WO2013113247A1 - 一种提高移动健壮性的方法、系统和设备 - Google Patents

一种提高移动健壮性的方法、系统和设备 Download PDF

Info

Publication number
WO2013113247A1
WO2013113247A1 PCT/CN2012/088066 CN2012088066W WO2013113247A1 WO 2013113247 A1 WO2013113247 A1 WO 2013113247A1 CN 2012088066 W CN2012088066 W CN 2012088066W WO 2013113247 A1 WO2013113247 A1 WO 2013113247A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
user equipment
network side
offset
scenario
Prior art date
Application number
PCT/CN2012/088066
Other languages
English (en)
French (fr)
Inventor
刘爱娟
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2013113247A1 publication Critical patent/WO2013113247A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, system and device for improving mobile robustness.
  • Evolved Universal Terrestrial Radio Access (E-UTRA) system's Self Organizing Networks (SON) feature is the third generation mobile communication standardization organization (3rd Generation Partnership). Project, 3GPP)
  • 3GPP Third Generation Partnership Project
  • the SON self-optimization function needs to monitor some network and system performance parameters as input, such as network performance indicator statistics, fault alarms, notifications, etc. After analyzing the input data, the optimization algorithm makes a decision, and finally automatically triggers the adjustment of the relevant network node. operating.
  • Mobility Robustness Optimization must first be judged accurately to determine the root cause of the problem.
  • the user equipment quickly fails to connect after switching to the target cell, and then the UE reestablishes the connection in the source cell.
  • the criteria for judging handover to the wrong cell are as follows:
  • the UE fails to connect during the handover process or after the handover is completed (whether in the source cell or the target cell), and then the UE reestablishes the connection in a third-party cell (neither the source cell nor the target cell).
  • the low-power base station is a base station device used in a home indoor environment, an office environment, or other hotspot small coverage environment, enabling operators to provide attractive services with higher data rates and lower costs.
  • ABS Almost Blank Subframe
  • Macro macro
  • Pico Pico networking environment
  • the ABS subframe is set by the Macro base station, and the offset (Bias) between the Macro base station and the Pico is set. This expands Pico's coverage.
  • the hetero base network that is, the macro base station, the low-power base station, the home base station, the hybrid base network, and the Macro base station are not considered.
  • Pico networking environment For example, according to the current MRO judgment method, the case where the Macro base station sets ABS and Bias for Pico is not considered, which may misjudge the EICICC related parameter configuration problem as switching too early. As shown in Figure 1, the solid line is the original coverage of Pico, and the dotted line is the coverage range after the Macro Base Station has configured ABS and Bias for Picol and Pico2.
  • the Macro base station configures the Bias of Picol and Pico2 for the UE in the connected state through Radio Resource Control (RRC) signaling, and therefore is only applicable to the switching of the connected state.
  • RRC Radio Resource Control
  • a connection failure occurs after the UE switches from the Macro base station to the Picol, and then the UE performs the RRC connection reestablishment.
  • the cell is a Macro base station cell.
  • the cause of the problem is diagnosed as being too early. However, in fact, this diagnosis may be incorrect, because the root cause of the failure may be the configuration of the relevant parameters of the EICICC.
  • the signal of the Picol cell is not good enough, resulting in dropped calls.
  • the Macro base station adjusts the EICIC related parameters and should select the Pico2 cell instead of the Picol cell to switch.
  • the method, the system and the device for improving the robustness of the mobile device provided by the embodiment of the present invention are used to improve the accuracy of the mobile robustness in the networking environment of the Macro base station and the Pico in the Hetnet scenario.
  • the first network side device determines, according to the received indication message for the user equipment that the connection fails in the cell, whether the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment.
  • the first network side device After determining, by the network side, the relative neighbor cell handover offset in the EICIC scenario for the user equipment, the first network side device sends the network side to the user to the second network side device to which the cell with the wrong cell parameter setting is located. The device configures the notification of the offset of the neighboring cell in the EICIC scenario.
  • Another method for improving mobile robustness includes: After receiving the notification of the relative neighbor cell handover offset in the EICIC scenario for the user equipment, the second network side device configures the EICIC according to the cell served by the user equipment after receiving the notification that the user equipment configures the relative neighbor cell handover offset in the EICIC scenario. Determining the offset of the neighboring cell in the scenario, and determining the value of the decision signal of the corresponding cell, where the first network side device is a network side device serving the user equipment when the user equipment fails to connect;
  • the second network side device determines, according to the decision signal shield value of the cell, the cause of the connection failure.
  • the user equipment determines an indication message after the connection failure occurs
  • the user equipment sends a determined indication message to the network side, where the network side is notified of the indication message to determine whether the user equipment is configured to switch the offset of the relative neighboring cell in the EICIC scenario.
  • a determining module configured to determine, according to the received indication message for the user equipment that the connection fails in the cell, whether the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment;
  • a notification module configured to: after the network side configures the offset of the relative neighboring cell in the EICIC scenario for the user equipment, the second network side device that belongs to the cell with the incorrect cell parameter setting, and the network side configured for the user equipment Notification of the offset of the neighboring cell handover in the EICIC scenario.
  • the metric value determining module is configured to: according to the notification that the network device from the first network side device configures the offset of the relative neighboring cell in the EICIC scenario for the user equipment, according to the cell configuration serving the user equipment Determining the offset value of the neighboring cell in the EICIC scenario, and determining the value of the decision signal shield of the corresponding cell, where the first network side device is a network side device serving the user equipment when the user equipment fails to connect;
  • the reason determining module is configured to determine, according to the decision signal shield value of the cell, a reason for the connection failure.
  • a message determining module configured to determine an indication message after a connection failure occurs
  • a sending module configured to send the determined indication message to the network side, to notify the network side to determine, according to the indication message, whether the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment.
  • a first network side device configured to determine, according to the received indication message for the user equipment that the connection failure occurs in the cell, whether the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment, where the network side is determined. After the user equipment is configured to switch the offset of the neighboring cell in the EICIC scenario, the second network side device to which the cell with the wrong cell parameter setting is located, and the network side configures the relative neighbor cell switching offset in the EICIC scenario for the user equipment. Notification of quantity;
  • a second network side device configured to: after receiving a notification that the user equipment is configured to switch the offset of the neighboring cell in the EICIC scenario from the network side of the first network side device, according to the cell configuration serving the user equipment In Determining the offset of the neighboring cell in the EICIC scenario, and determining the value of the decision signal shield of the corresponding cell, where the first network side device is a network side device serving the user terminal when the user equipment fails to connect, according to the judgment of the cell The value of the signal shield determines the cause of the connection failure.
  • the first network side device determines, according to the received indication message for the user equipment that the connection fails in the cell, whether the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment.
  • the first network side device After determining, by the network side device, the relative neighbor cell handover offset in the EICIC scenario for the user equipment, the first network side device switches the offset of the neighbor cell in the EICIC scenario according to the cell served by the user equipment.
  • the quantity determines the shield signal value of the decision signal of the corresponding cell, and determines the cause of the connection failure according to the decision signal shield value of the cell.
  • a first processing module configured to determine, according to the received indication message of the user equipment that the connection failure occurs in the cell, whether the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment;
  • a second processing module configured to: after determining, by the network side, the relative neighbor cell handover offset in the EICIC scenario, configure the relative neighbor cell handover offset in the EICIC scenario according to the cell served by the user equipment The quantity determines the shield signal value of the decision signal of the corresponding cell, and determines the cause of the connection failure according to the decision signal shield value of the cell.
  • FIG. 1 is a schematic diagram of a Hetnet scenario in the background art
  • FIG. 2 is a schematic structural diagram of a system for improving mobile robustness according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a network side device that sends a notification according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a network side device that receives a notification according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for improving mobility robustness of a first network side device according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a method for improving mobility robustness of a second network side device according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for improving user robustness of a user equipment according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method for improving mobile robustness in scenario 1 according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method for improving mobile robustness in scenario 2 according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a method for improving mobile robustness in scenario 3 according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a method for improving mobile robustness in scenario 4 according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of a network side device for improving mobile robustness according to an embodiment of the present invention
  • FIG. 14 is a schematic flowchart of a method for improving mobile robustness according to an embodiment of the present invention.
  • FIG. 15 is a schematic flowchart of a method for improving mobile robustness in scenario 7 according to an embodiment of the present invention. detailed description
  • the first network side device sets an error to the cell parameter after determining the handover offset of the neighboring cell in the enhanced inter-cell inte reference coordination (EICIC) scenario in which the network side is configured for the user equipment.
  • EICIC enhanced inter-cell inte reference coordination
  • the second network side device to which the cell belongs is configured to notify the user equipment of the relative neighbor cell handover offset in the EICIC scenario, and the second network side device is configured to be the cell served by the user equipment in the EICIC scenario.
  • the cell handover offset determines the decision signal shield value of the corresponding cell, and determines the cause of the connection failure according to the decision signal shield value of the cell. Due to the multi-layer coverage in the Hetnet scenario, the accuracy of mobile robustness in the networking environment of Macro and Pico is improved.
  • connection failure in the embodiment of the present invention indicates that the connection between the user equipment and the accessed cell is disconnected, and generally the radio link failure (RLF) and the handover failure (HOF) are also used.
  • RLF radio link failure
  • HAF handover failure
  • the system for improving mobile robustness in the embodiment of the present invention includes: a first network side device 10 and a second network side device 20.
  • the first network side device 10 is configured to determine, according to the received indication message for the user equipment that the connection failure occurs in the cell, whether the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment, where the network side is determined After the user equipment configures the offset of the relative neighboring cell in the EICIC scenario, the second network side device 20 to which the cell with the wrong cell parameter setting is sent sends a notification that the network side configures the offset of the relative neighbor cell in the EICIC scenario in the scenario of the user equipment;
  • the second network side device 20 is configured to: after receiving the notification that the user equipment is configured to switch the offset of the neighboring cell in the EICIC scenario from the network side of the first network side device 10, according to the configuration of the cell serving the user equipment In the EICIC scenario, the offset of the neighboring cell is determined, and the value of the decision signal of the corresponding cell is determined, and the reason for the connection failure is determined according to the value of the decision signal of the cell, where the first network device 10 is connected to the user equipment.
  • the network side device serving the user terminal is configured to: after receiving the notification that the user equipment is configured to switch the offset of the neighboring cell in the EICIC scenario from the network side of the first network side device 10, according to the configuration of the cell serving the user equipment In the EICIC scenario, the offset of the neighboring cell is determined, and the value of the decision signal of the corresponding cell is determined, and the reason for the connection failure is determined according to the value of the decision signal of the cell, where the first network device 10 is connected to the user equipment.
  • system of the embodiment of the present invention further includes:
  • the user equipment is configured to: after the connection failure occurs, determine the indication message, and send the determined indication message to the network side, to notify the network side to determine, according to the indication message, whether the user equipment is configured to switch the offset of the neighboring cell in the EICIC scenario. the amount.
  • the indication message for the user equipment in which the connection fails in the cell may be a Cell Radio Network Temporary Identity (C-RNTI) or used to indicate whether the neighboring cell in the EICIC scenario is configured for the user equipment.
  • C-RNTI Cell Radio Network Temporary Identity
  • Frequency shift toggles the offset information.
  • the indication message is C-RNTI.
  • the user equipment uses the C-RNTI corresponding to the cell with the wrong setting of the area parameter as the indication information;
  • the first network side device 10 determines the context information of the user equipment according to the C-RNTI, and determines whether the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment according to the context information.
  • the user equipment may send a radio link failure report (RLF REPORT) including the C-RNTI to the network side or send a radio resource control (RRC) connection reestablishment message including the C-RNTI;
  • RLF REPORT radio link failure report
  • RRC radio resource control
  • the first network side device 10 receives the RLF REPORT including the C-RNTI or receives the RRC connection reestablishment message including the C-RNTI.
  • the C-RNTI in the serving cell before the failure is reported in the air interface through the RLF REPORT, and the base station established by the RRC connection will include the C-RN.
  • the RLF REPORT of the RNTI is sent to the RLF-enabled base station (ie, the first network-side device 10, the same below), and the base station determines whether the UE is configured with ABS/bias (ie, the relative neighbor cell handover offset in the EICIC scenario, the same below) Then, the problem base station (ie, the second network side device to which the cell with the wrong cell parameter setting belongs, the same below) is notified by switching the HO REPORT message.
  • the RRC connection reestablishment base station may send the C-RNTI to the failed base station, the base station It is judged whether the UE is configured with ABS/bias; then, the problem base station is notified by the HO REPORT message.
  • the indication message is used to indicate whether the user equipment is configured with the offset of the frequency offset of the neighboring cell in the EICIC scenario.
  • the user equipment is used to indicate whether the information about the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment as the indication information;
  • the first network side device 10 determines whether the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment according to the information indicating whether the user equipment is configured with the relative neighbor cell handover offset in the EICIC scenario.
  • the user equipment may send, to the network side, an RLF REPORT including information indicating whether the user equipment is configured to switch the offset of the relative neighbor cell in the EICIC scenario;
  • the first network side device 10 receives the indication whether the user device is configured with a relative neighbor in the EICIC scenario.
  • the RLF REPOR of the information of the cell handover offset is the RLF REPOR of the information of the cell handover offset.
  • the UE sends an indication of whether the ABS/bias is configured in the RLF REPORT. Then, the RRC connection established base station sends an RLF REPORT including the indication that the ABS/bias is configured to the base station where the RLF is generated ( That is, the first network side device 10), the base station determines whether the UE is configured with ABS/bias (ie, the relative neighbor cell handover offset in the EICIC scenario); and then, notifies the problem base station by using the HO REPORT message (ie, the cell parameter setting is incorrect) The second network side device to which the cell belongs.
  • ABS/bias ie, the relative neighbor cell handover offset in the EICIC scenario
  • the first network side device 10 sends a notification that the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment through the HO REPORT.
  • the second network side device 20 determines the offset according to the wireless signal shield parameter value of the cell and the neighboring cell served by the user equipment, and the relative neighbor cell handover offset in the EICIC scenario configured for the cell served by the user equipment.
  • the wireless signal shield parameter value of the embodiment of the present invention includes, but is not limited to, at least one of the following parameter values: a reference signal received power (RSRP) value, and a reference signal received quality (reference Signal Received Quality, RSRQ) value.
  • RSRP reference signal received power
  • RSRQ reference Signal Received Quality
  • the wireless signal shield parameter value of the embodiment of the present invention is a wireless signal shield parameter value of the cell finally obtained by the user equipment before the connection failure occurs.
  • the information reported by the user equipment to the network side includes the wireless signal shield parameter value of the cell finally obtained before the connection failure occurs, so the first network side device 10 may connect the connection failure related information. It is sent to the second network side device 20.
  • the information reported to the network side includes the radio signal shield parameter value of the cell finally obtained before the connection failure occurs, and the cell information related to the connection failure is also included, so the first network side device 10 may send the connection failure related information to the second network side device 20.
  • a preferred method of processing is: the first network side device 10 directly forwards the information to the second network side device 20. That is, the first network side device 10 transmits the wireless signal shield parameter value of the cell finally obtained by the user equipment before the connection failure occurs, and the connection failure related information to the second network side device 20.
  • connection failure related information in the embodiment of the present invention includes, but is not limited to, at least one of the following information: a cell identifier of the serving cell when the connection fails, a cell identifier that the UE attempts to reestablish the connection after the connection fails, and an identifier of the UE in the serving cell. .
  • the second network side device 20 After determining the value of the decision signal shield of each cell, the second network side device 20 can judge the cause of the connection failure to see which reason is met.
  • the user equipment switches from A to B, according to the decision signal shield value of each cell, it is determined that the user equipment should perform RRC reconstruction in C, and the criteria for switching to the wrong cell are met, and the reason for the connection failure may be determined to be switched to the error.
  • Community For example: After the user equipment switches from A to B, a connection failure occurs.
