WO2013114579A1 - Image-processing device, method for processing image, and image-processing program - Google Patents

Image-processing device, method for processing image, and image-processing program Download PDF

Info

Publication number
WO2013114579A1
WO2013114579A1 PCT/JP2012/052189 JP2012052189W WO2013114579A1 WO 2013114579 A1 WO2013114579 A1 WO 2013114579A1 JP 2012052189 W JP2012052189 W JP 2012052189W WO 2013114579 A1 WO2013114579 A1 WO 2013114579A1
Authority
WO
WIPO (PCT)
Prior art keywords
reachable
identification information
information
flag
navigation device
Prior art date
Application number
PCT/JP2012/052189
Other languages
French (fr)
Japanese (ja)
Inventor
福田 達也
安士 光男
進 大沢
廣瀬 智博
要一 伊藤
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/052189 priority Critical patent/WO2013114579A1/en
Publication of WO2013114579A1 publication Critical patent/WO2013114579A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09626Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages where the origin of the information is within the own vehicle, e.g. a local storage device, digital map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096827Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed onboard
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map

Definitions

  • the present invention relates to an image processing apparatus, an image processing method, and an image processing program that generate a reachable range of a moving object based on the remaining energy amount of the moving object.
  • the use of the present invention is not limited to the image processing apparatus, the image processing method, and the image processing program.
  • Patent Document 1 a processing device that generates a reachable range of a mobile object based on the current location of the mobile object is known (for example, see Patent Document 1 below).
  • Patent Document 1 all directions on the map are radially divided around the current location of the moving object, and the reachable intersection that is farthest from the current location of the moving object is obtained as a map information node for each divided region.
  • a beige curve obtained by connecting a plurality of acquired nodes is displayed as the reachable range of the moving object.
  • a processing device that generates a reachable range from the current location of the moving body on each road based on the remaining battery capacity and power consumption of the moving body is known (for example, see Patent Document 2 below).
  • the power consumption of the mobile body is calculated on a plurality of roads connected to the current location of the mobile body, and the travelable distance of the mobile body on each road based on the remaining battery capacity and the power consumption of the mobile body Is calculated.
  • a set of line segments obtained by acquiring the current location of the mobile body and a plurality of reachable locations of the mobile body that are separated from the current location by a travelable distance as nodes of map information and connecting the plurality of nodes Is displayed as the reachable range of the moving object.
  • the expansion / contraction process is known as a technique used for removing noise in image processing technology.
  • Patent Document 3 grouped landmarks that are displayed discretely are drawn as a set of groups.
  • the reachable area is displayed by an amoeba display that connects a plurality of nodes.
  • a continuous thin line segment area such as a bridge or a tunnel
  • the reachable area is displayed.
  • the problem that it is not connected between nodes and may not be displayed is mentioned as an example.
  • thin line segments (links) within the reachable distance range may be erased by performing expansion processing and reduction processing to smooth the image.
  • an image processing apparatus that processes information related to a reachable range of a mobile object, wherein the current location of the mobile object, The mobile body arrives from the current point based on information on the initial stored energy amount indicating the amount of energy held by the mobile body and an estimated energy consumption amount indicating the amount of energy consumed when the mobile body travels in a predetermined section.
  • a reachable point searching means for searching for a plurality of reachable points which are possible points a fixed flag giving means for giving a fixed flag as specific information to a specific node at the time of searching by the reachable point searching means, and a map Of the plurality of areas related to information, the erasure prohibition related to the fixed flag in one area including the specific node to which the fixed flag is assigned. Based on a plurality of reachable points searched by the reachable point searching means and an erasure prohibition flag giving means for giving a flag, it is identified whether or not the mobile body can reach each of the plurality of areas.
  • An image processing method is an image processing method in an image processing apparatus for processing information relating to the reachable range of a mobile object, wherein the current position of the mobile object and the energy held by the mobile object Based on information on the initial stored energy amount indicating the amount and estimated energy consumption indicating the amount of energy consumed when the mobile body travels in a predetermined section, a plurality of points where the mobile body is reachable from the current location
  • a reachable point searching step for searching for a reachable point
  • a fixed flag giving step for giving a fixed flag as specific information to a specific node at the time of searching by the reachable point searching step
  • a plurality of areas related to map information Among them, an erasure prohibition flag related to the fixed flag is assigned to one area including the specific node to which the fixed flag is assigned.
  • the image processing program according to claim 6 causes a computer to execute the image processing method according to claim 5.
  • FIG. 1 is a block diagram of an example of a functional configuration of the image processing apparatus according to the first embodiment.
  • FIG. 2 is a flowchart illustrating an example of an image processing procedure performed by the image processing apparatus.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the navigation device.
  • FIG. 4A is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device.
  • FIG. 4B is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device.
  • FIG. 4-3 is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device.
  • FIG. 4-4 is an explanatory diagram schematically showing an example of reachable point search by the navigation device.
  • FIG. 4A is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device.
  • FIG. 4B is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device.
  • FIG. 4-3 is an ex
  • FIG. 5A is an explanatory diagram of an example of reachable point search by the navigation device.
  • FIG. 5B is an explanatory diagram of another example of the reachable point search by the navigation device.
  • FIG. 6 is an explanatory diagram of an example showing the reachable point by the navigation device in longitude-latitude.
  • FIG. 7 is an explanatory diagram of an example showing the reachable points by the navigation device as mesh data.
  • FIG. 8 is an explanatory diagram illustrating an example of cloning processing by the navigation device.
  • FIG. 9 is an explanatory diagram schematically showing an example of cloning processing by the navigation device.
  • FIG. 10 is an explanatory diagram showing an example of the opening process by the navigation device.
  • FIG. 10 is an explanatory diagram showing an example of the opening process by the navigation device.
  • FIG. 11A is a diagram illustrating an example of node erasure inhibition by the erasure inhibition flag (part 1).
  • FIG. 11B is a diagram illustrating an example of node erasure inhibition by the erasure inhibition flag (part 2).
  • FIG. 12 is an explanatory diagram schematically showing an example of vehicle reachable range extraction by the navigation device.
  • FIG. 13 is an explanatory diagram schematically showing an example of mesh data after the reachable range of the vehicle is extracted by the navigation device.
  • FIG. 14 is a flowchart illustrating an example of an image processing procedure performed by the navigation device.
  • FIG. 15 is a flowchart illustrating an example of a procedure of estimated power consumption calculation processing by the navigation device.
  • FIG. 16A is a flowchart of an example of a procedure of reachable point search processing by the navigation device (part 1).
  • FIG. 16-2 is a flowchart of an example of a procedure of reachable point search processing by the navigation device (part 2).
  • FIG. 17 is a flowchart illustrating an example of a procedure of link candidate determination processing by the navigation device.
  • FIG. 18 is a flowchart illustrating an example of processing relating to the assignment of a fixed flag and the assignment of an erasure prohibition flag.
  • FIG. 19 is a flowchart illustrating an example of a procedure of identification information addition processing by the navigation device.
  • FIG. 20 is a flowchart illustrating an example of an opening process and a cloning process using an erasure prohibition flag.
  • FIG. 21A is a flowchart of an example of a reachable range contour extraction process performed by the navigation device (part 1).
  • FIG. 21B is a flowchart of an example of the reachable range contour extraction process performed by the navigation device (part 2).
  • FIG. 22 is an explanatory diagram schematically illustrating an example of acceleration applied to a vehicle traveling on a road having a gradient.
  • FIG. 23 is an explanatory diagram illustrating an example of a display example after the reachable point search process by the navigation device.
  • FIG. 24A is an explanatory diagram of an example of a display example after the identification information providing process by the navigation device.
  • FIG. 24-2 is an explanatory diagram illustrating an example of a display example after the first identification information changing process by the navigation device.
  • FIG. 25 is an explanatory diagram illustrating an example of a display example after the cloning process (expansion) by the navigation device.
  • FIG. 26 is an explanatory diagram illustrating an example of a display example after the cloning process (reduction) by the navigation device.
  • FIG. 1 is a block diagram of an example of a functional configuration of the image processing apparatus according to the first embodiment.
  • the image processing apparatus 100 according to the first embodiment generates a reachable range of the moving object based on the reachable point of the moving object searched based on the remaining energy amount of the moving object and causes the display unit 110 to display the reachable range.
  • an erasure prohibition flag is set on a specific pixel of mesh data based on a fixed flag previously assigned to a specific node before the opening process or the cloning process described later.
  • isolated pixels in the reachable range of the moving object are removed when the opening process or the cloning process is executed. For this reason, a single node or a line segment node is regarded as an isolated point by the opening process or the cloning process, and a specific pixel including these nodes may be erased by the opening process or the cloning process.
  • Specified nodes are entrances and exits of tunnels, bridges, and mountain roads among the nodes that are within the reachable range of mobile objects. By assigning a fixed flag to these nodes in advance, tunnels and bridges that consist of links that connect a specific node even if the opening process and / or the cloning process are executed, a mountain road, etc. It becomes possible to prevent erasing of a specific pixel including.
  • the image processing apparatus 100 includes an acquisition unit 101, a calculation unit 102, a search unit 103, a division unit 104, a grant unit 105, and a display control unit 106.
  • the reachable point search unit includes an acquisition unit 101, a calculation unit 102, and a search unit 103.
  • the energy is energy based on electricity in the case of an EV (Electric Vehicle) vehicle, for example, and in the case of HV (Hybrid Vehicle) vehicle, PHV (Plug-in Hybrid Vehicle) vehicle, etc.
  • energy is energy based on electricity and the like, for example, hydrogen or a fossil fuel that becomes a hydrogen raw material (hereinafter, EV vehicle, HV vehicle, PHV vehicle, and fuel cell vehicle are simply “ EV car ").
  • the energy is energy based on, for example, gasoline, light oil, gas, etc., for example, in the case of a gasoline vehicle, a diesel vehicle or the like (hereinafter simply referred to as “gasoline vehicle”).
  • the residual energy is, for example, energy remaining in a fuel tank, a battery, a high-pressure tank, or the like of the moving body, and is energy that can be used for the subsequent traveling of the moving body.
  • the acquisition unit 101 acquires information on the current location of the mobile object on which the image processing apparatus 100 is mounted and information on the initial stored energy amount that is the amount of energy held by the mobile object at the current location of the mobile object. Specifically, the acquisition unit 101 acquires information (position information) about the current location by calculating the current position of the device using, for example, GPS information received from a GPS satellite.
  • the acquisition unit 101 determines the remaining energy amount of the moving body managed by an electronic control unit (ECU: Electronic Control Unit) via an in-vehicle communication network that operates according to a communication protocol such as CAN (Controller Area Network). , Get the initial amount of energy.
  • ECU Electronic Control Unit
  • CAN Controller Area Network
  • the acquisition unit 101 may acquire information on the speed of the moving body, traffic jam information, and moving body information.
  • the information regarding the speed of the moving body is the speed and acceleration of the moving body.
  • the acquisition part 101 may acquire the information regarding a road from the map information 120 memorize
  • the information on the road is, for example, a running resistance generated in the moving body due to the road type, road gradient, road surface condition, and the like.
  • Embodiment 1 it is assumed that the map information 120 acquired by the acquisition unit 101 is not provided with the above-described fixed flag.
  • the calculation unit 102 calculates an estimated energy consumption that is energy consumed when the moving body travels in a predetermined section.
  • the predetermined section is, for example, a section (hereinafter referred to as “link”) connecting one predetermined point on the road (hereinafter referred to as “node”) and another node adjacent to the one node.
  • the node may be, for example, an intersection or a stand, or a connection point between links separated by a predetermined distance.
  • the nodes and links constitute map information stored in the storage unit.
  • the map information includes, for example, vector data in which intersections (points), roads (lines and curves), regions (surfaces), colors for displaying these, and the like are digitized.
  • the calculation unit 102 estimates an estimated energy consumption amount in a predetermined section based on a consumption energy estimation formula including first information, second information, and third information. More specifically, the calculation unit 102 estimates an estimated energy consumption amount in a predetermined section based on information on the speed of the moving body and the moving body information.
  • the moving body information is information that causes a change in the amount of energy consumed or recovered during traveling of the moving body, such as the weight of the moving body (including the number of passengers and the weight of the loaded luggage) and the weight of the rotating body.
  • the calculation unit 102 may estimate the estimated energy consumption amount in the predetermined section based on the consumption energy estimation formula further including the fourth information.
  • the energy consumption estimation formula is an estimation formula for estimating the energy consumption of the moving body in a predetermined section.
  • the energy consumption estimation formula is a polynomial composed of first information, second information, and third information, which are different factors that increase or decrease energy consumption. Further, when the road gradient is clear, fourth information is further added to the energy consumption estimation formula. Detailed description of the energy consumption estimation formula will be described later.
  • the first information is information related to energy consumed by the equipment provided on the moving object. This first information is the amount of energy consumed due to factors not related to the traveling of the moving body, and is the amount of energy consumed by the air conditioner, audio, etc. provided in the moving body. The first information may be substantially zero in the case of an EV vehicle.
  • the second information is information related to energy consumed and recovered during acceleration / deceleration of the moving body.
  • the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes with time.
  • the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes within a predetermined time.
  • the predetermined time is a time interval at regular intervals, for example, per unit time.
  • the recovered energy is, for example, electric power charged in a battery when the mobile body is traveling.
  • the recovered energy is, for example, fuel that can be saved by reducing (fuel cut) the consumed fuel.
  • the third information is information related to energy consumed by the resistance generated when the mobile object is traveling.
  • the traveling time of the moving body is a traveling state where the speed of the moving body is constant, accelerated or decelerated within a predetermined time.
  • the resistance generated when the mobile body travels is a factor that changes the travel state of the mobile body when the mobile body travels. Specifically, the resistance generated when the mobile body travels is various resistances generated in the mobile body due to weather conditions, road conditions, vehicle conditions, and the like.
  • the resistance generated in the moving body due to the weather condition is, for example, air resistance due to weather changes such as rain and wind.
  • the resistance generated in the moving body according to the road condition is road resistance due to road gradient, pavement state of road surface, water on the road surface, and the like.
  • the resistance generated in the moving body depending on the vehicle condition is a load resistance applied to the moving body due to tire air pressure, number of passengers, loaded weight, and the like.
  • the third information is energy consumption when the moving body is driven at a constant speed, acceleration or deceleration while receiving air resistance, road resistance, and load resistance. More specifically, the third information is consumed when the moving body travels at a constant speed, acceleration or deceleration, for example, air resistance generated in the moving body due to the head wind or road surface resistance received from a road that is not paved. Energy consumption.
  • the fourth information is information related to energy consumed and recovered by a change in altitude where the moving object is located.
  • the change in altitude at which the moving body is located is a state in which the altitude at which the moving body is located changes over time.
  • the change in altitude at which the moving body is located is a traveling state in which the altitude changes when the moving body travels on a sloped road within a predetermined time.
  • the fourth information is additional information that can be obtained when the road gradient in the predetermined section is clear, thereby improving the estimation accuracy of energy consumption.
  • the search unit 103 is based on the map information stored in the storage unit, the current location and initial stored energy amount of the mobile object acquired by the acquisition unit 101, and the estimated energy consumption calculated by the calculation unit 102. Search for a plurality of reachable points that can be reached from the current point.
  • the search unit 103 starts from the current location of the mobile object, and in a predetermined section connecting predetermined points on the route from the mobile object. A predetermined point and a predetermined section are searched so that the total of the estimated energy consumption is minimized. Then, the search unit 103 moves the mobile unit to a predetermined point where the total estimated energy consumption amount is within the range of the initial stored energy amount of the mobile unit in all routes that can move from the current point of the mobile unit.
  • the search unit 103 starts from the current location of the mobile object as a starting point, all links that can be moved from the current location of the mobile object, nodes that connect to these links, and all that can be moved from these nodes. , And all the nodes and links that can be reached by the moving object.
  • the search unit 103 each time the search unit 103 searches for a new link, the search unit 103 accumulates the estimated energy consumption of the route to which the one link is connected, and the accumulated energy consumption is minimized. Search for a node connected to the link and a plurality of links connected to this node.
  • the search unit 103 estimates the estimated energy consumption from the current location of the mobile body to the node among the plurality of links connected to the node.
  • the estimated energy consumption of the relevant node is calculated using the estimated energy consumption of the link with a small amount of accumulation.
  • the search unit 103 sets all the nodes whose accumulated energy consumption amount is within the range of the initial stored energy amount of the mobile object, respectively. Search as a reachable point.
  • it is possible to calculate the correct total of the estimated energy consumption of the node.
  • the search unit 103 may search for a reachable point by excluding a predetermined section in which movement of the mobile object is prohibited from candidates for searching for a reachable point of the mobile object.
  • the predetermined section in which the movement of the moving body is prohibited is, for example, a link that is one-way reverse running, or a link that is a passage-prohibited section due to time restrictions or seasonal restrictions.
  • the time restriction is, for example, that traffic is prohibited in a certain time zone by being set as a school road or an event.
  • the seasonal restriction is, for example, that traffic is prohibited due to heavy rain or heavy snow.
  • the search unit 103 selects another predetermined section as a mobile object.
  • the reachable point may be searched for by removing it from the candidates for searching for the reachable point.
  • the importance of the predetermined section is, for example, a road type.
  • the road type is a type of road that can be distinguished by differences in road conditions such as legal speed, road gradient, road width, and presence / absence of signals.
  • the road type is a narrow street that passes through a general national road, a highway, a general road, an urban area, or the like.
  • a narrow street is, for example, a road defined in the Building Standard Law with a width of less than 4 meters in an urban area.
  • the search unit 103 moves all the areas constituting one bridge or one tunnel of the map information divided by the dividing unit 104. It is preferable to search for a reachable point of the moving body so as to be included in the reachable range of the body. Specifically, for example, when the entrance of one bridge or one tunnel is a reachable point of the mobile object, the search unit 103 is located on one bridge or one tunnel from the entrance of the one bridge or one tunnel toward the exit. You may search the said reachable point so that several reachable points may be searched.
  • the entrance of one bridge or one tunnel is the starting point of one bridge or one tunnel on the side close to the current position of the moving object.
  • the search part 103 has the fixed flag provision part 103a.
  • the fixed flag assigning unit 103a assigns a fixed flag to the map information 120. That is, in Embodiment 1, since the fixed flag is not given to the map information 120 acquired by the acquisition unit 101, the fixed flag assignment unit 103a causes a specific node (the tunnel, the bridge, the mountain road, etc.). ) Is assigned a fixed flag. As a result, it is possible to prevent erasure of a specific pixel of mesh data including a specific node when at least one of an opening process and a cloning process described later is executed.
  • the fixed flag assigning unit 103a assigns a fixed flag to the single node in which the searched node is included in the reachable range of the moving object by determining the following condition. 1. 1. Is the searched single node a predetermined node (both ends of tunnels, bridge entrances, mountain roads, etc.)? Above 1. Is the path (link) having a single node at both ends (entrance / exit) capable of traveling by the moving body? When the above condition is satisfied, a fixed flag is assigned to a node at both ends of the link or a plurality of nodes of the entire link including nodes at both ends of the link.
  • the dividing unit 104 divides the map information into a plurality of areas. Specifically, the dividing unit 104 divides the map information into a plurality of rectangles based on a reachable point farthest from the current point of the mobile object among a plurality of reachable points of the mobile object searched by the search unit 103. It is divided into shape regions and converted into mesh data of m ⁇ m pixels, for example.
  • the mesh data of m ⁇ m pixels is handled as raster data (image data) to which identification information is added by the adding unit 105 described later.
  • each m of m ⁇ m pixels may be the same numerical value, or may be different numerical values.
  • the dividing unit 104 extracts the maximum longitude, the minimum longitude, the maximum latitude, and the minimum latitude, and calculates the distance from the current position of the moving object. Then, the dividing unit 104 divides the map information into a plurality of areas, for example, by dividing the size of one area when the reachable point farthest from the current position of the moving object and the current position of the moving object are equally divided into n.
  • the dividing unit 104 includes an erasure prohibition flag assigning unit 104a.
  • the erasure prohibition flag assigning unit 104a assigns an erasure prohibition flag to specific pixels including a specific node to which a fixed flag is assigned among the pixels of the mesh data. At this time, if the fixed flag is added only to the pixels including the nodes at both ends of the link by the fixed flag adding unit 103a, the entire pixel corresponding to one link including both ends of the pixel including the link is prohibited from being erased. Give a flag.
  • the assigning unit 105 assigns identification information for identifying whether or not the mobile body can reach each of the plurality of areas divided by the dividing unit 104 based on the plurality of reachable points searched by the search unit 103. To do. Specifically, when the reachable point of the moving object is included in one area divided by the dividing unit 104, the granting unit 105 can reach the one area to identify that the moving object is reachable. The identification information is assigned. After that, when the reachable point of the moving object is not included in the one area divided by the dividing unit 104, the assigning unit 105 identifies that the moving object cannot reach the one area. The identification information is assigned.
  • the assigning unit 105 assigns reachable identification information “1” or unreachable identification information “0” to each pixel or each region of the mesh data divided into m ⁇ m.
  • the data is converted into mesh data of two-dimensional matrix data of m rows and m columns.
  • the dividing unit 104 and the assigning unit 105 divide the map information in this way, convert it into mesh data of 2D matrix data of m rows and m columns, and handle it as binarized raster data.
  • the assigning unit 105 includes a first changing unit 151 and a second changing unit 152 that perform identification information changing processing on a plurality of areas divided by the dividing unit 104. Specifically, the assigning unit 105 treats mesh data obtained by dividing the map information as binarized raster data by the first changing unit 151 and the second changing unit 152, and performs cloning processing (reduction after expansion processing). Process). Further, the assigning unit 105 may perform an opening process (a process of performing an expansion process after the reduction process) by the first changing unit 151 and the second changing unit 152.
  • the first changing unit 151 can reach the identification information of the one area when the identification information that can reach another area adjacent to the one area to which the identification information is given is given.
  • the identification information is changed (expansion process). More specifically, the first changing unit 151 may be any one of the other regions adjacent to the lower left, lower, lower right, right, upper right, upper, upper left, and left of one rectangular region. If “1”, which is identification information that can reach that area, is assigned, the identification information of the one area is changed to “1”.
  • the second changing unit 152 After the identification information is changed by the first changing unit 151, the second changing unit 152, when identification information that cannot reach another region adjacent to the one region to which the identification information is given is given.
  • the identification information of the area is changed to unreachable identification information (reduction process). More specifically, the second changing unit 152 may be any one of the other areas adjacent to the lower left, lower, lower right, right, upper right, upper, upper left, and left of one rectangular area. If “0”, which is identification information that cannot be reached, is assigned to the area, the identification information of the one area is changed to “0”.
  • the expansion process by the first change unit 151 and the reduction process by the second change unit 152 are performed the same number of times.
  • the opening process is performed for the region to which the erasure prohibition flag is added on the mesh data. Also, it is not a target for contraction and expansion during cloning.
  • the present invention is not limited to this, and the identification information may not be changed when the cloning process and the opening process are performed on the region to which the deletion prohibition flag is added on the mesh data.
  • thin line segments such as tunnels, bridges, and mountain roads that are links that include a specific node within the reachable range of the moving object may be deleted even if the opening process and cloning process are performed. And can be displayed as the reach of the moving object.
  • the granting unit 105 can reach the area including the reachable point, which is the point where the moving body can reach from the current point, among the plurality of areas divided by the dividing unit 104. Reachable identification information for identifying this is given to make the movable body reachable. After that, the assigning unit 105 assigns reachable identification information to an area adjacent to the area to which reachable identification information is assigned, and identifies each area so that a missing area does not occur in the reachable range of the moving object. Change information.
  • the display control unit 106 causes the display unit 110 to display the reachable range of the moving object together with the map information based on the identification information of the area to which the identification information is given by the granting unit 105. Specifically, the display control unit 106 converts mesh data, which is a plurality of image data to which identification information has been added by the adding unit 105, into vector data, and displays it on the display unit 110 together with map information stored in the storage unit.
  • the display control unit 106 is based on the positional relationship between one area to which reachable identification information is assigned and another area to which reachable identification information adjacent to the one area is assigned.
  • the contour of the reachable range of the moving object is extracted and displayed on the display unit 110. More specifically, the display control unit 106 extracts the outline of the reachable range of the moving object using, for example, a Freeman chain code, and causes the display unit 110 to display the reachable range of the moving object.
  • the display control unit 106 may extract the reachable range of the moving body based on the longitude / latitude information of the region to which the reachable identification information is given, and display the reachable range on the display unit 110. Specifically, for example, the display control unit 106 searches for identification information “1” that is reachable from the first column for each row of two-dimensional matrix data of m rows and m columns.
  • the display control unit 106 searches for continuous areas including the reachable identification information “1” in each row of the two-dimensional matrix data, and first detects the minimum longitude and minimum latitude of the area where “1” is detected (area A rectangular area having a line segment connecting the maximum longitude and maximum latitude (lower right coordinates of the area) of the area where “1” is finally detected as a diagonal line is displayed as the reachable range of the moving object.
  • FIG. 2 is a flowchart illustrating an example of an image processing procedure performed by the image processing apparatus.
  • the image processing apparatus 100 first uses the acquisition unit 101 to obtain information on the current location of the moving object and information on the initial amount of energy held by the moving object at the current location of the moving object. Are acquired (steps S201 and S202). At this time, the image processing apparatus 100 may also acquire moving body information.
  • the calculation unit 102 calculates an estimated energy consumption that is energy consumed when the moving body travels in a predetermined section (step S203). At this time, the image processing apparatus 100 calculates estimated energy consumption amounts in a plurality of predetermined sections connecting predetermined points on the path of the moving body. Next, the image processing apparatus 100 uses the search unit 103 based on the map information stored in the storage unit and the initial stored energy amount and the estimated energy consumption amount acquired in steps S202 and S203. A reachable point is searched (step S204). At this time, a fixed flag is assigned to a specific node by the fixed flag assigning unit 103a.
  • the image processing apparatus 100 uses the dividing unit 104 to divide the map information made up of vector data into a plurality of regions and convert it into mesh data made up of raster data (step S205).
  • the erasure prohibition flag assigning unit 104a assigns the erasure prohibition flag to all the areas of the link connecting the nodes to which the fixed flag is assigned.
  • the image processing apparatus 100 assigns the reachable or unreachable identification information to each of the plurality of regions divided in step S205 based on the plurality of reachable points searched in step S204. (Step S206).
  • the opening process or the cloning process is executed after the identification information is added, the area to which the deletion prohibition flag is added is left without being deleted.
  • the image processing apparatus 100 causes the display control unit 106 to display the reachable range of the moving object on the display unit 110 based on the identification information of the plurality of areas to which the identification information is assigned in step S206 (step S207).
  • the process according to the flowchart ends.
  • the image processing apparatus 100 divides the map information into a plurality of areas, searches for each area to determine whether or not the moving body is reachable, and each area has a moving body. Reachable or unreachable identification information that identifies reachability or unreachability is added. Then, the image processing apparatus 100 generates a reachable range of the moving object based on the region to which reachable identification information is assigned. For this reason, the image processing apparatus 100 can generate the reachable range of the moving object in a state excluding areas where the moving object cannot travel, such as the sea, lakes, and mountain ranges. Therefore, the image processing apparatus 100 can accurately display the reachable range of the moving object.
  • the image processing apparatus 100 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information that can be reached or cannot reach each of the plurality of areas, and then performs an expansion process of cloning. For this reason, the image processing apparatus 100 can remove the missing region within the reachable range of the moving object.
  • the image processing apparatus 100 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs an opening reduction process. For this reason, the image processing apparatus 100 can remove an isolated region in the reachable range of the moving object.
  • the image processing apparatus 100 can remove a missing region or an isolated region of the reachable range of the moving body, and thus displays the travelable range of the moving body on a two-dimensional smooth surface and in an easy-to-read manner. be able to.
  • the image processing apparatus 100 also extracts the outline of mesh data generated by dividing the map information into a plurality of regions. For this reason, the image processing apparatus 100 can display the outline of the reachable range of the moving object smoothly.
  • the image processing apparatus 100 narrows down the road for searching for the reachable point of the moving object, and searches for the reachable point of the moving object. For this reason, the image processing apparatus 100 can reduce the processing amount at the time of searching the reachable point of a moving body. Even if the number of reachable reachable points is reduced by narrowing down the road to search for the reachable points of the moving object, the expansion process of the cloning is performed as described above, so that the reachable range of the moveable object is within the reachable range. The resulting missing area can be removed. Therefore, the image processing apparatus 100 can reduce the processing amount for generating the reachable range of the moving object. In addition, the image processing apparatus 100 can display the travelable range of the moving object in a two-dimensional smooth manner so that it can be easily seen.
  • the specific pixel of the mesh data including the specific node to which the fixed flag is given can be left without being erased even if the opening process or the cloning process is executed. This eliminates noise on the display due to specific pixels including isolated nodes by executing the opening process or cloning process, and the outline of the reachable range of the moving object can be displayed smoothly, and the reachable of the moving object Thin line segments such as tunnels, bridges, and mountain roads that are thin lines are not erased, and can be displayed as the reach of a moving object.
  • Example 1 of the present invention will be described.
  • the navigation apparatus 300 mounted on the vehicle as the image processing apparatus 100.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the navigation device.
  • the navigation apparatus 300 includes a CPU 301, ROM 302, RAM 303, magnetic disk drive 304, magnetic disk 305, optical disk drive 306, optical disk 307, audio I / F (interface) 308, microphone 309, speaker 310, input device 311, A video I / F 312, a display 313, a camera 314, a communication I / F 315, a GPS unit 316, and various sensors 317 are provided.
  • Each component 301 to 317 is connected by a bus 320.
  • the CPU 301 governs overall control of navigation device 300.
  • the ROM 302 records programs such as a boot program, an estimated energy consumption calculation program, a reachable point search program, an identification information addition program, and a map data display program.
  • the RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 controls the entire navigation device 300 by executing various programs recorded in the ROM 302 while using the RAM 303 as a work area.
  • an estimated energy consumption in a link connecting one node and an adjacent node is calculated based on an energy consumption estimation formula for calculating an estimated energy consumption of the vehicle.
  • the reachable point search program a plurality of points (nodes) that can be reached with the remaining energy amount at the current point of the vehicle are searched based on the estimated energy consumption calculated in the estimation program.
  • identification information addition program identification information for identifying whether the vehicle is reachable or unreachable is assigned to a plurality of areas obtained by dividing the map information based on a plurality of reachable points searched in the search program.
  • the In the map data display program the reachable range of the vehicle is displayed on the display 313 based on the plurality of areas to which the identification information is given by the identification information giving program.
  • the magnetic disk drive 304 controls the reading / writing of the data with respect to the magnetic disk 305 according to control of CPU301.
  • the magnetic disk 305 records data written under the control of the magnetic disk drive 304.
  • an HD hard disk
  • FD flexible disk
  • the optical disk drive 306 controls reading / writing of data with respect to the optical disk 307 according to the control of the CPU 301.
  • the optical disk 307 is a detachable recording medium from which data is read according to the control of the optical disk drive 306.
  • a writable recording medium can be used as the optical disc 307.
  • an MO, a memory card, or the like can be used as a removable recording medium.
  • Examples of information recorded on the magnetic disk 305 and the optical disk 307 include map data, vehicle information, road information, travel history, and the like. Map data is used when searching for a reachable point of a vehicle in a car navigation system or when displaying a reachable range of a vehicle. Background data representing features (features) such as buildings, rivers, the ground surface, This is vector data including road shape data that expresses the shape of the road by links and nodes.
  • the voice I / F 308 is connected to a microphone 309 for voice input and a speaker 310 for voice output.
  • the sound received by the microphone 309 is A / D converted in the sound I / F 308.
  • the microphone 309 is installed in a dashboard portion of a vehicle, and the number thereof may be one or more. From the speaker 310, a sound obtained by D / A converting a predetermined sound signal in the sound I / F 308 is output.
  • the input device 311 includes a remote controller, a keyboard, a touch panel, and the like provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like.
  • the input device 311 may be realized by any one form of a remote control, a keyboard, and a touch panel, but can also be realized by a plurality of forms.
  • the video I / F 312 is connected to the display 313. Specifically, the video I / F 312 is output from, for example, a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller. And a control IC for controlling the display 313 based on the image data to be processed.
  • a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller.
  • VRAM Video RAM
  • the display 313 displays icons, cursors, menus, windows, or various data such as characters and images.
  • a TFT liquid crystal display, an organic EL display, or the like can be used as the display 313, for example.
  • the camera 314 captures images inside or outside the vehicle.
  • the image may be either a still image or a moving image.
  • the outside of the vehicle is photographed by the camera 314, and the photographed image is analyzed by the CPU 301, or a recording medium such as the magnetic disk 305 or the optical disk 307 via the image I / F 312. Or output to
  • the communication I / F 315 is connected to a network via wireless and functions as an interface between the navigation device 300 and the CPU 301.
  • Communication networks that function as networks include in-vehicle communication networks such as CAN and LIN (Local Interconnect Network), public line networks and mobile phone networks, DSRC (Dedicated Short Range Communication), LAN, and WAN.
  • the communication I / F 315 is, for example, a public line connection module, an ETC (non-stop automatic fee payment system) unit, an FM tuner, a VICS (Vehicle Information and Communication System) (registered trademark) / beacon receiver, or the like.
  • the GPS unit 316 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle.
  • the output information of the GPS unit 316 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors 317 described later.
  • the information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
  • Various sensors 317 output information for determining the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, and a tilt sensor.
  • the output values of the various sensors 317 are used by the CPU 301 to calculate the current position of the vehicle and the amount of change in speed and direction.
  • the acquisition unit 101, the calculation unit 102, the search unit 103, the dividing unit 104, the assigning unit 105, and the display control unit 106 of the image processing apparatus 100 illustrated in FIG. 1 are the ROM 302, the RAM 303, the magnetic disk 305, the navigation device 300 described above.
  • the CPU 301 executes a predetermined program using a program and data recorded on the optical disc 307 and the like, and realizes its function by controlling each unit in the navigation device 300.
  • the navigation device 300 calculates the estimated energy consumption of the vehicle on which the device itself is mounted. Specifically, for example, the navigation device 300 is based on speed, acceleration, and vehicle gradient, and includes one or more of energy consumption estimation formulas including first information, second information, and third information. Is used to calculate the estimated energy consumption of the vehicle in a predetermined section.
  • the predetermined section is a link connecting one node (for example, an intersection) on the road and another node adjacent to the one node.
  • the navigation device 300 determines whether the vehicle is linked based on the traffic jam information provided by the probe, the traffic jam prediction data acquired through the server, the link length or road type stored in the storage device, and the like. The travel time required to finish driving is calculated. Then, navigation device 300 calculates an estimated energy consumption amount per unit time using any one of the following energy consumption estimation formulas (1) to (4), and the vehicle travels on the link during the travel time. Calculate the estimated energy consumption when finishing.
  • the energy consumption estimation formula shown in the above equation (1) is a theoretical formula for estimating the energy consumption per unit time during acceleration and traveling.
  • is the net thermal efficiency and ⁇ is the total transmission efficiency.
  • is negative is expressed by the above equation (2).
  • the energy consumption estimation formula shown in the above equation (2) is a theoretical formula for estimating the energy consumption per unit time during deceleration.
  • the energy consumption estimation formula per unit time during acceleration / deceleration and travel is expressed by the product of travel resistance, travel distance, net motor efficiency, and transmission efficiency.
  • the first term on the right side is the energy consumption (first information) consumed by the equipment provided on the moving body, and the second term on the right side is determined by the gradient component.
  • the third term on the right side is energy consumption (third information) due to the air resistance component.
  • the fourth term on the right side of the equation (1) is the energy consumption (second information) by the acceleration component.
  • the fourth term on the right side of equation (2) is the energy consumption (second information) due to the deceleration component.
  • is positive, that is, the empirical formula for calculating the estimated energy consumption per unit time during acceleration and traveling is (3) It is expressed by a formula.
  • is negative, that is, the empirical formula for calculating the estimated energy consumption per unit time during deceleration is the following formula (4): It is represented by
  • the coefficients a1 and a2 are constants set according to the vehicle situation.
  • the coefficients k1, k2, and k3 are variables based on energy consumption during acceleration. Further, the speed V and the acceleration A are set, and other variables are the same as the above formulas (1) and (2).
  • the first term on the right side corresponds to the first term on the right side of the above equations (1) and (2).
  • the second term on the right side is the energy of the gradient resistance component in the second term on the right side and the acceleration in the fourth term on the right side in the formulas (1) and (2). It corresponds to the energy of the resistance component.
  • the third term on the right side corresponds to the energy of the rolling resistance component in the second term on the right side and the energy of the air resistance component in the third term on the right side in the above equations (1) and (2).
  • ⁇ in the second term on the right side of the equation (4) is the amount of potential energy and kinetic energy recovered (hereinafter referred to as “recovery rate”).
  • the navigation device 300 calculates the travel time required for the vehicle to travel the link, and calculates the average speed and average acceleration when the vehicle travels the link. Then, the navigation device 300 uses the average speed and average acceleration of the vehicle at the link, and the vehicle travels on the link in the travel time based on the consumption energy estimation formula shown in the following equation (5) or (6). You may calculate the estimated energy consumption at the time of finishing.
  • the consumption energy estimation formula shown in the above formula (5) is a theoretical formula for calculating the estimated energy consumption at the link when the altitude difference ⁇ h of the link on which the vehicle travels is positive.
  • the case where the altitude difference ⁇ h is positive is a case where the vehicle is traveling uphill.
  • the energy consumption estimation formula shown in the above equation (6) is a theoretical formula for calculating an estimated energy consumption amount in the link when the altitude difference ⁇ h of the link on which the vehicle travels is negative.
  • the case where the altitude difference ⁇ h is negative is a case where the vehicle is traveling downhill.
  • the first term on the right side is the energy consumption (first information) consumed by the equipment provided in the moving body.
  • the second term on the right side is the energy consumption (second information) by the acceleration resistance.
  • the third term on the right side is energy consumption consumed as potential energy (fourth information).
  • the fourth term on the right side is the energy consumption (third information) due to the air resistance and rolling resistance (running resistance) received per unit area.
  • the recovery rate ⁇ used in the above equations (1) to (6) will be described.
  • the energy consumption P acc of the acceleration component is calculated from the total energy consumption (left side) of the link from the energy at idling. This is a value obtained by subtracting the consumption (first term on the right side) and the energy consumption (fourth term on the right side) due to running resistance, and is expressed by the following equation (7).
  • the recovery rate ⁇ is about 0.7 to 0.9 for EV vehicles, about 0.6 to 0.8 for HV vehicles, and about 0.2 to 0.3 for gasoline vehicles.
  • the recovery rate of the gasoline vehicle is a ratio of energy required for acceleration and energy recovered for deceleration.
  • the navigation device 300 searches for a plurality of nodes that can be reached from the current location of the vehicle on which the device is mounted as reachable locations of the vehicle. Specifically, the navigation apparatus 300 calculates the estimated energy consumption amount in the link using any one or more of the energy consumption estimation expressions shown in the above expressions (1) to (6). Then, the navigation device 300 searches for a reachable node of the vehicle so as to make the reachable point so that the total of the estimated energy consumption in the link is minimized. Below, an example of the reachable point search by the navigation apparatus 300 is demonstrated.
  • FIGS. 4-1 to 4-4 are explanatory diagrams schematically showing an example of reachable point search by the navigation device 300.
  • FIG. In FIGS. 4-1 to 4-4 nodes (for example, intersections) of map data are indicated by circles, and links (predetermined sections on the road) connecting adjacent nodes are indicated by line segments (FIGS. 5-1, 5). Similarly, nodes and links are shown for 2).
  • the navigation device 300 first searches for the link L1_1 closest to the current location 400 of the vehicle. Then, navigation device 300 searches for node N1_1 connected to link L1_1 and adds it to a node candidate for searching for a reachable point (hereinafter simply referred to as “node candidate”).
  • the navigation apparatus 300 calculates the estimated energy consumption in the link L1_1 that connects the current location 400 of the vehicle and the node N1_1 that is the node candidate using the energy consumption estimation formula. Then, the navigation device 300 writes the estimated energy consumption 3wh in the link L1_1 to the storage device (magnetic disk 305 or optical disk 307) in association with the node N1_1, for example.
  • the navigation apparatus 300 searches for all links L2_1, L2_2, and L2_3 connected to the node N1_1 and searches for reachable points (hereinafter simply referred to as “links”). "Candidate”).
  • the navigation apparatus 300 calculates the estimated energy consumption in the link L2_1 using the consumption energy estimation formula.
  • the navigation device 300 associates the accumulated energy amount 7wh obtained by accumulating the estimated energy consumption amount 4wh in the link L2_1 and the estimated energy consumption amount 3wh in the link L1_1 with the node N2_1 connected to the link L2_1, and stores the storage device (magnetic disk 305). Or the optical disc 307) (hereinafter referred to as “set cumulative energy amount to node”).
  • the navigation apparatus 300 calculates the estimated energy consumption in the links L2_2 and L2_3, respectively, using the energy consumption estimation formula as in the case of the link L2_1. Then, the navigation apparatus 300 sets the accumulated energy amount 8wh obtained by accumulating the estimated energy consumption amount 5wh in the link L2_2 and the estimated energy consumption amount 3wh in the link L1_1 to the node N2_2 connected to the link L2_2.
  • the navigation apparatus 300 sets the accumulated energy amount 6wh obtained by accumulating the estimated energy consumption amount 3wh in the link L2_3 and the estimated energy consumption amount 3wh in the link L1_1 to the node N2_3 connected to the link L2_3. At this time, if the node for which the cumulative energy amount is set is not a node candidate, navigation device 300 adds the node to the node candidate.
  • the navigation device 300 includes all links L3_1 and L3_2_1 connected to the node N2_1, all links L3_2_2, L3_3, L3_4 connected to the node N2_2, and links connected to the node N2_3.
  • L3_5 is searched for as a link candidate.
  • the navigation apparatus 300 calculates the estimated energy consumption in the links L3_1 to L3_5 using the consumption energy estimation formula.
  • the navigation apparatus 300 accumulates the estimated energy consumption 4wh in the link L3_1 to the accumulated energy amount 7wh set in the node N2_1, and sets the accumulated energy amount 11wh in the node N3_1 connected to the link L3_1.
