WO2013114452A1 - バックライトユニット及びこれを用いた映像表示装置 - Google Patents

バックライトユニット及びこれを用いた映像表示装置 Download PDF

Info

Publication number
WO2013114452A1
WO2013114452A1 PCT/JP2012/000650 JP2012000650W WO2013114452A1 WO 2013114452 A1 WO2013114452 A1 WO 2013114452A1 JP 2012000650 W JP2012000650 W JP 2012000650W WO 2013114452 A1 WO2013114452 A1 WO 2013114452A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backlight unit
led
ink
adjusting member
Prior art date
Application number
PCT/JP2012/000650
Other languages
English (en)
French (fr)
Inventor
将史 山本
大内 敏
真弓 長吉
横山 淳一
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2012/000650 priority Critical patent/WO2013114452A1/ja
Publication of WO2013114452A1 publication Critical patent/WO2013114452A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources

Definitions

  • the present invention relates to a backlight unit using, for example, a light emitting diode (LED) as a light source, and an image display device using the backlight unit.
  • a backlight unit using, for example, a light emitting diode (LED) as a light source
  • LED light emitting diode
  • LED Light Emitting Diode
  • Edge light type is a flat light guide made of transparent resin for point light such as LEDs. Since it is the structure which irradiates a liquid crystal panel by making it planar light with an optical plate, it is advantageous to thickness reduction (reduction of a depth dimension) of a video display apparatus.
  • Patent Document 1 As a conventional technology of a backlight device using such a light guide plate, for example, the one described in Patent Document 1 is known.
  • Patent Document 1 a plurality of concave portions having a horizontal direction as a longitudinal direction are provided on the bottom surface of the light guide plate in the vertical direction, a plurality of side emission LEDs are stored in the respective concave portions, and light from the LEDs is reflected inside the light guide plate. It discloses that the light is emitted to the liquid crystal panel side.
  • a side emission type (side view type) LED is used as the LED.
  • a direction directly above the LED that is, a direction orthogonal to the optical axis direction of the side view type LED.
  • There is light traveling toward the liquid crystal panel. For example, the light transmitted through the LED package, the light reflected from the inner wall surface of the recess, or the reflection sheet disposed on the back side of the light guide plate.
  • the light emission surface of the light guide plate corresponds to the LED placement position and the light emission side or recess formation position.
  • a spot-like light spot or bright line is generated on the surface, and this is visually recognized as uneven brightness.
  • the above-mentioned patent document does not consider this point.
  • the present invention has been made in view of the above-described problems of the prior art, and provides a technique capable of reducing luminance unevenness and obtaining a uniform luminance distribution.
  • the present invention is characterized by the structure described in the claims. More specifically, the present invention provides a backlight unit including a light source and a light guide plate for guiding light from the light source to the liquid crystal panel side, so that the light source is housed on the back side of the light guide plate. , And a light amount adjusting member is provided at a position corresponding to the light source or the concave portion when viewed from the display screen side of the liquid crystal panel.
  • the light amount adjusting member is configured by, for example, applying an ink having a predetermined optical characteristic to a transparent sheet, and the transparent sheet coated with the ink is attached to the light emitting surface of the light guide plate.
  • FIG. 1 The figure which shows the structure of the backlight unit which concerns on the 1st Example of this invention.
  • FIG. 6 is a diagram illustrating a specific example of ink 6b used for the light amount adjusting member 6 according to the first embodiment.
  • FIG. The figure which shows the other example of the attachment structure to the light-guide plate 1 of the light quantity adjustment member 6.
  • FIG. shows another example of the attachment structure to the light-guide plate 1 of the light quantity adjustment member 6.
  • FIG. The figure which showed the 1st example of the structure of the optical sheet 5 and the light quantity adjustment member 6 which concern on a 4th Example.
  • the figure which shows the modification of 2nd Example It is a figure for demonstrating a 6th Example, Comprising: The figure which expanded the light-guide plate entrance plane 1a vicinity. It is a figure for demonstrating a 6th Example, Comprising: The figure which shows the relationship between the distance of the light-guide plate entrance plane 1a and LED2, and the luminance ratio just above LED2. It is a figure for demonstrating a 6th Example, Comprising: The figure which shows the change of the emitted light amount distribution of LED2 vicinity just when the distance of the light-guide plate entrance plane 1a and LED2 changes.
  • the figure which shows the structure of the light quantity adjustment member 6 which concerns on a 6th Example The figure which shows the specific example of the black ink layer 6g which concerns on a 6th Example.
  • the figure which shows the backlight unit which concerns on a 7th Example The figure which shows the other example of the backlight unit which concerns on a 7th Example.
  • FIG. 1 shows the configuration of a backlight unit according to the first embodiment of the present invention.
  • the backlight unit 7 includes a flat light guide plate 1, an LED 2 as a light source, an LED substrate 3, a reflection sheet 4, an optical sheet 5, a light amount adjustment member 6, and an optical sheet support portion 8. Elements constituting the backlight unit 7 are housed and fixed in, for example, a bowl-shaped metal chassis (not shown).
  • the light of the backlight unit 7 is emitted toward the upper side of the paper, and irradiates a liquid crystal panel (not shown) disposed above the backlight unit 7.
  • the surface which opposes the liquid crystal panel side of the light-guide plate 1 be the light emission surface 1b
  • the surface on the opposite side surface in which the LED board 3 is provided
  • a recess 11 for accommodating the LED 2 (hereinafter, this recess may be referred to as a “groove”) is provided, and the groove 11 faces the light emission surface of the LED 2.
  • the surface is a light incident surface 1a.
  • the groove 11 is formed, for example, extending in the horizontal direction of the liquid crystal panel (lateral direction, depth direction in FIG. 1).
  • the groove 11 may have a continuous shape extending in the horizontal direction of the liquid crystal panel, or may be a plurality of holes arranged in the horizontal direction of the liquid crystal panel. Further, a continuous groove extending in the horizontal direction of the liquid crystal panel may be separated by a plurality of ribs.
  • the LED 2 is a side-view type (side-emitting type) LED that emits white light in a direction parallel to the electrode surface.
  • the LED 2 emits light in the direction of the arrow.
  • the light emitted from the LED 2 enters the light guide plate 1 from the light incident surface 1a, travels through the light guide plate 1 while being reflected, refracted, or diffused by each surface of the light guide plate 1, and is emitted from the light guide plate 1.
  • the light is emitted from the surface 1b.
  • the light emitted from the light emitting surface 1b is applied to the liquid crystal panel side via the optical sheet 5 including, for example, a diffusion plate, a prism sheet, and a brightness enhancement sheet.
  • a staggered emission surface optical pattern for spatially uniformizing the emitted light is formed on the light emission surface 1b.
  • This exit surface optical pattern may be, for example, a fine concavo-convex shape or dot pattern printing with white ink or the like.
  • the fine concavo-convex shape may be formed by processing with a laser, or may be formed with a mold.
  • the backlight The so-called area control that partially controls the intensity of the light can be performed.
  • the light guide plate 1 is divided into 15 areas in the LED arrangement configuration as shown in FIG. Area control. For example, when the luminance of an image corresponding to a certain area is dark, the light intensity of the LED 2 corresponding to the area is decreased, and conversely, when the image is bright, the light intensity of the LED 2 corresponding to the area is increased.
  • the brightness of more areas can be controlled. If four light guide plates 1 having the above-described configuration are two-dimensionally arranged, area control can be performed in a total of 60 areas.
  • the reflection sheet 4 is disposed on the back side opposite to the light emitting surface 1 b, and has a function of reflecting the light transmitted through the back surface of the light guide plate 1 and traveling to the outside of the light guide plate 1 and returning the light into the light guide plate 1.
  • the LED 2 mounted on the LED substrate 3 is accommodated and disposed in the groove 11 of the light guide plate 1 through the hole on the reflection sheet 4.
  • the LED substrate 3 has, for example, a rectangular shape extending in the horizontal direction of the liquid crystal panel, and a plurality of LEDs 2 are arranged along the longitudinal direction of the LED substrate 3. Therefore, for example, as shown in FIG. 2, a plurality of LEDs 2 are arranged along the longitudinal direction inside the groove 11.
  • the optical sheet support portion 8 may be configured by standing a pin on the light emitting surface 1 b of the light guide plate 1, or may be fixed at the four ends at the end portion of the light guide plate 1. Further, this pin is made of, for example, a white resin, and is inserted into the chassis through the light guide plate 1 and the reflection sheet 4 or the light guide plate 1, the reflection sheet 4 and the LED substrate 3 and is fitted in the chassis. It may be.
  • FIG. 2 is a view of the light amount adjusting member 6 as seen from the light guide plate exit surface 1b side. The light emitted from the LED 2 is in the direction from Y ′ to Y, and the light incident on the light guide plate 1 is directed in the direction perpendicular to the paper surface to be emitted from the paper surface.
  • the light amount adjusting member 6 as the light amount adjusting member 6 is formed so as to extend in the horizontal direction of the liquid crystal panel (lateral direction on the paper surface) so as to correspond to the groove 11 as shown in FIG. As described above, the light guide plate 1 is arranged in a line in the horizontal direction of the liquid crystal panel.
  • FIG. 3 shows a state of light emitted from the LED 2 when the light amount adjusting member 6 is not provided.
  • the light emitted from the LED 2 is incident on the incident surface 1 a of the light guide plate 1, propagates by being reflected or diffusely reflected in the light guide plate 1, and is emitted from the output surface 1 b of the light guide plate 1.
  • the emission angle of the light emitted from the LED 2 has an angle equal to or greater than the critical angle ⁇ c, it is not incident on the light guide plate 1 and is emitted directly above the LED 2 (direct light).
  • the LED 2 is generally packaged, and all of the light directed directly upward from the light emitting portion of the LED 2 is not reflected inside the package, and part of the light is transmitted through the package and emitted directly above.
  • the direct light including the light transmitted through the package and the reflected light brighten the portion directly above the LED 2, and the entire screen is visually recognized as a bright line or a light spot (bright spot), resulting in uneven brightness and a factor in image quality degradation.
  • the term “directly above the LED 2” means the light emission side of the backlight unit in the direction orthogonal to the electrode surface of the LED 2.
  • the function of the light amount adjusting member 6 is to adjust or limit the amount of light emitted from the light guide plate of direct light and reflected light directly above the LED 2 that is a cause of the image quality deterioration, and to realize a uniform luminance distribution in the surface. It is.
  • the light amount adjusting member 6 is provided at a position corresponding to the concave portion 11 on the light emitting surface 1 b of the light guide plate 1 and includes the ink 6 b and the transparent sheet 6 a.
  • the light amount adjusting member 6 is configured by applying an ink 6b on a transparent sheet 6a, and the ink 6b is placed on the light emitting surface 1b of the light guide plate 1 so that the ink 6b is located at a position corresponding to the position directly above each LED 2. Attached to.
  • the ink 6b functions as a light emission amount reducing unit that travels directly above the LED 2 and transmits the light guide plate 1 to reduce the amount of light emitted from the light emission surface 1.
  • the ink 6b is disposed on the light source side so that the thickness of the transparent film 6a does not affect the light amount adjustment of the LED 2, but the transparent film 6a may be attached so as to be positioned on the LED 2 side.
  • the transparent sheet 6a may be made of a material such as PET (Poly Ethylene Terephthalate), polycarbonate, or PMMA (Poly Methyl Methacrylate).
  • PET Poly Ethylene Terephthalate
  • polycarbonate Polycarbonate
  • PMMA Poly Methyl Methacrylate
  • the transparent sheet 6a should just be a transparent film, the one where the transmittance
  • the transparent sheet 6a is made of a highly rigid material with little expansion / contraction due to the external environment (temperature, humidity). It is preferred that The transparent sheet 6 may be composed of a transparent film, for example.
  • any ink 6b can be used as long as it can be applied to the transparent film 6a.
  • the transmittance of the ink 6b can be controlled by the thickness of the ink and the material of the ink. Regarding the ink thickness, the thickness is increased if the transmittance is lowered, and the thickness is decreased if the transmittance is increased.
  • the ink material is preferably a material that absorbs less light and has a high reflectance. This is because light that does not pass through is reflected by the ink 6b and part of the reflected light returns into the light guide plate, so that the light emitted from the LED 2 can be used efficiently.
  • the ink material may be a material of two or more colors.
  • the light extraction efficiency utilization efficiency
  • a material that transmits the short wavelength side spectrum peak wavelength region
  • a general white ink has a transmission characteristic indicated by a dotted line in FIG.
  • the amount of light transmitted on the short wavelength side is relatively small, so the blue wavelength included in the transmitted light.
  • the proportion of the ingredients decreases, resulting in a yellow coloration.
  • the transmittance becomes flat in the visible light region as shown by the solid line in FIG. 6, so that the above-described coloring can be reduced.
  • the spectrum having a peak on the short wavelength side has been described as an example, but it goes without saying that this method can also be applied to cases where the spectrum has a peak in another wavelength region. Two or more colors of ink may be mixed.
  • the film thickness that can be laminated by one printing is about 10 ⁇ m.
  • the number of times of printing needs to be increased to twice.
  • black ink is mixed in order to suppress an increase in cost and obtain a sufficient light shielding effect.
  • FIG. 22 shows the change in transmittance due to the mixed color of black ink.
  • the dotted line shows the transmission characteristic of the light emission amount reduction unit with only white ink
  • the solid line shows the transmission characteristic of the light emission amount reduction unit with ink obtained by mixing black ink with white ink.
  • Mixing black ink has the effect of reducing the overall transmittance. That is, by mixing black ink, the same effect as that obtained by increasing the film thickness can be obtained with respect to the transmittance. Furthermore, it goes without saying that the effect shown in FIG. 6 can be obtained by mixing blue.
  • FIG. 23 shows a change in the reflectance of the light emission amount reducing portion due to the color mixture of black ink. Similar to the transmittance characteristic, the reflectance is lowered by mixing black. This is because the black ink absorbs light. Since the amount of light spreading around the LED 2 decreases because the reflectance decreases due to the black color mixture, it is necessary to increase the optical pattern density (the number of minute irregularities per unit area) provided around the LED 2 of the light guide plate 1. is there.
  • the optical pattern density may be increased on the exit surface 1b side of the light guide plate 1 or on the reflective sheet 4 side of the light guide plate 1, and either surface may be used as long as the optical pattern density is increased. .
  • the manufacturing cost can be reduced by mixing the black ink into the ink constituting the emission amount reducing unit and optimizing the pattern density of the light guide plate 1 according to the mixing of the black ink.
  • FIG. 7 is a view of the light amount adjusting member 6 viewed from the light exit surface 1 b side of the light guide plate 1.
  • the ink 6 b as the light output amount reducing unit is formed on the light output surface 1 b of the light guide plate 1. It is located directly above each LED 2, has a circular shape, and has a size that includes each LED 2 from the light emitting surface 1 b side. And the ink 6b is arrange
  • A indicates an area between the LEDs, and in this embodiment, the ink 6b is not provided in the area.
  • the shape of the ink 6b is circular in this example, but may be an ellipse, an oval, or a polygon such as a square or a rectangle, as long as it includes light that goes in the direction directly above the LED 2. .
  • the light spreading direction varies depending on the light emission direction of the LED and the structure of the light guide plate, it is desirable to use the shape of the ink 6b suitable for each structure.
  • the optimal ink shape 6b for the direct type LED is shown, and then the side shape according to this embodiment is shown. The optimum ink shape 6b when the view type LED is used will be described.
  • FIG. 20 is a view of the direct type LED observed from the emission direction side.
  • the direct type LED needs a pattern for adjusting the amount of light uniformly in the radial direction because light spreads uniformly in the radial direction (radially) when viewed from the display surface side of the liquid crystal panel. Therefore, the ink shape 6b is optimally a circle or a symmetrical shape in which small circles are uniformly scattered in a radial manner as shown in FIG. 20 (light emission direction of the LED 2) and / or right and left (LED 2 arrangement direction).
  • FIG. 21 is a view of the side view type LED in Example 1 observed from the light exit surface 1 b of the light guide plate 1.
  • the luminance distribution based on the optical axis of the LED is substantially symmetric, but the LED passing through the center of the LED.
  • the luminance distribution with reference to a line orthogonal to the optical axis is biased.
  • the optical axis direction of the LED will be referred to as the vertical direction
  • the direction orthogonal to the optical axis of the LED will be referred to as the horizontal direction.
  • the luminance distribution in the vertical direction has the highest luminance in the vicinity of the incident surface 1a of the light guide plate than the center of the LED, and the spread of the distribution is larger in the light emitting direction side than the back side of the LED. ing. Therefore, in this embodiment, the optimal ink shape 6b when using the side view type LED is bilaterally symmetric (that is, symmetric with respect to the optical axis of the LED) so as to correspond to the luminance distribution in the horizontal direction.
  • the shape needs to be asymmetrical in the vertical direction (that is, asymmetric with respect to a line perpendicular to the optical axis of the LED passing through the center of the LED) so as to correspond to the luminance distribution in the vertical direction.
  • the shape of the ink 6b in consideration of the luminance distribution of the side view LED shown in FIG. 21 will be described with reference to FIG.
  • FIG. 8 shows an example of a specific shape of the ink 6b effective for reducing the luminance unevenness adapted to the luminance distribution of the side view type LED.
  • the ink 6b includes an elliptical light shielding pattern 60, which is a first light shielding pattern for reducing the light transmission amount, for example, an elliptical shape provided immediately above the LED 2, and a peripheral portion directly above the LED 2, that is, the elliptical light shielding pattern 60.
  • a plurality of surrounding light-shielding patterns which are second light-shielding patterns having a shape different from the elliptical light-shielding pattern 60, for example, a horseshoe shape, a semicircle shape, or a ripple shape, are provided. As shown in FIG.
  • the surrounding light shielding pattern with the ink 6b by arranging the surrounding light shielding pattern with the ink 6b finely, the light whose light amount has been adjusted can be dispersed favorably, and the brightness unevenness can be reduced by creating bright and dark portions.
  • different thicknesses may be used for the elliptical light shielding pattern 60 and the surrounding light shielding pattern with the ink 6b.