  • the user configured ABS/BIAS according to the decision signal shield value of each cell, determines that the connection failure of the user equipment due to the inappropriate configuration of ABS/BIAS, it can be determined that the reason for the connection failure is ABS/BIAS, that is, EICIC related There is a problem with the configuration parameters.
  • the user equipment switches from A to B, according to the decision signal shield value of each cell, it is determined that the user equipment should perform RRC reestablishment in A, and the criterion of premature handover is met, and the reason for the connection failure may be determined to be premature handover.
  • a better processing method is: judging the shield value of each decision signal separately, if If the judgment result is consistent, it is determined that the judgment result is the cause of the connection failure; if the judgment result is inconsistent, the current result is discarded.
  • the wireless signal shield parameter value has RSRP and RSRQ
  • the RSRP is separately determined to be switched to the wrong cell
  • the RSRQ is separately determined to be switched to the wrong cell, and then the determination result is determined to be switched to the wrong cell; If it is determined that the handover is to the wrong cell and the RSRQ is determined to be switched too early, the current result is discarded.
  • the method when there are multiple types of wireless signal shield parameter values, the method is not limited to the foregoing processing manner, and other methods capable of determining when there are multiple types of wireless signal shield parameter values are applicable to the embodiments of the present invention. .
  • the second network side device 20 is determined to be due to the configuration failure
  • the offset of the neighboring cell causes a connection failure (that is, the determined connection failure occurs because the configuration parameters related to the EICIC are faulty), and the offset of the relative neighbor cell in the EICIC scenario is adjusted.
  • the network side device in the embodiment of the present invention may be a base station (such as a macro base station, a home base station, etc.), or an RN (relay) device, or other network side devices.
  • a base station such as a macro base station, a home base station, etc.
  • RN relay
  • the network side device in the system for improving mobile robustness is also provided in the embodiment of the present invention.
  • the network side device that sends the notification in the embodiment of the present invention includes: a determining module 300 and a notifying module 310.
  • the determining module 300 is configured to determine, according to the received indication message of the user equipment that the connection failure occurs in the cell, whether the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment.
  • the notification module 310 is configured to: after determining, by the network side, the relative neighbor cell handover offset in the EICIC scenario for the user equipment, send the network side to the second network side device to which the cell with the wrong cell parameter setting is configured, and configure the EICIC scenario for the user equipment. Notification of the offset of the neighboring cell handover.
  • the indication message is a C-RNTI
  • the determining module 300 determines the context information of the user equipment according to the C-RNTI, and determines whether to configure the relative neighbor cell handover offset in the EICIC scenario for the user equipment according to the context information.
  • the indication information is used to indicate whether to configure the relative neighbor cell frequency shifting in the EICIC scenario for the user equipment.
  • the information of the offset, the determining module 300 determines whether the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment according to the information indicating whether the user equipment is configured to switch the offset of the relative neighbor cell in the EICIC scenario.
  • the determining module 300 determines whether the radio link failure report RLF REPORT including the indication message is received before the user equipment configures the relative neighbor cell handover offset in the EICIC scenario.
  • the indication message is a C-RNTI
  • the determining module 300 determines whether the radio resource control RRC connection reestablishment message including the C-RNTI is received before the user equipment configures the relative neighbor cell handover offset in the EICIC scenario.
  • the notification module 310 sends a notification that the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment by switching the HO REPORT.
  • the network side device receiving the notification in the embodiment of the present invention includes: a shield magnitude determining module 400 and a reason determining module 410.
  • the metric value determining module 400 is configured to: after receiving the notification that the user equipment configures the offset of the neighboring cell in the EICIC scenario from the network side of the first network side device, according to the cell configured for the user equipment, the EICIC Determining the offset of the neighboring cell in the scenario, and determining the value of the decision signal shield of the corresponding cell, where the first network side device is a network side device serving the user terminal when the user equipment fails to connect;
  • the reason determining module 410 is configured to determine, according to the decision signal shield value of the cell, a reason for the connection failure.
  • the shield magnitude determining module 400 determines the offset according to the wireless signal shield parameter value of the cell and the neighboring cell served by the user equipment, and the relative neighbor cell handover offset in the EICIC scenario configured for the cell served by the user equipment.
  • the decision signal shield value corresponding to the cell.
  • the user equipment in the embodiment of the present invention includes: a message determining module 500 and a sending module 510.
  • the message determining module 500 is configured to determine an indication message after a connection failure occurs;
  • the sending module 510 is configured to send the determined indication message to the network side, to notify the network side to determine, according to the indication message, whether the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment.
  • the message determining module 500 uses the C-RNTI corresponding to the cell with the wrong cell parameter setting as the indication information; or
  • the message determining module 500 will use the information indicating whether the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment as the indication information.
  • the sending module 510 sends an RLF REPORT containing the indication message to the network side.
  • the indication message is a C-RNTI; the sending module 510 sends an RRC connection reestablishment message including a C-RNTI to the network side.
  • the network side device that sends the notification according to different application scenarios may also become the network side device that receives the notification; correspondingly, the network side device that receives the notification may also become the network side device that sends the notification, so preferably, the figure
  • the module in the network side device that sends the notification in 5 and the module in the network side device that receives the notification in FIG. 6 can also be combined in one network side device, and select the corresponding module to work according to the need. As shown in FIG.
  • Step 601 The first network side device according to the received indication message for the user equipment that fails to connect in the cell, Determining whether the network side configures the offset of the relative neighbor cell in the EICIC scenario for the user equipment;
  • Step 602 After determining that the network side configures the offset of the relative neighboring cell in the EICIC scenario for the user equipment, the first network side device sends the network side to the second network side device to which the cell with the wrong cell parameter setting is configured, and configures the EICIC for the user equipment. Notification of the offset of the neighboring cell handover in the scenario.
  • the first network side device determines the context information of the user equipment according to the C-RNTI, and determines, according to the context information, whether to configure the relative neighbor cell handover in the EICIC scenario for the user equipment. Offset.
  • the first network side device configures the EICIC according to whether the user equipment is configured to be In the scenario, the information about the handover offset of the neighboring cell is determined, and whether the handover offset of the relative neighbor cell in the EICIC scenario is configured for the user equipment.
  • the method further includes:
  • the first network side device receives the RLF REPORT containing the indication message.
  • the step 601 may further include:
  • the first network side device receives a radio resource control RRC connection reestablishment message including a C-RNTI.
  • the first network side device sends a notification that the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment by using the HO REPORT.
  • the method for improving mobility robustness of the second network side device includes the following steps: Step 701: The second network side device configures EICIC for the user equipment on the network side that receives the device from the first network side device. After the notification of the offset of the neighboring cell in the scenario, the offset value of the neighboring cell in the EICIC scenario is determined according to the cell configured for the user equipment, and the decision signal shield value of the corresponding cell is determined, where the first network side device a network side device that serves the user terminal when the user device fails to connect;
  • Step 702 The second network side device determines, according to the value of the decision signal of the cell, the reason for the connection failure. Preferably, in step 701, the second network side device switches the offset according to the wireless signal shield parameter value of the cell and the neighboring cell served by the user equipment, and the relative neighbor cell in the EICIC scenario configured for the cell served by the user equipment. , determining a decision signal shield value corresponding to the cell.
  • FIG. 6 and FIG. 7 can synthesize a process to form a method for improving the robustness of the mobile, that is, first performing step 601 and step 602, and then performing step 701 and step 702.
  • Step 801 The user equipment determines an indication message after a connection failure occurs;
  • Step 802 The user equipment sends a determined indication message to the network side, where the network side is notified to determine according to the indication message. Whether to switch the offset of the relative neighbor cell in the EICIC scenario for the user equipment.
  • the user equipment uses the C-RNTI corresponding to the cell with the wrong cell parameter setting as the indication information; or
  • step 801 the user equipment is configured to indicate whether the information about the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment as the indication information.
  • the user equipment sends an RLF REPORT containing the indication message to the network side.
  • the user equipment sends an RRC connection reestablishment message including a C-RNTI to the network side.
  • the first network side device and the second network side device may be the same type of network side device, for example, may be Macro; or may be different types of network side devices, for example, one is Macro - one is Pico.
  • the value of the radio signal shield parameter value of the cell is an RSRP value.
  • the cell radio signal shield parameter value is other values and the cell.
  • the value of the wireless signal shield parameter is similar to the RSRP value, and will not be described here.
  • Pico 1 and Pico 2 are two low-power base stations under Macro coverage.
  • Macro cell of Macro Base Station
  • 8db Bias for Cell 1 under Pico 1 and Cell 2 under Pico 2.
  • the UE switches from the cell Cell A under the Macro to the cell Cell 1 under the Pico 1;
  • the UE After the handover is completed, the UE fails to connect in Cell 1 of Pico 1;
  • the RS of the Macro CELL A of the last measurement of the UE before the connection failure is -105dbm, CELL 1
  • the RSRP is -114dbm, and the RSRP of CELL 2 is -109dbm;
  • the UE performs the RRC connection re-establishment in the macro. After the re-establishment is successful, the UE reports the RLF report of the C-RNTI of the UE that is connected to the failed base station to the base station where the re-established cell is located, that is, the macro;
  • Macro sends a radio link failure indication (RLF Indication) message to the base station where RLF occurs, ie picol; after receiving the radio link failure indication message, Pico 1 determines that the cause of the problem is 'switching too early', and Picol is based on RLF REPORT
  • the C-RNTI determines that the UE is configured with ABS/bias
  • it sends a HO Report message to the macro base station where the problem is located, that is, Macro, and carries the RSRP information of each cell that is last measured before the RLF occurs, and indicates that the UE is configured with ABS. /bias information;
  • Macro A Based on the RSRP received and the Bias set by Macro A for Pico 1 and Pico 2, Macro A performs the exact premature handover and the decision to switch to the wrong cell. Specifically:
  • the UE Since Cell 2 is -101dBm higher than Cell A's -105dBm, from the macro point of view, the UE should actually choose to perform RRC connection reestablishment in Cell 2. Therefore, it should be actually that the UE fails to connect after switching from Macro A to Cell 1. Then, Cell 2 should be selected for RRC connection reestablishment. In this scenario, for a user equipment configured with EICIC, switch from A to B. The process of selecting C after connection failure has a lot to do with the configuration of EICIC parameters, so the result of Macro A judgment is the EICIC parameter configuration problem.
  • Scenario 2 Both Pico 1 and Pico 2 are two low-power base stations under Macro A coverage. In order to perform Range Extension on Pico, Macro A sets 8db Bias for both Cell 1 under Pico 1 and Cell 2 under Pico 2.
  • the UE switches from the cell Cell A under Macro A to the cell Cell 1 under Pico 1;
  • the UE After the handover is completed, the UE fails to connect in Cell 1 of Pico 1;
  • the RSRP of the last measured CELL A of the UE before the connection fails is -105dbm
  • the RSRP of CELL 1 is -114dbm
  • the RSRP of CELL 2 is -109dbm;
  • the UE performs RRC connection reestablishment in Cell A, and the reconstruction fails.
  • Macro A sends a radio link failure indication message to Pico 1;
  • Pico 1 After receiving the message, Pico 1 determines that there is a second radio link failure indication message and discards the message.
  • the UE initiates an RRC connection setup in the Idle state of the other cell Cell B. After the connection is successfully established, the UE reports the connection failure report to the base station B where the Cell B is located.
  • the Report includes the C-RNTI of the UE at the failed base station; Sending a radio link failure indication message including a connection failure report;
  • the Picol judges that the handover is too early according to the information reported by the UE, and according to the radio link failure indication message
  • the C-RNTI and the UE context saved by the base station determine that the UE is configured with ABS/BIAS;
  • Pico 1 sends a HO Report message to the macro base station where the problem is located, that is, Macro A, and carries the RSRP information of each cell that the UE measured last time before the RLF and the information indicating that the UE configures ABS/bias;
  • Macro A Based on the received RSRP and the Bias set by Macro A for Pico 1 and Pico 2, Macro A makes the exact cause of the failure. Specifically:
  • the UE Since Cell 2 is -lOldBm higher than Cell A's -105dBm, from the perspective of Macro A, the UE should actually choose to perform RRC connection reestablishment in Cell 2. Therefore, the problem should actually be that the UE fails to connect after switching from Macro A to Cell 1. Then, Cell 2 should be selected for RRC connection reestablishment. In this scenario, for a user equipment configured with EICIC, switch from A to B. , the process of selecting C after connection failure and EICIC The configuration of the parameters has a lot to do with, so the result of the Macro A judgment is the EICIC parameter configuration problem.
  • Scenario 2 is a scenario in which the UE fails to reestablish the RRC connection, enters the IDLE state, and then initiates a new RRC connection establishment.
  • pico 1 judges that the handover is too early according to the current mechanism, and finds that the UE is saved in the Picol Context according to the C-RNTI information in the RLF REPORT of the UE. Then, it is determined that the UE is configured with ABS/BIAS. Then, the RSRP information and the indication configured with ABS/bias are transmitted to Macro A through the HO Report message, and Macro A is based on the received RSRP and the like, and Macro A is Pico. 1. The bias set by Pico2 is used for further and more accurate judgment.
  • Scenario 3 Both Pico 1 and Pico 2 are two low-power base stations under Macro A coverage. In order to perform Range Extension on Pico, Macro A sets 8db Bias for both Cell 1 under Pico 1 and Cell 2 under Pico 2.
  • the UE switches from the cell Cell A under Macro A to the cell Cell 1 under Pico 1;
  • the UE After the handover is completed, the UE fails to connect in Cell 1 of Pico 1;
  • the RSRP of the last measured CELL A of the UE before the connection fails is -105dbm
  • the RSRP of CELL 1 is -114dbm
  • the RSRP of CELL 2 is -109dbm;
  • the UE performs RRC connection reestablishment in Cell A, and the reconstruction fails.
  • Macro A sends a radio link failure indication message to Pico 1;
  • Pico 1 After receiving the message, Pico 1 determines that there is a second radio link failure indication message and discards the message.
  • the UE initiates an RRC connection establishment in another cell Cell B in the Idle state. After the connection is successfully established, the UE reports the connection failure report to the base station B where the cell B is located, and the report includes whether the UE configures ABS/bias;
  • the base station B sends a radio link failure indication message including the connection failure report to the Pico 1;
  • Pico 1 sends a HO Report message to the macro base station where the problem is located, that is, Macro A, and carries the RSRP information of each cell that the UE measured last time before the RLF and the information indicating that the UE configures ABS/bias;
  • Macro A Based on the received RSRP and the Bias set by Macro A for Pico 1 and Pico 2, Macro A makes the exact cause of the failure. Specifically:
  • the UE Since Cell 2 is -lOldBm higher than Cell A's -105dBm, from the perspective of Macro A, the UE should actually choose to perform RRC connection reestablishment in Cell 2. Therefore, the problem should actually be that the UE fails to connect after switching from Macro A to Cell 1. Then, Cell 2 should be selected for RRC connection reestablishment. In this scenario, for a user equipment configured with EICIC, switch from A to B. The process of selecting C after the connection failure has a lot to do with the configuration of the EICIC parameter, so the result of the Macro A judgment is the EICIC parameter configuration problem.
  • Scenario 3 is a scenario in which the UE fails to perform RRC connection reestablishment, enters the IDLE state, and then initiates a new RRC connection setup. Similarly, after receiving the second RLF Indication message, Pico 1 will judge that the handover is too early according to the current mechanism. Then, the HORP message is used to transmit the RSRP information and the indication of whether the ABS/bias is reported by the UE to the Macro A. The Macro A further and more accurately according to the received RSRP and the information and the bias of the Pico and Pico2 set by the Macro A. Judge.
  • Picol is at the junction of Macro A, Macro B, and Macro C.
  • Cell A, Cell B, and Cell C are cells under three Macro base stations, respectively, and Cell 1 is a cell under Picol.
  • 8 8 Bias is set for Cell 1.
  • the UE switches from the cell Cell A under Macro A to the cell Cell 1 under Pico 1;
  • the UE After the handover is completed, the UE fails to connect in Cell 1 of Pico 1;
  • the RSRP of the last measured CELL A of the UE before the connection fails is -105dbm
  • the RSRP of CELL 1 is -114dbm
  • the RSRP of CELL 2 is -109dbm;
  • the UE performs the RRC connection reestablishment on the Cell A. After the reestablishment succeeds, the connection fails to be reported to the base station (ie, Macro A) of the reestablished cell, and the report includes information about whether the UE is configured with ABS/bias;
  • Macro A sends an RLF Indication message containing the Report to the base station where the RLF occurs, that is, the MacroB base station;
  • the Macro B base station determines that the cause of the problem is 'switching too early' and sends a HO Report message to the macro base station where the problem is located, that is, MacroA, and carries the RSRP information of the last measurement before the RLF of the UE and the information of the ABS/BIAS configured by the UE. .
  • Macro A determines the exact cause of the failure based on the RSRP received and the Bias set by Macro A for Pico 1. Specifically:
  • the UE does not consider the AB S and Bias information set by Macro A for Pico 1 when performing cell selection, while Macro A is performing after obtaining RSRP.
  • Picol is at the junction of Macro A, Macro B, and Macro C.
  • Cell A, Cell B, and Cell C are cells under three Macro base stations, respectively, and Cell 1 is a cell under Picol.
  • Macro A, Macro B, and Macro C old In order to carry out Range for Celll Extension, Macro A, Macro B, and Macro C old) ⁇ Set 8db Bias for Cell 1.
  • the UE switches from the cell CELL A under the Macro A to the cell Cell B under the MacroB, and the RLF occurs after the handover is completed;
  • the RSRP of the last measured CELL A of the UE before the connection fails is -105dbm, the RSRP of Cell A is -114dbm, and the RSRP of CELL B is -109dbm;
  • the UE performs RRC connection reestablishment on Cell A, and the reestablishment fails. After the UE passes the idle state, the UE initiates an RRC connection establishment in Cell C under Macro C.
  • the UE reports the RLF Report (including the information about whether the UE is configured with ABS/BIAS) to the serving base station, that is, Macro C;
  • Macro C sends an RLF Indication message to the base station where the RLF occurs, that is, Macro B;
  • Macro B judges that the cause of the problem is 'switching too early', sending a HO Report message to the Macro A where the problem is located, and carrying the RSRP information of the last measurement before the UE occurred in the RLF and the information of the ABS/BIAS configured by the UE;
  • Macro A determines the exact cause of the failure based on the RSRP received and the Bias set by Macro A for Pico 1. Specifically:
  • the UE does not consider the AB S and Bias information set by Macro A for Pico 1 when performing cell selection, while Macro A is performing after obtaining RSRP.
  • Scenario 5 is a scenario in which the UE fails to reestablish the RRC connection, enters the IDLE state, and then initiates a new RRC connection establishment.
  • Macro B judges that the handover is too early according to the current mechanism, and then passes the RSRP information and the information of the UE configured with BIAS/abs to the Macro A through the HO Report message.
  • Macro A makes further and more accurate judgments based on information such as RSRP received and Cell A set by Cell A under Macro A for Cell A in Pico 1.
  • the network side device for improving mobile robustness in the embodiment of the present invention includes: a first processing module 1310 and a second processing module 1320.
  • the first processing module 1310 is configured to determine, according to the received indication message of the user equipment that the connection failure occurs in the cell, whether the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment.
  • the second processing module 1320 is configured to: after determining that the network side is configured to switch the offset of the neighboring cell in the EICIC scenario, configure the offset of the neighboring cell in the EICIC scenario according to the cell configuration for the user equipment, and determine that the offset occurs. The reason for the connection failure.
  • the indication message for the user equipment in which the connection fails in the cell may be C-RNTI or information indicating whether the user equipment is configured with the relative neighbor frequency shift handover offset in the EICIC scenario.
  • the indication message is C-RNTI.
  • the user equipment uses the C-RNTI corresponding to the cell with the wrong setting of the area parameter as the indication information;
  • the first processing module 13 10 C-RNTI the user equipment determines the context information, the context information is determined according to whether the neighbor cell switching offset relative to the user equipment is configured EICIC scene.
  • the user equipment may send an RLF REPORT including a C-RNTI to the network side or send an RRC connection reestablishment message including a C-RNTI;
  • the first processing module 1310 receives the RLF REPORT including the C-RNTI or receives the RRC connection reestablishment message including the C-RNTI.
  • the indication message is used to indicate whether the user equipment is configured with the offset of the frequency offset of the neighboring cell in the EICIC scenario.
  • the user equipment is used to indicate whether the information about the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment as the indication information;
  • the first processing module 1310 determines whether the relative neighbor cell handover offset in the EICIC scenario is configured for the user equipment according to the information indicating whether the user equipment is configured with the relative neighbor cell handover offset in the EICIC scenario.
  • the user equipment may send, to the network side, an RLF REPORT including information indicating whether the user equipment is configured to switch the offset of the relative neighbor cell in the EICIC scenario;
  • the first processing module 1310 receives an RLF REPOR including information indicating whether to configure a relative neighbor cell handover offset in the EICIC scenario for the user equipment.
  • the second processing module 1320 determines the cell according to the wireless signal shield parameter value of the cell and the neighboring cell served by the user equipment, and the relative neighbor cell handover offset in the EICIC scenario configured for the cell served by the user equipment. Corresponding decision signal shield value.
  • the wireless signal shield parameter value of the embodiment of the present invention includes, but is not limited to, at least one of the following parameter values:
  • the wireless signal shield parameter value of the embodiment of the present invention is a wireless signal shield parameter value of the cell finally obtained by the user equipment before the connection failure occurs.
  • the information reported to the network side includes the wireless signal shield parameter value of the last obtained cell before the connection failure occurs.
  • the second processing module 1320 can determine the cause of the connection failure to see which reason is met.
  • the user equipment switches from A to B, according to the decision signal shield value of each cell, it is determined that the user equipment should perform RRC reconstruction in C, and the criteria for switching to the wrong cell are met, and the reason for the connection failure may be determined to be switched to the error. Community.
  • a connection failure occurs.
  • the user configures ABS/BIAS to determine whether the connection failure of the user equipment due to the inappropriate configuration of the ABS/BIAS is determined according to the decision signal shield value of each cell, and the reason for the connection failure is that the ABS/BIAS or EICIC related configuration is determined. There is a problem with the parameters.
  • the user equipment switches from A to B, according to the decision signal shield value of each cell, it is determined that the user equipment should perform RRC reestablishment in A, and the criterion of premature handover is met, and the reason for the connection failure may be determined to be premature handover.
  • a better processing method is: judging the shield value of each decision signal separately, if If the judgment result is consistent, it is determined that the judgment result is the cause of the connection failure; if the judgment result is inconsistent, the current result is discarded.
  • the wireless signal shield parameter value has RSRP and RSRQ
  • the RSRP is separately determined to be switched to the wrong cell
  • the RSRQ is separately determined to be switched to the wrong cell, and then the determination result is determined to be switched to the wrong cell; If it is determined that the handover is to the wrong cell and the RSRQ is determined to be switched too early, the current result is discarded.
  • the method when there are multiple types of wireless signal shield parameter values, the method is not limited to the foregoing processing manner, and other methods capable of determining when there are multiple types of wireless signal shield parameter values are applicable to the embodiments of the present invention. .
  • the second processing module 1320 determines that the connection failure occurs due to the configured handover offset of the neighboring cell in the EICIC scenario according to the cause of the connection failure (ie, the determined cause of the connection failure is EICIC related).
  • the configuration parameter has a problem.
  • the second network side device to which the cell with the wrong cell parameter setting is sent sends a notification that the relative neighbor cell handover offset setting error is set in the EICIC scenario.
  • the second processing module 1320 sends a notification that the relative neighbor cell handover offset setting error in the EICIC scenario is sent by the HO REPORT.
  • the network side device in the embodiment of the present invention may be a base station (such as a macro base station, a home base station, etc.), or may be an RN device, or may be another network side device.
  • the second network side device adjusts the offset of the relative neighbor cell handover in the EICIC scenario.
  • a method for improving mobile robustness is provided in the embodiment of the present invention (see FIG. 14).
  • the principle of solving the problem is similar to the network side device (refer to FIG. 13) of the embodiment of the present invention.
  • the implementation of the method can be referred to the equipment of the system, and the repetition will not be repeated.
  • Step 1410 The first network side device determines, according to the received indication message of the user equipment that the connection failure occurs in the cell, whether the network side configures the relative neighbor cell handover offset in the EICIC scenario for the user equipment.
  • Step 1420 After determining that the network side configures the offset of the relative neighboring cell in the EICIC scenario for the user equipment, the first network side device determines the offset of the relative neighboring cell in the EICIC scenario according to the cell configured for the user equipment. Corresponding to the decision signal shield value of the cell, and determining the cause of the connection failure according to the decision signal shield value of the cell.
  • the first network side device determines the context information of the user equipment according to the C-RNTI, and determines whether to configure the relative neighbor cell handover in the EICIC scenario for the user equipment according to the context information. Offset;
  • the first network side device configures the EICIC according to whether the user equipment is configured.
  • the information about the handover offset of the neighboring cell is determined, and whether the handover offset of the relative neighbor cell in the EICIC scenario is configured for the user equipment.
  • the method further includes:
  • the first network side device receives the RLF REPORT containing the indication message.
  • the step 1410 may further include: the first network side device receives the radio resource control RRC connection reestablishment message including the C-RNTI.
  • the first network side device switches the offset according to the wireless signal shield parameter value of the cell and the neighboring cell served by the user equipment, and the relative neighbor cell in the EICIC scenario configured for the cell served by the user equipment. , determining a decision signal shield value corresponding to the cell.
  • the method further includes:
  • the first network side device sends, according to the reason that the connection failure occurs, that the connection failure occurs due to the configured handover offset of the neighboring cell in the EICIC scenario, and sends the second network side device to which the cell with the wrong cell parameter setting belongs.
  • the notification of the offset setting of the relative neighbor cell handover is incorrect.
  • the first network side device sends a notification that the relative neighbor cell switching offset setting error is set in the EICIC scenario by switching the HO REPORT.
  • the first network side device and the second network side device may be the same type of network side device, for example, may be Macro; or may be different types of network side devices, for example, one is Macro and one is Pico.
  • the value of the radio signal shield parameter value of the cell is an RSRP value.
  • the cell radio signal shield parameter value is other values and the cell.
  • the value of the wireless signal shield parameter is similar to the RSRP value, and will not be described here.
  • the UE switches from the cell Cell A under the Macro to the cell Cell 1 under the Pico 1;
  • the UE After the handover is completed, the UE fails to connect in Cell 1 of Pico 1;
  • the RS of the Macro CELL A measured by the UE last time before the connection fails is -105dbm
  • the RSRP of CELL 1 is -114dbm
  • the RSRP of CELL 2 is -109dbm;
  • the UE performs the RRC connection re-establishment in the macro. After the re-establishment is successful, the UE reports the RLF report of the C-RNTI of the UE that is connected to the failed base station to the base station where the re-established cell is located, that is, the macro;
  • the Macro sends an RLF Indication message to the base station where the RLF occurs, ie picol;
  • Pico 1 After receiving the radio link failure indication message, Pico 1 determines that the UE is configured with AB S/bias according to the C-RNTI in the radio link failure indication message, and sets Pico 1 and Pico 2 according to the received RSRP and Macro A. Bias, the exact cause of the failure, the specific:
  • the UE does not consider the ABS and Bias information set by Macro A for Pico when performing cell selection, and Picol will judge when it obtains RSRP.
  • Picol judges that this failure is related to the configuration parameters related to EICIC, and sends a HO Report message to Macro A where the problem is located to notify Macro A that there is a problem with the configuration parameters related to EICIC;
  • Macro A adjusts the corresponding configuration parameters.
  • Scenario 7 Both Pico 1 and Pico 2 are two low-power base stations under Macro A coverage. In order to perform Range Extension on Pico, Macro A sets 8db Bias for both Cell 1 under Pico 1 and Cell 2 under Pico 2.
  • FIG. 15 in a schematic diagram of a method for improving mobile robustness in scenario 7 of the embodiment of the present invention:
  • the UE switches from the cell Cell A under Macro A to the cell Cell 1 under Pico 1;
  • the UE After the handover is completed, the UE fails to connect in Cell 1 of Pico 1;
  • the RSRP of the last measured CELL A of the UE before the connection fails is -105dbm
  • the RSRP of CELL 1 is -114dbm
  • the RSRP of CELL 2 is -109dbm;
  • the UE performs RRC connection reestablishment in Cell A, and the reconstruction fails.
  • Macro A sends a radio link failure indication message to Pico 1;
  • Pico 1 determines that there is a second radio link failure indication message and discards the message.
  • the UE initiates an RRC connection setup in the Idle state of the other cell Cell B. After the connection is successfully established, the UE reports the connection failure report to the base station B where the Cell B is located.
  • the Report includes the C-RNTI of the UE at the failed base station; Sending a radio link failure indication message including a connection failure report;
  • Pico 1 After receiving the radio link failure indication message, Pico 1 determines that the UE is configured with ABS/bias according to the C-RNTI in the radio link failure indication message, and sets the PRP 1 and Pico 2 according to the received RSRP and Macro A. Bias, the exact cause of the failure, the specific:
  • Picol judges that this failure is related to the configuration parameters related to EICIC, and sends a HO Report message to Macro A where the problem is located to notify Macro A that there is a problem with the configuration parameters related to EICIC;
  • Macro A adjusts the corresponding configuration parameters.
  • Scenario 7 is a scenario in which the UE fails to reestablish the RRC connection, enters the IDLE state, and then initiates a new RRC connection establishment.
  • picol judges that the handover is too early according to the current mechanism, and at the same time, according to the C-RNTI information in the RLF REPORT of the ue, finds that the UE saves the picol Context information, and then judges The UE is configured with ABS/BIAS. Then, according to the configuration information of the UE and the information in the RLF REPORT, it is judged that the failure is related to the EICIC related parameter, and the EICIC related parameter setting is problematic through the ho report macro.
  • Scenario 8 Both Pico 1 and Pico 2 are two low-power base stations under Macro A coverage. In order to perform Range Extension on Pico, Macro A sets 8db Bias for both Cell 1 under Pico 1 and Cell 2 under Pico 2.
  • the UE switches from the cell Cell A under Macro A to the cell Cell 1 under Pico 1;
  • the UE After the handover is completed, the UE fails to connect in Cell 1 of Pico 1;
  • the RSRP of the last measured CELL A of the UE before the connection fails is -105dbm
  • the RSRP of CELL 1 is -114dbm
  • the RSRP of CELL 2 is -109dbm;
  • the UE performs RRC connection reestablishment in Cell A, and the reconstruction fails.
  • Macro A sends a radio link failure indication message to Pico 1;
  • Pico 1 determines that there is a second radio link failure indication message and discards the message.
  • the UE initiates an RRC connection setup in the Idle state of the other cell Cell B. After the connection is successfully established, the UE reports the connection failure report to the base station B where the Cell B is located, and the Report includes whether the UE configures ABS/bias;
  • the base station B sends a radio link failure indication message including a connection failure report to the Picol;
  • Pico 1 After receiving the radio link failure indication message, Pico 1 determines that the UE is configured with ABS/bias according to the C-RNTI in the radio link failure indication message, and sets the PRP 1 and Pico 2 according to the received RSRP and Macro A. Bias, the exact cause of the failure, the specific:
  • Picol judges that this failure is related to the configuration parameters related to EICIC, and sends a HO Report message to Macro A where the problem is located to notify Macro A that there is a problem with the configuration parameters related to EICIC;
  • Macro A adjusts the corresponding configuration parameters.
  • Scenario 8 is a scenario in which the UE fails to reestablish the RRC connection, enters the IDLE state, and then initiates a new RRC connection establishment. Similarly, after receiving the second RLF Indication message, Pico 1 will judge that the handover is too early according to the current mechanism. Then, the HORP message is used to transmit the RSRP information and the indication of whether the ABS/bias is reported by the UE to the Macro A. The Macro A further and more accurately according to the received RSRP and the information and the bias of the Pico and Pico2 set by the Macro A. Judge.
  • Picol is at the junction of Macro A, Macro B, and Macro C.
  • Cell A, Cell B, and Cell C are cells under three Macro base stations, respectively, and Cell 1 is a cell under Picol.
  • 8 8 Bias is set for Cell 1.
  • the UE switches from the cell Cell A under Macro A to the cell Cell 1 under Pico 1;
  • the UE After the handover is completed, the UE fails to connect in Cell 1 of Pico 1;
  • the RSRP of the last measured CELL A of the UE before the connection fails is -105dbm
  • the RSRP of CELL 1 is -114dbm
  • the RSRP of CELL 2 is -109dbm;
  • the UE performs the RRC connection reestablishment on the Cell A. After the reestablishment succeeds, the connection fails to be reported to the base station (ie, Macro A) of the reestablished cell, and the report includes information about whether the UE is configured with ABS/bias;
  • Macro A sends an RLF Indication message containing the Report to the base station where the RLF occurs, that is, the MacroB base station;
  • the macroB determines, according to the C-RNTI in the radio link failure indication message, that the UE is configured with ABS/bias, and according to the received RSRP and the Bias set by Pico 1 for Macro A, the exact B is determined.
  • the switching is too early and the decision to switch to the wrong cell, specifically:
  • the UE rebuilds in Cell A, but the UE does not consider the AB S and Bias information set by Macro A for Pico 1 when performing cell selection, and Macro A is doing after obtaining RSRP.
  • MacroB judges that the failure is related to the configuration parameters related to EICIC, and sends a HO Report message to Macro A where the problem is located to notify Macro A that there is a problem with the configuration parameters related to EICIC;
  • Macro A adjusts the corresponding configuration parameters.
  • Pico 1 is at the junction of Macro A, Macro B, and Macro C.
  • Cell A, Cell B, and Cell C are cells under three Macro base stations, respectively, and Cell 1 is a cell under Picol.
  • 8 8 Bias is set for Cell 1.
  • the UE switches from the cell CELL A under Macro A to the cell Cell B under MacroB, and occurs after the handover is completed.
  • the RSRP of the last measured CELL A of the UE before the connection fails is -105dbm, the RSRP of Cell A is -114dbm, and the RSRP of CELL B is -109dbm;
  • the UE performs RRC connection reestablishment on Cell A, and the reestablishment fails. After the UE passes the idle state, the UE initiates an RRC connection establishment in Cell C under Macro C.
  • the UE reports the RLF Report (including the information about whether the UE is configured with ABS/BIAS) to the serving base station, that is, Macro C;
  • Macro C sends an RLF Indication message to the base station where the RLF occurs, that is, Macro B;
  • the macroB After receiving the radio link failure indication message, the macroB determines, according to the C-RNTI in the radio link failure indication message, that the UE is configured with ABS/bias, and according to the received RSRP and the Bias set by Pico 1 for Macro A, the exact B is determined.
  • the judgment of the cause of failure specific:
  • MacroB judges that the failure is related to the configuration parameters related to EICIC, and sends a HO Report message to Macro A where the problem is located to notify Macro A that there is a problem with the configuration parameters related to EICIC;
  • Macro A adjusts the corresponding configuration parameters.
  • Scenario 10 is a scenario in which the UE fails to reestablish the RRC connection, enters the IDLE state, and then initiates a new RRC connection setup.
  • Macro B judges that the handover is too early according to the current mechanism, and then passes the RSRP information and the information of the UE configured with BIAS/abs to the Macro A through the HO Report message.
  • Macro A makes further and more accurate judgments based on information such as RSRP received and Cell A set by Cell A under Macro A for Cell A in Pico 1.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that the computer Or performing a series of operational steps on other programmable devices to produce computer-implemented processing such that instructions executed on a computer or other programmable device are provided for implementing a block in a flow or a flow and/or block diagram of the flowchart Or the steps of the function specified in multiple boxes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及无线通信技术领域,特别涉及一种提高移动健壮性的方法、系统和设备,用以提高在异构网(Hetnet)场景下宏基站(Macro)和微基站(Pico)的组网环境中进行移动健壮性的判断准确率。本方法包括:第一网络侧设备在确定网络侧为用户设备配置增强的小区间干扰协调(EICIC)场景下相对邻小区切换偏移量后,向小区参数设置错误的小区所属的第二网络侧设备发送网络侧为用户设备配置EICIC场景下相对邻小区切换偏移量的通知。由于在Hetnet场景考虑到多层覆盖的情况,提高了Macro和Pico的组网环境中进行移动健壮性的判断准确率;进一步提高了移动健壮性优化(MRO)的性能。

Description

一种提高移动健壮性的方法、 系统和设备 本申请要求在 2012年 02月 01 日提交中国专利局、 申请号为 201210022631.4、 发明 名称为"一种提高移动健壮性的方法、 系统和设备"的中国专利申请的优先权, 其全部内容 通过引用结合在本申请中。 技术领域
本发明涉及无线通信技术领域, 特别涉及一种提高移动健壮性的方法、 系统和设备。
背景技术
减少操作管理工作的复杂性, 降低运营维护成本, 是通信运营商的迫切要求。 在下一 代的网络中, 希望通过引入网络自组织的机制, 减少网络规划和操作维护的人工参与, 降 低网络的建设和运营成本。正是在这样的背景下,演进的地面无线接入( Evolved Universal Terrestrial Radio Access , E-UTRA ) 系统的自组织网络( Self Organizing Networks , SON ) 特性作为第三代移动通信标准化组织 (3rd Generation Partnership Project, 3GPP )一个工 作议题进行研究。 SON技术包括了自配置、 自优化和自治愈, 自优化是其中一项重要特 性。
SON 自优化功能需要监测一些网络和系统性能参数作为输入, 如网络性能指标的统 计、 故障告警、 通知等, 在对输入数据进行分析后, 优化算法做出决策, 最后自动触发相 关网络节点的调整操作。
在移动网络中, 切换参数设置不合适会严重影响系统性能, 最严重的情况是导致用户 掉话。 因此移动性参数自优化是 E-UTRA系统 SON所要解决的最重要的问题之一, 要能 够减少切换失败的发生, 减少不当切换导致的用户掉话, 以及减少不必要的切换, 避免这 些切换对系统资源的无效使用。
移动健壮性优化( Mobility Robustness Optimization, MRO )首先要丈的, 是要准确地 判断问题的根本原因。
判断过早切换的准则如下:
用户设备 ( User Equipment, UE )在切换到目标小区后很快发生连接失败, 然后 UE 在源小区重建连接。
判断切换到错误小区的准则如下:
UE 在切换过程中或切换完成后很快发生连接失败 (无论是在源小区还是在目标小 区) , 然后 UE在一个第三方小区(既非源小区、 也非目标小区)重建连接。
随着日益增长的数据速率以及业务负载的要求,传统的用宏基站单层覆盖提供接入的 方法已经不能满足需求。 釆用分层覆盖, 在热点地区或者室内部署一些低功率的基站(如 微基站(Pico ) /家庭基站(Femto ) /中继 (Relay ) ) 能够很好的解决这种问题。
这种低功率的基站是一种应用在家庭室内环境、 办公环境、 或其它热点小覆盖环境下 的基站设备, 能够使得运营商提供更高数据速率、 更低成本的有吸引力的业务。 为了减少 分层覆盖中的千扰问题, 引入了静默子帧(Almost Blank Subframe, ABS ), 该子帧在千扰 基站一侧进行配置, 通常在宏(Macro )基站与 Pico的组网环境中, 一般由 Macro基站设 置 ABS子帧, 同时, 设置 Macro基站和 Pico之间的偏移量(Bias )。 这样就扩大了 Pico 的覆盖范围。
在 R10的移动健壮性方案中,只考虑了普通的宏基站单层覆盖的方法,没有考虑异构 网 (Hetnet ), 即宏基站、 低功率基站、 家庭基站混合组网的场景下 Macro基站和 Pico的 组网环境。例如,根据目前的 MRO的判断方法,没有考虑 Macro基站为 Pico设置 ABS 和 Bias的情况, 这样可能将 EICICC相关参数配置问题误判为切换过早。 如图 1所示, 实线 是 Pico本来的覆盖范围, 虚线是 Macro基站为 Picol和 Pico2配置了 ABS和 Bias后的覆 盖范围。但是 Macro基站对于 Picol和 Pico2的 Bias是通过无线资源控制( Radio Resource Control, RRC )信令为连接态的 UE 配置的, 因此只适用于连接态的切换。 对于 UE从 Macro基站切换到 Picol之后发生了连接失败,随后 UE进行 RRC连接重建的小区是 Macro 基站小区, 依据现有的移动健壮性机制, 把问题原因诊断为切换过早。 但实际上, 这个诊 断可能是不正确的, 因为导致失败问题的根本原因可能是 EICICC相关参数配置的问题, 切换后 Picol小区的信号并不足够好, 导致掉话。 Macro基站调整 EICIC相关参数应当选 择 Pico2 小区, 而不是 Picol小区进行切换。
综上所述, 目前由于移动健壮性方案中, 只考虑了普通的宏基站单层覆盖的方法, 使 得在 Hetnet场景下 Macro基站和 Pico的组网环境中进行移动健壮性的判断准确率比较低。 发明内容
本发明实施例提供的一种提高移动健壮性的方法、 系统和设备, 用以提高在 Hetnet 场景下 Macro基站和 Pico的组网环境中进行移动健壮性的判断准确率。
本发明实施例提供的一种提高移动健壮性的方法, 包括:
第一网络侧设备根据收到的针对小区中发生连接失败的用户设备的指示消息,判断网 络侧是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量;
所述第一网络侧设备在确定网络侧为所述用户设备配置 EICIC 场景下相对邻小区切 换偏移量后,向小区参数设置错误的小区所属的第二网络侧设备发送网络侧为所述用户设 备配置 EICIC场景下相对邻小区切换偏移量的通知。
本发明实施例提供的另一种提高移动健壮性的方法, 包括: 第二网络侧设备在收到来自第一网络侧设备的网络侧为所述用户设备配置 EICIC 场 景下相对邻小区切换偏移量的通知后,根据为所述用户设备服务的小区配置的在 EICIC场 景下相对邻小区切换偏移量, 确定对应小区的判决信号盾量值, 其中所述第一网络侧设备 是用户设备发生连接失败时为该用户设备服务的网络侧设备;
所述第二网络侧设备根据小区的判决信号盾量值, 确定发生连接失败的原因。
本发明实施例提供的另一种提高移动健壮性的方法, 包括:
用户设备在发生连接失败后确定指示消息;
所述用户设备向网络侧发送确定的指示消息,用于通知所述网络侧才 居所述指示消息 判断是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量。
本发明实施例提供的一种提高移动健壮性的网络侧设备, 包括:
判断模块, 用于根据收到的针对小区中发生连接失败的用户设备的指示消息, 判断网 络侧是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量;
通知模块,用于在确定网络侧为所述用户设备配置 EICIC场景下相对邻小区切换偏移 量后,向小区参数设置错误的小区所属的第二网络侧设备发送网络侧为所述用户设备配置 EICIC场景下相对邻小区切换偏移量的通知。
本发明实施例提供的另一种提高移动健壮性的网络侧设备, 包括:
盾量值确定模块, 用于在收到来自第一网络侧设备的网络侧为所述用户设备配置 EICIC场景下相对邻小区切换偏移量的通知后, 根据为所述用户设备服务的小区配置的在 EICIC场景下相对邻小区切换偏移量, 确定对应小区的判决信号盾量值, 其中所述第一网 络侧设备是用户设备发生连接失败时为该用户设备服务的网络侧设备;
原因确定模块, 用于根据小区的判决信号盾量值, 确定发生连接失败的原因。
本发明实施例提供的一种提高移动健壮性的用户设备, 包括:
消息确定模块, 用于在发生连接失败后确定指示消息;
发送模块, 用于向网络侧发送确定的指示消息, 用于通知所述网络侧根据所述指示消 息判断是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量。
本发明实施例提供的一种提高移动健壮性的系统, 包括:
第一网络侧设备, 用于根据收到的针对小区中发生连接失败的用户设备的指示消息, 判断网络侧是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量,在确定网络侧 为所述用户设备配置 EICIC场景下相对邻小区切换偏移量后,向小区参数设置错误的小区 所属的第二网络侧设备发送网络侧为所述用户设备配置 EICIC 场景下相对邻小区切换偏 移量的通知;
第二网络侧设备, 用于在收到来自第一网络侧设备的网络侧为所述用户设备配置 EICIC场景下相对邻小区切换偏移量的通知后, 根据为所述用户设备服务的小区配置的在 EICIC场景下相对邻小区切换偏移量, 确定对应小区的判决信号盾量值, 其中所述第一网 络侧设备是用户设备发生连接失败时为该用户终端服务的网络侧设备,根据小区的判决信 号盾量值, 确定发生连接失败的原因。
本发明实施例提供的一种提高移动健壮性的方法, 包括:
第一网络侧设备根据收到的针对小区中发生连接失败的用户设备的指示消息,判断网 络侧是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量;
所述第一网络侧设备在确定网络侧为所述用户设备配置 EICIC 场景下相对邻小区切 换偏移量后,根据为所述用户设备服务的小区配置的在 EICIC场景下相对邻小区切换偏移 量, 确定对应小区的判决信号盾量值, 并根据小区的判决信号盾量值, 确定发生连接失败 的原因。
本发明实施例提供的一种提高移动健壮性的设备, 包括:
第一处理模块, 用于根据收到的针对小区中发生连接失败的用户设备的指示消息, 判 断网络侧是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量;
第二处理模块,用于在确定网络侧为所述用户设备配置 EICIC场景下相对邻小区切换 偏移量后, 根据为所述用户设备服务的小区配置的在 EICIC 场景下相对邻小区切换偏移 量, 确定对应小区的判决信号盾量值, 并根据小区的判决信号盾量值, 确定发生连接失败 的原因。
由于在 Hetnet场景考虑到多层覆盖的情况, 提高了 Macro和 Pico的组网环境中进行 移动健壮性的判断准确率; 进一步提高了 MRO的性能。 附图说明
图 1为背景技术中 Hetnet场景的示意图;
图 2为本发明实施例提高移动健壮性的系统结构示意图;
图 3为本发明实施例发送通知的网络侧设备结构示意图;
图 4为本发明实施例接收通知的网络侧设备结构示意图;
图 5为本发明实施例用户设备的结构示意图;
图 6为本发明实施例第一网络侧设备提高移动健壮性的方法流程示意图;
图 7为本发明实施例第二网络侧设备提高移动健壮性的方法流程示意图;
图 8为本发明实施例用户设备提高移动健壮性的方法流程示意图;
图 9为本发明实施例场景一中提高移动健壮性的方法流程示意图;
图 10为本发明实施例场景二中提高移动健壮性的方法流程示意图;
图 11为本发明实施例场景三中提高移动健壮性的方法流程示意图;
图 12为本发明实施例场景四中提高移动健壮性的方法流程示意图; 图 13为本发明实施例提高移动健壮性的网络侧设备结构示意图;
图 14为本发明实施例提高移动健壮性的方法流程示意图;
图 15为本发明实施例场景七中提高移动健壮性的方法流程示意图。 具体实施方式
针对背景技术中由于移动健壮性方案中, 只考虑了普通的宏基站单层覆盖的方法, 使 得在 Hetnet场景下 Macro和 Pico的组网环境中进行移动健壮性的判断准确率比较低的问 题, 本发明实施例第一网络侧设备在确定网络侧为用户设备配置增强的小区间千扰协调 ( enhanced inter-cell intereference coordination, EICIC )场景下相对邻小区切换偏移量后, 向小区参数设置错误的小区所属的第二网络侧设备发送网络侧为用户设备配置 EICIC 场 景下相对邻小区切换偏移量的通知,第二网络侧设备才 居为用户设备服务的小区配置的在 EICIC场景下相对邻小区切换偏移量, 确定对应小区的判决信号盾量值, 并根据小区的判 决信号盾量值, 确定发生连接失败的原因。 由于在 Hetnet场景考虑到多层覆盖的情况, 提 高了 Macro和 Pico的组网环境中进行移动健壮性的判断准确率。
在实施中, 本发明实施例的连接失败表示用户设备与接入的小区之间的连接断开,一 般还可以用无线链路失败(Radio Link Failure, RLF )、切换失败( HandOver Failure, HOF ) 等表示这种情况的名称替换本发明实施例的连接失败。
下面结合说明书附图对本发明实施例作进一步详细描述。
如图 2所示, 本发明实施例提高移动健壮性的系统包括: 第一网络侧设备 10和第二 网络侧设备 20。
第一网络侧设备 10, 用于根据收到的针对小区中发生连接失败的用户设备的指示消 息, 判断网络侧是否为用户设备配置 EICIC场景下相对邻小区切换偏移量,在确定网络侧 为用户设备配置 EICIC场景下相对邻小区切换偏移量后,向小区参数设置错误的小区所属 的第二网络侧设备 20发送网络侧为用户设备配置 EICIC场景下相对邻小区切换偏移量的 通知;
第二网络侧设备 20, 用于在收到来自第一网络侧设备 10 的网络侧为用户设备配置 EICIC 场景下相对邻小区切换偏移量的通知后, 根据为用户设备服务的小区配置的在 EICIC场景下相对邻小区切换偏移量, 确定对应小区的判决信号盾量值, 根据小区的判决 信号盾量值, 确定发生连接失败的原因, 其中第一网络侧设备 10是用户设备发生连接失 败时为该用户终端服务的网络侧设备。
较佳地, 本发明实施例的系统还包括:
用户设备, 用于在发生连接失败后确定指示消息, 向网络侧发送确定的指示消息, 用 于通知网络侧根据指示消息判断是否为用户设备配置 EICIC 场景下相对邻小区切换偏移 量。
较佳地,针对小区中发生连接失败的用户设备的指示消息可以是小区无线网络临时标 识符( Cell Radio Network Temporary Identity, C-RNTI )或用于表示是否为用户设备配置 EICIC场景下相对邻小区频移切换偏移量的信息。
下面分别进行介绍。
一、 指示消息是 C-RNTI。
用户设备将 '〗、区参数设置错误的小区对应的 C-RNTI作为指示信息;
第一网络侧设备 10根据 C-RNTI, 确定用户设备的上下文信息, 并根据上下文信息判 断是否为用户设备配置 EICIC场景下相对邻小区切换偏移量。
用户设备可以向网络侧发送包含 C-RNTI的无线链路失败报告 ( RLF REPORT )或发 送包含 C-RNTI的无线资源控制 ( Radio Resource Control, RRC )连接重建消息;
相应的, 第一网络侧设备 10接收包含 C-RNTI的 RLF REPORT或接收包含 C-RNTI 的 RRC连接重建消息。
假设通过 RLF REPORT传递 C-RNTI:
对于经过空闲( idle )态进行 RRC连接建立的 UE, 在进行 RRC连接建立的时候, 在 空口通过 RLF REPORT上报自己在失败之前的服务小区内的 C-RNTI, RRC 连接建立的 基站将包含 C-RNTI的 RLF REPORT发送给发生 RLF的基站(即第一网络侧设备 10, 下 同), 该基站判断 UE是否被配置了 ABS/bias (即 EICIC场景下相对邻小区切换偏移量, 下同); 然后, 通过切换 4艮告 ( HO REPORT )消息通知问题基站(即小区参数设置错误的 小区所属的第二网络侧设备, 下同)。
假设通过 RRC连接重建消息传递 C-RNTI:
对于进行 RRC连接重建的 UE (处于连接态的 UE ), 由于本身 RRC连接重建消息中 已经包含了 C-RNTI, 因此, RRC连接重建的基站可以将 C-RNTI发送给发生失败的基站, 该基站判断 UE是否被配置了 ABS/bias; 然后, 通过 HO REPORT消息通知问题基站。
二、指示消息是用于表示是否为用户设备配置 EICIC场景下相对邻小区频移切换偏移 量的信息。
用户设备将用于表示是否为用户设备配置 EICIC 场景下相对邻小区切换偏移量的信 息作为指示信息;
第一网络侧设备 10根据用于表示是否为用户设备配置 EICIC场景下相对邻小区切换 偏移量的信息, 判断是否为用户设备配置 EICIC场景下相对邻小区切换偏移量。
用户设备可以向网络侧发送包含表示是否为用户设备配置 EICIC 场景下相对邻小区 切换偏移量的信息的 RLF REPORT;
相应的, 第一网络侧设备 10接收包含表示是否为用户设备配置 EICIC场景下相对邻 小区切换偏移量的信息的 RLF REPOR。
在实施中, UE在 RLF REPORT中上 4艮自己是否配置了 ABS/bias的指示; 然后, RRC 连接建立的基站将包含自己是否配置了 ABS/bias的指示的 RLF REPORT发送给发生 RLF 的基站(即第一网络侧设备 10 ), 该基站判断 UE是否被配置了 ABS/bias (即 EICIC场景 下相对邻小区切换偏移量); 然后, 通过 HO REPORT消息通知问题基站(即小区参数设 置错误的小区所属的第二网络侧设备)。
较佳地, 第一网络侧设备 10通过 HO REPORT发送网络侧为用户设备配置 EICIC场 景下相对邻小区切换偏移量的通知。
在实施中, 第二网络侧设备 20根据为用户设备服务的小区和邻区的无线信号盾量参 数值, 以及为用户设备服务的小区配置的 EICIC场景下相对邻小区切换偏移量, 确定该小 区对应的判决信号盾量值。
其中, 本发明实施例的无线信号盾量参数值包括但不限于下列参数值中的至少一个: 参考信号接收功率 (Reference signal received power, RSRP )值、 参考信号接收盾量 ( Reference Signal Received Quality, RSRQ )值。
较佳地,本发明实施例的无线信号盾量参数值是用户设备在发生连接失败之前最后获 得的小区的无线信号盾量参数值。
在实施中, 用户设备在发生连接失败后, 向网络侧上报的信息里包含在发生连接失败 之前最后获得的小区的无线信号盾量参数值, 所以第一网络侧设备 10可以将连接失败相 关信息发送给第二网络侧设备 20。
由于用户设备在发生连接失败后 ,向网络侧上报的信息里除了包含在发生连接失败之 前最后获得的小区的无线信号盾量参数值, 还包含连接失败相关的小区信息, 所以第一网 络侧设备 10可以将连接失败相关信息发送给第二网络侧设备 20。
一种较佳地处理方式是: 第一网络侧设备 10直接将这些信息转发给第二网络侧设备 20。 也就是说, 第一网络侧设备 10将用户设备在发生连接失败之前最后获得的小区的无 线信号盾量参数值以及连接失败相关信息一起发送给第二网络侧设备 20。
其中, 本发明实施例连接失败相关信息包括但不限于下列信息中的至少一种: 发生连接失败时服务小区的小区标识、连接失败后 UE尝试重建连接的小区标识, UE 在上述服务小区的标识。
第二网络侧设备 20在确定了各个小区的判决信号盾量值后, 就可以对发生连接失败 的原因进行判断, 看符合哪种原因。
比如: 用户设备从 A切换到 B后, 根据各个小区的判决信号盾量值, 确定用户设备 应该在 C进行 RRC重建, 则符合切换到错误小区的准则, 可以确定连接失败的原因是切 换到错误小区。 比如: 用户设备从 A切换到 B后, 发生了连接失败。 用户配置了 ABS/BIAS, 根据各 个小区的判决信号盾量值, 确定是用户设备因为 ABS/BIAS 的配置不合适发生的连接失 败, 则可以确定连接失败的原因是 ABS/BIAS, 即 EICIC相关的配置参数有问题。
比如: 用户设备从 A切换到 B后, 根据各个小区的判决信号盾量值, 确定用户设备 应该在 A进行 RRC重建,则符合过早切换的准则, 可以确定连接失败的原因是过早切换。
在实施中, 若无线信号盾量参数值有多种, 则判决信号盾量值就有多种, 这时较佳地 一种处理方式是: 将每种判决信号盾量值分别进行判断, 若判断结果一致, 则确定判断结 果就是连接失败的原因; 若判断结果不一致, 则丢弃本次结果。
比如若无线信号盾量参数值有 RSRP和 RSRQ , 将 RSRP单独进行判断为切换到错误 小区, 将 RSRQ单独进行判断为切换到错误小区, 则可以确定判断结果就是切换到错误小 区; 若将 RSRP单独进行判断为切换到错误小区, 将 RSRQ单独进行判断为过早切换, 则 丢弃本次结果。
需要说明的是: 本发明实施例无线信号盾量参数值有多种时并不局限于上述处理方 式, 其他在无线信号盾量参数值有多种时能够进行判断的方式都适用本发明实施例。
较佳地, 若第二网络侧设备 20根据发生连接失败的原因, 在确定是由于配置的在
EICIC场景下相对邻小区切换偏移量引起发生连接失败后 (即确定的发生连接失败的原因 是 EICIC相关的配置参数有问题), 调整在 EICIC场景下相对邻小区切换偏移量。
其中, 本发明实施例的网络侧设备可以是基站 (比如宏基站、 家庭基站等), 也可以 是 RN (中继)设备, 还可以是其它网络侧设备。
基于同一发明构思,本发明实施例中还提供了提高移动健壮性的系统中的网络侧设备
(参见图 3和图 4 )、 用户设备 (参见图 5 )及提高移动健壮性的方法(参见图 6〜图 8 ), 由于这些设备和方法解决问题的原理与提高移动健壮性的系统(参见图 2 )相似, 因此这 些设备和方法的实施可以参见系统的实施, 重复之处不再赘述。
如图 3 所示, 本发明实施例发送通知的网络侧设备包括: 判断模块 300和通知模块 310。
判断模块 300, 用于根据收到的针对小区中发生连接失败的用户设备的指示消息, 判 断网络侧是否为用户设备配置 EICIC场景下相对邻小区切换偏移量;
通知模块 310, 用于在确定网络侧为用户设备配置 EICIC场景下相对邻小区切换偏移 量后, 向小区参数设置错误的小区所属的第二网络侧设备发送网络侧为用户设备配置 EICIC场景下相对邻小区切换偏移量的通知。
较佳地, 指示消息是 C-RNTI, 判断模块 300根据 C-RNTI, 确定用户设备的上下文信 息, 并根据上下文信息判断是否为用户设备配置 EICIC场景下相对邻小区切换偏移量。
较佳地,指示信息是用于表示是否为用户设备配置 EICIC场景下相对邻小区频移切换 偏移量的信息,判断模块 300根据用于表示是否为用户设备配置 EICIC场景下相对邻小区 切换偏移量的信息, 判断是否为用户设备配置 EICIC场景下相对邻小区切换偏移量。
较佳地,判断模块 300判断是否为用户设备配置 EICIC场景下相对邻小区切换偏移量 之前, 接收包含指示消息的无线链路失败报告 RLF REPORT。
较佳地, 指示消息是 C-RNTI, 判断模块 300判断是否为用户设备配置 EICIC场景下 相对邻小区切换偏移量之前, 接收包含 C-RNTI的无线资源控制 RRC连接重建消息。
较佳地, 通知模块 310通过切换 4艮告 HO REPORT发送网络侧为用户设备配置 EICIC 场景下相对邻小区切换偏移量的通知。
如图 4所示, 本发明实施例接收通知的网络侧设备包括: 盾量值确定模块 400和原因 确定模块 410。
盾量值确定模块 400 , 用于在收到来自第一网络侧设备的网络侧为用户设备配置 EICIC 场景下相对邻小区切换偏移量的通知后, 根据为用户设备服务的小区配置的在 EICIC场景下相对邻小区切换偏移量, 确定对应小区的判决信号盾量值, 其中第一网络侧 设备是用户设备发生连接失败时为该用户终端服务的网络侧设备;
原因确定模块 410, 用于根据小区的判决信号盾量值, 确定发生连接失败的原因。 较佳地,盾量值确定模块 400根据为用户设备服务的小区和邻区的无线信号盾量参数 值, 以及为用户设备服务的小区配置的 EICIC场景下相对邻小区切换偏移量, 确定该小区 对应的判决信号盾量值。
如图 5所示, 本发明实施例的用户设备包括: 消息确定模块 500和发送模块 510。 消息确定模块 500, 用于在发生连接失败后确定指示消息;
发送模块 510, 用于向网络侧发送确定的指示消息, 用于通知网络侧根据指示消息判 断是否为用户设备配置 EICIC场景下相对邻小区切换偏移量。
较佳地,消息确定模块 500将小区参数设置错误的小区对应的 C-RNTI作为指示信息; 或
消息确定模块 500将用于表示是否为用户设备配置 EICIC场景下相对邻小区切换偏移 量的信息作为指示信息。
较佳地, 发送模块 510向网络侧发送包含指示消息的 RLF REPORT。
较佳地, 指示消息是 C-RNTI; 发送模块 510向网络侧发送包含 C-RNTI的 RRC连接 重建消息。
在实施中,根据不同的应用场景发送通知的网络侧设备也可能成为接收通知的网络侧 设备; 相应的, 接收通知的网络侧设备也可能成为发送通知的网络侧设备 , 所以较佳地, 图 5中发送通知的网络侧设备中的模块和图 6中接收通知的网络侧设备中的模块还可以合 在一个网络侧设备中, 并根据需要选择对应的模块工作。 如图 6所示, 本发明实施例第一网络侧设备提高移动健壮性的方法包括下列步骤: 步骤 601、 第一网络侧设备根据收到的针对小区中发生连接失败的用户设备的指示消 息, 判断网络侧是否为用户设备配置 EICIC场景下相对邻小区切换偏移量;
步骤 602、 第一网络侧设备在确定网络侧为用户设备配置 EICIC场景下相对邻小区切 换偏移量后,向小区参数设置错误的小区所属的第二网络侧设备发送网络侧为用户设备配 置 EICIC场景下相对邻小区切换偏移量的通知。
较佳地, 若指示消息是 C-RNTI, 步骤 601中, 第一网络侧设备根据 C-RNTI, 确定用 户设备的上下文信息,并根据上下文信息判断是否为用户设备配置 EICIC场景下相对邻小 区切换偏移量。
较佳地,若指示信息是用于表示是否为用户设备配置 EICIC场景下相对邻小区频移切 换偏移量的信息, 步骤 601中, 第一网络侧设备根据用于表示是否为用户设备配置 EICIC 场景下相对邻小区切换偏移量的信息,判断是否为用户设备配置 EICIC场景下相对邻小区 切换偏移量。
较佳地, 步骤 601之前还可以进一步包括:
第一网络侧设备接收包含指示消息的 RLF REPORT。
较佳地, 若指示消息是 C-RNTI, 步骤 601之前还可以进一步包括:
第一网络侧设备接收包含 C-RNTI的无线资源控制 RRC连接重建消息。
较佳地, 步骤 602中, 第一网络侧设备通过 HO REPORT发送网络侧为用户设备配置 EICIC场景下相对邻小区切换偏移量的通知。
如图 7所示, 本发明实施例第二网络侧设备提高移动健壮性的方法包括下列步骤: 步骤 701、 第二网络侧设备在收到来自第一网络侧设备的网络侧为用户设备配置 EICIC 场景下相对邻小区切换偏移量的通知后, 根据为用户设备服务的小区配置的在 EICIC场景下相对邻小区切换偏移量, 确定对应小区的判决信号盾量值, 其中第一网络侧 设备是用户设备发生连接失败时为该用户终端服务的网络侧设备;
步骤 702、 第二网络侧设备根据小区的判决信号盾量值, 确定发生连接失败的原因。 较佳地, 步骤 701中, 第二网络侧设备根据为用户设备服务的小区和邻区的无线信号 盾量参数值, 以及为用户设备服务的小区配置的 EICIC场景下相对邻小区切换偏移量, 确 定该小区对应的判决信号盾量值。
其中, 图 6和图 7可以合成一个流程, 形成一个提高移动健壮性的方法, 即先执行步 骤 601和步骤 602, 再执行步骤 701和步骤 702。
如图 8所示, 本发明实施例用户设备提高移动健壮性的方法包括下列步骤: 步骤 801、 用户设备在发生连接失败后确定指示消息;
步骤 802、 用户设备向网络侧发送确定的指示消息, 用于通知网络侧根据指示消息判 断是否为用户设备配置 EICIC场景下相对邻小区切换偏移量。
较佳地, 步骤 801中, 用户设备将小区参数设置错误的小区对应的 C-RNTI作为指示 信息; 或
步骤 801中,用户设备将用于表示是否为用户设备配置 EICIC场景下相对邻小区切换 偏移量的信息作为指示信息。
较佳地, 步骤 802中, 用户设备向网络侧发送包含指示消息的 RLF REPORT。
较佳地, 若指示消息是 C-RNTI, 步骤 802 中, 用户设备向网络侧发送包含 C-RNTI 的 RRC连接重建消息。
在实施中, 第一网络侧设备和第二网络侧设备可以是相同类型的网络侧设备, 比如可 以都是 Macro; 也可以是不同类型的网络侧设备, 比如一个是 Macro—个是 Pico。
下面以几个具体场景对本发明的方案进行详细说明,其中在下面的场景中以小区无线 信号盾量参数值是 RSRP值为例进行说明, 小区无线信号盾量参数值是其它值的情况与小 区无线信号盾量参数值是 RSRP值类似, 在此不再赘述。
场景一: Pico 1和 Pico 2都是 Macro覆盖范围下的两个低功率基站。为了对 Pico进行 范围扩展 ( Range Extension )处理, Macro ( Macro基站的 Cell ) 为 Pico 1下的 Cell 1和 Pico 2下的 Cell 2都设置了 8db的 Bias。
如图 9所示, 本发明实施例场景一中提高移动健壮性的方法示意图中:
UE从 Macro下的小区 Cell A切换到 Pico 1下的小区 Cell 1;
切换完成后 UE在 Pico 1的 Cell 1中发生了连接失败;
UE在连接失败前最后一次测量的 Macro的 CELL A的 RSRP为 -105dbm, CELL 1的
RSRP为 - 114dbm , CELL 2的 RSRP为 - 109dbm;
UE在 Macro中进行 RRC连接重建, 重建成功后 UE将包含该 UE在连接失败基站的 C-RNTI的 RLF report上报给重建小区所在基站, 即 Macro;
Macro发送无线链路失败指示 ( RLF Indication ) 消息给发生 RLF 的基站, 即 picol ; Pico 1收到无线链路失败指示消息后, 在确定问题原因是 '切换过早', 同时, Picol 根据 RLF REPORT中的 C-RNTI判断该 UE是配置 ABS/bias后, 发送 HO Report消息给 问题所在的宏基站, 即 Macro, 同时携带 UE发生 RLF前最后一次测量的各小区的 RSRP 信息以及指示该 UE配置 ABS/bias的信息;
Macro A根据收到的 RSRP以及 Macro A为 Pico 1和 Pico 2设置的 Bias , 进行确切的 切换过早和切换到错误小区的判断, 具体的:
虽然 Cell Α的信号盾量最好, UE在 Cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico设置的 AB S以及 Bias信息, 而 Macro A在获取 RSRP后, 在 进行判断时会考虑 Pico的 Bias, 即 Pico 1的 Cell 1是 RSRP+Bias = -106dBm, Pico 2的 Cell 2是 RSRP+Bias = -lOldBm, Cell A是 RSRP = -105dbm。
由于Cell 2是-101dBm高于Cell A的-105dBm, 因此从 Macro 的角度, 实际上 UE应 该选择在 Cell 2进行 RRC 连接重建。 因此, 实际应该是 UE从 Macro A切换到 Cell 1后 发生连接失败, 随后应选择 Cell 2进行 RRC 连接重建, 而在这种场景下, 对于一个配置 了 EICIC 的用户设备从 A切换到 B, 发生连接失败后再选择 C的过程和 EICIC参数的配 置有很大关系, 所以 Macro A判断的结果是 EICIC参数配置问题。
场景二: Pico 1和 Pico 2都是 Macro A覆盖范围下的两个低功率基站。 为了对 Pico进 行 Range Extension, Macro A为 Pico 1下的 Cell 1和 Pico 2下的 Cell 2都设置了 8db的 Bias。
如图 10所示, 本发明实施例场景二中提高移动健壮性的方法示意图中:
UE从 Macro A下的小区 Cell A切换到 Pico 1下的小区 Cell 1;
切换完成后 UE在 Pico 1的 Cell 1中发生了连接失败;
UE在连接失败前最后一次测量的 CELL A的 RSRP为 -105dbm, CELL 1的 RSRP为 -114dbm, CELL 2的 RSRP为 -109dbm;
UE在 Cell A中进行 RRC连接重建, 重建失败;
Macro A向 Pico 1发送无线链路失败指示消息;
Pico 1收到该消息后, 判断会有第二条无线链路失败指示消息, 丢弃该消息;
UE在另一个小区 Cell B以 Idle态发起 RRC连接建立, 连接建立成功后, UE将连接 失败 Report上报给 Cell B所在的基站 B, 该 Report包含 UE在失败基站的 C-RNTI; 基站 B给 Picol发送包含连接失败 Report的无线链路失败指示消息;
Picol 根据 UE 上报的信息判断是切换过早, 同时根据无线链路失败指示消息中的
C-RNTI以及基站保存的 UE上下文判断该 UE配置 ABS/BIAS;
Pico 1发送 HO Report消息给问题所在的宏基站,即 Macro A,同时携带 UE发生 RLF 前最后一次测量的各小区的 RSRP信息以及指示该 UE配置 ABS/bias的信息;
Macro A根据收到的 RSRP以及 Macro A为 Pico 1和 Pico 2设置的 Bias , 进行确切的 失败原因的判断, 具体的:
虽然 Cell A的信号盾量最好, UE在 cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico设置的 AB S以及 Bias信息, 而 Macro A在获取 RSRP后, 在 进行判断时会考虑 Pico的 Bias,即 Pico 1的 Cell 1是 RSRP+Bias = -106dBm, Pico2的 Cell 2是 RSRP+Bias = -lOldBm, Cell A是 RSRP = -105dbm。
由于 Cell 2是 -lOldBm高于 Cell A的 -105dBm, 因此从 Macro A的角度, 实际上 UE 应该选择在 Cell 2进行 RRC 连接重建。 因此, 这个问题实际应该是 UE从 Macro A切换 到 Cell 1后发生连接失败, 随后应选择 Cell 2进行 RRC 连接重建, 而在这种场景下, 对 于一个配置了 EICIC 的用户设备从 A切换到 B ,发生连接失败后再选择 C的过程和 EICIC 参数的配置有很大关系, 所以 Macro A判断的结果是 EICIC参数配置问题。
场景二是 UE进行 RRC连接重建失败, 进入 IDLE态, 然后又发起新的 RRC连接建 立的场景。 同样的, 在收到第二条 RLF Indication消息后, pico 1根据目前的机制会判断为 切换过早,同时,根据 UE的 RLF REPORT中的 C-RNTI信息,找到 UE保存在 Picol Context (上下文 M言息,进而判断出该 UE配置了 ABS/BIAS。然后,通过 HO Report消息将 RSRP 信息以及配置了 ABS/bias的指示传递给 Macro A, Macro A根据收到的 RSRP等信息以及 Macro A为 Pico 1 , Pico2设置的 bias进行进一步更加准确的判断。
场景三: Pico 1和 Pico 2都是 Macro A覆盖范围下的两个低功率基站。 为了对 Pico进 行 Range Extension, Macro A为 Pico 1下的 Cell 1和 Pico 2下的 Cell 2都设置了 8db的 Bias。
如图 11所示, 本发明实施例场景三中提高移动健壮性的方法示意图中:
UE从 Macro A下的小区 Cell A切换到 Pico 1下的小区 Cell 1;
切换完成后 UE在 Pico 1的 Cell 1中发生了连接失败;
UE在连接失败前最后一次测量的 CELL A的 RSRP为 -105dbm, CELL 1的 RSRP为 -114dbm, CELL 2的 RSRP为 -109dbm;
UE在 Cell A中进行 RRC连接重建, 重建失败;
Macro A向 Pico 1发送无线链路失败指示消息;
Pico 1收到该消息后, 判断会有第二条无线链路失败指示消息, 丢弃该消息;
UE在另一个小区 Cell B以 Idle态发起 RRC连接建立, 连接建立成功后, UE将连接 失败 Report上报给 Cell B所在的基站 B, 该 Report包含 UE是否配置 ABS/bias;
基站 B给 Pico 1发送包含连接失败 Report的无线链路失败指示消息;
Pico 1发送 HO Report消息给问题所在的宏基站,即 Macro A,同时携带 UE发生 RLF 前最后一次测量的各小区的 RSRP信息以及指示该 UE配置 ABS/bias的信息;
Macro A根据收到的 RSRP以及 Macro A为 Pico 1和 Pico 2设置的 Bias , 进行确切的 失败原因的判断, 具体的:
虽然 Cell Α的信号盾量最好, UE在 Cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico设置的 AB S以及 Bias信息, 而 Macro A在获取 RSRP后, 在 进行判断时会考虑 Pico的 Bias,即 Pico 1的 Cell 1是 RSRP+Bias = -106dBm, Pico2的 Cell 2是 RSRP+Bias = -lOldBm, Cell A是 RSRP = -105dbm。
由于 Cell 2是 -lOldBm高于 Cell A的 -105dBm, 因此从 Macro A的角度, 实际上 UE 应该选择在 Cell 2进行 RRC 连接重建。 因此, 这个问题实际应该是 UE从 Macro A切换 到 Cell 1后发生连接失败, 随后应选择 Cell 2进行 RRC 连接重建, 而在这种场景下, 对 于一个配置了 EICIC 的用户设备从 A切换到 B ,发生连接失败后再选择 C的过程和 EICIC 参数的配置有很大关系, 所以 Macro A判断的结果是 EICIC参数配置问题。 场景三是 UE进行 RRC连接重建失败, 进入 IDLE态, 然后又发起新的 RRC连接建 立的场景。 同样的, 在收到第二条 RLF Indication消息后, Pico 1根据目前的机制会判断为 切换过早。 然后, 通过 HO Report消息将 RSRP信息以及 UE上报的是否配置了 ABS/bias 的指示传递给 Macro A, Macro A根据收到的 RSRP等信息以及 Macro A为 Picol , Pico2 设置的 bias进行进一步更加准确的判断。
场景四: Picol位于 Macro A、 Macro B和 Macro C的交界。 Cell A、 Cell B和 Cell C 分别是三个 Macro基站下的小区, Cell 1 是 Picol 下的小区。 为了对 Celll 进行 Range Extension, Macro A、 Macro B和 Macro C老)^为 Cell 1设置了 8db的 Bias。
如图 12所示, 本发明实施例场景四中提高移动健壮性的方法示意图中:
UE从 Macro A下的小区 Cell A切换到 Pico 1下的小区 Cell 1;
切换完成后 UE在 Pico 1的 Cell 1中发生了连接失败;
UE在连接失败前最后一次测量的 CELL A的 RSRP为 -105dbm, CELL 1的 RSRP为 -114dbm, CELL 2的 RSRP为 -109dbm;
UE在 Cell A进行 RRC连接重建, 重建成功后将连接失败 Report上 4艮给重建小区所 在基站(即 Macro A ), 该 Report包含该 UE是否配置 ABS/bias的信息;
Macro A发送包含 Report的 RLF Indication消息给发生 RLF 的基站,即 MacroB基站;
Macro B基站判断问题原因是 '切换过早' , 并发送 HO Report消息给问题所在的宏基 站, 即 MacroA, 同时携带 UE发生 RLF前的最后一次测量的 RSRP信息以及该 UE配置 ABS/BIAS的信息。
Macro A根据收到的 RSRP以及 Macro A为 Pico 1设置的 Bias , 进行确切的失败原因 的判断, 具体的:
虽然 Cell Α的信号盾量最好, UE在 Cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico 1设置的 AB S以及 Bias信息, 而 Macro A在获取 RSRP后, 在进行判断时会考虑 Pico 1的 Bias,即 Pico 1的 Cell 1是 RSRP+Bias = -lOldBm, Macro A 的 Cell A是 RSRP = -105dbm, Macro B的 Cell B是 RSRP = -114dbm。
由于 CELL 1是 -lOldBm高于 CELL A的 -105dBm, 因此从 Macro A的角度, 实际上 UE应该选择在 Cell 1进行 RRC 连接重建。 因此, 这个问题实际应该是 UE从 Macro A的 Cell A切换到 Macro B的 Cell B后发生连接失败,随后应选择 Cell 1进行 RRC 连接重建, 而在这种场景下, 对于一个配置了 EICIC 的用户设备从 A切换到 B, 发生连接失败后再 选择 C的过程和 EICIC参数的配置有很大关系, 所以 Macro A判断的结果是 EICIC参数 配置问题。
场景五: Picol位于 Macro A、 Macro B和 Macro C的交界。 Cell A、 Cell B和 Cell C 分别是三个 Macro基站下的小区, Cell 1 是 Picol 下的小区。 为了对 Celll 进行 Range Extension, Macro A、 Macro B和 Macro C老)^为 Cell 1设置了 8db的 Bias。
UE从 Macro A下的小区 CELL A切换到 MacroB下的小区 Cell B ,切换完成后发生了 RLF;
UE在连接失败前最后一次测量的 CELL A的 RSRP为 -105dbm, Cell A的 RSRP为 -114dbm, CELL B的 RSRP为 -109dbm;
UE在 Cell A进行 RRC连接重建,重建失败, UE经过 idle态后在 Macro C下的 Cell C 发起 RRC连接建立;
连接建立成功后 UE将 RLF Report (包含该 UE是否配置了 ABS/BIAS的信息)上报 给服务基站, 即 Macro C;
Macro C发送 RLF Indication消息给发生 RLF 的基站, 即 Macro B;
Macro B判断是问题原因是 '切换过早' ,发送 HO Report消息给问题所在的 Macro A, 同时携带 UE发生 RLF前最后一次测量的 RSRP信息以及该 UE配置 ABS/BIAS的信息;
Macro A根据收到的 RSRP以及 Macro A为 Pico 1设置的 Bias , 进行确切的失败原因 的判断, 具体的:
虽然 Cell Α的信号盾量最好, UE在 Cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico 1设置的 AB S以及 Bias信息, 而 Macro A在获取 RSRP后, 在进行判断时会考虑 Pico 1的 Bias,即 Pico 1的 Cell 1是 RSRP+Bias = -lOldBm, Macro A 的 Cell A是 RSRP = -105dbm, Macro B的 Cell B是 RSRP = -114dbm。
由于 CELL 1是 -lOldBm高于 CELL A的 -105dBm, 因此从 Macro A的角度, 实际上 UE应该选择在 Cell 1进行 RRC 连接重建。 因此, 这个问题实际应该是 UE从 Macro A的 Cell A切换到 Macro B的 Cell B后发生连接失败,随后应选择 Cell 1进行 RRC 连接重建, 而在这种场景下, 对于一个配置了 EICIC 的用户设备从 A切换到 B, 发生连接失败后再 选择 C的过程和 EICIC参数的配置有很大关系, 所以 Macro A判断的结果是 EICIC参数 配置问题。
场景五是 UE进行 RRC连接重建失败, 进入 IDLE态, 然后又发起新的 RRC连接建 立的场景。 同样的, 在收到第二条 RLF Indication消息后, Macro B根据目前的机制会判 断为切换过早, 然后, 通过 HO Report消息将 RSRP信息以及该 UE配置了 BIAS/abs的信 息传递给 Macro A, Macro A根据收到的 RSRP等信息以及 Macro A下的 Cell A为 Pico 1 中的 Cell A设置的 bias进行进一步更加准确的判断。
如图 13所示, 本发明实施例提高移动健壮性的网络侧设备包括: 第一处理模块 1310 和第二处理模块 1320。
第一处理模块 1310, 用于根据收到的针对小区中发生连接失败的用户设备的指示消 息, 判断网络侧是否为用户设备配置 EICIC场景下相对邻小区切换偏移量; 第二处理模块 1320, 用于在确定网络侧为用户设备配置 EICIC场景下相对邻小区切 换偏移量后,根据为用户设备服务的小区配置在 EICIC场景下相对邻小区切换偏移量, 确 定发生连接失败的原因。
较佳地, 针对小区中发生连接失败的用户设备的指示消息可以是 C-RNTI或用于表示 是否为用户设备配置 EICIC场景下相对邻小区频移切换偏移量的信息。
下面分别进行介绍。
一、 指示消息是 C-RNTI。
用户设备将 '〗、区参数设置错误的小区对应的 C-RNTI作为指示信息;
第一处理模块 13 10根据 C—RNTI, 确定用户设备的上下文信息, 并根据上下文信息判 断是否为用户设备配置 EICIC场景下相对邻小区切换偏移量。
用户设备可以向网络侧发送包含 C-RNTI的 RLF REPORT或发送包含 C-RNTI的 RRC 连接重建消息;
相应的, 第一处理模块 1310接收包含 C-RNTI的 RLF REPORT或接收包含 C-RNTI 的 RRC连接重建消息。
二、指示消息是用于表示是否为用户设备配置 EICIC场景下相对邻小区频移切换偏移 量的信息。
用户设备将用于表示是否为用户设备配置 EICIC 场景下相对邻小区切换偏移量的信 息作为指示信息;
第一处理模块 1310根据用于表示是否为用户设备配置 EICIC场景下相对邻小区切换 偏移量的信息, 判断是否为用户设备配置 EICIC场景下相对邻小区切换偏移量。
用户设备可以向网络侧发送包含表示是否为用户设备配置 EICIC 场景下相对邻小区 切换偏移量的信息的 RLF REPORT;
相应的, 第一处理模块 1310接收包含表示是否为用户设备配置 EICIC场景下相对邻 小区切换偏移量的信息的 RLF REPOR。
较佳地, 第二处理模块 1320根据为用户设备服务的小区和邻区的无线信号盾量参数 值, 以及为用户设备服务的小区配置的 EICIC场景下相对邻小区切换偏移量, 确定该小区 对应的判决信号盾量值。
其中, 本发明实施例的无线信号盾量参数值包括但不限于下列参数值中的至少一个:
RSRP值、 RSRQ值。
较佳地,本发明实施例的无线信号盾量参数值是用户设备在发生连接失败之前最后获 得的小区的无线信号盾量参数值。
在实施中, 用户设备在发生连接失败后, 向网络侧上报的信息里包含在发生连接失败 之前最后获得的小区的无线信号盾量参数值。 第二处理模块 1320在确定了各个小区的判决信号盾量值后, 就可以对发生连接失败 的原因进行判断, 看符合哪种原因。
比如: 用户设备从 A切换到 B后, 根据各个小区的判决信号盾量值, 确定用户设备 应该在 C进行 RRC重建, 则符合切换到错误小区的准则, 可以确定连接失败的原因是切 换到错误小区。
比如: 用户设备从 A切换到 B后, 发生了连接失败。 用户配置了 ABS/BIAS , 根据各 个小区的判决信号盾量值, 确定是用户设备因为 ABS/BIAS 的配置不合适发生的连接失 败, 则可以确定连接失败的原因是 ABS/BIAS即 EICIC相关的配置参数有问题。
比如: 用户设备从 A切换到 B后, 根据各个小区的判决信号盾量值, 确定用户设备 应该在 A进行 RRC重建,则符合过早切换的准则,可以确定连接失败的原因是过早切换。
在实施中, 若无线信号盾量参数值有多种, 则判决信号盾量值就有多种, 这时较佳地 一种处理方式是: 将每种判决信号盾量值分别进行判断, 若判断结果一致, 则确定判断结 果就是连接失败的原因; 若判断结果不一致, 则丢弃本次结果。
比如若无线信号盾量参数值有 RSRP和 RSRQ , 将 RSRP单独进行判断为切换到错误 小区, 将 RSRQ单独进行判断为切换到错误小区, 则可以确定判断结果就是切换到错误小 区; 若将 RSRP单独进行判断为切换到错误小区, 将 RSRQ单独进行判断为过早切换, 则 丢弃本次结果。
需要说明的是: 本发明实施例无线信号盾量参数值有多种时并不局限于上述处理方 式, 其他在无线信号盾量参数值有多种时能够进行判断的方式都适用本发明实施例。
较佳地,第二处理模块 1320根据发生连接失败的原因,在确定是由于配置的在 EICIC 场景下相对邻小区切换偏移量引起发生连接失败后 (即确定的发生连接失败的原因是 EICIC相关的配置参数有问题), 向小区参数设置错误的小区所属的第二网络侧设备发送 EICIC场景下相对邻小区切换偏移量设置错误的通知。
较佳地, 第二处理模块 1320通过 HO REPORT发送 EICIC场景下相对邻小区切换偏 移量设置错误的通知。
其中, 本发明实施例的网络侧设备可以是基站 (比如宏基站、 家庭基站等), 也可以 是 RN设备, 还可以是其它网络侧设备。
较佳地,第二网络侧设备在收到 EICIC场景下相对邻小区切换偏移量设置错误的通知 后, 调整在 EICIC场景下相对邻小区切换偏移量。
基于同一发明构思, 本发明实施例中还提供了提高移动健壮性的方法(参见图 14 ), 由于该方法解决问题的原理与本发明实施例的网络侧设备(参加图 13 )相似, 因此该方 法的实施可以参见系统的设备, 重复之处不再赘述。
如图 14所示, 本发明实施例提高移动健壮性的方法包括下列步骤: 步骤 1410、 第一网络侧设备根据收到的针对小区中发生连接失败的用户设备的指示 消息, 判断网络侧是否为用户设备配置 EICIC场景下相对邻小区切换偏移量;
步骤 1420、 第一网络侧设备在确定网络侧为用户设备配置 EICIC场景下相对邻小区 切换偏移量后, 根据为用户设备服务的小区配置的在 EICIC 场景下相对邻小区切换偏移 量, 确定对应小区的判决信号盾量值, 并根据小区的判决信号盾量值, 确定发生连接失败 的原因。
较佳地, 若指示消息是 C-RNTI, 步骤 1410中, 第一网络侧设备根据 C-RNTI, 确定 用户设备的上下文信息,并根据上下文信息判断是否为用户设备配置 EICIC场景下相对邻 小区切换偏移量;
较佳地,若指示信息是用于表示是否为用户设备配置 EICIC场景下相对邻小区频移切 换偏移量的信息,步骤 1410中,第一网络侧设备根据用于表示是否为用户设备配置 EICIC 场景下相对邻小区切换偏移量的信息,判断是否为用户设备配置 EICIC场景下相对邻小区 切换偏移量。
较佳地, 步骤 1410之前还可以进一步包括;
第一网络侧设备接收包含指示消息的 RLF REPORT。
较佳地, 若指示消息是 C-RNTI, 步骤 1410之前还可以进一步包括; 第一网络侧设备 接收包含 C-RNTI的无线资源控制 RRC连接重建消息。
较佳地, 步骤 1420中, 第一网络侧设备根据为用户设备服务的小区和邻区的无线信 号盾量参数值, 以及为用户设备服务的小区配置的 EICIC场景下相对邻小区切换偏移量, 确定该小区对应的判决信号盾量值。
较佳地, 步骤 1420之后还可以进一步包括:
第一网络侧设备根据发生连接失败的原因,在确定是由于配置的在 EICIC场景下相对 邻小区切换偏移量引起发生连接失败后,向小区参数设置错误的小区所属的第二网络侧设 备发送 EICIC场景下相对邻小区切换偏移量设置错误的通知。
较佳地,第一网络侧设备通过切换 4艮告 HO REPORT发送 EICIC场景下相对邻小区切 换偏移量设置错误的通知。
在实施中, 第一网络侧设备和第二网络侧设备可以是相同类型的网络侧设备, 比如可 以都是 Macro; 也可以是不同类型的网络侧设备, 比如一个是 Macro一个是 Pico。
下面以几个具体场景对本发明的方案进行详细说明,其中在下面的场景中以小区无线 信号盾量参数值是 RSRP值为例进行说明, 小区无线信号盾量参数值是其它值的情况与小 区无线信号盾量参数值是 RSRP值类似, 在此不再赘述。
场景六: Pico 1和 Pico 2都是 Macro覆盖范围下的两个低功率基站。为了对 Pico进行 Range Extension (范围扩展)处理, Macro ( Macro基站的 Cell ) 为 Pico 1下的 Cell 1和 Pico 2下的 Cell 2都设置了 8db的 Bias。
UE从 Macro下的小区 Cell A切换到 Pico 1下的小区 Cell 1;
切换完成后 UE在 Pico 1的 Cell 1中发生了连接失败;
UE在连接失败前最后一次测量的 Macro的 CELL A的 RSRP为 -105dbm, CELL 1的 RSRP为 -114dbm, CELL 2的 RSRP为 -109dbm;
UE在 Macro中进行 RRC连接重建, 重建成功后 UE将包含该 UE在连接失败基站的 C-RNTI的 RLF report上报给重建小区所在基站, 即 Macro;
Macro发送 RLF Indication消息给发生 RLF 的基站, 即 picol ;
Pico 1收到无线链路失败指示消息后, 根据无线链路失败指示消息中的 C-RNTI判断 该 UE是配置 AB S/bias后,根据收到的 RSRP以及 Macro A为 Pico 1和 Pico 2设置的 Bias , 进行确切的失败原因的判断, 具体的:
虽然 Cell Α的信号盾量最好, UE在 Cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico设置的 ABS以及 Bias信息, 而 Picol在获取 RSRP后, 在进 行判断时会考虑 Macro 为 pico 设置的 Bias,即 Pico 1的 Cell 1是 RSRP+Bias = -106dBm, Pico 2的。611 2是1 810>+:61&5 = -101(©1^ Cell A是 RSRP = -105dbm。
由于 Cell 2是 -lOldBm高于 Cell A的 -105dBm, 因此 Picol可以判断, 实际上 UE应 该选择在 Cell 2进行 RRC 连接重建。 因此, 实际应该是 UE从 Macro A切换到 Cell 1后 发生连接失败, 随后应选择 Cell 2进行 RRC 连接重建, 而在这种场景下, 对于一个配置 了 EICIC 的用户设备从 A切换到 B, 发生连接失败后再选择 C的过程和 EICIC参数的配 置有很大关系, 所以 Picol判断的结果是 EICIC参数配置问题。
Picol判断这次失败是和 EICIC相关的配置参数有关, 给问题所在的 Macro A发送 HO Report消息通知 Macro A其 EICIC相关的配置参数有问题;
Macro A调整相应的配置参数。
场景七: Pico 1和 Pico 2都是 Macro A覆盖范围下的两个低功率基站。 为了对 Pico进 行 Range Extension, Macro A为 Pico 1下的 Cell 1和 Pico 2下的 Cell 2都设置了 8db的 Bias。
如图 15所示, 本发明实施例场景七中提高移动健壮性的方法示意图中:
UE从 Macro A下的小区 Cell A切换到 Pico 1下的小区 Cell 1;
切换完成后 UE在 Pico 1的 Cell 1中发生了连接失败;
UE在连接失败前最后一次测量的 CELL A的 RSRP为 -105dbm, CELL 1的 RSRP为 -114dbm, CELL 2的 RSRP为 -109dbm;
UE在 Cell A中进行 RRC连接重建, 重建失败;
Macro A向 Pico 1发送无线链路失败指示消息;
Pico 1收到该消息后, 判断会有第二条无线链路失败指示消息, 丢弃该消息; UE在另一个小区 Cell B以 Idle态发起 RRC连接建立, 连接建立成功后, UE将连接 失败 Report上报给 Cell B所在的基站 B, 该 Report包含 UE在失败基站的 C-RNTI; 基站 B给 Picol发送包含连接失败 Report的无线链路失败指示消息;
Pico 1收到无线链路失败指示消息后, 根据无线链路失败指示消息中的 C-RNTI判断 该 UE是配置 ABS/bias后,根据收到的 RSRP以及 Macro A为 Pico 1和 Pico 2设置的 Bias, 进行确切的失败原因的判断, 具体的:
虽然 Cell A的信号盾量最好, UE在 cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico设置的 AB S以及 Bias信息, 而 Macro A在获取 RSRP后, 在 进行判断时会考虑 Pico的 Bias,即 Pico 1的 Cell 1是 RSRP+Bias = -106dBm, Pico2的 Cell 2是 RSRP+Bias = -101dBm, Cell A是 RSRP = -105dbm。
由于Cell 2是-101dBm高于Cell A的-105dBm, 因此 Picol 判断, 实际上 UE应该选 择在 Cell 2进行 RRC 连接重建。因此,这个问题实际应该是 UE从 Macro A切换到 Cell 1 后发生连接失败, 随后应选择 Cell 2进行 RRC 连接重建而在这种场景下, 对于一个配置 了 EICIC 的用户设备从 A切换到 B, 发生连接失败后再选择 C的过程和 EICIC参数的配 置有很大关系, 所以 Picol判断的结果是 EICIC参数配置问题。
Picol判断这次失败是和 EICIC相关的配置参数有关, 给问题所在的 Macro A发送 HO Report消息通知 Macro A其 EICIC相关的配置参数有问题;
Macro A调整相应的配置参数。
场景七是 UE进行 RRC连接重建失败, 进入 IDLE态, 然后又发起新的 RRC连接建 立的场景。 同样的, 在收到第二条 rlf indication消息后, picol根据目前的机制会判断为切 换过早, 同时, 根据 ue的 RLF REPORT中的 C-RNTI信息, 找到 UE保存在 picol Context 信息,进而判断出该 UE配置了 ABS/BIAS。然后,根据该 UE的配置信息以及 RLF REPORT 中的信息判断这次失败和 EICIC相关参数有关,通过 ho report macro其 EICIC相关参数设 置有问题。
场景八: Pico 1和 Pico 2都是 Macro A覆盖范围下的两个低功率基站。 为了对 Pico进 行 Range Extension, Macro A为 Pico 1下的 Cell 1和 Pico 2下的 Cell 2都设置了 8db的 Bias。
UE从 Macro A下的小区 Cell A切换到 Pico 1下的小区 Cell 1;
切换完成后 UE在 Pico 1的 Cell 1中发生了连接失败;
UE在连接失败前最后一次测量的 CELL A的 RSRP为 -105dbm, CELL 1的 RSRP为 -114dbm, CELL 2的 RSRP为 -109dbm;
UE在 Cell A中进行 RRC连接重建, 重建失败;
Macro A向 Pico 1发送无线链路失败指示消息;
Pico 1收到该消息后, 判断会有第二条无线链路失败指示消息, 丢弃该消息; UE在另一个小区 Cell B以 Idle态发起 RRC连接建立, 连接建立成功后, UE将连接 失败 Report上报给 Cell B所在的基站 B, 该 Report包含 UE是否配置 ABS/bias;
基站 B给 Picol发送包含连接失败 Report的无线链路失败指示消息;
Pico 1收到无线链路失败指示消息后, 根据无线链路失败指示消息中的 C-RNTI判断 该 UE是配置 ABS/bias后,根据收到的 RSRP以及 Macro A为 Pico 1和 Pico 2设置的 Bias, 进行确切的失败原因的判断, 具体的:
虽然 Cell A的信号盾量最好, UE在 Cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico设置的 AB S以及 Bias信息, 而 Macro A在获取 RSRP后, 在 进行判断时会考虑 Pico的 Bias,即 Pico 1的 Cell 1是 RSRP+Bias = -106dBm, Pico2的 Cell 2是 RSRP+Bias = -101dBm, Cell A是 RSRP = -105dbm。
由于 Cell 2是 -lOldBm高于 Cell A的 -105dBm, 因此 Picol判断, 实际上 UE应该选 择在 Cell 2进行 RRC 连接重建。因此,这个问题实际应该是 UE从 Macro A切换到 Cell 1 后发生连接失败, 随后应选择 Cell 2进行 RRC 连接重建, 而在这种场景下, 对于一个配 置了 EICIC 的用户设备从 A切换到 B, 发生连接失败后再选择 C的过程和 EICIC参数的 配置有很大关系, 所以 Picol判断的结果是 EICIC参数配置问题。
Picol判断这次失败是和 EICIC相关的配置参数有关, 给问题所在的 Macro A发送 HO Report消息通知 Macro A其 EICIC相关的配置参数有问题;
Macro A调整相应的配置参数。
场景八是 UE进行 RRC连接重建失败, 进入 IDLE态, 然后又发起新的 RRC连接建 立的场景。 同样的, 在收到第二条 RLF Indication消息后, Pico 1根据目前的机制会判断为 切换过早。 然后, 通过 HO Report消息将 RSRP信息以及 UE上报的是否配置了 ABS/bias 的指示传递给 Macro A, Macro A根据收到的 RSRP等信息以及 Macro A为 Picol , Pico2 设置的 bias进行进一步更加准确的判断。
场景九: Picol位于 Macro A、 Macro B和 Macro C的交界。 Cell A、 Cell B和 Cell C 分别是三个 Macro基站下的小区, Cell 1 是 Picol 下的小区。 为了对 Celll 进行 Range Extension, Macro A、 Macro B和 Macro C老)^为 Cell 1设置了 8db的 Bias。
UE从 Macro A下的小区 Cell A切换到 Pico 1下的小区 Cell 1;
切换完成后 UE在 Pico 1的 Cell 1中发生了连接失败;
UE在连接失败前最后一次测量的 CELL A的 RSRP为 -105dbm, CELL 1的 RSRP为 -114dbm, CELL 2的 RSRP为 -109dbm;
UE在 Cell A进行 RRC连接重建, 重建成功后将连接失败 Report上 4艮给重建小区所 在基站(即 Macro A ), 该 Report包含该 UE是否配置 ABS/bias的信息;
Macro A发送包含 Report的 RLF Indication消息给发生 RLF 的基站,即 MacroB基站; MacroB收到无线链路失败指示消息后, 根据无线链路失败指示消息中的 C-RNTI判 断该 UE是配置 ABS/bias后,根据收到的 RSRP以及 Macro A为 Pico 1设置的 Bias,进行 确切的切换过早和切换到错误小区的判断, 具体的:
虽然 Cell A的信号盾量最好, UE在 Cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico 1设置的 AB S以及 Bias信息, 而 Macro A在获取 RSRP后, 在进行判断时会考虑 Pico 1的 Bias,即 Pico 1的 Cell 1是 RSRP+Bias = -lOldBm, Macro A 的 Cell A是 RSRP = -105dbm, Macro B的 Cell B是 RSRP = -114dbm。
由于 CELL 1是 -lOldBm高于 CELL A的 -105dBm, 因此从 MacroB判断, 实际上 UE 应该选择在 Cell 1进行 RRC 连接重建。因此,这个问题实际应该是 UE从 Macro A的 Cell A切换到 Macro B的 Cell B后发生连接失败, 随后应选择 Cell 1进行 RRC 连接重建, 而 在这种场景下, 对于一个配置了 EICIC 的用户设备从 A切换到 B, 发生连接失败后再选 择 C的过程和 EICIC参数的配置有很大关系,所以 MacroB判断的结果是 EICIC参数配置 问题。
MacroB判断这次失败是和 EICIC相关的配置参数有关, 给问题所在的 Macro A发送 HO Report消息通知 Macro A其 EICIC相关的配置参数有问题;
Macro A调整相应的配置参数。
场景十: Pico 1位于 Macro A、 Macro B和 Macro C的交界。 Cell A、 Cell B和 Cell C 分别是三个 Macro基站下的小区, Cell 1 是 Picol 下的小区。 为了对 Celll 进行 Range Extension, Macro A、 Macro B和 Macro C老)^为 Cell 1设置了 8db的 Bias。
UE从 Macro A下的小区 CELL A切换到 MacroB下的小区 Cell B ,切换完成后发生了
RLF;
UE在连接失败前最后一次测量的 CELL A的 RSRP为 -105dbm, Cell A的 RSRP为 -114dbm, CELL B的 RSRP为 -109dbm;
UE在 Cell A进行 RRC连接重建,重建失败, UE经过 idle态后在 Macro C下的 Cell C 发起 RRC连接建立;
连接建立成功后 UE将 RLF Report (包含该 UE是否配置了 ABS/BIAS的信息)上报 给服务基站, 即 Macro C;
Macro C发送 RLF Indication消息给发生 RLF 的基站, 即 Macro B;
MacroB收到无线链路失败指示消息后, 根据无线链路失败指示消息中的 C-RNTI判 断该 UE是配置 ABS/bias后,根据收到的 RSRP以及 Macro A为 Pico 1设置的 Bias,进行 确切的失败原因的判断, 具体的:
虽然 Cell A的信号盾量最好, UE在 Cell A进行重建, 但是 UE在进行小区选择的时 候没有考虑 Macro A为 Pico 1设置的 AB S以及 Bias信息, 而 Macro A在获取 RSRP后, 在进行判断时会考虑 Pico 1的 Bias,即 Pico 1的 Cell 1是 RSRP+Bias = -lOldBm, Macro A 的 Cell A是 RSRP = -105dbm, Macro B的 Cell B是 RSRP = -114dbm。
由于 CELL 1是 -lOldBm高于 CELL A的 -105dBm, 因此 Macro B判断, 实际上 UE 应该选择在 Cell 1进行 RRC 连接重建。因此,这个问题实际应该是 UE从 Macro A的 Cell A切换到 Macro B的 Cell B后发生连接失败, 随后应选择 Cell 1进行 RRC 连接重建, 而 在这种场景下, 对于一个配置了 EICIC 的用户设备从 A切换到 B, 发生连接失败后再选 择 C的过程和 EICIC参数的配置有很大关系, 所以 Macro B判断的结果是 EICIC参数配 置问题。
MacroB判断这次失败是和 EICIC相关的配置参数有关, 给问题所在的 Macro A发送 HO Report消息通知 Macro A其 EICIC相关的配置参数有问题;
Macro A调整相应的配置参数。
场景十是 UE进行 RRC连接重建失败, 进入 IDLE态, 然后又发起新的 RRC连接建 立的场景。 同样的, 在收到第二条 RLF Indication消息后, Macro B根据目前的机制会判 断为切换过早, 然后, 通过 HO Report消息将 RSRP信息以及该 UE配置了 BIAS/abs的信 息传递给 Macro A, Macro A根据收到的 RSRP等信息以及 Macro A下的 Cell A为 Pico 1 中的 Cell A设置的 bias进行进一步更加准确的判断。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品,该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种提高移动健壮性的方法, 其特征在于, 该方法包括:
第一网络侧设备根据收到的针对小区中发生连接失败的用户设备的指示消息,判断网 络侧是否为所述用户设备配置增强的小区间千扰协调 EICIC 场景下相对邻小区切换偏移 量;
所述第一网络侧设备在确定网络侧为所述用户设备配置 EICIC 场景下相对邻小区切 换偏移量后,向小区参数设置错误的小区所属的第二网络侧设备发送网络侧为所述用户设 备配置 EICIC场景下相对邻小区切换偏移量的通知。
2、 如权利要求 1所述的方法, 其特征在于, 所述第一网络侧设备判断网络侧是否为 所述用户设备配置 EICIC场景下相对邻小区切换偏移量包括:
所述指示消息是小区无线网络临时标识符 C-RNTI , 所述第一网络侧设备根据 C-RNTI, 确定所述用户设备的上下文信息, 并根据所述上下文信息判断是否为所述用户 设备配置 EICIC场景下相对邻小区切换偏移量; 或者,
所述指示信息是用于表示是否为用户设备配置 EICIC 场景下相对邻小区频移切换偏 移量的信息,所述第一网络侧设备根据该信息判断是否为所述用户设备配置 EICIC场景下 相对邻小区切换偏移量。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述第一网络侧设备判断网络侧是 否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量之前还包括:
所述第一网络侧设备接收包含指示消息的无线链路失败报告 RLF REPORT。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述指示消息是 C-RNTI, 所述第一 网络侧设备判断网络侧是否为所述用户设备配置 EICIC 场景下相对邻小区切换偏移量之 前还包括:
所述第一网络侧设备接收包含 C-RNTI的无线资源控制 RRC连接重建消息。
5、 如权利要求 1或 2所述的方法, 其特征在于, 所述第一网络侧设备发送网络侧为 所述用户设备配置 EICIC场景下相对邻小区切换偏移量的通知包括:
所述第一网络侧设备通过切换 4艮告 HO REPORT 发送网络侧为所述用户设备配置 EICIC场景下相对邻小区切换偏移量的通知。
6、 一种提高移动健壮性的方法, 其特征在于, 该方法包括:
第二网络侧设备在收到来自第一网络侧设备的网络侧为所述用户设备配置 EICIC 场 景下相对邻小区切换偏移量的通知后,根据为所述用户设备服务的小区配置的在 EICIC场 景下相对邻小区切换偏移量, 确定对应小区的判决信号盾量值, 其中所述第一网络侧设备 是用户设备发生连接失败时为该用户设备服务的网络侧设备; 所述第二网络侧设备根据小区的判决信号盾量值, 确定发生连接失败的原因。
7、 如权利要求 6所述的方法, 其特征在于, 所述第二网络侧设备确定判决信号盾量 值包括:
所述第二网络侧设备根据为所述用户设备服务的小区和邻区的无线信号盾量参数值 , 以及为所述用户设备服务的小区配置的 EICIC场景下相对邻小区切换偏移量,确定该小区 对应的判决信号盾量值。
8、 一种提高移动健壮性的方法, 其特征在于, 该方法包括:
用户设备在发生连接失败后确定指示消息;
所述用户设备向网络侧发送确定的指示消息,用于通知所述网络侧才 居所述指示消息 判断是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量。
9、 如权利要求 8所述的方法, 其特征在于, 所述用户设备确定指示消息包括: 所述用户设备将小区参数设置错误的小区对应的 C-RNTI作为指示信息; 或 所述用户设备将用于表示是否为用户设备配置 EICIC 场景下相对邻小区切换偏移量 的信息作为指示信息。
10、 如权利要求 8或 9所述的方法, 其特征在于, 所述用户设备发送指示消息包括: 所述用户设备向所述网络侧发送包含指示消息的 RLF REPORT。
11、 如权利要求 8或 9所述的方法, 其特征在于, 所述指示消息是 C-RNTI;
所述用户设备发送指示消息包括:
所述用户设备向所述网络侧发送包含 C-RNTI的 RRC连接重建消息。
12、 一种提高移动健壮性的网络侧设备, 其特征在于, 该网络侧设备包括: 判断模块, 用于根据收到的针对小区中发生连接失败的用户设备的指示消息, 判断网 络侧是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量;
通知模块,用于在确定网络侧为所述用户设备配置 EICIC场景下相对邻小区切换偏移 量后,向小区参数设置错误的小区所属的第二网络侧设备发送网络侧为所述用户设备配置 EICIC场景下相对邻小区切换偏移量的通知。
13、 如权利要求 12所述的设备, 其特征在于, 所述判断模块具体用于:
所述指示消息是 C-RNTI, 根据 C-RNTI, 确定所述用户设备的上下文信息, 并根据所 述上下文信息判断所述是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量;或 者,
所述指示信息是用于表示是否为用户设备配置 EICIC 场景下相对邻小区频移切换偏 移量的信息,根据该信息判断是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移 量。
14、 如权利要求 12或 13所述的设备, 其特征在于, 所述判断模块还用于: 判断是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量之前,接收包含指 示消息的 RLF REPORT。
15、 如权利要求 12或 13所述的设备, 其特征在于, 所述指示消息是 C-RNTI, 所述 判断模块还用于:
判断是否为所述用户设备配置 EICIC 场景下相对邻小区切换偏移量之前, 接收包含
C-RNTI的 RRC连接重建消息。
16、 如权利要求 12或 13所述的设备, 其特征在于, 所述通知模块具体用于: 通过切换 4艮告 HO REPORT发送网络侧为所述用户设备配置 EICIC场景下相对邻小区 切换偏移量的通知。
17、 一种提高移动健壮性的网络侧设备, 其特征在于, 该网络侧设备包括: 盾量值确定模块, 用于在收到来自第一网络侧设备的网络侧为所述用户设备配置 EICIC场景下相对邻小区切换偏移量的通知后, 根据为所述用户设备服务的小区配置的在 EICIC场景下相对邻小区切换偏移量, 确定对应小区的判决信号盾量值, 其中所述第一网 络侧设备是用户设备发生连接失败时为该用户设备服务的网络侧设备;
原因确定模块, 用于根据小区的判决信号盾量值, 确定发生连接失败的原因。
18、 如权利要求 17所述的设备, 其特征在于, 所述盾量值确定模块具体用于: 根据为所述用户设备服务的小区和邻区的无线信号盾量参数值 ,以及为所述用户设备 服务的小区配置的 EICIC场景下相对邻小区切换偏移量,确定该小区对应的判决信号盾量 值。
19、 一种提高移动健壮性的用户设备, 其特征在于, 该用户设备包括:
消息确定模块, 用于在发生连接失败后确定指示消息;
发送模块, 用于向网络侧发送确定的指示消息, 用于通知所述网络侧根据所述指示消 息判断是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量。
20、 如权利要求 19所述的设备, 其特征在于, 所述消息确定模块具体用于: 将小区参数设置错误的小区对应的 C-RNTI作为指示信息; 或
将用于表示是否为用户设备配置 EICIC 场景下相对邻小区切换偏移量的信息作为指 示信息。
21、 如权利要求 19或 20所述的设备, 其特征在于, 所述发送模块具体用于: 向所述网络侧发送包含指示消息的 RLF REPORT。
22、 如权利要求 19或 20所述的设备, 其特征在于, 所述指示消息是 C-RNTI; 所述发送模块具体用于:
向所述网络侧发送包含 C-RNTI的 RRC连接重建消息。
23、 一种提高移动健壮性的系统, 其特征在于, 该系统包括: 第一网络侧设备, 用于根据收到的针对小区中发生连接失败的用户设备的指示消息, 判断网络侧是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量,在确定网络侧 为所述用户设备配置 EICIC场景下相对邻小区切换偏移量后,向小区参数设置错误的小区 所属的第二网络侧设备发送网络侧为所述用户设备配置 EICIC 场景下相对邻小区切换偏 移量的通知;
第二网络侧设备, 用于在收到来自第一网络侧设备的网络侧为所述用户设备配置 EICIC场景下相对邻小区切换偏移量的通知后, 根据其移动性参数设置以及为所述用户设 备服务的小区配置的在 EICIC场景下相对邻小区切换偏移量,确定对应小区的判决信号盾 量值, 根据小区的判决信号盾量值, 确定发生连接失败的原因。
24、 一种提高移动健壮性的方法, 其特征在于, 该方法包括:
第一网络侧设备根据收到的针对小区中发生连接失败的用户设备的指示消息,判断网 络侧是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量;
所述第一网络侧设备在确定网络侧为所述用户设备配置 EICIC 场景下相对邻小区切 换偏移量后,根据为所述用户设备服务的小区配置的在 EICIC场景下相对邻小区切换偏移 量, 确定对应小区的判决信号盾量值, 并根据小区的判决信号盾量值, 确定发生连接失败 的原因。
25、 如权利要求 24所述的方法, 其特征在于, 所述第一网络侧设备确定发生连接失 败的原因之后还包括:
所述第一网络侧设备根据发生连接失败的原因,在确定是由于配置的在 EICIC场景下 相对邻小区切换偏移量引起发生连接失败后,向小区参数设置错误的小区所属的第二网络 侧设备发送 EICIC场景下相对邻小区切换偏移量设置错误的通知。
26、 如权利要求 25所述的方法, 其特征在于, 所述第一网络侧设备发送 EICIC场景 下相对邻小区切换偏移量设置错误的通知包括:
所述第一网络侧设备通过切换报告 HO REPORT发送 EICIC场景下相对邻小区切换偏 移量设置错误的通知。
27、 如权利要求 24所述的方法, 其特征在于, 所述第一网络侧设备判断网络侧是否 为所述用户设备配置 EICIC场景下相对邻小区切换偏移量包括:
所述指示消息是小区无线网络临时标识符 C-RNTI , 所述第一网络侧设备根据 C-RNTI, 确定所述用户设备的上下文信息, 并根据所述上下文信息判断是否为所述用户 设备配置 EICIC场景下相对邻小区切换偏移量; 或者,
所述指示信息是用于表示是否为用户设备配置 EICIC 场景下相对邻小区频移切换偏 移量的信息,所述第一网络侧设备根据该信息判断是否为所述用户设备配置 EICIC场景下 相对邻小区切换偏移量。
28、 如权利要求 24~27任一所述的方法, 其特征在于, 所述第一网络侧设备判断是否 为所述用户设备配置 EICIC场景下相对邻小区切换偏移量之前还包括:
所述第一网络侧设备接收包含指示消息的无线链路失败报告 RLF REPORT。
29、 如权利要求 24~27任一所述的方法, 其特征在于, 所述指示消息是 C-RNTI, 所 述第一网络侧设备判断是否为所述用户设备配置 EICIC 场景下相对邻小区切换偏移量之 前还包括:
所述第一网络侧设备接收包含 C-RNTI的无线资源控制 RRC连接重建消息。
30、 一种提高移动健壮性的设备, 其特征在于, 该设备包括:
第一处理模块, 用于根据收到的针对小区中发生连接失败的用户设备的指示消息, 判 断网络侧是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量;
第二处理模块,用于在确定网络侧为所述用户设备配置 EICIC场景下相对邻小区切换 偏移量后, 根据为所述用户设备服务的小区配置的在 EICIC 场景下相对邻小区切换偏移 量, 确定对应小区的判决信号盾量值, 并根据小区的判决信号盾量值, 确定发生连接失败 的原因。
31、 如权利要求 30所述的设备, 其特征在于, 所述第二处理模块还用于: 根据发生连接失败的原因,在确定是由于配置的在 EICIC场景下相对邻小区切换偏移 量引起发生连接失败后,向小区参数设置错误的小区所属的第二网络侧设备发送 EICIC场 景下相对邻小区切换偏移量设置错误的通知。
32、 如权利要求 31所述的设备, 其特征在于, 所述第二处理模块还用于: 通过 HO REPORT发送 EICIC场景下相对邻小区切换偏移量设置错误的通知。
33、 如权利要求 30所述的设备, 其特征在于, 所述第一处理模块具体用于: 所述指示消息是小区无线网络临时标识符 C-RNTI,根据 C-RNTI,确定所述用户设备 的上下文信息,并根据所述上下文信息判断是否为所述用户设备配置 EICIC场景下相对邻 小区切换偏移量; 或者,
所述指示信息是用于表示是否为用户设备配置 EICIC 场景下相对邻小区频移切换偏 移量的信息,根据该信息判断是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移 量。
34、 如权利要求 30~33任一所述的设备, 其特征在于, 所述第一处理模块还用于: 判断是否为所述用户设备配置 EICIC场景下相对邻小区切换偏移量之前,接收包含指 示消息的 RLF REPORT。
35、 如权利要求 30~33任一所述的设备, 其特征在于, 所述第一处理模块还用于: 所述指示消息是 C-RNTI, 判断是否为所述用户设备配置 EICIC场景下相对邻小区切 换偏移量之前, 接收包含 C-RNTI的无线资源控制 RRC连接重建消息。
PCT/CN2012/088066 2012-02-01 2012-12-31 一种提高移动健壮性的方法、系统和设备 WO2013113247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210022631.4A CN102547764B (zh) 2012-02-01 2012-02-01 一种提高移动健壮性的方法、系统和设备
CN201210022631.4 2012-02-01

Publications (1)

Publication Number Publication Date
WO2013113247A1 true WO2013113247A1 (zh) 2013-08-08

Family

ID=46353466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/088066 WO2013113247A1 (zh) 2012-02-01 2012-12-31 一种提高移动健壮性的方法、系统和设备

Country Status (2)

Country Link
CN (1) CN102547764B (zh)
WO (1) WO2013113247A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547764B (zh) * 2012-02-01 2014-09-10 电信科学技术研究院 一种提高移动健壮性的方法、系统和设备
CN103581942B (zh) * 2012-07-31 2017-08-11 电信科学技术研究院 一种无线链路失败的处理方法、装置及系统
CN103581941B (zh) * 2012-07-31 2017-11-21 电信科学技术研究院 一种无线链路失败rlf的处理方法及系统
CN109068365A (zh) * 2013-07-02 2018-12-21 华为技术有限公司 一种处理数据传输异常的方法及系统、宏基站
WO2015157959A1 (zh) * 2014-04-17 2015-10-22 华为技术有限公司 控制用户设备接入的方法和基站
CN111565400B (zh) * 2019-02-14 2021-11-16 大唐移动通信设备有限公司 一种移动健壮性优化方法及装置
CN111835592B (zh) * 2020-07-14 2022-09-27 北京百度网讯科技有限公司 用于确定健壮性的方法、装置、电子设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808354A (zh) * 2010-03-09 2010-08-18 西安电子科技大学 基于移动终端信息检测切换失败场景的方法
CN102131215A (zh) * 2010-01-13 2011-07-20 中兴通讯股份有限公司 切换参数优化方法及系统
CN102256318A (zh) * 2011-08-11 2011-11-23 新邮通信设备有限公司 一种切换参数的调整方法
CN102547764A (zh) * 2012-02-01 2012-07-04 电信科学技术研究院 一种提高移动健壮性的方法、系统和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131215A (zh) * 2010-01-13 2011-07-20 中兴通讯股份有限公司 切换参数优化方法及系统
CN101808354A (zh) * 2010-03-09 2010-08-18 西安电子科技大学 基于移动终端信息检测切换失败场景的方法
CN102256318A (zh) * 2011-08-11 2011-11-23 新邮通信设备有限公司 一种切换参数的调整方法
CN102547764A (zh) * 2012-02-01 2012-07-04 电信科学技术研究院 一种提高移动健壮性的方法、系统和设备

Also Published As

Publication number Publication date
CN102547764B (zh) 2014-09-10
CN102547764A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
JP6635279B2 (ja) 無線通信装置及び該無線通信装置により実行される方法
EP2619926B1 (en) Apparatus and method for detecting cause of radio link failure or handover failure in mobile communication system
JP6029774B2 (ja) モバイルネットワークの適応化
JP5698843B2 (ja) 情報を提供するための方法、移動局装置、基地局装置及び通信装置
EP3509350B1 (en) Method for detecting cause of radio link failure or handover failure
JP5809284B2 (ja) 無線通信システムにおけるハンドオーバ実行方法
EP2955962B1 (en) Handover failure detection device, handover parameter adjustment device, and handover optimization system
EP2348771B1 (en) Method and device for informing handover failure indication information
EP3854140A1 (en) Communication connection control using conditional handover
WO2013113247A1 (zh) 一种提高移动健壮性的方法、系统和设备
US20130115949A1 (en) Methods and Network Nodes for Detecting Short Stay Handover
JP2014524201A (ja) セル情報を通知し、セル・モビリティ・パラメータを調節する方法、端末、及び基地局
CN104769994A (zh) 当无线电链路故障已经发生时支持多个无线电接入技术的终端恢复的方法及其设备
WO2010105409A1 (zh) 自动配置邻接关系测量上报方法、设备及系统
EP3125639B1 (en) Communication control method, device and system for mobile terminal
WO2011134138A1 (zh) 向家庭基站过晚切换原因的确定方法及系统
WO2014135061A1 (zh) 一种进行rrc连接重建的方法及用户设备
WO2011150656A1 (zh) 异频测量配置下发方法和装置
CN104080102A (zh) 一种针对无线链路失败的网络优化方法、装置及系统
WO2012155595A1 (zh) 一种无线资源控制连接恢复方法、基站及终端
WO2013071787A1 (zh) 一种提高移动健壮性的方法、系统和设备
WO2011160511A1 (zh) 邻区信息管理方法和系统、无线网络控制器及用户设备
WO2020165624A1 (en) Master cell group failure handling by a secondary node
CN115835318A (zh) 切换信息报告方法以及用户设备
CN116602005A (zh) 用于提供切换相关信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867463

Country of ref document: EP

Kind code of ref document: A1