which is advantageous in terms of availability and cost. Examples of commercially available cellulose triacetate are “Fujitac TD80” (manufactured by Fuji Film Co., Ltd.), “Fujitac TD80UF” (manufactured by Fuji Film Co., Ltd.), “Fujitac TD80UZ” (Fuji Film ( Co., Ltd.), “Fujitac TD40UZ” (manufactured by FUJIFILM Corporation), “KC8UX2M” (manufactured by Konica Minolta Opto Corporation), “KC4UY” (manufactured by Konica Minolta Opto Corporation), and the like.
 基材フィルムは、1種のセルロースエステル系樹脂から構成されていてもよいし、2種以上のセルロースエステル系樹脂の混合物から構成されていてもよいし、2種以上のセルロースエステル系樹脂の共重合物から構成されていてもよい。 The base film may be composed of one kind of cellulose ester resin, may be composed of a mixture of two or more kinds of cellulose ester resins, or may be composed of two or more kinds of cellulose ester resins. It may be composed of a polymer.
 ポリカーボネート系樹脂は、カルボナート基を介してモノマー単位が結合されたポリマーからなるエンジニアリングプラスチックであり、高い耐衝撃性、耐熱性、難燃性、透明性を有する樹脂である。基材フィルムを構成するポリカーボネート系樹脂は、光弾性係数を下げるためにポリマー骨格を修飾したような変性ポリカーボネートと呼ばれる樹脂や、波長依存性を改良した共重合ポリカーボネートなどであってもよい。 Polycarbonate resin is an engineering plastic made of a polymer in which monomer units are bonded via a carbonate group, and is a resin having high impact resistance, heat resistance, flame retardancy, and transparency. The polycarbonate-based resin constituting the base film may be a resin called a modified polycarbonate in which the polymer skeleton is modified in order to lower the photoelastic coefficient, a copolymer polycarbonate having improved wavelength dependency, or the like.
 ポリカーボネート系樹脂は種々の製品が市販されている。ポリカーボネート系樹脂の市販品の例としては、いずれも商品名で、「パンライト」(帝人化成(株)製)、「ユーピロン」(三菱エンジニアリングプラスチック(株)製)、「SDポリカ」(住友ダウ(株)製)、「カリバー」(ダウケミカル(株)製)などが挙げられる。 Polycarbonate resin is available in various products. Examples of commercially available polycarbonate-based resins are all “Panlite” (manufactured by Teijin Chemicals Ltd.), “Iupilon” (manufactured by Mitsubishi Engineering Plastics), “SD Polyca” (Sumitomo Dow). (Manufactured by Dow Chemical Co., Ltd.).
 基材フィルムは、1種のポリカーボネート系樹脂から構成されていてもよいし、2種以上のポリカーボネート系樹脂の混合物から構成されていてもよいし、2種以上のポリカーボネート系樹脂の共重合物から構成されていてもよい。 The base film may be composed of one type of polycarbonate-based resin, may be composed of a mixture of two or more types of polycarbonate-based resins, or may be composed of a copolymer of two or more types of polycarbonate-based resins. It may be configured.
 基材フィルムには、上記の熱可塑性樹脂の他に、任意の適切な添加剤が添加されていてもよい。このような添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、及び着色剤などが挙げられる。基材フィルム中の熱可塑性樹脂の含有量は、好ましくは50~100重量%、より好ましくは50~99重量%、さらに好ましくは60~98重量%、特に好ましくは70~97重量%である。基材フィルム中の熱可塑性樹脂の含有量が50重量%未満の場合、熱可塑性樹脂が本来有する高透明性等が十分に発現されないおそれがある。 Any appropriate additive may be added to the base film in addition to the above thermoplastic resin. Examples of such additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, anti-coloring agents, flame retardants, nucleating agents, antistatic agents, pigments, and coloring agents. . The content of the thermoplastic resin in the base film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. If the content of the thermoplastic resin in the base film is less than 50% by weight, the high transparency inherent in the thermoplastic resin may not be sufficiently exhibited.
 基材フィルムの厚みは適宜に決定し得るが、一般には強度や取扱性等の作業性の点から1~500μmが好ましく、1~300μmがより好ましく、さらには5~200μmが好ましく、5~150μmが最も好ましい。 The thickness of the base film can be determined as appropriate, but generally it is preferably 1 to 500 μm, more preferably 1 to 300 μm, further preferably 5 to 200 μm, and more preferably 5 to 150 μm from the viewpoint of workability such as strength and handleability. Is most preferred.
 基材フィルムは、ポリビニルアルコール系樹脂層との密着性を向上させるために、少なくともポリビニルアルコール系樹脂層が形成される側の表面に、コロナ処理、プラズマ処理、火炎処理等を行ってもよい。 The base film may be subjected to corona treatment, plasma treatment, flame treatment or the like on at least the surface on which the polyvinyl alcohol resin layer is formed in order to improve the adhesion with the polyvinyl alcohol resin layer.
 なお他の実施形態においてポリビニルアルコール系樹脂層は、基材フィルム上にポリビニルアルコール系樹脂からなるフィルムを貼着することにより形成することもできるが、この場合、フィルム間の貼着には接着剤を用いることができる。このようにポリビニルアルコール系樹脂からなるフィルムを使用する場合においても、ポリビニルアルコール系樹脂からなるフィルムとしては、偏光子層の幅が基材フィルムの幅と同じか又はこれより狭くなるよう、基材フィルムの幅と同じであるか又はこれより幅の狭いポリビニルアルコール系樹脂からなるフィルムが用いられる。 In another embodiment, the polyvinyl alcohol-based resin layer can be formed by sticking a film made of a polyvinyl alcohol-based resin on a base film, but in this case, an adhesive is used for sticking between the films. Can be used. Thus, even when using a film made of a polyvinyl alcohol-based resin, the film made of a polyvinyl alcohol-based resin is a base material so that the width of the polarizer layer is the same as or narrower than the width of the base film. A film made of a polyvinyl alcohol resin having the same width as that of the film or narrower than that of the film is used.
 〔2〕延伸工程S20
 本工程は、ポリビニルアルコール系樹脂層を有する基材フィルムを一軸延伸して延伸フィルムを得る工程である。本工程もまた、樹脂層形成工程S10を経て得られた長尺のフィルムを搬送しながら連続的に延伸処理することにより、又は樹脂層形成工程S10を経て得られた長尺のフィルムを一旦ロール状に巻き取り、該ロール体からフィルムを連続的に巻き出しながら連続的に延伸処理することにより連続的に実施することができる。
[2] Stretching step S20
This step is a step of obtaining a stretched film by uniaxially stretching a base film having a polyvinyl alcohol-based resin layer. Also in this step, the long film obtained through the resin layer forming step S10 is continuously stretched while being conveyed, or the long film obtained through the resin layer forming step S10 is once rolled. It can carry out continuously by carrying out an extending | stretching process, winding up in a shape and continuously unwinding a film from this roll body.
 フィルムの延伸倍率は、所望する偏光特性に応じて適宜選択することができるが、好ましくは、フィルムの元長に対して5倍超17倍以下であり、より好ましくは5倍超8倍以下である。延伸倍率が5倍以下であると、ポリビニルアルコール系樹脂層が十分に配向しないため、偏光子層の偏光度が十分に高くならないことがある。一方、延伸倍率が17倍を超えると、延伸時にフィルムの破断が生じ易くなるとともに、延伸フィルムの厚みが必要以上に薄くなり、後工程での加工性及び取扱性が低下するおそれがある。 The draw ratio of the film can be appropriately selected according to the desired polarization characteristics, but is preferably more than 5 times and 17 times or less, more preferably more than 5 times and less than 8 times the original length of the film. is there. When the draw ratio is 5 times or less, the polyvinyl alcohol-based resin layer is not sufficiently oriented, and the degree of polarization of the polarizer layer may not be sufficiently high. On the other hand, when the draw ratio exceeds 17 times, the film is likely to break during stretching, and the thickness of the stretched film becomes unnecessarily thin, and the workability and handleability in the subsequent process may be reduced.
 延伸処理は、一段での延伸に限定されることはなく多段で行うこともできる。この場合、多段階の延伸処理のすべてを染色工程S30の前に連続的に行ってもよいし、二段階目以降の延伸処理を染色工程S30における染色処理及び/又は架橋処理と同時に行ってもよい。このように多段で延伸処理を行う場合は、延伸処理の全段を合わせて5倍超の延伸倍率となるように延伸処理を行うことが好ましい。 The stretching process is not limited to one-stage stretching, and can be performed in multiple stages. In this case, all of the multistage stretching processes may be performed continuously before the dyeing process S30, or the second and subsequent stretching processes may be performed simultaneously with the dyeing process and / or the crosslinking process in the dyeing process S30. Good. Thus, when performing a extending | stretching process in multistage, it is preferable to perform an extending | stretching process so that it may become a draw ratio exceeding 5 times combining all the stages of an extending | stretching process.
 延伸処理は、フィルム長手方向(フィルム搬送方向)に延伸する縦延伸であることができるほか、フィルム幅方向に延伸する横延伸又は斜め延伸などであってもよい。縦延伸方式としては、ロール間延伸、圧縮延伸などが挙げられ、横延伸方式としては、テンター法などが挙げられる。 The stretching treatment may be longitudinal stretching that extends in the film longitudinal direction (film transport direction), and may be lateral stretching or oblique stretching that extends in the film width direction. Examples of the longitudinal stretching method include inter-roll stretching and compression stretching, and examples of the lateral stretching method include a tenter method.
 延伸処理は、湿潤式延伸方法、乾式延伸方法のいずれも採用できるが、乾式延伸方法を用いる方が、延伸温度を広い範囲から選択することができる点で好ましい。 As the stretching treatment, either a wet stretching method or a dry stretching method can be adopted, but it is preferable to use the dry stretching method because the stretching temperature can be selected from a wide range.
 延伸温度は、ポリビニルアルコール系樹脂層及び基材フィルム全体が延伸可能な程度に流動性を示す温度以上に設定され、好ましくは、基材フィルムの相転移温度の-30℃から+30℃の範囲であり、より好ましくは、基材フィルムの相転移温度の-25℃から+5℃の範囲である。基材フィルムの相転移温度とは、基材フィルムを構成する樹脂が非晶性樹脂である場合にはガラス転移温度Tg、結晶性樹脂である場合には融点(結晶融点)Tmを意味し、ともにJIS K 7121に準拠して測定される。基材フィルムが複数の樹脂層からなる場合、上記相転移温度は該複数の樹脂層が示す相転移温度のうち、最も高い相転移温度を意味する。 The stretching temperature is set to be equal to or higher than the temperature at which the polyvinyl alcohol-based resin layer and the entire base film can be stretched, and preferably in the range of −30 ° C. to + 30 ° C. of the phase transition temperature of the base film. More preferably, it is in the range of −25 ° C. to + 5 ° C. of the phase transition temperature of the base film. The phase transition temperature of the base film means a glass transition temperature Tg when the resin constituting the base film is an amorphous resin, and a melting point (crystalline melting point) Tm when the resin is a crystalline resin. Both are measured according to JIS K7121. When the base film is composed of a plurality of resin layers, the phase transition temperature means the highest phase transition temperature among the phase transition temperatures exhibited by the plurality of resin layers.
 延伸温度を相転移温度の-30℃より低くすると、5倍超の高倍率延伸が達成されにくい。延伸温度が相転移温度の+30℃を超えると、基材フィルムの流動性が大きすぎて延伸が困難になる傾向にある。 When the stretching temperature is lower than the phase transition temperature of −30 ° C., it is difficult to achieve high-magnification stretching of more than 5 times. When the stretching temperature exceeds + 30 ° C. of the phase transition temperature, the fluidity of the base film tends to be too high and stretching tends to be difficult.
 5倍超の高延伸倍率をより達成しやすいことから、延伸温度は上記範囲内であって、さらに好ましくは120℃以上である。延伸処理の温度調整は通常、加熱炉の温度調整による。 Since it is easier to achieve a high draw ratio of more than 5 times, the drawing temperature is within the above range, and more preferably 120 ° C. or higher. The temperature adjustment of the stretching process is usually performed by adjusting the temperature of the heating furnace.
 〔3〕染色工程S30
 本工程は、延伸フィルムのポリビニルアルコール系樹脂層を二色性色素で染色してこれを吸着配向させ、偏光子層とする工程である。本工程を経て基材フィルム上に偏光子層が積層された偏光性フィルムが得られる。本工程もまた、延伸工程S20を経て得られた長尺の延伸フィルムを搬送しながら連続的に染色処理することにより、又は延伸工程S20を経て得られた延伸フィルムを一旦ロール状に巻き取り、該ロール体からフィルムを連続的に巻き出しながら連続的に染色処理することにより連続的に実施することができる。
[3] Dyeing step S30
In this step, the polyvinyl alcohol-based resin layer of the stretched film is dyed with a dichroic dye and adsorbed and oriented to form a polarizer layer. Through this step, a polarizing film in which a polarizer layer is laminated on a base film is obtained. In this process, the continuous stretched film obtained through the stretching step S20 is continuously dyed while being conveyed, or the stretched film obtained through the stretching step S20 is temporarily wound into a roll, It can carry out continuously by dyeing | staining continuously, unwinding a film from this roll body.
 二色性色素としては、例えばヨウ素や有機染料などが挙げられる。有機染料の具体例は、例えば、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラックなどを含む。二色性色素は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。 Examples of dichroic pigments include iodine and organic dyes. Specific examples of organic dyes include, for example, Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Including Blue, Direct First Orange S, First Black. A dichroic dye may be used individually by 1 type, and may use 2 or more types together.
 染色工程は、二色性色素を含有する溶液(染色溶液)に延伸フィルム全体を浸漬することにより行うことができる。染色溶液としては、上記二色性色素を溶剤に溶解した溶液を使用できる。染色溶液の溶剤としては、一般的には水が使用されるが、水と相溶性のある有機溶剤がさらに添加されてもよい。二色性色素の濃度は、0.01~10重量%であることが好ましく、0.02~7重量%であることがより好ましく、0.025~5重量%であることが特に好ましい。 The dyeing step can be performed by immersing the entire stretched film in a solution (dye solution) containing a dichroic dye. As the dyeing solution, a solution in which the dichroic dye is dissolved in a solvent can be used. As the solvent for the dyeing solution, water is generally used, but an organic solvent compatible with water may be further added. The concentration of the dichroic dye is preferably 0.01 to 10% by weight, more preferably 0.02 to 7% by weight, and particularly preferably 0.025 to 5% by weight.
 二色性色素としてヨウ素を使用する場合、染色効率をより一層向上できることから、ヨウ素を含有する染色溶液にヨウ化物をさらに添加することが好ましい。ヨウ化物としては、例えばヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンなどが挙げられる。染色溶液におけるヨウ化物の濃度は、0.01~10重量%であることが好ましい。ヨウ化物のなかでも、ヨウ化カリウムを添加することが好ましい。ヨウ化カリウムを添加する場合、ヨウ素とヨウ化カリウムとの割合は重量比で、1:5~1:100の範囲にあることが好ましく、1:6~1:80の範囲にあることがより好ましく、1:7~1:70の範囲にあることが特に好ましい。 When iodine is used as the dichroic dye, it is preferable to further add an iodide to the dyeing solution containing iodine because the dyeing efficiency can be further improved. Examples of iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Is mentioned. The concentration of iodide in the dyeing solution is preferably 0.01 to 10% by weight. Of the iodides, it is preferable to add potassium iodide. When potassium iodide is added, the ratio of iodine to potassium iodide is preferably in the range of 1: 5 to 1: 100, more preferably in the range of 1: 6 to 1:80. A range of 1: 7 to 1:70 is particularly preferable.
 染色溶液への延伸フィルムの浸漬時間は、通常15秒~15分間の範囲であり、30秒~3分間であることが好ましい。また、染色溶液の温度は、10~60℃の範囲にあることが好ましく、20~40℃の範囲にあることがより好ましい。 The immersion time of the stretched film in the dyeing solution is usually in the range of 15 seconds to 15 minutes, preferably 30 seconds to 3 minutes. The temperature of the dyeing solution is preferably in the range of 10 to 60 ° C., more preferably in the range of 20 to 40 ° C.
 なお、染色工程S30を延伸工程S20の前又は同時に行うことも可能であるが、ポリビニルアルコール系樹脂層に吸着させた二色性色素を良好に配向させることができるよう、延伸工程S20における延伸処理の少なくとも一部を実施した後に染色工程S30を実施することが好ましい。この場合における実施態様としては、1)目標の倍率で延伸処理を行った後、延伸処理を伴うことなく染色工程S30を実施する態様、2)目標より低い倍率で延伸処理を行った後、染色工程S30における染色処理(染色工程S30が架橋処理工程を含む場合、染色処理及び/又は架橋処理)中に、トータルの倍率が目標の倍率となるように延伸処理を行う、3)目標より低い倍率で延伸処理を行った後、染色工程S30における染色処理(染色工程S30が架橋処理工程を含む場合、染色処理及び/又は架橋処理)中に、トータルの倍率が目標の倍率に達しない程度まで延伸処理を行い、次いで、トータルの倍率が目標の倍率となるように延伸処理を行う態様などを挙げることができる。 In addition, although it is also possible to perform dyeing process S30 before extending | stretching process S20 or simultaneously, the extending | stretching process in extending process S20 so that the dichroic dye adsorb | sucked to the polyvinyl alcohol-type resin layer can be favorably oriented. It is preferable to carry out the dyeing step S30 after carrying out at least a part of the above. As an embodiment in this case, 1) an embodiment in which the dyeing step S30 is performed without the drawing treatment after the drawing treatment at the target magnification, and 2) the dyeing is performed after the drawing treatment at a magnification lower than the target. During the dyeing process in step S30 (when the dyeing process S30 includes a cross-linking process), the drawing process is performed so that the total magnification becomes the target magnification. 3) A magnification lower than the target After the stretching process is performed, the total magnification is not extended to the target magnification during the dyeing process in the dyeing process S30 (when the dyeing process S30 includes a crosslinking process, the dyeing process and / or the crosslinking process). Examples of the method include performing the treatment and then performing a stretching treatment so that the total magnification becomes a target magnification.
 染色工程S30は、染色処理に引き続いて実施される架橋処理工程を含むことができる。架橋処理は、架橋剤を含む溶液(架橋溶液)中に染色されたフィルムを浸漬することにより行うことができる。架橋剤としては、従来公知の物質を使用することができ、例えば、ホウ酸、ホウ砂等のホウ素化合物や、グリオキザール、グルタルアルデヒドなどが挙げられる。架橋剤は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。 The dyeing step S30 can include a cross-linking treatment step performed subsequent to the dyeing treatment. The crosslinking treatment can be performed by immersing the dyed film in a solution containing a crosslinking agent (crosslinking solution). As the crosslinking agent, conventionally known substances can be used, and examples thereof include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. A crosslinking agent may be used individually by 1 type, and may use 2 or more types together.
 架橋溶液は、具体的には架橋剤を溶剤に溶解した溶液であることができる。溶剤としては、例えば水が使用できるが、水と相溶性のある有機溶剤をさらに含んでもよい。架橋溶液における架橋剤の濃度は、1~20重量%の範囲であることが好ましく、6~15重量%の範囲であることがより好ましい。 Specifically, the crosslinking solution can be a solution in which a crosslinking agent is dissolved in a solvent. As the solvent, for example, water can be used, but an organic solvent compatible with water may be further included. The concentration of the crosslinking agent in the crosslinking solution is preferably in the range of 1 to 20% by weight, more preferably in the range of 6 to 15% by weight.
 架橋溶液はヨウ化物を含むことができる。ヨウ化物の添加により、偏光子層の面内における偏光特性をより均一化させることができる。ヨウ化物としては、例えばヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンなどが挙げられる。架橋溶液におけるヨウ化物の濃度は、0.05~15重量%であることが好ましく、0.5~8重量%であることがより好ましい。 The crosslinking solution can contain iodide. By adding iodide, the polarization characteristics in the plane of the polarizer layer can be made more uniform. Examples of iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Is mentioned. The concentration of iodide in the cross-linking solution is preferably 0.05 to 15% by weight, and more preferably 0.5 to 8% by weight.
 架橋溶液への染色されたフィルムの浸漬時間は、通常15秒~20分間であり、30秒~15分間であることが好ましい。また、架橋溶液の温度は、10~90℃の範囲にあることが好ましい。 The immersion time of the dyed film in the crosslinking solution is usually 15 seconds to 20 minutes, preferably 30 seconds to 15 minutes. The temperature of the crosslinking solution is preferably in the range of 10 to 90 ° C.
 なお架橋処理は、架橋剤を染色溶液中に配合することにより、染色処理と同時に行うこともできる。また、架橋処理と延伸処理の一部とを同時に行ってもよい。架橋処理中に延伸処理を実施する具体的態様は上述のとおりである。 The crosslinking treatment can be performed simultaneously with the dyeing treatment by blending a crosslinking agent in the dyeing solution. Moreover, you may perform a bridge | crosslinking process and a part of extending process simultaneously. The specific mode for carrying out the stretching treatment during the crosslinking treatment is as described above.
 染色工程S30の後、貼合工程S40の前に洗浄工程及び乾燥工程を行うことが好ましい。洗浄工程は通常、水洗浄工程を含む。水洗浄処理は、イオン交換水、蒸留水などの純水に染色処理後の又は架橋処理後のフィルムを浸漬することにより行うことができる。水洗浄温度は、通常3~50℃、好ましくは4~20℃の範囲である。水への浸漬時間は通常2~300秒間、好ましくは3~240秒間である。 It is preferable to perform a washing process and a drying process after the dyeing process S30 and before the bonding process S40. The washing process usually includes a water washing process. The water washing treatment can be performed by immersing the film after the dyeing treatment or after the crosslinking treatment in pure water such as ion exchange water or distilled water. The water washing temperature is usually in the range of 3 to 50 ° C., preferably 4 to 20 ° C. The immersion time in water is usually 2 to 300 seconds, preferably 3 to 240 seconds.
 洗浄工程は、水洗浄工程とヨウ化物溶液による洗浄工程との組み合わせであってもよい。また、水洗浄工程及び/又はヨウ化物溶液による洗浄処理で使用する洗浄液は、水のほか、メタノール、エタノール、イソプロピルアルコール、ブタノール、プロパノール等の液体アルコールを適宜含有させることができる。 The washing step may be a combination of a water washing step and a washing step with an iodide solution. Moreover, the washing | cleaning liquid used by the washing process by a water washing | cleaning process and / or an iodide solution can contain liquid alcohols, such as methanol, ethanol, isopropyl alcohol, butanol, propanol, other than water suitably.
 洗浄工程の後に行われる乾燥工程としては、自然乾燥、送風乾燥、加熱乾燥などの任意の適切な方法を採用し得る。例えば加熱乾燥の場合、乾燥温度は、通常20~95℃であり、乾燥時間は、通常1~15分間程度である。 Any appropriate method such as natural drying, blow drying, or heat drying can be adopted as the drying step performed after the washing step. For example, in the case of heat drying, the drying temperature is usually 20 to 95 ° C., and the drying time is usually about 1 to 15 minutes.
 〔4〕貼合工程S40
 本工程は、基材フィルムの片面又は両面に偏光子層を備える偏光性フィルムの一方の面上であって、それが有する偏光子層上に、第1接着剤層を介して第1保護フィルムを貼合、配置し、偏光性フィルムの他方の面上に、好ましくは第2接着剤層を介して第2保護フィルムを配置して偏光性積層フィルムを得る工程である。本工程もまた、染色工程S30を経て得られた偏光性フィルムを搬送しながら、長尺の第1及び第2保護フィルムを巻き回してなる各ロール体からそれぞれ第1及び第2保護フィルムを連続的に巻き出すとともに、偏光性フィルムと第1保護フィルムとの間(あるいはさらに偏光性フィルムと第2保護フィルムとの間)に接着剤を連続的に供給して連続貼合を行うことにより、又は染色工程S30を経て得られた偏光性フィルムを一旦ロール状に巻き取り、該ロール体から偏光性フィルムを連続的に巻き出しながら、長尺の第1及び第2保護フィルムを巻き回してなる各ロール体からそれぞれ第1及び第2保護フィルムを連続的に巻き出すとともに、偏光性フィルムと第1保護フィルムとの間(あるいはさらに偏光性フィルムと第2保護フィルムとの間)に接着剤を連続的に供給して連続貼合を行うことにより連続的に実施することができる。
[4] Pasting step S40
This step is on one surface of a polarizing film having a polarizer layer on one side or both sides of the base film, and on the polarizer layer it has, the first protective film via the first adhesive layer Is a step of obtaining a polarizing laminated film by placing a second protective film on the other surface of the polarizing film, preferably via a second adhesive layer. Also in this step, the first and second protective films are continuously formed from the rolls formed by winding the long first and second protective films while conveying the polarizing film obtained through the dyeing step S30. By continuously feeding the adhesive continuously between the polarizing film and the first protective film (or further between the polarizing film and the second protective film) and performing continuous bonding, Alternatively, the polarizing film obtained through the dyeing step S30 is once wound up in a roll shape, and the long first and second protective films are wound while the polarizing film is continuously unwound from the roll body. The first and second protective films are continuously unwound from each roll body, and between the polarizing film and the first protective film (or further, the polarizing film and the second protective film). The adhesive was continuously fed in between) the beam can be carried out continuously by the continuous lamination.
 以下、図2~図4を参照しながら、偏光性フィルムが基材フィルムの両面に偏光子層を有しており、貼合工程S40において第2保護フィルムが第2接着剤層を介して偏光性フィルム上に貼合される実施形態を例に挙げて貼合工程S40を詳細に説明する。 Hereinafter, with reference to FIGS. 2 to 4, the polarizing film has a polarizer layer on both surfaces of the base film, and the second protective film is polarized through the second adhesive layer in the bonding step S40. The bonding step S40 will be described in detail with an embodiment in which the bonding is performed on the adhesive film as an example.
 図2は、貼合工程S40の一例を模式的に示す斜視図である。図3は、貼合工程S40において偏光性フィルムに第1及び第2保護フィルムが貼合された状態の一例を示す概略上面図であり、接着剤層の形成領域を模式的に示したものである。また図4は、図3に示されるIV-IV線における概略断面図である。 FIG. 2 is a perspective view schematically showing an example of the bonding step S40. FIG. 3: is a schematic top view which shows an example of the state by which the 1st and 2nd protective film was bonded by the polarizing film in bonding process S40, and showed the formation area of the adhesive bond layer typically. is there. 4 is a schematic cross-sectional view taken along the line IV-IV shown in FIG.
 図2~図4を参照して、基材フィルム100上に偏光子層110が積層されてなる偏光性フィルムの一方の面、他方の面に貼合される第1保護フィルム200、第2保護フィルム300としては、いずれも偏光性フィルム(換言すれば基材フィルム100)よりも幅広のものが用いられる。すなわち、第1保護フィルム200の幅W2>偏光性フィルム(基材フィルム100)の幅W1を満たし、かつ第2保護フィルム300の幅W3>偏光性フィルム(基材フィルム100)の幅W1を満たす。なお、図2~図4は、偏光性フィルムとして、基材フィルム100の幅方向両端部分に塗工液を塗工しない未塗工領域120,130(偏光子層110が形成されていない領域)を設けたものを用いた例を示している。 2 to 4, a first protective film 200 and a second protective film bonded to one surface and the other surface of a polarizing film in which a polarizer layer 110 is laminated on a base film 100. As the film 300, a film having a width wider than that of the polarizing film (in other words, the base film 100) is used. That is, the width W 2 of the first protective film 200> the width W 1 of the polarizing film (base film 100) is satisfied, and the width W 3 of the second protective film 300> the width of the polarizing film (base film 100). meet the W 1. 2 to 4 show the non-coated areas 120 and 130 (areas where the polarizer layer 110 is not formed) where the coating liquid is not applied to both end portions in the width direction of the base film 100 as the polarizing film. The example using what provided is shown.
 また、第1、第2保護フィルム200,300は、それらの幅方向両端がそれぞれ偏光性フィルム(基材フィルム100)の幅方向両端よりも外側に位置するように、それぞれ接着剤Sからなる第1接着剤層250、接着剤Tからなる第2接着剤層350を介して偏光性フィルムに貼合される。第1及び第2保護フィルム200,300は、それらの幅方向中心が偏光性フィルムの幅方向中心と一致又は略一致するように積層、貼合することができる。なお、貼合温度は通常15~40℃の範囲である。 The first and second protective films 200 and 300 are each made of an adhesive S such that both ends in the width direction are located outside the both ends in the width direction of the polarizing film (base film 100). It is bonded to the polarizing film via the first adhesive layer 250 and the second adhesive layer 350 made of the adhesive T. The 1st and 2nd protective films 200 and 300 can be laminated | stacked and bonded so that those width direction centers may correspond with the width direction center of a polarizing film, or substantially correspond. The bonding temperature is usually in the range of 15 to 40 ° C.
 この際、第1接着剤層250及び第2接着剤層350は、それらの幅方向両端がそれぞれ偏光性フィルムの幅方向両端よりも外側に位置し、かつ第1及び第2保護フィルム200,300の幅方向両端よりも内側に位置するように、それらの幅が調整されて形成される。 At this time, the first adhesive layer 250 and the second adhesive layer 350 have both ends in the width direction located outside the both ends in the width direction of the polarizing film, and the first and second protective films 200 and 300. These widths are adjusted and formed so as to be located inside the both ends in the width direction.
 したがって、偏光性フィルムに第1及び第2保護フィルム200,300が貼合された状態の積層フィルムにおいて幅方向両端部分は、第1保護フィルム200と第2保護フィルム300との間に偏光性フィルムが存在しない部分となっており、この部分の一部にまで接着剤層が形成される程度に第1及び第2接着剤層250,350の幅が偏光性フィルム(基材フィルム100)の幅よりも広くなっている。 Therefore, in the laminated film in a state where the first and second protective films 200 and 300 are bonded to the polarizing film, both end portions in the width direction are between the first protective film 200 and the second protective film 300. The width of the first and second adhesive layers 250 and 350 is the width of the polarizing film (base film 100) to such an extent that the adhesive layer is formed up to a part of this portion. Is wider than.
 以上のような貼合方法によれば、接着剤層の不存在領域が生じることなく、偏光性フィルムにおける第1、第2保護フィルム200,300との貼合面全面にわたって均一に接着剤層が形成されるので、偏光性フィルムと第1、第2保護フィルム200,300との接着性に優れる偏光性積層フィルム、ひいては偏光子層110と第1、第2保護フィルム200,300との接着性に優れる偏光板を安定して製造することができる。 According to the bonding method as described above, the adhesive layer is uniformly distributed over the entire bonding surface of the polarizing film with the first and second protective films 200 and 300 without causing the absence of the adhesive layer. Since it is formed, the polarizing laminated film excellent in the adhesiveness between the polarizing film and the first and second protective films 200 and 300, and thus the adhesiveness between the polarizer layer 110 and the first and second protective films 200 and 300. Can be stably produced.
 また、フィルム貼合時における上記積層フィルムの幅方向端部からの接着剤のはみ出し及びこれに伴う貼合ロールなどの圧着装置の汚染を防止することができる。長尺の偏光性フィルム、第1及び第2保護フィルム200,300を用いて連続貼合を行う場合においても、接着剤のはみ出しによる圧着装置の汚染及びこれに伴う積層フィルム表面の汚染を防止しながら偏光性積層フィルム、ひいては偏光板を安定して連続製造することができる。 Also, it is possible to prevent the adhesive from protruding from the end in the width direction of the laminated film at the time of film bonding and the contamination of the pressure bonding apparatus such as a bonding roll. Even when continuous bonding is performed using the long polarizing film, the first and second protective films 200 and 300, contamination of the crimping apparatus due to the protruding adhesive and contamination of the surface of the laminated film is prevented. However, the polarizing laminated film, and thus the polarizing plate can be produced stably and continuously.
 偏光性フィルムと第1及び第2保護フィルム200,300とは、例えば、偏光性フィルムと第1保護フィルム200との間、偏光性フィルムと第2保護フィルム300との間にそれぞれ接着剤S、接着剤Tを供給するか又は貼合される少なくとも一方のフィルム上に塗工し、次いで偏光性フィルムの一方の面に接着剤Sからなる第1接着剤層250を介して第1保護フィルム200を積層するとともに、他方の面に接着剤Tからなる第2接着剤層350を介して第2保護フィルム300を積層することにより積層フィルムとし、該積層フィルムを一対の貼合ロール間に通すなど、圧着装置を用いて圧着する方法によって貼合することができる。 The polarizing film and the first and second protective films 200 and 300 include, for example, an adhesive S between the polarizing film and the first protective film 200, and between the polarizing film and the second protective film 300, respectively. The first protective film 200 is applied on at least one film to which the adhesive T is supplied or bonded, and then the first adhesive layer 250 made of the adhesive S is provided on one surface of the polarizing film. And the second protective film 300 is laminated on the other surface via the second adhesive layer 350 made of the adhesive T to form a laminated film, and the laminated film is passed between a pair of bonding rolls. Bonding can be performed by a method of pressure bonding using a pressure bonding apparatus.
 接着剤をフィルム間に供給するか又は貼合される少なくとも一方のフィルム上に塗工する方法としては、接着剤フィード用のノズルの先をフィルム間に配置し、ポンプなどを用いて該ノズルから接着剤を供給する方法;流延法、マイヤーバーコート法、グラビアコート法、カンマコーター法、ドクタープレート法、ダイコート法、ディップコート法、噴霧法などにより少なくとも一方のフィルムの接着面に接着剤を塗工する方法などを挙げることができる。上記いずれの方法によっても接着剤の連続供給及び連続塗工が可能である。 As a method for supplying an adhesive between at least one film to be supplied or bonded between films, an adhesive feed nozzle tip is arranged between the films, and a pump or the like is used from the nozzle. Adhesive supply method: Adhesive on at least one film adhesive surface by casting method, Meyer bar coating method, gravure coating method, comma coater method, doctor plate method, die coating method, dip coating method, spraying method, etc. The method of coating etc. can be mentioned. Any of the above methods enables continuous supply and continuous coating of the adhesive.
 第1及び第2接着剤層250,350の幅を上記所定の幅に調整するには、接着剤の供給量又は塗工量、圧着装置による印加圧力(貼合ロールを用いる場合には、貼合ロール間の距離)、フィルムの搬送速度などを調整すればよい。また、長尺の偏光性フィルム、第1及び第2保護フィルム200,300を用いて連続貼合を行う場合には、フィルム間に接着剤を連続供給する一方で、接着剤層を介して積層されたフィルムの幅方向端部から溢れ出る過剰分の接着剤を、サクション装置を用いて連続吸引しながら貼合工程を実施することができるが、この場合、接着剤の吸引量を調整することによっても第1及び第2接着剤層250,350の幅を調整することができる。 In order to adjust the width of the first and second adhesive layers 250 and 350 to the predetermined width, the supply amount or coating amount of the adhesive, the pressure applied by the pressure bonding device (when using the bonding roll, the bonding What is necessary is just to adjust the distance between joint rolls), the conveyance speed of a film, etc. In addition, when continuous bonding is performed using the long polarizing film and the first and second protective films 200 and 300, the adhesive is continuously supplied between the films, while being laminated through the adhesive layer. It is possible to carry out the bonding process while continuously sucking the excess adhesive overflowing from the width direction end of the film using a suction device. In this case, adjust the suction amount of the adhesive. Also, the width of the first and second adhesive layers 250 and 350 can be adjusted.
 偏光性フィルムが基材フィルムの片面のみに偏光子層を有する場合、貼合工程S40において第2保護フィルムは、第2接着剤層を介することなく(偏光性フィルムにおける偏光子層を有する側とは反対側の面と第2保護フィルムとの間に接着剤Tを供給することなく)偏光性フィルム上に直接配置してもよいが、好ましくは第2接着剤層を介して配置される。第2保護フィルムが第2接着剤層を介さず偏光性フィルム上に直接配置される場合、第1及び第2保護フィルム200,300は、第1接着剤層250の幅方向両端がそれぞれ偏光性フィルムの幅方向両端よりも外側に位置し、かつ第1及び第2保護フィルム200,300の幅方向両端よりも内側に位置するように、偏光性フィルム上に配置される。 When the polarizing film has a polarizer layer only on one side of the base film, the second protective film does not go through the second adhesive layer in the bonding step S40 (with the side having the polarizer layer in the polarizing film; May be disposed directly on the polarizing film (without supplying adhesive T between the opposite surface and the second protective film), but is preferably disposed via the second adhesive layer. When the second protective film is disposed directly on the polarizing film without the second adhesive layer, the first and second protective films 200 and 300 are polarizing at both ends in the width direction of the first adhesive layer 250, respectively. It arrange | positions on a polarizing film so that it may be located outside the width direction both ends of a film, and may be located inside the width direction both ends of the 1st and 2nd protective films 200 and 300. FIG.
 (第1、第2保護フィルム)
 第1、第2保護フィルム200,300としては、上述のようにそれらの幅W2、W3が偏光性フィルム(基材フィルム100)の幅W1よりも広いものが用いられる(W2、W3>W1)。幅W2とW3は同じであってもよいし、異なっていてもよいが、通常は同じ幅である。
(First and second protective film)
As the first and second protection films 200 and 300, those are the width W 2, W 3 thereof, as described above wider than the width W 1 of the polarizing film (base film 100) is used (W 2, W 3> W 1). The widths W 2 and W 3 may be the same or different, but are usually the same width.
 幅W2、W3と幅W1との差は、上述した積層フィルムの幅方向両端部分において第1保護フィルム200と第2保護フィルム300との間に偏光性フィルムが存在しない部分を十分に広くし、接着剤のはみ出しを有効に防止するために、40mm以上とすることが好ましく、80mm以上とすることがより好ましい。上記偏光性フィルムが存在しない部分の幅方向長さは、積層フィルムの幅方向両端部分それぞれについて20mm以上とすることが好ましく、40mm以上とすることがより好ましい。 The difference between the widths W 2 and W 3 and the width W 1 is that the portion where the polarizing film does not exist between the first protective film 200 and the second protective film 300 at the both end portions in the width direction of the laminated film is sufficient. In order to effectively widen and prevent the adhesive from protruding, it is preferably 40 mm or more, and more preferably 80 mm or more. The length in the width direction of the portion where the polarizing film does not exist is preferably 20 mm or more, and more preferably 40 mm or more for each of both end portions in the width direction of the laminated film.
 一方、幅W2、W3をあまり広くすると、後述する除去工程S50において切断除去される部分が大きくなり生産性の面(原材料の有効利用)で不利にあるため、幅W2、W3と幅W1との差は、100cm以下とすることが好ましく、60cm以下とすることがより好ましく、40cm以下とすることがさらに好ましい。 On the other hand, if too large a width W 2, W 3, since there is a disadvantage in terms of productivity becomes large portion to be cut and removed in the removing step S50 to be described later (effective use of raw materials), and a width W 2, W 3 The difference from the width W 1 is preferably 100 cm or less, more preferably 60 cm or less, and even more preferably 40 cm or less.
 第1、第2保護フィルム200,300はそれぞれ、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂など)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂など)等のポリオレフィン系樹脂;セルローストリアセテート、セルロースジアセテート等のセルロースエステル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;(メタ)アクリル系樹脂;又はこれらの混合物、共重合物などからなるフィルムであることができる。環状ポリオレフィン系樹脂及びそのフィルム、並びにセルローストリアセテートの使用可能な市販品の例は上述のとおりである。 The first and second protective films 200 and 300 are, for example, polyolefin resins such as chain polyolefin resin (polypropylene resin, etc.) and cyclic polyolefin resin (norbornene resin, etc.); cellulose triacetate, cellulose diacetate, etc. Cellulose ester-based resins; Polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; Polycarbonate resins; (Meth) acrylic resins; or a mixture or copolymer thereof. . Examples of commercially available products of cyclic polyolefin resin and film thereof, and cellulose triacetate are as described above.
 第1保護フィルム200と第2保護フィルム300とは同種の材料から構成されていてもよく、異種の材料から構成されていてもよい。 The first protective film 200 and the second protective film 300 may be made of the same material or different materials.
 第1及び/又は第2保護フィルム200,300は、位相差フィルム、輝度向上フィルムなど、光学機能を併せ持つ保護フィルムであることもできる。例えば、上記材料からなる透明樹脂フィルムを延伸(一軸延伸又は二軸延伸など)したり、該フィルム上に液晶層などを形成したりすることにより、任意の位相差値が付与された位相差フィルムとすることができる。 The first and / or second protective films 200 and 300 may be protective films having an optical function such as a retardation film and a brightness enhancement film. For example, a retardation film provided with an arbitrary retardation value by stretching a transparent resin film made of the above material (uniaxial stretching or biaxial stretching) or forming a liquid crystal layer or the like on the film. It can be.
 第1及び第2保護フィルム200,300の厚みは、偏光性積層フィルム及び偏光板の薄型化の観点から、90μm以下であることが好ましく、50μm以下であることがより好ましい。一方、強度確保の観点から、第1及び第2保護フィルム200,300の厚みは5μm以上であることが好ましい。 The thickness of the first and second protective films 200 and 300 is preferably 90 μm or less, and more preferably 50 μm or less, from the viewpoint of thinning the polarizing laminated film and the polarizing plate. On the other hand, from the viewpoint of securing strength, the thickness of the first and second protective films 200 and 300 is preferably 5 μm or more.
 第1、第2保護フィルム200,300の接着面には、接着剤層との接着性を向上させるために、プライマー処理、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面処理を行うことが好ましい。なかでも、比較的容易に実施可能なコロナ処理、ケン化処理が好適である。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリ水溶液に浸漬する方法が挙げられる。 In order to improve the adhesiveness with the adhesive layer, the primer surface, plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification are applied to the adhesive surfaces of the first and second protective films 200 and 300. It is preferable to perform surface treatment such as treatment. Of these, corona treatment and saponification treatment that can be carried out relatively easily are suitable. Examples of the saponification treatment include a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.
 表面処理は、第1、第2保護フィルム200,300を構成する樹脂の種類に応じて、十分な接着性向上効果が得られるよう適切に選択することが好ましい。例えばセルロースエステル系樹脂フィルムを使用する場合には、ケン化処理が効果的である。また、ポリプロピレン系樹脂等の鎖状ポリオレフィン系樹脂、環状ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂又は(メタ)アクリル系樹脂などからなるフィルムを使用する場合には、コロナ処理が効果的である。 It is preferable to appropriately select the surface treatment so as to obtain a sufficient effect of improving the adhesion depending on the types of resins constituting the first and second protective films 200 and 300. For example, when a cellulose ester resin film is used, a saponification treatment is effective. Further, when using a film made of a chain polyolefin resin such as a polypropylene resin, a cyclic polyolefin resin, a polyester resin, a polycarbonate resin or a (meth) acrylic resin, a corona treatment is effective. .
 保護フィルムに対して表面処理を施す代わりに又はこれとともに、偏光性フィルムの接着面に表面処理を施してもよい。 A surface treatment may be applied to the adhesive surface of the polarizing film instead of or along with the surface treatment of the protective film.
 第1及び/又は第2保護フィルム200,300の偏光子層とは反対側の表面には、ハードコート層、防眩層、反射防止層などの光学層を形成することもできる。保護フィルム表面にこれらの光学層を形成する方法は特に限定されず、公知の方法を用いることができる。光学層は、貼合工程S40の実施に先立って保護フィルム上に予め形成しておいてもよいし、貼合工程S40実施後、後述する除去工程S50実施後又は剥離工程S60実施後に形成してもよい。 An optical layer such as a hard coat layer, an antiglare layer, or an antireflection layer can be formed on the surface of the first and / or second protective film 200, 300 opposite to the polarizer layer. The method for forming these optical layers on the surface of the protective film is not particularly limited, and a known method can be used. The optical layer may be formed in advance on the protective film prior to the bonding step S40, or after the bonding step S40, after the removal step S50 or after the peeling step S60. Also good.
 (接着剤)
 第1保護フィルム200と偏光性フィルムとの貼合に用いられる接着剤S、第2保護フィルム300と偏光性フィルムとの貼合のために必要に応じて用いられる接着剤Tとしては、水系接着剤又は光硬化性接着剤を用いることができる。
(adhesive)
As adhesive S used for bonding with the 1st protective film 200 and a polarizing film, adhesive T used as needed for bonding with the 2nd protective film 300 and a polarizing film, water system adhesion An agent or a photocurable adhesive can be used.
 接着剤Sと接着剤Tとは同種であってもよいし、異種であってもよいが、生産効率の観点から同種の接着剤を用いることが好ましい。 The adhesive S and the adhesive T may be the same type or different types, but it is preferable to use the same type of adhesive from the viewpoint of production efficiency.
 水系接着剤としては、ポリビニルアルコール系樹脂水溶液からなる接着剤、水系二液型ウレタン系エマルジョン接着剤などが挙げられる。とりわけ保護フィルムとしてケン化処理などで表面処理(親水化処理)されたセルロースエステル系樹脂フィルムを用いる場合には、ポリビニルアルコール系樹脂水溶液からなる水系接着剤を用いることが好ましい。 Examples of the water-based adhesive include an adhesive made of a polyvinyl alcohol-based resin aqueous solution and a water-based two-component urethane emulsion adhesive. In particular, when a cellulose ester-based resin film that has been surface-treated (hydrophilized) by a saponification treatment or the like is used as a protective film, it is preferable to use a water-based adhesive comprising a polyvinyl alcohol-based resin aqueous solution.
 ポリビニルアルコール系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるポリビニルアルコール系共重合体又はその水酸基を部分的に変性した変性ポリビニルアルコール系重合体などを用いることができる。 Polyvinyl alcohol resins include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. A polyvinyl alcohol copolymer obtained by saponifying a polymer or a modified polyvinyl alcohol polymer obtained by partially modifying a hydroxyl group thereof can be used.
 水系接着剤は、多価アルデヒド、水溶性エポキシ化合物、メラミン系化合物、ジルコニア化合物、亜鉛化合物などの添加剤を含むことができる。水系接着剤を用いた場合、それから得られる接着剤層の厚みは、通常1μm以下である。 The water-based adhesive can contain additives such as polyhydric aldehydes, water-soluble epoxy compounds, melamine compounds, zirconia compounds, and zinc compounds. When an aqueous adhesive is used, the thickness of the adhesive layer obtained therefrom is usually 1 μm or less.
 水系接着剤を用いる場合、上述の貼合(接着剤層を介したフィルムの積層及び圧着装置による圧力印加)を実施した後、水系接着剤中に含まれる水を除去するためにフィルムを乾燥させる乾燥工程を実施することが好ましい。乾燥はフィルムを乾燥炉に導入することによって行うことができる。 When using an aqueous adhesive, after carrying out the above-mentioned bonding (lamination of the film through the adhesive layer and pressure application by a pressure bonding device), the film is dried to remove the water contained in the aqueous adhesive. It is preferable to carry out a drying step. Drying can be performed by introducing the film into a drying oven.
 乾燥温度(乾燥炉の温度)は、好ましくは30~90℃である。30℃未満であると、偏光性フィルムと保護フィルムとが剥離しやすくなる傾向がある。また乾燥温度が90℃を超えると、熱によって偏光性能が劣化するおそれがある。乾燥時間は10~1000秒とすることができ、生産性の観点からは、好ましくは60~750秒、より好ましくは150~600秒である。 The drying temperature (drying furnace temperature) is preferably 30 to 90 ° C. If the temperature is lower than 30 ° C., the polarizing film and the protective film tend to be peeled off. On the other hand, if the drying temperature exceeds 90 ° C., the polarization performance may be deteriorated by heat. The drying time can be 10 to 1000 seconds, and from the viewpoint of productivity, it is preferably 60 to 750 seconds, and more preferably 150 to 600 seconds.
 乾燥工程後、室温又はそれよりやや高い温度、例えば20~45℃程度の温度で12~600時間程度養生する養生工程を設けてもよい。養生温度は、乾燥温度よりも低く設定されるのが一般的である。 After the drying step, a curing step of curing at room temperature or slightly higher temperature, for example, at a temperature of about 20 to 45 ° C. for about 12 to 600 hours may be provided. The curing temperature is generally set lower than the drying temperature.
 上記乾燥工程及び養生工程は、後述する除去工程S50を実施する場合において、除去工程S50の前に行ってもよいし、除去工程S50の後に行ってもよい。ただし、貼合工程S40を経て得られる偏光性積層フィルムを用いて偏光板を作製する場合(すなわち剥離工程S60を実施する場合)には、乾燥工程及び養生工程は剥離工程S60の前に行う。 The above drying step and curing step may be performed before the removal step S50 or after the removal step S50 when performing the removal step S50 described later. However, when producing a polarizing plate using the polarizing laminated film obtained through bonding process S40 (namely, when peeling process S60 is implemented), a drying process and a curing process are performed before peeling process S60.
 上記光硬化性接着剤とは、紫外線等の活性エネルギー線を照射することで硬化する接着剤をいい、例えば、重合性化合物及び光重合開始剤を含むもの、光反応性樹脂を含むもの、バインダー樹脂及び光反応性架橋剤を含むものなどを挙げることができる。重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性アクリル系モノマー、光硬化性ウレタン系モノマーなどの光重合性モノマーや、光重合性モノマーに由来するオリゴマーなどを挙げることができる。光重合開始剤としては、紫外線等の活性エネルギー線の照射により中性ラジカル、アニオンラジカル、カチオンラジカルといった活性種を発生する物質を含むものを挙げることができる。重合性化合物及び光重合開始剤を含む光硬化性接着剤として、光硬化性エポキシ系モノマー及び光カチオン重合開始剤を含むものを好ましく用いることができる。 The photocurable adhesive refers to an adhesive that is cured by irradiating active energy rays such as ultraviolet rays, for example, an adhesive containing a polymerizable compound and a photopolymerization initiator, an adhesive containing a photoreactive resin, and a binder. The thing containing resin and a photoreactive crosslinking agent can be mentioned. Examples of the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable acrylic monomer, and a photocurable urethane monomer, and oligomers derived from the photopolymerizable monomer. As a photoinitiator, what contains the substance which generate | occur | produces active species, such as a neutral radical, an anion radical, and a cation radical by irradiation of active energy rays, such as an ultraviolet-ray, can be mentioned. As the photocurable adhesive containing a polymerizable compound and a photopolymerization initiator, an adhesive containing a photocurable epoxy monomer and a photocationic polymerization initiator can be preferably used.
 上記したように、樹脂層形成工程S10において未塗工領域を設けた場合には、延伸工程S20などにおいてその未塗工領域に波打ちが生じることがある。このような波打ちが生じた状態で光硬化性接着剤を用いて貼合工程S40を実施すると、一部の光硬化性接着剤が波打ち部分に溜まり、活性エネルギー線照射時の熱により黄変劣化するおそれがある。したがってこの黄変劣化を回避する観点からも、未塗工領域を除去することが好ましい。 As described above, when an uncoated region is provided in the resin layer forming step S10, undulation may occur in the uncoated region in the stretching step S20 or the like. When the bonding step S40 is performed using a photocurable adhesive in a state where such undulation has occurred, a part of the photocurable adhesive accumulates in the undulated portion, and yellowing deterioration due to heat during irradiation with active energy rays There is a risk. Therefore, it is preferable to remove the uncoated region from the viewpoint of avoiding this yellowing deterioration.
 光硬化性接着剤を用いる場合、上述の貼合(接着剤層を介したフィルムの積層及び圧着装置による圧力印加)を実施した後、必要に応じて乾燥工程を行い(光硬化性接着剤が溶剤を含む場合など)、次いで活性エネルギー線を照射することによって光硬化性接着剤を硬化させる硬化工程を行う。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線が好ましく、具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが好ましく用いられる。 When using a photocurable adhesive, after performing the above-mentioned pasting (lamination of a film through an adhesive layer and pressure application by a pressure bonding apparatus), a drying process is performed as necessary (the photocurable adhesive is Next, a curing step of curing the photocurable adhesive by irradiating active energy rays is performed. The light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable. Specifically, the low-pressure mercury lamp, the medium-pressure mercury lamp, the high-pressure mercury lamp, the ultrahigh-pressure mercury lamp, the chemical lamp, and the black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferably used.
 光硬化性接着剤への光照射強度は、光硬化性接着剤の組成によって適宜決定され、重合開始剤の活性化に有効な波長領域の照射強度が0.1~6000mW/cm2となるように設定されることが好ましい。照射強度が0.1mW/cm2以上である場合、反応時間が長くなりすぎず、6000mW/cm2以下である場合、光源から輻射される熱および光硬化性接着剤の硬化時の発熱による光硬化性接着剤の黄変や偏光子層の劣化を生じるおそれが少ない。 The light irradiation intensity to the photocurable adhesive is appropriately determined depending on the composition of the photocurable adhesive, and the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW / cm 2. It is preferable to set to. When the irradiation intensity is 0.1 mW / cm 2 or more, the reaction time does not become too long, and when the irradiation intensity is 6000 mW / cm 2 or less, the light emitted from the light source and the heat generated during the curing of the photocurable adhesive There is little risk of yellowing of the curable adhesive and deterioration of the polarizer layer.
 光硬化性接着剤への光照射時間についても、光硬化性接着剤の組成によって適宜決定され、上記照射強度と照射時間との積として表される積算光量が10~10000mJ/cm2となるように設定されることが好ましい。積算光量が10mJ/cm2以上である場合、重合開始剤由来の活性種を十分量発生させて硬化反応をより確実に進行させることができ、10000mJ/cm2以下である場合、照射時間が長くなりすぎず、良好な生産性を維持できる。 The light irradiation time to the photocurable adhesive is also determined appropriately depending on the composition of the photocurable adhesive, and the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10 to 10,000 mJ / cm 2. It is preferable to set to. When the integrated light amount is 10 mJ / cm 2 or more, a sufficient amount of active species derived from the polymerization initiator can be generated to advance the curing reaction more reliably, and when it is 10000 mJ / cm 2 or less, the irradiation time is long. It does not become too much and good productivity can be maintained.
 なお、活性エネルギー線照射後の接着剤層の厚みは、通常0.001~5μm程度であり、好ましくは0.01~2μm、さらに好ましくは0.01~1μmである。 The thickness of the adhesive layer after irradiation with active energy rays is usually about 0.001 to 5 μm, preferably 0.01 to 2 μm, more preferably 0.01 to 1 μm.
 上記乾燥工程及び硬化工程は、後述する除去工程S50を実施する場合において、除去工程S50の前に行ってもよいし、除去工程S50の後に行ってもよい。ただし、貼合工程S40を経て得られる偏光性積層フィルムを用いて偏光板を作製する場合(すなわち剥離工程S60を実施する場合)には、乾燥工程及び硬化工程は剥離工程S60の前に行う。 The drying step and the curing step may be performed before the removal step S50 or after the removal step S50 when performing the removal step S50 described later. However, when producing a polarizing plate using the polarizing laminated film obtained through bonding process S40 (namely, when peeling process S60 is implemented), a drying process and a hardening process are performed before peeling process S60.
 〔5〕除去工程S50
 本工程は、貼合工程S40(又は乾燥工程や養生工程あるいは硬化工程)を経て得られた偏光性積層フィルムの幅方向両端部分を切断により除去する工程である。本工程もまた、貼合工程S40を経て得られた長尺の偏光性積層フィルムを搬送しながら連続的に除去処理を行うことにより、又は貼合工程S40を経て得られた長尺の偏光性積層フィルムを一旦ロール状に巻き取り、該ロール体から偏光性積層フィルムを連続的に巻き出しながら連続的に除去処理を行うことにより連続的に実施することができる。
[5] Removal step S50
This step is a step of removing both ends in the width direction of the polarizing laminated film obtained through the bonding step S40 (or drying step, curing step or curing step) by cutting. This process also has a long polarizing property obtained by continuously performing a removing process while conveying a long polarizing laminated film obtained through the bonding step S40 or through the bonding step S40. It can be carried out continuously by winding the laminated film once in a roll and continuously removing the polarizing laminated film from the roll body while continuously removing it.
 本工程は、貼合工程S40を経て得られた偏光性積層フィルムをそのまま偏光要素として使用する場合には省略することが可能であるが、貼合工程S40を経て得られた偏光性積層フィルムから偏光板を作製する場合(すなわち剥離工程S60を実施する場合)には必須の工程である。 This step can be omitted when the polarizing laminated film obtained through the bonding step S40 is used as it is as a polarizing element, but from the polarizing laminated film obtained through the bonding step S40. This is an essential step when a polarizing plate is produced (that is, when the peeling step S60 is performed).
 フィルムの切断位置は、その一例を図3に示すように、偏光子層110の幅方向両端の位置又はこれより内側の位置であり、これはすなわち、第1保護フィルム200と第2保護フィルム300とが接着剤層によって直接(偏光性フィルムが介在することなく)接着されている部分、及び、偏光性フィルムが未塗工領域120,130(偏光子層110が形成されていない領域)を有する場合には保護フィルムと基材フィルムとが接着剤層によって直接(偏光子層110が介在することなく)接着されている部分を少なくとも除去できる位置である。 An example of the cutting position of the film is as shown in FIG. 3, which is the position at both ends in the width direction of the polarizer layer 110 or the position inside thereof, that is, the first protective film 200 and the second protective film 300. And a portion directly bonded by an adhesive layer (with no polarizing film interposed), and the polarizing film has uncoated regions 120 and 130 (regions where the polarizer layer 110 is not formed). In this case, it is a position where at least a portion where the protective film and the base film are directly bonded by the adhesive layer (without the polarizer layer 110 interposed) can be removed.
 このような切断位置でフィルム幅方向両端部分を除去することにより、剥離工程S60において基材フィルム100を偏光子層110から容易に剥離することが可能になる。 By removing both end portions in the film width direction at such cutting positions, the base film 100 can be easily peeled from the polarizer layer 110 in the peeling step S60.
 フィルム幅方向両端部分の除去は、型抜き法又はスリッターを用いたスリット法により行うことができる。なかでも、長尺の偏光性積層フィルムに対して連続的に除去処理を施すことができるスリット法が好ましい。 Removal of both end portions in the film width direction can be performed by a die cutting method or a slit method using a slitter. Especially, the slit method which can perform a removal process continuously with respect to a elongate polarizing laminated film is preferable.
 スリット法としては、例えばレザー刃と呼ばれる剃刀刃をスリッターとして用いる方法が挙げられる。剃刀刃を用いたスリット法は、特にバックアップガイドを設けずに空中でスリットする中空切り;バックアップガイドとして、溝を切ったロールに刃を入れ込んでスリットの蛇行を安定させる溝ロール法などを含む。 Examples of the slit method include a method using a razor blade called a leather blade as a slitter. The slitting method using a razor blade includes a hollow cutting method that slits in the air without providing a backup guide; a grooved roll method that stabilizes the meandering of the slit by inserting the blade into a grooved roll as a backup guide .
 スリット法の他の例を挙げれば、シヤー刃と呼ばれる円形の刃を2枚用いて、フィルムの搬送にあわせて回転させながら上刃で下刃に接圧をかけてスリットする方法;スコアー刃と呼ばれる刃を焼き入れロール等に押し付けてスリットする方法;シヤー刃を2枚組み合わせてハサミのようにカットしながらスリットする方法などがある。 Another example of the slit method is a method in which two circular blades called shear blades are used for slitting by applying contact pressure to the lower blade with the upper blade while rotating according to the conveyance of the film; There is a method of slitting by pressing a so-called blade against a quenching roll; a method of slitting while cutting like two scissors by combining two shear blades.
 なかでも、フィルムの切断(スリット)位置を簡単に変更でき、かつ、走行が安定しやすい方法である「レザー刃を用いた溝ロール法」などが好適に用いられる。 Among them, the “groove roll method using a leather blade”, which is a method that can easily change the cutting (slit) position of the film and that is easy to stabilize, is preferably used.
 除去工程S50に使用する装置はさほど大掛かりな装置ではないため、上記S10~S40のいずれかの工程のインラインに組み込むことができる。例えば、貼合工程S40を経て得られた偏光性積層フィルムを巻き取る巻き取り部にスリッターを配置すれば、偏光性積層フィルムを巻き取りながらスリットを行うことができる。 Since the apparatus used for the removal step S50 is not so large, it can be incorporated in the inline of any of the above steps S10 to S40. For example, if a slitter is arrange | positioned in the winding-up part which winds up the polarizing laminated film obtained through bonding process S40, a slit can be performed, winding up a polarizing laminated film.
 また、上記S10~S40のいずれかの工程のインラインに組み込むことなく、これらの工程とは独立して除去工程S50に使用する装置を設けることも勿論可能である。このような例としては、ロールの巻き替えなどを行うリワインダーなどと呼ばれる装置にスリッターを設置することなどが挙げられる。 Further, it is of course possible to provide an apparatus used for the removal step S50 independently of these steps without being incorporated in the in-line of any of the steps S10 to S40. As such an example, a slitter may be installed in a device called a rewinder that performs roll rewinding.
 フィルム幅方向両端部分の除去された偏光性積層フィルムはそのまま偏光要素として使用することができるとともに、偏光子層と保護フィルムとからなる偏光板を作製する(後述する剥離工程S60に供される)中間物としても有用である。 The polarizing laminated film from which both end portions in the film width direction are removed can be used as a polarizing element as it is, and a polarizing plate comprising a polarizer layer and a protective film is prepared (subjected to a peeling step S60 described later). It is also useful as an intermediate.
 <偏光板の製造方法>
 本発明の偏光板の製造方法は、上述の偏光性フィルムを用意する工程、貼合工程S40、除去工程S50及び剥離工程S60を含む(図1参照)。剥離工程S60以外については上述したとおりであるので説明は割愛する。本発明の方法によれば、偏光性積層フィルムの場合と同様、接着剤のはみ出し、これに伴う貼合ロールなどの圧着装置の汚染及びフィルム表面の汚染を防止しながら、偏光子層と保護フィルムとの接着性に優れる偏光板を安定して製造することができる。
<Production method of polarizing plate>
The manufacturing method of the polarizing plate of this invention contains the process of preparing the above-mentioned polarizing film, bonding process S40, removal process S50, and peeling process S60 (refer FIG. 1). Since the steps other than the peeling step S60 are as described above, description thereof will be omitted. According to the method of the present invention, as in the case of the polarizing laminated film, the polarizer layer and the protective film are prevented from sticking out of the adhesive and accompanying contamination of the crimping device such as a bonding roll and contamination of the film surface. It is possible to stably produce a polarizing plate excellent in adhesiveness.
 〔6〕剥離工程S60
 本工程は、図4を参照して、除去工程S50を経て得られる幅方向両端部分が除去された偏光性積層フィルムから基材フィルム100を剥離除去して、偏光子層110に第1保護フィルム200が貼合された第1偏光板を少なくとも得る工程である。
[6] Peeling step S60
In this step, referring to FIG. 4, the base film 100 is peeled off from the polarizing laminated film from which both end portions in the width direction obtained through the removing step S <b> 50 are removed, and the first protective film is formed on the polarizer layer 110. It is a step of obtaining at least a first polarizing plate to which 200 is bonded.
 図4に示される例のように、基材フィルム100の両面に偏光子層110が形成されており、貼合工程S40において第2保護フィルム300が第2接着剤層350を介して偏光性フィルム上に貼合される場合には、本工程により2つの偏光板、すなわち、上記第1偏光板と、偏光子層110に第2保護フィルム300が貼合された第2偏光板を得ることができる。基材フィルム100の一方の面のみ(第1保護フィルム200側のみ)に偏光子層110が形成されている場合には、本工程により1つの偏光板(第1偏光板)が得られる。 As in the example shown in FIG. 4, the polarizer layer 110 is formed on both surfaces of the substrate film 100, and the second protective film 300 is bonded to the polarizing film via the second adhesive layer 350 in the bonding step S <b> 40. In the case of being bonded to the top, two polarizing plates, that is, the first polarizing plate and the second polarizing plate in which the second protective film 300 is bonded to the polarizer layer 110 can be obtained by this step. it can. When the polarizer layer 110 is formed only on one surface of the base film 100 (only on the first protective film 200 side), one polarizing plate (first polarizing plate) is obtained by this step.
 本工程もまた、除去工程S50を経て得られた長尺の偏光性積層フィルムを搬送しながら連続的に剥離処理を行うことにより、又は除去工程S50を経て得られた長尺の偏光性積層フィルムを一旦ロール状に巻き取り、該ロール体から偏光性積層フィルムを連続的に巻き出しながら連続的に剥離処理を行うことにより連続的に実施することができる。 Also in this step, the long polarizing laminated film obtained by continuously performing the peeling treatment while carrying the long polarizing laminated film obtained through the removing step S50, or through the removing step S50. Can be continuously carried out by winding the film into a roll and continuously performing a peeling treatment while continuously unwinding the polarizing laminated film from the roll.
 基材フィルムを剥離除去する方法は特に限定されるものでなく、通常の粘着剤付偏光板で行われるセパレータ(剥離フィルム)の剥離工程と同様の方法で剥離できる。 The method for peeling and removing the base film is not particularly limited, and can be peeled by the same method as the separator (peeling film) peeling step performed by a normal pressure-sensitive adhesive polarizing plate.
 図5は、剥離工程S60における基材フィルムの剥離方法の一例を示す図であり、基材フィルムの剥離方向と偏光子層の配向方向の関係を模式的に示す上面図である。図5において、偏光性積層フィルム500から基材フィルム600が剥離され、第1保護フィルムと偏光子層とからなる第1偏光板700が形成される。図5において基材フィルム600上に積層されている第2保護フィルムは省略されている。 FIG. 5 is a view showing an example of a peeling method of the base film in the peeling step S60, and is a top view schematically showing the relationship between the peeling direction of the base film and the orientation direction of the polarizer layer. In FIG. 5, the base film 600 is peeled from the polarizing laminated film 500, and the 1st polarizing plate 700 which consists of a 1st protective film and a polarizer layer is formed. In FIG. 5, the second protective film laminated on the base film 600 is omitted.
[規則91に基づく訂正 19.08.2013] 
 偏光子層の配向方向を矢印Aで示し、基材フィルム600の剥離方向を矢印Bで示し、基材フィルム600の剥離方向(矢印B)と偏光子層の配向方向(矢印A)とのなす角度をθで示す。このとき、基材フィルム600の剥離方向(矢印B)と偏光子層の配向方向(矢印A)とのなす角度θが20度以下、好ましくは10度以下、さらに好ましくは5度以下(例えば0度)となるように剥離することが好ましい。角度θが20度以下となるように剥離することにより、偏光子層に凝集破壊を生じさせることなく、基材フィルム600をきれいに、かつスムーズに剥離することができる。偏光子層の配向方向とは、偏光子層を構成するポリビニルアルコール系樹脂の主鎖が延伸により並んでいる方向であり、偏光子層の面内において屈折率が最も高い方向である。
[Correction based on Rule 91 19.08.2013]
The orientation direction of the polarizer layer is indicated by an arrow A, the peeling direction of the base film 600 is indicated by an arrow B, and the peeling direction (arrow B) of the base film 600 and the orientation direction of the polarizer layer (arrow A) are formed. The angle is indicated by θ. At this time, the angle θ formed by the peeling direction of the base film 600 (arrow B) and the orientation direction of the polarizer layer (arrow A) is 20 degrees or less, preferably 10 degrees or less, more preferably 5 degrees or less (for example, 0 It is preferable to peel so that it may become (degree). By peeling so that the angle θ is 20 degrees or less, the base film 600 can be peeled cleanly and smoothly without causing cohesive failure in the polarizer layer. The orientation direction of the polarizer layer is a direction in which the main chains of the polyvinyl alcohol-based resin constituting the polarizer layer are aligned by stretching, and is the direction having the highest refractive index in the plane of the polarizer layer.
 また図6に示されるように、基材フィルム600と第1偏光板700との剥離点Cにおいて、基材フィルム剥離前の偏光性積層フィルム500と第1偏光板700とのなす角度φpが、基材フィルム剥離前の偏光性積層フィルム500と基材フィルム600とのなす角度φkより小さくなるように基材フィルム600を剥離することが好ましい。φpは好ましくは45度以下であり、より好ましくは0度である。φp<φk、さらにはφp≦45度となるように基材フィルム600を剥離することにより、偏光子層に生じる凝集破壊を抑制するとともに、基材フィルム600をスムーズに剥離することができる。 Also, as shown in FIG. 6, at the peeling point C between the base film 600 and the first polarizing plate 700, the angle φp formed by the polarizing laminated film 500 and the first polarizing plate 700 before peeling the base film is It is preferable to peel the base film 600 so as to be smaller than the angle φk formed by the polarizing laminated film 500 and the base film 600 before peeling the base film. φp is preferably 45 degrees or less, more preferably 0 degrees. By peeling the base film 600 so that φp <φk and further φp ≦ 45 degrees, cohesive failure occurring in the polarizer layer can be suppressed, and the base film 600 can be peeled smoothly.
 図6においては、剥離点Cで偏光性積層フィルム500に対して基材フィルム600と第1偏光板700とが反対方向に角度をなすように剥離される様子を示すが、剥離点Cで偏光性積層フィルム500に対して基材フィルム600と第1偏光板700とが同一方向に角度をなすように剥離されてもよく、この場合であっても、角度φpおよびφkに関する上述の条件は有効である。 FIG. 6 shows a state in which the base film 600 and the first polarizing plate 700 are peeled off at an angle in the opposite direction with respect to the polarizing laminated film 500 at the peeling point C. The base film 600 and the first polarizing plate 700 may be peeled so as to form an angle in the same direction with respect to the conductive laminated film 500. Even in this case, the above-described conditions regarding the angles φp and φk are effective. It is.
 以上、図5及び図6を参照して、偏光性積層フィルムから基材フィルムを剥離して第1偏光板を得る方法について述べたが、偏光性積層フィルムから基材フィルムを剥離して第2偏光板を得る場合も同様である。偏光性積層フィルムから第1偏光板を取り出す工程と、第2偏光板を取り出す工程の順序に特に制限はない。 As mentioned above, with reference to FIG.5 and FIG.6, although the base film was peeled from the light-polarizing laminated film and the method of obtaining a 1st polarizing plate was described, it peeled a base film from a light-polarizing laminated film, and was 2nd. The same applies when obtaining a polarizing plate. There is no restriction | limiting in particular in the order of the process of taking out a 1st polarizing plate from a polarizing laminated film, and the process of taking out a 2nd polarizing plate.
 以上のようして製造される偏光板は、実用に際して他の光学層を積層した光学フィルムとして用いることができる。また、上記保護フィルムがこれらの光学層の機能を有していてもよい。他の光学層としては、ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルム;表面に凹凸形状を有する防眩機能付きフィルム;表面反射防止機能付きフィルム;表面に反射機能を有する反射フィルム;反射機能と透過機能とを併せ持つ半透過反射フィルム;視野角補償フィルムなどが挙げられる。 The polarizing plate produced as described above can be used as an optical film in which other optical layers are laminated in practical use. Moreover, the said protective film may have a function of these optical layers. As another optical layer, a reflective polarizing film that transmits a certain kind of polarized light and reflects polarized light having the opposite properties; a film with an antiglare function having an uneven shape on the surface; a film with a surface antireflection function A reflective film having a reflective function on the surface; a transflective film having both a reflective function and a transmissive function; and a viewing angle compensation film.
 ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルムに相当する市販品としては、たとえば、「DBEF」(3M社製、住友スリーエム(株)から入手可能)、「APF」(3M社製、住友スリーエム(株)から入手可能)が挙げられる。 For example, “DBEF” (available from 3M, Sumitomo 3M Co., Ltd.) can be used as a commercial product equivalent to a reflective polarizing film that transmits certain types of polarized light and reflects polarized light that exhibits the opposite properties. ), “APF” (manufactured by 3M, available from Sumitomo 3M Limited).
 視野角補償フィルムとしては、基材表面に液晶性化合物が塗布され、配向されている光学補償フィルム、ポリカーボネート系樹脂からなる位相差フィルム、環状ポリオレフィン系樹脂からなる位相差フィルムが挙げられる。 Examples of the viewing angle compensation film include an optical compensation film in which a liquid crystal compound is applied to the substrate surface and oriented, a retardation film made of a polycarbonate resin, and a retardation film made of a cyclic polyolefin resin.
 基材表面に液晶性化合物が塗布され、配向されている光学補償フィルムに相当する市販品としては、「WVフィルム」(富士フイルム(株)製)、「NHフィルム」(新日本石油(株)製)、「NRフィルム」(新日本石油(株)製)などが挙げられる。 Commercially available products corresponding to an optical compensation film coated with a liquid crystal compound on the substrate surface are "WV film" (manufactured by FUJIFILM Corporation), "NH film" (Shin Nippon Oil Co., Ltd.) And “NR Film” (manufactured by Nippon Oil Corporation).
 環状ポリオレフィン系樹脂からなる位相差フィルムに相当する市販品としては、「アートンフィルム」(JSR(株)製)、「エスシーナ」(積水化学工業(株)製)、「ゼオノアフィルム」(日本ゼオン(株)製)などが挙げられる。 Commercial products corresponding to retardation films made of cyclic polyolefin resin include “Arton Film” (manufactured by JSR Corporation), “Essina” (manufactured by Sekisui Chemical Co., Ltd.), “Zeonor Film” (Nippon Zeon ( Etc.).
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 <実施例1>
 (1)基材フィルムの作製
 エチレンユニットを約5重量%含むプロピレン/エチレンのランダム共重合体(住友化学(株)製「住友ノーブレン W151」、融点Tm=138℃)からなる樹脂層の両側にプロピレンの単独重合体であるホモポリプロピレン(住友化学(株)製「住友ノーブレンFLX80E4」、融点Tm=163℃)からなる樹脂層を配置した3層構造の基材フィルムロール(長尺の基材フィルムの巻回品)を、多層押出成形機を用いた共押出成形により作製した。基材フィルムの合計厚みは100μmであり、各層の厚み比(FLX80E4/W151/FLX80E4)は3/4/3であった。
<Example 1>
(1) Production of substrate film Propylene / ethylene random copolymer (Sumitomo Chemical Co., Ltd. “Sumitomo Noblene W151”, melting point Tm = 138 ° C.) containing about 5% by weight of ethylene units on both sides of a resin layer A three-layer base film roll (long base film) having a resin layer made of homopolypropylene (Sumitomo Chemical Co., Ltd. “Sumitomo Nobrene FLX80E4”, melting point Tm = 163 ° C.), which is a propylene homopolymer Was manufactured by coextrusion molding using a multilayer extrusion molding machine. The total thickness of the base film was 100 μm, and the thickness ratio (FLX80E4 / W151 / FLX80E4) of each layer was 3/4/3.
 (2)プライマー層及びポリビニルアルコール系樹脂層の形成
 ポリビニルアルコール粉末(日本合成化学工業(株)製「Z-200」、平均重合度1100、平均ケン化度99.5モル%)を95℃の熱水に溶解し、濃度3重量%のポリビニルアルコール水溶液を調製した。得られた水溶液に架橋剤(住友化学(株)製「スミレーズレジン650」)をポリビニルアルコール粉末6重量部に対して5重量部混合してプライマー層用塗工液を得た。
(2) Formation of Primer Layer and Polyvinyl Alcohol Resin Layer Polyvinyl alcohol powder (“Z-200” manufactured by Nippon Synthetic Chemical Industry Co., Ltd., average polymerization degree 1100, average saponification degree 99.5 mol%) is 95 ° C. It melt | dissolved in hot water and prepared polyvinyl alcohol aqueous solution with a density | concentration of 3 weight%. The resulting aqueous solution was mixed with 5 parts by weight of a crosslinking agent (“SUMILES RESIN 650” manufactured by Sumitomo Chemical Co., Ltd.) with respect to 6 parts by weight of polyvinyl alcohol powder to obtain a primer layer coating solution.
 また、ポリビニルアルコール粉末(クラレ(株)製「PVA124」、平均重合度2400、平均ケン化度98.0~99.0モル%)を95℃の熱水に溶解し、濃度8重量%のポリビニルアルコール水溶液を調製した。 Further, polyvinyl alcohol powder (“PVA124” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, average saponification degree 98.0 to 99.0 mol%) was dissolved in hot water at 95 ° C. to obtain a polyvinyl alcohol having a concentration of 8% by weight. An aqueous alcohol solution was prepared.
 次に、上記(1)で得られた基材フィルムロールから基材フィルムを連続的に巻き出しながら、その両面にコロナ処理を施し、次いでコロナ処理された両面にグラビアコーターを用いて上記プライマー層用塗工液を連続的に塗工し、80℃で10分間乾燥させることにより、厚み0.2μmのプライマー層を両面に有するフィルムを作製した。 Next, while continuously unwinding the base film from the base film roll obtained in the above (1), the both sides of the base film are subjected to corona treatment, and then the corona treatment is performed on both surfaces using the gravure coater. A film having a primer layer with a thickness of 0.2 μm on both sides was prepared by continuously applying the coating liquid for application and drying at 80 ° C. for 10 minutes.
 引き続き、フィルムを搬送しながら、両面のプライマー層上にカンマコーターを用いて上記ポリビニルアルコール水溶液を連続的に塗工し、80℃で5分間乾燥させることにより、両面のプライマー層上に厚み10.6μmのポリビニルアルコール系樹脂層を形成した。この際、基材フィルムの幅方向両端から内側にそれぞれ1cmの部分を、ポリビニルアルコール水溶液を塗工しない未塗工領域とした。このフィルムは一旦ロール状に巻き取った。 Subsequently, while transporting the film, the polyvinyl alcohol aqueous solution was continuously applied onto the primer layers on both sides using a comma coater and dried at 80 ° C. for 5 minutes to obtain a thickness of 10. A 6 μm polyvinyl alcohol resin layer was formed. Under the present circumstances, the part of 1 cm is made into the uncoated area | region which does not apply polyvinyl alcohol aqueous solution to the inside from the width direction both ends of a base film, respectively. This film was once wound up into a roll.
 (3)延伸フィルムの作製
 上記(2)で得られたフィルムロールからフィルムを連続的に巻き出しながら、ポリビニルアルコール系樹脂層の未塗工領域を、レザー刃を用いたスリット法により連続的に切断除去し、引き続き、ロール間空中延伸装置を用いて160℃の延伸温度で縦方向(フィルム搬送方向)に5.8倍の倍率で自由端一軸延伸して厚み65.5μmの延伸フィルムとし、これを巻き取って延伸フィルムロールを得た。
(3) Production of stretched film While unwinding the film continuously from the film roll obtained in (2) above, the uncoated area of the polyvinyl alcohol-based resin layer is continuously formed by a slit method using a leather blade. Cut and removed, followed by free end uniaxial stretching at a magnification of 5.8 times in the longitudinal direction (film transport direction) at a stretching temperature of 160 ° C. using an inter-roll air stretching device to form a stretched film with a thickness of 65.5 μm, This was wound up to obtain a stretched film roll.
 (4)偏光性フィルムの作製
 上記(3)で得られた延伸フィルムロールから延伸フィルムを連続的に巻き出しながら、延伸フィルムをヨウ素とヨウ化カリウムとを含む30℃の染色溶液に150秒間程度の滞留時間となるように浸漬してポリビニルアルコール系樹脂層の染色処理を行い、次いで、10℃の純水で余分な染色溶液を洗い流した。引き続き、ホウ酸とヨウ化カリウムとを含む76℃の架橋溶液に600秒間程度の滞留時間となるように浸漬して架橋処理を行った。その後、10℃の純水で4秒間洗浄し、80℃で300秒間乾燥させることにより偏光子層を有する偏光性フィルムとし、これを巻き取って偏光性フィルムロールを得た。
(4) Production of Polarizing Film While continuously stretching the stretched film from the stretched film roll obtained in (3) above, the stretched film is applied to a dyeing solution at 30 ° C. containing iodine and potassium iodide for about 150 seconds. The polyvinyl alcohol-based resin layer was dyed so as to have a dwell time of 1, and then the excess dyeing solution was washed away with pure water at 10 ° C. Subsequently, a crosslinking treatment was performed by dipping in a crosslinking solution at 76 ° C. containing boric acid and potassium iodide so as to have a residence time of about 600 seconds. Thereafter, it was washed with pure water at 10 ° C. for 4 seconds and dried at 80 ° C. for 300 seconds to obtain a polarizing film having a polarizer layer, which was wound up to obtain a polarizing film roll.
 (5)偏光性積層フィルムの作製
 ポリビニルアルコール粉末((株)クラレ製「KL-318」、平均重合度1800)を95℃の熱水に溶解し、濃度3重量%のポリビニルアルコール水溶液を調製した。得られた水溶液に架橋剤(住友化学(株)製「スミレーズレジン650」)をポリビニルアルコール粉末2重量部に対して1重量部混合し、接着剤溶液とした。
(5) Preparation of polarizing laminated film Polyvinyl alcohol powder (“KL-318” manufactured by Kuraray Co., Ltd., average polymerization degree 1800) was dissolved in 95 ° C. hot water to prepare a 3% by weight polyvinyl alcohol aqueous solution. . The resulting aqueous solution was mixed with 1 part by weight of a crosslinking agent (“SUMIREZ RESIN 650” manufactured by Sumitomo Chemical Co., Ltd.) with respect to 2 parts by weight of polyvinyl alcohol powder to obtain an adhesive solution.
 次に、上記(4)で得られた偏光性フィルムロールから偏光性フィルムを連続的に巻き出すとともに、第1保護フィルムロールから第1保護フィルム〔トリアセチルセルロース(TAC)からなる透明保護フィルム(コニカミノルタオプト(株)製「KC4UY」)〕を、第2保護フィルムロールから第2保護フィルム〔第1保護フィルムと同じ〕を連続的に巻き出した。引き続き、第1及び第2保護フィルムの貼合面にケン化処理を施した後、偏光性フィルムの一方の面に第1保護フィルムを、他方の面に第2保護フィルムを、両保護フィルムと偏光子層との間に上記接着剤溶液を供給(フィード)しながら積層し、積層体を一対の貼合ロール間に通すことにより圧着し、第1及び第2保護フィルムの連続貼合を行った。 Next, the polarizing film is continuously unwound from the polarizing film roll obtained in the above (4), and the first protective film [transparent protective film composed of triacetylcellulose (TAC) (TAC) ( Konica Minolta Opto Co., Ltd. “KC4UY”)] was continuously unwound from the second protective film roll. Subsequently, after the saponification treatment is performed on the bonding surfaces of the first and second protective films, the first protective film is provided on one surface of the polarizing film, the second protective film is provided on the other surface, and both protective films. It laminates | stacks, supplying the said adhesive solution between polarizer layers (feed), and it crimps | bonds by passing a laminated body between a pair of bonding rolls, and performs the continuous bonding of the 1st and 2nd protective film. It was.
 第1及び第2保護フィルムとしては、偏光性フィルムよりも幅が8.0cm広いものを用い、第1及び第2保護フィルムの幅方向中心と偏光性フィルムの幅方向中心とが一致するように貼合した(したがって第1及び第2保護フィルムは、幅方向両端部分において偏光性フィルムよりそれぞれ4.0cm外側に突出している)。 As a 1st and 2nd protective film, what is 8.0 cm wider than a polarizing film is used, and the width direction center of a 1st and 2nd protective film and the width direction center of a polarizing film correspond. (Thus, the first and second protective films protruded 4.0 cm outward from the polarizing film at both ends in the width direction).
 また貼合時、両接着剤層の幅方向両端がそれぞれ偏光性フィルムの幅方向両端よりも外側に位置し、かつ第1及び第2保護フィルムの幅方向両端よりも内側に位置するように、両側の接着剤溶液の供給量を調整した。 Moreover, at the time of pasting, both width direction both ends of both adhesive layers are located outside the width direction both ends of the polarizing film, respectively, and so as to be located inside the width direction both ends of the first and second protective films, The supply amount of the adhesive solution on both sides was adjusted.
 その後引き続き、80℃で5分間乾燥させ偏光性積層フィルムとし、これを巻き取って偏光性積層フィルムロールを得た。この偏光性積層フィルムは、第1保護フィルム/接着剤層/偏光子層/プライマー層/基材フィルム/プライマー層/偏光子層/接着剤層/第2保護フィルムの9層からなる。 Subsequently, the film was dried at 80 ° C. for 5 minutes to obtain a polarizing laminated film, which was wound up to obtain a polarizing laminated film roll. This polarizing laminated film is composed of nine layers: first protective film / adhesive layer / polarizer layer / primer layer / base film / primer layer / polarizer layer / adhesive layer / second protective film.
 得られた偏光性積層フィルムにおいて、フィルム端部からの接着剤のはみ出し及び第1、第2保護フィルムの外側表面への接着剤の付着は認められず良好な状態であった。また、貼合ロールについても接着剤による汚染は認められなかった。 The obtained polarizing laminated film was in a good state with no sticking out of the adhesive from the end of the film and adhesion of the adhesive to the outer surfaces of the first and second protective films. Moreover, the contamination by the adhesive was not recognized also about the bonding roll.
 (6)偏光板の作製
 上記(5)で得られた偏光性積層フィルムロールから偏光性積層フィルムを連続的に巻き出しながら、第1保護フィルムと第2保護フィルムとが接着剤層によって直接接着されている部分を、レザー刃を用いたスリット法により連続的に切断除去した。
(6) Production of polarizing plate While the polarizing laminated film is continuously unwound from the polarizing laminated film roll obtained in (5) above, the first protective film and the second protective film are directly bonded by the adhesive layer. The part which was made was cut and removed continuously by the slit method using a leather blade.
 その後引き続き、基材フィルムを、基材フィルム/プライマー層界面で連続的に剥離、除去して、基材フィルムの両側に積層されていた「(第1又は第2)保護フィルム/接着剤層/偏光子層/プライマー層」の構成の偏光板を2枚得た。基材フィルムを剥離する際、いずれの基材フィルム/プライマー層界面においても、基材フィルムと偏光板との剥離点における上述の角度θ、φp、φkはそれぞれ、0度、0度、45度程度とした。基材フィルムは比較的容易に剥離することができた。 Subsequently, the base film was continuously peeled and removed at the base film / primer layer interface, and “(first or second) protective film / adhesive layer / Two polarizing plates having a configuration of “polarizer layer / primer layer” were obtained. When the base film is peeled off, at any base film / primer layer interface, the above angles θ, φp, and φk at the peeling point between the base film and the polarizing plate are 0 degree, 0 degree, and 45 degrees, respectively. The degree. The base film could be peeled relatively easily.
 <比較例1>
 実施例1の(1)~(4)に記載の方法により偏光性フィルムロールを作製した。
<Comparative Example 1>
A polarizing film roll was produced by the method described in Example 1 (1) to (4).
 この偏光性フィルムロールから偏光性フィルムを連続的に巻き出すとともに、第1保護フィルムロールから第1保護フィルム〔トリアセチルセルロース(TAC)からなる透明保護フィルム(コニカミノルタオプト(株)製「KC4UY」)〕を、第2保護フィルムロールから第2保護フィルム〔第1保護フィルムと同じ〕を連続的に巻き出した。引き続き、第1及び第2保護フィルムの貼合面にケン化処理を施した後、偏光性フィルムの一方の面に第1保護フィルムを、他方の面に第2保護フィルムを、両保護フィルムと偏光子層との間に実施例1で使用したものと同じ接着剤溶液を供給(フィード)しながら積層し、積層体を一対の貼合ロール間に通すことにより圧着し、第1及び第2保護フィルムの連続貼合を行った。 The polarizing film is continuously unwound from the polarizing film roll, and the first protective film from the first protective film roll [transparent protective film made of triacetyl cellulose (TAC) ("KC4UY" manufactured by Konica Minolta Opto Co., Ltd.) The second protective film [same as the first protective film] was continuously unwound from the second protective film roll. Subsequently, after the saponification treatment is performed on the bonding surfaces of the first and second protective films, the first protective film is provided on one surface of the polarizing film, the second protective film is provided on the other surface, and both protective films. It laminates | stacks, supplying (feed) the same adhesive agent solution as what was used in Example 1 between the polarizer layers, and it crimps | bonds by passing a laminated body between a pair of bonding rolls, and the 1st and 2nd The protective film was continuously bonded.
 第1及び第2保護フィルムとしては、偏光性フィルムと同じ幅のものを用い、第1及び第2保護フィルムの幅方向中心と偏光性フィルムの幅方向中心とが一致するように貼合した(したがって第1及び第2保護フィルムの端面は、偏光性フィルムの端面と一致している)。 As a 1st and 2nd protective film, the thing of the same width as a polarizing film was used, and it bonded so that the width direction center of a 1st and 2nd protective film and the width direction center of a polarizing film might correspond ( Therefore, the end surfaces of the first and second protective films coincide with the end surfaces of the polarizing film).
 また貼合時、偏光性フィルムの貼合面全面にわたって接着剤が行き渡るような量となるよう両側の接着剤溶液の供給量を調整した。しかしながら、このような接着剤溶液の供給量調整にもかかわらず、搬送時におけるフィルムの蛇行や接着剤溶液の供給量の揺らぎにより、接着剤がフィルム幅方向端部から少しずつはみ出して貼合ロールに付着していった。フィルムを数十m貼合したところで第1及び第2保護フィルムの外側表面に、貼合ロールに付着した接着剤が転写され始め、当該表面の汚れが目立ち始めた。 In addition, at the time of bonding, the supply amount of the adhesive solution on both sides was adjusted so that the adhesive was spread over the entire bonding surface of the polarizing film. However, despite the adjustment of the supply amount of the adhesive solution, the adhesive rolls out little by little from the end in the film width direction due to the meandering of the film during transportation and fluctuations in the supply amount of the adhesive solution. I got stuck to it. When the film was bonded to several tens of meters, the adhesive attached to the bonding roll began to be transferred to the outer surfaces of the first and second protective films, and the contamination on the surfaces began to be noticeable.
 その後引き続き、80℃で5分間乾燥させて、実施例1と同じ層構成を有する偏光性積層フィルムを得た。 Subsequently, the film was dried at 80 ° C. for 5 minutes to obtain a polarizing laminated film having the same layer structure as that of Example 1.
 得られた偏光性積層フィルムの接着剤層を確認したところ、上記のような接着剤溶液の供給量調整にもかかわらず、フィルム幅方向端部からはみ出している部分に加えて、接着剤層の端部がフィルム幅方向端部よりも内側に存在する部分(すなわち偏光子層と保護フィルムとの間に接着剤層が存在しない部分)が認められた。このような接着剤層の不均一性に伴う乾燥収縮の差により偏光性積層フィルムの幅方向端部に波打ちが生じていた。 When the adhesive layer of the obtained polarizing laminated film was confirmed, in addition to the portion protruding from the end in the film width direction, despite the adjustment of the supply amount of the adhesive solution as described above, the adhesive layer The part which edge part exists inside the film width direction edge part (namely, part which an adhesive layer does not exist between a polarizer layer and a protective film) was recognized. Due to the difference in drying shrinkage due to such non-uniformity of the adhesive layer, undulation was generated at the widthwise end of the polarizing laminated film.
 次に、上記の偏光性積層フィルムをロール状に巻き取った後、偏光性積層フィルムを巻き出したところ、保護フィルムの外側表面に転写された接着剤により、フィルム端部の領域ではフィルム同士が貼り付き、巻き出し時にこの接着剤が凝集破壊して白い凝集破壊跡が残った。また、巻き出し時の張力も安定しなかった。 Next, after winding the polarizing laminated film into a roll shape, when the polarizing laminated film is unwound, the adhesive film transferred to the outer surface of the protective film causes the films to be in the region of the film edge. At the time of sticking and unwinding, this adhesive cohesively breaks down, leaving a white cohesive failure mark. Moreover, the tension at the time of unwinding was not stable.
 次に、巻き出した偏光性積層フィルムから基材フィルムを剥離してみたところ、剥離自体は可能であったが、フィルム端部の波打ちが原因で剥離時における剥離方向が刻々と変化し、張力が安定しないためにスムーズに剥離できなかった。 Next, when the substrate film was peeled off from the unwound polarizing laminated film, peeling itself was possible, but the peeling direction at the time of peeling changed momentarily due to the waviness of the film edge, and the tension Was not stable and could not be peeled smoothly.
 100,600 基材フィルム、110 偏光子層、120,130 未塗工領域、200 第1保護フィルム、250 第1接着剤層、300 第2保護フィルム、350 第2接着剤層、500 偏光性積層フィルム、700 第1偏光板。 100,600 base film, 110 polarizer layer, 120, 130 uncoated area, 200 first protective film, 250 first adhesive layer, 300 second protective film, 350 second adhesive layer, 500 polarizing laminate Film, 700 1st polarizing plate.

Claims (5)

  1.  基材フィルムの少なくとも一方の面に、二色性色素が吸着配向されたポリビニルアルコール系樹脂層からなり、前記基材フィルムの幅と同じであるか又はこれより幅の狭い偏光子層を備える偏光性フィルムを用意する工程と、
     前記偏光性フィルムの一方の面上であって、基材フィルムの前記一方の面に設けられた偏光子層上に第1接着剤層を介して、前記偏光性フィルムよりも幅広の第1保護フィルムを配置し、前記偏光性フィルムの他方の面上に前記偏光性フィルムよりも幅広の第2保護フィルムを配置して偏光性積層フィルムを得る工程と、を含み、
     前記第1及び第2保護フィルムの幅方向両端がそれぞれ前記偏光性フィルムの幅方向両端よりも外側に位置するとともに、前記第1接着剤層の幅方向両端がそれぞれ前記偏光性フィルムの幅方向両端よりも外側に位置し、かつ前記第1及び第2保護フィルムの幅方向両端よりも内側に位置するように、前記第1及び第2保護フィルムを配置する偏光性積層フィルムの製造方法。
    Polarized light comprising a polyvinyl alcohol resin layer having a dichroic dye adsorbed and oriented on at least one surface of a base film, and having a polarizer layer having the same width as that of the base film or a width narrower than that. A step of preparing a conductive film;
    The first protection wider than the polarizing film on the one surface of the polarizing film and on the polarizer layer provided on the one surface of the base film via the first adhesive layer. Disposing a film, disposing a second protective film wider than the polarizing film on the other surface of the polarizing film to obtain a polarizing laminated film,
    The width direction both ends of the first and second protective films are located outside the width direction both ends of the polarizing film, and the width direction both ends of the first adhesive layer are respectively width direction both ends of the polarizing film. The manufacturing method of the light-polarizing laminated film which arrange | positions the said 1st and 2nd protective film so that it may be located outside rather than the width direction both ends of the said 1st and 2nd protective film.
  2.  前記第1及び第2保護フィルムを配置する工程の後に、前記偏光子層の幅方向両端の位置又はこれより内側の位置で切断することにより、前記偏光性積層フィルムの幅方向両端部分を除去する工程をさらに含む請求項1に記載の偏光性積層フィルムの製造方法。 After the step of disposing the first and second protective films, the both ends in the width direction of the polarizing laminated film are removed by cutting at the positions at the ends in the width direction of the polarizer layer or at the positions inside thereof. The manufacturing method of the light-polarizing laminated film of Claim 1 which further includes a process.
  3.  前記偏光性フィルムを用意する工程は、
     前記基材フィルムの少なくとも一方の面にポリビニルアルコール系樹脂を含有する塗工液を塗工することによりポリビニルアルコール系樹脂層を形成する工程と、
     ポリビニルアルコール系樹脂層を有する基材フィルムを一軸延伸する工程と、
     一軸延伸されたフィルムのポリビニルアルコール系樹脂層を二色性色素で染色して偏光子層とする工程と、を含む請求項1に記載の偏光性積層フィルムの製造方法。
    The step of preparing the polarizing film,
    Forming a polyvinyl alcohol-based resin layer by applying a coating liquid containing a polyvinyl alcohol-based resin on at least one surface of the base film;
    Uniaxially stretching a substrate film having a polyvinyl alcohol-based resin layer;
    The manufacturing method of the light-polarizing laminated film of Claim 1 including the process of dyeing the polyvinyl-alcohol-type resin layer of the uniaxially stretched film with a dichroic dye, and making it a polarizer layer.
  4.  請求項2に記載の方法により製造された偏光性積層フィルムを用意する工程と、
     前記偏光性積層フィルムから前記基材フィルムを剥離除去して、前記偏光子層に前記第1保護フィルムが貼合された第1偏光板を得る工程と、を含む偏光板の製造方法。
    Preparing a polarizing laminate film produced by the method according to claim 2;
    Removing the substrate film from the polarizing laminate film to obtain a first polarizing plate in which the first protective film is bonded to the polarizer layer.
  5.  前記偏光性フィルムは、前記基材フィルムの両面に前記偏光子層を備えており、
     前記第1及び第2保護フィルムを配置する工程において前記第2保護フィルムは、前記偏光性フィルムの他方の面上に第2接着剤層を介して、前記第2接着剤層の幅方向両端がそれぞれ前記偏光性フィルムの幅方向両端よりも外側に位置し、かつ前記第1及び第2保護フィルムの幅方向両端よりも内側に位置するように配置され、
     前記偏光性積層フィルムから前記基材フィルムを剥離除去して、前記第1偏光板と、前記偏光子層に前記第2保護フィルムが貼合された第2偏光板とを得る請求項4に記載の偏光板の製造方法。
    The polarizing film includes the polarizer layers on both sides of the base film,
    In the step of disposing the first and second protective films, the second protective film has both ends in the width direction of the second adhesive layer on the other surface of the polarizing film via the second adhesive layer. Each of the polarizing films is disposed outside the both ends in the width direction, and disposed inside the both ends in the width direction of the first and second protective films,
    The said base film is peeled and removed from the said polarizing laminated film, The said 1st polarizing plate and the 2nd polarizing plate by which the said 2nd protective film was bonded to the said polarizer layer are obtained. Manufacturing method of this polarizing plate.
PCT/JP2012/052234 2012-02-01 2012-02-01 Production method for polarizing laminated film and production method for polarizing plate WO2013114583A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147020999A KR101814865B1 (en) 2012-02-01 2012-02-01 Production method for polarizing laminated film and production method for polarizing plate
JP2013556137A JP6120779B2 (en) 2012-02-01 2012-02-01 Method for producing polarizing laminated film and method for producing polarizing plate
CN201280068747.XA CN104081232B (en) 2012-02-01 2012-02-01 The manufacture method of polarizability stacked film and the manufacture method of polarization plates
PCT/JP2012/052234 WO2013114583A1 (en) 2012-02-01 2012-02-01 Production method for polarizing laminated film and production method for polarizing plate
TW102103273A TWI565976B (en) 2012-02-01 2013-01-29 Method for manufacturing polarizing laminated film and method for manufacturing polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052234 WO2013114583A1 (en) 2012-02-01 2012-02-01 Production method for polarizing laminated film and production method for polarizing plate

Publications (2)

Publication Number Publication Date
WO2013114583A1 WO2013114583A1 (en) 2013-08-08
WO2013114583A9 true WO2013114583A9 (en) 2013-12-27

Family

ID=48904661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052234 WO2013114583A1 (en) 2012-02-01 2012-02-01 Production method for polarizing laminated film and production method for polarizing plate

Country Status (5)

Country Link
JP (1) JP6120779B2 (en)
KR (1) KR101814865B1 (en)
CN (1) CN104081232B (en)
TW (1) TWI565976B (en)
WO (1) WO2013114583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10139671B2 (en) 2015-11-04 2018-11-27 Nitto Denko Corporation Polarizing plate with pressure-sensitive adhesive layer

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614211B1 (en) * 2013-09-30 2016-04-20 주식회사 엘지화학 Method for Maunfacturing a Single-faced Thin Polarizing Plate
JP6543447B2 (en) * 2014-09-18 2019-07-10 住友化学株式会社 Method for producing polarizing laminate film and stretched film with protect film
WO2016093277A1 (en) * 2014-12-12 2016-06-16 住友化学株式会社 Method for producing polarizing film, and polarizing film
JP6472712B2 (en) * 2015-05-29 2019-02-20 住友化学株式会社 LAMINATED FILM MANUFACTURING METHOD AND LAMINATED FILM
KR102513214B1 (en) * 2015-06-05 2023-03-22 스미또모 가가꾸 가부시키가이샤 Method for inspecting defects in a light-transmitting film, method for manufacturing a linear polarizer film, and method for manufacturing a polarizing plate
JP6679268B2 (en) * 2015-10-22 2020-04-15 住友化学株式会社 Method for manufacturing laminated optical film
JP6867126B2 (en) * 2015-11-04 2021-04-28 日東電工株式会社 A polarizing plate with an adhesive layer, an image display device, a method for bonding the polarizing plates, and a method for manufacturing a polarizing plate with an adhesive layer.
JP6076523B1 (en) * 2016-02-25 2017-02-08 住友化学株式会社 Method for producing laminated optical film
JP6175527B1 (en) * 2016-02-25 2017-08-02 住友化学株式会社 Method for producing laminated optical film
JP6148775B1 (en) * 2016-02-25 2017-06-14 住友化学株式会社 Method for producing laminated optical film
JP2016212430A (en) * 2016-07-13 2016-12-15 日東電工株式会社 Method for manufacturing polarizing plate
JP2017151421A (en) * 2017-02-10 2017-08-31 住友化学株式会社 Method for manufacturing layered optical film
JP7085414B2 (en) * 2018-06-14 2022-06-16 住友化学株式会社 Liquid crystal film manufacturing method and optical laminate manufacturing method
KR102585712B1 (en) * 2019-01-11 2023-10-10 삼성디스플레이 주식회사 Protective film, manufacturing method thereof, and manufacturing method of display device using the same
JP7257907B2 (en) * 2019-07-22 2023-04-14 日東電工株式会社 Manufacturing method of thin circularly polarizing plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192725A (en) * 1997-09-19 1999-04-06 Nippon Synthetic Chem Ind Co Ltd:The Adhesive tape for splicing sheet or film
JP3942150B2 (en) * 2001-09-26 2007-07-11 日本合成化学工業株式会社 Emulsion-type adhesive composition
JP4335773B2 (en) * 2004-09-27 2009-09-30 日東電工株式会社 Film laminate manufacturing method and manufacturing apparatus used therefor
JP4928529B2 (en) * 2008-11-12 2012-05-09 日東電工株式会社 Manufacturing method of polarizing plate, polarizing plate, optical film, and image display device
JP4868266B2 (en) * 2010-03-31 2012-02-01 住友化学株式会社 Method for producing laminated film and method for producing polarizing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10139671B2 (en) 2015-11-04 2018-11-27 Nitto Denko Corporation Polarizing plate with pressure-sensitive adhesive layer

Also Published As

Publication number Publication date
TW201341862A (en) 2013-10-16
CN104081232A (en) 2014-10-01
JPWO2013114583A1 (en) 2015-05-11
TWI565976B (en) 2017-01-11
CN104081232B (en) 2017-09-01
KR20140120315A (en) 2014-10-13
WO2013114583A1 (en) 2013-08-08
KR101814865B1 (en) 2018-01-04
JP6120779B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6120779B2 (en) Method for producing polarizing laminated film and method for producing polarizing plate
JP6154099B2 (en) Method for producing polarizing laminated film and method for producing polarizing plate
KR101426633B1 (en) Method for producing laminate film, method for producing polarizing laminate film, and method for producing polarizing plate
JP6133792B2 (en) Polarizing laminated film and method for producing the same
JP4901978B2 (en) Stretched film, polarizing stretched film, and method for producing polarizing plate
JP4950357B1 (en) Production method of polarizing laminated film and polarizing plate
WO2012063954A1 (en) Methods for producing polarizing laminate film and polarizing plate
KR101811489B1 (en) A process for producing a polarizer
JP6296107B2 (en) Laminated film, laminated film manufacturing method, polarizing laminated film manufacturing method, polarizing plate manufacturing method
WO2015079968A1 (en) Polariser and polarising plate including same
JP2012032834A (en) Oriented film, polarizing oriented film, and method for producing the same
WO2016042964A1 (en) Method for manufacturing polarizing layered film, and protective-film-equipped stretched film
WO2013069666A1 (en) Polarizing laminated film and laminated film
JP5744095B2 (en) Method for producing polarizing laminated film
WO2014157730A1 (en) Method of manufacturing polarizing laminate film and method of manufacturing polarizing plate
JP2011248294A (en) Manufacturing method of polarizing laminated film and manufacturing method of polarizing plate
JP5643865B2 (en) Method for producing polarizing laminated film and method for producing polarizing plate
KR102395409B1 (en) Method for manufacturing polarizing laminated film and method for manufacturing polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556137

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147020999

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867494

Country of ref document: EP

Kind code of ref document: A1