  • the elliptical light-shielding pattern 60 is directly above the LED and has the largest light leakage amount, so that the thickness is thick.
  • the peripheral light-shielding pattern does not need to be as light-shielded as the elliptical pattern, and the thickness is thin.
  • the thickness of the elliptical light shielding pattern 60 may be about twice the thickness of the peripheral portion.
  • the transmittance of the elliptical light shielding pattern 60 is preferably 10% to 20%.
  • the distribution of the ink 6b may be changed like a gradation according to the luminance distribution.
  • the transmittance of the elliptical light shielding pattern 60 is gradually increased from the center to the outer peripheral direction, and for a plurality of surrounding light shielding patterns, the transmittance of a pattern located in the vicinity of the elliptical light shielding pattern 60 is determined based on the transmittance.
  • the transmittance may be lower than that of the pattern at a distant position.
  • the transmittance may be changed within each surrounding light shielding pattern.
  • the ink 6b in FIG. 8 includes, as the surrounding light shielding pattern, a first horseshoe-shaped first surrounding pattern 6c that is long in the left-right direction, for example, provided in a portion away from the elliptical light shielding pattern 60 in the light emitting direction of the LED 2, and the elliptical light shielding.
  • a second peripheral pattern 6d having a horseshoe shape, for example, is provided in a portion away from the pattern 60 in the longitudinal direction (that is, in the horizontal direction) and closer to the light emission direction of the LED 2.
  • the first peripheral pattern 6c has a function of blocking light emitted in a direction directly above the LED 2 (axis orthogonal to the electrode surface of the LED 2) and spreading the light in the light emitting direction (front) of the LED 2.
  • the first peripheral pattern 6c is used to reduce unevenness in brightness by shielding a portion with high light intensity in the light emission direction (front) of the LED 2 and forming a light / dark pattern in the light emission direction.
  • the second peripheral pattern 6d has a function of spreading the light emitted obliquely forward with respect to the direction directly above the LED 2 (axis perpendicular to the electrode surface of the LED 2) to the area A in FIG. Have.
  • a horseshoe-shaped third circumference is provided on the part away from the light shielding direction of the LED 2 from the elliptical light shielding pattern 60, that is, on the diagonally rear side and the rear side of the LED 2.
  • Pattern 6e is formed.
  • the third peripheral pattern 6e is a light that travels in a direction opposite to the light emission direction (arrow direction) of the LED 2 (that is, the rear side of the LED 2) when the light emitted from the LED 2 is reflected by the light incident surface 1a of the light guide plate 1. , And the light transmitted through the back of the package of the LED 2 and traveling to the rear side of the LED 2 has a function for reducing the light amount.
  • the first surrounding pattern 6c, the second surrounding pattern 6d, and the third surrounding pattern 6e which are surrounding light shielding patterns, each have a narrower pattern width or longer pattern pitch depending on the luminance distribution as they move away from the elliptical light shielding pattern 60. May be.
  • the width of the pattern close to the elliptical light shielding pattern 60 is widened (or the pattern pitch is shortened), and the width of the far pattern is narrowed (or the pattern pitch is widened).
  • the pattern pitch is in the range of 1/10 of the LED width to about 1/2 of the LED arrangement pitch, the effect of reducing luminance unevenness is high.
  • the pitch between the patterns is 1/10 or less of the LED width
  • the pattern becomes too close and the area of the bright part becomes narrow, which may be recognized as a dark part.
  • the pitch between the patterns is 1 ⁇ 2 or more of the LED pitch
  • the patterns are too far apart, the area of the bright part is increased, and the luminance unevenness reduction effect by the bright / dark pattern cannot be obtained. Therefore, as described above, the pitch between patterns is preferably in the range of 1/10 of the LED width to 1/2 of the LED array pitch.
  • the ink 6b is not limited to the shape shown in FIG. 8 as long as the bright portion and the dark portion are finely formed and luminance unevenness is reduced.
  • a large number of small circular patterns may be arranged around the elliptical light shielding pattern as the surrounding light shielding pattern.
  • a bright part and a dark part can be further subdivided and light can be dispersed well.
  • the diameter of the small circular pattern may be reduced and / or the pitch (distance a and / or b) between the small circles may be increased. Thereby, luminance unevenness can be further improved.
  • FIG. 19A is a diagram showing problems of the elliptical light-shielding pattern 60 directly above the LED 2 in FIGS. Since the luminance unevenness is caused by the luminance difference between the bright part and the dark part, it is preferable that the luminance change is not steep but gentle. However, in the elliptical light shielding pattern 60, a steep luminance step is generated at the boundary portion. In particular, the larger the size of the elliptical light shielding pattern 60 is, the more noticeable the luminance step is. The boundary portion of the elliptical light shielding pattern 60 becomes a dark portion because light is not emitted, and is visually recognized as a dark line when the dark portion continues over the LED array. Therefore, in this embodiment, in order to suppress the dark part generated at the boundary of the elliptical light shielding pattern 60, the shape as shown in FIG.
  • the elliptical light shielding pattern 60 shown in FIG. 19B has a shape in which a plurality of slits 191 for emitting light to the boundary portion of the elliptical light shielding pattern 60 are provided.
  • a slit 191 By providing such a slit 191, a bright and dark pattern is formed at the boundary, the luminance at the boundary is improved, and uneven luminance at the boundary is improved.
  • the width of the slit 191 is preferably about 1/10 of the longitudinal dimension of the LED.
  • An elliptical light shielding pattern 60 shown in FIG. 19C is obtained by emitting light by providing a hole 192 around the elliptical light shielding pattern 60.
  • the shape of the boundary portion is not limited to that shown in FIGS. 19B and 19C, and any shape can be used as long as the same effect can be obtained by creating a light and dark pattern in the boundary portion. May be.
  • the pattern of the ink 6b is such that the LEDs 2 adjacent to each other in the left-right direction (horizontal direction) are centered on the optical axis (AX) of the LED 2 so as not to overlap with the adjacent ink pattern. It arrange
  • the problem when the light amount adjusting member 6 is displaced with respect to the LED 2 when only the elliptical light shielding pattern is provided will be described, and then the light amount adjusting member 6 suitable for solving the problem.
  • the characteristics will be described, and finally, the shape of the light amount adjusting member 6 that realizes the characteristics will be described.
  • FIG. 24 shows the positional relationship between the light amount adjusting member 6 and the LED 2.
  • FIG. 24A shows a state where the positional relationship between the light amount adjusting member 6 and the LED 2 is not shifted (hereinafter referred to as a nominal position)
  • FIG. 24B shows the position between the light amount adjusting member 6 and the LED 2. It shows a state in which the relationship is shifted.
  • the light amount adjusting member 6 is displaced in the positional relationship with the light guide plate 1 due to a displacement or error when assembled to the light guide plate 1 and expansion / contraction due to temperature / humidity.
  • FIG. 25 shows the luminance distribution of the AA ′ cross section in FIG.
  • FIG. 25A shows the luminance distribution at the nominal position
  • FIG. 25B shows the luminance distribution when the positional deviation occurs.
  • the center position of the graph indicates the center of the LED 2, and the vertical axis of the graph is normalized by the luminance immediately above the LED 2.
  • a solid line indicates a luminance distribution when the light amount adjusting member 6 is not disposed, that is, a luminance distribution immediately above the LED 2 via the light guide plate 1, and a dotted line indicates a transmittance distribution of the light amount adjusting member.
  • the transmittance directly above the LED 2 is 50%.
  • a solid line (thick line) indicates a luminance distribution through the light amount adjusting member 6.
  • FIG. 26 shows the luminance distribution of the AA ′ section of the light amount adjusting member 6 having the above characteristics.
  • FIG. 26A shows the luminance distribution at the nominal position
  • FIG. 26B shows the luminance distribution when the positional deviation occurs.
  • the dotted line indicates the transmittance distribution of the light amount adjusting member. In the illustrated graph, the transmittance directly above the LED 2 is 50%.
  • a solid line (thick line) indicates a luminance distribution through the light amount adjusting member 6.
  • the transmittance characteristic is gently changed at the boundary portion of the ink 6b.
  • at least the outer side from the boundary of the ink 6b has a characteristic that the transmittance increases gradually or stepwise as the distance from the ink 6b increases.
  • in-plane uniformity is improved when viewed in the section AA ′.
  • the characteristic that the luminance change at the boundary portion of the ink 6b becomes gradual is the optimum characteristic for suppressing the deterioration of the in-plane uniformity due to the positional relationship between the light amount adjusting member 6 and the LED 2.
  • the shape of the light amount adjusting member 6 that realizes this characteristic and moderates the luminance change even when the positional relationship between the light amount adjusting member 6 and the LED 2 is shifted will be described with reference to FIGS. 27 and 28.
  • As a method for obtaining the transmittance distribution having such characteristics that is, a pattern configuration method for varying the transmittance according to the position on the light guide plate, mainly the ink for forming the pattern of the light amount adjusting member 6 is used.
  • the former method is referred to as a first pattern forming method
  • the latter method is referred to as a second pattern forming method. Specific examples of each forming method will be described below.
  • FIG. 27 shows an example of the first pattern forming method.
  • 27A shows the relationship between the position on the light guide plate and the transmittance
  • FIG. 27B shows the relationship between the position on the light guide plate and the film thickness of the ink
  • FIG. 27C shows the relationship from the exit surface 1b side.
  • the appearance of the ink 6b (pattern) is shown.
  • the ink thickness and the transmittance are in an inversely proportional relationship. When the ink is thick, the transmittance is low, and when the ink is thin, the transmittance is high.
  • the transmittance distribution with the optimum characteristics described above can be obtained.
  • the thickness of ink that can be applied by one printing is about 4 ⁇ m to 10 ⁇ m (hereinafter referred to as “minimum ink thickness”).
  • minimum ink thickness the thickness of ink that can be applied by one printing is about 4 ⁇ m to 10 ⁇ m.
  • ink is applied (printed) in a circular shape in the entire pattern range T1 in the first printing, and then on the entire T1 in the second printing. Then, the ink is applied to the circular range T2 in an overlapping manner, and finally, the ink is applied to the circular range T3 on the range T2 in an overlapping manner.
  • ink is applied (printed) in a circular shape in the entire pattern range T1 in the first printing, and then on the entire T1 in the second printing. Then, the ink is applied to the circular range T2 in an overlapping manner, and finally, the ink is applied to the circular range T3 on the range T2 in an overlapping manner.
  • the portion of the range T3 (the central circular portion) forms the thickest film by three times of overprinting, and the portion other than the range T3 of the range T2 (the inner side)
  • An annular portion forms an intermediate film thickness by two overprints, and a portion other than the range T2 of the range T1 (outer annular portion) has a minimum ink thickness formed by one printing.
  • the black mixing ratio of the ink is increased in the vicinity immediately above the LED 2, and the black mixing ratio is decreased gradually or stepwise as the distance from the immediately above the LED 2 to the peripheral portion increases. Even in this case, it is difficult to print ink with different black mixing ratios for each position by one printing. For example, when using two types of inks with different black mixing ratios, it is divided into three times. Will be printed. As described above, the manufacturing cost increases because the number of times of printing increases, as described above, regardless of which method is used to change the ink film thickness or the black color mixture ratio.
  • the second pattern forming method that is, a method in which the ratio of the ink per unit area of the light guide plate (pattern density) is changed according to the position, the transmission of the optimum characteristics described above in one printing. A rate distribution can be obtained, and manufacturing costs can be collected.
  • the second pattern forming method specific examples of the second pattern forming method will be described.
  • FIG. 28 shows an example of the second pattern forming method.
  • the ink is applied to the entire surface of the elliptical light shielding pattern 60 around the portion directly above the LED 2, and the periphery is formed so as to form a circular dot pattern 68 smaller than the elliptical light shielding pattern 60. Is applied.
  • the density of the dot pattern 68 is set to decrease as it moves away from the elliptical light shielding pattern 60.
  • the unit area (hereinafter referred to as “unit block”) 67 is represented by a small square in FIG. 28, and the printing ratio of ink in the unit block 67 (ratio occupied by the dot pattern 68) changes depending on the position. is doing.
  • the ink printing ratio of the unit block 67 in which the elliptical light shielding pattern 6 immediately above the LED 2 is formed is 100%, and the elliptical light shielding pattern 60 and / or the outer light shielding pattern 60 located at the outer peripheral portion of the elliptical light shielding pattern 6
  • the ink printing ratio of the unit tile 67 on which the dot pattern 68 is formed is 50 to 80%, and the ink printing ratio of the unit tile 87 on which the dot pattern 68 located further outside is formed is 10 to 40%.
  • the ink thickness is assumed to be constant at each position and each pattern.
  • a spatial gap (gap between the dot patterns 68) is formed on the plane of the light guide plate by the dot pattern 68 provided around the elliptical light shielding pattern 60, and the transmittance at each position is determined. Is adjusted. That is, as shown in FIG. 28, the transmittance at each position is realized by the ink printing ratio (ink occupation ratio) of the small unit block 67, and the ink application area in each unit block 67 is changed according to the position. By doing so, the transmittance at each position is adjusted.
  • the square unit blocks 67 are regularly arranged in two dimensions vertically and horizontally, but the unit blocks may be circular and arranged concentrically. In FIG.
  • the unit block 67 and its boundary are shown, but the unit block 67 is a virtual region, and actually the unit block 67 and its boundary are not formed on the light guide plate and are not visually recognized. Shall. However, the position block 67 and its boundary may be visually recognized.
  • a desired transmittance is set for a certain unit block 67, and the ink application area of the unit block 67 is set so that the desired transmittance is obtained.
  • the desired transmittance of a certain unit block 67 is T (%)
  • the ink transmittance is Ti (%)
  • the ink occupancy per unit block 67 is ⁇
  • the ink occupancy ⁇ is expressed by the following equation 1. expressed.
  • the ink having the transmittance T is applied in the unit block 67 by the area Ai according to the transmittance ratio, a desired transmittance Ti can be obtained for the unit block 67.
  • the ink transmittance T can be set according to the material and color of the ink. For example, by adjusting the content of black ink, the transmittance T of the ink can be set.
  • the surrounding dot pattern 68 is composed of small circles, but may be any shape such as a rectangle, a hexagon, or a polygon as long as it can fill a desired area. Further, since the boundary portion of the elliptical light shielding pattern 6 is highly sensitive to positional deviation, it is preferable that the area of the unit block 67 is reduced. Further, the area of the unit block 67 may be reduced only in the peripheral part of the LED 2 and the area of the unit block 67 may be increased in the peripheral part.
  • the width of the unit block 67 is preferably about 1/20 to 1/10 of the width of the LED 2 in the chip long side direction.
  • the ink 6 b is applied in a circular shape so as to include each LED 2 from the light emitting surface 1 b side at a position corresponding to each LED 2 on the light emitting surface 1 b of the light guide plate 1.
  • a transparent sheet 6a is arranged on the top.
  • the transparent sheet 6a is attached to the light guide plate 1 with a double-sided tape 9 between the LEDs 2 adjacent to each other (part A in FIG. 11) on the light emitting surface 1b on the light guide plate 1 as shown in the figure. Yes.
  • the double-sided tape 9 is preferably a transparent double-sided tape so as not to block the light between the LEDs 2 (A in FIG.
  • the optical sheet support 8 is inserted so as to penetrate the light amount adjusting member 6 (particularly the transparent sheet 6 a), the light guide plate 1, the reflective sheet 4, and the LED substrate 3. It is fixed so that it may be inserted. Rivet pins or screws may be used for the optical sheet support 8. As long as the optical sheet support portion 8 has a structure in which each element is inserted and fixed as described above, any optical sheet support portion 8 may be used. It is preferable to use a transparent material. Moreover, you may comprise so that the fixing position of the optical sheet support part 8 can be changed freely like FIG. In changing the fixing position, the width / length of the transparent sheet 6a of the light amount adjusting member 6 may be arbitrarily changed, and any configuration that can hold the light amount adjusting member 6 is acceptable.
  • the light quantity adjusting member 6 can be fixed using the optical sheet support 8 and the double-sided tape 9 together.
  • the present embodiment it is possible to reduce the luminance unevenness when the groove 11 is formed on the back side of the light guide plate 1 and the LED is disposed in the groove, and the luminance unevenness is reduced by light. This can be done while improving the efficiency of taking Therefore, according to this embodiment, it is possible to provide a backlight with high light utilization efficiency and high spatial luminance uniformity, and further, it is possible to provide a high-quality video display device.
  • the second embodiment is the same as the first embodiment except for the light amount adjusting member 6, only the light amount adjusting member 6 according to the second embodiment will be described below.
  • FIG. 9 is a diagram showing a configuration of the light amount adjusting member 6 according to the second embodiment.
  • the difference from Example 1 is that the ink 6b is directly applied on the light guide plate 1 without using the transparent sheet 6a.
  • the same pattern as in the first embodiment can be applied.
  • the pattern forming method shown in FIGS. 27 and 28 can also be applied.
  • a groove different from the groove 11 described above may be provided on the light exit surface 1b of the light guide plate 1, and a pattern may be formed by printing in the groove.
  • FIG. 29 is shown in FIG. 29 as a modification of the second embodiment.
  • a pattern groove 129 is provided in advance in the place where the light amount adjusting member 6 of the light guide plate 1 is arranged, and as shown in FIG. 29 (b), The light amount adjusting member 6 is configured by applying ink to the pattern groove 129.
  • the pattern groove 129 is formed, for example, by cutting the surface of the light guide plate 1.
  • the light guide plate 1 may be formed at the same time as extrusion molding or injection molding.
  • the light quantity adjusting member 6 can be formed at a desired position with high accuracy. That is, it is possible to improve the positional accuracy of printing. Further, since the light amount adjusting member 6 is embedded in the light guide plate 1, the thickness of the light amount adjusting member 6 can be reduced.
  • the effect of the present embodiment is the same as that of the first embodiment.
  • a transparent sheet 6a may be attached on the light guide plate 1 and the ink 6b in order to adjust the light transmission amount.
  • the third embodiment is the same as the first embodiment except for the light amount adjusting member 6, only the light amount adjusting member 6 according to the third embodiment will be described below.
  • FIG. 10 is a diagram showing the shape of the light amount adjusting member 6 according to the third embodiment.
  • the difference from Example 1 and Example 2 is that a diffuse reflection sheet 6f is used as the light amount adjusting member 6 instead of the transparent sheet 6a and the ink 6b.
  • the third embodiment will be described below.
  • Example 1 for example, when using the configuration as shown in FIGS. 7, 8, or 11, the light shielding pattern corresponding to each LED is formed on the transparent sheet 6 a by applying the ink 6 b, Since it is necessary to affix the LED to the light guide plate 1 for each row in which the LEDs are arranged, the assembly man-hour (affixing process) becomes enormous. For this reason, when the assembly man-hours are taken into consideration, it is preferable that the elements (light-shielding patterns) corresponding to the ink 6a of the light amount adjusting member 6 are connected in one row in the horizontal direction.
  • the diffuse reflection sheet 6f in which the light shielding patterns corresponding to the number of LEDs are integrally formed is used.
  • the surface of the diffuse reflection sheet 6f on the light guide plate 1 side and / or the surface opposite to the surface is formed with a rough surface including minute irregularities by mat processing or the like, for example.
  • the diffuse reflection sheet 6f has a portion corresponding to the LED 2 that is larger in the vertical direction than a portion between the LEDs 2, and the light that goes directly above the LED 2 Is preferably diffused. It is preferable that the diffusion degree of the diffuse reflection sheet 6f is larger in the portion corresponding to the LED 2 than in the portion between the LEDs 2. It is not necessary to form a rough surface between the LEDs 2.
  • the step of forming a light shielding pattern corresponding to each LED with the ink 6b can be omitted, and the number of assembling steps can be reduced.
  • the shape of the diffuse reflection sheet 6f corresponding to the LED 2 is a hexagonal shape, but it may be a quadrilateral shape, or a circular shape or an elliptical shape that is long in the left-right direction.
  • the same shapes as those of the first and second embodiments may be used.
  • the fourth embodiment is the same as the configuration of the first embodiment except for the optical sheet 5 and the light amount adjusting member 6, only the optical sheet 5 and the light amount adjusting member 6 according to the fourth embodiment will be described below. Will be described.
  • FIG. 14 is a first example of the configuration of the optical sheet 5 and the light amount adjusting member 6 according to the fourth embodiment, and shows an X-X ′ sectional view of the configuration of FIG. 2.
  • the light amount adjusting member 6 is arranged not on the light guide plate 1 but on the surface of the optical sheet 5 facing the light guide plate 1 so that the optical sheet 5 is supported by the optical sheet support portion 8. Similar to the first embodiment, the light amount adjusting member 6 is provided at a position corresponding to the arrangement position of the LED 2 and the formation position of the groove 11 of the optical sheet 5 when viewed from the display surface side of the liquid crystal panel. .
  • the light amount adjusting member 6 can be the same as that in the first and third embodiments.
  • the optical sheet 5 includes a diffusion plate, a diffusion sheet, a prism sheet, a brightness enhancement sheet (BEF), and the like.
  • the optical sheet 5 is arranged at a predetermined distance from the light guide plate 1 (hereinafter, this distance is referred to as “diffusion distance”), but the diffusion distance is set to zero, and the light amount adjusting member 6 is provided.
  • the optical sheet 5 thus obtained may be placed in close contact with the light guide plate 1 and supported by the light guide plate 1 and the optical sheet support portion 8.
  • the light amount adjusting member 6 may be provided on a diffusion plate, or may be provided on a diffusion film or a condensing film such as BEF depending on the configuration of the optical sheet 5. Further, the light amount adjusting member 6 may be formed by printing using ink as in the first embodiment, or may be configured by a diffuse reflection sheet or the like as in the third embodiment. In FIG. 14, the light amount adjusting member 6 is disposed on the light guide plate 1 side of the optical sheet 5, but may be disposed on the surface of the optical sheet 5 on the liquid crystal panel side.
  • FIG. 15 shows a second example of the method for attaching the light amount adjusting member to the optical sheet 5.
  • a groove is provided on the surface of the optical sheet 5 on the light guide plate 1 side of the diffusion plate, for example, and the light quantity adjusting member 6 is embedded in the groove.
  • the thickness of the light amount adjusting member can be reduced as compared with the configuration of FIG.
  • the light quantity adjusting member 6 is provided by providing a groove on the light guide plate 1 side of the optical sheet 5, but the light quantity adjusting member 6 is provided by providing a groove on the liquid crystal panel side surface of the optical sheet 5. You may arrange
  • FIG. 16 shows a third example of the method for attaching the light amount adjusting member to the optical sheet 5.
  • the optical sheet 5 is, for example, the lowermost sheet 161 closest to the light guide plate 1 (not shown in this figure), the center sheet 162, and the liquid crystal display panel (this The uppermost sheet 163 closest to the sheet (not shown in the figure) and the light amount adjusting member 6 are included.
  • the light amount adjusting member 6 is sandwiched between the lowermost sheet 161 and the central sheet 162.
  • the lowermost sheet 161 is a diffusion plate
  • the central sheet 162 is a diffusion sheet
  • the uppermost sheet 163 is BEF
  • the light amount adjusting member 6 is sandwiched between the diffusion plate and the diffusion sheet.
  • the light amount adjusting member 6 may be formed by printing using ink as in the first embodiment, or may be formed of a diffuse reflection sheet or the like as in the second embodiment.
  • the light amount adjusting member 6 may be provided on the diffusion plate or on the diffusion sheet. Further, as shown in FIG. 15, the light amount adjusting member 6 may be embedded by providing a groove in the diffusion plate or the diffusion sheet. In FIG. 16, the light amount adjusting member 6 is provided between the lowermost sheet 161 and the central sheet 162, but may be provided between the central sheet 162 and the uppermost sheet 163. Furthermore, the light amount adjusting member 6 may be provided both between the lowermost sheet 161 and the central sheet 162 and between the central sheet 162 and the uppermost sheet 163, and for each of the three sheets, You may arrange
  • a new sheet made of a transparent sheet member is provided, and the position corresponding to the LED 2 of this new sheet Alternatively, the light amount adjusting member 6 may be provided.
  • the shape of the first embodiment can be applied to the light amount adjusting member 6 of the present embodiment.
  • FIG. 17 shows a configuration of the light amount adjusting member 6 according to the fifth embodiment.
  • the fifth embodiment as shown in FIG. 17, when the light quantity adjusting member 6 is viewed from the light exit surface 1b side, the upper part of the groove (concave portion) 11 (that is, the light exit surface 1b side).
  • the LED 2 is disposed at a position corresponding to the LED 2 so as to be in contact with the light guide plate 1.
  • a process for aligning the position of the ink 6a (light emission amount reducing portion) of the light amount adjusting member 6 and the LED 2 in the vertical and horizontal directions is required. Therefore, it is not necessary to perform alignment in at least the vertical direction, and the arrangement work of the light amount adjusting member 6 can be simplified.
  • the amount of light emitted directly above the light emitted from the LED 2 can be reduced by the light amount adjusting member 6 as in the first to fourth embodiments.
  • the light amount adjusting member 6 may be formed by printing using ink, or a member such as a diffuse reflection sheet may be attached.
  • the shape of the light amount adjusting member 6 arranged on the upper portion of the groove (recessed portion) 11 may be the elliptical light shielding pattern 60 of the first embodiment, and may be not only an ellipse but also a circle, a square, a rectangle, and other polygons. There may be.
  • the shape of the first embodiment can be applied as the light amount adjusting member 6.
  • the sixth embodiment is characterized by the configuration of the light amount adjusting member 6 suitable for obtaining good in-plane uniformity even when the distance between the light guide plate incident surface 1a and the LED 2 changes.
  • FIG. FIG. 30 is an enlarged view of the vicinity of the light guide plate incident surface 1a when the distance between the light guide plate incident surface 1a and the LED 2 changes.
  • FIG. 30 (b) shows X> nominal
  • FIG. 30 (c) shows X ⁇ nominal. Each is shown.
  • the light emitted from the LED 2 is emitted in the direction directly above the LED 2 (and the light emission side direction) as direct light and reflected light.
  • the amounts of the direct light and the reflected light change when the distance between the light guide plate incident surface 1a and the LED 2 changes.
  • X nominal position (FIG. 30A) and the light quantity of reflected light is used as a reference, if X> nominal (FIG. 30B), direct light
  • the amount of reflected light increases, and when X ⁇ nominal (FIG. 30C), the amounts of direct light and reflected light decrease.
  • the amount of light transmitted through the light amount adjusting member 6 also changes because the outgoing light directed directly above the LED 2 and in the direction of the light emission side changes depending on the distance between the light guide plate incident surface 1a and the LED 2. Therefore, in the case of FIGS. 30B and 30C, the in-plane luminance uniformity is worse than the nominal position (FIG. 30A). Such a change in distance occurs, for example, due to assembly variation or error, component variation, or expansion / contraction of the light guide plate due to heat.
  • FIG. 31 is a diagram showing a relationship between the distance between the light guide plate incident surface 1a and the LED 2 and the luminance ratio immediately above the LED 2 with reference to the nominal position.
  • the brightness directly above the LED 2 decreases to about 40% when approaching the 0.3 mm light guide plate entrance surface 1a side with respect to the nominal position (about 0.4 mm in FIG. 31), and the 0.3 mm light guide plate
  • the luminance directly above the LED 2 increases to about 128%.
  • 32 (c) shows an emitted light amount distribution when the distance between the light guide plate incident surface 1a and the LED 2 is long (X> nominal).
  • each emitted light quantity distribution is indicated by a solid-line ellipse, but the ellipse indicated by a dotted line indicates the emitted light quantity distribution at the nominal position.
  • the distribution of the emitted light quantity spreads in an elliptical shape, and the ellipse is reduced in FIG. 32A and enlarged in FIG. 32C compared to the nominal position. That is, in FIG. 32A and FIG. 32C, the difference between the solid line distribution and the dotted line distribution indicates the decrease and increase of the emitted light amount.
  • FIG. 33 The configuration of the light amount adjusting member 6 suitable for suppressing the change in the in-plane luminance uniformity due to the change in the distance X will be described with reference to FIGS. 33 and 34.
  • FIG. 33 The configuration of the light amount adjusting member 6 suitable for suppressing the change in the in-plane luminance uniformity due to the change in the distance X will be described with reference to FIGS. 33 and 34.
  • FIG. 33 is a diagram showing a configuration of the light amount adjusting member 6 in the sixth embodiment.
  • the light amount adjusting member 6 is composed of two layers of ink, and a black ink layer 6g and a white ink layer 6h are laminated in order from the light guide plate exit surface 1b side.
  • the light amount adjusting member 6 may be printed on a transparent sheet as in the first embodiment, or may be printed directly on the light guide plate 1 as in the second embodiment. As long as the ink layer has a black ink layer 6g and a white ink layer 6h in order from the light guide plate exit surface 1b side, the light amount adjusting member 6 may have any configuration.
  • the black ink layer 6g and the white ink layer 6g are not only composed of only black and white, respectively, but may be mixed with other colors.
  • the black ink layer 6g may be a layer containing more black than other colors
  • the white ink layer 6h may be a layer containing more white than other colors.
  • the black ink layer 6g has the highest black content
  • the white ink layer 6h has the highest white content.
  • the black ink layer 6g on the light guide plate exit surface 1b side, the light hitting the black ink layer 6g is absorbed. Therefore, as will be described later, the amount of light emitted from the light amount adjusting member 6 to the optical sheet 5 side does not change even if the distance between the light guide plate incident surface 1a and the LED 2 changes, and maintains in-plane luminance uniformity. be able to.
  • FIG. 34 shows a specific example of the shapes of the white ink layer 6h and the black ink layer 6g, and FIG. 34 (a) is useful when the distance X is far from the nominal position as viewed from the light guide plate exit surface 1b side.
  • the shape of the black ink layer 6g near the LED 2 is shown.
  • the dotted line in the figure shows the spread of light at the nominal position.
  • the black ink layer 6g has a shape in which a plurality of small circular black dot patterns smaller than the white ink layer 6h are arranged on the emission direction side of the LED 2, and the white ink layer 6h is described above.
  • the entire black ink layer 6g (a set of small circular black dot patterns) is formed in an elliptical shape with the longitudinal direction of the LED as the major axis and viewed from the light emitting side of the light guide plate. Body).
  • the white ink layer 6h has a larger area than the black ink layer 6g, and when viewed from the display surface side of the liquid crystal panel, the black ink layer 6g is covered with the white ink layer 6h and is not visually recognized (exposed). It is configured as follows. When the black ink layer 6g is seen from the display surface side of the liquid crystal panel, the portion of the black ink layer 6g is visually recognized as a local dark part.
  • the luminance distribution in the case where the distance X is farther than the nominal position is expanded in the horizontal direction on the light emitting surface side of the LED 2, and therefore the black ink according to the present embodiment.
  • the layer 6g has a shape that covers the lateral expansion of the luminance distribution.
  • the black ink layer 6g according to the present embodiment has an enlarged luminance distribution (between the luminance distribution indicated by the dotted line and the light emitting surface side of the LED 2) that spreads in the forward direction of the LED 2 on the light emitting surface side of the LED 2. (A luminance distribution spreads out).
  • the black ink layer 6g is not provided in the region in the light emission direction of the luminance distribution indicated by the dotted line.
  • the portion with a large amount of light (the portion indicated by the dotted line) is not covered, the light emitted immediately above the LED 2 is hardly absorbed when the distance X is short. That is, the influence on the emitted light quantity distribution when the distance X is short is small.
  • the distance X-black from the center of the LED 2 to the black ink covering the enlargement in the left-right direction may be within a range of 1 ⁇ 2 to 3/2 of the width of the LED 2 in the longitudinal direction (direction perpendicular to the light emission direction). The effect is great.
  • the shape of the black ink may be as shown in FIGS. 34 (b) and 34 (c). That is, since the luminance decreases as the distance from the LED 2 increases, the number of black dot patterns per unit area may decrease as the distance from the LED 2 increases as illustrated in FIG. 34B, or as illustrated in FIG.
  • the black dot pattern occupancy (area of the black dot pattern) in each unit block 67 may be adjusted in accordance with the distribution of the luminance expansion amount from the nominal position.
  • FIG. 35 shows a vertical section of a liquid crystal panel as an example of the configuration of a backlight unit that does not use a light guide plate.
  • the backlight unit is provided so as to face the liquid crystal panel 351, the LED 2, the reflection sheet 4 that reflects light from the light source, and the reflection sheet 4, and from the direction orthogonal to the surface of the reflection sheet 4.
  • It has a diffusion plate 353 that is spaced apart by a predetermined distance, a chassis 352 that constitutes a back case of the backlight device, and an optical sheet 5 such as a vertical / horizontal prism sheet.
  • a plurality of LEDs 2 are arranged in the horizontal direction (the depth direction in the drawing) of the liquid crystal panel 351, and these LEDs 2 are mounted on the LED substrate 3.
  • a plurality of LED substrates 3 are arranged in the vertical direction (left-right direction on the paper surface) of the liquid crystal panel 351, and the LEDs 2 on each LED substrate 3 emit light in the same direction.
  • Each LED 2 mounted on each LED substrate 3 is inserted into the hole of the optical sheet 5 provided corresponding to each LED 2 from the back side (the lower side of the paper) of the optical sheet 5 and exposed on the optical sheet 5.
  • Each LED substrate 3 and the reflection sheet 4 are placed on the chassis 352.
  • the chassis 352 is made of, for example, a metal and has a bowl shape, and the diffusion plate 353 and the optical sheet 5 are fixed at the periphery.
  • a spacer (not shown) for supporting the diffusion plate 353 from its back side is attached to the chassis 352 so that a space of a predetermined distance is formed between the diffusion plate 353 and the reflection sheet 4.
  • the LED 2 is a side view type LED, which is mounted on the LED substrate 3 and fixed to the chassis so as to emit light in the direction of the arrow in the figure, that is, in the direction parallel to the surface of the diffusion plate 353 or the reflection sheet 4. Is done.
  • the light from the LED 2 is repeatedly reflected in the space between the diffusion plate 353 and the reflection sheet 4, passes through the diffusion plate 353 while propagating in the direction of the arrow, and is irradiated toward the liquid crystal panel 351 through the optical sheet 5.
  • the light amount adjusting member 6 according to the first to sixth embodiments described above is provided at a position corresponding to the LED 2 on the light emission side of the diffusion plate 353. Thereby, the light spot which arises in the position corresponding to LED2 of the diffuser plate 353 can be reduced.
  • FIG. 36A shows a vertical section of another configuration example of the backlight unit
  • FIG. 36B shows a view of the cover member 354 used in the other configuration example viewed from the diffusion plate 353 side.
  • the backlight unit shown in FIG. 36 has a cover member 354 disposed between the LED 2 and the diffusion plate 353 so as to cover the upper part of the LED 2 in the backlight unit shown in FIG. Is fixed to the LED substrate 3 by a support member 355. As shown in FIG.
  • the cover member 354 has a horizontally long rectangular shape extending in the horizontal direction (left and right direction on the paper surface) of the liquid crystal panel 351, and a plurality of LEDs 2 are arranged on the back side of the liquid crystal panel 351.
  • the horizontal direction of the panel 351 (the horizontal direction on the paper) is arranged. That is, the cover member 354 is provided so as to cover the upper side of the plurality of LEDs 2 arranged in the horizontal direction of the liquid crystal panel 351.
  • the cover member 354 is composed of, for example, a transparent resin member with minute irregularities on the surface, or a transparent resin member mixed with minute diffusible beads, and has light transmittance and diffusibility.
  • the support member 355 is made of, for example, white resin, and at least the surface thereof is a reflection surface.
  • the cover member 354 and the support member 355 may be made of the same material.
  • the cover member 354 covering the upper part of the LED 2 is placed at a position corresponding to the LED 2 on the light emission side (the diffuser plate 353 side) of the first to sixth embodiments described above.
  • a light amount adjusting member 6 is provided. Even with such a configuration, the light spot can be reduced.
  • the cover member 354 provided with the light amount adjusting member 6 is attached to the LED substrate 3, the positional deviation between the light amount adjusting member 6 and the LED 2 is less likely to occur than in the example of FIG.
  • the light amount adjustment member 6 may be provided only on the cover member 354, or the light amount adjustment member 6 may be provided on both the diffusion plate 353 and the cover member 354.
  • the present embodiment can be applied to a backlight device using a light guide plate, and the same effect as that obtained when the present embodiment is applied to a backlight device using a light guide plate can be achieved. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

 輝度むらを低減し空間的に均一な輝度分布を持つバックライトユニットを提供する。 本発明は、LED(2)と、LEDからの光を液晶パネル側に導くための導光板(1)とを含むバックライトユニット(7)において、導光板(1)の背面側に凹部(11)が設けられており、該凹部(11)にLED(2)が複数個収納されている。そして、導光板(1)の光出射面側の、該凹部(11)と対向する位置に光量制限部材(6)を設け、この光量調整部材は、LED(2)に対応する位置から離れるに従い光透過率が増加する特性を有している。

Description

バックライトユニット及びこれを用いた映像表示装置
 本発明は、例えば発光ダイオード(LED:Light Emitting diode)を光源として用いたバックライトユニット及びこれを用いた映像表示装置に関する。
 近年の省電力要求に対応するため、液晶表示装置に用いられるバックライトユニットにおいても消費電力低減が求められている。そのため、バックライトユニットの光源として、従来のCCFL等の蛍光管に代えて、発光効率が高く、かつ応答性が高い(つまりバックライトの光強度を局所的或いは部分的に制御するエリア制御が容易な)発光ダイオード(LED:Light Emitting Diode)が用いられつつある。
 LEDを光源として使用するバックライトユニットは、主として直下型、エッジライト型(サイドライト型とも呼ばれる)があり、エッジライト型は、LED等の点状光を透明樹脂で構成された平板状の導光板により面状光にして液晶パネルへ照射する構成であるため、映像表示装置の薄型化(奥行き寸法の低減)に有利である。
 このような導光板を用いたバックライト装置の従来技術として、例えば特許文献1に記載のものが知られている。特許文献1は、導光板の底面に水平方向を長手方向とした凹部を垂直方向に複数設け、それぞれの凹部にサイドエミッション型LEDを複数格納し、LEDからの光を導光板内部で反射して液晶パネル側へ出射することを開示している。
特開2006-236701号公報
 上記特許文献1ではLEDとしてサイドエミッション型(サイドビュー型)LEDを使用しているが、サイドビュー型のLEDにおいても、LEDの直上方向、すなわちサイドビュー型LEDの光軸方向と直交する方向で液晶パネル側に向かう光が存在する。例えば、LEDのパッケージを透過した光や凹部の内壁面、または導光板の背面側に配置された反射シートで反射した光などである。このような光により、導光板を液晶パネル側(映像観察側)から見た場合、導光板の光出射面の、LEDの配置位置及びそれよりも光出射側或いは凹部の形成位置と対応した箇所に点状の光スポットまたは輝線が生じ、これが輝度むらとして視認される。上記特許文献はこの点については考慮されていない。
 本発明は、上記従来技術の課題に鑑みて為されたものであり、輝度むらを低減して均一な輝度分布を得ることが可能な技術を提供するものである。
 本発明は、特許請求の範囲に記載された構成を特徴とするものである。より具体的には、本発明は、光源と、前記光源からの光を液晶パネル側に導くための導光板とを含むバックライトユニットにおいて、前記導光板の背面側には前記光源を収納するための凹部が設けられており、前記液晶パネルの表示画面側から見て、前記光源または前記凹部と対応する位置に、光量調整部材を設けたことを特徴とするものである。
 上記光量調整部材は、例えば透明シートに所定の光学特性を持つインクを塗布して構成され、該インクが塗布された透明シートが前記導光板の光出射面に貼り付けられる。
 本発明によれば、輝度むらを低減し均一な輝度分布を得ることが可能となる。
本発明の第1の実施例に係るバックライトユニットの構成を示す図。 第1の実施例に係る光量調整部材6を導光板1の出射面側から見た図。 LED2からの出射光の様子を示す図。 第1の実施例に係る光量調整部材6の一構成例を示す図。 LED2のスペクトルの一例を示す図。 第1の実施例の光量調整部材6に用いられるインク6bの透過率特性例を示す図。 第1の実施例に係る光量調整部材6を導光板1の出射面側1bから見た図。 第1の実施例に係る光量調整部材6に用いられるインク6bの一具体例を示す図。 本発明の第2の実施例に係る光量調整部材6の形状を示す図。 本発明の第3の実施例に係る光量調整部材6の形状を示す図。 光量調整部材6の導光板1への取り付け構成の一例を示す図。 光量調整部材6の導光板1への取り付け構成の他の例を示す図。 光量調整部材6の導光板1への取り付け構成の更に別の例を示す図。 第4の実施例に係る光学シート5及び光量調整部材6の構成の第1の例を示した図。 光学シート5への光量調整部材の取り付け方法の第2の例を示した図。 光学シート5への光量調整部材の取り付け方法の第2の例を示した図。 第5の実施例に係る光量調整部材6の構成を示した図。 第1の実施例に係るインク6bの形状の一例を示した図。 図18におけるLED2直上の楕円状遮光パターン60の一例を示す図。 直下型LEDを出射方向側から観測した図。 第1実施例におけるサイドビュー型LEDを導光板1の出射面1b側から観測した図。 黒色インクの混色による出射光量低減部の透過率の変化を示した図。 黒色インクの混色による出射光量低減部の反射率の変化を示した図。 光量調整部材6とLED2との位置関係を示した図。 図24におけるA-A´断面の輝度分布を示した図。 LEDと光量調整部材6との位置ズレに対応した光量調整部材6のA-A´断面の輝度分布を示した図。 第1のパターン形成方法で形成された光量調整部材6の一例を示す図。 第2のパターン形成方法で形成された光量調整部材6の一例を示す図。 第2実施例の変形例を示す図。 第6の実施例を説明するための図であって、導光板入射面1a近傍を拡大した図。 第6の実施例を説明するための図であって、導光板入射面1aとLED2との距離と、LED2直上の輝度比との関係を示す図。 第6の実施例を説明するための図であって、導光板入射面1aとLED2の距離が変化した際の、LED2直上付近の出射光量分布の変化を示す図。 第6の実施例に係る光量調整部材6の構成を示す図。 第6の実施例に係る黒インク層6gの一具体例を示す図。 第7の実施例に係るバックライトユニットを示す図 第7の実施例に係るバックライトユニットの他の例を示す図
 以下、本発明の実施形態について図面を参照して説明する。出現する構成要素のうち同一機能を有するものには同じ番号を付し、重複した説明を省略するものとする。
 図1は本発明の第1の実施例に係るバックライトユニットの構成を示している。バックライトユニット7は、平板状の導光板1、光源としてのLED2、LED基板3、反射シート4、光学シート5、光量調整部材6、光学シート支持部8を有して構成される。バックライトユニット7を構成する要素は、図示しない例えば枡形の金属性シャーシに収納され固定されている。バックライトユニット7の光は紙面の上方に向けて出射され、バックライトユニット7の上方に配置された図示しない液晶パネルを照射する。ここで、導光板1の液晶パネル側と対向する面を光出射面1b、その反対側の面(LED基板3が設けられる面)を背面とする。
 導光板1の背面には、LED2を収納するための凹部11(以下では、この凹部を「溝」と呼ぶ場合もある)を設けてあり、その溝11の、LED2の光放出面と対向する面は光入射面1aとされている。溝11は、例えば液晶パネルの水平方向(横方向。図1では紙面の奥行き方向)に伸びて形成されている。この溝11は液晶パネルの水平方向に延びる連続的な形状を有してもよく、また液晶パネルの水平方向に沿って複数配列された複数の孔であってもよい。また液晶パネルの水平方向に延びる連続的な溝を複数のリブなどで区切りようにしてもよい。ここでLED2は、その電極面と平行な方向に白色光を放出するサイドビュー型(側面発光型)のLEDを用いており、本実施例では矢印の方向に光を放出するものとする。LED2から放出された光は光入射面1aから導光板1の内部に進入し、導光板1の各面で反射、屈折或いは拡散されながら導光板1の内部を進行しつつ導光板1の光出射面1bから出射される。光出射面1bから出射された光は、例えば拡散板やプリズムシート、輝度向上シートを含む光学シート5を経由して液晶パネル側に照射される。
 光出射面1b上には出射光を空間的に均一化するための例えば千鳥状の出射面光学パターンが形成されている。この出射面光学パターンは、例えば微細な凹凸形状でもよいし、白色インクなどによるドットパターン印刷でもよい。上記微細な凹凸形状はレーザにより加工して形成してもよいし、型で作成してもよい。
 LED基板3上に実装された複数のLED2のうち例えば1~3個を1つの制御単位とし、この制御単位毎に、映像の明るさに応じて光強度を制御するようにすれば、バックライトの光の強度を部分的に制御する、いわゆるエリア制御が行える。例えば1つのLED基板3に15個のLEDが実装され、3個のLEDを1つの制御単位とすれば、図2のようなLEDの配置構成では、導光板1を15個のエリアに分割してエリア制御を行うことができる。例えば、あるエリアに対応する映像の輝度が暗い場合は当該エリアに対応するLED2の光強度を低下し、逆に明るい場合は当該エリアに対応するLED2の光強度を増加させる。更に、このような構成の導光板1及びLED基板3の組を複数個二次元的に配列すれば、更に多くのエリアの明るさを制御することができる。上記例の構成の導光板1を二次元的に4つ配列すれば、計60エリアでエリア制御を行うことができる。
 反射シート4は、光出射面1bの反対側の背面側に配置されており、導光板1の背面を透過して導光板1の外部に進行する光を反射して導光板1内に戻す機能を有している。LED基板3上に実装されたLED2は、反射シート4上の穴を通し導光板1の溝11に収納され配置される。LED基板3は、例えば液晶パネルの水平方向に延びる長方形状を為しており、このLED基板3の長手方向に沿って複数のLED2が配列されている。従って、LED2は、例えば図2に示されるように、溝11の内部において、その長手方向に沿って複数配列されることになる。このとき、反射シート4がLED基板3と導光板1とによって挟み込まれるように、LED基板3が反射シート4を介して導光板1の背面に取り付けられる。反射シート4の穴はLEDの寸法より大きければよい。光学シート支持部8は導光板1の光出射面1b上にピンを立てることで構成してもよいし、導光板1の端部において4端を固定してもよい。また、このピンを、例えば白色の樹脂により構成し、上記導光板1及び反射シート4、或いは導光板1、反射シート4及びLED基板3を貫通してシャーシに挿し込んでシャーシで嵌合するようにしてもよい。
 本実施例では、導光板1の光出射面1bの、上記凹部11と対向する位置(LED2の直上)に、光量調整部材6を設けたことを特徴としている。以下、この光量調整部材6の機能と構成について説明する。かかる光量調整部材は、LED2の直上に向かう光が導光板1の光出射面1bから出射する量を調整或いは制限する機能を有する。まず光量調整部材6の機能について説明する。図2は光量調整部材6を導光板出射面1b側から見た図である。LED2から出射する光はY’からYへの方向であり、導光板1に入射した光は紙面垂直方向に紙面から手前に出射する向きとなっている。
 光量調整部材6としての光量調整部材6は、図1に図示されるように溝11と対応するように液晶パネルの水平方向(紙面横方向)に延びて形成されており、そしてLED2直上を覆うように、導光板1上において液晶パネルの水平方向に1列に配置されている。
 図3は光量調整部材6を設けないときのLED2から出射した光の様子を示している。図3に示されるように、LED2から出射した光は、導光板1の入射面1aに入射され導光板1内を反射または拡散反射して伝播し、導光板1の出射面1bより出射する。しかしながら、LED2から出射した光の出射角が臨界角θc以上の角度を持つと、導光板1内に入射されず、LED2の直上に出射される(直接光)。また、臨界角θc未満であっても、導光板1の凹部11の内壁面で反射し出射する光や、反射シート4で反射することで臨界角θcを越えた光は、LED2の直上方向に向かう(反射光)。
 またLED2は一般的にはパッケージ化されており、LED2の発光部からの直上方向に向かう光の全てはパッケージ内部で反射されず、一部はパッケージを透過し直上に出射される。このパッケージ透過した光を含めた直接光と反射光によりLED2の直上が明るくなり、画面全体としては輝線あるいは光スポット(輝点)として視認され、輝度むらとなり画質劣化の要因となる。ここで、LED2の直上とは、LED2の電極面と直交する方向でのバックライトユニットの光出射側であるものとする。
 この画質劣化の要因であるLED2の直上に向かう直接光と反射光の、導光板から出射する光量を調整或いは制限し、面内で均一な輝度分布を実現することが、光量調整部材6の機能である。
 次に実施例1における光量調整部材の一構成例について図4を参照して説明する。図4に示されるように、光量調整部材6は、導光板1の光出射面1bの、上記凹部11と対応する位置に設けられており、インク6b及び透明シート6aを含んで構成されている。かかる光量調整部材6は、透明シート6a上にインク6bを塗布して構成されており、これをインク6bが各LED2の直上と対応する箇所に位置するように導光板1の光出射面1b上に取り付けられる。インク6bは、LED2の直上方向に進行し導光板1を透過して光出射面1から出る光の量を低減させる光出射量低減部として機能するものである。ここでは、透明フィルム6aの厚みがLED2の光量調整に影響を与えないよう光源側にインク6bが配置されているが、透明フィルム6aをLED2側に位置するように取り付けてもよい。
 上記透明シート6aは、例えば、PET(Poly Ethylene Terephthalate:ポリエチレンテレフタラート)、ポリカーボネイト、またPMMA(Poly Methyl Methacrylate:ポリメタクリル酸メチル)などの材質を用いて構成してもよい。透明シート6aは透明なフィルムであればよいが、透過率の高いほうが望ましい。この理由は、LED2間はLED2の直上より光が出射されず、透過率が低いフィルムを使用すると暗部となり輝度ムラとして視認されるためである。また、透明シート6aの高温・高湿下での使用や量産での組立工程を考えた場合、透明シート6aは、外部環境(温度、湿度)による膨張・収縮が少なく、剛性の高い材質で構成されることが好ましい。上記透明シート6は、例えば透明なフィルムにより構成してもよい。
 またインク6bは透明フィルム6aに塗布可能な方法であればどのようなものでも用いることが可能で、例えばスクリーン印刷、パッド印刷などを用いることができる。また、インク6bの透過率はインクの厚みやインクの材質によって制御することも可能である。インク厚みに関しては、透過率を低くしたければ厚みを増やし、透過率を高くしたければ薄くする。インクの材質は、光の吸収が少なく反射率の大きい材質が好ましい。なぜなら透過しない光はインク6bで反射され、反射した光の一部は導光板内に戻るため、LED2から出射した光を効率よく利用できるからである。
 また、インク材質は2色以上の材質を使用してもよい。例えば図5に示すスペクトルを持つLED2を使用した場合、短波長側のスペクトル(ピーク波長域)を透過する材質を用いた方が光の取り出し効率(利用効率)がよい。しかしながら、一般的な白色インクは図6の点線で示す透過特性を持つ。図5のスペクトルの光が図6の点線で示されるような透過率を有する白色インクを透過した場合、短波長側の光の透過量が相対的に少なくなるため、透過光に含まれる青色波長成分の割合が減少し、結果として黄色く色づいて見える。そのため、例えば白色インクに青色のインクを混色すると、図6実線で示すように可視光域において透過率が平坦な特性となるため上述のような色づきを低減することができる。ここでは、短波長側にピークを持つスペクトルを例に説明したが、他の波長域にピークを持つ場合においてもこの手法が適用できることは言うまでもない。また2色以上のインクを混色してもよい。
 また、製造コスト削減には光出射量低減部を構成するインクに黒色インクを混入することが有効である。以下、黒色インクの混入によるの製造コスト削減効果について説明する。
 スクリーン印刷(シルク印刷)を用いて光量調整部材6を作成した場合、1回の印刷で積層できる膜厚は10umほどである。そのため、白色や青色のインクを混色しただけでは、LED2の直上方向に出射される光を十分に遮光できない場合がある。その場合LED2から直上方向に出射される光を十分遮光するためには、膜厚が18~22umほど必要となるため、印刷回数を2回に増やす必要がある。しかし、印刷回数を2回に増やすと、印刷回数の増加、及び1回目の印刷から2回目の印刷までのインク乾燥時間の管理等により製造コストが増大する。そこで、コストの増加を抑え、かつ十分な遮光効果を得るために黒色インクを混色する。
 図22に黒色インクの混色による透過率の変化を示す。点線が白色インクのみの光出射量低減部の透過特性、実線が白色インクに黒色インクを混色したインクによる光出射量低減部透過特性を示している。黒色インクを混色することで、透過率を全体的に下げる効果がある。つまり黒色インクを混色することで、透過率に関しては、膜厚を厚くした効果と同様の効果が得られる。さらに青色を混ぜることで、図6に示したような効果が得られることは言うまでもない。
 また、黒色インクを混色した際の導光板1のパターンに関する構成に関して以下に説明する。図23に黒色インクの混色による光出射量低減部の反射率の変化を示す。透過率特性と同様、黒を混色することにより反射率が下がる。これは黒色インクが光を吸収するためである。黒の混色により反射率が下がることで、LED2周囲に拡がる光の量が減少するため、導光板1のLED2周囲に設けた光学パターン密度(単位面積あたりの微小凹凸の数)を増加させる必要がある。例えば、反射率Rであったものが、黒色の混色により反射率R’(R>R’)となった場合、LED2周囲の光学パターン密度DをD’(=R・D/R’) )とし、周囲に拡がる光量の減少分を補う。光学パターン密度を増加させるのは、導光板1の出射面1b側でもよいし、導光板1の反射シート4側でもよく、光学パターン密度を増加させる効果があればどちらの面であってもよい。このように、出射量低減部を構成するインクに黒色インクを混入し、黒色インクの混入に応じて導光板1のパターン密度に最適化することで、製造コスト削減を実現できる。
 光量調整部材6の形状の一例を図7に示す。図7は、導光板1の出射面1b側から光量調整部材6を見た図であり、図示されるように、光出射量低減部としてのインク6bは、導光板1の光出射面1bの各LED2の直上に位置し、円形を為しており、かつ各LED2を光出射面1b側から包含するような大きさを有している。そしてインク6bは、LED2の配列方向を長手方向とした長方形状の透明シート6a上に配置されている。尚、図中AはLEDの相互間の領域を示しており、本実施例では、当該領域にはインク6bを設けないものとする。
 インク6bの形状は、この例では円形にしているが、LED2の直上方向に向かう光を包含する形状であれば、楕円形や長円形、または正方形や長方形等の多角形状等であってもよい。しかし、LEDの光の出射方向や導光板の構造により光の広がり方が異なるため、それぞれの構造に適したインク6bの形状を用いることが望ましい。本実施例に係る最適なインク6bの形状に関し、直下型を用いた場合との輝度分布の違いを示すため、まず直下型LEDにとって最適なインク形状6bを示し、続いて本実施例に係るサイドビュー型LEDを用いた場合の最適なインク形状6bについて説明するものとする。
 図20は直下型LEDを出射方向側から観測した図である。直下型のLEDは、液晶パネルの表示面側から見たときに光がほぼ半径方向に(放射状に)均一に拡がるため、半径方向に均一に光量を調整するパターンが必要である。そのためインク形状6bには円や、図20のように小円を放射状に均一に散りばめた上下(LED2の光出射方向)及び/または左右(LED2の配列方向)対称な形状が最適である。
 次に本実施例のサイドビュー型LEDを用いた場合の最適なインク形状6bについて図21を参照して説明する。
 図21は本実施例1におけるサイドビュー型LEDを導光板1の出射面1bから観測した図である。図20に示した直下型LEDと比較すると、導光板の光出射面側から見たときに、LEDの光軸を基準にした輝度分布はほぼ対称となっているが、LEDの中心を通るLEDの光軸と直交する線を基準にした輝度分布には偏りがある。尚、以下では、便宜上LEDの光軸方向を上下方向、LEDの光軸と直交する方向を左右方向と呼ぶこととする。上下方向の輝度分布は、図示されるように、LEDの中心よりも導光板の入射面1a付近側での輝度が最も高く、分布の広がりがLEDの背面側よりも光出射方向側に大きくなっている。そのため、本実施例において、サイドビュー型LEDを用いた場合の最適なインク形状6bは、左右方向の輝度分布に対応するように左右対称(すなわちLEDの光軸を基準に対称)であるものの、上下方向の輝度分布に対応するように上下非対称(すなわちLEDの中心を通るLEDの光軸と直交な線を基準に非対称)な形状である必要がある。図21で示したサイドビュー型LEDの輝度分布を考慮したインク6bの形状について図8を用いて説明する。
 図8は、サイドビュー型LEDの輝度分布に適合した輝度ムラ低減に有効なインク6bの具体的な形状の一例を示したものである。インク6bは、LED2の直上に設けられた例えば楕円形状の光透過量を低減させるための第1遮光パターンである楕円状遮光パターン60と、該LED2直上の周辺部、すなわち楕円状遮光パターン60の周囲に設けられた、該楕円状遮光パターン60とは異なる形状、例えば馬蹄状、半円状、または波紋状を有する第2遮光パターンである複数の周囲遮光パターンとを有する。図8のようにインク6bによる周囲遮光パターンを細かく配置することで、光量調整した光を良好に分散でき、明部と暗部の箇所を作ることで輝度ムラ低減を可能にする。 また、図8のような形状において、インク6bによる楕円状遮光パターン60と周囲遮光パターンとで異なる厚みを用いてもよい。例えば、楕円状遮光パターン60はLED直上であり最も光の漏れ量が大きいため厚みを厚く、周囲遮光パターンは楕円状パターンほど遮光を強くする必要がないため厚みを薄くする。楕円状遮光パターン60の厚みは周辺部の厚みの2倍程度にしてもよい。楕円状遮光パターン60の透過率は10%から20%が好ましい。また、輝度分布に応じてグラデーションのようにインク6bの分布を変更してもよい。例えば、楕円状遮光パターン60内でも中心部から外周方向にかけて徐々に透過率を高くし、また複数の周囲遮光パターンについては、楕円状遮光パターン60の近傍に位置するパターンの透過率を、それよりも離れた位置にあるパターンの透過率よりも低くしてもよい。更にまた、それぞれの周囲遮光パターン内で透過率を変えてもよい。
 次に図8のインク6bの形状について詳しく説明する。図8のインク6bは、周囲遮光パターンとして、楕円状遮光パターン60からLED2の光出射方向に離れた部分に設けられた、例えば左右方向に長い馬蹄状の第1周囲パターン6cと、楕円状遮光パターン60から長手方向(すなわち水平方向)に離れた部分であって、LED2の光出射方向寄りに設けられた、例えば馬蹄状の第2周囲パターン6dを有する。第1周囲パターン6cは、LED2の直上方向(LED2の電極面と直交する軸)に放出される光を遮光しLED2の光出射方向(前方)に光を拡げる機能を持つ。すなわち、第1周囲パターン6cは、LED2の光出射方向(前方)における光強度の強い箇所を遮光し、光出射方向に明暗パターンを形成することで輝度ムラを低減するためのものである。また、第2周囲パターン6dは、LED2の直上方向(LED2電極面と直交する軸)に対し斜め前方向に放出される光を図8のA部、すなわちLED2の相互間の領域に拡げる機能を持つ。LED2からの光をA部に拡げることで、LED2間の光の強度が弱い箇所(LED2の相互間の領域)への光の供給を増加させ光強度を強めることができる。
 更に本実施例に係る周囲遮光パターンとして、楕円状遮光パターン60から、LED2の光出射方向と反対側に離れた部分、すなわちLED2の斜め後ろ側及び真後ろ側には、例えば馬蹄状の第3周囲パターン6eが形成される。この第3周囲パターン6eは、LED2から放出された光が導光板1の光入射面1aに反射してLED2の光出射方向(矢印方向)と反対方向(つまりLED2の後側)に進行する光、及びLED2のパッケージ背面を透過してLED2の後側に進行する光について、その光量を低減するための機能を有する。
 周囲遮光パターンである第1周囲パターン6c、第2周囲パターン6d、第3周囲パターン6eは、それぞれ楕円状遮光パターン60から離れるにつれて輝度の分布に応じパターン幅を狭くしたり、パターンピッチを長くしてもよい。例えば楕円状遮光パターン60に近いパターンの幅を広く(もしくはパターンのピッチを短く)、遠いパターンの幅を狭く(もしくはパターンのピッチを広く)する。具体的には、パターンのピッチはLED幅の1/10からLEDの配列ピッチの1/2ほどの範囲であれば輝度ムラ低減効果が高い。パターン間のピッチがLED幅の1/10以下になると、パターンが近くなり過ぎて明部の面積が狭くなってしまい、暗部として認識される可能性がある。またパターン間のピッチがLEDピッチの1/2以上になると、パターンが離れ過ぎてしまい明部の面積が大きくなり明暗パターンによる輝度ムラ低減効果が得られなくなる。よって、上述のように、パターン間のピッチはLED幅の1/10からLEDの配列ピッチの1/2の範囲とすることが好ましい。
 また、インク6bは、明部と暗部を細かく作り、輝度ムラを低減させるものであれば、図8の形状に限定されるものではない。例えば、図18のように楕円状遮光パターンの周囲に、周囲遮光パターンとして小円状のパターンを多数並べた形状としてもよい。このような形状を適用することで、より明部と暗部が細分化され光を良好に分散することができる。さらに、LED2からの離間距離が離れるにつれて、小円状パターンの直径を小さく、及び/または小円間のピッチ(距離a及び/またはb)を大きくするようにしてもよい。これにより、より一層輝度ムラ改善することができる。
 ここでLED2直上の光を遮光する楕円状遮光パターン60の最適形状について図19を参照しつつ説明する。
 図19(a)は図8、図18におけるLED2直上の楕円状遮光パターン60の問題点を示した図である。輝度ムラは明部と暗部の輝度差で生じるため、輝度の変化は急峻ではなく緩やかな方が好ましい。しかしながら、楕円状遮光パターン60ではその境界部分において急峻な輝度の段差が発生する。特に楕円状遮光パターン60の大きさが大きいほど輝度段差が顕著に見える。楕円状遮光パターン60の境界部は光が出射されないため暗部となり、LED列に渡ってその暗部が続くと暗線として視認される。そこで本実施例では、楕円状遮光パターン60の境界に発生する暗部を抑制するために、図19(b)または(c)に示されるような形状としている。
 図19(b)に示される楕円状遮光パターン60は、楕円状遮光パターン60の境界部分に光を出射させるためのスリット191を複数設けた形状としたものである。このようなスリット191を設けることにより、境界部に明暗のパターンが形成されて境界部の輝度が向上し、境界部の輝度ムラが改善する。このスリット191の幅はLEDの長手方向寸法の1/10程度が望ましい。図19(c)に示される楕円状遮光パターン60は、楕円状遮光パターン60の周辺部にホール192を設けて光を出射させたものである。この形状でも、境界部に明暗のパターンが形成されて境界部の輝度が向上し、境界部の輝度ムラを改善することができる。境界部の形状は図19(b)及び(c)に示されたものに限らず、境界部において明暗のパターンを作ることで同様の効果が得られるものであれば、どのような形状であってもよい。
 ここで、インク6bのパターンは、図8に示されるように、隣接するインクパターンと重ならないように、LED2の光軸(AX)を中心に、左右方向(水平方向)にそれぞれ隣接するLED2相互間の距離Pの半分以内(P/2以内)に収まるように配置する。
 次に、光量調整部材6とLED2の位置関係がずれた場合でも良好な遮光性能を有する光量調整部材6の特性と形状について、図24~図28を参照して説明する。
 まず楕円状遮光パターンのみを設けた場合に光量調整部材6がLED2に対して位置的にずれた場合の問題点について説明し、その後、当該問題点を解決するために好適な光量調整部材6の特性を説明し、最後に当該特性を実現する光量調整部材6の形状に関して説明する。
 まず楕円状遮光パターンのみを設けた際に光量調整部材6がずれた場合の問題点について図24を参照して説明する。図24は光量調整部材6とLED2の位置関係を示したものである。図24(a)は光量調整部材6とLED2との位置関係にズレが生じていない状態(以下nominal位置と記載)を示しており、図24(b)は光量調整部材6とLED2との位置関係にズレが生じた状態を示している。光量調整部材6は、実際には、導光板1に組付ける際のズレや誤差、及び温度・湿度による膨張収縮等により導光板1との位置関係にズレが生じる。特に、透明シート6aにPMMAなどを用いた場合、湿度による膨張収縮が大きいため、大きな位置ズレが生じやすくなる。またLED2も、導光板1とLED基板3を組み付ける際の部品公差により位置ズレが生じる。その結果、光量調整部材6とLED2の位置関係にズレが生じる。この光量調整部材6とLED2との位置関係にズレが生じた場合、面内輝度均一性が悪化する。
 位置ズレにより面内輝度均一性が悪化するメカニズムについて、図25を参照しながら以下に説明する。図25は図24におけるA-A´断面の輝度分布を示したものである。図25(a)はnominal位置での輝度分布、図25(b)は位置ズレが生じた場合の輝度分布を示したものである。またグラフの中心位置はLED2の中心を示しており、グラフ縦軸はLED2直上の輝度で正規化している。実線(細線)は光量調整部材6を配置しない場合の輝度分布、つまり導光板1を介したLED2直上の輝度分布を示しており、点線は光量調整部材の透過率分布を示している。図示されたグラフでは、LED2直上の透過率を50%としている。実線(太線)は光量調整部材6を介した輝度分布を示している。図25(a)と図25(b)を比較すると、最大値(輝度分布の山)と最小値(輝度分布の谷)の差が0.39から0.45へ拡大している。つまりA-A’断面で見た場合、輝度変化が急峻になるため、面内均一性が悪化する。
 次に、光量調整部材6とLED2の位置がずれた場合に生じる面内均一性の悪化を抑制するために好適な光量調整部材6の特性について、図26を参照しながら説明する。図26は上記特性を有する光量調整部材6のA-A´断面の輝度分布を示したものである。図26(a)はnominal位置での輝度分布、図26(b)は位置ズレが生じた場合の輝度分布を示したものである。点線は光量調整部材の透過率分布を示している。図示されたグラフでは、LED2直上の透過率を50%としている。実線(太線)は光量調整部材6を介した輝度分布を示している。図26に示された光量調整部材6は、図25に示された光量調整部材6と透過率特性が異なり、インク6bの境界部で透過率特性を緩やかに変化させている。ここでは、図示されるように、少なくともインク6bの境界部から外側は、インク6bから離れるに従い漸次あるいは段階的に透過率が増加する特性となっている。このような透過率分布を持たせることで、図26(b)に示されるように、光量調整部材6とLED2との位置がずれた場合でも輝度変化が緩やかになる。また図26(b)に示されるように、最大値(輝度分布の山)と最小値(ここでは図25(b)の谷部と同じ位置の正規化輝度値)の差が0.45から0.05と改善するため、A-A’断面で見た場合面内均一性が改善する。このようにインク6bの境界部の輝度変化が緩やかとなる特性が、光量調整部材6とLED2の位置関係のズレによる面内均一性の悪化を抑制するのに最適な特性である。
 次に、この特性を実現し、光量調整部材6とLED2との位置関係にズレが生じた場合でも輝度変化を緩やかにする光量調整部材6の形状について、図27及び図28を参照しながら説明する。輝度変化を緩やかにするためには、インク6bの透過率分布をLED2直上から周囲に離れるにつれて徐々に高くする特性とする必要がある。そのような特性の透過率分布を得るための方法、すなわち導光板上の位置に応じて透過率を異ならせるためのパターンの構成方法としては、主として、光量調整部材6のパターンを形成するインクの厚さを位置に応じて変更する方法と、単位面積当たりのインクの占める割合(パターンの密度)を位置に応じて変更する方法がある。以下、前者の方法を第1のパターン形成方法、後者の方法を第2のパターン形成方法と呼び、各形成方法のの具体例について以下に説明する。
 図27は、第1のパターン形成方法の一例を示したものである。図27(a)は導光板上の位置と透過率との関係、図27(b)は導光板上の位置とインクの膜厚との関係、図27(c)は出射面1b側から見たインク6b(パターン)の外観を示している。図示されるように、インクの厚さと透過率はほぼ反比例の関係にあり、インクが厚いと透過率が低く、インクが薄いと透過率が高くなる。従って、LED2直上近傍の膜厚を厚くし、LED2直上から周辺部に離れるにつれて漸次或いは段階的に膜厚を薄くすることで、上述した最適な特性の透過率分布を得ることができる。しかしながら、スクリーン印刷等で光量調整部材6のパターンを印刷する場合、印刷版で塗布可能なインクの厚さが決まっている。例えば、1回の印刷で塗布可能なインクの厚さは4um~10um程度である(以下、これを「最小インク厚」と呼ぶ)。このため、位置毎にインクの厚さを異ならせるためには、複数回の印刷工程、すなわち最小インク厚よりも大きいインクの厚さを必要とする部分には複数回インクを重ねて塗布する必要がある。例えば、図27(c)に示されるパターンを形成する場合には、1回目の印刷でパターン全体の範囲T1にインクを円形状に塗布(印刷)し、その後、2回目の印刷で全体T1上の円形状の範囲T2にインクを重ねて塗布し、最後に、範囲T2上の円形状の範囲T3にインクを重ねて塗布する。これによって、図27(b)に示されるように、範囲T3の部分(中央の円形部分)は3回の重ね印刷により最も厚い膜厚を形成し、範囲T2の範囲T3以外の部分(内側の円環状部分)は2回の重ね印刷により中間的な膜厚を形成し、範囲T1の範囲T2以外の部分(外側の円環状部分)は1回の印刷により最小インク厚の膜厚が形成される。
 このような方法でインク6bによる光量調整部材6のパターンを形成することにより、位置に応じて透過率を異ならせた所望の特性を得ることができる。また、この特性を実現するため、膜厚を変更する代わりに、印刷に使用されるインクにおける黒色の混合比を変更してもよい。例えば、LED2直上近傍ではインクの黒色の混合比を高くし、LED2直上から周辺部に離れるにつれて漸次或いは段階的に黒色の混合比を低くする。この場合でも、一回の印刷で、位置毎に黒色の混合比が異なるインクを印刷することは困難であるので、例えば黒色混合比が異なる2種類のインクを使用する場合は、3回に分けて印刷を行うことになる。このように、、インクの膜厚や黒色の混色比を変更する方法のどちらを採用したとしても、前述したように、印刷回数が増えるため製造コストは高くなる。
 これに対し、第2のパターン形成方法、すなわち導光板の単位面積当たりのインクの占める割合(パターンの密度)を位置に応じて変更する方法では、一回の印刷で上述した最適な特性の透過率分布を得ることができ、製造コストを手源することが可能となる。以下、第2のパターン形成方法の具体例入れについて説明する。
 図28は、第2のパターン形成方法の一例を示したものである。図示されるように、LED2の直上部分周囲の楕円状遮光パターン60はその全面にインクが塗布されており、その周辺は楕円状遮光パターン60よりも小さい円形のドットパターン68を形成するようにインクが塗布される。ドットパターン68の密度は、楕円状遮光パターン60から外側に離れるに従って低くなるようにされる。ここで、単位面積(以下「単位ブロック」と呼ぶ)67は、図28では小さな正方形で表しており、単位ブロック67に占めるインクの印刷割合(ドットパターン68の占める割合)が位置に応じて変化している。例えば、LED2の直上部分の楕円状遮光パターン6が形成される単位ブロック67のインクの印刷割合は100%であり、楕円状遮光パターン6の外周部分に位置する、楕円状遮光パターン60及び/またはドットパターン68が形成された単位タイル67のインクの印刷割合を50~80%、これよりも更に外側に位置するドットパターン68が形成された単位タイル87のインクの印刷割合を10~40%とする。尚、インクの厚さは各位置や各パターンで一定であるものとする。
 このようにして、この例では、楕円状遮光パターン60の周囲に設けたドットパターン68により導光板の平面上で空間的な隙間(ドットパターン68間の隙間)を形成し、各位置の透過率を調整している。すなわち、図28のように、各位置での透過率は小さな単位ブロック67のインクの印刷割合(インク占有率)で実現しており、各単位ブロック67におけるインクの塗布面積を位置に応じて変更することで各位置の透過率が調整される。図28では正方形の単位ブロック67を縦横2次元に規則的に配列しているが、単位ブロックを円形とし、これを同心円状に配列して構成してもよい。尚、図28では単位ブロック67及びその境界が図示されているが、単位ブロック67は仮想的な領域であり、実際には単位ブロック67及びその境界は導光板上には形成されないし、視認されないものとする。ただし、位ブロック67及びその境界が視認されるような構成としてもよい。
 続いて、各単位ブロックのインクの印刷割合(インクの塗布面積)の設定方法について以下に説明する。例えば、ある単位ブロック67について所望の透過率を設定し、その所望の透過率が得られるように当該単位ブロック67のインク塗布面積を設定する。例えば、ある単位ブロック67の所望の透過率をT(%)、インクの透過率をTi(%)、単位ブロック67当たりのインク占有率をτとすると、インク占有率τは次の式1で表される。
(式1)τ=Ti/T(但しT≧Ti)
 ここで、単位ブロック67の面積をA、単位ブロック67当たりのインクの塗布面積をAiとすると、単位ブロック67当たりのインクの塗布面積Aiは次の式2で表される。
(式2)Ai=τA
 上記式1及び式2からインクの塗布面積Aiは、次の式3で表される。
(式3)Ai=A・Ti/T
 このようにして、インクの透過率と各単位ブロックで得たい所望の透過率との比率により単位ブロック67当たりのインクの塗布面積Aiを設定できる。すなわち、透過率Tを有するインクを、上記透過率の比率に応じて面積Ai分、単位ブロック67内に塗布すれば、当該単位ブロック67について所望の透過率Tiを得ることができる。インクの透過率Tは、インクの材料や色によって設定することができる。例えば黒色インクの含有率を調整することにより、そのインクの透過率Tを設定することができる。
 図28の例では周囲のドットパターン68を小円で構成しているが、所望の面積を充填できる形状ならば、例えば四角形、六角形、多角形等どのような形状であってもよい。また、楕円状遮光パターン6の境界部は位置ズレに対する感度が高いため、単位ブロック67の面積は小さくした方が好ましい。また、LED2周辺部のみ単位ブロック67の面積を小さくし、その周辺部は単位ブロック67の面積を大きくしてもよい。また、単位ブロック67の幅は、LED2のチップ長辺方向幅の1/20~1/10程度が好ましい。
 次に光量調整部材6の固定方法について図11を参照して説明する。図11に示されるように、インク6bは、導光板1の光出射面1bの各LED2に対応する位置に、各LED2を光出射面1b側から包含するように円形に塗布されており、その上に透明シート6aが配置されている。この透明シート6aは、図示されるように、導光板1上の光出射面1bの、互いに隣接するLED2の相互間(図11のA部)で、両面テープ9により導光板1に貼り付けている。このとき、両面テープ9はLED2相互間(図11のA)の光を遮らないよう透明の両面テープを用いる方が好ましい。また両面テープに限らず、例えば透明なのりや接着剤を透明シート6aに印刷して導光板1に貼り付けてもよい。このようにすれば、両面テープを用いて貼り付ける場合に比較し製造工程が簡単になるためコストを削減することができる。
 光量調整部材6の別の固定方法について図12を参照して説明する。この例は、図12に示されるように、光学シート支持部8を、光量調整部材6(特に透明シート6a)、導光板1、反射シート4及びLED基板3を貫通するように挿し込み、これらを含め挟み込むように固定している。光学シート支持部8には、リベットピン、もしくはネジを用いてもよい。光学シート支持部8は上述のように各要素を差し込み固定する構成のものであればどのようなものを用いてもよいが、光を反射しやすい白色のもの、または光の出射を遮らないよう透明なものを用いた方が好ましい。また、図13のように、光学シート支持部8の固定位置を自由に変更できるように構成してもよい。固定位置を変更するにあたり、光量調整部材6の透明シート6aの幅/長さを任意に変更してもよく、いずれにせよ、光量調整部材6を保持できる構成であればよい。
 また、光量調整部材6の固定方法として、光学シート支持部8による固定と両面テープ9による固定の併用が可能であることは言うまでもない。
 以上のように、本実施例によれば、導光板1の背面側に溝11を形成し、この溝にLEDを配置した場合における輝度むらを低減することができ、また当該輝度むら低減を光の取り出し効率を高めながら行うことができる。従って、本実施例によれば、光の利用効率が高く、かつ空間的な輝度均一性が高いバックライトを提供することができ、更には高画質な映像表示装置を提供することができる。
 第2の実施例は、光量調整部材6以外は上述した第1の実施例の構成と変わらないため、以下では第2の実施例に係る光量調整部材6のみについて説明する。
 図9は第2の実施例に係る光量調整部材6の構成を示す図である。実施例1と異なる点は、透明シート6aを用いず、導光板1上にインク6bが直接塗布されている点である。インク6bの形状やインク材質、厚み混色割合などに関しては、第1の実施形態と同様のパターンが適用できる。当然、図27や図28で示したパターンの形成方法も適用することができる。
 また、導光板1の出射面側1b上上述した溝11とは異なる溝を設け、この溝内に印刷してパターンを形成してもよい。この例を第2実施例の変形例として図29に示す。本変形例は、例えば図29(a)に示されるように、導光板1の光量調整部材6の配置箇所にパターン用溝129を予め設けておき、図29(b)に示されるように、パターン用溝129にインクを塗布して光量調整部材6を構成する。このパターン用溝129は、例えば導光板1の表面を切削加工することで形成される。また、導光板1の押出成型や射出成型時に同時に形成するようにしてもよい。
 このように導光板1の出射面側1b上にパターン用溝129を設け、そのパターン用溝129にインクを塗布することで、光量調整部材6を精度よく所望の位置に形成することできる。つまり印刷の位置的な精度の向上を図ることができる。また、光量調整部材6が導光板1内に埋め込まれる構成になるため、光量調整部材6分のの厚みを減らすことができる。
 本実施例の効果としては第1の実施形態と同様の効果が得られることは言うまでもない。導光板1上にインク6bが直接塗布した後に、光の透過量を調整するために、導光板1及びインク6b上に透明シート6aを貼り付けてもよい。
 第3の実施例は、光量調整部材6以外は上述した第1の実施例の構成と変わらないため、以下では第3の実施例に係る光量調整部材6のみについて説明する。
 図10は第3の実施例に係る光量調整部材6の形状を示す図である。実施例1及び実施例2と異なる点は、光量調整部材6として、透明シート6a及びインク6bに代えて、拡散反射シート6fを用いている点である。以下、第3実施例について説明する。
 上述した実施例1においては、例えば図7や図8、図11のような構成を用いる場合、透明シート6aに各LEDに対応した遮光パターンをそれぞれインク6bを塗布して形成し、これを、LEDが配列される列毎にそれぞれ導光板1に貼り付ける必要があるため、組立て工数(貼り付け工程)が膨大となってしまう。このため、組立て工数を考慮した際、光量調整部材6のインク6aに相当する要素(遮光パターン)は1列横方向につながっていたほうが好ましい。
 そこで本実施例では、LED個数分の遮光パターンが一体的に形成された拡散反射シート6fを用いるようにした。この拡散反射シート6fの導光板1側の面及び/またはそれと反対側の面は、例えばマット加工等により微小な凹凸を含む粗面が形成されている。また拡散反射シート6fは、導光板1を光出射面1b側から見たときに、LED2に対応する部分がLED2の相互間の部分よりも上下方向において大きくなっており、LED2の直上へ向かう光を好適に拡散するようにしている。拡散反射シート6fの拡散度合いは、LED2の相互間の部分よりもLED2に対応する部分で大きくすることが好ましい。LED2の相互間の部分には粗面を形成しなくてもよい。
 本実施例によれば、インク6bによって各LEDに対応した遮光パターンを形成する工程を省略でき、組立工数を削減することができる。また、図10では拡散反射シート6fのLED2に対応する部分の形状が六角形状となっているが、四角形状でもよく、また円形や左右方向に長い楕円形状でもよい。更にまた、本実施例に係る拡散反射シート6fの形状に関しては、実施例1と実施例2と同様のものを用いてもよい。
 続いて本発明の第4の実施例を説明する。この第4の実施例は、光学シート5と光量調整部材6以外は上述した第1の実施例の構成と変わらないため、以下では第4の実施例に係る光学シート5及び光量調整部材6のみについて説明する。
 図14は第4の実施例に係る光学シート5及び光量調整部材6の構成の第1の例であって、図2の構成におけるX-X’断面図を示している。
 本実施例では光量調整部材6を導光板1ではなく光学シート5の導光板1と対向する面に配置し、光学シート5が光学シート支持部8により支持される構成となっている。光量調整部材6は、実施例1等と同様に、液晶パネルの表示面側から見たときに、光学シート5の、LED2の配置位置や溝11の形成位置と対応する位置に設けられている。また光量調整部材6は実施例1や実施例3と同様なものを用いることができる。ここで、光学シート5は、上述のように拡散板、拡散シート、プリズムシート、輝度向上シート(BEF:Brightness Enhanced Film)等を含むものとする。
 図14では光学シート5は、導光板1に対して所定距離(以下、この距離を「拡散距離」と呼ぶ)離して配置されているが、拡散距離をゼロとし、上記光量調整部材6が設けられた光学シート5を導光板1に密着して載置し、導光板1と光学シート支持部8で支持するように構成してもよい。
 光量調整部材6は、光学シート5の構成によるが、拡散板上に設けてもよいし、拡散シート上、BEFなどの集光フィルム上に設けてもよい。また、光量調整部材6は実施例1のようにインクを用い印刷により作成してもよいし、実施例3のように拡散反射シートなどで構成してもよい。また図14では光学シート5の導光板1側に光量調整部材6を配置したが、光学シート5の液晶パネル側の面に配置してもよい。また、光学シートの導光板1側の面、及び液晶パネル側の面の両面に配置してもよく、いずれにせよLED2の直上に向かう光量を光量調整部材6により制限できる構成であればよい。
 図15は光学シート5への光量調整部材の取り付け方法の第2の例を示している。この第2の例は、図15に示されるように、光学シート5の例えば拡散板の導光板1側の面に溝を設けその溝部に光量調整部材6を埋め込むように配置している。このような構成を用いることで、図14の構成に比べ光量調整部材分の厚みを減らすことができる。この第2の例では、光学シート5の導光板1側に溝を設けて光量調整部材6を配置しているが、光学シート5の液晶パネル側の面に溝を設けて光量調整部材6を配置してもよいし、また光学シートの導光板1側の面、及び液晶パネル側の面の両面に配置してもよい。
 図16は光学シート5への光量調整部材の取り付け方法の第3の例を示している。この第3の例は、図16に示されるように、光学シート5が、例えば導光板1(この図では図示せず)に最も近い最下段シート161、中央シート162、及び液晶表示パネル(この図では図示せず)に最も近い最上段シート163の3枚のシートと、光量調整部材6で構成されている。そして、最下段シート161と中央のシート162と間に光量調整部材6が挟まれる構成となっている。例えば、最下段シート161が拡散板、中央シート162が拡散シート、最上段シート163がBEFという構成であれば、光量調整部材6を拡散板と拡散シートとの間に挟むようにする。光量調整部材6は実施例1のようにインクを用い印刷により作成してもよいし、実施例2のように拡散反射シートなどで構成してもよい。
 上記のような構成において、光量調整部材6は拡散板上に設けてもよいし、拡散シート上に設けてもよい。また、図15のように、溝を拡散板または拡散シートに設けて光量調整部材6を埋め込んでもよい。また、図16では最下段シート161と中央のシート162と間に光量調整部材6を設けたが、中央のシート162と最上段シート163との間に設けてもよい。更にまた、光量調整部材6を、最下段シート161と中央シート162との間、及び中央シート162と最上段シート163との間の両方に設けてもよいし、3枚のシートのそれぞれの、導光板1側の面と液晶パネル側の面の両面に配置してもよい。更にまた、液晶表示装置用の光学シートとして通常使用される拡散板、拡散シート、プリズムシート、BEF以外に、透明のシート部材からなる新たなシートを設け、この新たなシートのLED2と対応する位置に光量調整部材6をもうけるようにしてもよい。
 本実施例の光量調整部材6には、第1の実施例の形状を適用することができることは言うまでもない。
 続いて本発明の第5の実施例を説明する。この第5の実施例は、光量調整部材6以外は上述した第1の実施例の構成と変わらないため、以下では第5の実施例に係る光量調整部材6のみについて説明する。
 図17は第5の実施例に係る光量調整部材6の構成を示している。この第5の実施例は、図17に示されるように、光量調整部材6を、導光板1を光出面1b側から見たときに、溝(凹部)11の上部(即ち光出面1b側)のLED2と対応する位置に、導光板1と接するように配置したものである。上述した第1~第4の実施例では、上下左右方向において光量調整部材6のインク6a(光出射量低減部)とLED2との位置を合わせるための工程が必要となるが、本実施例では、少なくとも上下方向の位置合わせを行う必要が無く、光量調整部材6の配置作業の簡便化が図れる。
 そして上記の構成により、実施例1~4と同様に、光量調整部材6によって、LED2から出射する光の直上に出射される光量を減少させることができる。なお光量調整部材6はインクを用いて印刷により作成してもよいし、拡散反射シートなどの部材を貼り付けてもよい。この溝(凹部)11の上部に配置される光量調整部材6の形状は、実施例1の楕円状遮光パターン60でもよいし、また楕円のみならず、円形、正方形、長方形、その他多角形などであってもよい。また、実施例4と同様に、光量調整部材6として第1の実施例の形状を適用することもできる。
 続いて本発明の第6の実施例を説明する。この第6の実施例は、導光板入射面1aとLED2の距離が変化した場合でも良好な面内均一性を得るのに好適な光量調整部材6の構成を特徴としている。
 本実施例では光量調整部材6以外は上述した第1の実施例の構成と変わらないため、以下では第6の実施例に係る光量調整部材6のみについて説明する。
 以下では、まず導光板入射面1aとLED2の距離が変化した場合の面内均一性への影響について説明し、その後、導光板入射面1aとLED2の距離が変化した場合の面内輝度均一性への影響を抑制するのに好適な光量調整部材6の構成・インク形状に関して説明する。
 まず、導光板入射面1aとLED2の距離が変化した場合の面内均一性への影響について図30~図32参照しながら説明する。図30は導光板入射面1aとLED2の距離が変化した場合の、導光板入射面1a近傍を拡大した図である。導光板入射面1aとLED2の距離をXとした場合、図30(a)はX=nominal(基準)、図30(b)はX>nominal、図30(c)はX<nominalの状態をそれぞれ示している。
 実施例1の図3で前述したように、LED2から出射した光は直接光、反射光としてLED2直上方向(及びその光出射側の方向)へ向かって出射される。この直接光と反射光の光量は、導光板入射面1aとLED2の距離が変化した場合に変化する。導光板入射面1aとLED2の距離X=nominal位置(図30(a))での直接光及び反射光の光量を基準とすると、X>nominal(図30(b))の場合は直接光と反射光の光量が増加し、X<nominal(図30(c))の場合は直接光と反射光の光量が減少する。これは、導光板1の凹部11上面に当たる光量と、反射シート4に当たる光量が変化するためである。このように、導光板入射面1aとLED2の距離によりLED2直上及びその光出射側の方向に向かう出射光が変化するため、光量調整部材6を透過する光量も変化する。従って、図30(b)及び(c)の場合は、nominal位置(図30(a))よりも面内の輝度均一性が悪化する。このような距離の変化は、例えば組立ばらつきや誤差、部品ばらつき、或いは熱による導光板の膨張・収縮によって発生する。
 図31は、導光板入射面1aとLED2の距離とnominal位置を基準としたLED2直上における輝度比の関係を示した図である。図示されるように、nominal位置(図31では約0.4mm)を基準にして、0.3mm導光板入射面1a側に近づくとLED2直上輝度は約40%に低下し、0.3mm導光板入射面1aから遠ざかるとLED2直上輝度は約128%に増加する。
 続いて、導光板入射面1aとLED2の距離が変化した際の出射光量の変化による、LED2直上付近の出射光量分布の変化について図32を参照して説明する。図32(a)は導光板入射面1aとLED2の距離が近いとき(X<nominal)の出射光量分布を、図32(b)はX=nominalの位置のときの出射光量分布がが、図32(c)は導光板入射面1aとLED2の距離が遠いとき(X>nominal)の出射光量分布が示されている。図32(a)及び図32(c)において、各出射光量分布は実線の楕円で示されているが、点線で示した楕円はnominal位置での出射光量分布を示している。図示されるように出射光量の分布は楕円状に広がっており、nominal位置と比較し図32(a)では楕円が縮小し、図32(c)では楕円が拡大している。つまり、図32(a)及び図32(c)において、実線の分布と点線の分布との差分が出射光量の減少分及び増加分を示している。
 この出射光量の減少分、増加分を小さくすることが、導光板入射面1aとLED2の距離Xが変化しても面内輝度均一性の高いバックライトユニット7を提供することにつながる。
 上記距離Xの変化により面内輝度均一性の変化を抑制するのに好適な光量調整部材6の構成について、図33及び図34を参照しながら説明する。
 図33は実施例6における光量調整部材6の構成を示した図である。光量調整部材6は2層のインクで構成されており、導光板出射面1b側から順に、黒インク層6g、白インク層6hが積層されている。光量調整部材6は、実施例1のように透明シートに印刷してもよいし、実施例2のように導光板1上に直接印刷してもよい。インク層が導光板出射面1b側から順に、黒インク層6g、白インク層6hの構成となっていれば光量調整部材6の構成はどのようなものでもよい。また、黒インク層6g、白インク層6gはそれぞれ黒のみ、白のみで構成するだけでなく、それぞれ他の色と混色したものを使用してもよい。例えば、黒インク層6gを他の色よりも黒を多く含む層とし、白インク層6hを他の色よりも白を多く含む層よしてもよい。ただし、各インク層が他の色を含む場合であっても、黒インク層6gは黒色の含有率が最も高く、白インク層6hは白色の含有率が最も高いものとする。
 このように導光板出射面1b側に黒インク層6gを配置することで、黒インク層6gに当たった光は吸収される。そのため、後述のように、光量調整部材6から光学シート5側に出射される光量は、導光板入射面1aとLED2の距離が変化しても変化せず、面内の輝度均一性を保持することができる。
 次に白インク層6hと黒インク層6gの具体的な形状について図34を参照しながら説明する。図34は、白インク層6hと黒インク層6gの形状の一具体例を示しており、図34(a)は導光板出射面1b側から見た、距離Xがnominal位置より遠い場合に有用なLED2近辺の黒インク層6gの形状を示している。、また、図中の点線はnominal位置での光の拡がりを示したものである。
 図示されるように、黒インク層6gはLED2の出射方向側に、白インク層6hよりも小さい複数の小円状の黒色ドットパターンを配置した形状を為しており、白インク層6hは上述の楕円遮光パターン60と同様に、LEDの長手方向を長軸とした楕円形状を為し、かつ導光板の光出射側から見て、黒インク層6g全体(小円状の黒色ドットパターンの集合体)を覆うように形成されている。すなわち白インク層6hは黒インク層6gよりも大きな面積を有しており、液晶パネルの表示面側から見たときに、黒インク層6gは白インク層6hにより覆われて視認(露出)されないように構成されている。液晶パネルの表示面側から黒インク層6gが見えると、当該黒インク層6gの部分が局所的な暗部として視認されるため、そのような構成と成っている。
 図32(c)に示された輝度分布と比較して、距離Xがnominal位置より遠い場合の輝度分布はLED2の光放出面側において横方向に拡がっているため、本実施例に係る黒インク層6gは、輝度分布の横方向の拡大分を覆う形状となっている。また本実施例に係る黒インク層6gは、LED2の光放出面側において、LED2前方に方向に広がるの輝度分布の拡大分(点線で示された輝度分布とLED2の光放出面側との間に広がる輝度分布)を覆う形状となっている。すなわち、導光板の入射面1aとLED2の光放出面との間に、LED2から入射面1aにかけて黒インク層6gが形成された領域と、形成されない領域が順に配置されている。更にまた、点線で示された輝度分布の、光出射方向の領域には黒インク層6gを設けないようにしている。
 また本実施例に係る構成では光量が多い部分(点線で示された部分)を覆っていないため、距離Xが近い場合は、LED2直上に出射する光はほとんど吸収されない。すなわち距離Xが近い場合の出射光量分布に与える影響は小さい。
 このように、本実施例によれば、導光板入射面1aとLED2の距離が変化した場合でも光量の拡大を抑えることが出来る。ここで、LED2の中心から左右方向の拡大を覆う黒インクまでの距離X-blackは、LED2の長手方向(光出射方向と直交する方向)の幅の1/2から3/2の範囲であれば効果が大きい。また、黒インクの形状を図34(b)や図34(c)のようにしてもよい。すなわち、LED2から離れるにつれ輝度が低くなるため、図34(b)のように単位面積当たりの黒色ドットパターンの数をLED2から離れるに従って減少させてもよいし、図34(c)のように黒色ドットパターンの大きさをLED2から離れるに従って小さくしてもよい。また、図34(d)のように、Nominal位置からの輝度拡大量の分布に合わせ、各単位ブロック67におけるを黒色ドットパターンの占有率(黒色ドットパターンの面積)を調整してもよい。
 上述した実施例は、LED2からの光を面状にするための導光板を用いたバックライトユニットに適用した例を説明したが、導光板を用いないバックライトユニットにも適用適用可能である。かかるバックライトユニットの一構成例について図35を参照して説明する。
 図35は、導光板を用いないバックライトユニットの一構成例の、液晶パネルの垂直方向断面を示している。かかるバックライトユニットは、液晶パネル351、LED2、光源からの光を反射する反射シート4、および反射シート4と対向するように設けられ、かつ反射シート4の面と直交する方向にから反射シート4所定間隔離されて配置された拡散板353、バックライト装置の背面ケースを構成するシャーシ352、及び、例えば垂直/水平プリズムシート等の光学シート5を有している。LED2は、液晶パネル351の水平方向(紙面奥行き方向)に複数配列されており、これらのLED2はLED基板3上に実装される。LED基板3は、図示されるように、液晶パネル351の垂直方向(紙面左右方向)に複数配列されており、各LED基板3上のLED2は、それぞれ同一の方向に光を放出する。各LED基板3上に実装された各LED2は、各LED2に対応して設けられた光学シート5の孔に光学シート5の背面側(紙面下側)から挿入され、光学シート5上に露出されるように設けられる。各LED基板3及び反射シート4は、シャーシ352上に載置される。シャーシ352は例えば金属製で枡形に形成され、周辺部で拡散板353や光学シート5が固定される。また拡散板353と反射シート4との間に所定距離の空間を形成するように、シャーシ352には拡散板353をその背面側から支持するための図示しないスペーサが取り付けられている。
 ここで、LED2はサイドビュー型のLEDであり、図中矢印の方向、すなわち拡散板353または反射シート4の面と平行な方向に光を出射するようにLED基板3に実装されてシャーシに固定される。LED2からの光は拡散板353と反射シート4との間の空間で繰り返し反射して矢印の方向へ伝播しながら拡散板353を透過し、光学シート5を通して液晶パネル351に向けて照射される。かかる構成のバックライト装置において、拡散板353の光出射側のLED2に対応した位置には、上述した実施例1~6の光量調整部材6が設けられている。これによって、拡散板353のLED2に対応した位置に生じる光スポットを低減することができる。
 導光板を用いないバックライトユニットの別の構成例を図36(a)及び(b)を参照して以下に説明する。図36(a)は当該バックライトユニットの別の構成例の垂直方向断面を、図36(b)は当該別の構成例に用いられるカバー部材354の、拡散板353側から見た図を示している。図36に示されたバックライトユニットは、図35に示されたバックライトユニットにおいて、更にLED2の上部を覆うようにLED2と拡散板353との間にカバー部材354を配置し、このカバー部材354を支持部材355によりLED基板3に固定したものである。このカバー部材354は、図36(b)に示されるように、液晶パネル351の水平方向(紙面左右方向)に延びる横長の長方形状を為しており、その背面側には複数のLED2が液晶パネル351の水平方向(紙面左右方向)が配列されている。すなわちカバー部材354は液晶パネル351の水平方向に配列された複数のLED2の上側を覆うように設けられている。またカバー部材354は、例えば表面に微小な凹凸を加工した透明樹脂部材、または微小な拡散性ビーズが混入された透明樹脂部材で構成されており、光透過性及び拡散性を有しており、LED2または反射シート4からの光を拡散して拡散板353の方向へ出射する。支持部材355は、例えば白色の樹脂により構成され、少なくともその表面が反射面とされている。カバー部材354と支持部材355を同一の材料で構成してもよい。
 そしてこの例では、図36(b)に示されるように、LED2の上部を覆うカバー部材354の光出射側(拡散板353側)のLED2と対応する位置に、上述した実施例1~6の光量調整部材6が設けられている。このような構成によっても、光スポットを低減することができる。この例では、光量調整部材6が設けられているカバー部材354がLED基板3に取り付けられているので、図35の例に比べ光量調整部材6とLED2との位置ずれが生じにくい。
 図36のようにカバー部材354を設けた場合はカバー部材354のみに光量調整部材6を設けてもよいし、拡散板353とカバー部材354の両方に光量調整部材6を設けてもよい
 このように、本実施形態は、導光板を使用したバックライト装置にも適用することができ、導光板を使用したバックライト装置に本実施形態を適用した場合の効果と同様な効果を奏することができる。
 上述した各実施例は、それぞれ単独に実施することができるし、またこれらを任意に組合わせて実施することができる。
1 導光板、1a 導光板入射面、1b 導光板出射面、2 LED、3 LED基板、4 反射シート、5 光学シート、6 光量調整部材、6a 透明シート、6b インク、6c 第1周囲パターン、6d 第2周囲パターン、6e 第3周囲パターン、6f 拡散反射シート、6g 黒インク層、6h 白インク層、7 バックライトユニット、8 光学シート支持部、9 両面テープ、11 凹部、60 楕円状遮光パターン、67 単位ブロック、68 ドットパターン

Claims (20)

  1.  光源と、前記光源からの光を液晶パネル側に導くための導光板とを含むバックライトユニットにおいて、前記導光板の背面側に凹部が設けられており、該凹部に前記光源が複数個収納されており、前記光源の光放出面と対向する該凹部の面が光入射面とされており、前記液晶パネルの表示面側から見たときに、前記光源または前記凹部と対応する位置に光量調整部材を設け、
     前記光量調整部材は、前記光源に対応する位置から離れるに従い光透過率が増加する特性を有することを特徴とするバックライトユニット。
  2.  請求項1に記載のバックライトユニットにおいて、前記光量調整部材はインクにより構成され、該インクの厚さを位置に応じて異ならせることにより、前記光量調整部材に前記特性を持たせるようにしたことを特徴とするバックライトユニット。
  3.  請求項1に記載のバックライトユニットにおいて、前記光量調整部材はインクにより構成され、該インクの黒色混入率を位置に応じて異ならせることにより、前記光量調整部材に前記特性を持たせるようにしたことを特徴とするバックライトユニット。
  4.  請求項1に記載のバックライトユニットにおいて、前記光量調整部材はインクにより構成され、単位面積当たりのインクの占める割合を位置に応じて異ならせることにより、前記光量調整部材に前記特性を持たせるようにしたことを特徴とするバックライトユニット。
  5.  請求項1に記載のバックライトユニットにおいて、前記光量調整部材はインクにより構成され、該インクは黒色が混合されていることを特徴とするバックライトユニット。
  6.  請求項1に記載のバックライトユニットにおいて、前記導光板の光出射面の、前記前記光源または前記凹部と対応する位置に溝を設け、該溝に前記光量調整部材を設けたことを特徴とするバックライトユニット。
  7.  請求項1に記載のバックライトユニットにおいて、前記光量調整部材が前記凹部内に設けられることを特徴とするバックライトユニット。
  8.  請求項1に記載のバックライトユニットにおいて、前記光量調整部材は、透明シートと、該透明シートに設けられた光出射量低減部とを含み、該光出射量低減部は、前記導光板の光出射面の、前記各光源と対応する位置に設けられることを特徴とするバックライトユニット。
  9.  光源と、前記光源からの光を液晶パネル側に導くための導光板とを含むバックライトユニットにおいて、前記導光板の背面側に凹部が設けられており、該凹部に前記光源が複数個収納されており、前記液晶パネルの表示面側から見たときに、前記光源または前記凹部と対応する位置に光量調整部材を設け、
    前記光量調整部材はインクにより構成され、前記インクは、前記導光板の出射面側から順に積層された、第1のインク層と、第2のインク層とを含むことを特徴とするバックライトユニット。
  10.  請求項9に記載のバックライトユニットにおいて、前記第1のインク層は黒色の含有率が高く、前記第2のインク層は白色の含有率が高いことを特徴とするバックライトユニット。
  11.  請求項10に記載のバックライトユニットにおいて、前記第2のインク層は、前記第1のインク層よりも面積が大きく、前記液晶パネルの表示面側から見たときに、前記第1のインク層が前記第2のインク層により覆われて露出されないことを特徴とするバックライトユニット。
  12.  請求項10に記載のバックライトユニットにおいて、前記第1のインク層は、前記光源の光放出面側の所定領域周辺に設けられることを特徴とするバックライトユニット。
  13.  請求項12に記載のバックライトユニットにおいて、前記光源の光放出面と前記入射面との間に、前記入射面から前記入射面にかけて順に、前記第1のインク層が形成された領域と、前記第1のインク層が形成されない領域が配置されていることを特徴とするバックライトユニット。
  14.  請求項10に記載のバックライトユニットにおいて、前記第1のインク層は、前記第2のインク層よりも小さい複数ドットパターンで構成されていることを特徴とするバックライトユニット。
  15.  請求項14に記載のバックライトユニットにおいて、前記ドットパターンの単位面積当たりの個数が、前記光源から離れるに従って減少することを特徴とするバックライトユニット。
  16.  請求項14に記載のバックライトユニットにおいて、前記ドットパターンの大きさが、前記光源から離れるに従って小さくなることを特徴とするバックライトユニット。
  17.  請求項10に記載のバックライトユニットにおいて、前記第1のインク層が、前記光源の長手方向の幅の1/2から3/2の範囲に設けられることを特徴とするバックライトユニット。
  18.  液晶パネルに光を照射するためのバックライトユニットにおいて、
     前記バックライトユニットの背面ケースを構成するシャーシと、
     前記シャーシ上に載置された反射シートと、
     前記反射シートと対向するように設けられ、かつ前記反射シートの面と直交する方向に前記反射シートから所定間隔離されて配置された拡散板と、
     前記反射シートまたは前記拡散板の面と平行な方向に光を出射するように設けられたサイドビュー型のLEDと、を備え、
     前記サイドビュー型のLEDからの光を、前記反射シートと前記拡散板と間の空間内を反射させて伝播させながら前記拡散板を透過させて前記液晶パネル側へ導くように構成されており、
     前記拡散板の光出射側の前記LEDに対応した位置に光量調整部材を設け、前記光量調整部材は、前記光源に対応する位置から離れるに従い光透過率が増加する特性を有することを特徴とするバックライトユニット。
  19.  液晶パネルに光を照射するためのバックライトユニットにおいて、
     前記バックライトユニットの背面ケースを構成するシャーシと、
     前記シャーシ上に載置された反射シートと、
     前記反射シートと対向するように設けられ、かつ前記反射シートの面と直交する方向に前記反射シートから所定間隔離されて配置された拡散板と、
     前記反射シートまたは前記拡散板の面と平行な方向に光を出射するように設けられたサイドビュー型のLEDと、
     前記LEDと前記拡散板との間に設けられた光透過性を有するカバー部材と、を備え、
     前記サイドビュー型のLEDからの光を、前記反射シートと前記拡散板と間の空間内を反射させて伝播させながら前記拡散板を透過させて前記液晶パネル側へ導くように構成されており、
     前記カバー部材の光出射側の前記LEDと対応した位置に光量調整部材を設け、前記光量調整部材は、前記光源に対応する位置から離れるに従い光透過率が増加する特性を有することを特徴とするバックライトユニット
  20.  請求項1乃至19のいずれかに記載のバックライトユニットからの光を液晶パネルに照射して映像を表示するようにした映像表示装置。
PCT/JP2012/000650 2012-02-01 2012-02-01 バックライトユニット及びこれを用いた映像表示装置 WO2013114452A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000650 WO2013114452A1 (ja) 2012-02-01 2012-02-01 バックライトユニット及びこれを用いた映像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000650 WO2013114452A1 (ja) 2012-02-01 2012-02-01 バックライトユニット及びこれを用いた映像表示装置

Publications (1)

Publication Number Publication Date
WO2013114452A1 true WO2013114452A1 (ja) 2013-08-08

Family

ID=48904543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000650 WO2013114452A1 (ja) 2012-02-01 2012-02-01 バックライトユニット及びこれを用いた映像表示装置

Country Status (1)

Country Link
WO (1) WO2013114452A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018144509A1 (en) * 2017-01-31 2018-08-09 Corning Incorporated Backlight unit with 2d local dimming
CN115079469A (zh) * 2022-07-21 2022-09-20 华引芯(武汉)科技有限公司 光源、光源模组和显示装置
CN115325514A (zh) * 2022-10-12 2022-11-11 惠科股份有限公司 背光模组及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208307A (ja) * 2000-07-31 2002-07-26 Matsushita Electric Ind Co Ltd 照明装置、画像表示装置、液晶モニタ、液晶テレビ、液晶情報端末、及び導光板の製造方法
JP2011096494A (ja) * 2009-10-29 2011-05-12 Toshiba Corp 面状照明装置およびこれを備えた液晶表示装置
JP2011258581A (ja) * 2008-10-01 2011-12-22 Mitsubishi Electric Corp 面状光源装置およびこれを用いた表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208307A (ja) * 2000-07-31 2002-07-26 Matsushita Electric Ind Co Ltd 照明装置、画像表示装置、液晶モニタ、液晶テレビ、液晶情報端末、及び導光板の製造方法
JP2011258581A (ja) * 2008-10-01 2011-12-22 Mitsubishi Electric Corp 面状光源装置およびこれを用いた表示装置
JP2011096494A (ja) * 2009-10-29 2011-05-12 Toshiba Corp 面状照明装置およびこれを備えた液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018144509A1 (en) * 2017-01-31 2018-08-09 Corning Incorporated Backlight unit with 2d local dimming
CN115079469A (zh) * 2022-07-21 2022-09-20 华引芯(武汉)科技有限公司 光源、光源模组和显示装置
CN115079469B (zh) * 2022-07-21 2022-12-13 华引芯(武汉)科技有限公司 光源、光源模组和显示装置
CN115325514A (zh) * 2022-10-12 2022-11-11 惠科股份有限公司 背光模组及显示装置

Similar Documents

Publication Publication Date Title
JP5667888B2 (ja) バックライトユニット及びこれを用いた映像表示装置
JP5179651B2 (ja) 照明装置、表示装置、及びテレビ受信装置
KR101664422B1 (ko) 평면 조명 장치
JP7265459B2 (ja) 照明装置及び表示装置
JP5920616B2 (ja) 直下型ledバックライト装置及びそれを用いた液晶表示装置
JP2010021131A (ja) 表示装置及びそれに用いられるバックライトユニット
US11112652B2 (en) Backlight unit and display device including the same technical field
CN104508351B (zh) 照明装置和使用该照明装置的影像显示装置
WO2010038516A1 (ja) 照明装置、面光源装置、および液晶表示装置
KR102236711B1 (ko) 광학 부재, 및 이를 포함하는 백라이트 유닛
JP2006119569A (ja) 厚さの減少した大画面バックライト装置
KR20210059553A (ko) 백라이트 유닛 및 그를 포함하는 표시장치
CN111465895A (zh) 发光机构及背光模块
CN111308778B (zh) 背光单元及包括背光单元的显示装置
KR101026898B1 (ko) 도광 부재, 이 도광 부재를 구비한 면 광원 장치, 및 이 면광원 장치를 사용한 디스플레이 장치
WO2013114452A1 (ja) バックライトユニット及びこれを用いた映像表示装置
WO2019021952A1 (ja) 照明装置及び表示装置
CN210864273U (zh) 发光机构及背光模块
KR20110139039A (ko) 디스플레이 장치
KR101921180B1 (ko) 평면 조명 장치 및 이를 이용한 디스플레이 장치
KR102174999B1 (ko) 백라이트 유닛 및 그를 이용한 액정 표시 장치
JP6131107B2 (ja) 照明装置
KR20110032476A (ko) 백라이트 어셈블리, 그것의 제조 방법, 이 백라이트 어셈블리를 포함하는 액정표시장치
KR102354823B1 (ko) 광학 부재, 및 이를 포함하는 백라이트 유닛
KR20170078480A (ko) 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP