WO2013114467A1 - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
WO2013114467A1
WO2013114467A1 PCT/JP2012/000749 JP2012000749W WO2013114467A1 WO 2013114467 A1 WO2013114467 A1 WO 2013114467A1 JP 2012000749 W JP2012000749 W JP 2012000749W WO 2013114467 A1 WO2013114467 A1 WO 2013114467A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
current
battery
controller
value
Prior art date
Application number
PCT/JP2012/000749
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 賢司
勇二 西
裕之 海谷
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/000749 priority Critical patent/WO2013114467A1/en
Publication of WO2013114467A1 publication Critical patent/WO2013114467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00718Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to charge current gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage system that controls charging / discharging of a power storage device including a plurality of power storage elements each having a current breaker.
  • the power storage system includes a power storage device including a plurality of power storage elements connected in parallel, and a controller that controls charging / discharging of the power storage device.
  • Each power storage element has a current breaker that blocks a current path inside the power storage element.
  • the controller controls charging / discharging of the power storage device with reference to a current value flowing through the power storage element whose current path is not interrupted. The value of the current flowing through the power storage element whose current path is not interrupted changes as the number of current breakers in the interrupted state increases.
  • the value of a current flowing through a power storage element whose current path is not interrupted changes as the number of current breakers in the interrupted state increases.
  • charging / discharging of the power storage device is preferably controlled based on this current value.
  • the power storage device can be composed of a plurality of power storage blocks connected in series.
  • each power storage block can be composed of a plurality of power storage elements connected in parallel.
  • the power storage device having such a configuration as the number of current breakers in the cut-off state, the largest number among the number of current breakers in the cut-off state in each power storage block can be used. Thereby, all the electrical storage elements can be protected in charge / discharge control of the electrical storage device.
  • a power storage device can be configured by connecting another power storage element in series to each power storage element connected in parallel. In other words, it is possible to prepare a plurality of power storage blocks in which a plurality of power storage elements are connected in series, and to connect these power storage blocks in parallel.
  • the controller can reduce the value of the current flowing through the power storage device as the number of current breakers in the breaking state increases. Since the plurality of power storage elements included in the power storage device are connected in parallel, when the value of the current flowing through the power storage device is constant, the current path is cut off when the number of current breakers in the cut-off state increases. The value of the current flowing through the non-storage element increases.
  • the charge / discharge of the power storage device can be limited as the estimated temperature inside the power storage element approaches the upper limit temperature.
  • the charge / discharge of the power storage device can be limited as the estimated temperature inside the power storage element approaches the upper limit temperature.
  • the temperature inside the electricity storage element can be estimated using a temperature change amount based on a reference current value.
  • the temperature inside the electricity storage element can be estimated based on the temperature on the surface of the electricity storage element and the temperature change amount based on the current value.
  • the number of current breakers in the cut-off state increases, the value of the current flowing through the storage element whose current path is not interrupted changes. Therefore, when calculating the internal resistance of the storage element, It is necessary to use a current value. Thereby, the precision at the time of estimating the internal temperature of an electrical storage element can be improved.
  • the controller can not permit charging / discharging of the power storage device when the number of current breakers in the breaking state is equal to or greater than the first threshold. If the number of current breakers in the cut-off state increases too much, it becomes difficult to ensure the input / output performance of the power storage device. Therefore, when the number of current breakers in the cut-off state is equal to or greater than the first threshold value, charging / discharging of the power storage device is performed in a state where it is difficult to secure input / output performance of the power storage device by not permitting charge / discharge of the power storage device Can be prevented. For example, when the power storage device is mounted on a vehicle and the vehicle is driven using the output of the power storage device, the controller can not drive the vehicle.
  • the controller can issue a warning when the number of current breakers in the interrupted state is equal to or greater than a second threshold value that is less than the first threshold value and less than the first threshold value. Thereby, before the number of current breakers in the cut-off state reaches the first threshold value, the user or the like can confirm the abnormality of the power storage device by the warning. Then, the power storage element or the power storage device can be replaced before the power storage device is no longer charged or discharged.
  • a fuse As the current breaker, a fuse, a PTC element, or a current cutoff valve can be used.
  • the fuse interrupts the current path by fusing.
  • the PTC element cuts off the current path due to an increase in resistance accompanying a temperature rise.
  • the current cutoff valve is deformed in response to an increase in the internal pressure of the power storage element and cuts off the current path.
  • Example 1 it is a flowchart which shows the process which controls charging / discharging of an assembled battery. It is a figure which shows the relationship between the time-dependent change of the internal resistance accompanying the abrasion deterioration of a battery block, and the internal resistance accompanying the action
  • Example 3 it is a flowchart which shows the process which controls charging / discharging of an assembled battery.
  • Example 3 it is a figure which shows the relationship between the output performance of an assembled battery, and the number of interruption
  • Example 3 it is a flowchart which shows the process which controls charging / discharging of an assembled battery.
  • FIG. 1 is a diagram illustrating a configuration of a battery system.
  • the battery system of this embodiment is mounted on a vehicle.
  • Vehicles include hybrid cars and electric cars.
  • the hybrid vehicle includes an engine or a fuel cell as a power source for running the vehicle in addition to the assembled battery described later.
  • the electric vehicle includes only an assembled battery described later as a power source for running the vehicle.
  • a system main relay SMR-B is provided on the positive electrode line PL connected to the positive electrode terminal of the assembled battery (corresponding to a power storage device) 10. System main relay SMR-B is switched between on and off by receiving a control signal from controller 40.
  • a system main relay SMR-G is provided on the negative electrode line NL connected to the negative electrode terminal of the assembled battery 10. System main relay SMR-G is switched between on and off by receiving a control signal from controller 40.
  • System main relay SMR-P and current limiting resistor R are connected in parallel to system main relay SMR-G.
  • System main relay SMR-P and current limiting resistor R are connected in series.
  • System main relay SMR-P is switched between on and off by receiving a control signal from controller 40.
  • the current limiting resistor R is used to suppress an inrush current from flowing when the assembled battery 10 is connected to a load (specifically, a booster circuit 32 described later).
  • the controller 40 When connecting the assembled battery 10 to a load, the controller 40 switches the system main relays SMR-B and SMR-P from off to on. As a result, a current can flow through the current limiting resistor R, and an inrush current can be suppressed.
  • the controller 40 switches the system main relay SMR-P from on to off. Thereby, connection of the assembled battery 10 and load is completed, and the battery system shown in FIG. 1 will be in a starting state (Ready-On).
  • the controller 40 switches the system main relays SMR-B and SMR-G from on to off. Thereby, the operation of the battery system shown in FIG. 1 is stopped.
  • the booster circuit 32 boosts the output voltage of the assembled battery 10 and outputs the boosted power to the inverter 33. Further, the booster circuit 32 can step down the output voltage of the inverter 33 and output the lowered power to the assembled battery 10.
  • the booster circuit 32 operates in response to a control signal from the controller 40. In the battery system of this embodiment, the booster circuit 32 is used, but the booster circuit 32 may be omitted.
  • the inverter 33 converts the DC power output from the booster circuit 32 into AC power, and outputs the AC power to the motor / generator 34.
  • the inverter 33 converts AC power generated by the motor / generator 34 into DC power and outputs the DC power to the booster circuit 32.
  • the motor generator 34 for example, a three-phase AC motor can be used.
  • the motor / generator 34 receives AC power from the inverter 33 and generates kinetic energy for running the vehicle. When the vehicle is driven using the output power of the assembled battery 10, the kinetic energy generated by the motor / generator 34 is transmitted to the wheels.
  • the motor / generator 34 converts kinetic energy generated during braking of the vehicle into electric energy (AC power).
  • the inverter 33 converts AC power generated by the motor / generator 34 into DC power and outputs the DC power to the booster circuit 32.
  • the booster circuit 32 outputs the electric power from the inverter 33 to the assembled battery 10. Thereby, regenerative electric power can be stored in the assembled battery 10.
  • FIG. 2 shows the configuration of the assembled battery 10.
  • the assembled battery 10 has a plurality of battery blocks (corresponding to power storage blocks) 11 connected in series. By connecting a plurality of battery blocks 11 in series, the output voltage of the assembled battery 10 can be secured.
  • the number of battery blocks 11 can be appropriately set in consideration of the voltage required for the assembled battery 10.
  • Each battery block 11 has a plurality of single cells (corresponding to power storage elements) 12 connected in parallel.
  • the capacity [Ah] of the battery block 11 (the assembled battery 10) can be increased, and the distance when the vehicle is driven using the output of the assembled battery 10 is increased. Can do.
  • the number of single cells 12 constituting each battery block 11 can be appropriately set in consideration of the capacity required for the assembled battery 10.
  • each battery block 11 Since the plurality of battery blocks 11 are connected in series, an equal current flows through each battery block 11.
  • a plurality of unit cells 12 are connected in parallel, so that the current value flowing through each unit cell 12 is the current value flowing through the battery block 11 by the number of unit cells 12 constituting the battery block 11.
  • the current value is divided by (total). Specifically, when the total number of the single cells 12 constituting the battery block 11 is N and the current value flowing through the battery block 11 is Is, the current value flowing through the single cell 12 is Is / N.
  • the current value flowing through the single cell 12 is Is / N.
  • a secondary battery such as a nickel metal hydride battery or a lithium ion battery can be used.
  • An electric double layer capacitor (capacitor) can be used instead of the secondary battery.
  • a 18650 type battery can be used as the single battery 12.
  • the 18650 type battery is a so-called cylindrical battery, which has a diameter of 18 [mm] and a length of 65.0 [mm].
  • a battery case is formed in a cylindrical shape, and a power generation element for charging and discharging is accommodated in the battery case. The configuration of the power generation element will be described later.
  • the cell 12 includes a power generation element 12a and a current breaker 12b as shown in FIG.
  • the power generation element 12 a and the current breaker 12 b are accommodated in a battery case that constitutes the exterior of the unit cell 12.
  • the power generation element 12a is an element that performs charging and discharging, and includes a positive electrode plate, a negative electrode plate, and a separator disposed between the positive electrode plate and the negative electrode plate.
  • the positive electrode plate includes a current collector plate and a positive electrode active material layer formed on the surface of the current collector plate.
  • the negative electrode plate has a current collector plate and a negative electrode active material layer formed on the surface of the current collector plate.
  • the positive electrode active material layer includes a positive electrode active material and a conductive agent
  • the negative electrode active material layer includes a negative electrode active material and a conductive agent.
  • the current collector plate of the positive electrode plate can be made of aluminum, and the current collector plate of the negative electrode plate can be made of copper.
  • the positive electrode active material for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 can be used, and as the negative electrode active material, for example, carbon can be used.
  • An electrolyte solution is infiltrated into the separator, the positive electrode active material layer, and the negative electrode active material layer.
  • a solid electrolyte layer may be disposed between the positive electrode plate and the negative electrode plate.
  • the current breaker 12b is used to cut off the current path inside the unit cell 12. That is, when the current breaker 12b operates, the current path inside the unit cell 12 is cut off.
  • a fuse for example, a fuse, a PTC (Positive Temperature Coefficient) element, or a current cut-off valve can be used. These current breakers 12b can be used individually or in combination.
  • the fuse as the current breaker 12b is blown according to the current flowing through the fuse.
  • the current path inside the unit cell 12 can be mechanically interrupted. Thereby, it can prevent that an excessive electric current flows into the electric power generation element 12a, and can protect the cell 12 (electric power generation element 12a).
  • the fuse as the current breaker 12b can be accommodated in the battery case or can be provided outside the battery case. Even when a fuse is provided outside the battery case, the fuse is provided in each unit cell 12 and connected in series with each unit cell 12.
  • the PTC element as the current breaker 12b is arranged in the current path of the unit cell 12, and increases the resistance according to the temperature rise of the PTC element.
  • the temperature of the PTC element rises due to Joule heat.
  • the resistance of the PTC element increases as the temperature of the PTC element rises, current can be cut off in the PTC element. Thereby, it can prevent that an excessive electric current flows into the electric power generation element 12a, and can protect the cell 12 (electric power generation element 12a).
  • the current cut-off valve as the current breaker 12b is deformed in accordance with the increase in the internal pressure of the unit cell 12, and can cut off the current path inside the unit cell 12 by breaking the mechanical connection with the power generation element 12a. it can.
  • the inside of the unit cell 12 is in a sealed state, and when gas is generated from the power generation element 12a due to overcharging or the like, the internal pressure of the unit cell 12 increases.
  • the unit cell 12 (power generation element 12a) is in an abnormal state.
  • the mechanical connection with the power generation element 12a can be broken by deforming the current cutoff valve in response to the increase in the internal pressure of the unit cell 12. Thereby, it can block
  • the monitoring unit 20 shown in FIG. 1 detects the voltage of each battery block 11 and outputs the detection result to the controller 40.
  • the current sensor 31 detects the value of the current flowing through the assembled battery 10 and outputs the detection result to the controller 40. For example, when the assembled battery 10 is being discharged, a positive value can be used as the current value detected by the current sensor 31. Further, when the battery pack 10 is being charged, a negative value can be used as the current value detected by the current sensor 31.
  • the current sensor 31 may be provided not on the positive line PL but on the negative line NL as long as it can detect the value of the current flowing through the assembled battery 10. A plurality of current sensors 31 can also be used. Here, in consideration of cost and physique, it is desirable to provide one current sensor 31 for one assembled battery 10 as in the present embodiment.
  • the controller 40 has a built-in memory 41, and the memory 41 stores a program for operating the controller 40 and specific information.
  • the memory 41 can also be provided outside the controller 40.
  • the assembled battery 10 of the present embodiment has the configuration shown in FIG. 2, but is not limited thereto.
  • the assembled battery 10 may be configured as shown in FIG. In FIG. 4, a plurality of battery blocks (corresponding to power storage blocks) 11 are connected in parallel.
  • the number of battery blocks 11 can be appropriately determined based on the capacity required for the assembled battery 10.
  • Each battery block 11 has a plurality of single cells 12 connected in series.
  • the number of unit cells 12 constituting each battery block 11 is the same.
  • the number of unit cells 12 constituting the battery block 11 can be appropriately determined based on the voltage required for the assembled battery 10 and the like.
  • step S101 the controller 40 confirms the operating state of the current breaker 12b in each battery block 11.
  • the internal resistance of each battery block 11 can be calculated, and the operating state of the current breaker 12b can be confirmed based on the calculated internal resistance.
  • a plurality of relations between current values and voltage values in each battery block 11 are acquired, and the internal resistance of each battery block 11 is determined from the slope of the approximate straight line when these acquired values are plotted in the current and voltage coordinate system. Can be calculated.
  • the internal resistance of the battery block 11 including the current breaker 12b in the activated state is increased. That is, when the current breaker 12b is activated, the current path in the battery block 11 is reduced, and the internal resistance of the battery block 11 is increased.
  • the internal resistance of the battery block 11 including the current circuit breaker 12b in the operating state is greater than the internal resistance of the battery block 11 in which all the current circuit breakers 12b are not operating. Also gets higher.
  • the operating state of the current breaker 12b can be confirmed. Since the internal resistance of the battery block 11 increases as the number of the current breakers 12b in the operating state increases, the number of current breakers 12b in the operating state can be specified according to the increase amount of the internal resistance. .
  • a method (one example) for specifying the number of current breakers 12b in the operating state will be described below.
  • the internal resistance of the battery block 11 is acquired at each of the different times t1 and t2, and the resistance change rate is calculated.
  • the resistance change rate can be calculated based on the following formula (1).
  • Rr represents a resistance change rate.
  • R1 indicates the internal resistance of the battery block 11 acquired at time t1
  • R2 indicates the internal resistance of the battery block 11 acquired at time t2.
  • the time t2 can be the current timing when the internal resistance of the battery block 11 is acquired.
  • the time t1 can be the previous timing when the internal resistance of the battery block 11 is acquired. That is, time t1 is a timing before time t2.
  • the predetermined period T can be determined based on the speed at which the deterioration of the battery block 11 proceeds.
  • a method for determining the predetermined period T will be described.
  • the change in internal resistance when the battery block 11 (single cell 12) deteriorates can be acquired in advance by experiments.
  • the wear deterioration is deterioration caused by wear of members (particularly the power generation element 12a) constituting the battery block 11 (unit cell 12).
  • the change in internal resistance with time can be acquired in advance.
  • the change in internal resistance with time can be obtained as a curve C1 shown in FIG.
  • the internal resistance of the battery block 11 increases as time passes, in other words, as the wear deterioration of the battery block 11 progresses.
  • the period when the internal resistance increases by a predetermined amount with respect to the internal resistance at time t1 due to wear deterioration of the battery block 11 can be specified in advance.
  • the internal resistance at time t2 is increased by a predetermined amount with respect to the internal resistance at time t1
  • the battery block 11 has not only increased internal resistance due to wear deterioration but also current. It can be determined that an increase in internal resistance due to the operation of the circuit breaker 12b has occurred.