  • the navigation apparatus 300 sets the cumulative energy amounts 13wh, 12wh, and 10wh in the nodes N3_3 to N3_5 connected to the links L3_3 to L3_5, respectively, in the links L3_3 to L3_5 as in the case of the link L3_1.
  • the navigation apparatus 300 accumulates the estimated energy consumption 5wh in the link L3_3 to the accumulated energy amount 8wh set in the node N2_2, and sets the accumulated energy amount 13wh in the node N3_3.
  • the navigation device 300 accumulates the estimated energy consumption 4wh in the link L_3_4 to the accumulated energy amount 8wh set in the node N2_2, and sets the accumulated energy amount 12wh in the node N3_4.
  • the navigation device 300 accumulates the estimated energy consumption 4wh in the link L3_5 to the accumulated energy amount 6wh set in the node N2_3, and sets the accumulated energy amount 10wh in the node N3_5.
  • the navigation device 300 includes a cumulative energy amount in a plurality of routes from the vehicle current point 400 to the one node N3_2.
  • the minimum accumulated energy amount 10wh is set in the one node N3_2.
  • the navigation device 300 When there are a plurality of nodes of the same hierarchy from the current location 400 of the vehicle, such as the above-described nodes N2_1 to N2_3, the navigation device 300, for example, from a link connected to a node having a low cumulative energy amount among nodes at the same level.
  • the estimated energy consumption and the cumulative energy amount are calculated in order.
  • the navigation apparatus 300 calculates the estimated energy consumption amount in the link connected to each node in the order of the node N2_3, the node N2_1, and the node N2_2, and accumulates the accumulated energy amount in each node.
  • the order of the nodes for calculating the estimated energy consumption amount and the cumulative energy amount it is possible to efficiently calculate the reachable range with the remaining energy amount.
  • the navigation apparatus 300 continues to accumulate the accumulated energy amount as described above from the nodes N3_1 to N3_5 to the deeper level nodes. Then, the navigation apparatus 300 extracts all nodes set with a cumulative energy amount equal to or less than a preset designated energy amount as reachable points of the vehicle, and obtains longitude / latitude information of the nodes extracted as reachable points. Write to the storage device in association with each node.
  • the navigation device 300 when the designated energy amount is 10wh, the navigation device 300, as shown by a hatched circle in FIG. 4-4, is a node N1_1 with a cumulative energy amount of 10wh or less set.
  • N2_1, N2_2, N2_3, N3_2, and N3_5 are extracted as reachable points of the vehicle.
  • the designated energy amount set in advance is, for example, the remaining energy amount (initial stored energy amount) at the current point 400 of the vehicle.
  • the map data 440 composed of the current location 400 of the vehicle and a plurality of nodes and links shown in FIG. 4-4 is an example for explaining the reachable location search. As shown in FIG. 1, more nodes and links are searched in a wider range than the map data 440 shown in FIG. 4-4.
  • FIG. 5A is an explanatory diagram illustrating an example of a reachable point search by the navigation device 300.
  • search the total energy amount in all nodes on each road in detail. can do.
  • the estimated energy consumption of about 2 million links in Japan is calculated and accumulated, and the information processing amount of the navigation device 300 becomes enormous.
  • the navigation apparatus 300 may narrow down the road which searches for the reachable point of a mobile body based on the importance of a link etc., for example.
  • FIG. 5-2 is an explanatory diagram showing another example of reachable point search by the navigation device 300.
  • the navigation device 300 calculates a cumulative energy amount on all roads (excluding narrow streets) around the current location 400 of the vehicle, and only high-importance roads are within a certain distance away. To calculate the total energy. Accordingly, as shown in FIG. 5B, the number of nodes and the number of links searched by the navigation device 300 can be reduced, and the information processing amount of the navigation device 300 can be reduced. Therefore, the processing speed of the navigation device 300 can be improved.
  • the fixed flag 103a of the search unit 103 gives a fixed flag to pixels of mesh data including a specific node based on the acquired map information 120 when searching for these reachable points.
  • the fixed flag assigning unit 103a determines whether the searched single node on the map information 120 is a predetermined specific node (both ends of a tunnel, a bridge entrance, a mountain road, etc.). If the path (link) having the single node at both ends (entrances / exits) can travel, the fixed flag is given to the pixels including the nodes at both ends of the link.
  • the fixed flag assigning unit 103a may assign a fixed flag to a plurality of pixels including the entire link including nodes at both ends of the link.
  • the navigation device 300 divides the map data stored in the storage device based on the reachable point searched as described above. Specifically, the navigation device 300 converts map data composed of vector data into, for example, 64 ⁇ 64 pixel mesh data (X, Y), and converts the map data into raster data (image data).
  • FIG. 6 is an explanatory diagram of an example in which a reachable point by the navigation device 300 is indicated by longitude-latitude.
  • FIG. 7 is an explanatory diagram of an example in which a reachable point by the navigation device 300 is indicated by mesh data.
  • longitude / latitude information (x, y) of the reachable point searched as shown in FIGS. 5-1 and 5-2 is illustrated in absolute coordinates.
  • FIG. 7 illustrates the screen data of 64 ⁇ 64 pixel mesh data (X, Y) to which identification information is given based on the reachable point.
  • the navigation apparatus 300 first generates longitude / latitude information (x, y) having a point group 600 in absolute coordinates based on the longitude x and latitude y of each of a plurality of reachable points. .
  • the origin (0, 0) of the longitude / latitude information (x, y) is at the lower left of FIG.
  • the navigation apparatus 300 calculates the distances w1 and w2 from the longitude ofx of the current point 400 of the vehicle to the maximum longitude x_max and the minimum longitude x_min of the reachable point farthest in the longitude x direction.
  • the navigation device 300 calculates the distances w3 and w4 from the latitude of the current point 400 of the vehicle to the maximum latitude y_max and the minimum latitude y_min of the reachable point farthest in the direction of the latitude y.
  • the current location 400 of the vehicle is configured by mesh data (X, Y) of m ⁇ m pixels.
  • the navigation device 300 converts the longitude / latitude information (x, y) into mesh data (X, Y), it gives identification information to each area of the mesh data (X, Y), and m rows m It is converted into mesh data of two-dimensional matrix data (Y, X) of columns.
  • the navigation device 300 can be identified to identify that the vehicle can reach the one area. For example, “1” is given as the identification information (in FIG. 7, one pixel is drawn in black, for example).
  • the navigation device 300 cannot reach that vehicle that cannot reach the one region. For example, “0” is given as the identification information (in FIG. 7, one pixel is drawn in white, for example).
  • the navigation device 300 converts the map data into binarized map data of m rows and m columns of two-dimensional matrix data (Y, X) obtained by adding identification information to each area obtained by dividing the map data. Treated as raster data.
  • Each area of the mesh data is represented by a rectangular area within a certain range. Specifically, as shown in FIG. 7, for example, m ⁇ m pixel mesh data (X, Y) in which a point group 700 of a plurality of reachable points is drawn in black is generated. The origin (0, 0) of the mesh data (X, Y) is at the upper left.
  • the erasure prohibition flag assigning unit 104a of the dividing unit 104 assigns an erasure prohibition flag to specific pixels including the node to which the fixed flag is assigned among the pixels of the mesh data.
  • the fixed flag is added only to the pixels including the nodes at both ends of the link by the fixed flag adding unit 103a, erasure is prohibited for one or a plurality of pixels including one whole link including both ends of the link. Give a flag.
  • the navigation apparatus 300 of the present embodiment changes the identification information given to each area of the m ⁇ m pixel mesh data (X, Y) divided as described above. Specifically, the navigation apparatus 300 performs a cloning process (a process of performing a reduction process after the expansion process) on mesh data of m-dimensional data and m-dimensional two-dimensional matrix data (Y, X).
  • a cloning process a process of performing a reduction process after the expansion process
  • FIG. 8 is an explanatory diagram showing an example of the cloning process by the navigation device.
  • FIGS. 8A to 8C are mesh data of two-dimensional matrix data (Y, X) of m rows and m columns in which identification information is assigned to each region.
  • FIG. 8A shows mesh data 800 to which identification information is given for the first time after map data division processing. That is, the mesh data 800 shown in FIG. 8A is the same as the mesh data shown in FIG.
  • FIG. 8B shows mesh data 810 after the cloning process (expansion) is performed on the mesh data 800 shown in FIG. 8A.
  • FIG. 8C shows mesh data 820 after the cloning process (reduction) is performed on the mesh data 810 shown in FIG. 8B.
  • the vehicle reachable ranges 801, 811 and 821 generated by a plurality of regions to which reachable identification information is assigned are blackened. Shown in a filled state.
  • a missing point 802 in the reachable range 801 that is hatched
  • the missing point 802 is a node that becomes a reachable point when narrowing down roads to search for nodes and links in order to reduce the load of reachable point search processing by the navigation device 300. This occurs when the number is reduced.
  • the navigation device 300 performs an expansion process of cloning on the mesh data 800 after the identification information is given.
  • the identification information of one area adjacent to the area to which reachable identification information is added in the mesh data 800 after the identification information is added is changed to reachable identification information.
  • the missing point 802 generated in the reachable range 801 of the vehicle before the expansion process (after the identification information is given) disappears.
  • the identification information of all the areas adjacent to the outermost area of the reachable range 801 of the vehicle before the expansion process is changed to the reachable identification information.
  • the outer periphery of the reachable range 811 of the vehicle after the expansion process is one pixel at a time so as to surround the outer periphery of each outermost region of the reachable range 801 of the vehicle before the expansion process every time the expansion process is performed. spread.
  • the navigation device 300 performs a cloning reduction process on the mesh data 810.
  • the identification information of one area adjacent to the area to which the unreachable identification information is added in the mesh data 810 after the expansion process is changed to the unreachable identification information.
  • each area of the outermost periphery of the reachable range 811 of the vehicle after the expansion process becomes an area that cannot be reached by one pixel every time the reduction process is performed, and the reachable range 811 of the vehicle after the expansion process The outer circumference shrinks.
  • the outer periphery of the reachable range 821 of the vehicle after the reduction process is substantially the same as the outer periphery of the reachable range 801 of the vehicle before the expansion process.
  • Navigation device 300 performs the above-described expansion process and reduction process the same number of times. Specifically, when the expansion process is performed twice, the subsequent reduction process is also performed twice. By equalizing the number of times of the expansion process and the reduction process, the identification information of almost all areas in the outer periphery of the reachable range of the vehicle that has been changed to the identification information that can be reached by the expansion process is restored to the original information by the reduction process. It can be changed to unreachable identification information. In this way, the navigation device 300 can remove the missing point 802 in the reachable range of the vehicle and generate the reachable range 821 of the vehicle that can clearly display the outer periphery.
  • FIG. 9 is an explanatory diagram schematically showing an example of cloning processing by the navigation device.
  • FIG. 9A to FIG. 9C show mesh data of two-dimensional matrix data (Y, X) of h rows and h columns in which identification information is assigned to each region as an example.
  • FIG. 9A shows the mesh data 900 after the identification information is given.
  • FIG. 9B shows mesh data 910 after cloning processing (expansion) with respect to FIG.
  • FIG. 9C shows mesh data 920 after cloning processing (reduction) with respect to FIG. 9B.
  • mesh data 900, 910, and 920 of FIGS. 9A to 9C areas 901 and 902 to which reachable identification information is assigned are illustrated by different hatchings.
  • identification information that can reach the region 901 in the c-row, f-column, f-row, c-column, and g-row, f column is assigned to the mesh data 900 after the identification information is given.
  • the regions 901 to which reachable identification information is assigned are arranged apart from each other so that the change in the identification information after the expansion process and the reduction process becomes clear.
  • the navigation device 300 performs an expansion process of cloning on the mesh data 900 having been given such identification information. Specifically, as illustrated in FIG. 9B, the navigation device 300 includes eight regions adjacent to the lower left, lower, lower right, right, upper right, upper, upper left, and left of the region 901 in the c row and the f column. (B row e column to b row g column, c row e column, c row g column and d row e column to d row g column) 902 identification information is changed from unreachable identification information to reachable identification information change.
  • the navigation device 300 can reach the identification information of the eight adjacent regions 902 in the region 901 of the f row c column and the g row f column similarly to the processing performed for the region 901 of the c row f column. Change to the identification information. For this reason, the reachable range 911 of the vehicle is wider than the reachable range of the vehicle in the mesh data 900 after the identification information is added by the amount that the identification information of the region 902 is changed to the reachable identification information.
  • the navigation apparatus 300 performs a cloning reduction process on the mesh data 910 after the expansion process.
  • the navigation device 300 has b rows and e columns adjacent to an area to which unreachable identification information is given (the white background portion of the mesh data 910 after the expansion process).
  • the identification information of the eight areas 902 of the b row g column, the c row e column, the c row g column, and the d row e column to the d row g column is changed to unreachable identification information.
  • the navigation device 300 is similar to the processing performed for the eight areas 902 of b row e column to b row g column, c row e column, c row g column, and d row e column to d row g column.
  • the mesh data 920 after the reduction process is reduced to the three regions 901 to which reachable identification information is added, similarly to the mesh data 900 after the identification information is added.
  • a reachable range 921 of the vehicle composed of one region 902 that remains in the state where the reachable identification information is provided even after the processing is generated.
  • the region 902 that is provided with the identification information that can be reached during the expansion process and that has been provided with the identification information that can be reached after the reduction process is within the reachable range of the mesh data 900 after the identification information is applied. The missing point that has occurred disappears.
  • the navigation device 300 performs an opening process (a process of performing an expansion process after the reduction process) on the mesh data of the two-dimensional matrix data (Y, X), and generates a vehicle reachable range in which the outer periphery can be clearly displayed. May be. Specifically, the navigation device 300 performs an opening process as follows.
  • FIG. 10 is an explanatory diagram showing an example of the opening process by the navigation device.
  • FIGS. 10A to 10C are mesh data of two-dimensional matrix data (Y, X) of m rows and m columns in which identification information is assigned to each region.
  • FIG. 10A shows mesh data 1000 after identification information is given.
  • FIG. 10B shows mesh data 1010 after the opening process (reduction) with respect to FIG.
  • FIG. 10C shows mesh data 1020 after the opening process (expansion) with respect to FIG.
  • the vehicle reachable ranges 1001, 1011 and 1021 generated by a plurality of regions to which reachable identification information is assigned are shown. Shown in black.
  • the mesh data 1000 after the identification information is given By performing the opening process, the isolated pixel 1002 can be removed.
  • the navigation device 300 performs an opening reduction process on the mesh data 1000 after the identification information is given.
  • the identification information of one area adjacent to the area to which the unreachable identification information is added in the mesh data 1000 after the identification information is added is changed to the unreachable identification information.
  • the isolated pixel 1002 that has occurred in the reachable range 1001 of the vehicle before the reduction process (after the identification information is given) is removed.
  • each area of the outermost circumference of the reachable range 1001 of the vehicle after the identification information is added becomes an area that cannot be reached by one pixel every time the reduction process is performed, and the reachable range of the vehicle after the identification information is given
  • the outer periphery of 1001 shrinks. Further, the isolated pixel 1002 that has occurred in the reachable range 1001 of the vehicle after the identification information is given is removed.
  • the navigation device 300 performs an opening expansion process on the mesh data 1010.
  • the identification information of one area adjacent to the area to which the unreachable identification information is added in the mesh data 1010 after the reduction process is changed to the reachable identification information.
  • the outer periphery of the reachable range 1021 of the vehicle after the expansion process is one pixel at a time so as to surround the outer periphery of each outermost region of the reachable range 1011 of the vehicle after the reduction process every time the expansion process is performed. spread.
  • the navigation device 300 performs the expansion process and the reduction process the same number of times as in the cloning process.
  • the outer periphery of the reachable range 1011 of the vehicle shrunk by the reduction process is expanded, and the outer periphery of the vehicle reachable range 1021 after the reduction process is expanded before the reduction process.
  • the navigation device 300 can generate the vehicle reachable range 1021 in which the isolated pixel 1002 does not occur and the outer periphery can be clearly displayed.
  • FIG. 11A is a diagram illustrating an example of node erasure inhibition by an erasure inhibition flag. An example will be described in which a specific pixel is left as an erasure prohibition by the above-described contraction process, expansion process and erasure prohibition flag. In these figures, “gray (shaded)” indicates a reachable area (identification information is “1”), and “white” indicates an unreachable area (identification information is “0”). Yes.
  • the reachable range indicated by the mesh data 1100 has a predetermined pattern shown in gray.
  • fixed flags are assigned to the nodes included in the pixels 1101 to 1106, respectively. For example, there is a single road in the forest that is connected by a relatively short link. Then, an erasure prohibition flag is assigned to each of the pixels 1101 to 1106 by the erasure prohibition flag portion.
  • the state shown in (B) is obtained. That is, if even one pixel is white around the target pixel (region) shown in (A), the target pixel is changed to white, but the pixels 1101 to 1106 to which the erasure prohibition flag is assigned are white. It is excluded from the process of changing to.
  • FIG. 11B is a diagram illustrating an example of node erasure inhibition by the erasure inhibition flag.
  • a difference from FIG. 11A is that a node to which a fixed flag included in the pixel 1101 is attached and a node to which a fixed node included in the pixel 1106 is connected via a long link. 1105 does not include a node. For example, there is a bridge through the bay. In this case, as shown in FIG. 11-2 (A1), the erasure prohibition flag unit assigns erasure prohibition flags to the pixels 1101 and 1106, respectively.
  • the erasure prohibition flag portion indicates that, when a fixed flag is given to nodes at both ends of one link, a virtual node to which a fixed flag is given exists in the pixel corresponding to the link portion. It is assumed that an erasure prohibition flag may be assigned to the corresponding pixel. That is, as shown in FIG. 11-2 (A2), an erasure prohibition flag may be assigned to the pixels 1102 to 1105.
  • the state shown in (B) is obtained by performing the contraction process.
  • the target pixel is changed to white, but the pixels 1101 to 1106 to which the erasure prohibition flag is assigned are changed to white. Not subject to processing.
  • the pixels 1101 and 1106 to which the erasure prohibition flag is assigned are provided.
  • the reachable range identification information “1” may be assigned to the pixels 1102 to 1105 in between.
  • the navigation device 300 extracts the outline of the reachable range of the vehicle based on the identification information given to the mesh data of the two-dimensional matrix data (Y, X) of m rows and m columns. Specifically, the navigation apparatus 300 extracts the outline of the reachable range of the vehicle using, for example, a Freeman chain code. More specifically, the navigation device 300 extracts the outline of the reachable range of the vehicle as follows.
  • FIG. 12 is an explanatory view schematically showing an example of vehicle reachable range extraction by the navigation device.
  • FIG. 13 is explanatory drawing which shows typically an example of the mesh data after the reachable range of the vehicle is extracted by the navigation device.
  • FIG. 12A shows numbers indicating the adjacent directions of the regions 1210 to 1217 adjacent to the region 1200 (hereinafter referred to as “direction index (chain code)”) and arrows in eight directions corresponding to the direction index.
  • FIG. 12B shows mesh data 1220 of two-dimensional matrix data (Y, X) of h rows and h columns as an example.
  • the regions 1221 to 1234 to which reachable identification information is assigned and the regions to which reachable identification information is enclosed surrounded by the regions 1221 to 1234 are illustrated by hatching.
  • the direction index indicates the direction in which the line segment of the unit length is facing.
  • the coordinates corresponding to the direction index are (X + dx, Y + dy).
  • the direction index in the direction from the region 1200 toward the region 1210 adjacent to the lower left is “0”.
  • the direction index in the direction from the region 1200 toward the adjacent region 1211 is “1”.
  • the direction index in the direction from the region 1200 toward the region 1212 adjacent to the lower right is “2”.
  • the direction index in the direction from the region 1200 toward the region 1217 adjacent to the left is “7”.
  • the navigation device 300 searches the area to which the reachable identification information “1” adjacent to the area 1200 is assigned in the counterclockwise direction. In addition, the navigation device 300 determines a search start point of an area to which reachable identification information adjacent to the area 1200 is assigned based on the previous direction index. Specifically, when the direction index from another area toward area 1200 is “0”, navigation device 300 has an area adjacent to the left of area 1200, that is, an area adjacent in the direction of direction index “7”. The search starts at 1217.
  • the navigation device 300 is adjacent to the lower left, lower, lower right, right, upper right, upper left of the region 1200.
  • the search is started from the matching regions, that is, the regions 1210 to 1216 adjacent in the directions of the direction indices “0”, “1”, “2”, “3”, “4”, “5”, “6”, respectively.
  • the navigation apparatus 300 detects the reachable identification information “1” from any one of the areas 1210 to 1217 from the area 1200, the areas 1210 to 1217 in which the reachable identification information “1” is detected.
  • the direction indices “0” to “7” corresponding to are written in the storage device in association with the area 1200.
  • the navigation device 300 extracts the outline of the reachable range of the vehicle as follows. As shown in FIG. 12 (B), the navigation apparatus 300 first identifies identification that can be reached in units of rows from the region of a row and a column of the mesh data 1220 of the two-dimensional matrix data (Y, X) of h row and h column. Search for an area to which information is assigned.
  • the navigation apparatus 300 Since unreachable identification information is given to all the regions in the a-th row of the mesh data 1220, the navigation apparatus 300 next moves the b-row and h-column regions from the b-row and a-column region of the mesh data 1220. Search for identification information that can be reached toward the area. Then, after detecting the reachable identification information in the region 1221 of the b row and e column of the mesh data 1220, the navigation device 300 moves counterclockwise from the region 1221 of the b row and e column of the mesh data 1220, and reaches the reachable range of the vehicle. The region having the reachable identification information that becomes the outline of is searched.
  • the navigation device 300 has already searched for the region of the b row and the d column adjacent to the left of the region 1221. Therefore, the navigation apparatus 300 first identifies the reachable from the region 1222 adjacent to the lower left of the region 1221 counterclockwise. Search whether there is an area having information. The navigation device 300 detects the reachable identification information of the region 1222 and stores the direction index “0” in the direction from the region 1221 toward the region 1122 in association with the region 1221 in the storage device.
  • the navigation device 300 since the navigation device 300 has the previous direction index “0”, whether there is an area having reachable identification information counterclockwise from the area of the c row and the c column adjacent to the left of the area 1222. Search for. Then, the navigation device 300 detects the reachable identification information of the region 1223 adjacent to the lower left of the region 1222, and stores the direction index “0” in the direction from the region 1222 to the region 1223 in association with the previous direction index. Store in the device.
  • the navigation device 300 determines a search start point based on the previous direction index, and uses the direction index as a process for searching whether there is an area having identification information that can be reached counterclockwise from the search start point. Repeat until the corresponding arrow returns to region 1221. Specifically, navigation device 300 searches whether there is a region having identification information that can be reached counterclockwise from the region adjacent to the left of region 1222, and searches for region 1224 adjacent below region 1223. The reachable identification information is detected, and the direction index “1” is stored in the storage device in association with the previous direction index.
  • the navigation device 300 searches for an area having identification information that can be reached counterclockwise from the search start point, and an area having reachable identification information 1224 to 1234 are sequentially detected. Then, every time the navigation device 300 acquires the direction index, the navigation device 300 associates it with the previous direction index and stores it in the storage device.
  • the navigation device 300 searches whether there is an area having identification information that can be reached in the counterclockwise direction from the area of the b row and f column adjacent to the upper right of the area 1234, and the adjacent area on the area 1234
  • the reachable identification information 1221 is detected, and the direction index “5” is stored in the storage device in association with the previous direction index.
  • the direction index “0” ⁇ “0” ⁇ “1” ⁇ “0” ⁇ “2” ⁇ “3” ⁇ “4” ⁇ “3” ⁇ “2” ⁇ “5” ⁇ “5” ⁇ “6” ⁇ “6” ⁇ “5” is stored in this order.
  • the navigation device 300 sequentially searches counterclockwise the regions 1222 to 1234 having the reachable identification information adjacent to the region 1221 from the first detected region 1221 to obtain the direction index. Then, the navigation apparatus 300 fills one area in the direction corresponding to the direction index from the area 1221, so that the outline 1301 of the reachable range of the vehicle and the part 1302 surrounded by the outline 1301 are shown in FIG. 13. The mesh data having the vehicle reachable range 1300 is generated.
  • the navigation device 300 generates a reachable range of the moving object based on the reachable node of the moving object searched based on the remaining energy amount of the vehicle, and causes the display 313 to display the reachable range.
  • a case where the navigation device 300 is mounted on an EV car will be described as an example.
  • FIG. 14 is a flowchart showing an example of the procedure of image processing by the navigation device.
  • the navigation device 300 first acquires the current location (ofx, ofy) of the vehicle on which the device is mounted, for example, via the communication I / F 315 (step S1401).
  • the navigation apparatus 300 acquires the initial stored energy amount of the vehicle at the current location (ofx, ofy) of the vehicle, for example, via the communication I / F 315 (step S1402).
  • the navigation device 300 performs a reachable node search process (step S1403). At this time, a fixed flag is assigned to a specific node (step S1404). Next, the navigation device 300 performs mesh data generation, deletion prohibition flag assignment, and identification information addition processing (step S1405). Next, the navigation apparatus 300 extracts the outline of the reachable range of the vehicle (step S1407). Thereafter, the navigation device 300 displays the reachable range of the vehicle on the display 313 (step S1408), and ends the processing according to this flowchart.
  • FIG. 15 is a flowchart illustrating an example of a procedure of estimated power consumption calculation processing by the navigation device. In the flowchart illustrated in FIG. 15, the process is performed in the reachable node search process in step S1403 described above.
  • the navigation apparatus 300 first acquires traffic jam information such as probe data and traffic jam prediction data via the communication I / F 315 (step S1501). Next, the navigation apparatus 300 acquires the length of the link and the road type of the link (step S1502).
  • the navigation device 300 calculates the travel time of the link based on the information acquired in steps S1501 and S1502 (step S1503).
  • the travel time of the link is the time required for the vehicle to finish traveling on the link.
  • the navigation apparatus 300 calculates the average link speed based on the information acquired in steps S1501 to S1503 (step S1504).
  • the average speed of the link is an average speed when the vehicle travels on the link.
  • the navigation device 300 acquires the altitude data of the link (step S1505).
  • the navigation apparatus 300 acquires vehicle setting information (step S1506).
  • the navigation apparatus 300 uses the energy consumption estimation formula of any one of the above-described formulas (1) to (6) based on the information acquired in steps S1501 to S1506 to estimate the consumption at the link.
  • the amount of electric power is calculated (step S1507), and the processing according to this flowchart ends.
  • FIGS. 16A and 16B are flowcharts illustrating the procedure of reachable point search processing by the navigation device.
  • the navigation apparatus 300 adds the node N (i) _j connected to the link L (i) _j closest to the search start point to the node candidates (step S1601).
  • the search start point is the current point (ofx, ofy) of the vehicle acquired in step S1401 described above.
  • the variables i and j are arbitrary numerical values.
  • a link and a node closest to the search start point are a link L (1) _j and a node N (1) _j, respectively, and are further connected to the node N (1) _j.
  • the variable j1 is an arbitrary numerical value and means that a plurality of links or nodes exist in the same hierarchy.
  • the navigation apparatus 300 determines whether or not there are one or more node candidates (step S1602).
  • step S1602 Yes
  • the navigation apparatus 300 selects a node candidate having the minimum cumulative power consumption from the current point of the vehicle to the node candidate (step S1603). For example, the following processing will be described assuming that the navigation device 300 selects the node N (i) _j as a node candidate.
  • the navigation apparatus 300 determines whether or not the cumulative power consumption from the current point of the vehicle to the node N (i) _j is less than or equal to the specified energy amount (step S1604).
  • the designated energy amount is, for example, the remaining energy amount of the vehicle at the current location of the vehicle.
  • the navigation apparatus 300 extracts all the links L (i + 1) _j connected to the node N (i) _j (step S1605).
  • the navigation apparatus 300 selects one link L (i + 1) _j among the links L (i + 1) _j extracted in step S1605 (step S1606).
  • the navigation apparatus 300 performs candidate determination processing for determining whether or not the one link L (i + 1) _j selected in step S1606 is a link candidate (steps S1607 and S1608).
  • the navigation apparatus 300 When the one link L (i + 1) _j is set as a link candidate (step S1608: Yes), the navigation apparatus 300 performs a power consumption calculation process for the one link L (i + 1) _j (step S1609). Next, the navigation apparatus 300 calculates the cumulative power consumption W (i + 1) _j up to the node N (i + 1) _j connected to one link L (i + 1) _j (step S1610). Next, the navigation apparatus 300 determines whether there is another processed path connected to the node N (i + 1) _j (step S1611).
  • step S1611 determines that the cumulative power consumption W (i + 1) _j from the current point of the vehicle to the node N (i + 1) _j is the cumulative amount of the other route. It is determined whether it is smaller than the power consumption (step S1612). If the accumulated power consumption is smaller than the other route (step S1612: Yes), the navigation device 300 causes the node N (i + 1) _j to accumulate the accumulated power consumption W from the current point of the vehicle to the node N (i + 1) _j. (I + 1) _j is set (step S1613).
  • step S1611 when there is no other processed route (step S1611: No), the navigation apparatus 300 proceeds to step S1613.
  • the navigation apparatus 300 determines whether or not the node N (i + 1) _j is a node candidate (step S1614). When it is not a node candidate (step S1614: No), the navigation apparatus 300 adds the node N (i + 1) _j to the node candidate (step S1615).
  • step S1608 When one link L (i + 1) _j is not a link candidate (step S1608: No), the accumulated power consumption W (i + 1) _j from the current point of the vehicle to the node N (i + 1) _j is on another route. If the node N (i + 1) _j is a node candidate (step S1614: Yes), the navigation device 300 proceeds to step S1616.
  • the navigation apparatus 300 determines whether or not the candidate determination process for all links L (i + 1) _j has been completed (step S1616).
  • the candidate determination process for all links L (i + 1) _j is completed (step S1616: Yes)
  • the node N (i) _j is excluded from the node candidates (step S1617), and the process returns to step S1602.
  • the navigation apparatus 300 selects a node candidate having the minimum cumulative power consumption from the current location of the vehicle from the node candidates (step S1603).
  • the node candidate selected in step S1603 is set as the next node N (i) _j, and the processes in and after step S1604 are performed.
  • step S1616: No when the candidate determination process for all links L (i + 1) _j is not completed (step S1616: No), the process returns to step S1606.
  • the navigation device 300 selects another link L (i + 1) _j connected to the node N (i) _j again, and performs candidate determination processing for all the links L (i + 1) _j connected to the same node candidate. Until the process ends (step S1616: Yes), the processes from step S1607 to step S1615 are repeated.
  • step S1602 If there is no one or more node candidates (step S1602: No), the cumulative power consumption from the current point of the vehicle to the node N (i) _j is larger than the specified energy amount (step S1604: No), the navigation device 300 terminates the processing according to this flowchart.
  • FIG. 17 is a flowchart illustrating an example of a procedure of link candidate determination processing by the navigation device.
  • the flowchart in FIG. 17 is an example of the process performed in step S1607 described above.
  • the navigation apparatus 300 first determines whether or not the one link L (i + 1) _j selected in step S1606 is prohibited from passing (step S1701). If the passage is not prohibited (step S1701: No), the navigation apparatus 300 determines whether one link L (i + 1) _j is a one-way reverse run (step S1702). When it is not one-way reverse running (step S1702: No), the navigation apparatus 300 determines whether one link L (i + 1) _j is time-regulated or seasonally regulated (step S1703).
  • the navigation apparatus 300 uses the node N (i + 1) on the current point side of the vehicle in which the one link L (i + 1) _j is the one link L (i + 1) _j. It is determined whether or not the importance is lower than the link L (i) _j connected to (Step S1704). If the importance level is higher than that of the link L (i) _j (step S1704: No), the navigation apparatus 300 determines one link L (i + 1) _j as a link candidate (step S1705), and ends the processing according to this flowchart. To do.
  • step S1701 when it is prohibited to pass (step S1701: Yes), when it is one-way reverse running (step S1702: Yes), when time regulation or seasonal regulation is imposed (step S1703: Yes), the link L ( i) When the importance is lower than _j (step S1704: Yes), the navigation apparatus 300 ends the process according to this flowchart.
  • FIG. 18 is a flowchart illustrating an example of processing relating to the assignment of a fixed flag and the assignment of an erasure prohibition flag. This process includes a process (step S1404) performed by the fixed flag assigning unit 103a of the search unit 103 and a process (step S1405) performed by the erasure prohibition flag assigning unit 104a of the dividing unit 104.
  • the search unit 103 reads a reachable node by the above process (step S1801).
  • the dividing unit 104 meshes the map information 120 (step S1802).
  • the fixed flag assigning unit 103a determines whether this node is a node to which a fixed flag that is unique information is assigned (step S1803).
  • the node to which the fixed flag is assigned is a specific node such as a tunnel, a bridge, or a mountain road. If the read node is a node to which the fixed flag is assigned (step S1803: Yes), the erasure prohibition flag assigning unit 104a assigns an erasure prohibition flag to the pixel including the node to which the fixed flag is assigned (step S1804). ), And the process proceeds to step S1805. If the read node is not a node given a fixed flag (step S1803: No), the process proceeds to step S1805. In step S1805, reachable range identification information is assigned to each pixel.
  • FIG. 19 is a flowchart illustrating an example of a procedure of identification information addition processing by the navigation device.
  • the flowchart in FIG. 19 is the processing performed in step S1405 described above.
  • the navigation apparatus 300 first acquires longitude / latitude information (x, y) of reachable nodes (searchable points) (step S1901). Next, the navigation apparatus 300 acquires the maximum longitude x_max, the minimum longitude x_min, the maximum latitude y_max, and the minimum latitude y_min (step S1902).
  • the navigation apparatus 300 determines the distance w1 from the current vehicle location (ofx, ofy) acquired in step S1401 to the maximum longitude x_max, the distance w2 to the minimum longitude x_min, the distance w3 to the maximum latitude y_max, and the minimum latitude.
  • the distances w4 to y_min are respectively calculated (step S1903).
  • the navigation apparatus 300 converts the map data from the absolute coordinate system to the screen coordinate system using the magnification mag calculated in step S1905, and generates mesh data (X, Y) of m ⁇ m pixels (step S1906). ).
  • step S1806 the navigation device 300 gives reachable identification information to the mesh data (X, Y) including the reachable node, and cannot reach the mesh data (X, Y) that does not include the reachable node.
  • the identification information is assigned.
  • the navigation apparatus 300 removes the missing point of the mesh data (X, Y) corresponding to a bridge or a tunnel by performing the 1st identification information change process (step S1907).
  • the navigation apparatus 300 performs a second identification information change process (step S1908).
  • the navigation apparatus 300 performs a third identification information change process (step S1909), and ends the process according to this flowchart.
  • the second identification information changing process is a cloning expansion process.
  • the third identification information change process is a cloning reduction process.
  • the second identification information change process (step S1908) and the third identification information change process (step S1909) are performed after the first identification information change process (step S1907).
  • the first identification information change process (step S1907) may be performed.
  • FIG. 20 is a flowchart illustrating an example of an opening process and a cloning process using an erasure prohibition flag. This process is performed by the assigning unit 105.
  • the flowchart in FIG. 20 is an example of processing performed in steps S1907 to S1909 described above.
  • the assigning unit 105 reads mesh data that is the output of the dividing unit 104 (step S2001). Next, it is determined whether or not an erase prohibition flag is assigned to the area (pixel) of the read mesh data (step S2002). If the erasure prohibition flag is not assigned to the area (step S2002: No), first, an opening process is performed for this area (step S2003), and then a cloning process is performed for this area (step S2004), and the process is terminated. . However, if the erasure prohibition flag is given to the area (step S2002: Yes), the opening process is not performed on this area, only the cloning process is performed (step S2004), and the process is terminated.
  • step S2002 if an erasure prohibition flag is assigned to the area (step S2002: Yes), neither the opening process nor the cloning process may be performed on this area.
  • FIGS. 21-1 and 21-2 are flowcharts illustrating an example of the procedure of the reachable range contour extraction process by the navigation device.
  • the flowcharts of FIGS. 21-1 and 21-2 are an example of the process performed in step S1407 described above.
  • the navigation apparatus 300 first acquires mesh data of two-dimensional matrix data of my rows and mx columns (step S2101). Next, the navigation apparatus 300 acquires longitude / latitude information of each area of the mesh data acquired in step S2101 (step S2102).
  • the navigation device 300 initializes the variable i and adds 1 to the variable i in order to search for the identification information of the i-row and j-column area of the mesh data (steps S2103 and S2104).
  • the navigation apparatus 300 determines whether or not the variable i exceeds the my row (step S2105).
  • step S2105 When the variable i does not exceed the my line (step S2105: No), the navigation apparatus 300 initializes the variable j and adds 1 to the variable j (steps S2106 and S2107). Next, the navigation apparatus 300 determines whether or not the variable j exceeds the mx column (step S2108).
  • the navigation apparatus 300 determines whether or not the identification information of the i-row / j-column region of the mesh data is “1” (step S2109). .
  • the identification information of the i-th row and j-th column region is “1” (step S2109: Yes)
  • the navigation apparatus 300 acquires the upper left coordinates (px1, py1) of the i-th row and j-th column region of the mesh data (step S2109). S2110).
  • the upper left coordinates (px1, py1) of the region of i row and j column are the minimum longitude px1 and the minimum latitude py1 of the region of i row and j column.
  • the navigation apparatus 300 determines whether or not the variable j exceeds the mx column (step S2111).
  • the navigation apparatus 300 acquires the lower right coordinates (px2, py2) of the i row and j column region of the mesh data (step S2112).
  • the lower right coordinates (px2, py2) of the area of i row and j column are the maximum longitude px2 and the maximum latitude py2 of the area of i row and j column.
  • the navigation device 300 sets the upper left coordinates (px1, py1) acquired in step S2110 and the lower right coordinates (px2, py2) acquired in step S2112 as map data (step S2116). Then, the navigation apparatus 300 fills a rectangular area having the upper left coordinates (px1, py1) and the lower right coordinates (px2, py2) as opposed vertices (step S2117), returns to step S2104, and repeats the subsequent processing. Do it.
  • step S2111 when the variable j does not exceed the mx column (step S2111: Yes), the navigation apparatus 300 adds 1 to the variable j (step S2113), and the identification information of the area of the i-th row and j-th column of the mesh data is “ It is determined whether or not “1” (step S2114). If the identification information of the i-th row and j-th column area is not “1” (step S2114: No), the navigation apparatus 300 acquires the lower right coordinates (px2, py2) of the i-th row and j-1th column area of the mesh data. (Step S2115), the processing after step S2116 is performed.
  • step S2114: Yes If the identification information of the area of i row and j column is “1” (step S2114: Yes), the process returns to step S2111 and the subsequent processing is repeated. If the variable i exceeds the my line (step S2105: Yes), the navigation device 300 ends the process according to the flowchart. If the variable j exceeds the mx column (step S2108: YES), the process returns to step S2104 to repeat the subsequent processing.
  • FIG. 22 is an explanatory diagram schematically illustrating an example of acceleration applied to a vehicle traveling on a road having a gradient.
  • the second term on the right side of the above equation (1) indicates the acceleration A accompanying the traveling of the vehicle and the combined acceleration C of the traveling direction component B of the gravitational acceleration g. Yes.
  • the distance D of the section in which the vehicle travels is defined as the travel time T and the travel speed V.
  • the estimation accuracy is improved by estimating the fuel consumption in consideration of the road gradient, that is, the fourth information.
  • the slope of the road on which the vehicle travels can be known using, for example, an inclinometer mounted on the navigation device 300. Further, when the inclinometer is not mounted on the navigation device 300, for example, road gradient information included in the map data can be used.
  • traveling resistance generated in the vehicle will be described.
  • the navigation device 300 calculates the running resistance by the following equation (11), for example.
  • traveling resistance is generated in a moving body during acceleration or traveling due to road type, road gradient, road surface condition, and the like.
  • FIG. 23 is an explanatory diagram illustrating an example of a display example after the reachable point search process by the navigation device.
  • FIG. 24A is an explanatory diagram of an example of a display example after the identification information providing process by the navigation device.
  • FIG. 24-2 is an explanatory diagram illustrating an example of a display example after the first identification information changing process by the navigation device.
  • FIG. 25 is an explanatory diagram showing an example of a display example after the cloning process (expansion) by the navigation device.
  • FIG. 26 is an explanatory diagram illustrating an example of a display example after the cloning process (reduction) by the navigation device.
  • the display 313 displays reachable points of a plurality of vehicles searched by the navigation device 300 together with map data.
  • the state of the display 313 illustrated in FIG. 23 is an example of information displayed on the display when the reachable point search process is performed by the navigation device 300. Specifically, this is a state in which the process of step S1403 of FIG. 14 has been performed.
  • the map data is divided into a plurality of areas by the navigation device 300, and identification information indicating whether each area is reachable or unreachable is given based on the reachable point, as shown in FIG. 24-1.
  • the display 313 displays a reachable range 2400 of the vehicle based on reachable identification information. At this stage, there is a missing point that is an unreachable region within the reachable range 2400 of the vehicle.
  • the vehicle reachable range 2400 includes, for example, areas corresponding to both entrances and exits of the Tokyo Bay Crossing Road (Tokyo Bay Aqualine: registered trademark) 2410 that crosses Tokyo Bay as a specific node. However, the vehicle reachable range 2400 includes only one region 2411 out of all the regions on the Tokyo Bay crossing road 2410.
  • the navigation device 300 performs the process of assigning the fixed flag and assigning the erasure prohibition flag, so that the entire area 2421 on the Tokyo Bay crossing road 2410 is displayed on the display 313 as shown in FIG.
  • the reachable range 2420 that is included and from which the missing points on the Tokyo Bay crossing road 2410 are removed is displayed.
  • the expansion processing of cloning is performed by the navigation device 300, thereby generating the reachable range 2500 of the vehicle from which the missing points are removed, as shown in FIG.
  • the entire area 2510 on the Tokyo Bay crossing road is already included in the reachable range 2500 by the processing of the erasure prohibition flag, the entire area 2500 on the Tokyo Bay crossing road is The vehicle reachable range 2500 is obtained.
  • the reduction processing of the cloning is performed by the navigation device 300, so that the outer periphery of the vehicle reachable range 2600 is substantially the same as the outer periphery of the vehicle reachable range 2500 before the cloning is performed, as shown in FIG. It becomes the size of.
  • the boundary of all areas 2510 on the Tokyo Bay crossing road in FIG. 25 and the boundary of all areas 2610 on the Tokyo Bay crossing road in FIG. 26 are displayed as boundaries depending on the mesh data. It is displayed at the boundary of diagonal lines for easy.
  • the outline of the reachable range 2600 of the vehicle can be displayed smoothly. Further, since the missing points are removed by cloning, the reachable range 2600 of the vehicle is displayed with a two-dimensional smooth surface 2602. Even after the cloning reduction process, the entire area 2610 on the Tokyo Bay crossing road is displayed as the vehicle reachable range 2600 or its outline 2601.
  • the map information is divided into a plurality of areas, and it is searched whether or not each mobile area can reach each area, and each mobile area can reach or reach each area. Reachable or unreachable identification information for identifying the impossibility is given. And the navigation apparatus 300 produces
  • the navigation device 300 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs an expansion process of cloning. For this reason, the navigation apparatus 300 can remove the missing point within the reachable range of the moving body.
  • the navigation device 300 converts the plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs an opening reduction process. For this reason, the navigation apparatus 300 can remove the isolated area
  • the navigation device 300 can remove a missing region or an isolated region of the reachable range of the moving body, and therefore, the travelable range of the moving body can be displayed on a two-dimensional smooth surface in an easy-to-read manner. Can do. Further, the navigation device 300 extracts the outline of mesh data generated by dividing the map information into a plurality of regions. For this reason, the navigation apparatus 300 can display the outline of the reachable range of a moving body smoothly.
  • the navigation device 300 assigns an erasure prohibition flag to a specific node, so that even if the opening process and the cloning process (expansion process and reduction process) are performed, the thin line segment (within the reachable distance range) ( Link) can be prevented from being erased, and can be displayed as a travelable range of the moving body.
  • the navigation device 300 narrows down the road for searching for the reachable point of the moving object, and searches for the reachable point of the moving object. For this reason, the navigation apparatus 300 can reduce the processing amount at the time of searching the reachable point of a mobile body. Even if the number of reachable reachable points is reduced by narrowing down the road to search for the reachable points of the mobile object, the expansion process of cloning is performed as described above, so that the reachable range of the mobile object is within the reachable range. The resulting defect point can be removed. Therefore, the navigation apparatus 300 can reduce the processing amount for detecting the reachable range of the moving body. In addition, the navigation device 300 can display the travelable range of the mobile object in a two-dimensional smooth manner in an easy-to-see manner.
  • the map information 120 uses information to which a fixed flag is assigned in advance for a node included in a specific pixel to be excluded from an erasure target of at least one of the above-described opening process and cloning process.
  • the fixed flag assignment unit 103a described in the first embodiment can be omitted.
  • the image processing apparatus 100 can omit the determination of whether or not to assign the fixed flag when searching for a node. Can be reduced.
  • a specific pixel of mesh data to which an erasure prohibition flag has been assigned in advance is used for a specific pixel that is excluded from an erasure target of at least one of the above-described opening process and cloning process.
  • the fixed flag assignment unit 103a and the erasure prohibition flag 104a described in the first embodiment can be made unnecessary.
  • the image processing 100 side can omit determination as to whether or not to assign a fixed flag when searching for a node, based on the fixed flag. The provision of the erasure prohibition flag can be omitted, and the processing load corresponding to that can be reduced.
  • the image processing method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Abstract

An image-processing device (100) provided with: a reachable-point search unit (101, 102, 103) for searching for a plurality of reachable points that a moving vehicle can reach from a current location on the basis of the current location of the moving vehicle, information pertaining to the energy amount retained by the moving vehicle, and an estimated energy-consumption amount that the moving vehicle consumes when traveling a predetermined interval; a fixed-flag assignment unit (103a) for assigning a fixed flag to a specific node when searching using the reachable-point search unit; an unerasable-flag assignment unit (104a) for assigning an unerasable flag related to the fixed flag to a region including the specific node to which the fixed flag was assigned; an assignment unit (105) for performing image processing including expansion processing and/or contraction processing, on the basis of identifying information and the unerasable flag, after identifying information has been assigned to each of a plurality of regions on the basis of the plurality of reachable points; and a display controller (106) for causing the reachable range of the moving vehicle to be displayed on a display unit (110) on the basis of the identifying information.

Description

画像処理装置、画像処理方法および画像処理プログラムImage processing apparatus, image processing method, and image processing program
 この発明は、移動体の残存エネルギー量に基づいて移動体の到達可能範囲を生成する画像処理装置、画像処理方法、画像処理プログラムに関する。ただし、この発明の利用は、画像処理装置、画像処理方法および画像処理プログラムに限らない。 The present invention relates to an image processing apparatus, an image processing method, and an image processing program that generate a reachable range of a moving object based on the remaining energy amount of the moving object. However, the use of the present invention is not limited to the image processing apparatus, the image processing method, and the image processing program.
 従来、移動体の現在地点に基づいて、移動体の到達可能範囲を生成する処理装置が知られている(たとえば、下記特許文献1参照。)。下記特許文献1では、移動体の現在地点を中心に地図上の全方位を放射状に分割し、分割領域ごとに移動体の現在地点から最も遠い到達可能な交差点を地図情報のノードとして取得する。そして、取得した複数のノードを結んで得られるベジュ曲線を移動体の到達可能範囲として表示している。 Conventionally, a processing device that generates a reachable range of a mobile object based on the current location of the mobile object is known (for example, see Patent Document 1 below). In the following Patent Document 1, all directions on the map are radially divided around the current location of the moving object, and the reachable intersection that is farthest from the current location of the moving object is obtained as a map information node for each divided region. A beige curve obtained by connecting a plurality of acquired nodes is displayed as the reachable range of the moving object.
 また、移動体のバッテリー残容量および電力消費量に基づいて、各道路における移動体の現在地点からの到達可能範囲を生成する処理装置が知られている(たとえば、下記特許文献2参照。)。下記特許文献2では、移動体の現在地点に接続する複数の道路において移動体の電力消費量を算出し、移動体のバッテリー残容量および電力消費量に基づいて各道路における移動体の走行可能距離を算出する。そして、移動体の現在地点と、当該現在地点から走行可能距離だけ離れた移動体の複数の到達可能地点とを地図情報のノードとして取得し、複数のノードを結んで得られる線分の集合体を移動体の到達可能範囲として表示している。 Also, a processing device that generates a reachable range from the current location of the moving body on each road based on the remaining battery capacity and power consumption of the moving body is known (for example, see Patent Document 2 below). In the following Patent Document 2, the power consumption of the mobile body is calculated on a plurality of roads connected to the current location of the mobile body, and the travelable distance of the mobile body on each road based on the remaining battery capacity and the power consumption of the mobile body Is calculated. Then, a set of line segments obtained by acquiring the current location of the mobile body and a plurality of reachable locations of the mobile body that are separated from the current location by a travelable distance as nodes of map information and connecting the plurality of nodes Is displayed as the reachable range of the moving object.
 また、膨張・収縮処理は、画像処理技術においてノイズを除去するために利用される手法として知られている。(たとえば、下記特許文献3参照。)。下記特許文献3では、離散的に表示されているグループ化されたランドマークを、ひとまとまりの集合として描画している。 Further, the expansion / contraction process is known as a technique used for removing noise in image processing technology. (For example, see Patent Document 3 below.) In Patent Document 3 below, grouped landmarks that are displayed discretely are drawn as a set of groups.
特開平11-016094号公報Japanese Patent Laid-Open No. 11-016094 特開平07-085397号公報Japanese Patent Laid-Open No. 07-085397 特開2007-322370号公報JP 2007-322370 A
 しかしながら、上述した特許文献1の技術では、移動体の現在地点を中心に各方位における移動体から最も遠い到達地点のみを取得しているので、移動体の到達可能範囲の輪郭しか得られない。このため、移動体の現在地点と移動体から最も遠い到達地点との間に、海や湖など移動体が走行することのできない領域が含まれていたとしても、この移動体が走行することのできない領域を除外して移動体の到達可能範囲を取得することができないという問題点が一例として挙げられる。 However, in the technique of Patent Document 1 described above, since only the arrival point farthest from the moving body in each azimuth is obtained with the current position of the moving body as the center, only the outline of the reachable range of the moving body can be obtained. For this reason, even if there is an area where the mobile body cannot travel, such as the sea or lake, between the current location of the mobile body and the destination farthest from the mobile body, As an example, a problem that the reachable range of the moving body cannot be obtained by excluding the area that cannot be obtained.
 また、上述した特許文献2の技術では、移動体の到達可能範囲として道路のみを取得しているので、道路以外の範囲を移動体の到達可能範囲に含めることができない。また、移動体の到達可能範囲が移動体の走行可能な道路に沿った線分の集合体で表示されるので、到達可能範囲の輪郭を取得することができない。このため、移動体の到達可能範囲を見やすく、かつ漏れなく表示することが困難であるという問題点が一例として挙げられる。 Further, in the technique of Patent Document 2 described above, since only the road is acquired as the reachable range of the moving object, a range other than the road cannot be included in the reachable range of the moving object. In addition, since the reachable range of the mobile object is displayed as an assembly of line segments along the road on which the mobile object can travel, the outline of the reachable range cannot be acquired. For this reason, the problem that it is easy to see the reachable range of the moving body and it is difficult to display without omission is an example.
 さらに、上述した特許文献1~3の技術では、複数のノードを接続するアメーバ表示により到達可能領域を表示するため、たとえば、橋やトンネルなどの連続する細い線分の領域については、到達可能領域であったとしても、ノード間接続されず、表示されないことがあるという問題点が一例として挙げられる。特に、画像をなめらかにするために、膨張処理および縮小処理をおこなうことにより、到達可能距離範囲内にある細い線分(リンク)が消去されることがあるという問題点も挙げられる。 Furthermore, in the techniques of Patent Documents 1 to 3 described above, the reachable area is displayed by an amoeba display that connects a plurality of nodes. For example, for a continuous thin line segment area such as a bridge or a tunnel, the reachable area is displayed. Even if it is, the problem that it is not connected between nodes and may not be displayed is mentioned as an example. In particular, there is a problem in that thin line segments (links) within the reachable distance range may be erased by performing expansion processing and reduction processing to smooth the image.
 上述した課題を解決し、目的を達成するため、請求項1の発明にかかる画像処理装置は、移動体の到達可能範囲に関する情報を処理する画像処理装置であって、前記移動体の現在地点、前記移動体が保有するエネルギー量を示す初期保有エネルギー量に関する情報および前記移動体が所定区間を走行する際に消費するエネルギー量を示す推定エネルギー消費量に基づいて、前記移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する到達可能地点探索手段と、前記到達可能地点探索手段による探索時に、固有情報である固定フラグを特定のノードに付与する固定フラグ付与手段と、地図情報に関連する複数の領域のうち、前記固定フラグが付与された当該特定のノードを含む一の領域に前記固定フラグに関連する消去禁止フラグを付与する消去禁止フラグ付与手段と、前記到達可能地点探索手段によって探索された複数の到達可能地点に基づいて、前記複数の領域のそれぞれに前記移動体が到達可能であるか否かを識別する識別情報を付与した後、前記識別情報および前記消去禁止フラグに基づき、膨張処理および縮小処理の少なくとも一方を含む画像処理を実行する付与手段と、前記複数の領域のそれぞれに付与された識別情報に基づいて、前記移動体の到達可能範囲を表示手段に表示させる表示制御手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, an image processing apparatus according to the invention of claim 1 is an image processing apparatus that processes information related to a reachable range of a mobile object, wherein the current location of the mobile object, The mobile body arrives from the current point based on information on the initial stored energy amount indicating the amount of energy held by the mobile body and an estimated energy consumption amount indicating the amount of energy consumed when the mobile body travels in a predetermined section. A reachable point searching means for searching for a plurality of reachable points which are possible points, a fixed flag giving means for giving a fixed flag as specific information to a specific node at the time of searching by the reachable point searching means, and a map Of the plurality of areas related to information, the erasure prohibition related to the fixed flag in one area including the specific node to which the fixed flag is assigned. Based on a plurality of reachable points searched by the reachable point searching means and an erasure prohibition flag giving means for giving a flag, it is identified whether or not the mobile body can reach each of the plurality of areas. And assigning means for executing image processing including at least one of expansion processing and reduction processing based on the identification information and the erasure prohibition flag, and identification information assigned to each of the plurality of regions And a display control means for displaying the reachable range of the moving body on a display means.
 また、請求項5の発明にかかる画像処理方法は、移動体の到達可能範囲に関する情報を処理する画像処理装置における画像処理方法であって、前記移動体の現在地点、前記移動体が保有するエネルギー量を示す初期保有エネルギー量に関する情報および前記移動体が所定区間を走行する際に消費するエネルギー量を示す推定エネルギー消費量に基づいて、前記移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する到達可能地点探索工程と、前記到達可能地点探索工程による探索時に、固有情報である固定フラグを特定のノードに付与する固定フラグ付与工程と、地図情報に関連する複数の領域のうち、前記固定フラグが付与された当該特定のノードを含む一の領域に前記固定フラグに関連する消去禁止フラグを付与する消去禁止フラグ付与工程と、前記到達可能地点探索工程によって探索された複数の到達可能地点に基づいて、前記複数の領域のそれぞれに前記移動体が到達可能であるか否かを識別する識別情報を付与した後、前記識別情報および前記消去禁止フラグに基づき、膨張処理および縮小処理の少なくとも一方を含む画像処理を実行する付与工程と、前記複数の領域のそれぞれに付与された識別情報に基づいて、前記移動体の到達可能範囲を表示手段に表示させる表示制御工程と、を含むことを特徴とする。 An image processing method according to a fifth aspect of the present invention is an image processing method in an image processing apparatus for processing information relating to the reachable range of a mobile object, wherein the current position of the mobile object and the energy held by the mobile object Based on information on the initial stored energy amount indicating the amount and estimated energy consumption indicating the amount of energy consumed when the mobile body travels in a predetermined section, a plurality of points where the mobile body is reachable from the current location A reachable point searching step for searching for a reachable point, a fixed flag giving step for giving a fixed flag as specific information to a specific node at the time of searching by the reachable point searching step, and a plurality of areas related to map information Among them, an erasure prohibition flag related to the fixed flag is assigned to one area including the specific node to which the fixed flag is assigned. Identification information for identifying whether or not the mobile body can reach each of the plurality of areas based on a plurality of reachable points searched by the erasure prohibition flag assigning step and the reachable point searching step. After granting, based on the identification information and the erasure prohibition flag, based on the granting step of performing image processing including at least one of expansion processing and reduction processing, and the identification information given to each of the plurality of regions, And a display control step of displaying the reachable range of the moving body on a display means.
 また、請求項6に記載の画像処理プログラムは、請求項5に記載の画像処理方法をコンピュータに実行させることを特徴とする。 The image processing program according to claim 6 causes a computer to execute the image processing method according to claim 5.
図1は、実施の形態1にかかる画像処理装置の機能的構成の一例を示すブロック図である。FIG. 1 is a block diagram of an example of a functional configuration of the image processing apparatus according to the first embodiment. 図2は、画像処理装置による画像処理の手順の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of an image processing procedure performed by the image processing apparatus. 図3は、ナビゲーション装置のハードウェア構成の一例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a hardware configuration of the navigation device. 図4-1は、ナビゲーション装置による到達可能地点探索の一例について模式的に示す説明図である。FIG. 4A is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device. 図4-2は、ナビゲーション装置による到達可能地点探索の一例について模式的に示す説明図である。FIG. 4B is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device. 図4-3は、ナビゲーション装置による到達可能地点探索の一例について模式的に示す説明図である。FIG. 4-3 is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device. 図4-4は、ナビゲーション装置による到達可能地点探索の一例について模式的に示す説明図である。FIG. 4-4 is an explanatory diagram schematically showing an example of reachable point search by the navigation device. 図5-1は、ナビゲーション装置による到達可能地点探索の一例について示す説明図である。FIG. 5A is an explanatory diagram of an example of reachable point search by the navigation device. 図5-2は、ナビゲーション装置による到達可能地点探索の別の一例について示す説明図である。FIG. 5B is an explanatory diagram of another example of the reachable point search by the navigation device. 図6は、ナビゲーション装置による到達可能地点を経度-緯度で示す一例の説明図である。FIG. 6 is an explanatory diagram of an example showing the reachable point by the navigation device in longitude-latitude. 図7は、ナビゲーション装置による到達可能地点をメッシュデータで示す一例の説明図である。FIG. 7 is an explanatory diagram of an example showing the reachable points by the navigation device as mesh data. 図8は、ナビゲーション装置によるクローニング処理の一例を示す説明図である。FIG. 8 is an explanatory diagram illustrating an example of cloning processing by the navigation device. 図9は、ナビゲーション装置によるクローニング処理の一例を模式的に示す説明図である。FIG. 9 is an explanatory diagram schematically showing an example of cloning processing by the navigation device. 図10は、ナビゲーション装置によるオープニング処理の一例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of the opening process by the navigation device. 図11-1は、消去禁止フラグによるノード消去禁止の例を示す図である(その1)。FIG. 11A is a diagram illustrating an example of node erasure inhibition by the erasure inhibition flag (part 1). 図11-2は、消去禁止フラグによるノード消去禁止の例を示す図である(その2)。FIG. 11B is a diagram illustrating an example of node erasure inhibition by the erasure inhibition flag (part 2). 図12は、ナビゲーション装置による車両の到達可能範囲抽出の一例を模式的に示す説明図である。FIG. 12 is an explanatory diagram schematically showing an example of vehicle reachable range extraction by the navigation device. 図13は、ナビゲーション装置による車両の到達可能範囲抽出後のメッシュデータの一例を模式的に示す説明図である。FIG. 13 is an explanatory diagram schematically showing an example of mesh data after the reachable range of the vehicle is extracted by the navigation device. 図14は、ナビゲーション装置による画像処理の手順の一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of an image processing procedure performed by the navigation device. 図15は、ナビゲーション装置による推定消費電力量算出処理の手順の一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of a procedure of estimated power consumption calculation processing by the navigation device. 図16-1は、ナビゲーション装置による到達可能地点探索処理の手順の一例を示すフローチャートである(その1)。FIG. 16A is a flowchart of an example of a procedure of reachable point search processing by the navigation device (part 1). 図16-2は、ナビゲーション装置による到達可能地点探索処理の手順の一例を示すフローチャートである(その2)。FIG. 16-2 is a flowchart of an example of a procedure of reachable point search processing by the navigation device (part 2). 図17は、ナビゲーション装置によるリンク候補判断処理の手順の一例を示すフローチャートである。FIG. 17 is a flowchart illustrating an example of a procedure of link candidate determination processing by the navigation device. 図18は、固定フラグの付与と消去禁止フラグの付与にかかる処理の一例を示すフローチャートである。FIG. 18 is a flowchart illustrating an example of processing relating to the assignment of a fixed flag and the assignment of an erasure prohibition flag. 図19は、ナビゲーション装置による識別情報付与処理の手順の一例を示すフローチャートである。FIG. 19 is a flowchart illustrating an example of a procedure of identification information addition processing by the navigation device. 図20は、消去禁止フラグを用いたオープニング処理およびクローニング処理の一例を示すフローチャートである。FIG. 20 is a flowchart illustrating an example of an opening process and a cloning process using an erasure prohibition flag. 図21-1は、ナビゲーション装置による到達可能範囲輪郭抽出処理の手順の一例を示すフローチャートである(その1)。FIG. 21A is a flowchart of an example of a reachable range contour extraction process performed by the navigation device (part 1). 図21-2は、ナビゲーション装置による到達可能範囲輪郭抽出処理の手順の一例を示すフローチャートである(その2)。FIG. 21B is a flowchart of an example of the reachable range contour extraction process performed by the navigation device (part 2). 図22は、勾配がある道路を走行する車両にかかる加速度の一例を模式的に示した説明図である。FIG. 22 is an explanatory diagram schematically illustrating an example of acceleration applied to a vehicle traveling on a road having a gradient. 図23は、ナビゲーション装置による到達可能地点探索処理後の表示例の一例について示す説明図である。FIG. 23 is an explanatory diagram illustrating an example of a display example after the reachable point search process by the navigation device. 図24-1は、ナビゲーション装置による識別情報付与処理後の表示例の一例について示す説明図である。FIG. 24A is an explanatory diagram of an example of a display example after the identification information providing process by the navigation device. 図24-2は、ナビゲーション装置による第1識別情報変更処理後の表示例の一例について示す説明図である。FIG. 24-2 is an explanatory diagram illustrating an example of a display example after the first identification information changing process by the navigation device. 図25は、ナビゲーション装置によるクローニング処理(膨張)後の表示例の一例について示す説明図である。FIG. 25 is an explanatory diagram illustrating an example of a display example after the cloning process (expansion) by the navigation device. 図26は、ナビゲーション装置によるクローニング処理(縮小)後の表示例の一例について示す説明図である。FIG. 26 is an explanatory diagram illustrating an example of a display example after the cloning process (reduction) by the navigation device.
 以下に添付図面を参照して、この発明にかかる画像処理装置、画像処理方法および画像処理プログラムの好適な実施の形態を詳細に説明する。 Hereinafter, preferred embodiments of an image processing apparatus, an image processing method, and an image processing program according to the present invention will be described in detail with reference to the accompanying drawings.
(実施の形態1)
 図1は、実施の形態1にかかる画像処理装置の機能的構成の一例を示すブロック図である。実施の形態1にかかる画像処理装置100は、移動体の残存エネルギー量に基づいて探索された移動体の到達可能地点に基づいて移動体の到達可能範囲を生成し表示部110に表示させる。
(Embodiment 1)
FIG. 1 is a block diagram of an example of a functional configuration of the image processing apparatus according to the first embodiment. The image processing apparatus 100 according to the first embodiment generates a reachable range of the moving object based on the reachable point of the moving object searched based on the remaining energy amount of the moving object and causes the display unit 110 to display the reachable range.
 そして、実施の形態1の画像処理装置100では、後述するオープニング処理、あるいはクローニング処理の実行前に、あらかじめ特定のノードに付与された固定フラグに基づき、メッシュデータの特定の画素に消去禁止フラグを付与する。詳細は後述するが、オープニング処理、あるいはクローニング処理の実行時には、移動体の到達可能範囲の孤立した画素が除去されるようになっている。このため、これらオープニング処理あるいはクローニング処理により、単ノードや線分のノードが孤立点と見なされ、これらのノードを含む特定の画素がオープニング処理またはクローニング処理により消去されてしまうことがある。 Then, in the image processing apparatus 100 according to the first embodiment, an erasure prohibition flag is set on a specific pixel of mesh data based on a fixed flag previously assigned to a specific node before the opening process or the cloning process described later. Give. Although details will be described later, isolated pixels in the reachable range of the moving object are removed when the opening process or the cloning process is executed. For this reason, a single node or a line segment node is regarded as an isolated point by the opening process or the cloning process, and a specific pixel including these nodes may be erased by the opening process or the cloning process.
 特定のノードとは、移動体の到達可能範囲の含まれるノードのうち、トンネルや橋、山の一本道などの出入口である。これらのノードにあらかじめ固定フラグを付与しておくことにより、オープニング処理およびクローニング処理の少なくとも一方の処理を実行しても特定のノードを接続したリンクで構成されるトンネルや橋、山の一本道などを含む特定の画素の消去を防ぐことができるようになる。 Specified nodes are entrances and exits of tunnels, bridges, and mountain roads among the nodes that are within the reachable range of mobile objects. By assigning a fixed flag to these nodes in advance, tunnels and bridges that consist of links that connect a specific node even if the opening process and / or the cloning process are executed, a mountain road, etc. It becomes possible to prevent erasing of a specific pixel including.
 この画像処理装置100は、取得部101、算出部102、探索部103、分割部104、付与部105、表示制御部106によって構成される。また、到達可能地点探索部は、取得部101、算出部102、探索部103によって構成されている。 The image processing apparatus 100 includes an acquisition unit 101, a calculation unit 102, a search unit 103, a division unit 104, a grant unit 105, and a display control unit 106. The reachable point search unit includes an acquisition unit 101, a calculation unit 102, and a search unit 103.
 ここで、エネルギーとは、たとえば、EV(Electric Vehicle)車などの場合、電気などに基づくエネルギーであり、HV(Hybrid Vehicle)車、PHV(Plug-in Hybrid Vehicle)車などの場合は電気などに基づくエネルギーおよび、たとえばガソリンや軽油、ガスなどに基づくエネルギーである。また、エネルギーとは、たとえば燃料電池車の場合、電気などに基づくエネルギーおよび、たとえば水素や水素原料になる化石燃料などである(以下、EV車、HV車、PHV車、燃料電池車は単に「EV車」という)。また、エネルギーとは、たとえば、ガソリン車、ディーゼル車など(以下、単に「ガソリン車」という)の場合、たとえば、ガソリンや軽油、ガスなどに基づくエネルギーである。たとえば残存エネルギーとは、たとえば、移動体の燃料タンクやバッテリー内、高圧タンクなどに残っているエネルギーであり、後の移動体の走行に用いることのできるエネルギーである。 Here, the energy is energy based on electricity in the case of an EV (Electric Vehicle) vehicle, for example, and in the case of HV (Hybrid Vehicle) vehicle, PHV (Plug-in Hybrid Vehicle) vehicle, etc. Energy based on, for example, gasoline, light oil, gas and the like. In addition, in the case of a fuel cell vehicle, for example, energy is energy based on electricity and the like, for example, hydrogen or a fossil fuel that becomes a hydrogen raw material (hereinafter, EV vehicle, HV vehicle, PHV vehicle, and fuel cell vehicle are simply “ EV car "). In addition, the energy is energy based on, for example, gasoline, light oil, gas, etc., for example, in the case of a gasoline vehicle, a diesel vehicle or the like (hereinafter simply referred to as “gasoline vehicle”). For example, the residual energy is, for example, energy remaining in a fuel tank, a battery, a high-pressure tank, or the like of the moving body, and is energy that can be used for the subsequent traveling of the moving body.
 取得部101は、画像処理装置100を搭載した移動体の現在地点に関する情報や、移動体の現在地点において当該移動体が保有するエネルギー量である初期保有エネルギー量に関する情報を取得する。具体的には、取得部101は、たとえば、GPS衛星から受信したGPS情報などを用いて、自装置の現在位置を算出することによって現在地点に関する情報(位置情報)を取得する。 The acquisition unit 101 acquires information on the current location of the mobile object on which the image processing apparatus 100 is mounted and information on the initial stored energy amount that is the amount of energy held by the mobile object at the current location of the mobile object. Specifically, the acquisition unit 101 acquires information (position information) about the current location by calculating the current position of the device using, for example, GPS information received from a GPS satellite.
 また、取得部101は、たとえば、CAN(Controller Area Network)など通信プロトコルによって動作する車内通信網を介して、エレクトロニックコントロールユニット(ECU:Electronic Control Unit)によって管理されている移動体の残存エネルギー量を、初期保有エネルギー量として取得する。 In addition, the acquisition unit 101 determines the remaining energy amount of the moving body managed by an electronic control unit (ECU: Electronic Control Unit) via an in-vehicle communication network that operates according to a communication protocol such as CAN (Controller Area Network). , Get the initial amount of energy.
 取得部101は、移動体の速度に関する情報や、渋滞情報、移動体情報を取得してもよい。移動体の速度に関する情報とは、移動体の速度、加速度である。また、取得部101は、たとえば、外部のサーバ等の記憶部に記憶された地図情報120から道路に関する情報を取得してもよいし、傾斜センサなどから道路勾配などを取得してもよい。道路に関する情報とは、たとえば、道路種別や、道路勾配、路面状況などにより移動体に生じる走行抵抗である。 The acquisition unit 101 may acquire information on the speed of the moving body, traffic jam information, and moving body information. The information regarding the speed of the moving body is the speed and acceleration of the moving body. Moreover, the acquisition part 101 may acquire the information regarding a road from the map information 120 memorize | stored in memory | storage parts, such as an external server, and may acquire a road gradient etc. from an inclination sensor etc., for example. The information on the road is, for example, a running resistance generated in the moving body due to the road type, road gradient, road surface condition, and the like.
 実施の形態1では、取得部101が取得する地図情報120には、上述した固定フラグが付与されていないものを用いるとする。 In Embodiment 1, it is assumed that the map information 120 acquired by the acquisition unit 101 is not provided with the above-described fixed flag.
 算出部102は、移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する。所定区間とは、たとえば、道路上の一の所定地点(以下、「ノード」とする)と当該一のノードに隣り合う他のノードとを結ぶ区間(以下、「リンク」とする)である。ノードとは、たとえば、交差点やスタンドであってもよいし、所定の距離で区切られたリンク間の接続地点であってもよい。ノードおよびリンクは、記憶部に記憶された地図情報を構成する。地図情報は、たとえば、交差点(点)、道路(線や曲線)、領域(面)やこれらを表示する色などを数値化したベクタデータで構成される。 The calculation unit 102 calculates an estimated energy consumption that is energy consumed when the moving body travels in a predetermined section. The predetermined section is, for example, a section (hereinafter referred to as “link”) connecting one predetermined point on the road (hereinafter referred to as “node”) and another node adjacent to the one node. The node may be, for example, an intersection or a stand, or a connection point between links separated by a predetermined distance. The nodes and links constitute map information stored in the storage unit. The map information includes, for example, vector data in which intersections (points), roads (lines and curves), regions (surfaces), colors for displaying these, and the like are digitized.
 具体的には、算出部102は、第一情報と、第二情報と、第三情報と、からなる消費エネルギー推定式に基づいて、所定区間における推定エネルギー消費量を推定する。より具体的には、算出部102は、移動体の速度に関する情報や移動体情報に基づいて、所定区間における推定エネルギー消費量を推定する。移動体情報とは、移動体の重量(乗車人数や積載荷物による重量も含む)、回転体の重量など、移動体走行時に消費または回収されるエネルギー量を変化させる要因となる情報である。なお、道路勾配が明らかな場合、算出部102は、さらに第四情報を加えた消費エネルギー推定式に基づいて、所定区間における推定エネルギー消費量を推定してもよい。 Specifically, the calculation unit 102 estimates an estimated energy consumption amount in a predetermined section based on a consumption energy estimation formula including first information, second information, and third information. More specifically, the calculation unit 102 estimates an estimated energy consumption amount in a predetermined section based on information on the speed of the moving body and the moving body information. The moving body information is information that causes a change in the amount of energy consumed or recovered during traveling of the moving body, such as the weight of the moving body (including the number of passengers and the weight of the loaded luggage) and the weight of the rotating body. When the road gradient is clear, the calculation unit 102 may estimate the estimated energy consumption amount in the predetermined section based on the consumption energy estimation formula further including the fourth information.
 消費エネルギー推定式とは、所定区間における移動体のエネルギー消費量を推定する推定式である。具体的には、消費エネルギー推定式は、エネルギー消費量を増減させる異なる要因である第一情報、第二情報および第三情報からなる多項式である。また、道路勾配が明らかな場合、消費エネルギー推定式には、さらに第四情報が加えられる。消費エネルギー推定式についての詳細な説明は後述する。 The energy consumption estimation formula is an estimation formula for estimating the energy consumption of the moving body in a predetermined section. Specifically, the energy consumption estimation formula is a polynomial composed of first information, second information, and third information, which are different factors that increase or decrease energy consumption. Further, when the road gradient is clear, fourth information is further added to the energy consumption estimation formula. Detailed description of the energy consumption estimation formula will be described later.
 第一情報は、移動体に備えられた装備品により消費されるエネルギーに関する情報である。この第一情報は、移動体の走行に関係しない要因で消費されるエネルギー消費量であり、移動体に備えられたエアコンやオーディオなどによるエネルギー消費量である。第一情報は、EV車の場合、ほぼゼロとしてもよい。 The first information is information related to energy consumed by the equipment provided on the moving object. This first information is the amount of energy consumed due to factors not related to the traveling of the moving body, and is the amount of energy consumed by the air conditioner, audio, etc. provided in the moving body. The first information may be substantially zero in the case of an EV vehicle.
 第二情報は、移動体の加減速時に消費および回収されるエネルギーに関する情報である。移動体の加減速時とは、移動体の速度が時間的に変化している走行状態である。具体的には、移動体の加減速時とは、所定時間内において、移動体の速度が変化する走行状態である。所定時間とは、一定間隔の時間の区切りであり、たとえば、単位時間当たりなどである。回収されるエネルギーとは、EV車の場合、たとえば、移動体の走行時にバッテリーに充電される電力である。また、回収されるエネルギーとは、ガソリン車の場合、たとえば、消費される燃料を低減(燃料カット)し節約することのできる燃料である。 The second information is information related to energy consumed and recovered during acceleration / deceleration of the moving body. The time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes with time. Specifically, the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes within a predetermined time. The predetermined time is a time interval at regular intervals, for example, per unit time. In the case of an EV vehicle, the recovered energy is, for example, electric power charged in a battery when the mobile body is traveling. In the case of a gasoline vehicle, the recovered energy is, for example, fuel that can be saved by reducing (fuel cut) the consumed fuel.
 第三情報は、移動体の走行時に生じる抵抗により消費されるエネルギーに関する情報である。移動体の走行時とは、所定時間内において、移動体の速度が一定、加速もしくは減速している走行状態である。移動体の走行時に生じる抵抗とは、移動体の走行時に移動体の走行状態を変化させる要因である。具体的には、移動体の走行時に生じる抵抗とは、気象状況、道路状況、車両状況などにより移動体に生じる各種抵抗である。 The third information is information related to energy consumed by the resistance generated when the mobile object is traveling. The traveling time of the moving body is a traveling state where the speed of the moving body is constant, accelerated or decelerated within a predetermined time. The resistance generated when the mobile body travels is a factor that changes the travel state of the mobile body when the mobile body travels. Specifically, the resistance generated when the mobile body travels is various resistances generated in the mobile body due to weather conditions, road conditions, vehicle conditions, and the like.
 気象状況により移動体に生じる抵抗とは、たとえば、雨、風などの気象変化による空気抵抗である。道路状況により移動体に生じる抵抗とは、道路勾配、路面の舗装状態、路面上の水などによる路面抵抗である。車両状況により移動体に生じる抵抗とは、タイヤの空気圧、乗車人数、積載重量などにより移動体にかかる負荷抵抗である。 The resistance generated in the moving body due to the weather condition is, for example, air resistance due to weather changes such as rain and wind. The resistance generated in the moving body according to the road condition is road resistance due to road gradient, pavement state of road surface, water on the road surface, and the like. The resistance generated in the moving body depending on the vehicle condition is a load resistance applied to the moving body due to tire air pressure, number of passengers, loaded weight, and the like.
 具体的には、第三情報は、空気抵抗や路面抵抗、負荷抵抗を受けた状態で、移動体を一定速度、加速もしくは減速で走行させたときのエネルギー消費量である。より具体的には、第三情報は、たとえば、向かい風により移動体に生じる空気抵抗や、舗装されていない道路から受ける路面抵抗などを、移動体が一定速度、加速もしくは減速で走行するときに消費されるエネルギー消費量である。 Specifically, the third information is energy consumption when the moving body is driven at a constant speed, acceleration or deceleration while receiving air resistance, road resistance, and load resistance. More specifically, the third information is consumed when the moving body travels at a constant speed, acceleration or deceleration, for example, air resistance generated in the moving body due to the head wind or road surface resistance received from a road that is not paved. Energy consumption.
 第四情報は、移動体が位置する高度の変化により消費および回収されるエネルギーに関する情報である。移動体が位置する高度の変化とは、移動体の位置する高度が時間的に変化している状態である。具体的には、移動体が位置する高度の変化とは、所定時間内において、移動体が勾配のある道路を走行することにより高度が変化する走行状態である。 The fourth information is information related to energy consumed and recovered by a change in altitude where the moving object is located. The change in altitude at which the moving body is located is a state in which the altitude at which the moving body is located changes over time. Specifically, the change in altitude at which the moving body is located is a traveling state in which the altitude changes when the moving body travels on a sloped road within a predetermined time.
 また、第四情報は、所定区間内における道路勾配が明らかな場合に求めることができる付加的な情報であり、これによりエネルギー消費量の推定精度を向上することができる。なお、道路の傾斜が不明な場合、または計算を簡略化する場合、移動体が位置する高度の変化はないものとして、後述する消費エネルギー推定式における道路勾配θ=0としてエネルギー消費量を推定することができる。 Further, the fourth information is additional information that can be obtained when the road gradient in the predetermined section is clear, thereby improving the estimation accuracy of energy consumption. When the road slope is unknown or when the calculation is simplified, it is assumed that there is no change in the altitude at which the moving body is located, and the energy consumption is estimated with the road gradient θ = 0 in the energy consumption estimation formula described later. be able to.
 探索部103は、記憶部に記憶された地図情報、取得部101によって取得された移動体の現在地点および初期保有エネルギー量、ならびに算出部102によって算出された推定エネルギー消費量に基づいて、移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する。 The search unit 103 is based on the map information stored in the storage unit, the current location and initial stored energy amount of the mobile object acquired by the acquisition unit 101, and the estimated energy consumption calculated by the calculation unit 102. Search for a plurality of reachable points that can be reached from the current point.
 具体的には、探索部103は、移動体の現在地点から移動可能なすべての経路において、それぞれ、移動体の現在地点を始点とし、移動体からの経路上の所定地点どうしを結ぶ所定区間における推定エネルギー消費量の累計が最小となるように所定地点および所定区間を探索する。そして、探索部103は、移動体の現在地点から移動可能なすべての経路において、それぞれ、推定エネルギー消費量の累計が移動体の現時点での初期保有エネルギー量の範囲内にある所定地点を移動体の到達可能地点とする。 Specifically, in all routes that can be moved from the current location of the mobile object, the search unit 103 starts from the current location of the mobile object, and in a predetermined section connecting predetermined points on the route from the mobile object. A predetermined point and a predetermined section are searched so that the total of the estimated energy consumption is minimized. Then, the search unit 103 moves the mobile unit to a predetermined point where the total estimated energy consumption amount is within the range of the initial stored energy amount of the mobile unit in all routes that can move from the current point of the mobile unit. The reachable point of
 より具体的には、探索部103は、移動体の現在地点を始点として、移動体の現在地点から移動可能なすべてのリンク、これらのリンクにそれぞれ接続するノード、これらのノードから移動可能なすべてのリンクと、移動体の到達可能なすべてのノードおよびリンクを順に探索する。このとき、探索部103は、新たな一のリンクを探索するごとに、一のリンクが接続する経路の推定エネルギー消費量を累計し、推定エネルギー消費量の累計が最小となるように当該一のリンクに接続するノードおよびこのノードに接続する複数のリンクを探索する。 More specifically, the search unit 103 starts from the current location of the mobile object as a starting point, all links that can be moved from the current location of the mobile object, nodes that connect to these links, and all that can be moved from these nodes. , And all the nodes and links that can be reached by the moving object. At this time, each time the search unit 103 searches for a new link, the search unit 103 accumulates the estimated energy consumption of the route to which the one link is connected, and the accumulated energy consumption is minimized. Search for a node connected to the link and a plurality of links connected to this node.
 たとえば、探索部103は、当該一のリンクおよび他のリンクが同一のノードに接続されている場合、このノードに接続する複数のリンクのうち、移動体の現在地点から当該ノードまでの推定エネルギー消費量の累計の少ないリンクの推定エネルギー消費量を使って当該ノードの推定エネルギー消費量の累計を算出する。そして、探索部103は、探索されたノードおよびリンクで構成される複数の経路において、それぞれ、推定エネルギー消費量の累計が移動体の初期保有エネルギー量の範囲内にあるすべてのノードを移動体の到達可能地点として探索する。このように推定エネルギー消費量の少ないリンクの推定エネルギー消費量を使うことにより、当該ノードの推定エネルギー消費量の正しい累計を算出することができる。 For example, when the one link and the other link are connected to the same node, the search unit 103 estimates the estimated energy consumption from the current location of the mobile body to the node among the plurality of links connected to the node. The estimated energy consumption of the relevant node is calculated using the estimated energy consumption of the link with a small amount of accumulation. Then, in the plurality of paths configured by the searched nodes and links, the search unit 103 sets all the nodes whose accumulated energy consumption amount is within the range of the initial stored energy amount of the mobile object, respectively. Search as a reachable point. As described above, by using the estimated energy consumption of the link with the small estimated energy consumption, it is possible to calculate the correct total of the estimated energy consumption of the node.
 また、探索部103は、移動体の移動が禁止された所定区間を、移動体の到達可能地点を探索するための候補から除いて当該到達可能地点を探索してもよい。移動体の移動が禁止された所定区間とは、たとえば、一方通行の逆走となるリンク、時間規制や季節規制により通行禁止区間となるリンクである。時間規制とは、たとえば、通学路や行事などに設定されることにより、ある時間帯で通行が禁止されることである。季節規制とは、たとえば、大雨や大雪などにより通行が禁止されることである。 Further, the search unit 103 may search for a reachable point by excluding a predetermined section in which movement of the mobile object is prohibited from candidates for searching for a reachable point of the mobile object. The predetermined section in which the movement of the moving body is prohibited is, for example, a link that is one-way reverse running, or a link that is a passage-prohibited section due to time restrictions or seasonal restrictions. The time restriction is, for example, that traffic is prohibited in a certain time zone by being set as a school road or an event. The seasonal restriction is, for example, that traffic is prohibited due to heavy rain or heavy snow.
 探索部103は、複数の所定区間のうち、一の所定区間の次に選択する他の所定区間の重要度が当該一の所定区間の重要度よりも低い場合、他の所定区間を、移動体の到達可能地点を探索するための候補から除いて当該到達可能地点を探索してもよい。所定区間の重要度とは、たとえば、道路種別などである。道路種別とは、法定速度や、道路の勾配、道路幅、信号の有無などの道路状態の違いにより区別することのできる道路の種類である。具体的には、道路種別とは、一般国道、高速道路、一般道路、市街地などを通る細街路などである。細街路とは、たとえば、市街地内にある幅員4メートル未満の建築基準法に規定された道路である。 When the importance of another predetermined section selected next to one predetermined section among the plurality of predetermined sections is lower than the importance of the one predetermined section, the search unit 103 selects another predetermined section as a mobile object. The reachable point may be searched for by removing it from the candidates for searching for the reachable point. The importance of the predetermined section is, for example, a road type. The road type is a type of road that can be distinguished by differences in road conditions such as legal speed, road gradient, road width, and presence / absence of signals. Specifically, the road type is a narrow street that passes through a general national road, a highway, a general road, an urban area, or the like. A narrow street is, for example, a road defined in the Building Standard Law with a width of less than 4 meters in an urban area.
 さらに、探索部103は、一の橋または一のトンネルの入口および出口が移動体の到達可能地点となる場合、分割部104によって分割される地図情報の一の橋または一のトンネルを構成するすべての領域が移動体の到達可能範囲に含まれるように移動体の到達可能地点を探索するのが好ましい。具体的には、探索部103は、たとえば、一の橋または一のトンネルの入口が移動体の到達可能地点となる場合、一の橋または一のトンネルの入口から出口に向かって、一の橋または一のトンネル上に複数の到達可能地点が探索されるように当該到達可能地点を探索してもよい。一の橋または一のトンネルの入口とは、一の橋または一のトンネルの、移動体の現在地点に近い側の始点である。 Further, when the entrance and exit of one bridge or one tunnel are reachable points of the moving body, the search unit 103 moves all the areas constituting one bridge or one tunnel of the map information divided by the dividing unit 104. It is preferable to search for a reachable point of the moving body so as to be included in the reachable range of the body. Specifically, for example, when the entrance of one bridge or one tunnel is a reachable point of the mobile object, the search unit 103 is located on one bridge or one tunnel from the entrance of the one bridge or one tunnel toward the exit. You may search the said reachable point so that several reachable points may be searched. The entrance of one bridge or one tunnel is the starting point of one bridge or one tunnel on the side close to the current position of the moving object.
 そして、実施の形態1では、探索部103は、固定フラグ付与部103aを有する。この固定フラグ付与部103aは、地図情報120に固定フラグを付与する。すなわち、実施の形態1では、取得部101が取得した地図情報120には、固定フラグが付与されていないため、固定フラグ付与部103aにより、特定のノード(上記トンネルや橋、山の一本道等)に対し、固定フラグを付与する。これにより、後述するオープニング処理およびクローニング処理の少なくとも一方の実行時において特定のノードを含むメッシュデータの特定の画素の消去を防止できる。 And in Embodiment 1, the search part 103 has the fixed flag provision part 103a. The fixed flag assigning unit 103a assigns a fixed flag to the map information 120. That is, in Embodiment 1, since the fixed flag is not given to the map information 120 acquired by the acquisition unit 101, the fixed flag assignment unit 103a causes a specific node (the tunnel, the bridge, the mountain road, etc.). ) Is assigned a fixed flag. As a result, it is possible to prevent erasure of a specific pixel of mesh data including a specific node when at least one of an opening process and a cloning process described later is executed.
 固定フラグ付与部103aは、探索したノードが移動体の到達可能範囲に含まれる単ノードに対して、下記条件を判断することにより固定フラグを付与する。
1.探索した単ノードがあらかじめ定めた特定のノード(トンネルや橋の出入口、山の一本道などの両端)であるか
2.上記1.の単ノードを両端(出入口)に有する経路(リンク)は移動体が走行可能か
 固定フラグ付与部103aは、上記1.2.の条件を満足するとき、リンク両端のノード、あるいはリンク両端のノードを含むリンク全体の複数のノードに固定フラグを付与する。
The fixed flag assigning unit 103a assigns a fixed flag to the single node in which the searched node is included in the reachable range of the moving object by determining the following condition.
1. 1. Is the searched single node a predetermined node (both ends of tunnels, bridge entrances, mountain roads, etc.)? Above 1. Is the path (link) having a single node at both ends (entrance / exit) capable of traveling by the moving body? When the above condition is satisfied, a fixed flag is assigned to a node at both ends of the link or a plurality of nodes of the entire link including nodes at both ends of the link.
 分割部104は、地図情報を複数の領域に分割する。具体的には、分割部104は、探索部103によって探索された移動体の複数の到達可能地点のうち、移動体の現在地点から最も離れた到達可能地点に基づいて、地図情報を複数の矩形状の領域に分割し、たとえばm×m画素のメッシュデータに変換する。m×m画素のメッシュデータは、後述する付与部105によって識別情報が付与されたラスタデータ(画像データ)として扱われる。なお、m×m画素のそれぞれのmは同じ数値でも構わないし、異なる数値でも構わない。 The dividing unit 104 divides the map information into a plurality of areas. Specifically, the dividing unit 104 divides the map information into a plurality of rectangles based on a reachable point farthest from the current point of the mobile object among a plurality of reachable points of the mobile object searched by the search unit 103. It is divided into shape regions and converted into mesh data of m × m pixels, for example. The mesh data of m × m pixels is handled as raster data (image data) to which identification information is added by the adding unit 105 described later. In addition, each m of m × m pixels may be the same numerical value, or may be different numerical values.
 より具体的には、分割部104は、最大経度、最小経度、最大緯度、最小緯度を抽出し移動体の現在地点からの距離を算出する。そして、分割部104は、たとえば、移動体の現在地点から最も遠い到達可能地点と移動体の現在地点とをn等分したときの一の領域の大きさを、地図情報を複数の領域に分割したときの一の領域の大きさとし、地図情報をm×m画素のメッシュデータに分割する。このとき、メッシュデータの周辺のたとえば4画素分を空白にするために、n=(m/2)-4とする。 More specifically, the dividing unit 104 extracts the maximum longitude, the minimum longitude, the maximum latitude, and the minimum latitude, and calculates the distance from the current position of the moving object. Then, the dividing unit 104 divides the map information into a plurality of areas, for example, by dividing the size of one area when the reachable point farthest from the current position of the moving object and the current position of the moving object are equally divided into n. The map information is divided into mesh data of m × m pixels. At this time, n = (m / 2) −4 is set in order to make, for example, four pixels around the mesh data blank.
 また、実施の形態1では、分割部104は、消去禁止フラグ付与部104aを有する。この消去禁止フラグ付与部104aは、メッシュデータの各画素のうち、固定フラグが付与された特定のノードを含む特定の画素には、消去禁止フラグを付与する。この際、固定フラグ付与部103aにより、リンク両端のノードを含む画素にのみ固定フラグが付与されている場合には、このリンクを含む画素両端を含む一つのリンクに対応する画素全体に対し消去禁止フラグを付与する。 In the first embodiment, the dividing unit 104 includes an erasure prohibition flag assigning unit 104a. The erasure prohibition flag assigning unit 104a assigns an erasure prohibition flag to specific pixels including a specific node to which a fixed flag is assigned among the pixels of the mesh data. At this time, if the fixed flag is added only to the pixels including the nodes at both ends of the link by the fixed flag adding unit 103a, the entire pixel corresponding to one link including both ends of the pixel including the link is prohibited from being erased. Give a flag.
 付与部105は、探索部103によって探索された複数の到達可能地点に基づいて、分割部104によって分割された複数の領域にそれぞれ移動体が到達可能であるか否かを識別する識別情報を付与する。具体的には、付与部105は、分割部104によって分割された一の領域に移動体の到達可能地点が含まれる場合、その一の領域に移動体が到達可能であることを識別する到達可能の識別情報を付与する。その後、付与部105は、分割部104によって分割された一の領域に移動体の到達可能地点が含まれない場合、その一の領域に移動体が到達不可能であることを識別する到達不可能の識別情報を付与する。 The assigning unit 105 assigns identification information for identifying whether or not the mobile body can reach each of the plurality of areas divided by the dividing unit 104 based on the plurality of reachable points searched by the search unit 103. To do. Specifically, when the reachable point of the moving object is included in one area divided by the dividing unit 104, the granting unit 105 can reach the one area to identify that the moving object is reachable. The identification information is assigned. After that, when the reachable point of the moving object is not included in the one area divided by the dividing unit 104, the assigning unit 105 identifies that the moving object cannot reach the one area. The identification information is assigned.
 より具体的には、付与部105は、m×mに分割されたメッシュデータの各画素または各領域に、到達可能の識別情報「1」または到達不可能の識別情報「0」を付与することで、m行m列の2次元行列データのメッシュデータに変換する。分割部104および付与部105は、このように地図情報を分割してm行m列の2次元行列データのメッシュデータに変換し、2値化されたラスタデータとして扱う。 More specifically, the assigning unit 105 assigns reachable identification information “1” or unreachable identification information “0” to each pixel or each region of the mesh data divided into m × m. Thus, the data is converted into mesh data of two-dimensional matrix data of m rows and m columns. The dividing unit 104 and the assigning unit 105 divide the map information in this way, convert it into mesh data of 2D matrix data of m rows and m columns, and handle it as binarized raster data.
 付与部105は、分割部104によって分割された複数の領域に対して識別情報の変更処理をおこなう第1変更部151および第2変更部152を備える。具体的には、付与部105は、第1変更部151および第2変更部152によって、地図情報が分割されてなるメッシュデータを2値化されたラスタデータとして扱い、クローニング処理(膨張処理後に縮小処理をおこなう処理)をおこなう。また、付与部105は、第1変更部151および第2変更部152によって、オープニング処理(縮小処理後に膨張処理をおこなう処理)をおこなってもよい。 The assigning unit 105 includes a first changing unit 151 and a second changing unit 152 that perform identification information changing processing on a plurality of areas divided by the dividing unit 104. Specifically, the assigning unit 105 treats mesh data obtained by dividing the map information as binarized raster data by the first changing unit 151 and the second changing unit 152, and performs cloning processing (reduction after expansion processing). Process). Further, the assigning unit 105 may perform an opening process (a process of performing an expansion process after the reduction process) by the first changing unit 151 and the second changing unit 152.
 具体的には、第1変更部151は、識別情報が付与された一の領域に隣り合う他の領域に到達可能の識別情報が付与されている場合、当該一の領域の識別情報を到達可能の識別情報に変更する(膨張処理)。より具体的には、第1変更部151は、矩形状の一の領域の、左下、下、右下、右、右上、上、左上、左の8方向に隣り合う他の領域のうちのいずれかの領域に到達可能の識別情報である「1」が付与されている場合、当該一の領域の識別情報を「1」に変更する。 Specifically, the first changing unit 151 can reach the identification information of the one area when the identification information that can reach another area adjacent to the one area to which the identification information is given is given. The identification information is changed (expansion process). More specifically, the first changing unit 151 may be any one of the other regions adjacent to the lower left, lower, lower right, right, upper right, upper, upper left, and left of one rectangular region. If “1”, which is identification information that can reach that area, is assigned, the identification information of the one area is changed to “1”.
 第2変更部152は、第1変更部151による識別情報の変更後、識別情報が付与された一の領域に隣り合う他の領域に到達不可能の識別情報が付与されている場合、当該一の領域の識別情報を到達不可能の識別情報に変更する(縮小処理)。より具体的には、第2変更部152は、矩形状の一の領域の、左下、下、右下、右、右上、上、左上、左の8方向に隣り合う他の領域のうちのいずれかの領域に到達不可能の識別情報である「0」が付与されている場合、当該一の領域の識別情報を「0」に変更する。第1変更部151による膨張処理と、第2変更部152による縮小処理は、同じ回数ずつおこなう。 After the identification information is changed by the first changing unit 151, the second changing unit 152, when identification information that cannot reach another region adjacent to the one region to which the identification information is given is given. The identification information of the area is changed to unreachable identification information (reduction process). More specifically, the second changing unit 152 may be any one of the other areas adjacent to the lower left, lower, lower right, right, upper right, upper, upper left, and left of one rectangular area. If “0”, which is identification information that cannot be reached, is assigned to the area, the identification information of the one area is changed to “0”. The expansion process by the first change unit 151 and the reduction process by the second change unit 152 are performed the same number of times.
 そして、第1変更部151と、第2変更部152は、いずれも上記のクローニング処理およびオープニング処理をおこなう際、メッシュデータ上に消去禁止フラグが付与されている領域に対しては、これらオープニング処理およびクローニング処理時に収縮処理および膨張処理をおこなう対象としない。これに限らず、メッシュデータ上に消去禁止フラグが付与されている領域については、クローニング処理およびオープニング処理をおこなう際、識別情報の変更をおこなわないこととしてもよい。これにより、移動体の到達可能範囲に含まれる、特定のノードを含むリンクである、トンネルや橋、山の一本道などの細い線分がオープニング処理およびクローニング処理をおこなっても消去されることがなく、移動体の到達範囲として表示できるようになる。 Then, when both the first changing unit 151 and the second changing unit 152 perform the cloning process and the opening process, the opening process is performed for the region to which the erasure prohibition flag is added on the mesh data. Also, it is not a target for contraction and expansion during cloning. However, the present invention is not limited to this, and the identification information may not be changed when the cloning process and the opening process are performed on the region to which the deletion prohibition flag is added on the mesh data. As a result, thin line segments such as tunnels, bridges, and mountain roads that are links that include a specific node within the reachable range of the moving object may be deleted even if the opening process and cloning process are performed. And can be displayed as the reach of the moving object.
 このように、付与部105は、分割部104によって分割された複数の領域のうち、移動体が現在地点から到達可能な地点である到達可能地点を含む領域に、当該移動体が到達可能であることを識別する到達可能の識別情報を付与して当該移動体の到達可能範囲とする。その後、付与部105は、到達可能の識別情報を付与した領域に隣り合う領域にも到達可能の識別情報を付与し、移動体の到達可能範囲に欠損した領域が生じないように各領域の識別情報を変更する。 As described above, the granting unit 105 can reach the area including the reachable point, which is the point where the moving body can reach from the current point, among the plurality of areas divided by the dividing unit 104. Reachable identification information for identifying this is given to make the movable body reachable. After that, the assigning unit 105 assigns reachable identification information to an area adjacent to the area to which reachable identification information is assigned, and identifies each area so that a missing area does not occur in the reachable range of the moving object. Change information.
 表示制御部106は、付与部105によって識別情報が付与された領域の識別情報に基づいて、移動体の到達可能範囲を地図情報とともに表示部110に表示させる。具体的には、表示制御部106は、付与部105によって識別情報が付与された複数の画像データであるメッシュデータをベクタデータに変換し、記憶部に記憶された地図情報とともに表示部110に表示させる。 The display control unit 106 causes the display unit 110 to display the reachable range of the moving object together with the map information based on the identification information of the area to which the identification information is given by the granting unit 105. Specifically, the display control unit 106 converts mesh data, which is a plurality of image data to which identification information has been added by the adding unit 105, into vector data, and displays it on the display unit 110 together with map information stored in the storage unit. Let
 より具体的には、表示制御部106は、到達可能の識別情報が付与された一の領域と当該一の領域と隣り合う到達可能の識別情報が付与された他の領域との位置関係に基づいて移動体の到達可能範囲の輪郭を抽出し表示部110に表示させる。より具体的には、表示制御部106は、たとえば、フリーマンのチェインコードを用いて移動体の到達可能範囲の輪郭を抽出し、移動体の到達可能範囲を表示部110に表示させる。 More specifically, the display control unit 106 is based on the positional relationship between one area to which reachable identification information is assigned and another area to which reachable identification information adjacent to the one area is assigned. The contour of the reachable range of the moving object is extracted and displayed on the display unit 110. More specifically, the display control unit 106 extracts the outline of the reachable range of the moving object using, for example, a Freeman chain code, and causes the display unit 110 to display the reachable range of the moving object.
 また、表示制御部106は、到達可能の識別情報が付与された領域の経度緯度情報に基づいて移動体の到達可能範囲を抽出し、表示部110に表示させてもよい。具体的には、表示制御部106は、たとえば、m行m列の2次元行列データを1行ごとに1列目から到達可能の識別情報「1」を検索する。そして、表示制御部106は、2次元行列データの各行においてそれぞれ到達可能の識別情報「1」を含む連続する領域を検索し、最初に「1」を検出した領域の最小経度、最小緯度(領域の左上座標)と、最後に「1」を検出した領域の最大経度、最大緯度(領域の右下座標)とを結ぶ線分を対角線とする矩形領域を移動体の到達可能範囲として表示する。 Further, the display control unit 106 may extract the reachable range of the moving body based on the longitude / latitude information of the region to which the reachable identification information is given, and display the reachable range on the display unit 110. Specifically, for example, the display control unit 106 searches for identification information “1” that is reachable from the first column for each row of two-dimensional matrix data of m rows and m columns. Then, the display control unit 106 searches for continuous areas including the reachable identification information “1” in each row of the two-dimensional matrix data, and first detects the minimum longitude and minimum latitude of the area where “1” is detected (area A rectangular area having a line segment connecting the maximum longitude and maximum latitude (lower right coordinates of the area) of the area where “1” is finally detected as a diagonal line is displayed as the reachable range of the moving object.
 つぎに、画像処理装置100による画像処理について説明する。図2は、画像処理装置による画像処理の手順の一例を示すフローチャートである。図2のフローチャートにおいて、画像処理装置100は、まず、取得部101によって、移動体の現在地点に関する情報、および、移動体の現在地点において移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を取得する(ステップS201,S202)。このとき、画像処理装置100は、移動体情報も取得してもよい。 Next, image processing by the image processing apparatus 100 will be described. FIG. 2 is a flowchart illustrating an example of an image processing procedure performed by the image processing apparatus. In the flowchart of FIG. 2, the image processing apparatus 100 first uses the acquisition unit 101 to obtain information on the current location of the moving object and information on the initial amount of energy held by the moving object at the current location of the moving object. Are acquired (steps S201 and S202). At this time, the image processing apparatus 100 may also acquire moving body information.
 そして、画像処理装置100は、算出部102によって、移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する(ステップS203)。このとき、画像処理装置100は、移動体の経路上の所定地点どうしを結ぶ複数の所定区間における推定エネルギー消費量をそれぞれ算出する。つぎに、画像処理装置100は、探索部103によって、記憶部に記憶された地図情報と、ステップS202,S203において取得した初期保有エネルギー量および推定エネルギー消費量とに基づいて、移動体の複数の到達可能地点を探索する(ステップS204)。この際、固定フラグ付与部103aにより、特定のノードには固定フラグを付与する。 In the image processing apparatus 100, the calculation unit 102 calculates an estimated energy consumption that is energy consumed when the moving body travels in a predetermined section (step S203). At this time, the image processing apparatus 100 calculates estimated energy consumption amounts in a plurality of predetermined sections connecting predetermined points on the path of the moving body. Next, the image processing apparatus 100 uses the search unit 103 based on the map information stored in the storage unit and the initial stored energy amount and the estimated energy consumption amount acquired in steps S202 and S203. A reachable point is searched (step S204). At this time, a fixed flag is assigned to a specific node by the fixed flag assigning unit 103a.
 つぎに、画像処理装置100は、分割部104によって、ベクタデータからなる地図情報を複数の領域に分割し、ラスタデータからなるメッシュデータに変換する(ステップS205)。この際、消去禁止フラグ付与部104aは、固定フラグが付与されているノードをつなぐリンクの各領域すべてに、消去禁止フラグを付与させる。つぎに、画像処理装置100は、ステップS204において探索した複数の到達可能地点に基づいて、ステップS205において分割した複数の領域にそれぞれ、付与部105によって到達可能または到達不可能の識別情報を付与する(ステップS206)。そして、識別情報の付与後、オープニング処理やクローニング処理を実行するときには、消去禁止フラグが付与されている領域を消去せずに残す。その後、画像処理装置100は、ステップS206において識別情報を付与した複数の領域の識別情報に基づいて、表示制御部106によって移動体の到達可能範囲を表示部110に表示させ(ステップS207)、本フローチャートによる処理を終了する。 Next, the image processing apparatus 100 uses the dividing unit 104 to divide the map information made up of vector data into a plurality of regions and convert it into mesh data made up of raster data (step S205). At this time, the erasure prohibition flag assigning unit 104a assigns the erasure prohibition flag to all the areas of the link connecting the nodes to which the fixed flag is assigned. Next, the image processing apparatus 100 assigns the reachable or unreachable identification information to each of the plurality of regions divided in step S205 based on the plurality of reachable points searched in step S204. (Step S206). When the opening process or the cloning process is executed after the identification information is added, the area to which the deletion prohibition flag is added is left without being deleted. After that, the image processing apparatus 100 causes the display control unit 106 to display the reachable range of the moving object on the display unit 110 based on the identification information of the plurality of areas to which the identification information is assigned in step S206 (step S207). The process according to the flowchart ends.
 以上説明したように、実施の形態にかかる画像処理装置100は、地図情報を複数の領域に分割して各領域ごとに移動体が到達可能か否かを探索し、各領域にそれぞれ移動体が到達可能または到達不可能であることを識別する到達可能または到達不可能の識別情報を付与する。そして、画像処理装置100は、到達可能の識別情報が付与された領域に基づいて移動体の到達可能範囲を生成する。このため、画像処理装置100は、海や湖、山脈など移動体の走行不可能な領域を除いた状態で移動体の到達可能範囲を生成することができる。したがって、画像処理装置100は、移動体の到達可能範囲を正確に表示することができる。 As described above, the image processing apparatus 100 according to the embodiment divides the map information into a plurality of areas, searches for each area to determine whether or not the moving body is reachable, and each area has a moving body. Reachable or unreachable identification information that identifies reachability or unreachability is added. Then, the image processing apparatus 100 generates a reachable range of the moving object based on the region to which reachable identification information is assigned. For this reason, the image processing apparatus 100 can generate the reachable range of the moving object in a state excluding areas where the moving object cannot travel, such as the sea, lakes, and mountain ranges. Therefore, the image processing apparatus 100 can accurately display the reachable range of the moving object.
 また、画像処理装置100は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、クローニングの膨張処理をおこなう。このため、画像処理装置100は、移動体の到達可能範囲内の欠損した領域を除去することができる。 Also, the image processing apparatus 100 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information that can be reached or cannot reach each of the plurality of areas, and then performs an expansion process of cloning. For this reason, the image processing apparatus 100 can remove the missing region within the reachable range of the moving object.
 また、画像処理装置100は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、オープニングの縮小処理をおこなう。このため、画像処理装置100は、移動体の到達可能範囲の孤立した領域を除去することができる。 Also, the image processing apparatus 100 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs an opening reduction process. For this reason, the image processing apparatus 100 can remove an isolated region in the reachable range of the moving object.
 このように、画像処理装置100は、移動体の到達可能範囲の欠損した領域や孤立した領域を除去することができるので、移動体の走行可能範囲を2次元のなめらかな面でかつ見やすく表示することができる。また、画像処理装置100は、地図情報を複数の領域に分割して生成したメッシュデータの輪郭を抽出する。このため、画像処理装置100は、移動体の到達可能範囲の輪郭をなめらかに表示することができる。 As described above, the image processing apparatus 100 can remove a missing region or an isolated region of the reachable range of the moving body, and thus displays the travelable range of the moving body on a two-dimensional smooth surface and in an easy-to-read manner. be able to. The image processing apparatus 100 also extracts the outline of mesh data generated by dividing the map information into a plurality of regions. For this reason, the image processing apparatus 100 can display the outline of the reachable range of the moving object smoothly.
 また、画像処理装置100は、移動体の到達可能地点を探索する道路を絞り込んで、移動体の到達可能地点を探索する。このため、画像処理装置100は、移動体の到達可能地点を探索する際の処理量を低減することができる。移動体の到達可能地点を探索する道路を絞り込むことで、探索可能な到達可能地点が少なくなったとしても、上述したようにクローニングの膨張処理がおこなわれることにより、移動体の到達可能範囲内に生じる欠損した領域を除去することができる。したがって、画像処理装置100は、移動体の到達可能範囲を生成するための処理量を低減することができる。また、画像処理装置100は、移動体の走行可能範囲を2次元のなめらかな面で見やすく表示することができる。 Further, the image processing apparatus 100 narrows down the road for searching for the reachable point of the moving object, and searches for the reachable point of the moving object. For this reason, the image processing apparatus 100 can reduce the processing amount at the time of searching the reachable point of a moving body. Even if the number of reachable reachable points is reduced by narrowing down the road to search for the reachable points of the moving object, the expansion process of the cloning is performed as described above, so that the reachable range of the moveable object is within the reachable range. The resulting missing area can be removed. Therefore, the image processing apparatus 100 can reduce the processing amount for generating the reachable range of the moving object. In addition, the image processing apparatus 100 can display the travelable range of the moving object in a two-dimensional smooth manner so that it can be easily seen.
 そして、固定フラグが付与された特定のノードを含むメッシュデータの特定の画素は、オープニング処理またはクローニング処理を実行しても消去されずに残すことができる。これにより、オープニング処理またはクローニング処理実行によって孤立したノードを含む特定の画素による表示上のノイズを除去し、移動体の到達可能範囲の輪郭をなめらかに表示することができるとともに、移動体の到達可能範囲に含まれる細い線分であるトンネルや橋、山の一本道などの細い線分が消去されることがなく、移動体の到達範囲として表示できるようになる。 And the specific pixel of the mesh data including the specific node to which the fixed flag is given can be left without being erased even if the opening process or the cloning process is executed. This eliminates noise on the display due to specific pixels including isolated nodes by executing the opening process or cloning process, and the outline of the reachable range of the moving object can be displayed smoothly, and the reachable of the moving object Thin line segments such as tunnels, bridges, and mountain roads that are thin lines are not erased, and can be displayed as the reach of a moving object.
 以下に、本発明の実施例1について説明する。本実施例では、車両に搭載されるナビゲーション装置300を画像処理装置100として、本発明を適用した場合の一例について説明する。 Hereinafter, Example 1 of the present invention will be described. In the present embodiment, an example in which the present invention is applied will be described with the navigation apparatus 300 mounted on the vehicle as the image processing apparatus 100.
(ナビゲーション装置300のハードウェア構成)
 つぎに、ナビゲーション装置300のハードウェア構成について説明する。図3は、ナビゲーション装置のハードウェア構成の一例を示すブロック図である。図3において、ナビゲーション装置300は、CPU301、ROM302、RAM303、磁気ディスクドライブ304、磁気ディスク305、光ディスクドライブ306、光ディスク307、音声I/F(インターフェース)308、マイク309、スピーカ310、入力デバイス311、映像I/F312、ディスプレイ313、カメラ314、通信I/F315、GPSユニット316、各種センサ317を備えている。各構成部301~317は、バス320によってそれぞれ接続されている。
(Hardware configuration of navigation device 300)
Next, the hardware configuration of the navigation device 300 will be described. FIG. 3 is a block diagram illustrating an example of a hardware configuration of the navigation device. In FIG. 3, the navigation apparatus 300 includes a CPU 301, ROM 302, RAM 303, magnetic disk drive 304, magnetic disk 305, optical disk drive 306, optical disk 307, audio I / F (interface) 308, microphone 309, speaker 310, input device 311, A video I / F 312, a display 313, a camera 314, a communication I / F 315, a GPS unit 316, and various sensors 317 are provided. Each component 301 to 317 is connected by a bus 320.
 CPU301は、ナビゲーション装置300の全体の制御を司る。ROM302は、ブートプログラム、推定エネルギー消費量算出プログラム、到達可能地点探索プログラム、識別情報付与プログラム、地図データ表示プログラムなどのプログラムを記録している。RAM303は、CPU301のワークエリアとして使用される。すなわち、CPU301は、RAM303をワークエリアとして使用しながら、ROM302に記録された各種プログラムを実行することによって、ナビゲーション装置300の全体の制御を司る。 CPU 301 governs overall control of navigation device 300. The ROM 302 records programs such as a boot program, an estimated energy consumption calculation program, a reachable point search program, an identification information addition program, and a map data display program. The RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 controls the entire navigation device 300 by executing various programs recorded in the ROM 302 while using the RAM 303 as a work area.
 推定エネルギー消費量算出プログラムでは、車両の推定エネルギー消費量を算出する消費エネルギー推定式に基づいて、一のノードと隣り合うノードとを結ぶリンクにおける推定エネルギー消費量を算出する。到達可能地点探索プログラムでは、推定プログラムにおいて算出された推定エネルギー消費量に基づいて、車両の現在地点での残存エネルギー量で到達可能な複数の地点(ノード)が探索される。識別情報付与プログラムでは、探索プログラムにおいて探索された複数の到達可能地点に基づいて、地図情報を分割した複数の領域に、車両が到達可能または到達不可能であることを識別する識別情報が付与される。地図データ表示プログラムでは、識別情報付与プログラムによって識別情報が付与された複数の領域に基づいて、車両の到達可能範囲をディスプレイ313に表示させる。 In the estimated energy consumption calculation program, an estimated energy consumption in a link connecting one node and an adjacent node is calculated based on an energy consumption estimation formula for calculating an estimated energy consumption of the vehicle. In the reachable point search program, a plurality of points (nodes) that can be reached with the remaining energy amount at the current point of the vehicle are searched based on the estimated energy consumption calculated in the estimation program. In the identification information addition program, identification information for identifying whether the vehicle is reachable or unreachable is assigned to a plurality of areas obtained by dividing the map information based on a plurality of reachable points searched in the search program. The In the map data display program, the reachable range of the vehicle is displayed on the display 313 based on the plurality of areas to which the identification information is given by the identification information giving program.
 磁気ディスクドライブ304は、CPU301の制御にしたがって磁気ディスク305に対するデータの読み取り/書き込みを制御する。磁気ディスク305は、磁気ディスクドライブ304の制御で書き込まれたデータを記録する。磁気ディスク305としては、たとえば、HD(ハードディスク)やFD(フレキシブルディスク)を用いることができる。 The magnetic disk drive 304 controls the reading / writing of the data with respect to the magnetic disk 305 according to control of CPU301. The magnetic disk 305 records data written under the control of the magnetic disk drive 304. As the magnetic disk 305, for example, an HD (hard disk) or an FD (flexible disk) can be used.
 また、光ディスクドライブ306は、CPU301の制御にしたがって光ディスク307に対するデータの読み取り/書き込みを制御する。光ディスク307は、光ディスクドライブ306の制御にしたがってデータが読み出される着脱自在な記録媒体である。光ディスク307は、書き込み可能な記録媒体を利用することもできる。着脱可能な記録媒体として、光ディスク307のほか、MO、メモリカードなどを用いることができる。 The optical disk drive 306 controls reading / writing of data with respect to the optical disk 307 according to the control of the CPU 301. The optical disk 307 is a detachable recording medium from which data is read according to the control of the optical disk drive 306. As the optical disc 307, a writable recording medium can be used. In addition to the optical disk 307, an MO, a memory card, or the like can be used as a removable recording medium.
 磁気ディスク305および光ディスク307に記録される情報の一例としては、地図データ、車両情報、道路情報、走行履歴などが挙げられる。地図データは、カーナビゲーションシステムにおいて車両の到達可能地点を探索するときや、車両の到達可能範囲を表示するときに用いられ、建物、河川、地表面などの地物(フィーチャ)を表す背景データ、道路の形状をリンクやノードなどで表す道路形状データなどを含むベクタデータである。 Examples of information recorded on the magnetic disk 305 and the optical disk 307 include map data, vehicle information, road information, travel history, and the like. Map data is used when searching for a reachable point of a vehicle in a car navigation system or when displaying a reachable range of a vehicle. Background data representing features (features) such as buildings, rivers, the ground surface, This is vector data including road shape data that expresses the shape of the road by links and nodes.
 音声I/F308は、音声入力用のマイク309および音声出力用のスピーカ310に接続される。マイク309に受音された音声は、音声I/F308内でA/D変換される。マイク309は、たとえば、車両のダッシュボード部などに設置され、その数は単数でも複数でもよい。スピーカ310からは、所定の音声信号を音声I/F308内でD/A変換した音声が出力される。 The voice I / F 308 is connected to a microphone 309 for voice input and a speaker 310 for voice output. The sound received by the microphone 309 is A / D converted in the sound I / F 308. For example, the microphone 309 is installed in a dashboard portion of a vehicle, and the number thereof may be one or more. From the speaker 310, a sound obtained by D / A converting a predetermined sound signal in the sound I / F 308 is output.
 入力デバイス311は、文字、数値、各種指示などの入力のための複数のキーを備えたリモコン、キーボード、タッチパネルなどが挙げられる。入力デバイス311は、リモコン、キーボード、タッチパネルのうちいずれか1つの形態によって実現されてもよいが、複数の形態によって実現することも可能である。 The input device 311 includes a remote controller, a keyboard, a touch panel, and the like provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like. The input device 311 may be realized by any one form of a remote control, a keyboard, and a touch panel, but can also be realized by a plurality of forms.
 映像I/F312は、ディスプレイ313に接続される。映像I/F312は、具体的には、たとえば、ディスプレイ313全体を制御するグラフィックコントローラと、即時表示可能な画像情報を一時的に記録するVRAM(Video RAM)などのバッファメモリと、グラフィックコントローラから出力される画像データに基づいてディスプレイ313を制御する制御ICなどによって構成される。 The video I / F 312 is connected to the display 313. Specifically, the video I / F 312 is output from, for example, a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller. And a control IC for controlling the display 313 based on the image data to be processed.
 ディスプレイ313には、アイコン、カーソル、メニュー、ウインドウ、あるいは文字や画像などの各種データが表示される。ディスプレイ313としては、たとえば、TFT液晶ディスプレイ、有機ELディスプレイなどを用いることができる。 The display 313 displays icons, cursors, menus, windows, or various data such as characters and images. As the display 313, for example, a TFT liquid crystal display, an organic EL display, or the like can be used.
 カメラ314は、車両内部あるいは外部の映像を撮影する。映像は静止画あるいは動画のどちらでもよく、たとえば、カメラ314によって車両外部を撮影し、撮影した画像をCPU301において画像解析したり、映像I/F312を介して磁気ディスク305や光ディスク307などの記録媒体に出力したりする。 The camera 314 captures images inside or outside the vehicle. The image may be either a still image or a moving image. For example, the outside of the vehicle is photographed by the camera 314, and the photographed image is analyzed by the CPU 301, or a recording medium such as the magnetic disk 305 or the optical disk 307 via the image I / F 312. Or output to
 通信I/F315は、無線を介してネットワークに接続され、ナビゲーション装置300およびCPU301のインターフェースとして機能する。ネットワークとして機能する通信網には、CANやLIN(Local Interconnect Network)などの車内通信網や、公衆回線網や携帯電話網、DSRC(Dedicated Short Range Communication)、LAN、WANなどがある。通信I/F315は、たとえば、公衆回線用接続モジュールやETC(ノンストップ自動料金支払いシステム)ユニット、FMチューナー、VICS(Vehicle Information and Communication System)(登録商標)/ビーコンレシーバなどである。 The communication I / F 315 is connected to a network via wireless and functions as an interface between the navigation device 300 and the CPU 301. Communication networks that function as networks include in-vehicle communication networks such as CAN and LIN (Local Interconnect Network), public line networks and mobile phone networks, DSRC (Dedicated Short Range Communication), LAN, and WAN. The communication I / F 315 is, for example, a public line connection module, an ETC (non-stop automatic fee payment system) unit, an FM tuner, a VICS (Vehicle Information and Communication System) (registered trademark) / beacon receiver, or the like.
 GPSユニット316は、GPS衛星からの電波を受信し、車両の現在位置を示す情報を出力する。GPSユニット316の出力情報は、後述する各種センサ317の出力値とともに、CPU301による車両の現在位置の算出に際して利用される。現在位置を示す情報は、たとえば、緯度・経度、高度などの、地図データ上の1点を特定する情報である。 The GPS unit 316 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle. The output information of the GPS unit 316 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors 317 described later. The information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
 各種センサ317は、車速センサ、加速度センサ、角速度センサ、傾斜センサなどの、車両の位置や挙動を判断するための情報を出力する。各種センサ317の出力値は、CPU301による車両の現在位置の算出や、速度や方位の変化量の算出に用いられる。 Various sensors 317 output information for determining the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, and a tilt sensor. The output values of the various sensors 317 are used by the CPU 301 to calculate the current position of the vehicle and the amount of change in speed and direction.
 図1に示した画像処理装置100の取得部101、算出部102、探索部103、分割部104、付与部105、表示制御部106は、上述したナビゲーション装置300におけるROM302、RAM303、磁気ディスク305、光ディスク307などに記録されたプログラムやデータを用いて、CPU301が所定のプログラムを実行し、ナビゲーション装置300における各部を制御することによってその機能を実現する。 The acquisition unit 101, the calculation unit 102, the search unit 103, the dividing unit 104, the assigning unit 105, and the display control unit 106 of the image processing apparatus 100 illustrated in FIG. 1 are the ROM 302, the RAM 303, the magnetic disk 305, the navigation device 300 described above. The CPU 301 executes a predetermined program using a program and data recorded on the optical disc 307 and the like, and realizes its function by controlling each unit in the navigation device 300.
(ナビゲーション装置300による推定エネルギー消費量算出の概要)
 本実施例のナビゲーション装置300は、自装置が搭載された車両の推定エネルギー消費量を算出する。具体的には、ナビゲーション装置300は、たとえば、速度、加速度、車両の勾配に基づいて、第一情報と、第二情報と、第三情報と、からなる消費エネルギー推定式のいずれか一つ以上の式を用いて、所定区間における車両の推定エネルギー消費量を算出する。所定区間とは、道路上の一のノード(たとえば交差点)と当該一のノードに隣り合う他のノードとを結ぶリンクである。
(Outline of estimated energy consumption calculation by the navigation device 300)
The navigation device 300 according to the present embodiment calculates the estimated energy consumption of the vehicle on which the device itself is mounted. Specifically, for example, the navigation device 300 is based on speed, acceleration, and vehicle gradient, and includes one or more of energy consumption estimation formulas including first information, second information, and third information. Is used to calculate the estimated energy consumption of the vehicle in a predetermined section. The predetermined section is a link connecting one node (for example, an intersection) on the road and another node adjacent to the one node.
 より具体的には、ナビゲーション装置300は、プローブで提供される渋滞情報や、サーバを介して取得した渋滞予測データ、記憶装置に記憶されたリンクの長さや道路種別などに基づいて、車両がリンクを走行し終わるのに要する旅行時間を算出する。そして、ナビゲーション装置300は、次の(1)式~(4)式に示す消費エネルギー推定式のいずれかを用いて単位時間当たりの推定エネルギー消費量を算出し、車両がリンクを旅行時間で走行し終える際の推定エネルギー消費量を算出する。 More specifically, the navigation device 300 determines whether the vehicle is linked based on the traffic jam information provided by the probe, the traffic jam prediction data acquired through the server, the link length or road type stored in the storage device, and the like. The travel time required to finish driving is calculated. Then, navigation device 300 calculates an estimated energy consumption amount per unit time using any one of the following energy consumption estimation formulas (1) to (4), and the vehicle travels on the link during the travel time. Calculate the estimated energy consumption when finishing.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記(1)式に示す消費エネルギー推定式は、加速時および走行時における単位時間当たりの消費エネルギーを推定する理論式である。ここで、εは正味熱効率、ηは総伝達効率である。移動体の加速度αと道路勾配θから重力の加速度gとの合計を合成加速度|α|とすると、合成加速度|α|が負の場合の消費エネルギー推定式は、上記(2)式で表される。すなわち、上記(2)式に示す消費エネルギー推定式は、減速時における単位時間当たりの消費エネルギーを推定する理論式である。このように、加減速時および走行時における単位時間当たりの消費エネルギー推定式は、走行抵抗と走行距離と正味モータ効率と伝達効率との積で表される。 The energy consumption estimation formula shown in the above equation (1) is a theoretical formula for estimating the energy consumption per unit time during acceleration and traveling. Where ε is the net thermal efficiency and η is the total transmission efficiency. Assuming that the sum of the acceleration α of the moving object and the acceleration of gravity g from the road gradient θ is the combined acceleration | α |, the energy consumption estimation formula when the combined acceleration | α | is negative is expressed by the above equation (2). The That is, the energy consumption estimation formula shown in the above equation (2) is a theoretical formula for estimating the energy consumption per unit time during deceleration. Thus, the energy consumption estimation formula per unit time during acceleration / deceleration and travel is expressed by the product of travel resistance, travel distance, net motor efficiency, and transmission efficiency.
 上記(1)式および(2)式において、右辺第1項は、移動体に備えられた装備品により消費されるエネルギー消費量(第一情報)であり、右辺第2項は、勾配成分によるエネルギー消費量(第四情報)および転がり抵抗成分によるエネルギー消費量(第三情報)である。右辺第3項は、空気抵抗成分によるエネルギー消費量(第三情報)である。また、(1)式の右辺第4項は、加速成分によるエネルギー消費量(第二情報)である。(2)式の右辺第4項は、減速成分によるエネルギー消費量(第二情報)である。 In the above formulas (1) and (2), the first term on the right side is the energy consumption (first information) consumed by the equipment provided on the moving body, and the second term on the right side is determined by the gradient component. Energy consumption (fourth information) and energy consumption (third information) due to rolling resistance components. The third term on the right side is energy consumption (third information) due to the air resistance component. Further, the fourth term on the right side of the equation (1) is the energy consumption (second information) by the acceleration component. The fourth term on the right side of equation (2) is the energy consumption (second information) due to the deceleration component.
 上記(1)式および(2)式では、モータ効率と駆動効率は一定と見なしている。しかし、実際には、モータ効率および駆動効率はモータ回転数やトルクの影響により変動する。そこで、次の(3)式および(4)式に単位時間当たりの消費エネルギーを推定する実証式を示す。 In the above formulas (1) and (2), the motor efficiency and drive efficiency are assumed to be constant. However, in practice, the motor efficiency and the driving efficiency vary due to the influence of the motor speed and torque. Therefore, the following equations (3) and (4) show empirical equations for estimating the energy consumption per unit time.
 合成加速度|α+g・sinθ|が正の場合の推定エネルギー消費量を算出する実証式、すなわち、加速時および走行時における単位時間当たりの推定エネルギー消費量を算出する実証式は、次の(3)式で表される。また、合成加速度|α+g・sinθ|が負の場合の推定エネルギー消費量を算出する実証式、すなわち、減速時における単位時間当たりの推定エネルギー消費量を算出する実証式は、次の(4)式で表される。 The empirical formula for calculating the estimated energy consumption when the combined acceleration | α + g · sin θ | is positive, that is, the empirical formula for calculating the estimated energy consumption per unit time during acceleration and traveling is (3) It is expressed by a formula. The empirical formula for calculating the estimated energy consumption when the combined acceleration | α + g · sin θ | is negative, that is, the empirical formula for calculating the estimated energy consumption per unit time during deceleration is the following formula (4): It is represented by
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記(3)式および(4)式において、係数a1,a2は、車両状況などに応じて設定される常数である。係数k1,k2,k3は、加速時におけるエネルギー消費量に基づく変数である。また、速度V、加速度Aとしており、その他の変数は、上記(1)式および(2)式と同様である。右辺第1項は、上記(1)式および(2)式の右辺第1項に相当する。 In the above formulas (3) and (4), the coefficients a1 and a2 are constants set according to the vehicle situation. The coefficients k1, k2, and k3 are variables based on energy consumption during acceleration. Further, the speed V and the acceleration A are set, and other variables are the same as the above formulas (1) and (2). The first term on the right side corresponds to the first term on the right side of the above equations (1) and (2).
 また、上記(3)式および(4)式において、右辺第2項は、上記(1)式および(2)式の、右辺第2項の勾配抵抗成分のエネルギーと、右辺第4項の加速度抵抗成分のエネルギーとに相当する。右辺第3項は、上記(1)式および(2)式の、右辺第2項の転がり抵抗成分のエネルギーと、右辺第3項の空気抵抗成分のエネルギーに相当する。(4)式の右辺第2項のβは、位置エネルギーと運動エネルギーの回収分(以下、「回収率」とする)である。 In the above formulas (3) and (4), the second term on the right side is the energy of the gradient resistance component in the second term on the right side and the acceleration in the fourth term on the right side in the formulas (1) and (2). It corresponds to the energy of the resistance component. The third term on the right side corresponds to the energy of the rolling resistance component in the second term on the right side and the energy of the air resistance component in the third term on the right side in the above equations (1) and (2). Β in the second term on the right side of the equation (4) is the amount of potential energy and kinetic energy recovered (hereinafter referred to as “recovery rate”).
 また、ナビゲーション装置300は、上述したように車両がリンクを走行するのに要する旅行時間を算出し、車両がリンクを走行するときの平均速度および平均加速度を算出する。そして、ナビゲーション装置300は、リンクにおける車両の平均速度および平均加速度を用いて、次の(5)式または(6)式に示す消費エネルギー推定式に基づいて、車両がリンクを旅行時間で走行し終える際の推定エネルギー消費量を算出してもよい。 Also, as described above, the navigation device 300 calculates the travel time required for the vehicle to travel the link, and calculates the average speed and average acceleration when the vehicle travels the link. Then, the navigation device 300 uses the average speed and average acceleration of the vehicle at the link, and the vehicle travels on the link in the travel time based on the consumption energy estimation formula shown in the following equation (5) or (6). You may calculate the estimated energy consumption at the time of finishing.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記(5)式に示す消費エネルギー推定式は、車両が走行するリンクの高度差Δhが正の場合の、リンクにおける推定エネルギー消費量を算出する理論式である。高度差Δhが正の場合とは、車両が上り坂を走行している場合である。上記(6)式に示す消費エネルギー推定式は、車両が走行するリンクの高度差Δhが負の場合の、リンクにおける推定エネルギー消費量を算出する理論式である。高度差Δhが負の場合とは、車両が下り坂を走行している場合である。高度差がない場合は、上記(5)式に示す消費エネルギー推定式を用いるのが好ましい。 The consumption energy estimation formula shown in the above formula (5) is a theoretical formula for calculating the estimated energy consumption at the link when the altitude difference Δh of the link on which the vehicle travels is positive. The case where the altitude difference Δh is positive is a case where the vehicle is traveling uphill. The energy consumption estimation formula shown in the above equation (6) is a theoretical formula for calculating an estimated energy consumption amount in the link when the altitude difference Δh of the link on which the vehicle travels is negative. The case where the altitude difference Δh is negative is a case where the vehicle is traveling downhill. When there is no difference in altitude, it is preferable to use the energy consumption estimation formula shown in the above formula (5).
 上記(5)式および(6)式において、右辺第1項は、移動体に備えられた装備品により消費されるエネルギー消費量(第一情報)である。右辺第2項は、加速抵抗によるエネルギー消費量(第二情報)である。右辺第3項は、位置エネルギーとして消費されるエネルギー消費量である(第四情報)。右辺第4項は、単位面積当たりに受ける空気抵抗および転がり抵抗(走行抵抗)によるエネルギー消費量(第三情報)である。 In the above formulas (5) and (6), the first term on the right side is the energy consumption (first information) consumed by the equipment provided in the moving body. The second term on the right side is the energy consumption (second information) by the acceleration resistance. The third term on the right side is energy consumption consumed as potential energy (fourth information). The fourth term on the right side is the energy consumption (third information) due to the air resistance and rolling resistance (running resistance) received per unit area.
 ナビゲーション装置300は、道路勾配が明らかでない場合、上記(1)式~(6)式に示す消費エネルギー推定式の道路勾配θ=0として車両の推定エネルギー消費量を算出してもよい。 The navigation device 300 may calculate the estimated energy consumption amount of the vehicle with the road gradient θ = 0 in the energy consumption estimation formula shown in the above formulas (1) to (6) when the road gradient is not clear.
 つぎに、上記(1)式~(6)式で用いる回収率βについて説明する。上記(5)式において、右辺第2項をリンクにおける加速成分のエネルギー消費量Paccとすると、加速成分のエネルギー消費量Paccは、リンクにおける全エネルギー消費量(左辺)から、アイドリング時のエネルギー消費量(右辺第1項)と走行抵抗によるエネルギー消費量(右辺第4項)を減じたものであり、次の(7)式で表される。 Next, the recovery rate β used in the above equations (1) to (6) will be described. In the above equation (5), if the second term on the right side is the energy consumption P acc of the acceleration component in the link, the energy consumption P acc of the acceleration component is calculated from the total energy consumption (left side) of the link from the energy at idling. This is a value obtained by subtracting the consumption (first term on the right side) and the energy consumption (fourth term on the right side) due to running resistance, and is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお、上記(7)式では、車両は道路勾配θの影響を受けていないこととする(θ=0)。すなわち、上記(5)式の右辺第3項をゼロとする。そして、上記(7)式を上記(5)式に代入することで、次の(8)式に示す回収率βの算出式を得ることができる。 In the above equation (7), it is assumed that the vehicle is not affected by the road gradient θ (θ = 0). That is, the third term on the right side of the above equation (5) is set to zero. Then, by substituting the above equation (7) into the above equation (5), the calculation formula for the recovery rate β shown in the following equation (8) can be obtained.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 回収率βは、EV車では0.7~0.9程度であり、HV車では0.6~0.8程度であり、ガソリン車では0.2~0.3程度である。なお、ガソリン車の回収率とは、加速時に要するエネルギーと減速時に回収するエネルギーとの割合である。 The recovery rate β is about 0.7 to 0.9 for EV vehicles, about 0.6 to 0.8 for HV vehicles, and about 0.2 to 0.3 for gasoline vehicles. The recovery rate of the gasoline vehicle is a ratio of energy required for acceleration and energy recovered for deceleration.
(ナビゲーション装置300における到達可能地点探索の概要)
 本実施例のナビゲーション装置300は、自装置が搭載された車両の現在地点から到達可能な複数のノードを車両の到達可能地点として探索する。具体的には、ナビゲーション装置300は、上記(1)~(6)式に示す消費エネルギー推定式のいずれか1つ以上を用いてリンクにおける推定エネルギー消費量を算出する。そして、ナビゲーション装置300は、リンクにおける推定エネルギー消費量の累計が最小となるように車両の到達可能なノードを探索し到達可能地点とする。以下に、ナビゲーション装置300による到達可能地点探索の一例について説明する。
(Outline of reachable point search in the navigation device 300)
The navigation device 300 according to the present embodiment searches for a plurality of nodes that can be reached from the current location of the vehicle on which the device is mounted as reachable locations of the vehicle. Specifically, the navigation apparatus 300 calculates the estimated energy consumption amount in the link using any one or more of the energy consumption estimation expressions shown in the above expressions (1) to (6). Then, the navigation device 300 searches for a reachable node of the vehicle so as to make the reachable point so that the total of the estimated energy consumption in the link is minimized. Below, an example of the reachable point search by the navigation apparatus 300 is demonstrated.
 図4-1~4-4は、ナビゲーション装置300による到達可能地点探索の一例について模式的に示す説明図である。図4-1~4-4では、地図データのノード(たとえば交差点)を丸印とし、隣り合うノードどうしを結ぶリンク(道路上の所定区間)を線分で示す(図5-1,5-2についても同様にノードおよびリンクを図示)。 FIGS. 4-1 to 4-4 are explanatory diagrams schematically showing an example of reachable point search by the navigation device 300. FIG. In FIGS. 4-1 to 4-4, nodes (for example, intersections) of map data are indicated by circles, and links (predetermined sections on the road) connecting adjacent nodes are indicated by line segments (FIGS. 5-1, 5). Similarly, nodes and links are shown for 2).
 図4-1に示すように、ナビゲーション装置300は、まず、車両の現在地点400から最も近いリンクL1_1を探索する。そして、ナビゲーション装置300は、リンクL1_1に接続するノードN1_1を探索し、到達可能地点を探索するためのノード候補(以下、単に「ノード候補」という)に追加する。 As shown in FIG. 4A, the navigation device 300 first searches for the link L1_1 closest to the current location 400 of the vehicle. Then, navigation device 300 searches for node N1_1 connected to link L1_1 and adds it to a node candidate for searching for a reachable point (hereinafter simply referred to as “node candidate”).
 つぎに、ナビゲーション装置300は、消費エネルギー推定式を用いて、車両の現在地点400とノード候補としたノードN1_1とを結ぶリンクL1_1における推定エネルギー消費量を算出する。そして、ナビゲーション装置300は、リンクL1_1における推定エネルギー消費量3whを、たとえばノードN1_1に関連付けて記憶装置(磁気ディスク305や光ディスク307)に書き出す。 Next, the navigation apparatus 300 calculates the estimated energy consumption in the link L1_1 that connects the current location 400 of the vehicle and the node N1_1 that is the node candidate using the energy consumption estimation formula. Then, the navigation device 300 writes the estimated energy consumption 3wh in the link L1_1 to the storage device (magnetic disk 305 or optical disk 307) in association with the node N1_1, for example.
 つぎに、図4-2に示すように、ナビゲーション装置300は、ノードN1_1に接続するすべてのリンクL2_1,L2_2,L2_3を探索し、到達可能地点を探索するためのリンク候補(以下、単に「リンク候補」という)とする。つぎに、ナビゲーション装置300は、消費エネルギー推定式を用いて、リンクL2_1における推定エネルギー消費量を算出する。 Next, as shown in FIG. 4B, the navigation apparatus 300 searches for all links L2_1, L2_2, and L2_3 connected to the node N1_1 and searches for reachable points (hereinafter simply referred to as “links”). "Candidate"). Next, the navigation apparatus 300 calculates the estimated energy consumption in the link L2_1 using the consumption energy estimation formula.
 そして、ナビゲーション装置300は、リンクL2_1における推定エネルギー消費量4whとリンクL1_1における推定エネルギー消費量3whとを累計した累計エネルギー量7whを、リンクL2_1に接続するノードN2_1に関連付けて記憶装置(磁気ディスク305や光ディスク307)に書き出す(以下、「累計エネルギー量をノードに設定」とする)。 The navigation device 300 associates the accumulated energy amount 7wh obtained by accumulating the estimated energy consumption amount 4wh in the link L2_1 and the estimated energy consumption amount 3wh in the link L1_1 with the node N2_1 connected to the link L2_1, and stores the storage device (magnetic disk 305). Or the optical disc 307) (hereinafter referred to as “set cumulative energy amount to node”).
 さらに、ナビゲーション装置300は、リンクL2_1の場合と同様に、消費エネルギー推定式を用いて、リンクL2_2,L2_3における推定エネルギー消費量をそれぞれ算出する。そして、ナビゲーション装置300は、リンクL2_2における推定エネルギー消費量5whとリンクL1_1における推定エネルギー消費量3whとを累計した累計エネルギー量8whを、リンクL2_2に接続するノードN2_2に設定する。 Furthermore, the navigation apparatus 300 calculates the estimated energy consumption in the links L2_2 and L2_3, respectively, using the energy consumption estimation formula as in the case of the link L2_1. Then, the navigation apparatus 300 sets the accumulated energy amount 8wh obtained by accumulating the estimated energy consumption amount 5wh in the link L2_2 and the estimated energy consumption amount 3wh in the link L1_1 to the node N2_2 connected to the link L2_2.
 また、ナビゲーション装置300は、リンクL2_3における推定エネルギー消費量3whとリンクL1_1における推定エネルギー消費量3whとを累計した累計エネルギー量6whを、リンクL2_3に接続するノードN2_3に設定する。このとき、ナビゲーション装置300は、累計エネルギー量を設定したノードがノード候補でない場合には、そのノードをノード候補に追加する。 Also, the navigation apparatus 300 sets the accumulated energy amount 6wh obtained by accumulating the estimated energy consumption amount 3wh in the link L2_3 and the estimated energy consumption amount 3wh in the link L1_1 to the node N2_3 connected to the link L2_3. At this time, if the node for which the cumulative energy amount is set is not a node candidate, navigation device 300 adds the node to the node candidate.
 つぎに、図4-3に示すように、ナビゲーション装置300は、ノードN2_1に接続するすべてのリンクL3_1,L3_2_1、ノードN2_2に接続するすべてのリンクL3_2_2,L3_3,L3_4、およびノードN2_3に接続するリンクL3_5を探索し、リンク候補とする。つぎに、ナビゲーション装置300は、消費エネルギー推定式を用いて、リンクL3_1~リンクL3_5における推定エネルギー消費量を算出する。 Next, as illustrated in FIG. 4C, the navigation device 300 includes all links L3_1 and L3_2_1 connected to the node N2_1, all links L3_2_2, L3_3, L3_4 connected to the node N2_2, and links connected to the node N2_3. L3_5 is searched for as a link candidate. Next, the navigation apparatus 300 calculates the estimated energy consumption in the links L3_1 to L3_5 using the consumption energy estimation formula.
 そして、ナビゲーション装置300は、リンクL3_1における推定エネルギー消費量4whをノードN2_1に設定した累計エネルギー量7whに累計し、リンクL3_1に接続するノードN3_1に累計エネルギー量11whを設定する。また、ナビゲーション装置300は、リンクL3_3~L3_5においてもリンクL3_1の場合と同様に、各リンクL3_3~L3_5にそれぞれ接続するノードN3_3~N3_5に累計エネルギー量13wh,12wh,10whを設定する。 Then, the navigation apparatus 300 accumulates the estimated energy consumption 4wh in the link L3_1 to the accumulated energy amount 7wh set in the node N2_1, and sets the accumulated energy amount 11wh in the node N3_1 connected to the link L3_1. In addition, the navigation apparatus 300 sets the cumulative energy amounts 13wh, 12wh, and 10wh in the nodes N3_3 to N3_5 connected to the links L3_3 to L3_5, respectively, in the links L3_3 to L3_5 as in the case of the link L3_1.
 具体的には、ナビゲーション装置300は、リンクL3_3における推定エネルギー消費量5whをノードN2_2に設定した累計エネルギー量8whに累計し、ノードN3_3に累計エネルギー量13whを設定する。ナビゲーション装置300は、リンクL_3_4における推定エネルギー消費量4whをノードN2_2に設定した累計エネルギー量8whに累計し、ノードN3_4に累計エネルギー量12whを設定する。ナビゲーション装置300は、リンクL3_5における推定エネルギー消費量4whをノードN2_3に設定した累計エネルギー量6whに累計し、ノードN3_5に累計エネルギー量10whを設定する。 Specifically, the navigation apparatus 300 accumulates the estimated energy consumption 5wh in the link L3_3 to the accumulated energy amount 8wh set in the node N2_2, and sets the accumulated energy amount 13wh in the node N3_3. The navigation device 300 accumulates the estimated energy consumption 4wh in the link L_3_4 to the accumulated energy amount 8wh set in the node N2_2, and sets the accumulated energy amount 12wh in the node N3_4. The navigation device 300 accumulates the estimated energy consumption 4wh in the link L3_5 to the accumulated energy amount 6wh set in the node N2_3, and sets the accumulated energy amount 10wh in the node N3_5.
 一方、ナビゲーション装置300は、ノードN3_2のように一のノードに複数のリンクL3_2_1,L3_2_2が接続する場合には、車両の現在地点400から一のノードN3_2までの複数の経路における累計エネルギー量のうち、最小の累計エネルギー量10whを当該一のノードN3_2に設定する。 On the other hand, in the case where a plurality of links L3_2_1 and L3_2_2 are connected to one node like the node N3_2, the navigation device 300 includes a cumulative energy amount in a plurality of routes from the vehicle current point 400 to the one node N3_2. , The minimum accumulated energy amount 10wh is set in the one node N3_2.
 具体的には、ナビゲーション装置300は、リンクL3_2_1における推定エネルギー消費量4whをノード2_1に設定した累計エネルギー量7whに累計し(=累計エネルギー量11wh)、リンクL3_2_2における推定エネルギー消費量2whをノード2_2に設定した累計エネルギー量8whに累計する(=累計エネルギー量10wh)。そして、ナビゲーション装置300は、車両の現在地点400からリンクL3_2_1までの経路の累計エネルギー量11whと、車両の現在地点400からリンクL3_2_2までの経路の累計エネルギー量10whとを比較し、最小の累計エネルギー量となるリンクL3_2_2側の経路の累計エネルギー量10whをノードN3_2に設定する。 Specifically, the navigation apparatus 300 accumulates the estimated energy consumption 4wh in the link L3_2_1 to the accumulated energy amount 7wh set in the node 2_1 (= total energy amount 11wh), and the estimated energy consumption amount 2wh in the link L3_2_2 is set to the node 2_2. Is accumulated in the accumulated energy amount 8wh set to (= total energy amount 10wh). Then, the navigation device 300 compares the cumulative energy amount 11wh of the route from the current point 400 of the vehicle to the link L3_2_1 with the cumulative energy amount 10wh of the route from the current point 400 of the vehicle to the link L3_2_2, and the minimum cumulative energy. The cumulative energy amount 10wh of the path on the link L3_2_2 side that is the amount is set to the node N3_2.
 ナビゲーション装置300は、上述したノードN2_1~N2_3のように車両の現在地点400から同一階層のノードが複数存在する場合、たとえば、同一レベルのノードのうち、累計エネルギー量が少ないノードに接続するリンクから順に推定エネルギー消費量および累計エネルギー量を算出する。具体的には、ナビゲーション装置300は、ノードN2_3、ノードN2_1、ノードN2_2の順に、各ノードに接続するリンクにおける推定エネルギー消費量をそれぞれ算出し、各ノードにおける累計エネルギー量に累計する。このように、推定エネルギー消費量および累計エネルギー量を算出するノードの順番を特定することにより、残存エネルギー量で到達可能な範囲を効率的に算出することができる。 When there are a plurality of nodes of the same hierarchy from the current location 400 of the vehicle, such as the above-described nodes N2_1 to N2_3, the navigation device 300, for example, from a link connected to a node having a low cumulative energy amount among nodes at the same level. The estimated energy consumption and the cumulative energy amount are calculated in order. Specifically, the navigation apparatus 300 calculates the estimated energy consumption amount in the link connected to each node in the order of the node N2_3, the node N2_1, and the node N2_2, and accumulates the accumulated energy amount in each node. Thus, by specifying the order of the nodes for calculating the estimated energy consumption amount and the cumulative energy amount, it is possible to efficiently calculate the reachable range with the remaining energy amount.
 その後、ナビゲーション装置300は、ノードN3_1~N3_5からさらに深い階層のノードへと、上述したような累計エネルギー量の累計を続けていく。そして、ナビゲーション装置300は、あらかじめ設定された指定エネルギー量以下の累計エネルギー量が設定されたすべてのノードを、車両の到達可能地点として抽出し、到達可能地点として抽出されたノードの経度緯度情報をそれぞれのノードに関連付けて記憶装置に書き出す。 Thereafter, the navigation apparatus 300 continues to accumulate the accumulated energy amount as described above from the nodes N3_1 to N3_5 to the deeper level nodes. Then, the navigation apparatus 300 extracts all nodes set with a cumulative energy amount equal to or less than a preset designated energy amount as reachable points of the vehicle, and obtains longitude / latitude information of the nodes extracted as reachable points. Write to the storage device in association with each node.
 具体的には、たとえば指定エネルギー量を10whとした場合、図4-4に斜線で塗りつぶされた丸印で示すように、ナビゲーション装置300は、10wh以下の累計エネルギー量が設定されたノードN1_1,N2_1,N2_2,N2_3,N3_2,N3_5を車両の到達可能地点として抽出する。あらかじめ設定された指定エネルギー量とは、たとえば、車両の現在地点400での残存エネルギー量(初期保有エネルギー量)である。 Specifically, for example, when the designated energy amount is 10wh, the navigation device 300, as shown by a hatched circle in FIG. 4-4, is a node N1_1 with a cumulative energy amount of 10wh or less set. N2_1, N2_2, N2_3, N3_2, and N3_5 are extracted as reachable points of the vehicle. The designated energy amount set in advance is, for example, the remaining energy amount (initial stored energy amount) at the current point 400 of the vehicle.
 図4-4に示す車両の現在地点400と複数のノードおよびリンクとで構成された地図データ440は到達可能地点探索を説明するための一例であり、ナビゲーション装置300は、実際には図5-1に示すように図4-4に示す地図データ440よりも広い範囲でさらに多くのノードおよびリンクを探索する。 The map data 440 composed of the current location 400 of the vehicle and a plurality of nodes and links shown in FIG. 4-4 is an example for explaining the reachable location search. As shown in FIG. 1, more nodes and links are searched in a wider range than the map data 440 shown in FIG. 4-4.
 図5-1は、ナビゲーション装置300による到達可能地点探索の一例について示す説明図である。上述したようにすべての道路(細街路を除く)について累計エネルギー量を算出し続けていく場合、図5-1に示すように、各道路のすべてのノードにおける累計エネルギー量を漏れなく詳細に探索することができる。しかし、日本全国で約200万個のリンクにおける推定エネルギー消費量を算出し累計することとなり、ナビゲーション装置300の情報処理量が膨大となる。このため、ナビゲーション装置300は、たとえばリンクの重要度などに基づいて、移動体の到達可能地点を探索する道路を絞り込んでもよい。 FIG. 5A is an explanatory diagram illustrating an example of a reachable point search by the navigation device 300. As described above, when calculating the cumulative energy amount for all roads (excluding narrow streets), as shown in Fig. 5-1, search the total energy amount in all nodes on each road in detail. can do. However, the estimated energy consumption of about 2 million links in Japan is calculated and accumulated, and the information processing amount of the navigation device 300 becomes enormous. For this reason, the navigation apparatus 300 may narrow down the road which searches for the reachable point of a mobile body based on the importance of a link etc., for example.
 図5-2は、ナビゲーション装置300による到達可能地点探索の別の一例について示す説明図である。具体的には、ナビゲーション装置300は、たとえば、車両の現在地点400周辺ではすべての道路(細街路を除く)において累計エネルギー量を算出し、ある一定距離以上離れた範囲では重要度の高い道路のみで累計エネルギー量を算出する。これにより、図5-2に示すように、ナビゲーション装置300によって探索されるノード数およびリンク数を減少させることができ、ナビゲーション装置300の情報処理量を低減させることができる。したがって、ナビゲーション装置300の処理速度を向上することができる。 FIG. 5-2 is an explanatory diagram showing another example of reachable point search by the navigation device 300. Specifically, for example, the navigation device 300 calculates a cumulative energy amount on all roads (excluding narrow streets) around the current location 400 of the vehicle, and only high-importance roads are within a certain distance away. To calculate the total energy. Accordingly, as shown in FIG. 5B, the number of nodes and the number of links searched by the navigation device 300 can be reduced, and the information processing amount of the navigation device 300 can be reduced. Therefore, the processing speed of the navigation device 300 can be improved.
 探索部103の固定フラグ103aは、これらの到達可能地点の探索時、取得した地図情報120に基づき、特定のノードを含むメッシュデータの画素に固定フラグを付与する。この際、固定フラグ付与部103aは、地図情報120上の探索した単ノードがあらかじめ定めた特定のノード(トンネルや橋の出入口、山の一本道などの両端)であるかを判断する。そして、この単ノードを両端(出入口)に有する経路(リンク)は移動体が走行可能であれば、リンク両端のノードを含む画素に固定フラグを付与する。これに限らず、固定フラグ付与部103aは、リンク両端のノードを含むリンク全体を含むの複数の画素に固定フラグを付与してもよい。 The fixed flag 103a of the search unit 103 gives a fixed flag to pixels of mesh data including a specific node based on the acquired map information 120 when searching for these reachable points. At this time, the fixed flag assigning unit 103a determines whether the searched single node on the map information 120 is a predetermined specific node (both ends of a tunnel, a bridge entrance, a mountain road, etc.). If the path (link) having the single node at both ends (entrances / exits) can travel, the fixed flag is given to the pixels including the nodes at both ends of the link. Not limited to this, the fixed flag assigning unit 103a may assign a fixed flag to a plurality of pixels including the entire link including nodes at both ends of the link.
(ナビゲーション装置300における地図データ分割の概要)
 本実施例のナビゲーション装置300は、上述したように探索された到達可能地点に基づいて、記憶装置に記憶された地図データを分割する。具体的には、ナビゲーション装置300は、ベクタデータで構成される地図データを、たとえば64×64画素のメッシュデータ(X,Y)に変換し、地図データをラスタデータ(画像データ)にする。
(Outline of map data division in navigation device 300)
The navigation device 300 according to the present embodiment divides the map data stored in the storage device based on the reachable point searched as described above. Specifically, the navigation device 300 converts map data composed of vector data into, for example, 64 × 64 pixel mesh data (X, Y), and converts the map data into raster data (image data).
 図6は、ナビゲーション装置300による到達可能地点を経度-緯度で示す一例の説明図である。また、図7は、ナビゲーション装置300による到達可能地点をメッシュデータで示す一例の説明図である。図6には、たとえば図5-1,5-2に示すように探索された到達可能地点の経度緯度情報(x,y)を絶対座標で図示している。図7には、到達可能地点に基づいて識別情報が付与された64×64画素のメッシュデータ(X,Y)をスクリーン座標で図示している。 FIG. 6 is an explanatory diagram of an example in which a reachable point by the navigation device 300 is indicated by longitude-latitude. FIG. 7 is an explanatory diagram of an example in which a reachable point by the navigation device 300 is indicated by mesh data. In FIG. 6, for example, longitude / latitude information (x, y) of the reachable point searched as shown in FIGS. 5-1 and 5-2 is illustrated in absolute coordinates. FIG. 7 illustrates the screen data of 64 × 64 pixel mesh data (X, Y) to which identification information is given based on the reachable point.
 図6に示すように、ナビゲーション装置300は、まず、複数の到達可能地点のそれぞれの経度x、緯度yに基づいて、絶対座標で点群600を有する経度緯度情報(x,y)を生成する。経度緯度情報(x,y)の原点(0,0)は図6の左下である。そして、ナビゲーション装置300は、車両の現在地点400の経度ofxから経度x方向に最も離れた到達可能地点の最大経度x_max、最小経度x_minまで距離w1,w2を算出する。また、ナビゲーション装置300は、車両の現在地点400の緯度ofyから緯度y方向に最も離れた到達可能地点の最大緯度y_max、最小緯度y_minまで距離w3,w4を算出する。 As shown in FIG. 6, the navigation apparatus 300 first generates longitude / latitude information (x, y) having a point group 600 in absolute coordinates based on the longitude x and latitude y of each of a plurality of reachable points. . The origin (0, 0) of the longitude / latitude information (x, y) is at the lower left of FIG. Then, the navigation apparatus 300 calculates the distances w1 and w2 from the longitude ofx of the current point 400 of the vehicle to the maximum longitude x_max and the minimum longitude x_min of the reachable point farthest in the longitude x direction. Further, the navigation device 300 calculates the distances w3 and w4 from the latitude of the current point 400 of the vehicle to the maximum latitude y_max and the minimum latitude y_min of the reachable point farthest in the direction of the latitude y.
 つぎに、ナビゲーション装置300は、車両の現在地点400からの距離w1~w4のうち、最も距離のある、車両の現在地点400から最小経度x_minまでの距離w2(以下、w5=max(w1,w2,w3,w4)とする)のn分の1の長さがメッシュデータ(X,Y)の矩形状の一要素の1辺の長さとなるように、複数の到達可能地点を含む地図データを、たとえばm×m画素(たとえば64×64画素)のメッシュデータ(X,Y)に変換する。 Next, the navigation device 300 has a distance w2 (hereinafter referred to as w5 = max (w1, w2) from the vehicle current point 400 to the minimum longitude x_min, which is the longest distance among the distances w1 to w4 from the vehicle current point 400. , W3, w4)), and map data including a plurality of reachable points so that the length of 1 / n becomes the length of one side of a rectangular element of mesh data (X, Y). For example, it is converted into mesh data (X, Y) of m × m pixels (for example, 64 × 64 pixels).
 具体的には、ナビゲーション装置300は、1画素と経度緯度の大きさとの比を倍率mag=w5/nとし、経度緯度情報(x,y)とメッシュデータ(X,Y)とが次の(9)式,(10)式を満たすように、経度緯度情報(x,y)をメッシュデータ(X,Y)に変換する。 Specifically, the navigation device 300 sets the ratio of one pixel to the longitude / latitude to a magnification mag = w5 / n, and the longitude / latitude information (x, y) and mesh data (X, Y) are the following ( The longitude / latitude information (x, y) is converted into mesh data (X, Y) so as to satisfy the expressions (9) and (10).
 X=(x-ofx)/mag ・・・(9) X = (x-ofx) / mag (9)
 Y=(y-ofy)/mag ・・・(10) Y = (y-ofy) / mag (10)
 経度緯度情報(x,y)をメッシュデータ(X,Y)に変換することにより、図7に示すように、車両の現在地点400は、m×m画素のメッシュデータ(X,Y)で構成される矩形状の画像データの中心となり、車両の現在地点400のメッシュデータ(X,Y)はX軸方向、Y軸方向ともに等しく、X=Y=m/2=n+4となる。また、メッシュデータ(X,Y)の周辺のたとえば4画素分を空白にするためにn=(m/2)-4とする。そして、ナビゲーション装置300は、経度緯度情報(x,y)をメッシュデータ(X,Y)に変換するときに、メッシュデータ(X,Y)の各領域にそれぞれ識別情報を付与し、m行m列の2次元行列データ(Y,X)のメッシュデータに変換する。 By converting longitude / latitude information (x, y) into mesh data (X, Y), as shown in FIG. 7, the current location 400 of the vehicle is configured by mesh data (X, Y) of m × m pixels. The mesh data (X, Y) of the current point 400 of the vehicle is the same in both the X-axis direction and the Y-axis direction, and X = Y = m / 2 = n + 4. Further, n = (m / 2) −4 is set in order to make, for example, four pixels around the mesh data (X, Y) blank. Then, when the navigation device 300 converts the longitude / latitude information (x, y) into mesh data (X, Y), it gives identification information to each area of the mesh data (X, Y), and m rows m It is converted into mesh data of two-dimensional matrix data (Y, X) of columns.
 具体的には、ナビゲーション装置300は、メッシュデータ(X,Y)の一の領域に車両の到達可能地点が含まれる場合、当該一の領域に車両が到達可能であることを識別する到達可能の識別情報として、たとえば「1」を付与する(図7では1画素をたとえば黒色で描画)。一方、ナビゲーション装置300は、メッシュデータ(X,Y)の一の領域に車両の到達可能地点が含まれない場合、当該の一の領域に車両が到達不可能であることを識別する到達不可能の識別情報として、たとえば「0」を付与する(図7では1画素をたとえば白色で描画)。 Specifically, when the reachable point of the vehicle is included in one area of the mesh data (X, Y), the navigation device 300 can be identified to identify that the vehicle can reach the one area. For example, “1” is given as the identification information (in FIG. 7, one pixel is drawn in black, for example). On the other hand, when the reachable point of the vehicle is not included in one region of the mesh data (X, Y), the navigation device 300 cannot reach that vehicle that cannot reach the one region. For example, “0” is given as the identification information (in FIG. 7, one pixel is drawn in white, for example).
 このように、ナビゲーション装置300は、地図データを分割した各領域にそれぞれ識別情報を付与したm行m列の2次元行列データ(Y,X)のメッシュデータに変換し、地図データを2値化されたラスタデータとして扱う。メッシュデータの各領域は、それぞれ一定範囲の矩形状の領域で表される。具体的には、図7に示すように、たとえば、複数の到達可能地点の点群700が黒色で描画されたm×m画素のメッシュデータ(X,Y)が生成される。メッシュデータ(X,Y)の原点(0,0)は左上である。 As described above, the navigation device 300 converts the map data into binarized map data of m rows and m columns of two-dimensional matrix data (Y, X) obtained by adding identification information to each area obtained by dividing the map data. Treated as raster data. Each area of the mesh data is represented by a rectangular area within a certain range. Specifically, as shown in FIG. 7, for example, m × m pixel mesh data (X, Y) in which a point group 700 of a plurality of reachable points is drawn in black is generated. The origin (0, 0) of the mesh data (X, Y) is at the upper left.
 そして、分割部104の消去禁止フラグ付与部104aは、メッシュデータの各画素のうち、固定フラグが付与されたノードを含む特定の画素には、消去禁止フラグを付与する。この際、固定フラグ付与部103aにより、リンク両端のノードを含む画素にのみ固定フラグが付与されている場合には、このリンク両端を含む一つのリンク全体を含む一又は複数の画素に対し消去禁止フラグを付与する。 Then, the erasure prohibition flag assigning unit 104a of the dividing unit 104 assigns an erasure prohibition flag to specific pixels including the node to which the fixed flag is assigned among the pixels of the mesh data. At this time, when the fixed flag is added only to the pixels including the nodes at both ends of the link by the fixed flag adding unit 103a, erasure is prohibited for one or a plurality of pixels including one whole link including both ends of the link. Give a flag.
(ナビゲーション装置300における識別情報付与の概要・その1)
 本実施例のナビゲーション装置300は、上述したように分割されたm×m画素のメッシュデータ(X,Y)のそれぞれの領域に付与された識別情報を変更する。具体的には、ナビゲーション装置300は、m行m列の2次元行列データ(Y,X)のメッシュデータに対してクローニング処理(膨張処理後に縮小処理をおこなう処理)をおこなう。
(Outline of identification information assignment in the navigation device 300, part 1)
The navigation apparatus 300 of the present embodiment changes the identification information given to each area of the m × m pixel mesh data (X, Y) divided as described above. Specifically, the navigation apparatus 300 performs a cloning process (a process of performing a reduction process after the expansion process) on mesh data of m-dimensional data and m-dimensional two-dimensional matrix data (Y, X).
 図8は、ナビゲーション装置によるクローニング処理の一例を示す説明図である。図8(A)~図8(C)は、各領域にそれぞれ識別情報が付与されたm行m列の2次元行列データ(Y,X)のメッシュデータである。図8(A)には、地図データの分割処理後、はじめて識別情報が付与されたメッシュデータ800を示す。すなわち、図8(A)に示すメッシュデータ800は、図7に示すメッシュデータと同一である。 FIG. 8 is an explanatory diagram showing an example of the cloning process by the navigation device. FIGS. 8A to 8C are mesh data of two-dimensional matrix data (Y, X) of m rows and m columns in which identification information is assigned to each region. FIG. 8A shows mesh data 800 to which identification information is given for the first time after map data division processing. That is, the mesh data 800 shown in FIG. 8A is the same as the mesh data shown in FIG.
 また、図8(B)には、図8(A)に示すメッシュデータ800に対してクローニング処理(膨張)をおこなった後のメッシュデータ810を示す。図8(C)には、図8(B)に示すメッシュデータ810に対してクローニング処理(縮小)をおこなった後のメッシュデータ820を示す。図8(A)~図8(C)に示すメッシュデータ800,810,820において、到達可能の識別情報が付与された複数の領域によって生成される車両の到達可能範囲801,811,821を黒く塗りつぶした状態で示す。 FIG. 8B shows mesh data 810 after the cloning process (expansion) is performed on the mesh data 800 shown in FIG. 8A. FIG. 8C shows mesh data 820 after the cloning process (reduction) is performed on the mesh data 810 shown in FIG. 8B. In the mesh data 800, 810, and 820 shown in FIGS. 8A to 8C, the vehicle reachable ranges 801, 811 and 821 generated by a plurality of regions to which reachable identification information is assigned are blackened. Shown in a filled state.
 図8(A)に示すように、識別情報付与後のメッシュデータ800には、車両の到達可能範囲801内に含まれる到達不可能な領域からなる欠損点802(ハッチングされた到達可能範囲801内の白地部分)が生じている。欠損点802は、たとえば、図5-2に示すようにナビゲーション装置300による到達可能地点探索処理の負荷を低減させるためにノードおよびリンクを探索する道路を絞り込んだ場合に、到達可能地点となるノード数が少なくなることにより生じる。 As shown in FIG. 8A, in the mesh data 800 after the identification information is given, a missing point 802 (in the reachable range 801 that is hatched) that is an unreachable area included in the reachable range 801 of the vehicle. White background). For example, as shown in FIG. 5B, the missing point 802 is a node that becomes a reachable point when narrowing down roads to search for nodes and links in order to reduce the load of reachable point search processing by the navigation device 300. This occurs when the number is reduced.
 つぎに、図8(B)に示すように、ナビゲーション装置300は、識別情報付与後のメッシュデータ800に対してクローニングの膨張処理をおこなう。クローニングの膨張処理では、識別情報付与後のメッシュデータ800の、到達可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達可能の識別情報に変更される。これにより、膨張処理前(識別情報付与後)の車両の到達可能範囲801内に生じていた欠損点802が消滅する。 Next, as shown in FIG. 8B, the navigation device 300 performs an expansion process of cloning on the mesh data 800 after the identification information is given. In the expansion process of cloning, the identification information of one area adjacent to the area to which reachable identification information is added in the mesh data 800 after the identification information is added is changed to reachable identification information. As a result, the missing point 802 generated in the reachable range 801 of the vehicle before the expansion process (after the identification information is given) disappears.
 また、膨張処理前の車両の到達可能範囲801の最外周の領域に隣り合うすべての領域の識別情報が、到達可能な識別情報に変更される。このため、膨張処理後の車両の到達可能範囲811の外周は、膨張処理をおこなうごとに、膨張処理前の車両の到達可能範囲801の最外周の各領域の外周を囲むように1画素分ずつ広がる。 Also, the identification information of all the areas adjacent to the outermost area of the reachable range 801 of the vehicle before the expansion process is changed to the reachable identification information. For this reason, the outer periphery of the reachable range 811 of the vehicle after the expansion process is one pixel at a time so as to surround the outer periphery of each outermost region of the reachable range 801 of the vehicle before the expansion process every time the expansion process is performed. spread.
 その後、図8(C)に示すように、ナビゲーション装置300は、メッシュデータ810に対してクローニングの縮小処理をおこなう。クローニングの縮小処理では、膨張処理後のメッシュデータ810の、到達不可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達不可能の識別情報に変更される。 Thereafter, as shown in FIG. 8C, the navigation device 300 performs a cloning reduction process on the mesh data 810. In the reduction process of cloning, the identification information of one area adjacent to the area to which the unreachable identification information is added in the mesh data 810 after the expansion process is changed to the unreachable identification information.
 このため、膨張処理後の車両の到達可能範囲811の最外周の各領域が、縮小処理がおこなわれるごとに1画素分ずつ到達不可能な領域となり、膨張処理後の車両の到達可能範囲811の外周が縮まる。これにより、縮小処理後の車両の到達可能範囲821の外周は、膨張処理前の車両の到達可能範囲801の外周とほぼ同様となる。 For this reason, each area of the outermost periphery of the reachable range 811 of the vehicle after the expansion process becomes an area that cannot be reached by one pixel every time the reduction process is performed, and the reachable range 811 of the vehicle after the expansion process The outer circumference shrinks. Thereby, the outer periphery of the reachable range 821 of the vehicle after the reduction process is substantially the same as the outer periphery of the reachable range 801 of the vehicle before the expansion process.
 ナビゲーション装置300は、上述した膨張処理および縮小処理は同じ回数ずつおこなう。具体的には、膨張処理が2回おこなわれた場合、その後の縮小処理も2回おこなわれる。膨張処理と縮小処理との処理回数を等しくすることで、膨張処理によって到達可能の識別情報に変更された車両の到達可能範囲の外周部分のほぼすべての領域の識別情報を、縮小処理によって元の到達不可能の識別情報に変更することができる。このようにして、ナビゲーション装置300は、車両の到達可能範囲内の欠損点802を除去し、かつ外周を明瞭に表示可能な車両の到達可能範囲821を生成することができる。 Navigation device 300 performs the above-described expansion process and reduction process the same number of times. Specifically, when the expansion process is performed twice, the subsequent reduction process is also performed twice. By equalizing the number of times of the expansion process and the reduction process, the identification information of almost all areas in the outer periphery of the reachable range of the vehicle that has been changed to the identification information that can be reached by the expansion process is restored to the original information by the reduction process. It can be changed to unreachable identification information. In this way, the navigation device 300 can remove the missing point 802 in the reachable range of the vehicle and generate the reachable range 821 of the vehicle that can clearly display the outer periphery.
 より具体的には、ナビゲーション装置300は、次のようにクローニング処理をおこなう。図9は、ナビゲーション装置によるクローニング処理の一例を模式的に示す説明図である。図9(A)~図9(C)には、各領域にそれぞれ識別情報が付与されたh行h列の2次元行列データ(Y,X)のメッシュデータを一例として示す。 More specifically, the navigation device 300 performs the cloning process as follows. FIG. 9 is an explanatory diagram schematically showing an example of cloning processing by the navigation device. FIG. 9A to FIG. 9C show mesh data of two-dimensional matrix data (Y, X) of h rows and h columns in which identification information is assigned to each region as an example.
 図9(A)は、識別情報付与後のメッシュデータ900である。図9(B)は、図9(A)に対するクローニング処理(膨張)後のメッシュデータ910である。図9(C)は、図9(B)に対するクローニング処理(縮小)後のメッシュデータ920である。図9(A)~図9(C)のメッシュデータ900,910,920には、到達可能の識別情報が付与された領域901,902をそれぞれ異なるハッチングで図示する。 FIG. 9A shows the mesh data 900 after the identification information is given. FIG. 9B shows mesh data 910 after cloning processing (expansion) with respect to FIG. FIG. 9C shows mesh data 920 after cloning processing (reduction) with respect to FIG. 9B. In mesh data 900, 910, and 920 of FIGS. 9A to 9C, areas 901 and 902 to which reachable identification information is assigned are illustrated by different hatchings.
 図9(A)に示すように、識別情報付与後のメッシュデータ900には、c行f列、f行c列およびg行f列の領域901に到達可能の識別情報が付与されている。図9(A)では、膨張処理後および縮小処理後における識別情報の変化が明確となるように、到達可能の識別情報が付与された各領域901を離れた状態で配置している。 As shown in FIG. 9A, identification information that can reach the region 901 in the c-row, f-column, f-row, c-column, and g-row, f column is assigned to the mesh data 900 after the identification information is given. In FIG. 9A, the regions 901 to which reachable identification information is assigned are arranged apart from each other so that the change in the identification information after the expansion process and the reduction process becomes clear.
 ナビゲーション装置300は、このような識別情報付与後のメッシュデータ900に対して、クローニングの膨張処理をおこなう。具体的には、図9(B)に示すように、ナビゲーション装置300は、c行f列の領域901の左下、下、右下、右、右上、上、左上、左に隣り合う8つの領域(b行e列~b行g列、c行e列、c行g列およびd行e列~d行g列)902の識別情報を、到達不可能の識別情報から到達可能の識別情報に変更する。 The navigation device 300 performs an expansion process of cloning on the mesh data 900 having been given such identification information. Specifically, as illustrated in FIG. 9B, the navigation device 300 includes eight regions adjacent to the lower left, lower, lower right, right, upper right, upper, upper left, and left of the region 901 in the c row and the f column. (B row e column to b row g column, c row e column, c row g column and d row e column to d row g column) 902 identification information is changed from unreachable identification information to reachable identification information change.
 また、ナビゲーション装置300は、c行f列の領域901に対しておこなった処理と同様に、f行c列およびg行f列の領域901においても隣り合う8つの領域902の識別情報を到達可能の識別情報に変更する。このため、車両の到達可能範囲911は、領域902の識別情報が到達可能の識別情報に変更された分だけ、識別情報付与後のメッシュデータ900における車両の到達可能範囲よりも広がる。 Further, the navigation device 300 can reach the identification information of the eight adjacent regions 902 in the region 901 of the f row c column and the g row f column similarly to the processing performed for the region 901 of the c row f column. Change to the identification information. For this reason, the reachable range 911 of the vehicle is wider than the reachable range of the vehicle in the mesh data 900 after the identification information is added by the amount that the identification information of the region 902 is changed to the reachable identification information.
 つぎに、ナビゲーション装置300は、膨張処理後のメッシュデータ910に対して、クローニングの縮小処理をおこなう。具体的には、図9(C)に示すように、ナビゲーション装置300は、到達不可能の識別情報が付与された領域(膨張処理後のメッシュデータ910の白地部分)に隣り合うb行e列~b行g列、c行e列、c行g列およびd行e列~d行g列の8つの領域902の識別情報を到達不可能の識別情報に変更する。 Next, the navigation apparatus 300 performs a cloning reduction process on the mesh data 910 after the expansion process. Specifically, as illustrated in FIG. 9C, the navigation device 300 has b rows and e columns adjacent to an area to which unreachable identification information is given (the white background portion of the mesh data 910 after the expansion process). The identification information of the eight areas 902 of the b row g column, the c row e column, the c row g column, and the d row e column to the d row g column is changed to unreachable identification information.
 また、ナビゲーション装置300は、b行e列~b行g列、c行e列、c行g列およびd行e列~d行g列の8個の領域902に対しておこなった処理と同様に、到達不可能の識別情報が付与された領域に隣り合うe行b列~e行d列、f行b列、f行d列~f行g列、g行b列~g行e列、g行g列、h行e列およびh行g列の15個の領域902の識別情報を到達不可能の識別情報に変更する。 In addition, the navigation device 300 is similar to the processing performed for the eight areas 902 of b row e column to b row g column, c row e column, c row g column, and d row e column to d row g column. E row b column to e row d column, f row b column, f row d column to f row g column, g row b column to g row e column adjacent to the region to which the unreachable identification information is given. , G row g column, h row e column and h row g column 15 902 identification information is changed to unreachable identification information.
 これにより、図9(C)に示すように、縮小処理後のメッシュデータ920は、識別情報付与後のメッシュデータ900と同様に、到達可能の識別情報が付与された3つの領域901と、縮小処理後においても到達可能の識別情報が付与されたままの状態で残る1つの領域902からなる車両の到達可能範囲921が生成される。このように、膨張処理時に到達可能の識別情報が付与され、かつ縮小処理後に到達可能の識別情報が付与された状態で残る領域902によって、識別情報付与後のメッシュデータ900の到達可能範囲内に生じていた欠損点が消滅する。 As a result, as shown in FIG. 9C, the mesh data 920 after the reduction process is reduced to the three regions 901 to which reachable identification information is added, similarly to the mesh data 900 after the identification information is added. A reachable range 921 of the vehicle composed of one region 902 that remains in the state where the reachable identification information is provided even after the processing is generated. As described above, the region 902 that is provided with the identification information that can be reached during the expansion process and that has been provided with the identification information that can be reached after the reduction process is within the reachable range of the mesh data 900 after the identification information is applied. The missing point that has occurred disappears.
(ナビゲーション装置300における識別情報付与の概要・その2)
 ナビゲーション装置300は、2次元行列データ(Y,X)のメッシュデータに対してオープニング処理(縮小処理後に膨張処理をおこなう処理)をおこない、外周を明瞭に表示可能な車両の到達可能範囲を生成してもよい。具体的には、ナビゲーション装置300は、次のようにオープニング処理をおこなう。
(Outline of identification information addition in the navigation device 300, part 2)
The navigation device 300 performs an opening process (a process of performing an expansion process after the reduction process) on the mesh data of the two-dimensional matrix data (Y, X), and generates a vehicle reachable range in which the outer periphery can be clearly displayed. May be. Specifically, the navigation device 300 performs an opening process as follows.
 図10は、ナビゲーション装置によるオープニング処理の一例を示す説明図である。図10(A)~図10(C)は、各領域にそれぞれ識別情報が付与されたm行m列の2次元行列データ(Y,X)のメッシュデータである。図10(A)には、識別情報付与後のメッシュデータ1000を示す。図10(B)には、図10(A)に対するオープニング処理(縮小)後のメッシュデータ1010を示す。また、図10(C)には、図10(B)に対するオープニング処理(膨張)後のメッシュデータ1020を示す。図10(A)~図10(C)に示すメッシュデータ1000,1010,1020おいて、到達可能の識別情報が付与された複数の領域によって生成される車両の到達可能範囲1001,1011,1021を黒く塗りつぶした状態で示す。 FIG. 10 is an explanatory diagram showing an example of the opening process by the navigation device. FIGS. 10A to 10C are mesh data of two-dimensional matrix data (Y, X) of m rows and m columns in which identification information is assigned to each region. FIG. 10A shows mesh data 1000 after identification information is given. FIG. 10B shows mesh data 1010 after the opening process (reduction) with respect to FIG. FIG. 10C shows mesh data 1020 after the opening process (expansion) with respect to FIG. In the mesh data 1000, 1010, and 1020 shown in FIGS. 10A to 10C, the vehicle reachable ranges 1001, 1011 and 1021 generated by a plurality of regions to which reachable identification information is assigned are shown. Shown in black.
 図10(A)に示すように、識別情報付与後のメッシュデータ1000における車両の到達可能範囲1001の外周に孤立した画素1002が多く生じている場合、識別情報付与後のメッシュデータ1000に対してオープニング処理をおこなうことで、孤立した画素1002を除去することができる。具体的には、図10(B)に示すように、ナビゲーション装置300は、識別情報付与後のメッシュデータ1000に対してオープニングの縮小処理をおこなう。 As shown in FIG. 10A, when there are many isolated pixels 1002 on the outer periphery of the reachable range 1001 of the vehicle in the mesh data 1000 after the identification information is given, the mesh data 1000 after the identification information is given By performing the opening process, the isolated pixel 1002 can be removed. Specifically, as shown in FIG. 10B, the navigation device 300 performs an opening reduction process on the mesh data 1000 after the identification information is given.
 オープニングの縮小処理では、識別情報付与後のメッシュデータ1000の、到達不可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達不可能の識別情報に変更される。これにより、縮小処理前(識別情報付与後)の車両の到達可能範囲1001内に生じていた孤立した画素1002が除去される。 In the reduction process of the opening, the identification information of one area adjacent to the area to which the unreachable identification information is added in the mesh data 1000 after the identification information is added is changed to the unreachable identification information. Thereby, the isolated pixel 1002 that has occurred in the reachable range 1001 of the vehicle before the reduction process (after the identification information is given) is removed.
 このため、識別情報付与後の車両の到達可能範囲1001の最外周の各領域が、縮小処理がおこなわれるごとに1画素分ずつ到達不可能な領域となり、識別情報付与後の車両の到達可能範囲1001の外周が縮まる。また、識別情報付与後の車両の到達可能範囲1001に生じていた孤立した画素1002が除去される。 For this reason, each area of the outermost circumference of the reachable range 1001 of the vehicle after the identification information is added becomes an area that cannot be reached by one pixel every time the reduction process is performed, and the reachable range of the vehicle after the identification information is given The outer periphery of 1001 shrinks. Further, the isolated pixel 1002 that has occurred in the reachable range 1001 of the vehicle after the identification information is given is removed.
 その後、図10(C)に示すように、ナビゲーション装置300は、メッシュデータ1010に対してオープニングの膨張処理をおこなう。オープニングの膨張処理では、縮小処理後のメッシュデータ1010の、到達不可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達可能の識別情報に変更される。このため、膨張処理後の車両の到達可能範囲1021の外周は、膨張処理をおこなうごとに、縮小処理後の車両の到達可能範囲1011の最外周の各領域の外周を囲むように1画素分ずつ広がる。 Thereafter, as shown in FIG. 10C, the navigation device 300 performs an opening expansion process on the mesh data 1010. In the opening expansion process, the identification information of one area adjacent to the area to which the unreachable identification information is added in the mesh data 1010 after the reduction process is changed to the reachable identification information. For this reason, the outer periphery of the reachable range 1021 of the vehicle after the expansion process is one pixel at a time so as to surround the outer periphery of each outermost region of the reachable range 1011 of the vehicle after the reduction process every time the expansion process is performed. spread.
 ナビゲーション装置300は、オープニング処理においても、クローニング処理と同様に膨張処理および縮小処理は同じ回数ずつおこなう。このように膨張処理と縮小処理との処理回数を等しくすることで、縮小処理によって縮まった車両の到達可能範囲1011の外周を広げ、縮小処理後の車両の到達可能範囲1021の外周を縮小処理前の車両の到達可能範囲1001の外周に戻すことができる。このようにして、ナビゲーション装置300は、孤立した画素1002が生じず、かつ外周を明瞭に表示可能な車両の到達可能範囲1021を生成することができる。 In the opening process, the navigation device 300 performs the expansion process and the reduction process the same number of times as in the cloning process. Thus, by equalizing the number of times of the expansion process and the reduction process, the outer periphery of the reachable range 1011 of the vehicle shrunk by the reduction process is expanded, and the outer periphery of the vehicle reachable range 1021 after the reduction process is expanded before the reduction process. Can be returned to the outer periphery of the reachable range 1001 of the vehicle. In this way, the navigation device 300 can generate the vehicle reachable range 1021 in which the isolated pixel 1002 does not occur and the outer periphery can be clearly displayed.
(消去禁止フラグによるノード消去禁止の処理例:その1)
 図11-1は、消去禁止フラグによるノード消去禁止の例を示す図である。上述した収縮処理と膨張処理と消去禁止フラグにより特定の画素を消去禁止として残す例について説明する。これらの図において「灰色(網掛け)」は到達可能範囲の領域(識別情報が「1」)を示し、「白色」は到達不可能な範囲の領域(識別情報が「0」)を示している。
(Example of node deletion prohibition processing using the deletion prohibition flag: Part 1)
FIG. 11A is a diagram illustrating an example of node erasure inhibition by an erasure inhibition flag. An example will be described in which a specific pixel is left as an erasure prohibition by the above-described contraction process, expansion process and erasure prohibition flag. In these figures, “gray (shaded)” indicates a reachable area (identification information is “1”), and “white” indicates an unreachable area (identification information is “0”). Yes.
 (A)に示すように、メッシュデータ1100が示す到達可能な範囲は、灰色で示す所定のパターンを有していたとする。ここで、画素1101~1106にそれぞれ含まれるノードには固定フラグが付与されているとする。例えば、森の中の一本道で、その一本道が比較的短いリンクでつながっている場合が挙げられる。そして、消去禁止フラグ部により画素1101~1106にそれぞれ消去禁止フラグが付与されている。 As shown in (A), it is assumed that the reachable range indicated by the mesh data 1100 has a predetermined pattern shown in gray. Here, it is assumed that fixed flags are assigned to the nodes included in the pixels 1101 to 1106, respectively. For example, there is a single road in the forest that is connected by a relatively short link. Then, an erasure prohibition flag is assigned to each of the pixels 1101 to 1106 by the erasure prohibition flag portion.
 そして、収縮処理をおこなうことにより、(B)に示す状態となる。すなわち、(A)に示した対象とする画素(領域)の周辺に1画素でも白色があれば、対象とする画素を白色に変えるが、消去禁止フラグが付与されている画素1101~1106は白色に変える処理の対象外とする。 Then, by performing the contraction process, the state shown in (B) is obtained. That is, if even one pixel is white around the target pixel (region) shown in (A), the target pixel is changed to white, but the pixels 1101 to 1106 to which the erasure prohibition flag is assigned are white. It is excluded from the process of changing to.
 この後、膨張処理をおこなうことにより、(C)に示す状態となる。この(C)では、(B)に示した対象とする画素(領域)の周辺に1画素でも灰色があれば、対象とする画素を灰色に変えるが、消去禁止フラグが付与されている画素1101~1106は灰色に変える処理の対象外とする。 Thereafter, the state shown in (C) is obtained by performing the expansion process. In (C), if even one pixel is gray around the target pixel (region) shown in (B), the target pixel is changed to gray, but the pixel 1101 to which the erasure prohibition flag is assigned. ˜1106 are excluded from the process of changing to gray.
(消去禁止フラグによるノード消去禁止の処理例:その2)
 図11-2は、消去禁止フラグによるノード消去禁止の例を示す図である。図11-1との違いは、画素1101に含まる固定フラグが付与されたノードと画素1106に含まれる固定ノードが付与されたノードとが長いリンクを介して接続されており、画素1102~画素1105にはノードが含まれない点である。例えば、湾の経由する橋が挙げられる。この場合、図11-2(A1)で示す通り、消去禁止フラグ部により画素1101と画素1106にそれぞれ消去禁止フラグが付与される。
(Example of node deletion prohibition processing using the deletion prohibition flag: Part 2)
FIG. 11B is a diagram illustrating an example of node erasure inhibition by the erasure inhibition flag. A difference from FIG. 11A is that a node to which a fixed flag included in the pixel 1101 is attached and a node to which a fixed node included in the pixel 1106 is connected via a long link. 1105 does not include a node. For example, there is a bridge through the bay. In this case, as shown in FIG. 11-2 (A1), the erasure prohibition flag unit assigns erasure prohibition flags to the pixels 1101 and 1106, respectively.
 ここで、消去禁止フラグ部は、一つのリンクの両端のノードに固定フラグが付与されている場合、そのリンク部分に対応する画素には、固定フラグが付与されている仮想的なノードが存在すると仮定し、対応する画素に消去禁止フラグを付与してもよい。つまり、図11-2(A2)で示す通り、画素1102~画素1105に消去禁止フラグを付与してもよい。 Here, the erasure prohibition flag portion indicates that, when a fixed flag is given to nodes at both ends of one link, a virtual node to which a fixed flag is given exists in the pixel corresponding to the link portion. It is assumed that an erasure prohibition flag may be assigned to the corresponding pixel. That is, as shown in FIG. 11-2 (A2), an erasure prohibition flag may be assigned to the pixels 1102 to 1105.
 この後、収縮処理をおこなうことにより、(B)に示す状態となる。この(B)では、対象とする画素(領域)の周辺に1画素でも白色があれば、対象とする画素を白色に変えるが、消去禁止フラグが付与されている画素1101~1106は白色に変える処理の対象外とする。 After that, the state shown in (B) is obtained by performing the contraction process. In this (B), if even one pixel is white around the target pixel (region), the target pixel is changed to white, but the pixels 1101 to 1106 to which the erasure prohibition flag is assigned are changed to white. Not subject to processing.
 この後、膨張処理をおこなうことにより、(C)に示す状態となる。この(C)では、(B)に示した対象とする画素(領域)の周辺に1画素でも灰色があれば、対象とする画素を灰色に変えるが、消去禁止フラグが付与されている画素1101~1106は灰色に変える処理の対象外とする。 Thereafter, the state shown in (C) is obtained by performing the expansion process. In (C), if even one pixel is gray around the target pixel (region) shown in (B), the target pixel is changed to gray, but the pixel 1101 to which the erasure prohibition flag is assigned. ˜1106 are excluded from the process of changing to gray.
 なお、図11-2(A2)で示した画素1102~画素1105への消去禁止フラグの付与の代わりに、収縮処理と膨張処理の後、消去禁止フラグが付与されている画素1101と画素1106との間の画素1102~1105に到達可能範囲の識別情報「1」を付与してもよい。 It should be noted that instead of assigning the erasure prohibition flag to the pixels 1102 to 1105 shown in FIG. 11-2 (A2), after the contraction process and the expansion process, the pixels 1101 and 1106 to which the erasure prohibition flag is assigned are provided. The reachable range identification information “1” may be assigned to the pixels 1102 to 1105 in between.
 以上の収縮処理および膨張処理により、不要なノイズの孤立した画素を消去することができるとともに、消去禁止フラグが付与されている画素を残すことができる。 By the above shrinking process and dilating process, it is possible to erase isolated pixels with unnecessary noise and to leave pixels to which an erasure prohibition flag is assigned.
(ナビゲーション装置300における到達可能範囲の輪郭抽出の概要・その1)
 本実施例のナビゲーション装置300は、m行m列の2次元行列データ(Y,X)のメッシュデータに付与された識別情報に基づいて、車両の到達可能範囲の輪郭を抽出する。具体的には、ナビゲーション装置300は、たとえば、フリーマンのチェインコードを用いて車両の到達可能範囲の輪郭を抽出する。より具体的には、ナビゲーション装置300は、次のように車両の到達可能範囲の輪郭を抽出する。
(Outline of outline extraction of reachable range in navigation device 300, part 1)
The navigation device 300 according to the present embodiment extracts the outline of the reachable range of the vehicle based on the identification information given to the mesh data of the two-dimensional matrix data (Y, X) of m rows and m columns. Specifically, the navigation apparatus 300 extracts the outline of the reachable range of the vehicle using, for example, a Freeman chain code. More specifically, the navigation device 300 extracts the outline of the reachable range of the vehicle as follows.
 図12は、ナビゲーション装置による車両の到達可能範囲抽出の一例を模式的に示す説明図である。また、図13は、ナビゲーション装置による車両の到達可能範囲抽出後のメッシュデータの一例を模式的に示す説明図である。図12(A)には、領域1200に隣り合う領域1210~1217の隣接方向を示す数字(以下、「方向指数(チェインコード)」という)と、方向指数に対応する8方向の矢印とを示す。図12(B)には、h行h列の2次元行列データ(Y,X)のメッシュデータ1220を一例として示す。また、図12(B)には、到達可能の識別情報が付与された領域1221~1234および当該領域1221~1234に囲まれた到達可能の識別情報が付与された領域をハッチングで図示する。 FIG. 12 is an explanatory view schematically showing an example of vehicle reachable range extraction by the navigation device. Moreover, FIG. 13 is explanatory drawing which shows typically an example of the mesh data after the reachable range of the vehicle is extracted by the navigation device. FIG. 12A shows numbers indicating the adjacent directions of the regions 1210 to 1217 adjacent to the region 1200 (hereinafter referred to as “direction index (chain code)”) and arrows in eight directions corresponding to the direction index. . FIG. 12B shows mesh data 1220 of two-dimensional matrix data (Y, X) of h rows and h columns as an example. In FIG. 12B, the regions 1221 to 1234 to which reachable identification information is assigned and the regions to which reachable identification information is enclosed surrounded by the regions 1221 to 1234 are illustrated by hatching.
 方向指数は、単位長さの線分の向いている方向を示す。メッシュデータ(X,Y)において、方向指数に対応する座標は、(X+dx,Y+dy)となる。たとえば、図12(A)に示すように、領域1200から左下に隣り合う領域1210へ向かう方向の方向指数は「0」である。領域1200から下に隣り合う領域1211へ向かう方向の方向指数は「1」である。領域1200から右下に隣り合う領域1212へ向かう方向の方向指数は「2」である。途中省略するが、領域1200から左に隣り合う領域1217へ向かう方向の方向指数は「7」である。 The direction index indicates the direction in which the line segment of the unit length is facing. In the mesh data (X, Y), the coordinates corresponding to the direction index are (X + dx, Y + dy). For example, as shown in FIG. 12A, the direction index in the direction from the region 1200 toward the region 1210 adjacent to the lower left is “0”. The direction index in the direction from the region 1200 toward the adjacent region 1211 is “1”. The direction index in the direction from the region 1200 toward the region 1212 adjacent to the lower right is “2”. Although omitted in the middle, the direction index in the direction from the region 1200 toward the region 1217 adjacent to the left is “7”.
 ナビゲーション装置300は、領域1200に隣り合う到達可能の識別情報「1」が付与された領域を左回りに検索する。また、ナビゲーション装置300は、領域1200に隣り合う到達可能の識別情報が付与された領域の検索開始点を、前回の方向指数に基づいて決定する。具体的には、ナビゲーション装置300は、他の領域から領域1200へ向かう方向指数が「0」であった場合、領域1200の左に隣り合う領域、すなわち方向指数「7」の方向に隣り合う領域1217から検索を開始する。 The navigation device 300 searches the area to which the reachable identification information “1” adjacent to the area 1200 is assigned in the counterclockwise direction. In addition, the navigation device 300 determines a search start point of an area to which reachable identification information adjacent to the area 1200 is assigned based on the previous direction index. Specifically, when the direction index from another area toward area 1200 is “0”, navigation device 300 has an area adjacent to the left of area 1200, that is, an area adjacent in the direction of direction index “7”. The search starts at 1217.
 同様に、ナビゲーション装置300は、他の領域から領域1200へ向かう方向指数が「1」~「7」であった場合、領域1200の左下、下、右下、右、右上、上、左上に隣り合う領域、すなわちそれぞれ方向指数「0」、「1」、「2」、「3」、「4」、「5」、「6」の方向に隣り合う領域1210~1216から検索を開始する。そして、ナビゲーション装置300は、領域1200から各領域1210~1217のいずれか一の領域から到達可能の識別情報「1」を検出した場合、到達可能の識別情報「1」を検出した領域1210~1217に対応する方向指数「0」~「7」を、領域1200に関連付けて記憶装置に書き込む。 Similarly, when the direction index from another region toward the region 1200 is “1” to “7”, the navigation device 300 is adjacent to the lower left, lower, lower right, right, upper right, upper, upper left of the region 1200. The search is started from the matching regions, that is, the regions 1210 to 1216 adjacent in the directions of the direction indices “0”, “1”, “2”, “3”, “4”, “5”, “6”, respectively. When the navigation apparatus 300 detects the reachable identification information “1” from any one of the areas 1210 to 1217 from the area 1200, the areas 1210 to 1217 in which the reachable identification information “1” is detected. The direction indices “0” to “7” corresponding to are written in the storage device in association with the area 1200.
 具体的には、ナビゲーション装置300は、次のように車両の到達可能範囲の輪郭を抽出する。図12(B)に示すように、ナビゲーション装置300は、まず、h行h列の2次元行列データ(Y,X)のメッシュデータ1220のa行a列の領域から行単位で到達可能の識別情報が付与された領域を検索する。 Specifically, the navigation device 300 extracts the outline of the reachable range of the vehicle as follows. As shown in FIG. 12 (B), the navigation apparatus 300 first identifies identification that can be reached in units of rows from the region of a row and a column of the mesh data 1220 of the two-dimensional matrix data (Y, X) of h row and h column. Search for an area to which information is assigned.
 メッシュデータ1220のa行目のすべての領域には到達不可能の識別情報が付与されているので、つぎに、ナビゲーション装置300は、メッシュデータ1220のb行a列の領域からb行h列の領域に向かって到達可能の識別情報を検索する。そして、ナビゲーション装置300は、メッシュデータ1220のb行e列の領域1221において到達可能の識別情報を検出した後、メッシュデータ1220のb行e列の領域1221から左回りに、車両の到達可能範囲の輪郭となる到達可能の識別情報を有する領域を検索する。 Since unreachable identification information is given to all the regions in the a-th row of the mesh data 1220, the navigation apparatus 300 next moves the b-row and h-column regions from the b-row and a-column region of the mesh data 1220. Search for identification information that can be reached toward the area. Then, after detecting the reachable identification information in the region 1221 of the b row and e column of the mesh data 1220, the navigation device 300 moves counterclockwise from the region 1221 of the b row and e column of the mesh data 1220, and reaches the reachable range of the vehicle. The region having the reachable identification information that becomes the outline of is searched.
 具体的には、ナビゲーション装置300は、領域1221の左に隣り合うb行d列の領域はすでに検索済みのため、まず、領域1221の左下に隣り合う領域1222から左回りに、到達可能の識別情報を有する領域があるか否かを検索する。そして、ナビゲーション装置300は、領域1222の到達可能の識別情報を検出し、領域1221から領域1122へ向かう方向の方向指数「0」を、領域1221に関連付けて記憶装置に記憶する。 Specifically, the navigation device 300 has already searched for the region of the b row and the d column adjacent to the left of the region 1221. Therefore, the navigation apparatus 300 first identifies the reachable from the region 1222 adjacent to the lower left of the region 1221 counterclockwise. Search whether there is an area having information. The navigation device 300 detects the reachable identification information of the region 1222 and stores the direction index “0” in the direction from the region 1221 toward the region 1122 in association with the region 1221 in the storage device.
 つぎに、ナビゲーション装置300は、前回の方向指数「0」であるため、領域1222の左に隣り合うc行c列の領域から左回りに、到達可能の識別情報を有する領域があるか否かを検索する。そして、ナビゲーション装置300は、領域1222の左下に隣り合う領域1223の到達可能の識別情報を検出し、領域1222から領域1223へ向かう方向の方向指数「0」を、前回の方向指数に関連付けて記憶装置に記憶する。 Next, since the navigation device 300 has the previous direction index “0”, whether there is an area having reachable identification information counterclockwise from the area of the c row and the c column adjacent to the left of the area 1222. Search for. Then, the navigation device 300 detects the reachable identification information of the region 1223 adjacent to the lower left of the region 1222, and stores the direction index “0” in the direction from the region 1222 to the region 1223 in association with the previous direction index. Store in the device.
 以降、ナビゲーション装置300は、前回の方向指数に基づいて検索開始点を決定し、検索開始点から左回りに到達可能の識別情報を有する領域があるか否かを検索する処理を、方向指数に対応する矢印が領域1221に戻ってくるまで繰り返しおこなう。具体的には、ナビゲーション装置300は、領域1222の左に隣り合う領域から左回りに、到達可能の識別情報を有する領域があるか否かを検索し、領域1223の下に隣り合う領域1224の到達可能の識別情報を検出して、方向指数「1」を前回の方向指数に関連付けて記憶装置に記憶する。 Thereafter, the navigation device 300 determines a search start point based on the previous direction index, and uses the direction index as a process for searching whether there is an area having identification information that can be reached counterclockwise from the search start point. Repeat until the corresponding arrow returns to region 1221. Specifically, navigation device 300 searches whether there is a region having identification information that can be reached counterclockwise from the region adjacent to the left of region 1222, and searches for region 1224 adjacent below region 1223. The reachable identification information is detected, and the direction index “1” is stored in the storage device in association with the previous direction index.
 同様に、ナビゲーション装置300は、前回の方向指数に基づいて検索開始点を決定した後、検索開始点から左回りに到達可能の識別情報を有する領域を検索し、到達可能の識別情報を有する領域1224~1234を順次検出する。そして、ナビゲーション装置300は、方向指数を取得するごとに前回の方向指数に関連付けて記憶装置に記憶する。 Similarly, after determining the search start point based on the previous direction index, the navigation device 300 searches for an area having identification information that can be reached counterclockwise from the search start point, and an area having reachable identification information 1224 to 1234 are sequentially detected. Then, every time the navigation device 300 acquires the direction index, the navigation device 300 associates it with the previous direction index and stores it in the storage device.
 その後、ナビゲーション装置300は、領域1234の右上に隣り合うb行f列の領域から左回りに、到達可能の識別情報を有する領域があるか否かを検索し、領域1234の上に隣り合う領域1221の到達可能の識別情報を検出して、方向指数「5」を前回の方向指数に関連付けて記憶装置に記憶する。これにより、記憶装置には、方向指数「0」→「0」→「1」→「0」→「2」→「3」→「4」→「3」→「2」→「5」→「5」→「6」→「6」→「5」がこの順で記憶される。 After that, the navigation device 300 searches whether there is an area having identification information that can be reached in the counterclockwise direction from the area of the b row and f column adjacent to the upper right of the area 1234, and the adjacent area on the area 1234 The reachable identification information 1221 is detected, and the direction index “5” is stored in the storage device in association with the previous direction index. As a result, the direction index “0” → “0” → “1” → “0” → “2” → “3” → “4” → “3” → “2” → “5” → “5” → “6” → “6” → “5” is stored in this order.
 このようにナビゲーション装置300は、最初に検出した領域1221から、当該領域1221に隣り合う到達可能の識別情報を有する領域1222~1234を左回りに順次検索し方向指数を取得する。そして、ナビゲーション装置300は、領域1221から方向指数に対応する方向の一の領域を塗りつぶすことで、図13に示すように、車両の到達可能範囲の輪郭1301および当該輪郭1301に囲まれた部分1302からなる車両の到達可能範囲1300を有するメッシュデータを生成する。 Thus, the navigation device 300 sequentially searches counterclockwise the regions 1222 to 1234 having the reachable identification information adjacent to the region 1221 from the first detected region 1221 to obtain the direction index. Then, the navigation apparatus 300 fills one area in the direction corresponding to the direction index from the area 1221, so that the outline 1301 of the reachable range of the vehicle and the part 1302 surrounded by the outline 1301 are shown in FIG. 13. The mesh data having the vehicle reachable range 1300 is generated.
(ナビゲーション装置300における画像処理)
 上述のように、ナビゲーション装置300は、車両の残存エネルギー量に基づいて探索された移動体の到達可能なノードに基づいて移動体の到達可能範囲を生成しディスプレイ313に表示させる。以下、たとえば、ナビゲーション装置300がEV車に搭載されている場合を例に説明する。
(Image processing in the navigation device 300)
As described above, the navigation device 300 generates a reachable range of the moving object based on the reachable node of the moving object searched based on the remaining energy amount of the vehicle, and causes the display 313 to display the reachable range. Hereinafter, for example, a case where the navigation device 300 is mounted on an EV car will be described as an example.
 図14は、ナビゲーション装置による画像処理の手順の一例を示すフローチャートである。図14のフローチャートにおいて、ナビゲーション装置300は、まず、たとえば、通信I/F315を介して、自装置が搭載された車両の現在地点(ofx,ofy)を取得する(ステップS1401)。つぎに、ナビゲーション装置300は、たとえば、通信I/F315を介して、車両の現在地点(ofx,ofy)における車両の初期保有エネルギー量を取得する(ステップS1402)。 FIG. 14 is a flowchart showing an example of the procedure of image processing by the navigation device. In the flowchart of FIG. 14, the navigation device 300 first acquires the current location (ofx, ofy) of the vehicle on which the device is mounted, for example, via the communication I / F 315 (step S1401). Next, the navigation apparatus 300 acquires the initial stored energy amount of the vehicle at the current location (ofx, ofy) of the vehicle, for example, via the communication I / F 315 (step S1402).
 つぎに、ナビゲーション装置300は、到達可能ノード探索処理をおこなう(ステップS1403)。この際、特定のノードに固定フラグを付与する(ステップS1404)。つぎに、ナビゲーション装置300は、メッシュデータ生成、消去禁止フラグ付与および識別情報付与処理をおこなう(ステップS1405)。つぎに、ナビゲーション装置300は、車両の到達可能範囲の輪郭を抽出する(ステップS1407)。その後、ナビゲーション装置300は、ディスプレイ313に車両の到達可能範囲を表示し(ステップS1408)、本フローチャートによる処理を終了する。 Next, the navigation device 300 performs a reachable node search process (step S1403). At this time, a fixed flag is assigned to a specific node (step S1404). Next, the navigation device 300 performs mesh data generation, deletion prohibition flag assignment, and identification information addition processing (step S1405). Next, the navigation apparatus 300 extracts the outline of the reachable range of the vehicle (step S1407). Thereafter, the navigation device 300 displays the reachable range of the vehicle on the display 313 (step S1408), and ends the processing according to this flowchart.
(ナビゲーション装置300における推定消費電力量算出処理)
 つぎに、ナビゲーション装置300による推定消費電力量算出処理について説明する。図15は、ナビゲーション装置による推定消費電力量算出処理の手順の一例を示すフローチャートである。図15に示すフローチャートでは、上述したステップS1403の到達可能ノード探索処理でおこなう処理である。
(Estimated power consumption calculation process in the navigation device 300)
Next, the estimated power consumption calculation process by the navigation device 300 will be described. FIG. 15 is a flowchart illustrating an example of a procedure of estimated power consumption calculation processing by the navigation device. In the flowchart illustrated in FIG. 15, the process is performed in the reachable node search process in step S1403 described above.
 図15のフローチャートにおいて、ナビゲーション装置300は、まず、通信I/F315を介して、プルーブデータなどの渋滞情報や渋滞予測データを取得する(ステップS1501)。つぎに、ナビゲーション装置300は、リンクの長さや、リンクの道路種別を取得する(ステップS1502)。 In the flowchart of FIG. 15, the navigation apparatus 300 first acquires traffic jam information such as probe data and traffic jam prediction data via the communication I / F 315 (step S1501). Next, the navigation apparatus 300 acquires the length of the link and the road type of the link (step S1502).
 つぎに、ナビゲーション装置300は、ステップS1501,S1502で取得した情報に基づいて、リンクの旅行時間を算出する(ステップS1503)。リンクの旅行時間とは、車両がリンクを走行し終わるのに要する時間である。つぎに、ナビゲーション装置300は、ステップS1501~S1503で取得した情報に基づいて、リンクの平均速度を算出する(ステップS1504)。リンクの平均速度とは、車両がリンクを走行する際の平均速度である。 Next, the navigation device 300 calculates the travel time of the link based on the information acquired in steps S1501 and S1502 (step S1503). The travel time of the link is the time required for the vehicle to finish traveling on the link. Next, the navigation apparatus 300 calculates the average link speed based on the information acquired in steps S1501 to S1503 (step S1504). The average speed of the link is an average speed when the vehicle travels on the link.
 つぎに、ナビゲーション装置300は、リンクの標高データを取得する(ステップS1505)。つぎに、ナビゲーション装置300は、車両の設定情報を取得する(ステップS1506)。つぎに、ナビゲーション装置300は、ステップS1501~S1506で取得した情報に基づいて、上述した(1)式~(6)式のいずれか1つ以上の消費エネルギー推定式を用いて、リンクにおける推定消費電力量を算出し(ステップS1507)、本フローチャートによる処理を終了する。 Next, the navigation device 300 acquires the altitude data of the link (step S1505). Next, the navigation apparatus 300 acquires vehicle setting information (step S1506). Next, the navigation apparatus 300 uses the energy consumption estimation formula of any one of the above-described formulas (1) to (6) based on the information acquired in steps S1501 to S1506 to estimate the consumption at the link. The amount of electric power is calculated (step S1507), and the processing according to this flowchart ends.
(ナビゲーション装置300における到達可能地点探索処理)
 つぎに、ナビゲーション装置300による到達可能地点探索処理について説明する。図16-1,16-2は、ナビゲーション装置による到達可能地点探索処理の手順を示すフローチャートである。図16-1,16-2のフローチャートにおいて、ナビゲーション装置300は、探索始点に最も近いリンクL(i)_jに接続するノードN(i)_jをノード候補に追加する(ステップS1601)。探索始点とは、上述したステップS1401で取得した車両の現在地点(ofx,ofy)である。
(Reachable point search process in the navigation device 300)
Next, reachable point search processing by the navigation device 300 will be described. FIGS. 16A and 16B are flowcharts illustrating the procedure of reachable point search processing by the navigation device. In the flowcharts of FIGS. 16A and 16B, the navigation apparatus 300 adds the node N (i) _j connected to the link L (i) _j closest to the search start point to the node candidates (step S1601). The search start point is the current point (ofx, ofy) of the vehicle acquired in step S1401 described above.
 変数i,jは、任意の数値であり、たとえば、探索始点に最も近いリンクおよびノードをそれぞれリンクL(1)_jおよびノードN(1)_jとし、さらに、ノードN(1)_jに接続するリンクをリンクL(2)_j、リンクL(2)_jに接続するノードをノードN(2)_jとしていけばよい(j=1,2、・・・,j1)。変数j1は、任意の数値であり、同一の階層に複数のリンクまたはノードが存在することを意味する。 The variables i and j are arbitrary numerical values. For example, a link and a node closest to the search start point are a link L (1) _j and a node N (1) _j, respectively, and are further connected to the node N (1) _j. A node connecting the link to the link L (2) _j and the node connecting to the link L (2) _j may be a node N (2) _j (j = 1, 2,..., J1). The variable j1 is an arbitrary numerical value and means that a plurality of links or nodes exist in the same hierarchy.
 つぎに、ナビゲーション装置300は、ノード候補が1つ以上あるか否かを判断する(ステップS1602)。ノード候補が1つ以上ある場合(ステップS1602:Yes)、ナビゲーション装置300は、車両の現在地点からノード候補までの累計消費電力量が最小なノード候補を選択する(ステップS1603)。たとえば、ナビゲーション装置300がノード候補としてノードN(i)_jを選択したとして以降の処理を説明する。 Next, the navigation apparatus 300 determines whether or not there are one or more node candidates (step S1602). When there is one or more node candidates (step S1602: Yes), the navigation apparatus 300 selects a node candidate having the minimum cumulative power consumption from the current point of the vehicle to the node candidate (step S1603). For example, the following processing will be described assuming that the navigation device 300 selects the node N (i) _j as a node candidate.
 つぎに、ナビゲーション装置300は、車両の現在地点からノードN(i)_jまでの累計消費電力量が指定エネルギー量以下であるか否かを判断する(ステップS1604)。指定エネルギー量とは、たとえば、車両の現在地点における車両の残存エネルギー量である。指定エネルギー量以下である場合(ステップS1604:Yes)、ナビゲーション装置300は、ノードN(i)_jに接続するすべてのリンクL(i+1)_jを抽出する(ステップS1605)。 Next, the navigation apparatus 300 determines whether or not the cumulative power consumption from the current point of the vehicle to the node N (i) _j is less than or equal to the specified energy amount (step S1604). The designated energy amount is, for example, the remaining energy amount of the vehicle at the current location of the vehicle. When the amount is equal to or less than the specified energy amount (step S1604: Yes), the navigation apparatus 300 extracts all the links L (i + 1) _j connected to the node N (i) _j (step S1605).
 つぎに、ナビゲーション装置300は、ステップS1605において抽出したリンクL(i+1)_jのうち、一のリンクL(i+1)_jを選択する(ステップS1606)。つぎに、ナビゲーション装置300は、ステップS1606において選択した一のリンクL(i+1)_jをリンク候補とするか否かを判断する候補判断処理をおこなう(ステップS1607,S1608)。 Next, the navigation apparatus 300 selects one link L (i + 1) _j among the links L (i + 1) _j extracted in step S1605 (step S1606). Next, the navigation apparatus 300 performs candidate determination processing for determining whether or not the one link L (i + 1) _j selected in step S1606 is a link candidate (steps S1607 and S1608).
 一のリンクL(i+1)_jをリンク候補とする場合(ステップS1608:Yes)、ナビゲーション装置300は、一のリンクL(i+1)_jでの消費電力量算出処理をおこなう(ステップS1609)。つぎに、ナビゲーション装置300は、一のリンクL(i+1)_jに接続するノードN(i+1)_jまでの累計消費電力量W(i+1)_jを算出する(ステップS1610)。つぎに、ナビゲーション装置300は、ノードN(i+1)_jに接続する処理済みの他の経路があるか否かを判断する(ステップS1611)。 When the one link L (i + 1) _j is set as a link candidate (step S1608: Yes), the navigation apparatus 300 performs a power consumption calculation process for the one link L (i + 1) _j (step S1609). Next, the navigation apparatus 300 calculates the cumulative power consumption W (i + 1) _j up to the node N (i + 1) _j connected to one link L (i + 1) _j (step S1610). Next, the navigation apparatus 300 determines whether there is another processed path connected to the node N (i + 1) _j (step S1611).
 処理済みの他の経路がある場合(ステップS1611:Yes)、ナビゲーション装置300は、車両の現在地点からノードN(i+1)_jまでの累計消費電力量W(i+1)_jが他の経路での累計消費電力量よりも小さいか否かを判断する(ステップS1612)。他の経路での累計消費電力量よりも小さい場合(ステップS1612:Yes)、ナビゲーション装置300は、ノードN(i+1)_jに車両の現在地点からノードN(i+1)_jまでの累計消費電力量W(i+1)_jを設定する(ステップS1613)。 If there is another route that has been processed (step S1611: Yes), the navigation apparatus 300 determines that the cumulative power consumption W (i + 1) _j from the current point of the vehicle to the node N (i + 1) _j is the cumulative amount of the other route. It is determined whether it is smaller than the power consumption (step S1612). If the accumulated power consumption is smaller than the other route (step S1612: Yes), the navigation device 300 causes the node N (i + 1) _j to accumulate the accumulated power consumption W from the current point of the vehicle to the node N (i + 1) _j. (I + 1) _j is set (step S1613).
 一方、処理済みの他の経路がない場合(ステップS1611:No)、ナビゲーション装置300は、ステップS1613に進む。つぎに、ナビゲーション装置300は、ノードN(i+1)_jがノード候補であるか否かを判断する(ステップS1614)。ノード候補でない場合(ステップS1614:No)、ナビゲーション装置300は、ノードN(i+1)_jをノード候補に追加する(ステップS1615)。 On the other hand, when there is no other processed route (step S1611: No), the navigation apparatus 300 proceeds to step S1613. Next, the navigation apparatus 300 determines whether or not the node N (i + 1) _j is a node candidate (step S1614). When it is not a node candidate (step S1614: No), the navigation apparatus 300 adds the node N (i + 1) _j to the node candidate (step S1615).
 また、一のリンクL(i+1)_jをリンク候補としない場合(ステップS1608:No)、車両の現在地点からノードN(i+1)_jまでの累計消費電力量W(i+1)_jが他の経路での累計消費電力量以上である場合(ステップS1612:No)、ノードN(i+1)_jがノード候補である場合(ステップS1614:Yes)、ナビゲーション装置300は、ステップS1616へ進む。 When one link L (i + 1) _j is not a link candidate (step S1608: No), the accumulated power consumption W (i + 1) _j from the current point of the vehicle to the node N (i + 1) _j is on another route. If the node N (i + 1) _j is a node candidate (step S1614: Yes), the navigation device 300 proceeds to step S1616.
 つぎに、ナビゲーション装置300は、すべてのリンクL(i+1)_jの候補判断処理が終了したか否かを判断する(ステップS1616)。すべてのリンクL(i+1)_jの候補判断処理が終了した場合(ステップS1616:Yes)、ノードN(i)_jをノード候補から外した後(ステップS1617)、ステップS1602へ戻る。そして、ナビゲーション装置300は、ノード候補が1つ以上ある場合(ステップS1602:Yes)、ノード候補の中から、車両の現在地点からの累計消費電力量が最小なノード候補を選択し(ステップS1603)、ステップS1603において選択したノード候補を次のノードN(i)_jとしてステップS1604以降の処理をおこなう。 Next, the navigation apparatus 300 determines whether or not the candidate determination process for all links L (i + 1) _j has been completed (step S1616). When the candidate determination process for all links L (i + 1) _j is completed (step S1616: Yes), the node N (i) _j is excluded from the node candidates (step S1617), and the process returns to step S1602. Then, when there are one or more node candidates (step S1602: Yes), the navigation apparatus 300 selects a node candidate having the minimum cumulative power consumption from the current location of the vehicle from the node candidates (step S1603). In step S1603, the node candidate selected in step S1603 is set as the next node N (i) _j, and the processes in and after step S1604 are performed.
 一方、すべてのリンクL(i+1)_jの候補判断処理が終了していない場合(ステップS1616:No)、ステップS1606へ戻る。そして、ナビゲーション装置300は、再度、ノードN(i)_jに接続する他のリンクL(i+1)_jを選択し、同一のノード候補に接続するすべてのリンクL(i+1)_jの候補判断処理が終了するまで(ステップS1616:Yes)、ステップS1607からステップS1615までの処理を繰り返しおこなう。また、ノード候補が1つ以上ない場合(ステップS1602:No)、車両の現在地点からノードN(i)_jまでの累計消費電力量が指定エネルギー量より大きい場合(ステップS1604:No)、ナビゲーション装置300は、本フローチャートによる処理を終了する。 On the other hand, when the candidate determination process for all links L (i + 1) _j is not completed (step S1616: No), the process returns to step S1606. The navigation device 300 selects another link L (i + 1) _j connected to the node N (i) _j again, and performs candidate determination processing for all the links L (i + 1) _j connected to the same node candidate. Until the process ends (step S1616: Yes), the processes from step S1607 to step S1615 are repeated. If there is no one or more node candidates (step S1602: No), the cumulative power consumption from the current point of the vehicle to the node N (i) _j is larger than the specified energy amount (step S1604: No), the navigation device 300 terminates the processing according to this flowchart.
(ナビゲーション装置300におけるリンク候補判断処理)
 つぎに、ナビゲーション装置300によるリンク候補判断処理について説明する。図17は、ナビゲーション装置によるリンク候補判断処理の手順の一例を示すフローチャートである。図17のフローチャートは、上述したステップS1607でおこなう処理の一例である。
(Link candidate determination process in the navigation device 300)
Next, link candidate determination processing by the navigation device 300 will be described. FIG. 17 is a flowchart illustrating an example of a procedure of link candidate determination processing by the navigation device. The flowchart in FIG. 17 is an example of the process performed in step S1607 described above.
 図17のフローチャートにおいて、ナビゲーション装置300は、まず、ステップS1606において選択した一のリンクL(i+1)_jが通行禁止であるか否かを判断する(ステップS1701)。通行禁止でない場合(ステップS1701:No)、ナビゲーション装置300は、一のリンクL(i+1)_jが一方通行の逆走であるか否かを判断する(ステップS1702)。一方通行の逆走でない場合(ステップS1702:No)、ナビゲーション装置300は、一のリンクL(i+1)_jが時間規制や季節規制されているか否かを判断する(ステップS1703)。 In the flowchart of FIG. 17, the navigation apparatus 300 first determines whether or not the one link L (i + 1) _j selected in step S1606 is prohibited from passing (step S1701). If the passage is not prohibited (step S1701: No), the navigation apparatus 300 determines whether one link L (i + 1) _j is a one-way reverse run (step S1702). When it is not one-way reverse running (step S1702: No), the navigation apparatus 300 determines whether one link L (i + 1) _j is time-regulated or seasonally regulated (step S1703).
 時間規制や季節規制されていない場合(ステップS1703:No)、ナビゲーション装置300は、一のリンクL(i+1)_jが一のリンクL(i+1)_jの車両の現在地点側のノードN(i+1)に接続するリンクL(i)_jよりも重要度が低いか否かを判断する(ステップS1704)。リンクL(i)_jよりも重要度が高い場合(ステップS1704:No)、ナビゲーション装置300は、一のリンクL(i+1)_jをリンク候補に決定し(ステップS1705)、本フローチャートによる処理を終了する。 When time regulation and season regulation are not performed (step S1703: No), the navigation apparatus 300 uses the node N (i + 1) on the current point side of the vehicle in which the one link L (i + 1) _j is the one link L (i + 1) _j. It is determined whether or not the importance is lower than the link L (i) _j connected to (Step S1704). If the importance level is higher than that of the link L (i) _j (step S1704: No), the navigation apparatus 300 determines one link L (i + 1) _j as a link candidate (step S1705), and ends the processing according to this flowchart. To do.
 一方、通行禁止である場合(ステップS1701:Yes)、一方通行の逆走である場合(ステップS1702:Yes)、時間規制や季節規制されている場合(ステップS1703:Yes)、接続するリンクL(i)_jよりも重要度が低い場合(ステップS1704:Yes)ナビゲーション装置300は、本フローチャートによる処理を終了する。 On the other hand, when it is prohibited to pass (step S1701: Yes), when it is one-way reverse running (step S1702: Yes), when time regulation or seasonal regulation is imposed (step S1703: Yes), the link L ( i) When the importance is lower than _j (step S1704: Yes), the navigation apparatus 300 ends the process according to this flowchart.
(ナビゲーション装置300における消去禁止フラグに関する処理)
 次に、消去禁止フラグに関する処理について説明する。図18は、固定フラグの付与と消去禁止フラグの付与にかかる処理の一例を示すフローチャートである。この処理は、探索部103の固定フラグ付与部103aがおこなう処理(ステップS1404)と、分割部104の消去禁止フラグ付与部104aがおこなう処理(ステップS1405)とを併せて記載してある。
(Processing related to erasure prohibition flag in navigation device 300)
Next, processing related to the erasure prohibition flag will be described. FIG. 18 is a flowchart illustrating an example of processing relating to the assignment of a fixed flag and the assignment of an erasure prohibition flag. This process includes a process (step S1404) performed by the fixed flag assigning unit 103a of the search unit 103 and a process (step S1405) performed by the erasure prohibition flag assigning unit 104a of the dividing unit 104.
 はじめに、探索部103は、上記処理による到達可能ノードを読み込む(ステップS1801)。つぎに、分割部104により地図情報120をメッシュ化処理する(ステップS1802)。その後、固定フラグ付与部103aは、このノードが固有情報である固定フラグを付与するノードであるか判断する(ステップS1803)。固定フラグを付与するノードは、上記のように、トンネルや橋、山の一本道などの特定のノードである。読み込んだノードが固定フラグを付与されたノードであれば(ステップS1803:Yes)、消去禁止フラグ付与部104aは、この固定フラグを付与されたノードを含む画素に消去禁止フラグを付与し(ステップS1804)、ステップS1805に移行する。また、読み込んだノードが固定フラグを付与されたノードでなければ(ステップS1803:No)、ステップS1805に移行する。ステップS1805では、到達可能範囲の識別情報をそれぞれの画素に付与する。 First, the search unit 103 reads a reachable node by the above process (step S1801). Next, the dividing unit 104 meshes the map information 120 (step S1802). Thereafter, the fixed flag assigning unit 103a determines whether this node is a node to which a fixed flag that is unique information is assigned (step S1803). As described above, the node to which the fixed flag is assigned is a specific node such as a tunnel, a bridge, or a mountain road. If the read node is a node to which the fixed flag is assigned (step S1803: Yes), the erasure prohibition flag assigning unit 104a assigns an erasure prohibition flag to the pixel including the node to which the fixed flag is assigned (step S1804). ), And the process proceeds to step S1805. If the read node is not a node given a fixed flag (step S1803: No), the process proceeds to step S1805. In step S1805, reachable range identification information is assigned to each pixel.
(ナビゲーション装置300における識別情報付与処理)
 つぎに、ナビゲーション装置300による識別情報付与処理について説明する。図19は、ナビゲーション装置による識別情報付与処理の手順の一例を示すフローチャートである。図19のフローチャートは、上述したステップS1405でおこなう処理である。
(Identification information adding process in the navigation device 300)
Next, the identification information giving process by the navigation device 300 will be described. FIG. 19 is a flowchart illustrating an example of a procedure of identification information addition processing by the navigation device. The flowchart in FIG. 19 is the processing performed in step S1405 described above.
 図19のフローチャートにおいて、ナビゲーション装置300は、まず、到達可能なノード(探索可能地点)の経度緯度情報(x,y)を取得する(ステップS1901)。つぎに、ナビゲーション装置300は、最大経度x_max、最小経度x_min、最大緯度y_max、最小緯度y_minを取得する(ステップS1902)。 In the flowchart of FIG. 19, the navigation apparatus 300 first acquires longitude / latitude information (x, y) of reachable nodes (searchable points) (step S1901). Next, the navigation apparatus 300 acquires the maximum longitude x_max, the minimum longitude x_min, the maximum latitude y_max, and the minimum latitude y_min (step S1902).
 つぎに、ナビゲーション装置300は、ステップS1401で取得した車両の現在地点(ofx,ofy)から、最大経度x_maxまでの距離w1、最小経度x_minまでの距離w2、最大緯度y_maxまでの距離w3、最小緯度y_minまでの距離w4をそれぞれ算出する(ステップS1903)。つぎに、ナビゲーション装置300は、距離w1~w4のうちの最も長い距離w5=max(w1,w2,w3,w4)を取得する(ステップS1904)。 Next, the navigation apparatus 300 determines the distance w1 from the current vehicle location (ofx, ofy) acquired in step S1401 to the maximum longitude x_max, the distance w2 to the minimum longitude x_min, the distance w3 to the maximum latitude y_max, and the minimum latitude. The distances w4 to y_min are respectively calculated (step S1903). Next, the navigation apparatus 300 acquires the longest distance w5 = max (w1, w2, w3, w4) among the distances w1 to w4 (step S1904).
 つぎに、ナビゲーション装置300は、記憶装置に記憶された地図データを絶対座標系からスクリーン座標系へ変換するための倍率mag=w5/nを算出する(ステップS1905)。つぎに、ナビゲーション装置300は、ステップS1905において算出した倍率magを用いて地図データを絶対座標系からスクリーン座標系へ変換し、m×m画素のメッシュデータ(X,Y)を生成する(ステップS1906)。 Next, the navigation device 300 calculates a magnification mag = w5 / n for converting the map data stored in the storage device from the absolute coordinate system to the screen coordinate system (step S1905). Next, the navigation apparatus 300 converts the map data from the absolute coordinate system to the screen coordinate system using the magnification mag calculated in step S1905, and generates mesh data (X, Y) of m × m pixels (step S1906). ).
 ナビゲーション装置300は、ステップS1806において、到達可能なノードを含むメッシュデータ(X,Y)に到達可能の識別情報を付与し、到達可能なノードを含まないメッシュデータ(X,Y)に到達不可能の識別情報を付与する。そして、ナビゲーション装置300は、第1識別情報変更処理をおこなうことで、橋またはトンネルに相当するメッシュデータ(X,Y)の欠損点を除去する(ステップS1907)。 In step S1806, the navigation device 300 gives reachable identification information to the mesh data (X, Y) including the reachable node, and cannot reach the mesh data (X, Y) that does not include the reachable node. The identification information is assigned. And the navigation apparatus 300 removes the missing point of the mesh data (X, Y) corresponding to a bridge or a tunnel by performing the 1st identification information change process (step S1907).
 つぎに、ナビゲーション装置300は、第2識別情報変更処理をおこなう(ステップS1908)。つぎに、ナビゲーション装置300は、第3識別情報変更処理をおこない(ステップS1909)、本フローチャートによる処理を終了する。第2識別情報変更処理は、クローニングの膨張処理である。第3識別情報変更処理は、クローニングの縮小処理である。なお、本フローチャートでは、第1識別情報変更処理(ステップS1907)の後で第2識別情報変更処理(ステップS1908)と第3識別情報変更処理(ステップS1909)を行っているが、第2識別情報変更処理(ステップS1908)と第3識別情報変更処理(ステップS1909)の後で、第1識別情報変更処理(ステップS1907)を行ってもよい。 Next, the navigation apparatus 300 performs a second identification information change process (step S1908). Next, the navigation apparatus 300 performs a third identification information change process (step S1909), and ends the process according to this flowchart. The second identification information changing process is a cloning expansion process. The third identification information change process is a cloning reduction process. In this flowchart, the second identification information change process (step S1908) and the third identification information change process (step S1909) are performed after the first identification information change process (step S1907). After the change process (step S1908) and the third identification information change process (step S1909), the first identification information change process (step S1907) may be performed.
(ナビゲーション装置300における第1識別情報変更処理)
 つぎに、ナビゲーション装置300による第1識別情報変更処理について説明する。図20は、消去禁止フラグを用いたオープニング処理およびクローニング処理の一例を示すフローチャートである。この処理は付与部105がおこなう。図20のフローチャートは、上述したステップS1907~ステップS1909でおこなう処理の一例である。
(First Identification Information Changing Process in Navigation Device 300)
Next, the first identification information changing process by the navigation device 300 will be described. FIG. 20 is a flowchart illustrating an example of an opening process and a cloning process using an erasure prohibition flag. This process is performed by the assigning unit 105. The flowchart in FIG. 20 is an example of processing performed in steps S1907 to S1909 described above.
 はじめに、付与部105は、分割部104の出力であるメッシュデータを読み込む(ステップS2001)。つぎに、読み込んだメッシュデータの領域(画素)に消去禁止フラグが付与されているか否かを判断する(ステップS2002)。領域に消去禁止フラグが付与されていなければ(ステップS2002:No)、まず、この領域に対するオープニング処理をおこない(ステップS2003)、その後、この領域に対するクローニング処理をおこない(ステップS2004)、処理を終了する。しかし、領域に消去禁止フラグが付与されていれば(ステップS2002:Yes)、この領域に対するオープニング処理はおこなわず、クローニング処理のみをおこない(ステップS2004)、処理を終了する。 First, the assigning unit 105 reads mesh data that is the output of the dividing unit 104 (step S2001). Next, it is determined whether or not an erase prohibition flag is assigned to the area (pixel) of the read mesh data (step S2002). If the erasure prohibition flag is not assigned to the area (step S2002: No), first, an opening process is performed for this area (step S2003), and then a cloning process is performed for this area (step S2004), and the process is terminated. . However, if the erasure prohibition flag is given to the area (step S2002: Yes), the opening process is not performed on this area, only the cloning process is performed (step S2004), and the process is terminated.
 上記処理以外に、領域に消去禁止フラグが付与されていれば(ステップS2002:Yes)、この領域に対してオープニング処理およびクローニング処理のいずれもおこなわないこととしてもよい。 In addition to the above processing, if an erasure prohibition flag is assigned to the area (step S2002: Yes), neither the opening process nor the cloning process may be performed on this area.
(ナビゲーション装置300における到達可能範囲輪郭抽出処理)
 つぎに、ナビゲーション装置300による到達可能範囲輪郭抽出処理について説明する。図21-1,21-2は、ナビゲーション装置による到達可能範囲輪郭抽出処理の手順の一例を示すフローチャートである。図21-1,21-2のフローチャートは、上述したステップS1407でおこなう処理の一例である。
(Area reachable range extraction process in navigation device 300)
Next, reachable range contour extraction processing by the navigation device 300 will be described. FIGS. 21-1 and 21-2 are flowcharts illustrating an example of the procedure of the reachable range contour extraction process by the navigation device. The flowcharts of FIGS. 21-1 and 21-2 are an example of the process performed in step S1407 described above.
 図21-1,21-2のフローチャートにおいて、ナビゲーション装置300は、まず、my行mx列の2次元行列データのメッシュデータを取得する(ステップS2101)。つぎに、ナビゲーション装置300は、ステップS2101で取得したメッシュデータの各領域の経度緯度情報を取得する(ステップS2102)。 21-1 and 21-2, the navigation apparatus 300 first acquires mesh data of two-dimensional matrix data of my rows and mx columns (step S2101). Next, the navigation apparatus 300 acquires longitude / latitude information of each area of the mesh data acquired in step S2101 (step S2102).
 つぎに、ナビゲーション装置300は、メッシュデータのi行j列の領域の識別情報を検索するために、変数iを初期化し、変数iに1を加算する(ステップS2103,S2104)。つぎに、ナビゲーション装置300は、変数iがmy行を超えているか否かを判断する(ステップS2105)。 Next, the navigation device 300 initializes the variable i and adds 1 to the variable i in order to search for the identification information of the i-row and j-column area of the mesh data (steps S2103 and S2104). Next, the navigation apparatus 300 determines whether or not the variable i exceeds the my row (step S2105).
 変数iがmy行を超えていない場合(ステップS2105:No)、ナビゲーション装置300は、変数jを初期化し、変数jに1を加算する(ステップS2106,S2107)。つぎに、ナビゲーション装置300は、変数jがmx列を超えているか否かを判断する(ステップS2108)。 When the variable i does not exceed the my line (step S2105: No), the navigation apparatus 300 initializes the variable j and adds 1 to the variable j (steps S2106 and S2107). Next, the navigation apparatus 300 determines whether or not the variable j exceeds the mx column (step S2108).
 変数jがmx列を超えていない場合(ステップS2108:No)、ナビゲーション装置300は、メッシュデータのi行j列の領域の識別情報が「1」であるか否かを判断する(ステップS2109)。i行j列の領域の識別情報が「1」である場合(ステップS2109:Yes)、ナビゲーション装置300は、メッシュデータのi行j列の領域の左上座標(px1,py1)を取得する(ステップS2110)。i行j列の領域の左上座標(px1,py1)とは、i行j列の領域の最小経度px1、最小緯度py1である。 When the variable j does not exceed the mx column (step S2108: No), the navigation apparatus 300 determines whether or not the identification information of the i-row / j-column region of the mesh data is “1” (step S2109). . When the identification information of the i-th row and j-th column region is “1” (step S2109: Yes), the navigation apparatus 300 acquires the upper left coordinates (px1, py1) of the i-th row and j-th column region of the mesh data (step S2109). S2110). The upper left coordinates (px1, py1) of the region of i row and j column are the minimum longitude px1 and the minimum latitude py1 of the region of i row and j column.
 つぎに、ナビゲーション装置300は、変数jがmx列を超えていないか否かを判断する(ステップS2111)。変数jがmx列を超えている場合(ステップS2111:No)、ナビゲーション装置300は、メッシュデータのi行j列の領域の右下座標(px2,py2)を取得する(ステップS2112)。i行j列の領域の右下座標(px2,py2)とは、i行j列の領域の最大経度px2、最大緯度py2である。 Next, the navigation apparatus 300 determines whether or not the variable j exceeds the mx column (step S2111). When the variable j exceeds the mx column (step S2111: No), the navigation apparatus 300 acquires the lower right coordinates (px2, py2) of the i row and j column region of the mesh data (step S2112). The lower right coordinates (px2, py2) of the area of i row and j column are the maximum longitude px2 and the maximum latitude py2 of the area of i row and j column.
 つぎに、ナビゲーション装置300は、ステップS2110において取得した左上座標(px1,py1)と、ステップS2112において取得した右下座標(px2,py2)とを地図データに設定する(ステップS2116)。そして、ナビゲーション装置300は、左上座標(px1,py1)と、右下座標(px2,py2)とを対向する頂点とする矩形領域を塗りつぶし(ステップS2117)、ステップS2104に戻り、以降の処理を繰り返しおこなう。 Next, the navigation device 300 sets the upper left coordinates (px1, py1) acquired in step S2110 and the lower right coordinates (px2, py2) acquired in step S2112 as map data (step S2116). Then, the navigation apparatus 300 fills a rectangular area having the upper left coordinates (px1, py1) and the lower right coordinates (px2, py2) as opposed vertices (step S2117), returns to step S2104, and repeats the subsequent processing. Do it.
 一方、変数jがmx列を超えていない場合(ステップS2111:Yes)、ナビゲーション装置300は、変数jに1を加算し(ステップS2113)、メッシュデータのi行j列の領域の識別情報が「1」であるか否かを判断する(ステップS2114)。i行j列の領域の識別情報が「1」でない場合(ステップS2114:No)、ナビゲーション装置300は、メッシュデータのi行j-1列の領域の右下座標(px2,py2)を取得し(ステップS2115)、ステップS2116以降の処理をおこなう。 On the other hand, when the variable j does not exceed the mx column (step S2111: Yes), the navigation apparatus 300 adds 1 to the variable j (step S2113), and the identification information of the area of the i-th row and j-th column of the mesh data is “ It is determined whether or not “1” (step S2114). If the identification information of the i-th row and j-th column area is not “1” (step S2114: No), the navigation apparatus 300 acquires the lower right coordinates (px2, py2) of the i-th row and j-1th column area of the mesh data. (Step S2115), the processing after step S2116 is performed.
 また、i行j列の領域の識別情報が「1」である場合(ステップS2114:Yes)、ステップS2111に戻り、以降の処理を繰り返しおこなう。そして、変数iがmy行を超えている場合(ステップS2105:Yes)、ナビゲーション装置300は、本フローチャートによる処理を終了する。変数jがmx列を超えている場合(ステップS2108:Yes)、ステップS2104に戻り、以降の処理を繰り返しおこなう。 If the identification information of the area of i row and j column is “1” (step S2114: Yes), the process returns to step S2111 and the subsequent processing is repeated. If the variable i exceeds the my line (step S2105: Yes), the navigation device 300 ends the process according to the flowchart. If the variable j exceeds the mx column (step S2108: YES), the process returns to step S2104 to repeat the subsequent processing.
(道路勾配について)
 つぎに、上記(1)式~(6)式の右辺に変数として用いられる道路勾配θについて説明する。図22は、勾配がある道路を走行する車両にかかる加速度の一例を模式的に示した説明図である。図22に示すように、道路勾配がθの坂道を走行する車両には、車両の走行に伴う加速度A(=dx/dt)と、重力加速度gの進行方向成分B(=g・sinθ)がかかる。たとえば、上記(1)式を例に説明すると、上記(1)式の右辺第2項は、この車両の走行に伴う加速度Aと、重力加速度gの進行方向成分Bの合成加速度Cを示している。また、車両が走行する区間の距離Dとし、走行時間Tとし、走行速度Vとする。
(About road gradient)
Next, the road gradient θ used as a variable on the right side of the equations (1) to (6) will be described. FIG. 22 is an explanatory diagram schematically illustrating an example of acceleration applied to a vehicle traveling on a road having a gradient. As shown in FIG. 22, a vehicle traveling on a slope with a road gradient θ has acceleration A (= dx / dt) accompanying traveling of the vehicle and traveling direction component B (= g · sin θ) of gravitational acceleration g. Take it. For example, taking the above equation (1) as an example, the second term on the right side of the above equation (1) indicates the acceleration A accompanying the traveling of the vehicle and the combined acceleration C of the traveling direction component B of the gravitational acceleration g. Yes. Further, the distance D of the section in which the vehicle travels is defined as the travel time T and the travel speed V.
 道路勾配θを考慮せずに電力消費量の推定をおこなった場合、道路勾配θが小さい領域では推定消費電力量と実際の消費電力量との誤差が小さいが、道路勾配θが大きい領域では推定した推定消費電力量と実際の消費電力量との誤差が大きくなってしまう。このため、ナビゲーション装置300では、道路勾配、すなわち第四情報を考慮して燃費の推定をおこなうことで推定精度が向上する。 When the power consumption is estimated without considering the road gradient θ, the error between the estimated power consumption and the actual power consumption is small in the region where the road gradient θ is small, but the estimation is performed in the region where the road gradient θ is large. An error between the estimated power consumption and the actual power consumption increases. For this reason, in the navigation apparatus 300, the estimation accuracy is improved by estimating the fuel consumption in consideration of the road gradient, that is, the fourth information.
 車両が走行する道路の勾配は、たとえば、ナビゲーション装置300に搭載された傾斜計を用いて知ることができる。また、ナビゲーション装置300に傾斜計が搭載されていない場合は、たとえば、地図データに含まれる道路の勾配情報を用いることができる。 The slope of the road on which the vehicle travels can be known using, for example, an inclinometer mounted on the navigation device 300. Further, when the inclinometer is not mounted on the navigation device 300, for example, road gradient information included in the map data can be used.
(走行抵抗について)
 つぎに、車両に生じる走行抵抗について説明する。ナビゲーション装置300は、たとえば、次の(11)式により走行抵抗を算出する。一般的に、走行抵抗は、道路種別や、道路勾配、路面状況などにより、加速時や走行時に移動体に生じる。
(About running resistance)
Next, traveling resistance generated in the vehicle will be described. The navigation device 300 calculates the running resistance by the following equation (11), for example. Generally, traveling resistance is generated in a moving body during acceleration or traveling due to road type, road gradient, road surface condition, and the like.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
(ナビゲーション装置によるクローニング処理後の表示例)
 つぎに、ナビゲーション装置によるクローニング処理後の表示例について説明する。図23は、ナビゲーション装置による到達可能地点探索処理後の表示例の一例について示す説明図である。図24-1は、ナビゲーション装置による識別情報付与処理後の表示例の一例について示す説明図である。図24-2は、ナビゲーション装置による第1識別情報変更処理後の表示例の一例について示す説明図である。また、図25は、ナビゲーション装置によるクローニング処理(膨張)後の表示例の一例について示す説明図である。図26は、ナビゲーション装置によるクローニング処理(縮小)後の表示例の一例について示す説明図である。
(Display example after cloning processing by the navigation device)
Next, a display example after the cloning process by the navigation device will be described. FIG. 23 is an explanatory diagram illustrating an example of a display example after the reachable point search process by the navigation device. FIG. 24A is an explanatory diagram of an example of a display example after the identification information providing process by the navigation device. FIG. 24-2 is an explanatory diagram illustrating an example of a display example after the first identification information changing process by the navigation device. FIG. 25 is an explanatory diagram showing an example of a display example after the cloning process (expansion) by the navigation device. FIG. 26 is an explanatory diagram illustrating an example of a display example after the cloning process (reduction) by the navigation device.
 図23に示すように、たとえば、ディスプレイ313には、地図データとともに、ナビゲーション装置300によって探索された複数の車両の到達可能地点が表示される。図23に示すディスプレイ313の状態は、ナビゲーション装置300によって到達可能地点探索処理がおこなわれたときの、ディスプレイに表示される情報の一例である。具体的には、図14のステップS1403の処理がおこなわれた状態である。 23, for example, the display 313 displays reachable points of a plurality of vehicles searched by the navigation device 300 together with map data. The state of the display 313 illustrated in FIG. 23 is an example of information displayed on the display when the reachable point search process is performed by the navigation device 300. Specifically, this is a state in which the process of step S1403 of FIG. 14 has been performed.
 つぎに、ナビゲーション装置300によって地図データが複数の領域に分割され、到達可能地点に基づいて各領域に到達可能または到達不可能の識別情報が付与されることで、図24-1に示すように、ディスプレイ313には、到達可能の識別情報に基づく車両の到達可能範囲2400が表示される。この段階では、車両の到達可能範囲2400内に、到達不可能な領域からなる欠損点が生じている。 Next, the map data is divided into a plurality of areas by the navigation device 300, and identification information indicating whether each area is reachable or unreachable is given based on the reachable point, as shown in FIG. 24-1. The display 313 displays a reachable range 2400 of the vehicle based on reachable identification information. At this stage, there is a missing point that is an unreachable region within the reachable range 2400 of the vehicle.
 また、車両の到達可能範囲2400内には、たとえば、特定のノードとして、東京湾を横断する東京湾横断道路(東京湾アクアライン:登録商標)2410の両出入口に相当する領域が含まれる。しかし、車両の到達可能範囲2400内には、東京湾横断道路2410上の全領域のうち、一の領域2411しか含まれていない。つぎに、ナビゲーション装置300によって固定フラグの付与および消去禁止フラグの付与の処理がおこなわれることにより、図24-2に示すように、ディスプレイ313には、東京湾横断道路2410上の全領域2421が含まれ、また、東京湾横断道路2410上の欠損点が除去された到達可能範囲2420が表示される。 Also, the vehicle reachable range 2400 includes, for example, areas corresponding to both entrances and exits of the Tokyo Bay Crossing Road (Tokyo Bay Aqualine: registered trademark) 2410 that crosses Tokyo Bay as a specific node. However, the vehicle reachable range 2400 includes only one region 2411 out of all the regions on the Tokyo Bay crossing road 2410. Next, the navigation device 300 performs the process of assigning the fixed flag and assigning the erasure prohibition flag, so that the entire area 2421 on the Tokyo Bay crossing road 2410 is displayed on the display 313 as shown in FIG. The reachable range 2420 that is included and from which the missing points on the Tokyo Bay crossing road 2410 are removed is displayed.
 つぎに、ナビゲーション装置300によってクローニングの膨張処理がおこなわれることにより、図25に示すように、欠損点の除去された車両の到達可能範囲2500が生成される。また、すでに、消去禁止フラグの処理によって東京湾横断道路上の全領域2510が到達可能範囲2500に含まれているため、クローニングの膨張処理後においても、東京湾横断道路上の全領域2500は、車両の到達可能範囲2500となる。その後、ナビゲーション装置300によってクローニングの縮小処理がおこなわれることにより、図26に示すように、車両の到達可能範囲2600の外周は、クローニングがおこなわれる前の車両の到達可能範囲2500の外周とほぼ同様の大きさとなる。なお、図25の東京湾横断道路上の全領域2510の境界および図26の東京湾横断道路上の全領域2610の夫々の境界は、メッシュデータに依存した境界の表示となるが、ここでは分かりやすいように斜め線の境界で表示している。 Next, the expansion processing of cloning is performed by the navigation device 300, thereby generating the reachable range 2500 of the vehicle from which the missing points are removed, as shown in FIG. In addition, since the entire area 2510 on the Tokyo Bay crossing road is already included in the reachable range 2500 by the processing of the erasure prohibition flag, the entire area 2500 on the Tokyo Bay crossing road is The vehicle reachable range 2500 is obtained. Thereafter, the reduction processing of the cloning is performed by the navigation device 300, so that the outer periphery of the vehicle reachable range 2600 is substantially the same as the outer periphery of the vehicle reachable range 2500 before the cloning is performed, as shown in FIG. It becomes the size of. The boundary of all areas 2510 on the Tokyo Bay crossing road in FIG. 25 and the boundary of all areas 2610 on the Tokyo Bay crossing road in FIG. 26 are displayed as boundaries depending on the mesh data. It is displayed at the boundary of diagonal lines for easy.
 そして、ナビゲーション装置300によって車両の到達可能範囲2600の輪郭2601を抽出することで、車両の到達可能範囲2600の輪郭をなめらかに表示することができる。また、クローニングによって欠損点を除去しているため、車両の到達可能範囲2600は、2次元のなめらかな面2602で表示される。また、クローニング縮小処理後においても、東京湾横断道路上の全領域2610は、車両の到達可能範囲2600またはその輪郭2601として表示される。 Then, by extracting the outline 2601 of the reachable range 2600 of the vehicle by the navigation device 300, the outline of the reachable range 2600 of the vehicle can be displayed smoothly. Further, since the missing points are removed by cloning, the reachable range 2600 of the vehicle is displayed with a two-dimensional smooth surface 2602. Even after the cloning reduction process, the entire area 2610 on the Tokyo Bay crossing road is displayed as the vehicle reachable range 2600 or its outline 2601.
 以上説明したように、ナビゲーション装置300によれば、地図情報を複数の領域に分割して各領域ごとに移動体が到達可能か否かを探索し、各領域にそれぞれ移動体が到達可能または到達不可能であることを識別する到達可能または到達不可能の識別情報を付与する。そして、ナビゲーション装置300は、到達可能の識別情報が付与された領域に基づいて、移動体の到達可能範囲を生成する。このため、ナビゲーション装置300は、海や湖、山脈など移動体の走行不可能な領域を除いた状態で移動体の到達可能範囲を生成することができる。したがって、画像処理装置100は、移動体の到達可能範囲を正確に表示することができる。 As described above, according to the navigation device 300, the map information is divided into a plurality of areas, and it is searched whether or not each mobile area can reach each area, and each mobile area can reach or reach each area. Reachable or unreachable identification information for identifying the impossibility is given. And the navigation apparatus 300 produces | generates the reachable range of a mobile body based on the area | region to which the reachable identification information was provided. For this reason, the navigation apparatus 300 can generate the reachable range of the mobile object in a state excluding areas where the mobile object cannot travel, such as the sea, lakes, and mountain ranges. Therefore, the image processing apparatus 100 can accurately display the reachable range of the moving object.
 また、ナビゲーション装置300は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、クローニングの膨張処理をおこなう。このため、ナビゲーション装置300は、移動体の到達可能範囲内の欠損点を除去することができる。 Also, the navigation device 300 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs an expansion process of cloning. For this reason, the navigation apparatus 300 can remove the missing point within the reachable range of the moving body.
 また、ナビゲーション装置300は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、オープニングの縮小処理をおこなう。このため、ナビゲーション装置300は、移動体の到達可能範囲の孤立した領域を除去することができる。 Further, the navigation device 300 converts the plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs an opening reduction process. For this reason, the navigation apparatus 300 can remove the isolated area | region of the reachable range of a mobile body.
 このように、ナビゲーション装置300は、移動体の到達可能範囲の欠損した領域や孤立した領域を除去することができるので、移動体の走行可能範囲を2次元のなめらかな面でかつ見やすく表示することができる。また、ナビゲーション装置300は、地図情報を複数の領域に分割して生成したメッシュデータの輪郭を抽出する。このため、ナビゲーション装置300は、移動体の到達可能範囲の輪郭をなめらかに表示することができる。 As described above, the navigation device 300 can remove a missing region or an isolated region of the reachable range of the moving body, and therefore, the travelable range of the moving body can be displayed on a two-dimensional smooth surface in an easy-to-read manner. Can do. Further, the navigation device 300 extracts the outline of mesh data generated by dividing the map information into a plurality of regions. For this reason, the navigation apparatus 300 can display the outline of the reachable range of a moving body smoothly.
 また、ナビゲーション装置300は、特定のノードに対し消去禁止フラグを付与することにより、オープニング処理およびクローニング処理(膨張処理および縮小処理)をおこなっても、到達可能距離の範囲内にある細い線分(リンク)の消去を防ぐことができ、移動体の走行可能範囲として表示することができるようになる。 Further, the navigation device 300 assigns an erasure prohibition flag to a specific node, so that even if the opening process and the cloning process (expansion process and reduction process) are performed, the thin line segment (within the reachable distance range) ( Link) can be prevented from being erased, and can be displayed as a travelable range of the moving body.
 また、ナビゲーション装置300は、移動体の到達可能地点を探索する道路を絞り込んで、移動体の到達可能地点を探索する。このため、ナビゲーション装置300は、移動体の到達可能地点を探索する際の処理量を低減することができる。移動体の到達可能地点を探索する道路を絞り込むことで、探索可能な到達可能地点が少なくなったとしても、上述したようにクローニングの膨張処理がおこなわれることにより、移動体の到達可能範囲内に生じる欠損点を除去することができる。したがって、ナビゲーション装置300は、移動体の到達可能範囲を検出するための処理量を低減することができる。また、ナビゲーション装置300は、移動体の走行可能範囲を2次元のなめらかな面で見やすく表示することができる。 In addition, the navigation device 300 narrows down the road for searching for the reachable point of the moving object, and searches for the reachable point of the moving object. For this reason, the navigation apparatus 300 can reduce the processing amount at the time of searching the reachable point of a mobile body. Even if the number of reachable reachable points is reduced by narrowing down the road to search for the reachable points of the mobile object, the expansion process of cloning is performed as described above, so that the reachable range of the mobile object is within the reachable range. The resulting defect point can be removed. Therefore, the navigation apparatus 300 can reduce the processing amount for detecting the reachable range of the moving body. In addition, the navigation device 300 can display the travelable range of the mobile object in a two-dimensional smooth manner in an easy-to-see manner.
(実施の形態2)
 実施の形態2では、地図情報120は、上述したオープニング処理およびクローニング処理の少なくとも一方の処理の消去対象から除外する特定の画素に含まれるノードについて、あらかじめ固定フラグが付与されているものを用いる。この場合、実施の形態1で説明した固定フラグ付与部103aを不要にできる。このように、あらかじめ地図情報120に固定フラグが付与されていれば、画像処理装置100側でノード探索時に固定フラグを付与するか否かの判断を省略することができ、その分の処理負担を軽減できるようになる。
(Embodiment 2)
In the second embodiment, the map information 120 uses information to which a fixed flag is assigned in advance for a node included in a specific pixel to be excluded from an erasure target of at least one of the above-described opening process and cloning process. In this case, the fixed flag assignment unit 103a described in the first embodiment can be omitted. As described above, if a fixed flag is assigned to the map information 120 in advance, the image processing apparatus 100 can omit the determination of whether or not to assign the fixed flag when searching for a node. Can be reduced.
(実施の形態3)
 実施の形態3では、メッシュデータの特定の画素に、上述したオープニング処理およびクローニング処理の少なくとも一方の処理の消去対象から除外する特定の画素について、あらかじめ消去禁止フラグが付与されているものを用いる。このような場合、実施の形態1で説明した固定フラグ付与部103aおよび消去禁止フラグ104aを不要にできる。このように、あらかじめメッシュデータの特定の画素に消去禁止フラグが付与されていれば、画像処理100側でノード探索時に固定フラグを付与するか否かの判断を省略でき、当該固定フラグに基づいた消去禁止フラグを付与を省略することができ、その分の処理負担を軽減できるようになる。
(Embodiment 3)
In the third embodiment, a specific pixel of mesh data to which an erasure prohibition flag has been assigned in advance is used for a specific pixel that is excluded from an erasure target of at least one of the above-described opening process and cloning process. In such a case, the fixed flag assignment unit 103a and the erasure prohibition flag 104a described in the first embodiment can be made unnecessary. As described above, if an erasure prohibition flag is assigned to a specific pixel of mesh data in advance, the image processing 100 side can omit determination as to whether or not to assign a fixed flag when searching for a node, based on the fixed flag. The provision of the erasure prohibition flag can be omitted, and the processing load corresponding to that can be reduced.
 なお、本実施の形態で説明した画像処理方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。 Note that the image processing method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer. The program may be a transmission medium that can be distributed via a network such as the Internet.
 100 画像処理装置
 101 取得部
 102 算出部
 103 探索部
 103a 固定フラグ付与部
 104 分割部
 104a 消去禁止フラグ付与部
 105 付与部
 106 表示制御部
 110 表示部
DESCRIPTION OF SYMBOLS 100 Image processing apparatus 101 Acquisition part 102 Calculation part 103 Search part 103a Fixed flag provision part 104 Dividing part 104a Erase prohibition flag provision part 105 Giving part 106 Display control part 110 Display part

Claims (6)

  1.  移動体の到達可能範囲に関する情報を処理する画像処理装置であって、
     前記移動体の現在地点、前記移動体が保有するエネルギー量を示す初期保有エネルギー量に関する情報および前記移動体が所定区間を走行する際に消費するエネルギー量を示す推定エネルギー消費量に基づいて、前記移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する到達可能地点探索手段と、
     前記到達可能地点探索手段による探索時に、固有情報である固定フラグを特定のノードに付与する固定フラグ付与手段と、
     地図情報に関連する複数の領域のうち、前記固定フラグが付与された当該特定のノードを含む一の領域に前記固定フラグに関連する消去禁止フラグを付与する消去禁止フラグ付与手段と、
     前記到達可能地点探索手段によって探索された複数の到達可能地点に基づいて、前記複数の領域のそれぞれに前記移動体が到達可能であるか否かを識別する識別情報を付与した後、前記識別情報および前記消去禁止フラグに基づき、膨張処理および縮小処理の少なくとも一方を含む画像処理を実行する付与手段と、
     前記複数の領域のそれぞれに付与された識別情報に基づいて、前記移動体の到達可能範囲を表示手段に表示させる表示制御手段と、
     を備えたことを特徴とする画像処理装置。
    An image processing apparatus for processing information relating to a reachable range of a moving object,
    Based on the current location of the mobile body, information on the initial stored energy amount indicating the amount of energy held by the mobile body, and the estimated energy consumption amount indicating the amount of energy consumed when the mobile body travels in a predetermined section, A reachable point search means for searching for a plurality of reachable points that are points that the mobile body can reach from the current point;
    A fixed flag giving means for giving a fixed flag, which is unique information, to a specific node at the time of searching by the reachable point searching means;
    An erasure prohibition flag giving means for giving an erasure prohibition flag related to the fixed flag to one area including the specific node to which the fixed flag is given among a plurality of areas related to map information;
    Based on a plurality of reachable points searched by the reachable point search means, after giving identification information for identifying whether or not the mobile body is reachable to each of the plurality of areas, the identification information And applying means for executing image processing including at least one of expansion processing and reduction processing based on the erasure prohibition flag;
    Display control means for displaying on the display means the reachable range of the mobile body based on the identification information given to each of the plurality of areas;
    An image processing apparatus comprising:
  2.  前記付与手段は、前記識別情報に基づき、前記膨張処理および縮小処理の少なくとも一方の前記画像処理を実行する際に、前記消去禁止フラグが付与されている特定の領域は前記画像処理の対象から除外することを特徴とする請求項1に記載の画像処理装置。 The assigning means excludes a specific region to which the erasure prohibition flag is assigned from the image processing target when executing the image processing of at least one of the expansion processing and the reduction processing based on the identification information. The image processing apparatus according to claim 1, wherein:
  3.  前記付与手段は、一対の前記一の領域に付与された前記消去禁止フラグに基づき、当該一対の前記一の領域間の複数の領域に対して、それぞれ到達可能の識別情報を付与することを特徴とする請求項2に記載の画像処理装置。 The assigning means assigns reachable identification information to each of a plurality of areas between the pair of the one areas based on the erasure prohibition flag assigned to the pair of the one areas. The image processing apparatus according to claim 2.
  4.  前記固定フラグ付与手段は、前記探索に用いる情報にあらかじめ前記特定のノードに前記固定フラグが付与されている場合には、前記付与されている固定フラグを用いることを特徴とする請求項2に記載の画像処理装置。 The said fixed flag provision means uses the said fixed flag, when the said fixed flag is previously provided to the said specific node in the information used for the said search. Image processing apparatus.
  5.  移動体の到達可能範囲に関する情報を処理する画像処理装置における画像処理方法であって、
     前記移動体の現在地点、前記移動体が保有するエネルギー量を示す初期保有エネルギー量に関する情報および前記移動体が所定区間を走行する際に消費するエネルギー量を示す推定エネルギー消費量に基づいて、前記移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する到達可能地点探索工程と、
     前記到達可能地点探索工程による探索時に、固有情報である固定フラグを特定のノードに付与する固定フラグ付与工程と、
     地図情報に関連する複数の領域のうち、前記固定フラグが付与された当該特定のノードを含む一の領域に前記固定フラグに関連する消去禁止フラグを付与する消去禁止フラグ付与工程と、
     前記到達可能地点探索工程によって探索された複数の到達可能地点に基づいて、前記複数の領域のそれぞれに前記移動体が到達可能であるか否かを識別する識別情報を付与した後、前記識別情報および前記消去禁止フラグに基づき、膨張処理および縮小処理の少なくとも一方を含む画像処理を実行する付与工程と、
     前記複数の領域のそれぞれに付与された識別情報に基づいて、前記移動体の到達可能範囲を表示手段に表示させる表示制御工程と、
     を含むことを特徴とする画像処理方法。
    An image processing method in an image processing apparatus for processing information relating to a reachable range of a mobile object,
    Based on the current location of the mobile body, information on the initial stored energy amount indicating the amount of energy held by the mobile body, and the estimated energy consumption amount indicating the amount of energy consumed when the mobile body travels in a predetermined section, A reachable point search step for searching for a plurality of reachable points that are points that the mobile body can reach from the current point;
    At the time of searching by the reachable point searching step, a fixed flag giving step for giving a fixed flag that is unique information to a specific node;
    An erasure prohibition flag assigning step of assigning an erasure prohibition flag related to the fixed flag to one area including the specific node to which the fixed flag is assigned among a plurality of areas related to map information;
    Based on a plurality of reachable points searched in the reachable point search step, after adding identification information for identifying whether or not the mobile body is reachable to each of the plurality of areas, the identification information And an applying step for executing image processing including at least one of expansion processing and reduction processing based on the erasure prohibition flag;
    Based on the identification information given to each of the plurality of regions, a display control step of displaying on the display means the reachable range of the moving body,
    An image processing method comprising:
  6.  請求項5に記載の画像処理方法をコンピュータに実行させることを特徴とする画像処理プログラム。 An image processing program causing a computer to execute the image processing method according to claim 5.
PCT/JP2012/052189 2012-01-31 2012-01-31 Image-processing device, method for processing image, and image-processing program WO2013114579A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052189 WO2013114579A1 (en) 2012-01-31 2012-01-31 Image-processing device, method for processing image, and image-processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052189 WO2013114579A1 (en) 2012-01-31 2012-01-31 Image-processing device, method for processing image, and image-processing program

Publications (1)

Publication Number Publication Date
WO2013114579A1 true WO2013114579A1 (en) 2013-08-08

Family

ID=48904657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052189 WO2013114579A1 (en) 2012-01-31 2012-01-31 Image-processing device, method for processing image, and image-processing program

Country Status (1)

Country Link
WO (1) WO2013114579A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286625A1 (en) * 2021-07-13 2023-01-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Information processing method, information processing device, information processing program, and method for manufacturing trained model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116094A (en) * 1997-06-20 1999-01-22 Matsushita Electric Ind Co Ltd Reachable range display device
JP2007298744A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Map display device and map display method
JP2008096209A (en) * 2006-10-10 2008-04-24 Matsushita Electric Ind Co Ltd Reachable range display device, and reachable range display method and program thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116094A (en) * 1997-06-20 1999-01-22 Matsushita Electric Ind Co Ltd Reachable range display device
JP2007298744A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Map display device and map display method
JP2008096209A (en) * 2006-10-10 2008-04-24 Matsushita Electric Ind Co Ltd Reachable range display device, and reachable range display method and program thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286625A1 (en) * 2021-07-13 2023-01-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Information processing method, information processing device, information processing program, and method for manufacturing trained model

Similar Documents

Publication Publication Date Title
JP2012242110A (en) Apparatus and method for creating road gradient data, storage medium, and apparatus for predicting energy consumption of vehicle
WO2013027270A1 (en) Image processing device, image processing management device, terminal, processing device, and image processing method
JP6047651B2 (en) Image processing apparatus and image processing method
WO2013114579A1 (en) Image-processing device, method for processing image, and image-processing program
WO2014045432A1 (en) Image processing apparatus and image processing method
JP6058756B2 (en) Image processing apparatus and image processing method
JP5816705B2 (en) Image processing apparatus, image processing management apparatus, terminal, image processing method, and data structure
JP5819445B2 (en) Image processing apparatus, image processing management apparatus, terminal, and image processing method
JP2016006695A (en) Replenishment facility retrieval device, replenishment facility retrieval method, and replenishment facility retrieval program
WO2013125019A1 (en) Image processing device and image processing method
JP5619288B2 (en) Image processing apparatus, image processing management apparatus, terminal, processing apparatus, and image processing method
WO2014016948A1 (en) Image processing device and image processing method
JP2019049569A (en) Image processing device, image processing method and image processing program
WO2014080506A1 (en) Display control device, display control method, display control program, display control system, display control server, and terminal
JP2017187498A (en) Image processing device, image processing method and image processing program
WO2013105271A1 (en) Image processing apparatus, image processing management apparatus, terminal, and image processing method
WO2014080535A1 (en) Display control device, display control method, display control program, display control system, display control server, and terminal
JP2023016847A (en) Device, method, and program for computing reachable range
JP2017227652A (en) Image processing device, image processing method, and image processing program
JP2019212314A (en) Reachable range calculation device, reachable range calculation method, and reachable range calculation program
JPWO2013125019A1 (en) Image processing apparatus and image processing method
JP2018032414A (en) Device, method, and program for computing reachable range
WO2014068685A1 (en) Display control device, server device, display control method, display control program and recording medium
JP2022070882A (en) Image processing device, image processing method, and image processing program
JP2022089850A (en) Image processing device, image processing method and image processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP