WO2013113454A1 - Millimeterwellen-radar - Google Patents

Millimeterwellen-radar Download PDF

Info

Publication number
WO2013113454A1
WO2013113454A1 PCT/EP2012/076409 EP2012076409W WO2013113454A1 WO 2013113454 A1 WO2013113454 A1 WO 2013113454A1 EP 2012076409 W EP2012076409 W EP 2012076409W WO 2013113454 A1 WO2013113454 A1 WO 2013113454A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter
layer
wave radar
wave
radar apparatus
Prior art date
Application number
PCT/EP2012/076409
Other languages
English (en)
French (fr)
Inventor
Axel Hülsmann
Harald Von Rosenberg
Karl-Friedrich Becker
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Priority to US14/375,280 priority Critical patent/US9583827B2/en
Publication of WO2013113454A1 publication Critical patent/WO2013113454A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Definitions

  • the present invention relates to a microwave radar apparatus according to the preamble of claim 1.
  • Radar devices are known in the art that operate for radar applications in the frequency range of about 30MHz to 300GHz, with frequencies currently used ranging between 1GHz and 100GHz. In contrast to optical measurement systems, non-contact radar measurement reliably provides distances and Relative speeds even in highly visible environments.
  • the pulse radar and the frequency-modulated continuous-wave (FMCW) radar.
  • FMCW frequency-modulated continuous-wave
  • the distance and speed of the target can be determined by means of signal processing.
  • the waveguide technology with modules in split-block technology, horn antennas and separate signal processing unit state of the art, which are currently used mainly in military systems.
  • the W-band radars have a wide range of applications.
  • the W band is in the millimeter-wave range between the frequencies of 75 to 1 10 GHz.
  • the W-band is the most suitable frequency band when small wavelengths, for example of 3 mm, and thus a high spatial resolution and the detection of small objects by means of radar and in addition low RF power and detection over a long distance are required.
  • the atmosphere has a local attenuation minimum at 94 GHz - ie within the W band - so that aerosols such as dust, smoke, steam and moisture! can be penetrated very well in the W band.
  • Today, however, the proliferation of W-band radar applications is still limited by the very high cost and voluminous design. Therefore, it is an object of the present invention to provide a millimeter-wheel radar device which is space-saving and inexpensive to implement,
  • a millimeter-wave radar device having at least one millimeter-wave circuit and at least one antenna
  • the millimeter-wave radar device is constructed as a module from a multilayer multipolymer board, which comprises at least a first layer of a polymer material with a low dielectric loss factor, at least a second layer of high strength polymeric material that stabilizes the multipolymer board and has a metallization layer disposed between the first and second layers for shielding and signal routing, and wherein the multipolymer board has the at least one a millimeter-wave circuit and the at least one antenna carries. Due to the configuration according to the invention, the weight and volume of such constructed radar systems can be reduced, and it is possible to develop new, previously unrealized application fields. At the same
  • the low dielectric loss factor causes a low attenuation, especially in comparison with the second layer of polymer material.
  • the high strength of the second layer is within the scope of the present
  • the second layer has a higher stability and thus higher Supporting effect for the radar device, compared with the first layer.
  • at least the second layer has a tensile and compressive strength of at least 280 MPa.
  • the millimeter-wave circuit and the antenna are embedded in the first layer.
  • the first layer additionally carries an evaluation electronics and / or signal generation electronics.
  • a thickness of the first layer and a thickness of the millimeter-equivalent circuit are substantially the same or, in particular, have a thickness difference of less than 10%.
  • the antenna is designed as a high-bandwidth edge-emitting antenna, in particular of the Vivaldi type.
  • the antenna is embedded as a membrane in the first layer.
  • the millimeter-wave radar device has at least one dielectric lens.
  • the at least one millimeter-wave circuit is an unhoused, monolithically integrated millimeter-wave circuit.
  • the first layer comprises liquid crystalline polymers (LCP).
  • LCP liquid crystalline polymers
  • the second layer comprises FR4.
  • the millimeter-wave radar apparatus is designed for W-band radar applications in a frequency range of 75 to 1 10 GHz.
  • the millimeter circuit is embedded in the first layer with an air gap above it.
  • the low dispersion polymer material is characterized by ( ⁇ ⁇ ( ⁇ ) - ⁇ ⁇ (500 GHz) ⁇ 0.01 and / or a dielectric constant of ⁇ ⁇ ⁇ 3.
  • a low attenuation is preferably achieved by the fact that the polymer material of the first layer has a dielectric loss factor (tan ( ⁇ ) ⁇ 0.005 at 100 GHz, which is considered low in the context of the present invention.
  • the at least one antenna is arranged in single configuration or a plurality of antennas in array configuration.
  • the novel and cost-effective printed circuit board technology in polymer embedding technology of unimpeded, monolithic integrated millimeter-wave circuits can be used to achieve considerable cost savings in terms of design and in connection technology (AVT).
  • PCB materials with low dielectric loss factor but low strength eg LCP, Rogers, etc.
  • high-strength materials eg FR4
  • the thickness of the polymer material with the low dielectric loss factor and the thickness of the millimeter-wave circuits are adapted to each other in order to realize the millimeter-wave signal transitions with extremely low insertion loss.
  • the thickness of the polymer material preferably deviates by less than 20%, more preferably less than 10%, from the thickness of the millimeter-wave circuit (ie, the thickness of a chip including the millimeter-equivalent circuit). This results in the advantage that a transition between the chip, which contains the millimeter-equivalent circuit and the polymer material with low attenuation has no or only a slight height offset, which typically by a bonding wire (for example, a so-called Wedgebond), which chip and Polymermateria ! connects, needs to be bridged.
  • a bonding wire for example, a so-called Wedgebond
  • the multi-layer board By combining different polymer materials of the multi-layer board, it is possible to signal-process the received signal with an A / D converter, fast Fourier transform (FFT) and signal analysis, but also the transmission signal generation with a direct digital frequency synthesizer (DDS) to combine the high-frequency structure.
  • the signal processing and evaluation preferably takes place by means of the electronic components arranged on the multilayer board. As a result, not only a signal processing in the sense of a signal conditioning but also already the evaluation (for example, an object detection) is performed by the components of the multipolar board and thus there are no external electronic components to accomplish these tasks necessary.
  • the second layer as a multilayer system and / or to arrange further layers on the side of the second layer facing away from the first layer.
  • the metallization layer preferably has a thickness in the range of 5 ⁇ m to 20 ⁇ m, particularly preferably about 13 ⁇ m.
  • the metalization layer is preferably formed from copper.
  • the formation of the metallization layer of other materials and in particular as a silver electroplating layer is within the scope of the invention.
  • a radar device which is preferably formed as a compact module that contains virtually all functional elements integrated.
  • FIG. 1 is a sectional view through a millimeter-wave radar device according to an embodiment of the invention.
  • FIG. 2 is a plan view of the millimeter wave radar apparatus shown in FIG. 1; FIG. and
  • Fig. 3 is a circuit diagram of a realization as FMCW radar according to an embodiment of the invention.
  • the millimeter-wave radar apparatus 1 is designed for W-band radar applications in a frequency range of 75 to 110 GHz.
  • the multipolymer board 2 is designed as a module and has a first layer 3 of a polymer material with low dispersion of the dielectric constant, here LCP, and a second layer 4 of a high-strength polymer material, here FR4, which stabilizes the multipolymer board 2, on. Between the first layer 3 and the second layer 4, a metallization layer 5 is also arranged, which serves for shielding and signal routing.
  • the first layer 3 and the second layer 4 each have a thickness of 50 ⁇ in the embodiment shown here.
  • MMIC millimeter-wave circuit
  • the millimeter-wave circuit 6 also has a thickness of 50 ⁇ m in the embodiment. Furthermore, embedded in the first layer 3 as a thin membrane is an antenna 7, which is embodied here in the embodiment as an edge-emitting broadband Vivaldi antenna, which serves for emitting and for receiving the radar signal.
  • an antenna 7 embedded in the first layer 3 as a thin membrane is an antenna 7, which is embodied here in the embodiment as an edge-emitting broadband Vivaldi antenna, which serves for emitting and for receiving the radar signal.
  • evaluation electronics and signal generation electronics are provided on the multipolymer board 2 a not shown here in detail evaluation electronics and signal generation electronics are provided. In this case, the evaluation electronics are designed to be programmable, ie an evaluation is made by modular software / firmware can be done for different applications or applications.
  • Si chips 8 which are described in greater detail in connection with FIG. 2 are arranged on the first layer 3.
  • the millimeter-wave circuit 6 is connected to the antenna 7 via a short flat RF connection 9. Furthermore, the millimeter-wave circuit 6 is connected via a DC connection 10 to a DC power source (not shown here).
  • the millimeter-wave circuit 6 is shielded by an RF shield 1 1, which is arranged above the Miliimeterwellen-circuit 6 on the first layer 3.
  • an RF shield 1 1 which is arranged above the Miliimeterwellen-circuit 6 on the first layer 3.
  • a plurality of metallic thermal through holes 12 are provided, which for
  • the second layer 4 is formed from two superimposed layers 4a and 4b and thus constitutes a layer system.
  • a DC wiring of the electronic components of the millimeter-wave radar device 1 can take place in a simple and cost-effective manner .
  • the partial layers 4a and 4b each have a thickness of about 254 ⁇ .
  • the first layer 3 has a thickness of about 50 ⁇ .
  • the metallization layer 5 is in this case in terms of electrical potential to ground and has a thickness of about 13 m.
  • the metallization layer 5 is formed of copper.
  • FIG. 2 is a plan view of the millimeter wave radar apparatus 1 shown in FIG. 1.
  • FIG. 2 As can be seen here, the millimeter-wave
  • a first Si chip 8 provided on the first layer 3 is in the embodiment shown here a DDS for generating the frequency chirp signal and a second Si chip 8 'provided on the first layer 3 is here digital signal processor (DSP).
  • the digital signal processor is designed for signal processing and evaluation.
  • Fig. 3 is a schematic diagram of a realization as an FMCW radar according to an embodiment of the invention, comprising separate transmit and receive millimeter wave circuits 6, 6 ', a DDS 8 for generating the frequency chirp signal, two analog-to-digital converters 16, 16 'and a digital signal processor 8'.
  • the signal processor 8 ' is connected to an interface 25, for example a WLAN, LAN, CAN or USB interface.
  • the components of the transmit millimeter-wave circuit 6 are a frequency multiplier 17 in the frequency range above 80 GHz, a medium power amplifier 18, a coupler 19 for coupling the transmit signal and a power amplifier 20.
  • the components of the receive millimeter-wave circuit 6 ' are a low-noise Input amplifier 21, a power divider (Wiikinson divider) 22 and two mixers 23, 23 ', which are each driven via a phase-shifted by 90 ° transmission signal from a Lange coupler 24.
  • dielectric lenses (not shown here) additionally used in the beam path are used. As a result, the radiation characteristic can be adapted to the respective applications. Due to the achievable modular design, further cost reductions can be achieved.
  • AVT novel assembly and connection technology
  • the prerequisite for the production of compact radar subsystems which can be used in a variety of ways, is created. Possible fields of application can be found in the aviation industry (helicopter landing assistance,
  • Ground clearance radar imaging SAR
  • safety technology monitoring of protection zones, eg in container ports, stand-off Detection, personnel control, remote sensing
  • industrial sensors level measurement of powders and granulates, food, steel production, chemical industry
  • traffic monitoring traffic flow measurement, automotive applications, reduction of dangers
  • novel medical applications environment detection for prostheses
  • safety technology object protection
  • medical technology intelligent prostheses
  • traffic engineering obstacle detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die Erfindung betrifft eine Miläimeterwellen-Radarvorrichtung mit zumindest einem Millimeterwellen-Schaltkreis und zumindest einer Antenne, wobei die Mällimeterwelien-Radarvorrichtung als Modul aus einer mehrlagigen Multipolymer-Platine ausgebildet ist, welche zumindest eine erste Lage aus einem Polymermaterial mit geringer Dispersion der Dielektrizitätskonstanten, eine zweite Lage aus einem Polymermaterial mit hoher Festigkeit, welches die Multipolymer-Platine stabilisiert, und eine Metallisierungslage aufweist, welche zwischen der ersten Lage und der zweiten Lage angeordnet ist und zur Abschirmung und zur Signalführung dient, und wobei die Multipolymer-Platine den zumindest einen Millimeterwellen-Schaltkreis und die zumindest eine Antenne trägt.

Description

Miilimeterwellen-Radar
Beschreibung
Die vorliegende Erfindung betrifft eine Mikrowellen-Radarvorrichtung gemäß dem Oberbegriff des Anspruchs 1.
Radarvorrichtungen sind im Stand der Technik bekannt, die für Radaranwendungen in dem Frequenzbereich von ca. 30MHz bis 300 GHz arbeiten, wobei die derzeit genutzten Frequenzen im Bereich zwischen 1 GHz und 100 GHz liegen, Im Gegensatz zu optischen Messsystemen liefert die berührungslose Radarmessung zuverlässig Abstände und Relativgeschwindigkeiten auch in stark sichtbehinderten Umgebungen.
Es gibt unterschiedliche Ansätze zur Realisierung von Radarvorrichtungen, wobei die gängigsten das Puls-Radar und das Frequenz-modulierte Dauerstrich-Radar (FMCW-Radar) sind. Aus der Laufzeitmessung und der Dopplerverschiebung des vom Target reflektierten Empfangssignals lassen sich mittels Signalverarbeitung Abstand und Geschwindigkeit des Targets ermitteln. Im Frequenzbereich oberhalb von 80 GHz ist die Hohlleitertechnologie mit Modulen in Split-Block-Technologie, Hornantennen und separater Signalprozessierungseinheit Stand der Technik, welche zurzeit vor allem in militärischen Systemen Anwendung finden.
W-Band-Radare haben einen breiten Anwendungsbereich. Das W-Band liegt im Millimeterwellen-Bereich zwischen den Frequenzen von 75 bis 1 10 GHz. Das W-Band ist das am besten geeignete Frequenzband, wenn kleine Wellenlängen, beispielsweise von 3 mm, und damit eine hohe Ortsauflösung und die Detektion kleiner Objekte mittels Radar sowie zusätzlich eine geringe HF-Leistung und eine Detektion über eine weite Entfernung gefordert sind. Die Atmosphäre hat bei 94 GHz - also innerhalb des W-Bandes - ein lokales Dämpfungsminimum, so dass Aerosole wie Staub, Rauch, Dampf und Nebe! im W-Band sehr gut durchdrungen werden können. Heute ist die Verbreitung von W-Band-Radar-Anwendungen jedoch noch durch die sehr hohen Kosten und den voluminösen Aufbau limitiert. Daher ist es eine Aufgabe der vorliegenden Erfindung, eine Millimeter- wetlen-Radarvorrichtung bereitzustellen, welche platzsparend und kostengünstig realisierbar ist,
Gelöst ist diese Aufgabe durch eine Millimeterwellen-Radarvorrichtung gemäß Anspruch 1 , Vorzugsweise Ausführungsformen der erfindungsgemäßen Radarvorrichtung finden sich in den Ansprüchen 2 bis 15. Hiermit wird der Wortlaut sämtlicher Ansprüche explizit per Referenz in die Beschreibung einbezogen. Erfindungsgemäß wird eine Millimeterwellen-Radarvorrichtung mit zumindest einem Millimeterwellen-Schaltkreis und zumindest einer Antenne bereitgestellt, wobei die Millimeterwellen-Radarvorrichtung als Modul aus einer mehrlagigen Multipolymer-Platine ausgebildet ist, welche zumindest eine erste Lage aus einem Polymermaterial mit geringem die- lektrischem Verlustfaktor, mindestens eine zweite Lage aus einem Polymermaterial mit hoher Festigkeit, welches die Multipolymer-Platine stabilisiert, und eine Metallisierungslage aufweist, welche zwischen der ersten und der zweiten Lage angeordnet ist und zur Abschirmung und zur Signalführung dient, und wobei die Multipolymer-Platine den zumin- dest einen Millimeterwellen-Schaltkreis und die zumindest eine Antenne trägt. Durch die erfindungsgemäße Konfiguration kann das Gewicht und Volumen derartig aufgebauter Radarsysteme reduziert werden, und es wird ermöglicht, neue, bisher nicht realisierte Anwendungsfelder zu erschließen. Gleichzeitig können die Herstellungskosten deutlich gesenkt werden.
Der geringe dielektrische Verlustfaktor bewirkt eine geringe Dämpfung, insbesondere im Vergleich mit der zweiten Lage aus Polymermaterial. Die hohe Festigkeit der zweiten Lage ist im Rahmen der vorliegenden
Erfindung als höhere Festigkeit gegenüber der ersten Lage zu verstehen, so dass die zweite Lage eine höhere Stabilität und somit höhere Stützwirkung für die Radarvorrichtung aufweist, verglichen mit der ersten Lage. Vorzugsweise weist daher zumindest die zweite Lage eine Zug- und Druckfestigkeit von mindestens 280 MPa auf.
Gemäß einer bevorzugten Ausführungsform sind der Millimeterwellen- Schaltkreis und die Antenne in die erste Lage eingebettet.
Gemäß noch einer bevorzugten Ausführungsform trägt die erste Lage zusätzlich eine Auswertelektronik und/oder eine Signalerzeugungselektronik.
Gemäß noch einer weiteren bevorzugten Ausführungsform sind eine Dicke der ersten Lage und eine Dicke des Millimeterweilen-Schaltkreises im Wesentlichen gleich bzw. weisen insbesondere einen Dickenunterschied kleiner als 10 % auf.
Vorzugsweise ist die Antenne als kantenemittierende Antenne hoher Bandbreite, insbesondere vom Vivaldi-Typ, ausgebildet.
Gemäß noch einer weiteren bevorzugten Ausführungsform ist die Antenne als Membran in der ersten Lage eingebettet.
Besonders bevorzugt ist es, wenn die Millimeterwellen-Radarvorrichtung mindestens eine dielektrische Linse aufweist.
Darüber hinaus ist es vorteilhaft, wenn der zumindest eine Millimeterwellen-Schaltkreis ein ungehäuster, monolithisch integrierter Millimeterwellen-Schaltkreis ist.
Vorzugsweise umfasst die erste Lage flüssigkristalline Polymere (LCP).
Gemäß noch einer weiteren bevorzugten Ausführungsform umfasst die zweite Lage FR4.
Gemäß noch einer weiteren bevorzugten Ausführungsform ist die Millimeterwellen-Radarvorrichtung für W-Band-Radaranwendungen in einem Frequenzbereich von 75 bis 1 10 GHz ausgelegt. Vorzugsweise ist der Millimeterweilen-Schaltkreis in die erste Lage mit einem Luftspalt darüber eingebettet.
Gemäß einer weiteren bevorzugten Ausführungsform ist das Polymermaterial geringer Dispersion durch ({εΓ(ϋΟ)-εΓ(500 GHz) < 0,01 und/oder eine Dielektrizität von εΓ<3 gekennzeichnet.
Eine geringe Dämpfung wird vorzugsweise dadurch erzielt, dass das Polymermaterial der ersten Lage einen im Rahmen der vorliegenden Erfindung als gering anzusehenden dielektrischen Verlustfaktor (tan (δ) < 0,005 bei 100 GHz) aufweist.
Vorzugsweise ist die zumindest eine Antenne in Einzelkonfiguration oder eine Vielzahl von Antennen in Array-Konfiguration angeordnet.
Durch die neuartige und kostengünstige Leiterplattentechnik in Polymereinbetttechnik von ungehäusten, monolithisch integrierten Millimeterwellen-Schaltkreisen (MMICs) können erhebliche Kosteneinsparungen im Aufbau und in der Verbindungstechnik (AVT) erzielt werden. Dabei werden Leiterplattenmaterialien mit geringem dielektrischem Verlustfaktor aber geringer Festigkeit (z. B. LCP, Rogers, etc.) mit Materialien hoher Festigkeit (z. B. FR4) kombiniert und durch Metallisierungsiagen, die zur Abschirmung oder Signalführung dienen, voneinander getrennt. Die Dicke des Polymermaterials mit dem geringen dielektrischen Verlustfaktor und die Dicke der Miliimeterwellen-Schaltkreise werden dabei aufeinander angepasst, um die Millimeterwellen-Signalübergänge mit äußerst geringer Einfüge-Dämpfung zu realisieren. Die Dicke des Polymermaterials weicht vorzugsweise um weniger als 20 %, insbesondere bevorzugt um weniger als 1 0 % von der Dicke des Millimeterwellen-Schaltkreises (d. h. von der Dicke eines Chips, welcher den Millimeterweilen- Schaltkreis beinhaltet) ab. Hierdurch ergibt sich der Vorteil, dass ein Übergang zwischen dem Chip, welcher den Millimeterweilen-Schaltkreis beinhaltet und dem Polymermaterial mit geringer Dämpfung keinen oder nur einen geringen Höhenversatz aufweist, welcher typischerweise durch einen Bonddraht (beispielsweise ein so genannter Wedgebond), welcher Chip und Polymermateria! verbindet, überbrückt werden muss. Durch die Kombination von verschiedenen Polymermateriaiien der Multi- lagenplatine ist es möglich, die Signaiprozessierung des Empfangssignals mit einem A/D-Wandler, schneller Fourier-Transformation (FFT) und Signalanalyse aber auch die Sendesignalerzeugung mit einem direkten digitalen Frequenz-Synthesizer (DDS) mit dem Hochfrequenzaufbau zu kombinieren. Die Signalverarbeitung und Auswertung erfolgt vorzugsweise mittels der auf der Multilagenplatine angeordneten elektronischen Komponenten. Hierdurch wird somit nicht nur eine Signalverarbeitung im Sinne einer Signal-Konditionierung sondern zusätzlich bereits auch die Auswertung (zum Beispiel eine Objekterkennung) durch die Komponenten der Multipolinär-Platine durchgeführt und es sind somit keine externen elektronischen Komponenten zur Erledigung dieser Aufgaben notwendig.
Es liegt im Rahmen der Erfindung, die zweite Lage als Mehrschichtsystem auszubilden und/oder auf der der ersten Lage abgewandten Seite der zweiten Lage weitere Lagen anzuordnen. Insbesondere ist es vorteilhaft, eine DC-Verdrahtung der Komponenten der Millimeterwellen- Radarvorrichtung innerhalb des vorgenannten Schichtsystems, bzw. zwischen der zweiten Lage und einer dritten Lage und gegebenenfalls weiteren Lagen auszubilden,
Die Metallisierungslage weist vorzugsweise eine Dicke im Bereich 5 μηι bis 20 Mm, insbesondere bevorzugt etwa 13 μηι auf. Die Metailisierungs- lage ist bevorzugt aus Kuper ausgebildet. Ebenso liegt die Ausbildung der Metallisierungslage aus anderen Materialien und insbesondere als Silber-Galvanik-Schicht im Rahmen der Erfindung.
Erfindungsgemäß wird also eine Radarvorrichtung bereitgestellt, die vorzugsweise als kompaktes Modul gebildet ist, das praktisch alle Funktionselemente integriert enthält.
Im Nachfolgenden werden weitere vorzugsweise Merkmale und Ausführungsformen der Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren näher beschrieben. Es zeigt: Fig. 1 eine Schnittansicht durch eine Millimeterwellen-Radarvorrichtung gemäß einer Ausführungsform der Erfindung;
Fig. 2 eine Draufsicht auf die in Fig. 1 dargestellte Miliimeterwellen- Radarvorrichtung; und
Fig. 3 ein Schaltbild einer Realisierung als FMCW-Radar gemäß einer Ausführungsform der Erfindung.
In Fig. 1 ist eine Schnittansicht durch eine Millimeterwellen- Radarvorrichtung 1 gemäß einer Ausführungsform der Erfindung mit einer mehrlagigen Multipolymer-Platine 2. Die Millimeterwellen- Radarvorrichtung 1 ist für W-Band-Radaranwendungen in einem Frequenzbereich von 75 bis 1 10 GHz ausgelegt. Die Multipolymer-Platine 2 ist als Modul ausgebildet und weist eine erste Lage 3 aus einem Polymermaterial mit geringer Dispersion der Dielektrizitätskonstanten, hier LCP, und eine zweite Lage 4 aus einem Polymermaterial mit hoher Festigkeit, hier FR4, welches die Multipolymer-Platine 2 stabilisiert, auf. Zwischen der ersten Lage 3 und der zweiten Lage 4 ist darüber hinaus eine Metallisierungslage 5 angeordnet, welche zur Abschirmung und zur Signalführung dient. Die erste Lage 3 und die zweite Lage 4 weisen bei der hier dargestellten Ausführungsform jeweils eine Dicke von 50 μιη auf. In die erste Lage 3 ist ein ungehäuster, monolithisch integrierter Millimeterwellen-Schaltkreis (MMIC) 6 aus einem Verbindungshalbleiter, hier aus GaAs, mittels einer Polymereinbetttechnik in die erste Lage 3 eingebettet.
Der Millimeterwellen-Schaltkreis 6 weist in der Ausführungsform ebenfalls eine Dicke von 50 μηι auf. Weiterhin in die erste Lage 3 als dünne Membran eingebettet ist eine Antenne 7, welche hier in der Ausführungsform als kantenemittierende breitbandige Vivaldi-Antenne ausgeführt ist, welche zur Abstrahlung und zum Empfang des Radarsignals dient. Zusätzlich sind auf der Multipolymer-Platine 2 eine hier nicht im Detail dargestellte Auswertelektronik und eine Signalerzeugungselektronik vorgesehen. Die Auswerteelektronik ist hierbei programmierbar ausgebildet, d. h. dass durch modulare Software/Firmware eine Auswertung für unterschiedliche Anwendungen bzw. Anwendungsbereiche erfolgen kann.
Auf der ersten Lage 3 sind darüber hinaus Si-Chips 8 angeordnet, wel- che näher im Zusammenhang mit Figur 2 beschrieben werden. Der Millimeterwellen-Schaltkreis 6 ist mit der Antenne 7 über eine kurze flache HF-Verbindung 9 verbunden. Weiterhin ist der Millimeterwellen- Schaltkreis 6 über eine DC-Verbindung 10 an eine Gleichstromenergie- quelie (hier nicht dargesteilt) angeschlossen.
Der Millimeterwellen-Schaltkreis 6 ist durch eine HF-Abschirmung 1 1 , welche oberhalb des Miliimeterwellen-Schaltkreises 6 auf der ersten Lage 3 angeordnet ist, abgeschirmt. Durch die erste Lage 3, durch die zweite Lage sowie durch beide Lagen sind eine Vielzahl von metalli- sehen thermischen Durchkontaktierungen 12 vorgesehen, welche zum
Abführen von Wärme dienen.
In diesem Ausführungsbeispiel ist die zweite Lage 4 aus zwei übereinanderliegenden Schichten 4a und 4b ausgebildet und stellt somit ein Schichtsystem dar. Insbesondere zwischen den Schichten 4a und 4b kann somit in einfacher und kostengünstiger Weise eine DC- Verdrahtung der elektronischen Komponenten der Millimeterwellen- Radarvorrichtung 1 erfolgen. Die Teilschichten 4a und 4b weisen jeweils eine Dicke von etwa 254 μιη auf. Die erste Lage 3 weist eine Dicke von etwa 50 μιη auf. Die Metallisierungslage 5 liegt hierbei hinsichtlich des elektrischen Potentials auf Masse und weist eine Dicke von etwa 13 m auf. Die Metallisierungslage 5 ist aus Kupfer ausgebildet.
Fig. 2 ist eine Draufsicht auf die in Fig. 1 dargestellte Millimeterwellen- Radarvorrichtung 1 . Wie hier erkennbar ist, ist der Millimeterwellen-
Schaltkreis 6 in einer Aussparung 13 in der ersten Lage 3 angeordnet und über eine Vielzahl von elektrischen Verbindungen 14 mit SMD- (Surface Mounted Devices)-Bauteilen 1 5 verbunden. Ein erster auf der ersten Lage 3 vorgesehener Si-Chip 8 ist in der hier dargestellten Aus- führungsform ein DDS zur Erzeugung des Frequenzchirp-Signals und einer zweiter auf der ersten Lage 3 vorgesehener Si-Chip 8' ist hier ein digitaler Signal Prozessor (DSP). Der digitale Signalprozessor ist zur Signalverarbeitung und Auswertung ausgebildet.
Fig . 3 ist ein prinzipielles Schaltbild einer Realisierung als FMCW-Radar gemäß einer Ausführungsform der Erfindung, welche getrennte Sende- und Empfangs-Milfimeterwellen-Schaltkreisen 6, 6', einen DDS 8 zur Erzeugung des Frequenzchirp-Signals, zwei analog-digital-Wandler 16, 16' und einen digitalen Signal-Prozessor 8' umfasst. Der Signal-Prozessor 8' ist mit einer Schnittstelle 25, beispielsweise einer WLAN-, LAN-, CAN- oder USB-Schnittstelle, verbunden. Die Komponenten des Sende Millimeterwellen-Schaltkreises 6 sind ein Frequenzvervielfacher 17 in den Frequenzbereich oberhalb 80 GHz, ein Verstärker 18 mittlerer Leistung, ein Koppler 19 zur Auskopplung des Sendesignals und ein Leistungsverstärker 20. Die Komponenten des Empfangs-Millimeterwellen- Schaltkreises 6' sind ein rauscharmer Eingangsverstärker 21 , ein Leistungsteiler (Wiikinson-Teiler) 22 und zwei Mischer 23, 23', die jeweils über ein um 90° phasenverschobenes Sendesignal aus einem Lange- Koppler 24 angesteuert werden. Um die Richtcharakteristik der kan- tenemmittierenden Antennen 7, 7' zu verbessern, werden zusätzlich im Strahlengang angebrachte dielektrische Linsen (hier nicht dargestellt) verwendet. Dadurch kann die Strahlungscharakteristik den jeweiligen Anwendungen angepasst werden. Durch den dadurch erreichbaren mo- dularen Aufbau können weitere Kostenreduzierungen erreicht werden. Die hier beschriebene neuartige Aufbau- und Verbindungstechnik (AVT) ermöglicht eine HF-geeignete Einbetttechnologie für Radarvorrichtungen mit Frequenzen oberhalb von 80 GHz mit den Kernaufgaben„Einbetten der integrierten Schaltung für Millimeterwellen mit und ohne Airgap" und „Realisierung von freistehenden Antennen in Einzel- bzw. Arraykonfigu- ration".
Mit der Millimeterwellen-Radarvorrichtung 1 gemäß der Erfindung wird die Voraussetzung für die Herstellung kompakter Radar-Subsysteme, die in vielfältiger Weise einsetzbar sind, geschaffen. Mögliche Einsatz- bereiche finden sich in der Luftfahrtindustrie (Hubschrauber-Landehilfe,
Bodenabstandsradar, bildgebendes SAR), in der Sicherheitstechnik (Überwachung von Schutzonen, z. B. in Containerhäfen, Stand-Off- Detektion, Personenkontrolle, Remote Sensing), in der Industriesensorik (Füllstandsmessung von Pulvern und Granulaten, Lebensmittel, Stahlproduktion, chemische Industrie), in der Verkehrsüberwachung (Verkehrsflussmessung, Automotive-Anwendungen, Gefährungsreduzie- rung), in neuartigen medizintechnischen Anwendungen (Umfelderfassung für Prothesen), in der Sicherheitstechnik (Objektschutz), in der Medizintechnik (intelligente Prothesen) und in der Verkehrstechnik (Hinderniserkennung).
Bezugszeichen
1 Millimeterwellen-Radarvorrichtung
2 Multipolymer-Platine
3 Erste Lage
4 Zweite Lage
5 Metallisierungslage
6, 6 ' Miilimeterwellen-Schaltkreis
7, 7 ' Antenne
8, 8 ' Si-Chip
9 HF-Verbindung
10 DC-Verbindung
1 1 HF-Abschirmung
12 Durchkontaktierungen
1 3 Aussparung
14 Elektrische Verbindungen
15 SMD Bauteile
16, 16' A/D-Wandler
17 Frequenzvervielfacher
18 Verstärker
19 Koppler
20 Leistungsverstärker
21 Eingangsverstärker
22 Leistungsteiler
23, 23' Mischer
24 Lange-Koppler
25 Schnittstelle

Claims

Ansprüche
1 . Millimeterwellen-Radarvorrichtung (1 ) mit zumindest einem Millimeterwellen-Schaltkreis (6, 6') und zumindest einer Antenne (7, 7'), dadurch gekennzeichnet, dass
die Millimeterwellen-Radarvorrichtung (1) als Modul aus einer mehrlagigen Multipoiymer-Platine (2) ausgebildet ist, welche zumindest eine erste Lage (3) aus einem Poiymermaterial mit einem geringen dielektrischen Verlustfaktor, mindestens eine zweite Lage (4) aus einem Polymermaterial mit hoher Festigkeit, welches die Multipoiymer-Platine (2) stabilisiert, und eine Metallisierungslage (5) aufweist, welche zwischen der ersten Lage (3) und der zweiten Lage (4) angeordnet ist und zur Abschirmung und zur Signalführung dient, und wobei die Multipoiymer-Platine (2) den zumindest einen Millimeterwellen-Schaltkreis (6, 6') und die zumindest eine Antenne (7, 7') trägt,
2. Millimeterwellen-Radarvorrichtung (1 ) gemäß Anspruch 1 ,
dadurch gekennzeichnet, dass
der Millimeterwellen-Schaltkreis (6, 6') und die Antenne (7, 7') in die erste Lage (3) eingebettet sind,
3. Millimeterwellen-Radarvorrichtung (1 ) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass
die erste Lage (3) zusätzlich eine Auswertelektronik und/oder eine Signalerzeugungselektronik trägt.
4. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
eine Dicke der ersten Lage (3) und eine Dicke des Millimeterwellen- Schaltkreises (6, 6') im Wesentlichen gleich sind, insbesondere einen Dickenunterschied kleiner als 1 0 % aufweisen.
5. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
die Antenne (7, 7') als kantenemittierende Antenne hoher Bandbreite, insbesondere vom Vivaldi-Typ, ausgebildet ist.
6. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
die Antenne (7, 7') als Membran in der ersten Lage eingebettet ist.
7. MiHimeterweilen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
die Miliimeterwellen-Radarvorn'chtung (1) mindestens eine dielektrische Linse aufweist.
8. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
der zumindest eine Millimeterwellen-Schaltkreis (6, 6') ein ungehäu- ster, monolithisch integrierter Millimeterwellen-Schaltkreis (6, 61) ist.
9. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, dass
die erste Lage (3) flüssigkristalline Polymere (LCP) umfasst.
10. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass
die zweite Lage (4) FR4 umfasst.
1 1 . Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, dass die Millimeterwellen-Radarvorrichtung (1 ) für W-Band- Radaranwendungen in einem Frequenzbereich von 75 bis 1 10 GHz ausgelegt ist,
12. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 1 1 ,
dadurch gekennzeichnet, dass
der Millimeterwellen-Schaltkreis (6, 6') in die erste Lage (3) mit einem Luftspalt darüber eingebettet ist.
13. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 12,
dadurch gekennzeichnet, dass
das Polymermaterial geringer Dispersion durch ((er(DC) - εΓ(500 GHz) < 0,01) und/oder eine Dielektrizität von εΓ < 3 gekennzeichnet ist.
14. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 13,
dadurch gekennzeichnet, dass
die zumindest eine Antenne (7, 7') in Einzelkonfiguration oder eine Vielzahl von Antennen {7, 7') in Array-Konfiguration angeordnet ist.
15. Millimeterwellen-Radarvorrichtung (1 ) gemäß einem der Ansprüche 1 bis 14
dadurch gekennzeichnet, dass
das Polymermaterial einen dielektrischen Verlustfaktor (tan (δ) < 0,005 bei 100 GHz) aufweist.
PCT/EP2012/076409 2012-01-31 2012-12-20 Millimeterwellen-radar WO2013113454A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/375,280 US9583827B2 (en) 2012-01-31 2012-12-20 Millimeter-wave radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012201367.9 2012-01-31
DE102012201367.9A DE102012201367B4 (de) 2012-01-31 2012-01-31 Millimeterwellen-Radar

Publications (1)

Publication Number Publication Date
WO2013113454A1 true WO2013113454A1 (de) 2013-08-08

Family

ID=47522549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/076409 WO2013113454A1 (de) 2012-01-31 2012-12-20 Millimeterwellen-radar

Country Status (3)

Country Link
US (1) US9583827B2 (de)
DE (1) DE102012201367B4 (de)
WO (1) WO2013113454A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867192A (zh) * 2022-05-26 2022-08-05 深圳市金晟达电子技术有限公司 一种高频毫米波低失真型混合电路板

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015202801A1 (de) 2015-02-17 2016-08-18 Robert Bosch Gmbh Antennenanordnung und Verfahren zum Herstellen einer Antennenanordnung
DE102015207364A1 (de) 2015-04-22 2016-10-27 Robert Bosch Gmbh Verfahren zum Herstellen eines Sensors und entsprechender Sensor
KR102333559B1 (ko) 2015-05-11 2021-12-01 삼성전자 주식회사 안테나 장치 및 그를 포함하는 전자 장치
EP3311192A1 (de) 2015-06-17 2018-04-25 Novelic D.O.O. Millimeterwellensensorsystem zur einparkhilfe
US10317518B2 (en) * 2015-07-20 2019-06-11 Brigham Young University (Byu) Phased array radar systems for small unmanned aerial vehicles
US10082570B1 (en) * 2016-02-26 2018-09-25 Waymo Llc Integrated MIMO and SAR radar antenna architecture for self driving cars
USD881854S1 (en) * 2017-12-29 2020-04-21 Waymo Llc Integrated MIMO and SAR radar antenna
CN108983241A (zh) * 2018-09-29 2018-12-11 芜湖易来达雷达科技有限公司 77ghz毫米波adas雷达的混合集成电路板
KR102660413B1 (ko) * 2018-10-08 2024-04-24 주식회사 에이치엘클레무브 레이더 장치 및 이를 포함하는 레이더 센싱 장치
CN112285715A (zh) * 2020-09-22 2021-01-29 杭州华智超成技术有限公司 基于at指令的毫米波雷达系统及控制方法
CN115494456B (zh) * 2022-11-21 2023-03-10 南京隼眼电子科技有限公司 雷达收发装置及雷达装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029634A2 (en) * 2003-09-22 2005-03-31 Vishay Advanced Technologies Ltd. Dielectric loading of distributed printed circuits
US20060250308A1 (en) * 2005-03-31 2006-11-09 Georgia Tech Research Corporation Module,filter, and antenna technology millimeter waves multi-gigabits wireless systems
CN101014224A (zh) * 2007-02-13 2007-08-08 上海杰盛无线通讯设备有限公司 微波通信中的射频电路板层结构
US20070235214A1 (en) * 2006-03-30 2007-10-11 Hall Stephen H Moisture resistant printed circuit board
CN101426333A (zh) * 2008-12-01 2009-05-06 中兴通讯股份有限公司 多层混压印刷电路板及其制造方法、装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163981B2 (ja) * 1996-07-01 2001-05-08 株式会社村田製作所 送受信装置
JP3786497B2 (ja) * 1997-06-13 2006-06-14 富士通株式会社 アンテナ素子を内蔵する半導体モジュール
DE10300955B4 (de) 2003-01-13 2005-10-27 Epcos Ag Radar-Transceiver für Mikrowellen- und Millimeterwellenanwendungen
DE102006023123B4 (de) * 2005-06-01 2011-01-13 Infineon Technologies Ag Abstandserfassungsradar für Fahrzeuge mit einem Halbleitermodul mit Komponenten für Höchstfrequenztechnik in Kunststoffgehäuse und Verfahren zur Herstellung eines Halbleitermoduls mit Komponenten für ein Abstandserfassungsradar für Fahrzeuge in einem Kunststoffgehäuse
US7834808B2 (en) * 2005-06-29 2010-11-16 Georgia Tech Research Corporation Multilayer electronic component systems and methods of manufacture
US7764236B2 (en) * 2007-01-04 2010-07-27 Apple Inc. Broadband antenna for handheld devices
US7830301B2 (en) * 2008-04-04 2010-11-09 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-band antenna array and RF front-end for automotive radars
US8022861B2 (en) * 2008-04-04 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-band antenna array and RF front-end for mm-wave imager and radar
US8278749B2 (en) 2009-01-30 2012-10-02 Infineon Technologies Ag Integrated antennas in wafer level package
US9386688B2 (en) * 2010-11-12 2016-07-05 Freescale Semiconductor, Inc. Integrated antenna package
US8860626B2 (en) * 2011-09-29 2014-10-14 Andrew Llc Folded tab retention twin wall radome and method of manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029634A2 (en) * 2003-09-22 2005-03-31 Vishay Advanced Technologies Ltd. Dielectric loading of distributed printed circuits
US20060250308A1 (en) * 2005-03-31 2006-11-09 Georgia Tech Research Corporation Module,filter, and antenna technology millimeter waves multi-gigabits wireless systems
US20070235214A1 (en) * 2006-03-30 2007-10-11 Hall Stephen H Moisture resistant printed circuit board
CN101014224A (zh) * 2007-02-13 2007-08-08 上海杰盛无线通讯设备有限公司 微波通信中的射频电路板层结构
CN101426333A (zh) * 2008-12-01 2009-05-06 中兴通讯股份有限公司 多层混压印刷电路板及其制造方法、装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN LIM LEE ET AL: "24 GHz Balanced Doppler Radar Front-End With Tx Leakage Canceller for Antenna Impedance Variation and Mutual Coupling", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 59, no. 12, 1 December 2011 (2011-12-01), pages 4497 - 4504, XP011379536, ISSN: 0018-926X, DOI: 10.1109/TAP.2011.2165486 *
LASKAR J ET AL: "FR-4 and CMOS: Enabling Technologies for Consumer Volume Millimeterwave Applications", ELECTRON DEVICES MEETING, 2007. IEDM 2007. IEEE INTERNATIONAL, IEEE, PISCATAWAY, NJ, USA, 10 December 2007 (2007-12-10), pages 981 - 984, XP031389865, ISBN: 978-1-4244-1507-6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867192A (zh) * 2022-05-26 2022-08-05 深圳市金晟达电子技术有限公司 一种高频毫米波低失真型混合电路板
CN114867192B (zh) * 2022-05-26 2023-10-13 深圳市金晟达电子技术有限公司 一种高频毫米波低失真型混合电路板

Also Published As

Publication number Publication date
US20150009081A1 (en) 2015-01-08
US9583827B2 (en) 2017-02-28
DE102012201367B4 (de) 2020-04-09
DE102012201367A1 (de) 2013-08-01

Similar Documents

Publication Publication Date Title
DE102012201367B4 (de) Millimeterwellen-Radar
DE112010001453B4 (de) Leiterplatte, Wellenleiterstruktur, Hochfrequenzmodul und Radarvorrichtung
EP1825561B1 (de) Antennenanordnung für einen radar-transceiver
DE112009000784B4 (de) Hochfrequenzmodul und Verfahren zu seiner Herstellung und Sender, Empfänger, Sender-Empfänger und Radarvorrichtung, die das Hochfrequenzmodul umfassen
EP1792203B1 (de) Monostatischer planarer mehrstrahlradarsensor
DE102017217805B4 (de) Radarfüllstandmessgerät mit Synchronisationssignal auf verschiedenen Leitungstypen
WO2012119818A1 (de) Leiterplattenanordnung für millimeterwellen-scanner
WO2020025690A1 (de) Hochfrequenzbaustein
EP2820674B1 (de) Halbleitermodul mit integrierten antennenstrukturen
DE102017112894B4 (de) Hochfrequenz-Bauelement, insbesondere für Radar-Anwendungen
DE102020103775A1 (de) Integriertes Hohlraum-gesichertes Slot-Array-Antennensystem
EP3134748B1 (de) Radarsystem zur umfelderfassung für ein fahrzeug sowie platine für ein solches radarsystem
WO2014090565A1 (de) Füllstandsmessgerät
DE112009000911B4 (de) Hochfrequenzmodul und Verfahren zu seiner Herstellung und Sender, Empfänger, Sender-Empfänger und Radarvorrichtung, die das Hochfrequenzmodul umfassen
EP1958002A1 (de) Antennenanordnung für einen radar-sensor
DE112019004921T5 (de) Antennenvorrichtung, antennenmodul, kommunikationsvorrichtung und radarvorrichtung
DE10156258A1 (de) Integriertes Halbleiterbauelement für Hochfrequenzmessungen und dessen Verwendung
WO2023104255A1 (de) Radarsensor sowie ein herstellungsverfahren
DE102008055196A1 (de) Vorrichtung zum Senden und/oder Empfangen elektromagnetischer Hochfrequenzsignale
DE102022201374A1 (de) Antenneneinrichtung, Radarsensoreinrichtung und Verfahren zum Herstellen einer Antenneneinrichtung
EP3467446B1 (de) Radarfüllstandmessgerät mit synchronisationssignal auf verschiedenen schichten einer platine
EP2225799A1 (de) Antennenanordnung für einen radar-transceiver und schaltungsanordnung zum speisen einer antennenanordnung eines solchen radar-transceivers
DE102016117920B4 (de) Frequenzwandler-Schaltung für ein Radar-basiertes Messgerät
DE102013222963A1 (de) Radarantenne
WO2005091437A1 (de) Antennenanordnung und verfahren zum herstellen derselben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12812957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375280

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12812957

Country of ref document: EP

Kind code of ref document: A1