  • the internal resistance of the battery block 11 gradually increases, whereas when the current breaker 12b is activated, the internal resistance of the battery block 11 rapidly increases. Therefore, when the internal resistance of the battery block 11 increases by a predetermined amount in a period sufficiently shorter than the period until the internal resistance of the battery block 11 increases by a predetermined amount due to wear deterioration, the current breaker 12b is activated. Can be determined. By monitoring this time interval, it can be determined whether or not the current breaker 12b is operating.
  • the internal resistance of the battery block 11 becomes 1.1 times when half a year has elapsed from time t1 based on the curve C1 shown in FIG.
  • the internal resistance of the battery block 11 becomes 1.1 times between the time t1 and the time t2 even though the interval between the time t1 and the time t2 shown in FIG. 6 is within one month, It can be determined that the current breaker 12b is operating.
  • the above-described predetermined period T is a period when the resistance change rate acquired by the above-described processing is generated only by wear deterioration.
  • the predetermined period T is a period from the time t1 to the time t2 until the rate of increase in internal resistance (resistance change rate) occurs, and is a period specified from the curve C1 shown in FIG. It is.
  • the number of current breakers 12b in the operating state (referred to as the number of breaks) can be specified. If the internal resistance of the battery block 11 before the operation of the current breaker 12b is Ra and the internal resistance of the battery block 11 after the operation of the current breaker 12b is Rb, the internal resistances Ra and Rb are expressed by the following formula (2 ).
  • N indicates the number of unit cells 12 constituting each battery block 11, in other words, the number of unit cells 12 connected in parallel.
  • m indicates the total number (the number of interruptions) of the current breakers 12b in the operating state in each battery block 11. Since the current breaker 12b is provided in each unit cell 12, the number of breaks m is the total number of the unit cells 12 having the current breaker 12b in the operating state. In the battery block 11, when all the current breakers 12b are not operating, the breaking number m is zero.
  • the internal resistance of the battery block 11 is increased according to the number of current breakers 12b in the activated state. That is, as shown in Expression (2), the internal resistance Rb of the battery block 11 after the current breaker 12b is activated is N with respect to the internal resistance Ra of the battery block 11 before the current breaker 12b is activated. / (Nm) times. Since the value of “N / (N ⁇ m)” is a value larger than 1, the internal resistance Rb is higher than the internal resistance Ra.
  • equation (2) If equation (2) is transformed, it can be expressed by equation (3).
  • the interruption number m is calculated based on the internal resistance of the battery block 11, but the interruption number m can also be calculated based on the full charge capacity of the battery block 11. That is, when the current breaker 12b is activated, the full charge capacity of the battery block 11 including the current breaker 12b in the activated state decreases. Specifically, the full charge capacity of the battery block 11 after the current breaker 12b is activated is (N ⁇ m) / N with respect to the full charge capacity of the battery block 11 before the current breaker 12b is activated. Doubled. Based on this relationship, the cutoff number m can be calculated.
  • the assembled battery 10 has the configuration shown in FIG. 4, for example, by detecting the current or voltage of each battery block 11, the operating state of the current breaker 12 b can be confirmed.
  • the configuration shown in FIG. 4 when the current breaker 12b is activated, no current flows through the battery block 11 including the current breaker 12b in the activated state. Therefore, by confirming this state, the operating state of the current breaker 12b can be confirmed.
  • step S102 the controller 40 detects whether or not the current breaker 12b is operating in each battery block 11 based on the confirmation result in step S101. In any battery block 11, when the current breaker 12b is operating, the process proceeds to step S103. In all battery blocks 11, when the current breaker 12b is not operating, the process shown in FIG.
  • step S103 the controller 40 specifies the number of current breakers 12b in operation (the number of interruptions) in each battery block 11, and specifies the largest interruption number m_max among the interruption numbers in all the battery blocks 11. To do.
  • the number of breaks in the battery block 11 is the total number N of the single cells 12 constituting the battery block 11.
  • the number of breaks is “0”. The number of interrupts varies between 0 and N.
  • the interruption number m_max is the number of battery blocks 11 including the current breaker 12b in the operating state.
  • the current breaker 12 b included in one battery block 11 when the current breaker 12 b included in one battery block 11 is activated, no current flows through the battery block 11.
  • the configuration shown in FIG. 4 if at least one current breaker 12 b included in the battery block 11 is activated, no current flows through the battery block 11. Therefore, when specifying the number of interruptions m_max, it is only necessary to specify the number of battery blocks 11 in which no current flows due to the operation of the current breaker 12b.
  • step S104 the controller 40 determines a current command value for controlling charging / discharging of the assembled battery 10. Specifically, the controller 40 decreases the charge / discharge current of the assembled battery 10 in response to an increase in the number of interruptions m_max as the current command value.
  • the controller 40 sets the current command value to Ib based on the following equation (4).
  • Ib Ia ⁇ (N ⁇ m_max) / N (4)
  • N is the total number of unit cells 12 constituting each battery block 11
  • m_max is the maximum number of current breakers 12b in the operating state.
  • N shown in Equation (4) is the number of battery blocks 11 connected in parallel, and m_max is the number of battery blocks 11 including the current breaker 12b in the operating state. is there.
  • the breaking number m_max is “0”.
  • the breaking number m_max is “N”.
  • the breaking number m_max varies between “0” and “N”.
  • step S105 the controller 40 controls charging / discharging of the assembled battery 10 based on the current command value Ib set in step S104. Specifically, based on the current command value Ib, the controller 40 reduces the upper limit power that allows the battery pack 10 to be charged, or reduces the upper limit power that allows the battery pack 10 to be discharged. When lowering the upper limit power, the upper limit power before being lowered can be multiplied by a value of “(N ⁇ m_max) / N”. By reducing the upper limit power that allows charging / discharging of the assembled battery 10, the value of the current flowing through the assembled battery 10 can be limited.
  • the controller 40 when the interruption number m_max is “N”, the current cannot flow through the assembled battery 10, so the controller 40 does not charge / discharge the assembled battery 10. Specifically, the controller 40 can set the upper limit power that allows charging and discharging of the assembled battery 10 to 0 [kW]. In addition, when the interruption number m_max approaches “N”, charging / discharging of the assembled battery 10 may not be performed. The value of the cutoff number m_max when charging / discharging of the assembled battery 10 is not performed can be set as appropriate based on the viewpoint of ensuring traveling of the vehicle.
  • the controller 40 can limit the current during charging / discharging of the battery pack 10 by controlling the operation of the inverter 33, for example.
  • the controller 40 controls the operation of the charger to charge the assembled battery 10 based on the current command value Ib.
  • the current can be limited.
  • the external power source is a power source provided outside the vehicle, and an example of the external power source is a commercial power source.
  • the charger converts AC power into DC power and supplies DC power to the assembled battery 10.
  • the charger can be mounted on the vehicle or can be provided outside the vehicle separately from the vehicle. When supplying power from the external power source to the assembled battery 10, the charger can convert the voltage value.
  • a connector (so-called plug) connected to an external power source is connected to a connector (so-called inlet) provided in the vehicle, thereby supplying power from the external power source to the assembled battery 10.
  • a connector so-called inlet
  • electric power from an external power source can be supplied to the assembled battery 10 using electromagnetic induction or a resonance phenomenon.
  • the controller 40 controls the operation of the power supply device, thereby controlling the discharge current of the assembled battery 10 based on the current command value Ib.
  • the power supply apparatus can convert the DC power from the assembled battery 10 into AC power and supply the AC power to the external device.
  • the power feeding device can convert the voltage value.
  • the external device is an electronic device arranged outside the vehicle and is operated by receiving electric power from the assembled battery 10. For example, by connecting a connector connected to an external device to a connector connected to the assembled battery 10, power can be supplied from the assembled battery 10 to the external device.
  • An example of the external device is a home appliance.
  • FIG. 7 shows the relationship between the current command value and the number of interruptions m_max.
  • the vertical axis represents the current command value
  • the horizontal axis represents the number of interruptions m_max.
  • a positive value is a current command value when discharging the assembled battery 10
  • a negative value is a current command value when charging the assembled battery 10.
  • the blockage number m_max increases as it moves to the right.
  • the current command value at the time of charge / discharge decreases as the number of interruptions m_max increases.
  • FIG. 8 shows general characteristics of the current breaker 12b.
  • the vertical axis represents the energization time of the current breaker 12b
  • the horizontal axis represents the current value flowing through the current breaker 12b.
  • a boundary line (one example) shown in FIG. 8 indicates a boundary between a region where the current breaker 12b operates and a region where the current breaker 12b does not operate.
  • the region above the boundary line shown in FIG. 8 is a region where the current breaker 12b operates.
  • the current breaker 12b is likely to operate in a short time.
  • the current load on the unit cell 12 can be reduced. Specifically, as the number of the current breakers 12b in the operating state increases, the value of the current flowing through the battery pack 10 is reduced, so that the unit cell 12 in which the current breaker 12b is not activated is excessive. It is possible to prevent the current from flowing and protect the unit cell 12. Moreover, the electric current value which flows into the electric current breaker 12b which is not act
  • the current value flowing through the assembled battery 10 is limited based on the cutoff number m_max as the maximum value, even in the battery block 11 having the largest number of current breakers 12b in the operating state, The current load on the battery 12 can be reduced. That is, all the unit cells 12 constituting the assembled battery 10 can be protected.
  • the current value of the assembled battery 10 is limited according to the number of interruptions m_max, it is possible to prevent the charging / discharging of the assembled battery 10 from being restricted more than necessary, and within a range where all the unit cells 12 can be protected. Therefore, the assembled battery 10 can be used efficiently.
  • a battery system that is Embodiment 2 of the present invention will be described.
  • the member which has the same function as the member demonstrated in Example 1 detailed description is abbreviate
  • differences from the first embodiment will be mainly described.
  • the temperature (internal temperature) inside the battery block 11 (unit cell 12) is estimated, and charging / discharging of the assembled battery 10 is controlled so that the internal temperature does not become higher than the upper limit temperature.
  • the internal temperature of the battery block 11 (cell 12) is obtained by adding the temperature rise due to the internal resistance of the cell 12 to the temperature (surface temperature) on the surface of the battery block 11 (cell 12). Can be estimated.
  • the controller 40 can acquire the surface temperature of the battery block 11 (unit cell 12) from the output of the temperature sensor.
  • the controller 40 detects the temperature detected by the temperature sensor and the temperature sensor and the battery block 11 (unit cell 12).
  • the surface temperature of the battery block 11 (unit cell 12) can be estimated.
  • the surface temperature of the battery block 11 is determined from the temperature detected by the temperature sensor. Can be identified (estimated). Data indicating the correspondence between the temperature detected by the temperature sensor and the surface temperature of the battery block 11 (unit cell 12) can be stored in the memory 41 in advance.
  • charging / discharging of the assembled battery 10 is controlled so that the surface temperature of the battery block 11 (unit cell 12) does not exceed a preset upper limit temperature.
  • the upper limit temperature is a preset temperature based on the viewpoint of suppressing the generation of gas from the unit cell 12 (power generation element 12a) when the unit cell 12 is in a high temperature state.
  • the unit cell 12 generates heat by charging and discharging, and the internal temperature of the unit cell 12 tends to be higher than the surface temperature of the unit cell 12. Therefore, in order to suppress the generation of gas, it is preferable to control charging / discharging of the unit cell 12 based on the internal temperature of the unit cell 12.
  • the internal temperature of the unit cell 12 depends on the value of the current flowing through the unit cell 12.
  • the amount of heat generated inside the unit cell 12 is a value obtained by multiplying the value obtained by squaring the current value of the unit cell 12 by the internal resistance of the unit cell 12.
  • the internal temperature of the single cell 12 can be estimated based on the temperature outside the single cell 12 (temperature that can be acquired by the temperature sensor) and the amount of temperature increase corresponding to the heat generated by the current flowing through the single cell 12. .
  • the temperature outside the unit cell 12 may be a temperature on the surface of the unit cell 12 or a temperature at a position away from the surface of the unit cell 12.
  • the internal temperature of the unit cell 12 can be estimated in consideration of the heat conduction inside the unit cell 12.
  • the internal temperature of the unit cell 12 is estimated in consideration of heat transfer in the surrounding environment and heat conduction in the unit cell 12. can do.
  • a heat conduction equation or a heat equivalent circuit can be used.
  • the internal temperature of the unit cell 12 When specifying the internal temperature of the unit cell 12, the internal temperature can be estimated in a model using a heat conduction equation or a heat equivalent circuit. On the other hand, if the calculation load when estimating the internal temperature is reduced, for example, the relationship between the current value of the unit cell 12, the temperature outside the unit cell 12 (environmental temperature), and the internal temperature of the unit cell 12. Is prepared in advance, and the internal temperature can be specified from the current value and the environmental temperature using this map.
  • the value of the current flowing through the single cells 12 included in the battery block 11 increases.
  • the current value that flows through the cell 12 after the current breaker 12b is activated is (N / (N ⁇ ) with respect to the current value that flows through the cell 12 when the current breaker 12b is not activated. m)) is doubled.
  • N is the total number of unit cells 12 constituting the battery block 11
  • m is the number of cut-offs.
  • the blocking number m can be specified by the method described in the first embodiment.
  • the current value of the unit cell 12 is multiplied by “N / (N ⁇ m)”. It is necessary to use a current value. Specifically, a value obtained by multiplying the current value detected by the current sensor 31 by “N / (N ⁇ m)” needs to be the current value of the unit cell 12. As a result, the temperature rise can be calculated based on the value of the current actually flowing through the unit cell 12 when the current breaker 12b is operating, and the accuracy of estimating the internal temperature of the unit cell 12 is improved. Can be made.
  • the value of the current flowing through the single battery 12 is not corrected as described above, the actual internal temperature may become higher than the estimated internal temperature.
  • the current value of the unit cell 12 is specified in consideration of the largest interruption number m_max. That is, when calculating the temperature rise due to the internal resistance of the unit cell 12, the current value of the unit cell 12 is set to the current value flowing through the unit cell 12 when the current breaker 12b is not operating. N ⁇ m_max) ”can be used. In other words, a value obtained by multiplying the current value detected by the current sensor 31 by “N / (N ⁇ m_max)” can be used as the current value of the unit cell 12. Accordingly, the temperature increase (in other words, the internal temperature) can be calculated on the basis of the battery block 11 having the largest number of interruptions m, and the battery block 11 having the largest number of interruptions m can be appropriately protected. .
  • charging / discharging of the battery pack 10 can be controlled so that the internal temperature (estimated temperature) of the cell 12 does not become higher than the upper limit temperature.
  • the controller 40 can limit charging / discharging of the assembled battery 10. Specifically, the controller 40 can reduce the upper limit power that allows the battery pack 10 to be charged, or can reduce the upper limit power that allows the battery pack 10 to be discharged. Decreasing the upper limit power includes setting the upper limit power to 0 [kW]. By setting the upper limit power to 0 [kW], the assembled battery 10 is not charged or discharged.
  • a battery system that is Embodiment 3 of the present invention will be described.
  • the member which has the same function as the member demonstrated in Example 1 detailed description is abbreviate
  • differences from the first embodiment will be mainly described.
  • FIG. 9 is a flowchart showing a part of processing in the battery system of the present embodiment.
  • the process shown in FIG. 9 is executed by the controller 40 and performed at a predetermined cycle.
  • the process shown in FIG. 9 can be performed mainly when the vehicle on which the battery system is mounted is an electric vehicle.
  • step S201 the controller 40 confirms the operating state of the current breaker 12b in each battery block 11.
  • the method for confirming the operating state of the current breaker 12b is the same as the method described in the first embodiment (step S101 in FIG. 5).
  • step S202 the controller 40 determines whether or not the current breaker 12b is operating based on the confirmation result in step S201. That is, the controller 40 determines whether or not the current breaker 12b of any single battery 12 is operating in the assembled battery 10 shown in FIG. 2 or FIG. When any one of the current breakers 12b is operating, the process proceeds to step S203, and when all the current breakers 12b are not operating, the process shown in FIG. 9 is terminated.
  • step S ⁇ b> 203 the controller 40 specifies the number of current breakers 12 b (the number of interruptions) in the active state in each battery block 11, and sets the largest interruption number m_max among the interruption numbers in all the battery blocks 11. Identify.
  • the method for specifying the number of blocks is the same as the method described in the first embodiment.
  • step S204 the controller 40 determines whether or not the cutoff number m_max is equal to or greater than a predetermined number (corresponding to a first threshold) m1. Information about the number m1 can be stored in the memory 41.
  • the process proceeds to step S205, and when the blocking number m_max is smaller than the number m1, the process proceeds to step S206.
  • step S205 the controller 40 sets a flag (non-permission flag) that does not allow the battery system to be activated (Ready-On).
  • the setting information of the non-permission flag is stored in the memory 41.
  • the controller 40 does not start the battery system even if a signal for starting the battery system is input again after stopping the battery system. Thereby, the controller 40 can prevent the vehicle from running by the output of the assembled battery 10.
  • the number m1 used in step S204 can be set as appropriate.
  • the output performance of the assembled battery 10 is degraded.
  • the vertical axis indicates the output performance of the assembled battery 10
  • the horizontal axis indicates the number of interruptions m_max.
  • FIG. 10 shows the output performance of the assembled battery 10
  • the input performance of the assembled battery 10 is also the same as the output performance, and the input performance decreases as the cutoff number m_max increases.
  • the number of interruptions m_max when the input / output performance of the assembled battery 10 reaches the performance required by the vehicle can be specified in advance.
  • the number m1 can be set to a number smaller than the maximum shut-off number m_max that satisfies the required performance of the vehicle. If the number m1 is too smaller than the maximum shut-off number m_max that satisfies the required performance of the vehicle, it is difficult to allow the battery system to be activated. Therefore, the number m1 is preferably set to a number close to the maximum number of shutoffs m_max that satisfies the required performance of the vehicle.
  • step S206 the controller 40 determines whether or not the cutoff number m_max is equal to or greater than a predetermined number (corresponding to the second threshold) m2.
  • the number m2 is a number smaller than the number m1 used in step S204, and information regarding the number m2 can be stored in the memory 41.
  • the cutoff number m_max is greater than or equal to several m2, the process proceeds to step S207, and when the cutoff number m_max is smaller than the number m2, the process proceeds to step S208.
  • the controller 40 issues a warning to the user.
  • the content of the warning may be anything that allows the user to recognize that the battery pack 10 is in an abnormal state.
  • the specific content of the warning includes content for notifying the user that the user is going to the dealer.
  • Sound or display can be used as means for giving a warning.
  • the user can be made to recognize the warning by outputting information related to the warning with sound. Further, by displaying information related to the warning on the display, the user can recognize the warning.
  • the controller 40 performs the process of step S208 after performing the process of step S207.
  • step S208 the controller 40 specifies the current command value and controls charging / discharging of the assembled battery 10 based on the current command value.
  • the method for specifying the current command value and the method for controlling the charging / discharging of the assembled battery 10 are the same as the method described in the first embodiment (the processes in steps S104 and S105 in FIG. 5).
  • FIG. 11 is a flowchart showing a part of processing in the battery system of the present embodiment.
  • the process shown in FIG. 11 is executed by the controller and performed at a predetermined cycle.
  • the process shown in FIG. 11 can be performed mainly when the vehicle on which the battery system is mounted is a hybrid vehicle.
  • the same processes as those shown in FIG. 9 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • differences from the processing illustrated in FIG. 9 will be mainly described.
  • step S204 it is determined whether or not the cutoff number m_max is greater than or equal to several m1.
  • the number m1 used in the process of step S204 in FIG. 11 is equal to the number m1 used in the process of step S204 in FIG. 9, but may be different from each other.
  • the number m1 used in the process of step S204 in FIG. 11 can be made larger than the number m1 used in the process of step S204 in FIG.
  • Information about the number m1 can be stored in the memory 41.
  • step S210 when the process proceeds from the process of step S204 to the process of step S210, it is usually after the process of step S206 to step S208 is performed. Therefore, when the process of step S210 is performed, a warning is still given to the user.
  • step S210 the controller 40 causes the vehicle to travel without discharging the assembled battery 10.
  • a power source for running the vehicle is provided in addition to the assembled battery 10. Examples of the power source include an engine and a fuel cell. Therefore, in step S210, the controller 40 can drive the vehicle by operating a power source different from that of the assembled battery 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Problem] In a power storage device with multiple power storage components connected in parallel, the activation of a current blocking device in a power storage component causes changes in the current flowing in a power storage component in which the current blocking device is not activated. [Solution] This power storage system includes: a power storage device that includes parallelly connected multiple power storage components; and a controller for controlling charging/discharging of the power storage device. Each power storage component has a current blocking device for interrupting a current path inside the power storage component. The controller controls charging/discharging of the power storage device with reference to the values of currents that flow in power storage components with uninterrupted current paths. The values of the currents flowing in the power storage components with uninterrupted current paths change according to an increase in the number of current blocking devices that are in an open state.

Description

蓄電システムPower storage system
 本発明は、電流遮断器をそれぞれ有する複数の蓄電素子を備えた蓄電装置の充放電を制御する蓄電システムに関する。 The present invention relates to a power storage system that controls charging / discharging of a power storage device including a plurality of power storage elements each having a current breaker.
 特許文献1に記載の集合電池では、複数の電池を並列に接続した構成において、並列に接続された各単電池に対してヒューズを接続している。ヒューズは、過大な電流が流れたときに溶断することにより、電流経路を遮断する。 In the assembled battery described in Patent Document 1, in a configuration in which a plurality of batteries are connected in parallel, a fuse is connected to each single cell connected in parallel. The fuse cuts off the current path by fusing when an excessive current flows.
特開平05-275116号公報JP 05-275116 A 特開2011-135657号公報JP 2011-135657 A 特開2008-182779号公報JP 2008-182779 A
 並列に接続された各電池に対してヒューズを接続した構成では、溶断したヒューズの数が増えるたびに、並列に接続された各電池に流れる電流値が変化する。電流値が変化するときには、この電流値に応じて電池を保護する必要がある。 In the configuration in which a fuse is connected to each battery connected in parallel, the value of the current flowing through each battery connected in parallel changes as the number of blown fuses increases. When the current value changes, it is necessary to protect the battery according to the current value.
 本発明である蓄電システムは、並列に接続された複数の蓄電素子を含む蓄電装置と、蓄電装置の充放電を制御するコントローラと、を有する。各蓄電素子は、蓄電素子の内部における電流経路を遮断する電流遮断器を有している。コントローラは、電流経路が遮断されていない蓄電素子に流れる電流値を基準として、蓄電装置の充放電を制御する。電流経路が遮断されていない蓄電素子に流れる電流値は、遮断状態にある電流遮断器の数が増えることに応じて変化する。 The power storage system according to the present invention includes a power storage device including a plurality of power storage elements connected in parallel, and a controller that controls charging / discharging of the power storage device. Each power storage element has a current breaker that blocks a current path inside the power storage element. The controller controls charging / discharging of the power storage device with reference to a current value flowing through the power storage element whose current path is not interrupted. The value of the current flowing through the power storage element whose current path is not interrupted changes as the number of current breakers in the interrupted state increases.
 複数の蓄電素子が並列に接続された蓄電装置では、遮断状態にある電流遮断器の数が増えることに応じて、電流経路が遮断されていない蓄電素子に流れる電流値が変化する。蓄電素子に流れる電流値が変化する場合には、この電流値を基準として、蓄電装置の充放電を制御することが好ましい。これにより、蓄電装置の充放電制御によって、蓄電素子を保護することができる。 In a power storage device in which a plurality of power storage elements are connected in parallel, the value of a current flowing through a power storage element whose current path is not interrupted changes as the number of current breakers in the interrupted state increases. When the value of the current flowing through the power storage element changes, charging / discharging of the power storage device is preferably controlled based on this current value. Thereby, an electrical storage element can be protected by charge / discharge control of an electrical storage apparatus.
 蓄電装置は、直列に接続された複数の蓄電ブロックで構成することができる。ここで、各蓄電ブロックは、並列に接続された複数の蓄電素子で構成することができる。このような構成の蓄電装置では、遮断状態にある電流遮断器の数として、各蓄電ブロックにおいて遮断状態にある電流遮断器の数のうち、最も多い数を用いることができる。これにより、蓄電装置の充放電制御において、すべての蓄電素子を保護することができる。 The power storage device can be composed of a plurality of power storage blocks connected in series. Here, each power storage block can be composed of a plurality of power storage elements connected in parallel. In the power storage device having such a configuration, as the number of current breakers in the cut-off state, the largest number among the number of current breakers in the cut-off state in each power storage block can be used. Thereby, all the electrical storage elements can be protected in charge / discharge control of the electrical storage device.
 並列に接続された各蓄電素子に対して、他の蓄電素子を直列に接続することにより、蓄電装置を構成することができる。言い換えれば、複数の蓄電素子が直列に接続された蓄電ブロックを複数用意しておき、これらの蓄電ブロックを並列に接続することができる。 A power storage device can be configured by connecting another power storage element in series to each power storage element connected in parallel. In other words, it is possible to prepare a plurality of power storage blocks in which a plurality of power storage elements are connected in series, and to connect these power storage blocks in parallel.
 コントローラは、遮断状態にある電流遮断器の数が増えることに応じて、蓄電装置に流れる電流値を低下させることができる。蓄電装置に含まれる複数の蓄電素子は、並列に接続されているため、蓄電装置に流れる電流値が一定であるとき、遮断状態にある電流遮断器の数が増えると、電流経路が遮断されていない蓄電素子に流れる電流値が上昇してしまう。 The controller can reduce the value of the current flowing through the power storage device as the number of current breakers in the breaking state increases. Since the plurality of power storage elements included in the power storage device are connected in parallel, when the value of the current flowing through the power storage device is constant, the current path is cut off when the number of current breakers in the cut-off state increases. The value of the current flowing through the non-storage element increases.
 したがって、蓄電装置に流れる電流値を低下させることにより、電流経路が遮断されていない蓄電素子に流れる電流値が上昇するのを抑制することができる。蓄電素子に流れる電流値が上昇するのを抑制することにより、蓄電素子の劣化を抑制したり、電流遮断器が作動しやすくなってしまうのを抑制したりすることができる。 Therefore, by reducing the current value flowing through the power storage device, it is possible to suppress an increase in the current value flowing through the power storage element whose current path is not interrupted. By suppressing an increase in the value of the current flowing through the power storage element, it is possible to suppress the deterioration of the power storage element and to prevent the current breaker from being easily activated.
 蓄電装置の充放電を制御するとき、蓄電素子の内部における推定温度が上限温度に近づくほど、蓄電装置の充放電を制限することができる。蓄電装置の充放電を制限することにより、蓄電素子の内部温度が上限温度よりも高くなってしまうのを抑制することができる。 When controlling the charge / discharge of the power storage device, the charge / discharge of the power storage device can be limited as the estimated temperature inside the power storage element approaches the upper limit temperature. By limiting charging / discharging of the power storage device, it is possible to suppress the internal temperature of the power storage element from becoming higher than the upper limit temperature.
 蓄電素子の内部における温度は、基準となる電流値に基づく温度変化量を用いて推定することができる。例えば、蓄電素子の表面における温度と、電流値に基づく温度変化量とに基づいて、蓄電素子の内部における温度を推定することができる。ここで、遮断状態にある電流遮断器の数が増えることに応じて、電流経路が遮断されていない蓄電素子に流れる電流値が変化するため、蓄電素子の内部抵抗を算出するときには、変化後の電流値を用いる必要がある。これにより、蓄電素子の内部温度を推定するときの精度を向上させることができる。 The temperature inside the electricity storage element can be estimated using a temperature change amount based on a reference current value. For example, the temperature inside the electricity storage element can be estimated based on the temperature on the surface of the electricity storage element and the temperature change amount based on the current value. Here, as the number of current breakers in the cut-off state increases, the value of the current flowing through the storage element whose current path is not interrupted changes. Therefore, when calculating the internal resistance of the storage element, It is necessary to use a current value. Thereby, the precision at the time of estimating the internal temperature of an electrical storage element can be improved.
 コントローラは、遮断状態にある電流遮断器の数が第1閾値以上であるときに、蓄電装置の充放電を許可しないことができる。遮断状態にある電流遮断器の数が増えすぎると、蓄電装置の入出力性能を確保し難くなる。したがって、遮断状態にある電流遮断器の数が第1閾値以上であるときには、蓄電装置の充放電を許可しないことにより、蓄電装置の入出力性能が確保し難い状態において、蓄電装置の充放電が行われるのを防止することができる。例えば、蓄電装置を車両に搭載し、蓄電装置の出力を用いて車両を走行させるとき、コントローラは、車両を走行させないことができる。 The controller can not permit charging / discharging of the power storage device when the number of current breakers in the breaking state is equal to or greater than the first threshold. If the number of current breakers in the cut-off state increases too much, it becomes difficult to ensure the input / output performance of the power storage device. Therefore, when the number of current breakers in the cut-off state is equal to or greater than the first threshold value, charging / discharging of the power storage device is performed in a state where it is difficult to secure input / output performance of the power storage device by not permitting charge / discharge of the power storage device Can be prevented. For example, when the power storage device is mounted on a vehicle and the vehicle is driven using the output of the power storage device, the controller can not drive the vehicle.
 コントローラは、遮断状態にある電流遮断器の数が、第1閾値よりも少ない第2閾値以上であって、第1閾値よりも少ないときに、警告を行うことができる。これにより、遮断状態にある電流遮断器の数が第1閾値に到達する前に、ユーザなどは、警告によって蓄電装置の異常を確認することができる。そして、蓄電装置の充放電が行われなくなる前に、蓄電素子又は蓄電装置を交換することができる。 The controller can issue a warning when the number of current breakers in the interrupted state is equal to or greater than a second threshold value that is less than the first threshold value and less than the first threshold value. Thereby, before the number of current breakers in the cut-off state reaches the first threshold value, the user or the like can confirm the abnormality of the power storage device by the warning. Then, the power storage element or the power storage device can be replaced before the power storage device is no longer charged or discharged.
 電流遮断器としては、ヒューズ、PTC素子又は、電流遮断弁を用いることができる。ヒューズは、溶断によって電流経路を遮断する。PTC素子は、温度上昇に伴う抵抗の上昇によって、電流経路を遮断する。電流遮断弁は、蓄電素子の内圧が上昇することに応じて変形し、電流経路を遮断する。 As the current breaker, a fuse, a PTC element, or a current cutoff valve can be used. The fuse interrupts the current path by fusing. The PTC element cuts off the current path due to an increase in resistance accompanying a temperature rise. The current cutoff valve is deformed in response to an increase in the internal pressure of the power storage element and cuts off the current path.
電池システムの構成を示す図である。It is a figure which shows the structure of a battery system. 組電池の構成を示す図である。It is a figure which shows the structure of an assembled battery. 単電池の構成を示す図である。It is a figure which shows the structure of a cell. 変形例である組電池の構成を示す図である。It is a figure which shows the structure of the assembled battery which is a modification. 実施例1において、組電池の充放電を制御する処理を示すフローチャートである。In Example 1, it is a flowchart which shows the process which controls charging / discharging of an assembled battery. 電池ブロックの摩耗劣化に伴う内部抵抗の経時変化と、電流遮断器の作動に伴う内部抵抗との関係を示す図である。It is a figure which shows the relationship between the time-dependent change of the internal resistance accompanying the abrasion deterioration of a battery block, and the internal resistance accompanying the action | operation of a current circuit breaker. 充放電時の電流指令値および遮断数の関係を示す図である。It is a figure which shows the relationship between the electric current command value at the time of charging / discharging, and interruption | blocking number. 電流遮断器の特性を示す図である。It is a figure which shows the characteristic of a current breaker. 実施例3において、組電池の充放電を制御する処理を示すフローチャートである。In Example 3, it is a flowchart which shows the process which controls charging / discharging of an assembled battery. 実施例3において、組電池の出力性能および遮断数の関係を示す図である。In Example 3, it is a figure which shows the relationship between the output performance of an assembled battery, and the number of interruption | blocking. 実施例3の変形例において、組電池の充放電を制御する処理を示すフローチャートである。In the modification of Example 3, it is a flowchart which shows the process which controls charging / discharging of an assembled battery.
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
 本発明の実施例1である電池システム(蓄電システムに相当する)について、図1を用いて説明する。図1は、電池システムの構成を示す図である。本実施例の電池システムは、車両に搭載されている。 A battery system (corresponding to a power storage system) that is Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a diagram illustrating a configuration of a battery system. The battery system of this embodiment is mounted on a vehicle.
 車両としては、ハイブリッド自動車や電気自動車がある。ハイブリッド自動車は、車両を走行させる動力源として、後述する組電池に加えて、エンジン又は燃料電池を備えている。電気自動車は、車両を走行させる動力源として、後述する組電池だけを備えている。 Vehicles include hybrid cars and electric cars. The hybrid vehicle includes an engine or a fuel cell as a power source for running the vehicle in addition to the assembled battery described later. The electric vehicle includes only an assembled battery described later as a power source for running the vehicle.
 組電池(蓄電装置に相当する)10の正極端子と接続された正極ラインPLには、システムメインリレーSMR-Bが設けられている。システムメインリレーSMR-Bは、コントローラ40からの制御信号を受けることにより、オンおよびオフの間で切り替わる。組電池10の負極端子と接続された負極ラインNLには、システムメインリレーSMR-Gが設けられている。システムメインリレーSMR-Gは、コントローラ40からの制御信号を受けることにより、オンおよびオフの間で切り替わる。 A system main relay SMR-B is provided on the positive electrode line PL connected to the positive electrode terminal of the assembled battery (corresponding to a power storage device) 10. System main relay SMR-B is switched between on and off by receiving a control signal from controller 40. A system main relay SMR-G is provided on the negative electrode line NL connected to the negative electrode terminal of the assembled battery 10. System main relay SMR-G is switched between on and off by receiving a control signal from controller 40.
 システムメインリレーSMR-Gには、システムメインリレーSMR-Pおよび電流制限抵抗Rが並列に接続されている。システムメインリレーSMR-Pおよび電流制限抵抗Rは、直列に接続されている。システムメインリレーSMR-Pは、コントローラ40からの制御信号を受けることにより、オンおよびオフの間で切り替わる。電流制限抵抗Rは、組電池10を負荷(具体的には、後述する昇圧回路32)と接続するときに、突入電流が流れるのを抑制するために用いられる。 System main relay SMR-P and current limiting resistor R are connected in parallel to system main relay SMR-G. System main relay SMR-P and current limiting resistor R are connected in series. System main relay SMR-P is switched between on and off by receiving a control signal from controller 40. The current limiting resistor R is used to suppress an inrush current from flowing when the assembled battery 10 is connected to a load (specifically, a booster circuit 32 described later).
 組電池10を負荷と接続するとき、コントローラ40は、システムメインリレーSMR-B,SMR-Pをオフからオンに切り替える。これにより、電流制限抵抗Rに電流を流すことができ、突入電流が流れるのを抑制することができる。 When connecting the assembled battery 10 to a load, the controller 40 switches the system main relays SMR-B and SMR-P from off to on. As a result, a current can flow through the current limiting resistor R, and an inrush current can be suppressed.
 次に、コントローラ40は、システムメインリレーSMR-Gをオフからオンに切り替えた後に、システムメインリレーSMR-Pをオンからオフに切り替える。これにより、組電池10および負荷の接続が完了し、図1に示す電池システムは、起動状態(Ready-On)となる。一方、組電池10および負荷の接続を遮断するとき、コントローラ40は、システムメインリレーSMR-B,SMR-Gをオンからオフに切り替える。これにより、図1に示す電池システムの動作は停止する。 Next, after switching the system main relay SMR-G from off to on, the controller 40 switches the system main relay SMR-P from on to off. Thereby, connection of the assembled battery 10 and load is completed, and the battery system shown in FIG. 1 will be in a starting state (Ready-On). On the other hand, when cutting off the connection between the assembled battery 10 and the load, the controller 40 switches the system main relays SMR-B and SMR-G from on to off. Thereby, the operation of the battery system shown in FIG. 1 is stopped.
 昇圧回路32は、組電池10の出力電圧を昇圧し、昇圧後の電力をインバータ33に出力する。また、昇圧回路32は、インバータ33の出力電圧を降圧し、降圧後の電力を組電池10に出力することができる。昇圧回路32は、コントローラ40からの制御信号を受けて動作する。本実施例の電池システムでは、昇圧回路32を用いているが、昇圧回路32を省略することもできる。 The booster circuit 32 boosts the output voltage of the assembled battery 10 and outputs the boosted power to the inverter 33. Further, the booster circuit 32 can step down the output voltage of the inverter 33 and output the lowered power to the assembled battery 10. The booster circuit 32 operates in response to a control signal from the controller 40. In the battery system of this embodiment, the booster circuit 32 is used, but the booster circuit 32 may be omitted.
 インバータ33は、昇圧回路32から出力された直流電力を交流電力に変換し、交流電力をモータ・ジェネレータ34に出力する。また、インバータ33は、モータ・ジェネレータ34が生成した交流電力を直流電力に変換し、直流電力を昇圧回路32に出力する。モータ・ジェネレータ34としては、例えば、三相交流モータを用いることができる。 The inverter 33 converts the DC power output from the booster circuit 32 into AC power, and outputs the AC power to the motor / generator 34. The inverter 33 converts AC power generated by the motor / generator 34 into DC power and outputs the DC power to the booster circuit 32. As the motor generator 34, for example, a three-phase AC motor can be used.
 モータ・ジェネレータ34は、インバータ33からの交流電力を受けて、車両を走行させるための運動エネルギを生成する。組電池10の出力電力を用いて車両を走行させるとき、モータ・ジェネレータ34によって生成された運動エネルギは、車輪に伝達される。 The motor / generator 34 receives AC power from the inverter 33 and generates kinetic energy for running the vehicle. When the vehicle is driven using the output power of the assembled battery 10, the kinetic energy generated by the motor / generator 34 is transmitted to the wheels.
 車両を減速させたり、停止させたりするとき、モータ・ジェネレータ34は、車両の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。インバータ33は、モータ・ジェネレータ34が生成した交流電力を直流電力に変換し、直流電力を昇圧回路32に出力する。昇圧回路32は、インバータ33からの電力を組電池10に出力する。これにより、回生電力を組電池10に蓄えることができる。 When the vehicle is decelerated or stopped, the motor / generator 34 converts kinetic energy generated during braking of the vehicle into electric energy (AC power). The inverter 33 converts AC power generated by the motor / generator 34 into DC power and outputs the DC power to the booster circuit 32. The booster circuit 32 outputs the electric power from the inverter 33 to the assembled battery 10. Thereby, regenerative electric power can be stored in the assembled battery 10.
 図2は、組電池10の構成を示す。組電池10は、直列に接続された複数の電池ブロック(蓄電ブロックに相当する)11を有する。複数の電池ブロック11を直列に接続することにより、組電池10の出力電圧を確保することができる。ここで、電池ブロック11の数は、組電池10に対して要求される電圧を考慮して、適宜設定することができる。 FIG. 2 shows the configuration of the assembled battery 10. The assembled battery 10 has a plurality of battery blocks (corresponding to power storage blocks) 11 connected in series. By connecting a plurality of battery blocks 11 in series, the output voltage of the assembled battery 10 can be secured. Here, the number of battery blocks 11 can be appropriately set in consideration of the voltage required for the assembled battery 10.
 各電池ブロック11は、並列に接続された複数の単電池(蓄電素子に相当する)12を有する。複数の単電池12を並列に接続することにより、電池ブロック11(組電池10)の容量[Ah]を増やすことができ、組電池10の出力を用いて車両を走行させるときの距離を延ばすことができる。各電池ブロック11を構成する単電池12の数は、組電池10に要求される容量を考慮して、適宜設定することができる。 Each battery block 11 has a plurality of single cells (corresponding to power storage elements) 12 connected in parallel. By connecting a plurality of single cells 12 in parallel, the capacity [Ah] of the battery block 11 (the assembled battery 10) can be increased, and the distance when the vehicle is driven using the output of the assembled battery 10 is increased. Can do. The number of single cells 12 constituting each battery block 11 can be appropriately set in consideration of the capacity required for the assembled battery 10.
 複数の電池ブロック11は、直列に接続されているため、各電池ブロック11には、等しい電流が流れる。各電池ブロック11では、複数の単電池12が並列に接続されているため、各単電池12に流れる電流値は、電池ブロック11に流れる電流値を、電池ブロック11を構成する単電池12の数(総数)で除算した電流値となる。具体的には、電池ブロック11を構成する単電池12の総数がN個であり、電池ブロック11に流れる電流値がIsであるとき、単電池12に流れる電流値は、Is/Nとなる。ここでは、電池ブロック11を構成する複数の単電池12において、抵抗のバラツキが発生していないものとしている。 Since the plurality of battery blocks 11 are connected in series, an equal current flows through each battery block 11. In each battery block 11, a plurality of unit cells 12 are connected in parallel, so that the current value flowing through each unit cell 12 is the current value flowing through the battery block 11 by the number of unit cells 12 constituting the battery block 11. The current value is divided by (total). Specifically, when the total number of the single cells 12 constituting the battery block 11 is N and the current value flowing through the battery block 11 is Is, the current value flowing through the single cell 12 is Is / N. Here, it is assumed that there is no variation in resistance among the plurality of single cells 12 constituting the battery block 11.
 単電池12としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)を用いることができる。例えば、単電池12としては、18650型の電池を用いることができる。18650型の電池は、いわゆる円筒型の電池であり、直径が18[mm]であり、長さが65.0[mm]である。円筒型の電池とは、電池ケースが円筒状に形成されており、電池ケースの内部には、充放電を行う発電要素が収容されている。発電要素の構成については、後述する。 As the single battery 12, a secondary battery such as a nickel metal hydride battery or a lithium ion battery can be used. An electric double layer capacitor (capacitor) can be used instead of the secondary battery. For example, as the single battery 12, a 18650 type battery can be used. The 18650 type battery is a so-called cylindrical battery, which has a diameter of 18 [mm] and a length of 65.0 [mm]. In a cylindrical battery, a battery case is formed in a cylindrical shape, and a power generation element for charging and discharging is accommodated in the battery case. The configuration of the power generation element will be described later.
 単電池12は、図3に示すように、発電要素12aおよび電流遮断器12bを有する。発電要素12aおよび電流遮断器12bは、単電池12の外装を構成する電池ケースに収容されている。発電要素12aは、充放電を行う要素であり、正極板と、負極板と、正極板および負極板の間に配置されるセパレータとを有する。正極板は、集電板と、集電板の表面に形成された正極活物質層とを有する。負極板は、集電板と、集電板の表面に形成された負極活物質層とを有する。正極活物質層は、正極活物質や導電剤などを含んでおり、負極活物質層は、負極活物質や導電剤などを含んでいる。 The cell 12 includes a power generation element 12a and a current breaker 12b as shown in FIG. The power generation element 12 a and the current breaker 12 b are accommodated in a battery case that constitutes the exterior of the unit cell 12. The power generation element 12a is an element that performs charging and discharging, and includes a positive electrode plate, a negative electrode plate, and a separator disposed between the positive electrode plate and the negative electrode plate. The positive electrode plate includes a current collector plate and a positive electrode active material layer formed on the surface of the current collector plate. The negative electrode plate has a current collector plate and a negative electrode active material layer formed on the surface of the current collector plate. The positive electrode active material layer includes a positive electrode active material and a conductive agent, and the negative electrode active material layer includes a negative electrode active material and a conductive agent.
 単電池12としてリチウムイオン二次電池を用いるときには、例えば、正極板の集電板をアルミニウムで形成し、負極板の集電板を銅で形成することができる。また、正極活物質としては、例えば、LiCo1/3Ni1/3Mn1/3O2を用い、負極活物質としては、例えば、カーボンを用いることができる。セパレータ、正極活物質層および負極活物質層には、電解液がしみ込んでいる。電解液を用いる代わりに、正極板および負極板の間に、固体電解質層を配置することもできる。 When a lithium ion secondary battery is used as the single battery 12, for example, the current collector plate of the positive electrode plate can be made of aluminum, and the current collector plate of the negative electrode plate can be made of copper. As the positive electrode active material, for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 can be used, and as the negative electrode active material, for example, carbon can be used. An electrolyte solution is infiltrated into the separator, the positive electrode active material layer, and the negative electrode active material layer. Instead of using the electrolytic solution, a solid electrolyte layer may be disposed between the positive electrode plate and the negative electrode plate.
 電流遮断器12bは、単電池12の内部における電流経路を遮断するために用いられる。すなわち、電流遮断器12bが作動することにより、単電池12の内部における電流経路が遮断される。電流遮断器12bとしては、例えば、ヒューズ、PTC(Positive Temperature Coefficient)素子又は、電流遮断弁を用いることができる。これらの電流遮断器12bは、個別に用いることもできるし、併用することもできる。 The current breaker 12b is used to cut off the current path inside the unit cell 12. That is, when the current breaker 12b operates, the current path inside the unit cell 12 is cut off. As the current breaker 12b, for example, a fuse, a PTC (Positive Temperature Coefficient) element, or a current cut-off valve can be used. These current breakers 12b can be used individually or in combination.
 電流遮断器12bとしてのヒューズは、ヒューズに流れる電流に応じて溶断する。ヒューズを溶断させることにより、単電池12の内部における電流経路を機械的に遮断することができる。これにより、発電要素12aに過大な電流が流れるのを防止して、単電池12(発電要素12a)を保護することができる。電流遮断器12bとしてのヒューズは、電池ケースに収容することもできるし、電池ケースの外部に設けることもできる。電池ケースの外部にヒューズを設ける場合であっても、ヒューズは、各単電池12に設けられ、各単電池12と直列に接続される。 The fuse as the current breaker 12b is blown according to the current flowing through the fuse. By blowing the fuse, the current path inside the unit cell 12 can be mechanically interrupted. Thereby, it can prevent that an excessive electric current flows into the electric power generation element 12a, and can protect the cell 12 (electric power generation element 12a). The fuse as the current breaker 12b can be accommodated in the battery case or can be provided outside the battery case. Even when a fuse is provided outside the battery case, the fuse is provided in each unit cell 12 and connected in series with each unit cell 12.
 電流遮断器12bとしてのPTC素子は、単電池12の電流経路に配置されており、PTC素子の温度上昇に応じて抵抗を増加させる。PTC素子に流れる電流が増加すると、ジュール熱によってPTC素子の温度が上昇する。PTC素子の温度上昇に応じて、PTC素子の抵抗が増加することにより、PTC素子において、電流を遮断することができる。これにより、発電要素12aに過大な電流が流れるのを防止して、単電池12(発電要素12a)を保護することができる。 The PTC element as the current breaker 12b is arranged in the current path of the unit cell 12, and increases the resistance according to the temperature rise of the PTC element. When the current flowing through the PTC element increases, the temperature of the PTC element rises due to Joule heat. As the resistance of the PTC element increases as the temperature of the PTC element rises, current can be cut off in the PTC element. Thereby, it can prevent that an excessive electric current flows into the electric power generation element 12a, and can protect the cell 12 (electric power generation element 12a).
 電流遮断器12bとしての電流遮断弁は、単電池12の内圧上昇に応じて変形し、発電要素12aとの機械的な接続を断つことにより、単電池12の内部における電流経路を遮断することができる。単電池12の内部は、密閉状態となっており、過充電などによって発電要素12aからガスが発生すると、単電池12の内圧が上昇する。発電要素12aからガスが発生しているときには、単電池12(発電要素12a)は異常状態となる。単電池12の内圧が上昇することに応じて、電流遮断弁を変形させることにより、発電要素12aとの機械的な接続を断つことができる。これにより、異常状態にある発電要素12aに充放電電流が流れるのを阻止し、単電池12(発電要素12a)を保護することができる。 The current cut-off valve as the current breaker 12b is deformed in accordance with the increase in the internal pressure of the unit cell 12, and can cut off the current path inside the unit cell 12 by breaking the mechanical connection with the power generation element 12a. it can. The inside of the unit cell 12 is in a sealed state, and when gas is generated from the power generation element 12a due to overcharging or the like, the internal pressure of the unit cell 12 increases. When gas is generated from the power generation element 12a, the unit cell 12 (power generation element 12a) is in an abnormal state. The mechanical connection with the power generation element 12a can be broken by deforming the current cutoff valve in response to the increase in the internal pressure of the unit cell 12. Thereby, it can block | prevent that charging / discharging electric current flows into the electric power generation element 12a in an abnormal state, and can protect the cell 12 (electric power generation element 12a).
 図1に示す監視ユニット20は、各電池ブロック11の電圧を検出し、検出結果をコントローラ40に出力する。電流センサ31は、組電池10に流れる電流値を検出し、検出結果をコントローラ40に出力する。例えば、組電池10を放電しているときには、電流センサ31によって検出された電流値として、正の値を用いることができる。また、組電池10を充電しているときには、電流センサ31によって検出された電流値として、負の値を用いることができる。電流センサ31は、組電池10に流れる電流値を検出できればよく正極ラインPLではなく、負極ラインNLに設けることもできる。また、複数の電流センサ31を用いることもできる。ここで、コストや体格などを考慮すると、本実施例のように、1つの組電池10に対して1つの電流センサ31を設けることが望ましい。 The monitoring unit 20 shown in FIG. 1 detects the voltage of each battery block 11 and outputs the detection result to the controller 40. The current sensor 31 detects the value of the current flowing through the assembled battery 10 and outputs the detection result to the controller 40. For example, when the assembled battery 10 is being discharged, a positive value can be used as the current value detected by the current sensor 31. Further, when the battery pack 10 is being charged, a negative value can be used as the current value detected by the current sensor 31. The current sensor 31 may be provided not on the positive line PL but on the negative line NL as long as it can detect the value of the current flowing through the assembled battery 10. A plurality of current sensors 31 can also be used. Here, in consideration of cost and physique, it is desirable to provide one current sensor 31 for one assembled battery 10 as in the present embodiment.
 コントローラ40は、メモリ41を内蔵しており、メモリ41は、コントローラ40を動作させるためのプログラムや、特定の情報を記憶している。メモリ41は、コントローラ40の外部に設けることもできる。 The controller 40 has a built-in memory 41, and the memory 41 stores a program for operating the controller 40 and specific information. The memory 41 can also be provided outside the controller 40.
 本実施例の組電池10は、図2に示す構成を有しているが、これに限るものではない。具体的には、組電池10を、図4に示す構成とすることもできる。図4において、複数の電池ブロック(蓄電ブロックに相当する)11は、並列に接続されている。電池ブロック11の数は、組電池10に要求される容量などに基づいて、適宜決定することができる。各電池ブロック11は、直列に接続された複数の単電池12を有する。複数の電池ブロック11において、各電池ブロック11を構成する単電池12の数は、同一である。電池ブロック11を構成する単電池12の数は、組電池10に要求される電圧などに基づいて、適宜決定することができる。 The assembled battery 10 of the present embodiment has the configuration shown in FIG. 2, but is not limited thereto. Specifically, the assembled battery 10 may be configured as shown in FIG. In FIG. 4, a plurality of battery blocks (corresponding to power storage blocks) 11 are connected in parallel. The number of battery blocks 11 can be appropriately determined based on the capacity required for the assembled battery 10. Each battery block 11 has a plurality of single cells 12 connected in series. In the plurality of battery blocks 11, the number of unit cells 12 constituting each battery block 11 is the same. The number of unit cells 12 constituting the battery block 11 can be appropriately determined based on the voltage required for the assembled battery 10 and the like.
 次に、本実施例の電池システムにおける一部の処理について、図5に示すフローチャートを用いて説明する。図5に示す処理は、コントローラ40によって実行される。 Next, a part of processing in the battery system of the present embodiment will be described with reference to the flowchart shown in FIG. The process shown in FIG. 5 is executed by the controller 40.
 ステップS101において、コントローラ40は、各電池ブロック11において、電流遮断器12bの作動状態を確認する。 In step S101, the controller 40 confirms the operating state of the current breaker 12b in each battery block 11.
 例えば、各電池ブロック11の内部抵抗を算出し、算出した内部抵抗に基づいて、電流遮断器12bの作動状態を確認することができる。各電池ブロック11における電流値および電圧値の関係を複数取得しておき、これらの取得値を、電流および電圧の座標系にプロットしたときの近似直線の傾きから、各電池ブロック11の内部抵抗を算出することができる。 For example, the internal resistance of each battery block 11 can be calculated, and the operating state of the current breaker 12b can be confirmed based on the calculated internal resistance. A plurality of relations between current values and voltage values in each battery block 11 are acquired, and the internal resistance of each battery block 11 is determined from the slope of the approximate straight line when these acquired values are plotted in the current and voltage coordinate system. Can be calculated.
 電池ブロック11では、複数の単電池12が並列に接続されているため、電流遮断器12bが作動すると、作動状態にある電流遮断器12bが含まれる電池ブロック11の内部抵抗が上昇する。すなわち、電流遮断器12bが作動すると、電池ブロック11における電流経路が減ることにより、電池ブロック11の内部抵抗が上昇してしまう。 In the battery block 11, since the plurality of single cells 12 are connected in parallel, when the current breaker 12b is activated, the internal resistance of the battery block 11 including the current breaker 12b in the activated state is increased. That is, when the current breaker 12b is activated, the current path in the battery block 11 is reduced, and the internal resistance of the battery block 11 is increased.
 ここで、各電池ブロック11の内部抵抗が等しいときには、作動状態にある電流遮断器12bを含む電池ブロック11の内部抵抗は、すべての電流遮断器12bが作動していない電池ブロック11の内部抵抗よりも高くなる。 Here, when the internal resistance of each battery block 11 is equal, the internal resistance of the battery block 11 including the current circuit breaker 12b in the operating state is greater than the internal resistance of the battery block 11 in which all the current circuit breakers 12b are not operating. Also gets higher.
 したがって、電池ブロック11の内部抵抗の上昇を検出することにより、電流遮断器12bの作動状態を確認することができる。作動状態にある電流遮断器12bの数が増えるほど、電池ブロック11の内部抵抗が上昇するため、内部抵抗の上昇量に応じて、作動状態にある電流遮断器12bの数を特定することができる。作動状態にある電流遮断器12bの数を特定する方法(一例)について、以下に説明する。 Therefore, by detecting an increase in the internal resistance of the battery block 11, the operating state of the current breaker 12b can be confirmed. Since the internal resistance of the battery block 11 increases as the number of the current breakers 12b in the operating state increases, the number of current breakers 12b in the operating state can be specified according to the increase amount of the internal resistance. . A method (one example) for specifying the number of current breakers 12b in the operating state will be described below.
 互いに異なる時刻t1,t2のそれぞれにおいて、電池ブロック11の内部抵抗を取得し、抵抗変化率を算出する。抵抗変化率は、下記式(1)に基づいて算出することができる。 The internal resistance of the battery block 11 is acquired at each of the different times t1 and t2, and the resistance change rate is calculated. The resistance change rate can be calculated based on the following formula (1).
 Rr=R2/R1  ・・・(1) Rr = R2 / R1 (1)
 式(1)において、Rrは、抵抗変化率を示す。R1は、時刻t1で取得された電池ブロック11の内部抵抗を示し、R2は、時刻t2で取得された電池ブロック11の内部抵抗を示す。時刻t2としては、電池ブロック11の内部抵抗を取得したときの今回のタイミングとすることができる。時刻t1としては、電池ブロック11の内部抵抗を取得したときの前回のタイミングとすることができる。すなわち、時刻t1は、時刻t2よりも前のタイミングである。 In the formula (1), Rr represents a resistance change rate. R1 indicates the internal resistance of the battery block 11 acquired at time t1, and R2 indicates the internal resistance of the battery block 11 acquired at time t2. The time t2 can be the current timing when the internal resistance of the battery block 11 is acquired. The time t1 can be the previous timing when the internal resistance of the battery block 11 is acquired. That is, time t1 is a timing before time t2.
 次に、時刻t1,t2の間隔が所定期間T以内であるか否かを判別する。所定期間Tは、電池ブロック11の劣化が進行する速度に基づいて、決定することができる。以下、所定期間Tを決定する方法について説明する。 Next, it is determined whether or not the interval between times t1 and t2 is within a predetermined period T. The predetermined period T can be determined based on the speed at which the deterioration of the battery block 11 proceeds. Hereinafter, a method for determining the predetermined period T will be described.
 電池ブロック11(単電池12)が劣化するときの内部抵抗の変化は、実験によって予め取得しておくことができる。電池ブロック11の劣化としては、摩耗による劣化を考慮することができる。摩耗劣化とは、電池ブロック11(単電池12)を構成する部材(特に、発電要素12a)が摩耗することによる劣化である。 The change in internal resistance when the battery block 11 (single cell 12) deteriorates can be acquired in advance by experiments. As the deterioration of the battery block 11, deterioration due to wear can be considered. The wear deterioration is deterioration caused by wear of members (particularly the power generation element 12a) constituting the battery block 11 (unit cell 12).
 電池ブロック11に対して所定の充放電を繰り返す実験などを行うことにより、内部抵抗の経時変化を予め取得することができる。内部抵抗の経時変化は、図6に示す曲線C1として取得することができる。図6に示すように、時間が経過するにつれて、言い換えれば、電池ブロック11の摩耗劣化が進行するにつれて、電池ブロック11の内部抵抗は、上昇することになる。 By conducting an experiment in which the battery block 11 is repeatedly charged / discharged in a predetermined manner, the change in internal resistance with time can be acquired in advance. The change in internal resistance with time can be obtained as a curve C1 shown in FIG. As shown in FIG. 6, the internal resistance of the battery block 11 increases as time passes, in other words, as the wear deterioration of the battery block 11 progresses.
 図6に示す曲線C1を用いれば、電池ブロック11の摩耗劣化によって、時刻t1の内部抵抗に対して、内部抵抗が所定量だけ上昇するときの期間を予め特定することができる。この期間よりも短い期間において、時刻t2の内部抵抗が、時刻t1の内部抵抗に対して所定量だけ上昇しているときには、電池ブロック11には、摩耗劣化による内部抵抗の上昇だけでなく、電流遮断器12bの作動に伴う内部抵抗の上昇が発生していると判別することができる。 If the curve C1 shown in FIG. 6 is used, the period when the internal resistance increases by a predetermined amount with respect to the internal resistance at time t1 due to wear deterioration of the battery block 11 can be specified in advance. In a period shorter than this period, when the internal resistance at time t2 is increased by a predetermined amount with respect to the internal resistance at time t1, the battery block 11 has not only increased internal resistance due to wear deterioration but also current. It can be determined that an increase in internal resistance due to the operation of the circuit breaker 12b has occurred.
 摩耗劣化では、電池ブロック11の内部抵抗が徐々に上昇するのに対して、電流遮断器12bが作動したときには、電池ブロック11の内部抵抗が急激に上昇する。したがって、摩耗劣化によって電池ブロック11の内部抵抗が所定量だけ上昇するまでの期間よりも十分に短い期間において、電池ブロック11の内部抵抗が所定量だけ上昇したときには、電流遮断器12bが作動していると判別することができる。この時間間隔を監視することにより、電流遮断器12bが作動しているか否かを判別することができる。 In the wear deterioration, the internal resistance of the battery block 11 gradually increases, whereas when the current breaker 12b is activated, the internal resistance of the battery block 11 rapidly increases. Therefore, when the internal resistance of the battery block 11 increases by a predetermined amount in a period sufficiently shorter than the period until the internal resistance of the battery block 11 increases by a predetermined amount due to wear deterioration, the current breaker 12b is activated. Can be determined. By monitoring this time interval, it can be determined whether or not the current breaker 12b is operating.
 例えば、摩耗劣化だけが進行したときでは、図6に示す曲線C1に基づいて、時刻t1から半年経過したときに、電池ブロック11の内部抵抗が1.1倍になるとする。ここで、図6に示す時刻t1および時刻t2の間隔が1ヶ月以内であるにもかかわらず、時刻t1および時刻t2の間において、電池ブロック11の内部抵抗が1.1倍になったときには、電流遮断器12bが作動していると判別することができる。 For example, when only wear deterioration has progressed, it is assumed that the internal resistance of the battery block 11 becomes 1.1 times when half a year has elapsed from time t1 based on the curve C1 shown in FIG. Here, when the internal resistance of the battery block 11 becomes 1.1 times between the time t1 and the time t2 even though the interval between the time t1 and the time t2 shown in FIG. 6 is within one month, It can be determined that the current breaker 12b is operating.
 上述した所定期間Tとは、上述した処理で取得された抵抗変化率が、摩耗劣化だけによって発生するときの期間である。具体的には、所定期間Tは、時刻t1から時刻t2までの間の内部抵抗の上昇率(抵抗変化率)が発生するまでの期間であって、図6に示す曲線C1から特定される期間である。 The above-described predetermined period T is a period when the resistance change rate acquired by the above-described processing is generated only by wear deterioration. Specifically, the predetermined period T is a period from the time t1 to the time t2 until the rate of increase in internal resistance (resistance change rate) occurs, and is a period specified from the curve C1 shown in FIG. It is.
 時刻t1,t2の間隔が所定期間Tよりも長いとき、電池ブロック11において、電流遮断器12bが作動していないと判別することができる。一方、時刻t1,t2の間隔が所定期間T以内であるときには、電池ブロック11において、電流遮断器12bが作動していると判別することができる。 When the interval between the times t1 and t2 is longer than the predetermined period T, it can be determined in the battery block 11 that the current breaker 12b is not operating. On the other hand, when the interval between the times t1 and t2 is within the predetermined period T, it can be determined that the current breaker 12b is operating in the battery block 11.
 抵抗変化率Rrに基づいて、作動状態にある電流遮断器12bの数(遮断数という)を特定することができる。電流遮断器12bが作動する前の電池ブロック11の内部抵抗をRaとし、電流遮断器12bが作動した後の電池ブロック11の内部抵抗をRbとすると、内部抵抗Ra,Rbは、下記式(2)に示す関係を有する。 Based on the resistance change rate Rr, the number of current breakers 12b in the operating state (referred to as the number of breaks) can be specified. If the internal resistance of the battery block 11 before the operation of the current breaker 12b is Ra and the internal resistance of the battery block 11 after the operation of the current breaker 12b is Rb, the internal resistances Ra and Rb are expressed by the following formula (2 ).
 Rb=Ra×N/(N-m) ・・・(2) Rb = Ra × N / (N−m) (2)
 式(2)において、Nは、各電池ブロック11を構成する単電池12の数、言い換えれば、並列に接続された単電池12の数を示す。mは、各電池ブロック11において、作動状態にある電流遮断器12bの総数(遮断数)を示す。電流遮断器12bは、各単電池12に設けられているため、遮断数mは、作動状態にある電流遮断器12bを有する単電池12の総数となる。電池ブロック11において、すべての電流遮断器12bが作動していないときには、遮断数mが0となる。 In the formula (2), N indicates the number of unit cells 12 constituting each battery block 11, in other words, the number of unit cells 12 connected in parallel. m indicates the total number (the number of interruptions) of the current breakers 12b in the operating state in each battery block 11. Since the current breaker 12b is provided in each unit cell 12, the number of breaks m is the total number of the unit cells 12 having the current breaker 12b in the operating state. In the battery block 11, when all the current breakers 12b are not operating, the breaking number m is zero.
 電流遮断器12bが作動すると、作動状態にある電流遮断器12bの数に応じて、電池ブロック11の内部抵抗が上昇する。すなわち、式(2)に示すように、電流遮断器12bが作動した後の電池ブロック11の内部抵抗Rbは、電流遮断器12bが作動する前の電池ブロック11の内部抵抗Raに対して、N/(N-m)倍となる。「N/(N-m)」の値は、1よりも大きい値となるため、内部抵抗Rbは、内部抵抗Raよりも高くなる。 When the current breaker 12b is activated, the internal resistance of the battery block 11 is increased according to the number of current breakers 12b in the activated state. That is, as shown in Expression (2), the internal resistance Rb of the battery block 11 after the current breaker 12b is activated is N with respect to the internal resistance Ra of the battery block 11 before the current breaker 12b is activated. / (Nm) times. Since the value of “N / (N−m)” is a value larger than 1, the internal resistance Rb is higher than the internal resistance Ra.
 式(2)を変形すると、式(3)で表すことができる。 If equation (2) is transformed, it can be expressed by equation (3).
 Rb/Ra=N/(N-m) ・・・(3) Rb / Ra = N / (Nm) (3)
 式(3)に示す「Rb/Ra」の値は、式(1)に示す「Rr(=R1/R2」)の値に相当する。すなわち、抵抗変化率Rrが、「N/(N-m)」の値と等しくなる。したがって、抵抗変化率Rrおよび数(既定値)Nに基づいて、遮断数mを算出することができる。 The value of “Rb / Ra” shown in Equation (3) corresponds to the value of “Rr (= R1 / R2”) shown in Equation (1). That is, the resistance change rate Rr becomes equal to the value of “N / (N−m)”. Therefore, based on the resistance change rate Rr and the number (predetermined value) N, the cutoff number m can be calculated.
 上述した説明では、電池ブロック11の内部抵抗に基づいて、遮断数mを算出しているが、電池ブロック11の満充電容量に基づいて、遮断数mを算出することもできる。すなわち、電流遮断器12bが作動したときには、作動状態にある電流遮断器12bを含む電池ブロック11の満充電容量は低下する。具体的には、電流遮断器12bが作動した後の電池ブロック11の満充電容量は、電流遮断器12bが作動する前の電池ブロック11の満充電容量に対して、(N-m)/N倍となる。この関係に基づいて、遮断数mを算出することができる。 In the above description, the interruption number m is calculated based on the internal resistance of the battery block 11, but the interruption number m can also be calculated based on the full charge capacity of the battery block 11. That is, when the current breaker 12b is activated, the full charge capacity of the battery block 11 including the current breaker 12b in the activated state decreases. Specifically, the full charge capacity of the battery block 11 after the current breaker 12b is activated is (N−m) / N with respect to the full charge capacity of the battery block 11 before the current breaker 12b is activated. Doubled. Based on this relationship, the cutoff number m can be calculated.
 一方、組電池10が図4に示す構成を有しているときには、例えば、各電池ブロック11の電流又は電圧を検出することにより、電流遮断器12bの作動状態を確認することができる。図4に示す構成において、電流遮断器12bが作動すると、作動状態にある電流遮断器12bを含む電池ブロック11には、電流が流れないことになる。したがって、この状態を確認することにより、電流遮断器12bの作動状態を確認することができる。 On the other hand, when the assembled battery 10 has the configuration shown in FIG. 4, for example, by detecting the current or voltage of each battery block 11, the operating state of the current breaker 12 b can be confirmed. In the configuration shown in FIG. 4, when the current breaker 12b is activated, no current flows through the battery block 11 including the current breaker 12b in the activated state. Therefore, by confirming this state, the operating state of the current breaker 12b can be confirmed.
 ステップS102において、コントローラ40は、ステップS101の確認結果に基づいて、各電池ブロック11において、電流遮断器12bが作動しているか否かを検出する。いずれかの電池ブロック11において、電流遮断器12bが作動しているときには、ステップS103の処理に進む。すべての電池ブロック11において、電流遮断器12bが作動していないときには、図5に示す処理を終了する。 In step S102, the controller 40 detects whether or not the current breaker 12b is operating in each battery block 11 based on the confirmation result in step S101. In any battery block 11, when the current breaker 12b is operating, the process proceeds to step S103. In all battery blocks 11, when the current breaker 12b is not operating, the process shown in FIG.
 ステップS103において、コントローラ40は、各電池ブロック11において、作動状態にある電流遮断器12bの数(遮断数)を特定し、すべての電池ブロック11における遮断数のうち、最も多い遮断数m_maxを特定する。電池ブロック11を構成する、すべての単電池12において、電流遮断器12bが作動しているとき、電池ブロック11における遮断数は、電池ブロック11を構成する単電池12の総数Nとなる。また、電池ブロック11を構成する、すべての単電池12において、電流遮断器12bが作動していないとき、遮断数は、「0」となる。遮断数は、0およびNの間で変化する。 In step S103, the controller 40 specifies the number of current breakers 12b in operation (the number of interruptions) in each battery block 11, and specifies the largest interruption number m_max among the interruption numbers in all the battery blocks 11. To do. When all of the single cells 12 constituting the battery block 11 are operating with the current breaker 12b, the number of breaks in the battery block 11 is the total number N of the single cells 12 constituting the battery block 11. Moreover, in all the single cells 12 constituting the battery block 11, when the current breaker 12b is not operating, the number of breaks is “0”. The number of interrupts varies between 0 and N.
 図4に示す組電池10を用いたとき、遮断数m_maxは、作動状態にある電流遮断器12bを含む電池ブロック11の数となる。図4に示す組電池10では、1つの電池ブロック11に含まれる電流遮断器12bが作動すると、この電池ブロック11には、電流が流れないことになる。図4に示す構成では、電池ブロック11に含まれる、少なくとも1つの電流遮断器12bが作動すれば、この電池ブロック11には電流が流れない。したがって、遮断数m_maxを特定するときには、電流遮断器12bの作動によって電流が流れない電池ブロック11の数を特定すればよい。 When the assembled battery 10 shown in FIG. 4 is used, the interruption number m_max is the number of battery blocks 11 including the current breaker 12b in the operating state. In the assembled battery 10 shown in FIG. 4, when the current breaker 12 b included in one battery block 11 is activated, no current flows through the battery block 11. In the configuration shown in FIG. 4, if at least one current breaker 12 b included in the battery block 11 is activated, no current flows through the battery block 11. Therefore, when specifying the number of interruptions m_max, it is only necessary to specify the number of battery blocks 11 in which no current flows due to the operation of the current breaker 12b.
 ステップS104において、コントローラ40は、組電池10の充放電を制御する電流指令値を決定する。具体的には、コントローラ40は、電流指令値として、遮断数m_maxが増加することに応じて、組電池10の充放電電流を低下させる。図5に示す処理を行う前において、電流指令値がIaに設定されているとき、コントローラ40は、下記式(4)に基づいて、電流指令値をIbに設定する。 In step S104, the controller 40 determines a current command value for controlling charging / discharging of the assembled battery 10. Specifically, the controller 40 decreases the charge / discharge current of the assembled battery 10 in response to an increase in the number of interruptions m_max as the current command value. When the current command value is set to Ia before performing the process shown in FIG. 5, the controller 40 sets the current command value to Ib based on the following equation (4).
 Ib=Ia×(N-m_max)/N  ・・・(4) Ib = Ia × (N−m_max) / N (4)
 式(4)において、Nは、各電池ブロック11を構成する単電池12の総数であり、m_maxは、作動状態にある電流遮断器12bの最大数である。式(4)から分かるように、「(N-m_max)/N」の値は、1よりも小さい値であるため、電流指令値Ibは、電流指令値Iaよりも小さくなる。 In Equation (4), N is the total number of unit cells 12 constituting each battery block 11, and m_max is the maximum number of current breakers 12b in the operating state. As can be seen from the equation (4), since the value of “(N−m_max) / N” is a value smaller than 1, the current command value Ib is smaller than the current command value Ia.
 一方、図4に示す構成において、式(4)に示すNは、並列に接続された電池ブロック11の数であり、m_maxは、作動状態にある電流遮断器12bを含む電池ブロック11の数である。すべての電池ブロック11において、電流遮断器12bが作動していないときには、遮断数m_maxが「0」となる。また、すべての電池ブロック11において、電流遮断器12bが作動しているときには、遮断数m_maxが「N」となる。すべての電池ブロック11において、電流遮断器12bが作動しているときには、組電池10に電流を流すことができなくなる。遮断数m_maxは、「0」から「N」の間で変化する。 On the other hand, in the configuration shown in FIG. 4, N shown in Equation (4) is the number of battery blocks 11 connected in parallel, and m_max is the number of battery blocks 11 including the current breaker 12b in the operating state. is there. In all the battery blocks 11, when the current breaker 12b is not operating, the breaking number m_max is “0”. In all the battery blocks 11, when the current breaker 12b is operating, the breaking number m_max is “N”. In all the battery blocks 11, when the current breaker 12b is operating, it becomes impossible to pass a current through the assembled battery 10. The blocking number m_max varies between “0” and “N”.
 ステップS105において、コントローラ40は、ステップS104で設定された電流指令値Ibに基づいて、組電池10の充放電を制御する。具体的には、コントローラ40は、電流指令値Ibに基づいて、組電池10の充電を許容する上限電力を低下させたり、組電池10の放電を許容する上限電力を低下させたりする。上限電力を低下させるときには、低下させる前の上限電力に対して、「(N-m_max)/N」の値を乗算することができる。組電池10の充放電を許容する上限電力を低下させることにより、組電池10に流れる電流値を制限することができる。 In step S105, the controller 40 controls charging / discharging of the assembled battery 10 based on the current command value Ib set in step S104. Specifically, based on the current command value Ib, the controller 40 reduces the upper limit power that allows the battery pack 10 to be charged, or reduces the upper limit power that allows the battery pack 10 to be discharged. When lowering the upper limit power, the upper limit power before being lowered can be multiplied by a value of “(N−m_max) / N”. By reducing the upper limit power that allows charging / discharging of the assembled battery 10, the value of the current flowing through the assembled battery 10 can be limited.
 図2又は図4に示す構成において、遮断数m_maxが「N」であるとき、組電池10に電流を流すことができなくなるため、コントローラ40は、組電池10の充放電を行わせない。具体的には、コントローラ40は、組電池10の充放電を許容する上限電力を0[kW]に設定することができる。なお、遮断数m_maxが「N」に近づいたときに、組電池10の充放電を行わせないこともできる。組電池10の充放電を行わせないときの遮断数m_maxの値は、車両の走行を確保する観点などに基づいて、適宜設定することができる。 In the configuration shown in FIG. 2 or FIG. 4, when the interruption number m_max is “N”, the current cannot flow through the assembled battery 10, so the controller 40 does not charge / discharge the assembled battery 10. Specifically, the controller 40 can set the upper limit power that allows charging and discharging of the assembled battery 10 to 0 [kW]. In addition, when the interruption number m_max approaches “N”, charging / discharging of the assembled battery 10 may not be performed. The value of the cutoff number m_max when charging / discharging of the assembled battery 10 is not performed can be set as appropriate based on the viewpoint of ensuring traveling of the vehicle.
 車両が走行しているとき、コントローラ40は、例えば、インバータ33の動作を制御することにより、組電池10の充放電時における電流を制限することができる。一方、充電器を用いて、外部電源の電力を組電池10に供給しているとき、コントローラ40は、充電器の動作を制御することにより、電流指令値Ibに基づいて、組電池10の充電電流を制限することができる。外部電源とは、車両の外部に設けられた電源であり、外部電源としては、例えば、商用電源がある。 When the vehicle is running, the controller 40 can limit the current during charging / discharging of the battery pack 10 by controlling the operation of the inverter 33, for example. On the other hand, when the power of the external power source is supplied to the assembled battery 10 using the charger, the controller 40 controls the operation of the charger to charge the assembled battery 10 based on the current command value Ib. The current can be limited. The external power source is a power source provided outside the vehicle, and an example of the external power source is a commercial power source.
 外部電源が交流電力を供給するとき、充電器は、交流電力を直流電力に変換し、直流電力を組電池10に供給する。充電器は、車両に搭載することもできるし、車両の外部において、車両とは別に設けることもできる。外部電源の電力を組電池10に供給するときにおいて、充電器は、電圧値を変換することができる。 When the external power supply supplies AC power, the charger converts AC power into DC power and supplies DC power to the assembled battery 10. The charger can be mounted on the vehicle or can be provided outside the vehicle separately from the vehicle. When supplying power from the external power source to the assembled battery 10, the charger can convert the voltage value.
 外部電源から組電池10に電力を供給する手段としては、有線又は無線を用いた手段がある。有線を用いた手段としては、外部電源と接続されたコネクタ(いわゆるプラグ)を、車両に設けられたコネクタ(いわゆるインレット)に接続することにより、外部電源からの電力を組電池10に供給することができる。また、無線を用いた手段としては、電磁誘導又は共振現象を利用して、外部電源からの電力を組電池10に供給することができる。 As means for supplying power to the assembled battery 10 from an external power source, there are means using wired or wireless. As a means using a wire, a connector (so-called plug) connected to an external power source is connected to a connector (so-called inlet) provided in the vehicle, thereby supplying power from the external power source to the assembled battery 10. Can do. Further, as a means using radio, electric power from an external power source can be supplied to the assembled battery 10 using electromagnetic induction or a resonance phenomenon.
 一方、給電装置を用いて、組電池10の電力を外部機器に供給するとき、コントローラ40は、給電装置の動作を制御することにより、電流指令値Ibに基づいて、組電池10の放電電流を制限することができる。組電池10の電力を外部機器に供給するとき、給電装置は、組電池10からの直流電力を交流電力に変換し、交流電力を外部機器に供給することができる。ここで、給電装置は、電圧値を変換することができる。 On the other hand, when the electric power of the assembled battery 10 is supplied to an external device using the power supply device, the controller 40 controls the operation of the power supply device, thereby controlling the discharge current of the assembled battery 10 based on the current command value Ib. Can be limited. When supplying the power of the assembled battery 10 to an external device, the power supply apparatus can convert the DC power from the assembled battery 10 into AC power and supply the AC power to the external device. Here, the power feeding device can convert the voltage value.
 外部機器とは、車両の外部に配置された電子機器であって、組電池10からの電力を受けて動作する電子機器である。例えば、外部機器と接続されたコネクタを、組電池10と接続されたコネクタに接続することにより、組電池10から外部機器に電力を供給することができる。外部機器としては、例えば、家電製品がある。 The external device is an electronic device arranged outside the vehicle and is operated by receiving electric power from the assembled battery 10. For example, by connecting a connector connected to an external device to a connector connected to the assembled battery 10, power can be supplied from the assembled battery 10 to the external device. An example of the external device is a home appliance.
 図7は、電流指令値および遮断数m_maxとの関係を示す。図7において、縦軸は、電流指令値であり、横軸は、遮断数m_maxである。図7の縦軸に関して、正の値は、組電池10を放電するときの電流指令値であり、負の値は、組電池10を充電するときの電流指令値である。図7の横軸に関して、右側に進むほど、遮断数m_maxが多くなる。図7に示すように、遮断数m_maxが増加するにつれて、充放電時の電流指令値が低下することになる。 FIG. 7 shows the relationship between the current command value and the number of interruptions m_max. In FIG. 7, the vertical axis represents the current command value, and the horizontal axis represents the number of interruptions m_max. With respect to the vertical axis in FIG. 7, a positive value is a current command value when discharging the assembled battery 10, and a negative value is a current command value when charging the assembled battery 10. With respect to the horizontal axis in FIG. 7, the blockage number m_max increases as it moves to the right. As shown in FIG. 7, the current command value at the time of charge / discharge decreases as the number of interruptions m_max increases.
 図2に示す電池ブロック11において、電流遮断器12bが作動すると、作動状態にある電流遮断器12bを有する単電池12には、電流が流れないことになる。また、作動状態にある電流遮断器12bを有する単電池12と並列に接続された他の単電池12には、作動状態にある電流遮断器12bを有する単電池12に流れる予定である電流が流れてしまう。ここで、組電池10(電池ブロック11)に流れる電流値Iaを制限しないときには、他の単電池12に流れる電流値は、Ia/(N-m_max)となる。「N-m_max」の値は、「N」の値よりも小さいため、他の単電池12に流れる電流値は上昇してしまう。 In the battery block 11 shown in FIG. 2, when the current breaker 12b is activated, no current flows through the unit cell 12 having the current breaker 12b in the activated state. Moreover, the current which is going to flow through the single cell 12 which has the current circuit breaker 12b in an operation state flows into the other single cell 12 connected in parallel with the single cell 12 which has the current circuit breaker 12b in the operation state. End up. Here, when the current value Ia flowing through the assembled battery 10 (battery block 11) is not limited, the current value flowing through the other unit cells 12 is Ia / (N−m_max). Since the value of “N−m_max” is smaller than the value of “N”, the value of the current flowing through the other unit cells 12 increases.
 単電池12に流れる電流値が上昇すると、言い換えれば、単電池12に対する電流負荷が増加すると、単電池12の電解液中における塩濃度が偏ってしまうことによる劣化(ハイレート劣化という)が発生してしまうおそれがある。ハイレート劣化は、ハイレートでの充電又は放電が行われることによって発生しやすい。また、単電池12として、リチウムイオン二次電池を用いたときには、リチウムが析出してしまうおそれがある。 When the value of the current flowing through the unit cell 12 increases, in other words, when the current load on the unit cell 12 increases, deterioration due to uneven concentration of salt in the electrolyte of the unit cell 12 (called high-rate degradation) occurs. There is a risk that. High-rate deterioration is likely to occur when charging or discharging is performed at a high rate. Further, when a lithium ion secondary battery is used as the single battery 12, lithium may be deposited.
 さらに、単電池12に流れる電流値が上昇すると、電流遮断器12bが作動しやすくなってしまう。図8には、電流遮断器12bの一般的な特性を示す。図8において、縦軸は、電流遮断器12bの通電時間であり、横軸は、電流遮断器12bに流れる電流値である。図8に示す境界線(一例)は、電流遮断器12bが作動する領域と、電流遮断器12bが作動しない領域との境界を示す。図8に示す境界線よりも上側の領域は、電流遮断器12bが作動する領域である。図8に示すように、電流値が上昇することにより、電流遮断器12bが短時間で作動しやすくなってしまう。 Furthermore, when the value of the current flowing through the unit cell 12 increases, the current breaker 12b is likely to operate. FIG. 8 shows general characteristics of the current breaker 12b. In FIG. 8, the vertical axis represents the energization time of the current breaker 12b, and the horizontal axis represents the current value flowing through the current breaker 12b. A boundary line (one example) shown in FIG. 8 indicates a boundary between a region where the current breaker 12b operates and a region where the current breaker 12b does not operate. The region above the boundary line shown in FIG. 8 is a region where the current breaker 12b operates. As shown in FIG. 8, when the current value increases, the current breaker 12b is likely to operate in a short time.
 本実施例によれば、作動状態にある電流遮断器12bの数に応じて、組電池10に流れる電流値を制限しているため、単電池12に対する電流負荷を低減することができる。具体的には、作動状態にある電流遮断器12bの数が増えるほど、組電池10に流れる電流値を低下させているため、電流遮断器12bが作動していない単電池12に対して、過大な電流が流れるのを抑制し、単電池12を保護することができる。また、作動していない電流遮断器12bに流れる電流値も制限することができ、電流遮断器12bが作動しやすくなってしまうのを抑制することができる。 According to the present embodiment, since the current value flowing through the assembled battery 10 is limited according to the number of the current breakers 12b in the operating state, the current load on the unit cell 12 can be reduced. Specifically, as the number of the current breakers 12b in the operating state increases, the value of the current flowing through the battery pack 10 is reduced, so that the unit cell 12 in which the current breaker 12b is not activated is excessive. It is possible to prevent the current from flowing and protect the unit cell 12. Moreover, the electric current value which flows into the electric current breaker 12b which is not act | operating can also be restrict | limited, and it can suppress that the electric current breaker 12b becomes easy to operate | move.
 本実施例では、最大値としての遮断数m_maxを基準として、組電池10に流れる電流値を制限しているため、作動状態にある電流遮断器12bの数が最も多い電池ブロック11においても、単電池12に対する電流負荷を低減することができる。すなわち、組電池10を構成する、すべての単電池12を保護することができる。しかも、遮断数m_maxに応じて組電池10の電流値を制限しているため、組電池10の充放電を必要以上に制限してしまうのを抑制でき、すべての単電池12を保護できる範囲内において、組電池10を効率良く使用することができる。 In the present embodiment, since the current value flowing through the assembled battery 10 is limited based on the cutoff number m_max as the maximum value, even in the battery block 11 having the largest number of current breakers 12b in the operating state, The current load on the battery 12 can be reduced. That is, all the unit cells 12 constituting the assembled battery 10 can be protected. In addition, since the current value of the assembled battery 10 is limited according to the number of interruptions m_max, it is possible to prevent the charging / discharging of the assembled battery 10 from being restricted more than necessary, and within a range where all the unit cells 12 can be protected. Therefore, the assembled battery 10 can be used efficiently.
 図4に示す構成であっても、いずれかの電池ブロック11において、電流遮断器12bが作動しても、電流遮断器12bが作動していない電池ブロック11に対して、過大な電流が流れるのを抑制することができる。また、作動していない電流遮断器12bに流れる電流値も制限することができ、電流遮断器12bが作動しやすくなってしまうのを抑制することができる。 Even in the configuration shown in FIG. 4, in any battery block 11, even if the current breaker 12 b is activated, an excessive current flows to the battery block 11 in which the current breaker 12 b is not activated. Can be suppressed. Moreover, the electric current value which flows into the electric current breaker 12b which is not act | operating can also be restrict | limited, and it can suppress that the electric current breaker 12b becomes easy to operate | move.
 本発明の実施例2である電池システムについて説明する。実施例1で説明した部材と同一の機能を有する部材については、同一の符号を用い、詳細な説明は省略する。以下、実施例1と異なる点について、主に説明する。 A battery system that is Embodiment 2 of the present invention will be described. About the member which has the same function as the member demonstrated in Example 1, detailed description is abbreviate | omitted using the same code | symbol. Hereinafter, differences from the first embodiment will be mainly described.
 本実施例は、電池ブロック11(単電池12)の内部における温度(内部温度)を推定し、内部温度が上限温度よりも高くならないように、組電池10の充放電を制御するものである。電池ブロック11(単電池12)の内部温度は、電池ブロック11(単電池12)の表面における温度(表面温度)に対して、単電池12の内部抵抗に起因する温度上昇分を加算することによって推定することができる。 In this embodiment, the temperature (internal temperature) inside the battery block 11 (unit cell 12) is estimated, and charging / discharging of the assembled battery 10 is controlled so that the internal temperature does not become higher than the upper limit temperature. The internal temperature of the battery block 11 (cell 12) is obtained by adding the temperature rise due to the internal resistance of the cell 12 to the temperature (surface temperature) on the surface of the battery block 11 (cell 12). Can be estimated.
 電池ブロック11(単電池12)の表面に温度センサを配置しておけば、コントローラ40は、温度センサの出力から、電池ブロック11(単電池12)の表面温度を取得することができる。また、電池ブロック11(単電池12)の表面から離れた位置に温度センサを配置した場合には、コントローラ40は、温度センサによる検出温度と、温度センサおよび電池ブロック11(単電池12)の間の熱伝達とを考慮して、電池ブロック11(単電池12)の表面温度を推定することができる。 If the temperature sensor is arranged on the surface of the battery block 11 (unit cell 12), the controller 40 can acquire the surface temperature of the battery block 11 (unit cell 12) from the output of the temperature sensor. When the temperature sensor is arranged at a position away from the surface of the battery block 11 (unit cell 12), the controller 40 detects the temperature detected by the temperature sensor and the temperature sensor and the battery block 11 (unit cell 12). Thus, the surface temperature of the battery block 11 (unit cell 12) can be estimated.
 ここで、温度センサによる検出温度と、電池ブロック11(単電池12)の表面温度とを、予め対応付けておけば、温度センサによる検出温度から、電池ブロック11(単電池12)の表面温度を特定(推定)することができる。温度センサによる検出温度と、電池ブロック11(単電池12)の表面温度との対応関係を示すデータは、メモリ41に予め記憶しておくことができる。 Here, if the temperature detected by the temperature sensor and the surface temperature of the battery block 11 (unit cell 12) are associated in advance, the surface temperature of the battery block 11 (unit cell 12) is determined from the temperature detected by the temperature sensor. Can be identified (estimated). Data indicating the correspondence between the temperature detected by the temperature sensor and the surface temperature of the battery block 11 (unit cell 12) can be stored in the memory 41 in advance.
 一般的には、電池ブロック11(単電池12)の表面温度が、予め設定された上限温度を超えないように、組電池10の充放電が制御される。上限温度は、単電池12が高温状態となることにより、単電池12(発電要素12a)からガスが発生するのを抑制する観点に基づいて、予め設定された温度である。 Generally, charging / discharging of the assembled battery 10 is controlled so that the surface temperature of the battery block 11 (unit cell 12) does not exceed a preset upper limit temperature. The upper limit temperature is a preset temperature based on the viewpoint of suppressing the generation of gas from the unit cell 12 (power generation element 12a) when the unit cell 12 is in a high temperature state.
 ここで、単電池12は、充放電によって発熱し、単電池12の内部温度は、単電池12の表面温度よりも高くなる傾向がある。したがって、ガスの発生を抑制するためには、単電池12の内部温度に基づいて、単電池12の充放電を制御することが好ましい。 Here, the unit cell 12 generates heat by charging and discharging, and the internal temperature of the unit cell 12 tends to be higher than the surface temperature of the unit cell 12. Therefore, in order to suppress the generation of gas, it is preferable to control charging / discharging of the unit cell 12 based on the internal temperature of the unit cell 12.
 単電池12の内部温度を推定するときには、単電池12の内部抵抗に起因する温度上昇分を考慮する必要がある。すなわち、単電池12の内部温度を推定するときには、単電池12に電流が流れることによる発熱を考慮する必要がある。このように、単電池12の内部温度は、単電池12に流れる電流値に依存する。ここで、単電池12の内部における発熱量は、単電池12の電流値を二乗した値に単電池12の内部抵抗を乗算した値となる。 When estimating the internal temperature of the cell 12, it is necessary to consider the temperature rise caused by the internal resistance of the cell 12. That is, when estimating the internal temperature of the cell 12, it is necessary to consider the heat generated by the current flowing through the cell 12. Thus, the internal temperature of the unit cell 12 depends on the value of the current flowing through the unit cell 12. Here, the amount of heat generated inside the unit cell 12 is a value obtained by multiplying the value obtained by squaring the current value of the unit cell 12 by the internal resistance of the unit cell 12.
 単電池12の内部温度は、単電池12の外部における温度(温度センサによって取得できる温度)と、単電池12に電流が流れることによる発熱に応じた温度上昇量とに基づいて推定することができる。単電池12の外部における温度は、単電池12の表面における温度であってもよいし、単電池12の表面から離れた位置での温度であってもよい。 The internal temperature of the single cell 12 can be estimated based on the temperature outside the single cell 12 (temperature that can be acquired by the temperature sensor) and the amount of temperature increase corresponding to the heat generated by the current flowing through the single cell 12. . The temperature outside the unit cell 12 may be a temperature on the surface of the unit cell 12 or a temperature at a position away from the surface of the unit cell 12.
 単電池12の表面における温度を取得したときには、単電池12の内部における熱伝導を考慮して、単電池12の内部温度を推定することができる。単電池12の表面から離れた位置(周辺環境)での温度を取得したときには、周辺環境における熱伝達と、単電池12の内部における熱伝導とを考慮して、単電池12の内部温度を推定することができる。熱伝達や熱伝導を考慮するときには、熱伝導方程式や熱等価回路を用いることができる。 When the temperature on the surface of the unit cell 12 is acquired, the internal temperature of the unit cell 12 can be estimated in consideration of the heat conduction inside the unit cell 12. When the temperature at a position away from the surface of the unit cell 12 (peripheral environment) is acquired, the internal temperature of the unit cell 12 is estimated in consideration of heat transfer in the surrounding environment and heat conduction in the unit cell 12. can do. When considering heat transfer and heat conduction, a heat conduction equation or a heat equivalent circuit can be used.
 単電池12の内部温度を特定するときには、熱伝導方程式や熱等価回路を用いたモデルにおいて、内部温度を推定することができる。一方、内部温度を推定するときの演算負荷を低減するのであれば、例えば、単電池12の電流値と、単電池12の外部における温度(環境温度)と、単電池12の内部温度との関係を示すマップを予め用意しておき、このマップを用いて、電流値および環境温度から、内部温度を特定することができる。 When specifying the internal temperature of the unit cell 12, the internal temperature can be estimated in a model using a heat conduction equation or a heat equivalent circuit. On the other hand, if the calculation load when estimating the internal temperature is reduced, for example, the relationship between the current value of the unit cell 12, the temperature outside the unit cell 12 (environmental temperature), and the internal temperature of the unit cell 12. Is prepared in advance, and the internal temperature can be specified from the current value and the environmental temperature using this map.
 実施例1で説明したように、電池ブロック11において電流遮断器12bが作動すると、この電池ブロック11に含まれる単電池12に流れる電流値が上昇する。具体的には、電流遮断器12bが作動した後に単電池12に流れる電流値は、電流遮断器12bが作動していないときに単電池12に流れる電流値に対して、(N/(N-m))倍となる。ここで、Nは、電池ブロック11を構成する単電池12の総数であり、mは、遮断数である。遮断数mは、実施例1で説明した方法によって特定することができる。 As described in the first embodiment, when the current breaker 12b operates in the battery block 11, the value of the current flowing through the single cells 12 included in the battery block 11 increases. Specifically, the current value that flows through the cell 12 after the current breaker 12b is activated is (N / (N−) with respect to the current value that flows through the cell 12 when the current breaker 12b is not activated. m)) is doubled. Here, N is the total number of unit cells 12 constituting the battery block 11, and m is the number of cut-offs. The blocking number m can be specified by the method described in the first embodiment.
 したがって、電流遮断器12bが作動している場合において、単電池12の内部抵抗に起因する温度上昇分を算出するときには、単電池12の電流値として、「N/(N-m)」倍した電流値を用いる必要がある。具体的には、電流センサ31によって検出された電流値に「N/(N-m)」を乗算した値を、単電池12の電流値とする必要がある。これにより、電流遮断器12bが作動しているときに実際に単電池12に流れる電流値に基づいて、温度上昇分を算出することができるとともに、単電池12の内部温度を推定する精度を向上させることができる。ここで、上述したように単電池12に流れる電流値を補正しなければ、実際の内部温度が推定される内部温度よりも高くなってしまうことがある。 Accordingly, when the current breaker 12b is operating, when calculating the temperature rise due to the internal resistance of the unit cell 12, the current value of the unit cell 12 is multiplied by “N / (N−m)”. It is necessary to use a current value. Specifically, a value obtained by multiplying the current value detected by the current sensor 31 by “N / (N−m)” needs to be the current value of the unit cell 12. As a result, the temperature rise can be calculated based on the value of the current actually flowing through the unit cell 12 when the current breaker 12b is operating, and the accuracy of estimating the internal temperature of the unit cell 12 is improved. Can be made. Here, if the value of the current flowing through the single battery 12 is not corrected as described above, the actual internal temperature may become higher than the estimated internal temperature.
 複数の電池ブロック11において、電流遮断器12bが作動しており、遮断数mが互いに異なるときには、最も多い遮断数m_maxを考慮して、単電池12の電流値を特定することが好ましい。すなわち、単電池12の内部抵抗に起因する温度上昇分を算出するときには、単電池12の電流値として、電流遮断器12bが作動していないときに単電池12に流れる電流値に「N/(N-m_max)」を乗算した値を用いることができる。言い換えれば、電流センサ31によって検出された電流値に、「N/(N-m_max)」を乗算した値を、単電池12の電流値として用いることができる。これにより、遮断数mが最も多い電池ブロック11を基準として、温度上昇分(言い換えれば、内部温度)を算出することができ、遮断数mが最も多い電池ブロック11を適切に保護することができる。 When the current breaker 12b is operating in the plurality of battery blocks 11 and the number of interruptions m is different from each other, it is preferable to specify the current value of the unit cell 12 in consideration of the largest interruption number m_max. That is, when calculating the temperature rise due to the internal resistance of the unit cell 12, the current value of the unit cell 12 is set to the current value flowing through the unit cell 12 when the current breaker 12b is not operating. N−m_max) ”can be used. In other words, a value obtained by multiplying the current value detected by the current sensor 31 by “N / (N−m_max)” can be used as the current value of the unit cell 12. Accordingly, the temperature increase (in other words, the internal temperature) can be calculated on the basis of the battery block 11 having the largest number of interruptions m, and the battery block 11 having the largest number of interruptions m can be appropriately protected. .
 単電池12の内部温度を推定したときには、単電池12の内部温度(推定温度)が、上限温度よりも高くならないように、組電池10(単電池12)の充放電を制御することができる。 When the internal temperature of the cell 12 is estimated, charging / discharging of the battery pack 10 (cell 12) can be controlled so that the internal temperature (estimated temperature) of the cell 12 does not become higher than the upper limit temperature.
 単電池12の内部温度が、上限温度よりも高くならないように、単電池12の充放電を制御することにより、単電池12において、ガスが発生するのを効率良く抑制でき、単電池12を保護することができる。 By controlling charging / discharging of the single cell 12 so that the internal temperature of the single cell 12 does not become higher than the upper limit temperature, it is possible to efficiently suppress the generation of gas in the single cell 12 and protect the single cell 12. can do.
 単電池12の内部温度が上限温度に近づくとき、コントローラ40は、組電池10の充放電を制限することができる。具体的には、コントローラ40は、組電池10の充電を許容する上限電力を低下させたり、組電池10の放電を許容する上限電力を低下させたりすることができる。上限電力を低下させることには、上限電力を0[kW]に設定することも含まれる。上限電力を0[kW]に設定することにより、組電池10の充放電が行われないことになる。 When the internal temperature of the single battery 12 approaches the upper limit temperature, the controller 40 can limit charging / discharging of the assembled battery 10. Specifically, the controller 40 can reduce the upper limit power that allows the battery pack 10 to be charged, or can reduce the upper limit power that allows the battery pack 10 to be discharged. Decreasing the upper limit power includes setting the upper limit power to 0 [kW]. By setting the upper limit power to 0 [kW], the assembled battery 10 is not charged or discharged.
 上限電力を低下させることにより、組電池10の充電や放電が制限され、単電池12の内部温度が上限温度よりも高くなってしまうのを抑制することができる。 By lowering the upper limit power, charging and discharging of the battery pack 10 are restricted, and the internal temperature of the unit cell 12 can be suppressed from becoming higher than the upper limit temperature.
 本発明の実施例3である電池システムについて説明する。実施例1で説明した部材と同一の機能を有する部材については、同一の符号を用い、詳細な説明は省略する。以下、実施例1と異なる点について、主に説明する。 A battery system that is Embodiment 3 of the present invention will be described. About the member which has the same function as the member demonstrated in Example 1, detailed description is abbreviate | omitted using the same code | symbol. Hereinafter, differences from the first embodiment will be mainly described.
 図9は、本実施例の電池システムにおける一部の処理を示すフローチャートである。図9に示す処理は、コントローラ40によって実行され、所定の周期で行われる。図9に示す処理は、主に、電池システムが搭載された車両が電気自動車であるときに行うことができる。 FIG. 9 is a flowchart showing a part of processing in the battery system of the present embodiment. The process shown in FIG. 9 is executed by the controller 40 and performed at a predetermined cycle. The process shown in FIG. 9 can be performed mainly when the vehicle on which the battery system is mounted is an electric vehicle.
 ステップS201において、コントローラ40は、各電池ブロック11において、電流遮断器12bの作動状態を確認する。電流遮断器12bの作動状態を確認する方法は、実施例1(図5のステップS101)で説明した方法と同様である。 In step S201, the controller 40 confirms the operating state of the current breaker 12b in each battery block 11. The method for confirming the operating state of the current breaker 12b is the same as the method described in the first embodiment (step S101 in FIG. 5).
 ステップS202において、コントローラ40は、ステップS201の確認結果に基づいて、電流遮断器12bが作動しているか否かを判別する。すなわち、コントローラ40は、図2又は図4に示す組電池10において、いずれかの単電池12の電流遮断器12bが作動しているか否かを判別する。いずれかの電流遮断器12bが作動しているときには、ステップS203の処理に進み、すべての電流遮断器12bが作動していないときには、図9に示す処理を終了する。 In step S202, the controller 40 determines whether or not the current breaker 12b is operating based on the confirmation result in step S201. That is, the controller 40 determines whether or not the current breaker 12b of any single battery 12 is operating in the assembled battery 10 shown in FIG. 2 or FIG. When any one of the current breakers 12b is operating, the process proceeds to step S203, and when all the current breakers 12b are not operating, the process shown in FIG. 9 is terminated.
 ステップS203において、コントローラ40は、各電池ブロック11において、作動状態にある電流遮断器12bの数(遮断数)を特定するとともに、すべての電池ブロック11における遮断数のうち、最も多い遮断数m_maxを特定する。遮断数を特定する方法は、実施例1で説明した方法と同様である。 In step S <b> 203, the controller 40 specifies the number of current breakers 12 b (the number of interruptions) in the active state in each battery block 11, and sets the largest interruption number m_max among the interruption numbers in all the battery blocks 11. Identify. The method for specifying the number of blocks is the same as the method described in the first embodiment.
 ステップS204において、コントローラ40は、遮断数m_maxが、予め定められた数(第1閾値に相当する)m1以上であるか否かを判別する。数m1に関する情報は、メモリ41に記憶しておくことができる。遮断数m_maxが数m1以上であるときには、ステップS205の処理に進み、遮断数m_maxが数m1よりも少ないときには、ステップS206の処理に進む。 In step S204, the controller 40 determines whether or not the cutoff number m_max is equal to or greater than a predetermined number (corresponding to a first threshold) m1. Information about the number m1 can be stored in the memory 41. When the blocking number m_max is greater than or equal to several m1, the process proceeds to step S205, and when the blocking number m_max is smaller than the number m1, the process proceeds to step S206.
 ステップS205において、コントローラ40は、電池システムの起動(Ready-On)を許可しないフラグ(不許可フラグ)を設定する。不許可フラグの設定情報は、メモリ41に記憶される。不許可フラグが設定されているとき、コントローラ40は、電池システムを停止させた後に、電池システムを起動する信号が再び入力されても、電池システムを起動させない。これにより、コントローラ40は、組電池10の出力による車両の走行を行わせないようにすることができる。 In step S205, the controller 40 sets a flag (non-permission flag) that does not allow the battery system to be activated (Ready-On). The setting information of the non-permission flag is stored in the memory 41. When the non-permission flag is set, the controller 40 does not start the battery system even if a signal for starting the battery system is input again after stopping the battery system. Thereby, the controller 40 can prevent the vehicle from running by the output of the assembled battery 10.
 電池システムの起動を許可しない観点に基づいて、ステップS204で用いられる数m1を適宜設定することができる。ここで、図10に示すように、電流遮断器12bが作動すると、組電池10の出力性能が低下する。図10において、縦軸は、組電池10の出力性能を示し、横軸は、遮断数m_maxを示す。図10では、組電池10の出力性能を示しているが、組電池10の入力性能も出力性能と同様であり、遮断数m_maxが増加するにつれて、入力性能が低下する。 Based on the viewpoint of not permitting activation of the battery system, the number m1 used in step S204 can be set as appropriate. Here, as shown in FIG. 10, when the current breaker 12b is activated, the output performance of the assembled battery 10 is degraded. In FIG. 10, the vertical axis indicates the output performance of the assembled battery 10, and the horizontal axis indicates the number of interruptions m_max. Although FIG. 10 shows the output performance of the assembled battery 10, the input performance of the assembled battery 10 is also the same as the output performance, and the input performance decreases as the cutoff number m_max increases.
 図10に示すように、遮断数m_maxが少ないときには、組電池10の入出力性能が低下し難いが、遮断数m_maxが増加するにつれて、組電池10の入出力性能が低下しやすくなることがある。この場合には、組電池10の入出力性能の低下率が増加するときの遮断数m_max(=m1)において、電池システムの起動(Ready-On)を許可しないことができる。 As shown in FIG. 10, when the number of interruptions m_max is small, the input / output performance of the assembled battery 10 is unlikely to decrease. However, as the number of interruptions m_max increases, the input / output performance of the assembled battery 10 may easily decrease. . In this case, the activation (Ready-On) of the battery system can not be permitted at the shutoff number m_max (= m1) when the rate of decrease in the input / output performance of the assembled battery 10 increases.
 組電池10の入出力性能が、車両で要求される性能に到達するときの遮断数m_maxは、予め特定することができる。数m1は、車両の要求性能を満たす最大の遮断数m_maxよりも少ない数に設定することができる。数m1が、車両の要求性能を満たす最大の遮断数m_maxよりも少なすぎると、電池システムの起動が許可されにくくなってしまう。したがって、数m1は、車両の要求性能を満たす最大の遮断数m_maxに近い数を設定することが好ましい。 The number of interruptions m_max when the input / output performance of the assembled battery 10 reaches the performance required by the vehicle can be specified in advance. The number m1 can be set to a number smaller than the maximum shut-off number m_max that satisfies the required performance of the vehicle. If the number m1 is too smaller than the maximum shut-off number m_max that satisfies the required performance of the vehicle, it is difficult to allow the battery system to be activated. Therefore, the number m1 is preferably set to a number close to the maximum number of shutoffs m_max that satisfies the required performance of the vehicle.
 ステップS206において、コントローラ40は、遮断数m_maxが、予め定められた数(第2閾値に相当する)m2以上であるか否かを判別する。数m2は、ステップS204で用いられた数m1よりも少ない数であり、数m2に関する情報は、メモリ41に記憶しておくことができる。遮断数m_maxが数m2以上であるときには、ステップS207の処理に進み、遮断数m_maxが数m2よりも少ないときには、ステップS208の処理に進む。 In step S206, the controller 40 determines whether or not the cutoff number m_max is equal to or greater than a predetermined number (corresponding to the second threshold) m2. The number m2 is a number smaller than the number m1 used in step S204, and information regarding the number m2 can be stored in the memory 41. When the cutoff number m_max is greater than or equal to several m2, the process proceeds to step S207, and when the cutoff number m_max is smaller than the number m2, the process proceeds to step S208.
 ステップS207において、コントローラ40は、ユーザに対して警告を行う。警告の内容としては、組電池10が異常状態であることをユーザに認識させるものであればよい。例えば、警告の具体的な内容としては、ユーザに対して、ディーラに行くことを通知する内容がある。警告を行う手段としては、音又は表示を用いることができる。具体的には、警告に関する情報を、音で出力することにより、ユーザに警告を認識させることができる。また、警告に関する情報を、ディスプレイに表示することにより、ユーザに警告を認識させることができる。 In step S207, the controller 40 issues a warning to the user. The content of the warning may be anything that allows the user to recognize that the battery pack 10 is in an abnormal state. For example, the specific content of the warning includes content for notifying the user that the user is going to the dealer. Sound or display can be used as means for giving a warning. Specifically, the user can be made to recognize the warning by outputting information related to the warning with sound. Further, by displaying information related to the warning on the display, the user can recognize the warning.
 コントローラ40は、ステップS207の処理を行った後に、ステップS208の処理を行う。ステップS208において、コントローラ40は、電流指令値を特定するとともに、電流指令値に基づいて、組電池10の充放電を制御する。電流指令値を特定する方法や、組電池10の充放電を制御する方法は、実施例1で説明した方法(図5のステップS104およびステップS105の処理)と同様である。 The controller 40 performs the process of step S208 after performing the process of step S207. In step S208, the controller 40 specifies the current command value and controls charging / discharging of the assembled battery 10 based on the current command value. The method for specifying the current command value and the method for controlling the charging / discharging of the assembled battery 10 are the same as the method described in the first embodiment (the processes in steps S104 and S105 in FIG. 5).
 図9に示す処理でも、遮断数m_maxが増加することに応じて、組電池10に流れる電流値を制限することにより、電流遮断器12bが作動していない単電池12に対する電流負荷が増加するのを抑制することができる。これにより、実施例1と同様の効果を得ることができる。 Even in the process shown in FIG. 9, the current load on the unit cell 12 in which the current breaker 12 b is not operating increases by limiting the value of the current flowing through the assembled battery 10 according to the increase in the number of interruptions m_max. Can be suppressed. Thereby, the same effect as Example 1 can be acquired.
 図11は、本実施例の電池システムにおける一部の処理を示すフローチャートである。図11に示す処理は、コントローラによって実行され、所定の周期で行われる。図11に示す処理は、主に、電池システムが搭載された車両がハイブリッド自動車であるときに行うことができる。図9に示す処理と同一の処理については、同一の符号を用い、詳細な説明は省略する。以下、図9に示す処理と異なる点について、主に説明する。 FIG. 11 is a flowchart showing a part of processing in the battery system of the present embodiment. The process shown in FIG. 11 is executed by the controller and performed at a predetermined cycle. The process shown in FIG. 11 can be performed mainly when the vehicle on which the battery system is mounted is a hybrid vehicle. The same processes as those shown in FIG. 9 are denoted by the same reference numerals, and detailed description thereof is omitted. Hereinafter, differences from the processing illustrated in FIG. 9 will be mainly described.
 図11において、ステップS204の処理では、遮断数m_maxが数m1以上であるか否かが判別される。本実施例では、図11のステップS204の処理で用いられる数m1は、図9のステップS204の処理で用いられる数m1と等しくしているが、互いに異なっていてもよい。例えば、図11のステップS204の処理で用いられる数m1を、図9のステップS204の処理で用いられる数m1よりも多くすることができる。数m1に関する情報は、メモリ41に記憶しておくことができる。遮断数m_maxが数m1以上であるときには、ステップS210の処理に進み、遮断数m_maxが数m1よりも少ないときには、ステップS206の処理に進む。 In FIG. 11, in the process of step S204, it is determined whether or not the cutoff number m_max is greater than or equal to several m1. In the present embodiment, the number m1 used in the process of step S204 in FIG. 11 is equal to the number m1 used in the process of step S204 in FIG. 9, but may be different from each other. For example, the number m1 used in the process of step S204 in FIG. 11 can be made larger than the number m1 used in the process of step S204 in FIG. Information about the number m1 can be stored in the memory 41. When the cutoff number m_max is greater than or equal to several m1, the process proceeds to step S210, and when the cutoff number m_max is less than the number m1, the process proceeds to step S206.
 ここで、ステップS204の処理からステップS210の処理に進むときには、通常、ステップS206からステップS208の処理が行われた後である。したがって、ステップS210の処理が行われるときには、ユーザに対して警告が行われたままとなる。 Here, when the process proceeds from the process of step S204 to the process of step S210, it is usually after the process of step S206 to step S208 is performed. Therefore, when the process of step S210 is performed, a warning is still given to the user.
 ステップS210において、コントローラ40は、組電池10を放電させずに、車両を走行させる。ハイブリッド自動車では、組電池10の他に、車両を走行させる動力源が設けられている。この動力源としては、例えば、エンジンや燃料電池がある。したがって、ステップS210において、コントローラ40は、組電池10とは異なる動力源を動作させることにより、車両を走行させることができる。
 
In step S210, the controller 40 causes the vehicle to travel without discharging the assembled battery 10. In the hybrid vehicle, in addition to the assembled battery 10, a power source for running the vehicle is provided. Examples of the power source include an engine and a fuel cell. Therefore, in step S210, the controller 40 can drive the vehicle by operating a power source different from that of the assembled battery 10.

Claims (9)

  1.  並列に接続された複数の蓄電素子を含む蓄電装置と、
     前記蓄電装置の充放電を制御するコントローラと、を有し、
     前記各蓄電素子は、前記蓄電素子の内部における電流経路を遮断する電流遮断器を有しており、
     前記コントローラは、遮断状態にある前記電流遮断器の数が増えることに応じて変化し、前記電流経路が遮断されていない前記蓄電素子に流れる電流値を基準として、前記蓄電装置の充放電を制御することを特徴とする蓄電システム。
    A power storage device including a plurality of power storage elements connected in parallel;
    A controller for controlling charging and discharging of the power storage device,
    Each of the electricity storage elements has a current breaker that interrupts a current path inside the electricity storage element,
    The controller controls charging / discharging of the power storage device based on a current value flowing through the power storage element that is not interrupted by the current path, which changes as the number of the current breakers in the interrupted state increases. A power storage system characterized by that.
  2.  前記蓄電装置は、直列に接続された複数の蓄電ブロックを有しており、
     前記各蓄電ブロックは、並列に接続された前記複数の蓄電素子を有することを特徴とする請求項1に記載の蓄電システム。
    The power storage device has a plurality of power storage blocks connected in series,
    The power storage system according to claim 1, wherein each power storage block includes the plurality of power storage elements connected in parallel.
  3.  前記コントローラは、遮断状態にある前記電流遮断器の数として、前記各蓄電ブロックにおいて遮断状態にある前記電流遮断器の数のうち、最も多い数を用いることを特徴とする請求項2に記載の蓄電システム。 3. The controller according to claim 2, wherein the controller uses the largest number among the number of the current breakers in the cut-off state in each power storage block as the number of the current breakers in the cut-off state. Power storage system.
  4.  前記蓄電装置は、並列に接続された前記各蓄電素子と直列に接続される蓄電素子を含むことを特徴とする請求項1に記載の蓄電システム。 The power storage system according to claim 1, wherein the power storage device includes a power storage element connected in series with each of the power storage elements connected in parallel.
  5.  前記コントローラは、遮断状態にある前記電流遮断器の数が増えることに応じて、前記蓄電装置に流れる電流値を低下させることを特徴とする請求項1から4のいずれか1つに記載の蓄電システム。 The power storage according to any one of claims 1 to 4, wherein the controller decreases a value of a current flowing through the power storage device in accordance with an increase in the number of the current breakers in a cut-off state. system.
  6.  前記コントローラは、
     前記基準となる電流値に基づく温度変化量を用いて、前記蓄電素子の内部における温度を推定し、
     推定した前記温度が上限温度に近づくほど、前記蓄電装置の充放電を制限することを特徴とする請求項1から4のいずれか1つに記載の蓄電システム。
    The controller is
    Using the amount of temperature change based on the reference current value, estimate the temperature inside the power storage element,
    5. The power storage system according to claim 1, wherein charging and discharging of the power storage device is limited as the estimated temperature approaches an upper limit temperature.
  7.  前記コントローラは、遮断状態にある前記電流遮断器の数が第1閾値以上であるときに、前記蓄電装置の充放電を許可しないことを特徴とする請求項1から6のいずれか1つに記載の蓄電システム。 The said controller does not permit charging / discharging of the said electrical storage apparatus, when the number of the said current circuit breakers in the interruption | blocking state is more than a 1st threshold value. Power storage system.
  8.  前記コントローラは、遮断状態にある前記電流遮断器の数が、前記第1閾値よりも少ない第2閾値以上であって、前記第1閾値よりも少ないときに、警告を行うことを特徴とする請求項7に記載の蓄電システム。 The controller issues a warning when the number of the current breakers in a cut-off state is equal to or greater than a second threshold value that is less than the first threshold value and less than the first threshold value. Item 8. The power storage system according to Item 7.
  9.  前記電流遮断器は、溶断によって前記電流経路を遮断するヒューズ、温度上昇に伴う抵抗の上昇によって前記電流経路を遮断するPTC素子又は、前記蓄電素子の内圧が上昇することに応じて変形し、前記電流経路を遮断する電流遮断弁であることを特徴とする請求項1から8のいずれか1つに記載の蓄電システム。
     
    The current breaker is a fuse that cuts off the current path by fusing, a PTC element that cuts off the current path due to an increase in resistance due to a temperature rise, or a deformation in response to an increase in internal pressure of the power storage element, The power storage system according to any one of claims 1 to 8, wherein the power storage system is a current cutoff valve that blocks a current path.
PCT/JP2012/000749 2012-02-03 2012-02-03 Power storage system WO2013114467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000749 WO2013114467A1 (en) 2012-02-03 2012-02-03 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000749 WO2013114467A1 (en) 2012-02-03 2012-02-03 Power storage system

Publications (1)

Publication Number Publication Date
WO2013114467A1 true WO2013114467A1 (en) 2013-08-08

Family

ID=48904557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000749 WO2013114467A1 (en) 2012-02-03 2012-02-03 Power storage system

Country Status (1)

Country Link
WO (1) WO2013114467A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101674A (en) * 2004-09-30 2006-04-13 Toyota Motor Corp Charging/discharging controller of secondary battery
JP2007302236A (en) * 2007-05-14 2007-11-22 Honda Motor Co Ltd Vehicular variable steering angle ratio steering device
JP2008182779A (en) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd Power supply device
JP2010088202A (en) * 2008-09-30 2010-04-15 Toshiba Corp Battery unit and battery system using the same
JP2011119157A (en) * 2009-12-04 2011-06-16 Panasonic Corp Battery power source device and battery power source system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101674A (en) * 2004-09-30 2006-04-13 Toyota Motor Corp Charging/discharging controller of secondary battery
JP2008182779A (en) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd Power supply device
JP2007302236A (en) * 2007-05-14 2007-11-22 Honda Motor Co Ltd Vehicular variable steering angle ratio steering device
JP2010088202A (en) * 2008-09-30 2010-04-15 Toshiba Corp Battery unit and battery system using the same
JP2011119157A (en) * 2009-12-04 2011-06-16 Panasonic Corp Battery power source device and battery power source system

Similar Documents

Publication Publication Date Title
JP5811193B2 (en) Power storage system
JP5440708B2 (en) Battery system and battery system control method
WO2012164630A1 (en) Electricity storage system
JP5962762B2 (en) Power storage system
WO2015011534A2 (en) Control device and control method for electrical storage device
JP2013145175A (en) Battery system and short circuit detection method
JP2016005304A (en) vehicle
JP5692040B2 (en) Power storage system
WO2013176085A1 (en) Battery-state determination method, battery control device, and battery pack
JP5626190B2 (en) Power storage system
WO2018179855A1 (en) Battery control device
JP5626195B2 (en) Power storage system
JP5472472B2 (en) Power storage system and method for determining state of power storage block
JP6017790B2 (en) Power storage system
JP5794205B2 (en) Power storage system and disconnection determination method
JP2012253861A (en) Battery failure determination device
JP5949146B2 (en) Battery state determination method, battery control device, and battery pack
JP2015061505A (en) Power storage system
JP5870907B2 (en) Power storage system
JP2014186007A (en) Power storage system, control apparatus and malfunction detection method
WO2013114467A1 (en) Power storage system
JP5737200B2 (en) Power storage system
JP2015109191A (en) Power storage system
JP5692047B2 (en) Power storage system
JP5733238B2 (en) Power storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP