WO2013111891A1 - Polymer adsorbent - Google Patents
Polymer adsorbent Download PDFInfo
- Publication number
- WO2013111891A1 WO2013111891A1 PCT/JP2013/051678 JP2013051678W WO2013111891A1 WO 2013111891 A1 WO2013111891 A1 WO 2013111891A1 JP 2013051678 W JP2013051678 W JP 2013051678W WO 2013111891 A1 WO2013111891 A1 WO 2013111891A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- group
- ionic species
- metal
- adsorbent
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/12—Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
- B01J47/127—Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes in the form of filaments or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/264—Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3007—Moulding, shaping or extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/305—Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/305—Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
- B01J20/3064—Addition of pore forming agents, e.g. pore inducing or porogenic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/04—Processes using organic exchangers
- B01J39/07—Processes using organic exchangers in the weakly acidic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/16—Organic material
- B01J39/18—Macromolecular compounds
- B01J39/19—Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/08—Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/12—Macromolecular compounds
- B01J41/13—Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J45/00—Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/285—Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/005—Processes for mixing polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
- C08J9/40—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/44—Materials comprising a mixture of organic materials
- B01J2220/445—Materials comprising a mixture of organic materials comprising a mixture of polymers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/046—Elimination of a polymeric phase
- C08J2201/0464—Elimination of a polymeric phase using water or inorganic fluids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08J2327/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2400/00—Characterised by the use of unspecified polymers
- C08J2400/10—Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08J2400/104—Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2425/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2425/02—Homopolymers or copolymers of hydrocarbons
- C08J2425/04—Homopolymers or copolymers of styrene
- C08J2425/14—Homopolymers or copolymers of styrene with unsaturated esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2433/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
Definitions
- the present invention is a highly durable and versatile adsorbent sensor that can be used to remove and recover a wide range of metals and ionic species in solutions such as industrial wastewater, industrial water, and environmental water.
- the present invention relates to a polymer adsorbent having a group and a form.
- agglomeration, coprecipitation, solvent extraction, and solid adsorbent are used for removing and collecting metals.
- a method using a solid adsorbent such as an ion exchange resin or a chelate resin is effective.
- the metal adsorbed on these solid adsorbents can be recovered relatively easily by acid cleaning or the like, and the acid cleaned adsorbent can be used again for removal and recovery.
- These adsorbents are widely used for metal removal / recovery.
- chelate resins have higher affinity than ion exchange resins, and thus can be said to be optimal adsorbents (Non-patent Document 1). To 4).
- the chelate resin is capable of removing and recovering heavy metal elements in a solution containing high-concentration salts, which is difficult with an ion exchange resin. Since the ability to form a complex with a metal element varies depending on the structure of the functional group, chelating resins having various functional groups such as iminodiacetic acid group, low molecular weight polyamine group, aminophosphoric acid group, isothionium group, dithiocarbamic acid group, glucamine group, etc. It is commercially available. Among them, chelate resins into which iminodiacetic acid groups that can be applied to a wide range of metal adsorption are introduced are mainly used.
- Chelate resins are particulate adsorbents like activated carbon and ion exchange resins, and are used in a wide range of fields including wastewater treatment and water purification. Water treatment techniques using these particulate adsorbents have already been established and are expected to be frequently used in the future. However, since it is in the form of particles, it must be used by filling a specific can body, and it may be difficult to adapt depending on the use conditions and installation environment. In other words, not only the adsorption characteristics of the adsorbent, but also a variety of forms including particulates are required to meet various requirements. A method for producing a chelate resin is already known (see Non-Patent Documents 1 to 4).
- a typical production method is to introduce a chelating compound such as iminodiacetic acid by introducing a chloromethyl group into a crosslinked particulate polystyrene by an appropriate reaction method and then reacting with the chloromethyl group. It is also possible to introduce a chelating compound using a cross-linked copolymer particle with a monomer having a glycidyl group such as glycidyl methacrylate as a base resin. In such a particulate chelate resin, the effectiveness of a long-chain aminocarboxylic acid group is disclosed (Patent Document 1 and Patent Document 2). According to this disclosure, the stability constant of the complex is improved by increasing the chain length of the chelating functional group, and a stable complex is formed.
- a chelating compound such as iminodiacetic acid
- Functional chain lengthening is an effective technique for improving adsorption properties, but it is in the form of particles, and thus has limitations in use as described above.
- an aminocarboxylic acid group is introduced into a linear polymer having a chloromethyl group or a glycidyl group, it is possible to obtain a chelating polymer, but the polymer thus obtained is a water-soluble polymer. Therefore, it is difficult to operate as a solid such as a particulate form, so that the operability rather than the particulate form is lowered.
- the resin-sintered porous body obtained by sintering thermoplastic resin powders such as polyethylene, polypropylene, polystyrene, etc. in addition to various filters, fuel cylinders for gas cylinders, gas lighters, ink induction cores for sign pens, ink rollers, foaming Used in containers.
- Resin-sintered porous bodies can be manufactured with a pore size of 5 to several hundred ⁇ m and a porosity of 30 to 50% by adjusting the particle size and particle size distribution of the raw material resin powder. It is.
- Patent Literature 3 discloses activated carbon
- Patent Literature 4 discloses an ion exchange resin
- Patent Literature 5 and Patent Literature 6 disclose a sintered adsorbent obtained by sintering a chelate resin with a thermoplastic resin.
- Patent Document 7 discloses a fibrous metal adsorbent that can be easily processed into various forms and can meet various requirements.
- Patent Document 7 discloses the introduction of a chelating functional group into a fiber material by a chemical grafting method
- Patent Documents 8 and 9 disclose chelating functional groups by radical generation and radiation-induced graft polymerization
- Patent Document 10 discloses a method for injecting a low-molecular chelating agent into a general-purpose fiber under high temperature and high pressure. Although these chelating fibers have sufficient functions and are thought to exhibit rapid adsorption properties, they have manufacturing problems. In the chemical grafting method, the types of fibers that can be grafted are limited and the manufacturing process is complicated.
- the radiation grafting method has the advantage that it can be applied to various fibers.
- it is not a simple and inexpensive manufacturing method because it is a work in a specific environment from the viewpoint of radiation handling.
- the chelating agent injection / impregnation method has an advantage that various fibers can be used.
- a supercritical fluid such as carbon dioxide is considered to be most effective, and the pressurizing condition is 100. Since it is a very high pressure of atmospheric pressure (9.8 ⁇ 10 6 Pa) to 250 atmospheric pressure (2.45 ⁇ 10 7 Pa), it cannot necessarily be said that it is a simple production method.
- Patent Document 11 discloses a method for producing a fibrous metal adsorbent using a mixed spinning method.
- a polymer having a chelating ability is wet-mixed and spun with viscose, and can be produced at low cost and in large quantities using existing equipment. Since this fibrous metal adsorbent made of non-woven fabric exhibits an adsorption capacity according to the amount of blending, various forms of adsorbents can be produced by secondary processing (Patent Document 12). Furthermore, if this method is used, a film-like or powdery adsorbent such as cellophane can be produced. In this method, the polymer that is mixed and spun must be water-soluble and must be uniformly regenerated with viscose.
- the adsorption characteristics of the fibrous metal adsorbent produced by this method depend on the characteristics of the polymer to be mixed and spun. Therefore, in order to produce a fibrous metal adsorbent having various adsorption characteristics by the wet mixing spinning method, there is a difficulty that a new polymer satisfying all these conditions must be synthesized each time. Furthermore, the fibrous metal adsorbent obtained by this method has limitations in use. In general, the treatment solution to be used for metal recovery is an acidic solution, and sometimes contains hydrochloric acid, sulfuric acid, nitric acid, etc. in a concentration range.
- rayon Since rayon is decomposed when exposed to strong acidity, the use of a fibrous metal adsorbent based on rayon as a base material is considerably limited under acidic conditions. In addition, since it is also decomposed by microorganisms in the environment, it cannot withstand long-term use or even repeated use multiple times.
- Japanese Patent Laying-Open No. 2005-213477 JP 2010-194509 A JP-A-2-17989 Japanese Unexamined Patent Publication No. 07-204429 JP 2010-254841 A JP 2010-256225 A JP 2001-113272 A Japanese Patent No. 4119966 Japanese Patent No. 3247704 JP 2007-247104 A JP 2011-056349 A JP 2011-056350 A
- the present invention has been made in view of the above-mentioned problems.
- Adsorbents used for the removal and recovery of metals and ionic species in a solution are highly durable and can be applied to a variety of usage purposes.
- An object of the present invention is to provide an adsorbent polymer adsorbent of metal and ionic species, which can easily produce an adsorbent having an adsorptive functional group and a form.
- a reactive polymer having a large number of halogenated alkyl groups or glycidyl groups and a matrix polymer having no halogenated alkyl groups or glycidyl groups insoluble in water and alcohols are dissolved in an organic solvent that can be dissolved to obtain a uniform mixed solution, and then the organic solvent is removed from the mixed solution to obtain a solidified carrier in a desired form, and then the halogen in the solidified carrier is obtained.
- alkylated alkyl groups or glycidyl groups By reacting alkylated alkyl groups or glycidyl groups with adsorptive amine compounds of metals and ionic species, it is highly durable and has a wide variety of adsorptive functional groups and forms that can be used for a wide variety of purposes. It has been found that a molecular adsorbent can be easily produced.
- the present invention provides an organic compound capable of dissolving a reactive polymer having many halogenated alkyl groups or glycidyl groups and a base polymer not having a halogenated alkyl group or glycidyl group insoluble in water and alcohols.
- a solvent capable of dissolving in a solvent to obtain a uniform mixed solution
- the organic solvent is removed from the mixed solution to obtain a carrier solidified into a desired form (hereinafter, sometimes simply referred to as a solid carrier), and then this solidified.
- Metals and ions produced by introducing an adsorptive functional group by reacting a halogenated alkyl group or glycidyl group in a carrier with an adsorptive amine compound of a metal and an ionic species The present invention relates to a species adsorbing polymer adsorbent.
- the adsorptive amine compound of metal and ionic species ethylenediamine or polyethyleneimine, polyallylamine, or a partially carboxymethylated compound thereof, or polycarboxylic acid or polyamide having an amino group or imino group is used.
- the solidified carrier when the reactive polymer and the matrix polymer are dissolved in an organic solvent that can dissolve each of them to form a uniform mixed solution, the solidified carrier after removal of the organic solvent has porosity.
- a porous solidified carrier by mixing a pore-forming agent soluble in water or alcohols, and then removing the pore-forming agent by washing the solidified carrier after removing the organic solvent with water or alcohols.
- it is reacted with the above-described metal and ionic species adsorptive amine compounds to form a metal and ionic species adsorptive polymer adsorbent.
- the reactive polymer having many halogenated alkyl groups or glycidyl groups homopolymers of monomers having halogenated alkyl groups or glycidyl groups or copolymers with other monomers are used.
- This halogenated alkyl group or glycidyl group reacts with the amino group or imino group in the adsorptive amine compound of metal and ionic species (hereinafter sometimes simply referred to as an adsorbent amine compound), thereby adsorbing.
- An amine compound is introduced into a solidified carrier as an adsorptive functional group of metal and ionic species to form a polymer adsorbent.
- the matrix polymer having no halogenated alkyl group or glycidyl group insoluble in water and alcohols is used because the polymer adsorbent of the present invention is mainly used for adsorption of metals and ionic species in aqueous samples. Since the reaction solution for reacting the adsorptive amine compound is water or alcohol, it is a polymer that does not dissolve in water or alcohol. Further, in order to react the adsorbing amine compound with the halogenated alkyl group or glycidyl group of the reactive polymer, a matrix polymer having no halogenated alkyl group or glycidyl group is used.
- the pore-forming agent is used to increase the adsorption surface area of the polymer adsorbent, and the pore-forming agent is removed by washing the solidified carrier after removing the organic solvent with water or alcohols.
- a substance soluble in water or alcohols is used.
- the adsorbing amine compound of metal and ionic species ethylenediamine or polyethyleneimine, polyallylamine, or a partially carboxymethylated compound thereof, or polycarboxylic acid or polyamide having an amino group or imino group is preferably used.
- the adsorptive amine compound that is stably held in the matrix polymer and reacted with the reactive polymer is removed.
- the ability to adsorb metals and ionic species over a long period of time Since the matrix polymer is insoluble in water and alcohols, it does not dissolve or swell in the treatment liquid during the operation of removing and recovering metals and ionic species from the treatment liquid, and the shape is maintained for a long time.
- the adsorptive amine compounds of metals and ionic species can be easily molded, so that it can be easily formed in a desired form, Since various compounds can be used as the adsorptive amine compounds of metals and ionic species, the adsorption characteristics of metals and ionic species can be enhanced or adjusted by changing this compound. Furthermore, by using a pore forming agent, the adsorption surface area can be freely adjusted from a large one to a desired one, so that the amount of adsorption of metal and ionic species can be easily made desirable, It is possible to easily produce an adsorbing polymer adsorbent of metal and ionic species having excellent characteristics such as.
- the present invention comprises a reactive polymer having a large number of halogenated alkyl groups or glycidyl groups, and a matrix polymer having no halogenated alkyl group or glycidyl group insoluble in water and alcohols, respectively. Is dissolved in a dissolvable organic solvent to obtain a uniform mixed solution, and then the organic solvent is removed from the mixed solution to obtain a solid in a desired form. Thereafter, the halogenated alkyl group or glycidyl group in the solidified carrier is obtained.
- Adhesive functional groups of metals and ionic species by reacting them with metal and ionic species adsorptive amine-based compounds, which are highly durable and have a wide variety of adsorptive properties that can be used for a wide variety of purposes
- Polymer adsorbents for metals and ionic species with functional groups, morphology and adsorption performance can be created.
- FIG. 1 shows an electron micrograph of a particulate polymer adsorbent to which polyvinyl acetate is added as a pore regulator.
- FIG. 2 shows an electron micrograph of a particulate polymer adsorbent to which Triton X-100 is added as a pore regulator.
- FIG. 3 shows an electron micrograph of a particulate polymer adsorbent to which no pore regulator is added.
- the present invention provides an organic compound capable of dissolving a reactive polymer having many halogenated alkyl groups or glycidyl groups and a base polymer not having a halogenated alkyl group or glycidyl group insoluble in water and alcohols.
- the organic solvent is removed from the mixed solution to obtain a solidified carrier, and then the halogenated alkyl group or glycidyl group in the solidified carrier and a metal Metals and ions with a wide variety of adsorptive functional groups and forms that are highly durable and adaptable to a wide variety of usage purposes by introducing adsorptive functional groups by reacting them with adsorbable amine compounds of ionic species A polymer adsorber for the seed can be created.
- the reactive polymer having many halogenated alkyl groups or glycidyl groups is a homopolymer of a monomer having a halogenated alkyl group or glycidyl group capable of reacting with an amino group or imino group, or a copolymer with another monomer.
- the monomer having a halogenated alkyl group include chloromethylstyrene, 3-chloro-2-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl acrylate, 2-chloroethyl methacrylate, and 2-chloroethyl acrylate. It is done.
- Examples of the monomer having a glycidyl group include glycidyl methacrylate, glycidyl acrylate, vinylbenzyl glycidyl ether, and the like.
- homopolymers of these monomers are mixed with the matrix polymer.
- a copolymer of these monomers can also be used.
- Monomers that can be copolymerized with these monomers include styrene, methacrylic acid esters, acrylic acid esters, and the like.
- the ratio of the monomer having an alkyl halide group or glycidyl group in the reactive polymer is 10 to 100. % By weight, preferably 20 to 100% by weight.
- the molecular weight of the reactive polymer having a large number of halogenated alkyl groups or glycidyl groups is not particularly limited. However, when the molecular weight is high, the polymer becomes brittle and becomes a polymer adsorbent with low flexibility. End up. In addition, if the molecular weight is too low, there is a risk of elution during use.
- the base polymer is a polymer that does not dissolve in water or alcohol but dissolves in an organic solvent that dissolves the reactive polymer having many halogenated alkyl groups or glycidyl groups.
- the polymer adsorbent of the present invention is mainly used for the adsorption of metals and ionic species in aqueous samples, and the liquidity of the reaction solution at the time of the adsorptive functional group introduction reaction is water or alcohol. A polymer that does not dissolve in alcohol is required.
- Examples of the base polymer satisfying such conditions include polyacrylonitrile, acrylonitrile-styrene resin (AS resin), acrylonitrile-vinyl chloride resin, acrylonitrile-butadiene-styrene resin (ABS resin), polyvinyl acetate, and polyvinyl chloride.
- AS resin acrylonitrile-styrene resin
- ABS resin acrylonitrile-butadiene-styrene resin
- general-purpose resins such as cellulose acetate are selected in consideration of the characteristics of the final polymer adsorbent.
- polyacrylonitrile, polyvinyl acetate, polyvinyl chloride, acrylonitrile-vinyl chloride resin, cellulose acetate, or the like is used for the purpose of producing a flexible film-like or fibrous polymer adsorbent.
- the organic solvent that dissolves both the reactive polymer and the base polymer is not particularly limited. However, considering the ease of solvent removal and the decomposition of the halogenated alkyl group or glycidyl group, the boiling point is 180. One having a temperature of not higher than 160 ° C., preferably not higher than 160 ° C. is used.
- the organic solvent capable of dissolving both the reactive polymer and the matrix polymer include aromatic solvents such as toluene, cyclic ether solvents such as tetrahydrofuran, chlorine solvents such as chloroform, and ethyl acetate.
- ester solvents such as methyl ethyl ketone, and amide solvents such as dimethylformamide, which are appropriately selected according to the solubility of the reactive polymer and the base polymer. Furthermore, since an alkali-resistant material or an acid-resistant material can be selectively used according to the state of the treatment liquid, it can be applied to a wide range of treatment liquid states and the durability can be greatly improved.
- the metal adsorption capacity of the polymer adsorbent depends on the mixing ratio of the reactive polymer having many halogenated alkyl groups or glycidyl groups to the base polymer and the amount of adsorbing functional groups introduced.
- the amount of the reactive polymer mixed is small, the amount of the adsorptive functional group introduced is low, and as a result, the metal adsorption capacity is low.
- the amount of the reactive polymer mixed is high, a large number of adsorptive functional groups can be introduced, so that a polymer adsorbent having a high metal adsorption capacity can be obtained.
- the resulting polymer adsorbent may be inflexible.
- the adsorptive functional group can be introduced into all the reactive functional groups of the mixed reactive polymer. Instead, an adsorptive functional group is introduced into the reactive functional group on the surface. Therefore, it is necessary to adjust the mixing ratio according to the purpose and conditions of use.
- the amount of the reactive polymer having many halogenated alkyl groups or glycidyl groups is 10 to 80% by weight, preferably 20 to 70% by weight in the solidified carrier after removal of the solvent.
- an amine system having a functional group capable of adsorbing metal and ionic species is used as a compound for introducing an adsorptive functional group into a solidified carrier containing a reactive polymer having many halogenated alkyl groups or glycidyl groups.
- ethylenediamine, polyethyleneimine and polyallylamine are suitable. These compounds can function as metal chelate groups and anion exchange groups.
- the stability constant of the complex with respect to a metal can be improved by using such a long-chain type polymer amine.
- chelate functional groups that can be used for adsorption of a wide range of metals.
- it can also be acetylated with acetic anhydride to form an amide group, which can be used as a noble metal adsorbent.
- the anion exchange ability can be improved by reacting an alkyl halide compound to tertiary or quaternize the amino group or imino group. Since these polyamines have a plurality of amino groups or imino groups, they can be bonded to a plurality of reactive functional groups in one molecule. That is, since the reactive polymer having many halogenated alkyl groups or glycidyl groups in the solid support can be cross-linked, it is possible to prevent the reactive polymer from eluting and desorbing from the matrix polymer.
- the second form of the amine compound is a partially carboxymethylated polyamine in which the amino group or imino group of the amine compound of the first form is left.
- carboxymethylation can be carried out after introducing polyethyleneimine and polyallylamine as described above, polyethyleneimine and polyallylamine are converted to halogenated acetic acid so that an amino group or imino group remains in advance.
- a partially carboxymethylated compound may be introduced.
- a protective group may be added to a part of the amino group or imino group before carboxymethylation, or a carboxymethylation reagent for polyethyleneimine and polyallylamine The reaction may be carried out at a lower ratio. Even when the carboxymethylated polyamine having the amino group or imino group remaining is reacted, the cross-linking reaction as described above occurs if a plurality of amino groups or imino groups are present.
- a third form of the amine compound is a polycarboxylic acid or polyamide having an amino group or an imino group.
- These functional groups can also be used for adsorption of metals and ionic species.
- Carboxylic acids act as weak cation exchange groups and can adsorb cations and metal cations.
- a dicarboxylic acid such as succinic acid type functions as a metal chelating functional group.
- Amide groups can be used for adsorption of noble metals.
- Examples of the polycarboxylic acid having an amino group or imino group include copolymers such as allylamine-maleic acid, diallylamine-maleic acid, allylamine-acrylic acid, and diallylamine-acrylic acid.
- Examples of the polyamide having an amino group or imino group include copolymers such as allylamine-acrylamide and diallylamine-acrylamide. Even when these compounds are reacted, the crosslinking reaction as described above occurs.
- the shape of the polymer adsorbent in the present invention is a film, thin film, particle, pellet, rod, fiber, or nanofiber.
- a solid support having a reactive functional group in which the reactive polymer is uniformly held can be obtained by removing the organic solvent from the mixed solution of the reactive polymer and the matrix polymer.
- a solid support in a desired form can be obtained by molding using the method.
- Films and thin films are prepared by preparing a mixed solution of a reactive polymer and a matrix polymer, adjusting the viscosity, and performing various known solution casting methods including known solution casting film forming methods.
- a polymer adsorbent can be prepared by using it as a solid support in the form of a film or thin film and then introducing an adsorptive functional group.
- a polymer adsorbent can be obtained by introducing an adsorptive functional group.
- a mixed solution of reactive polymer and base polymer For pellets or rods, prepare a mixed solution of reactive polymer and base polymer, adjust the viscosity, remove the organic solvent while extruding from a nozzle of appropriate diameter, and remove the pellet or rod-like solid It can be prepared by using as a carrier and then introducing an adsorptive functional group.
- a fibrous material can be prepared by preparing a mixed solution of a reactive polymer and a matrix polymer, forming a fibrous solid support by a known dry spinning method, and then introducing an adsorptive functional group. is there.
- Nanofibers can also be prepared by the same method. Prepare a mixed solution of reactive polymer and matrix polymer, and use nanofiber-like solid support by a known electrospinning method. It can be prepared by introducing a functional group.
- the solidified carrier obtained by the present invention has fine pores generated upon solvent removal, the effective adsorption surface area is not high because the pore diameter is not sufficiently penetrated by non-adsorbed components. Therefore, a porous solid support having a large effective adsorption surface area is obtained by adding a pore-forming agent for forming pores into a mixed solution of a reactive polymer and a matrix polymer. be able to.
- a pore-forming agent that is soluble in the organic solvent in which the mixed solution is prepared and is soluble in water or alcohols is mixed and dissolved in the mixed solution of the reactive polymer and the base polymer, and then homogeneous.
- the organic solvent is removed from these mixed solutions to obtain a solidified carrier having a desired form, and the pore-forming agent is removed by washing with water or alcohols.
- a porous solid support can be obtained, and then a porous polymer adsorbent can be obtained by introducing an adsorptive functional group into the halogenated alkyl group or glycidyl group in the porous solidified support. it can.
- the compound that is soluble in an organic solvent capable of dissolving the reactive polymer and the base polymer and that can be removed by washing with water or alcohol include polyethylene glycol, polyethylene glycol alkyl (aryl) ether, and polyvinyl.
- Examples thereof include polymers such as alcohol, polyvinylpyrrolidone and polyvinyl acetate, and long-chain alkyl alcohols such as dodecanol.
- This porous method can be applied to the various forms described above, that is, films, thin films, particles, pellets, rods, fibers, nanofibers, and the like.
- the porous structure is insufficient in strength and cannot be stretched.
- the introduction of the adsorptive functional group to the reactive functional group on the solidified carrier surface is performed by immersing the solidified carrier in a solution in which the adsorbing amine compound of metal and ionic species is dissolved.
- the adsorptive amine compound of metal and ionic species is bound to a support solidified by reaction of an alkyl halide group or glycidyl group with an amino group or imino group.
- chlorohydrin may be preliminarily reacted with hydrochloric acid.
- the solution for dissolving the amine compound may be an aqueous solution, but is preferably a solvent in which the solidified carrier is uniformly dispersed or a solvent having a high affinity for the solidified carrier.
- the affinity is low, the reaction rate with the halogenated alkyl group or glycidyl group on the solidified carrier surface is low. Therefore, it is preferable to react in a solution in which the affinity is increased by adding alcohol or the like so that the solidified carrier does not dissolve, or in an alcohol solution. Moreover, you may heat as needed. An unreacted halogenated alkyl group or glycidyl group remains in the solidified carrier after the reaction.
- an amino group, a carboxyl group, a sulfo group, or the like is introduced. After-treatment may be performed.
- polyvinyl acetate manufactured by Wako Pure Chemical Industries, degree of polymerization: about 1500
- polyoxyethylene octylphenyl ether Triton X-100, manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization of polyoxyethylene: about 10.
- the mixed solution was slowly stirred under reduced pressure to remove THF to make a viscous liquid, which was then opened in a glass container to obtain a polymer mass having a thickness of 2 mm.
- the polymer mass was roughly crushed and then pulverized using a ball mill. The obtained crushed particles were classified to 90 to 250 ⁇ m using a standard sieve.
- the classified pulverized particles were dispersed in methanol, and the pore forming agent was washed out while stirring.
- the washed particles were immersed in a 30% aqueous isopropyl alcohol solution containing 10% pentaethylenehexamine and reacted at 40 ° C. for 4 hours to introduce pentaethylenehexamine. After the reaction, it was washed with pure water to obtain a pentaethylenehexamine-introduced particulate polymer adsorbent.
- the obtained three types of particulate polymer adsorbents were immersed in a 20 ppm copper sulfate solution (adjusted to pH 5.5) to adsorb copper.
- the amount of copper adsorbed on each particulate polymer adsorbent was determined from the amount of copper reduced in the copper solution. The results are shown in Table 1. The obtained three types of particulate polymer adsorbents clearly adsorbed copper, but those prepared using a pore-forming agent clearly had higher values. The specific surface areas of the three types of particulate polymer adsorbents were measured with a Beckman Coulter SA3100 Surface Area Analyzer. The results are shown in Table 1, but the specific surface area of the particulate polymer adsorbent to which no pore regulator was added could not be measured. The amount of copper adsorbed on each particulate polymer adsorbent depended on the specific surface area of the particulate adsorbent.
- FIGS. the electron micrograph of the particulate polymer adsorbent prepared using the pore-forming agent is shown in FIGS. It is clear from the photograph that pore-shaped or crevasse-shaped pores are generated by adding a pore regulator. In the particulate polymer adsorbent to which no pore modifier was added, pores were not clearly observed at the same magnification, so an electron micrograph was taken at an increased magnification.
- FIG. 3 is a surface state in which a bundle of short fibers is melted and solidified, and a pore-like structure with a shallow depth is observed in part due to the entanglement thereof.
- the obtained particulate polymer adsorbent was immersed in 3M nitric acid for 50 hours. After soaking, it was washed with water, and the copper adsorption amount was determined again. Even after the nitric acid immersion cleaning, the amount of adsorption did not decrease, and performance degradation under acidic conditions was not confirmed.
- This film was cut into 30 mm square, immersed in a 30% aqueous isopropyl alcohol solution containing 10% polyamine, and reacted at 40 ° C. for 4 hours to introduce polyamine.
- polyamine ethylenediamine, pentaethylenehexamine, and polyethyleneimine (molecular weight: 600) were used. After the polyamine reaction, it was washed with pure water to obtain a polyamine-introduced polymer adsorbent. The obtained three types of film-like polymer adsorbents were immersed in a 20 ppm copper sulfate solution (adjusted to pH 5.5) to adsorb copper.
- the amount of copper adsorbed on each film polymer adsorbent was determined from the amount of copper reduced in the copper solution. The results are shown in Table 2.
- the obtained film-like polymer adsorbent clearly adsorbed copper, but the amount of adsorption varied depending on the type of polyamine introduced.
- the one having introduced pentaethylenehexamine showed the highest copper adsorption amount. This is presumably because the reaction rate decreases as the molecular weight of the polyamine increases.
- pentaethylenehexamine has a longer chain length than ethylenediamine, and it is presumed that a high value was obtained because a plurality of copper adsorbed on one molecule.
- the obtained film-like polymer adsorbent was immersed in 3M nitric acid for 50 hours. After soaking, it was washed with water, and the copper adsorption amount was determined again. The results are as shown in Table 2. There was no decrease in the amount of adsorption even after the nitric acid immersion cleaning, and no decrease in performance under acidic conditions was confirmed.
- a) a reactive polymer having many halogenated alkyl groups or glycidyl groups in the molecule is prepared, b) a matrix polymer insoluble in water or alcohol is prepared, and c) a highly reactive polymer is prepared.
- the reactive polymer introduced with the adsorptive functional group in the polymer adsorbent obtained by the present invention is stably held by the base polymer that forms the skeleton of the solidified carrier and is crosslinked by the amine compound. Therefore, it does not elute from the polymer adsorbent and can be used repeatedly.
- a wide variety of adsorptive functional groups can be introduced into the reactive functional group of the reactive polymer mixed with the matrix polymer, that is, the reactive functional group on the solidified carrier surface obtained by removing the organic solvent. Therefore, various polymer adsorbents having different adsorption characteristics can be easily produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Provided is a method for easily and simply producing an adsorbent which is highly durable, is used for removal/recovery of a metal or ionic species in a solution, and has various adsorptive functional groups and forms that are applicable to various applications. A polymer adsorbent for metals or ionic species, which is highly durable and has various adsorptive functional groups and forms that are applicable to various applications is produced by: (a) preparing a reactive polymer that has a plurality of halogenated alkyl groups or glycidyl groups in each molecule; (b) preparing a base polymer that is not soluble in water or an alcohol; (c) producing a mixed solution by dissolving the reactive polymer and the base polymer in an organic solvent; (d) obtaining a solid carrier in a desired form by removing the organic solvent; and (e) introducing an adsorptive functional group into the solid carrier by having the halogenated alkyl groups or glycidyl groups in the solid carrier react with an amine compound that has a functional group capable of adsorbing the metal or ionic species.
Description
本発明は、工場排水、用水、環境水等の溶液中の広範囲な金属やイオン種の除去・回収に使用可能な、耐久性が高く、多種多様な使用目的に適応可能な多彩な吸着性官能基および形態を有する高分子吸着体に関するものである。
The present invention is a highly durable and versatile adsorbent sensor that can be used to remove and recover a wide range of metals and ionic species in solutions such as industrial wastewater, industrial water, and environmental water. The present invention relates to a polymer adsorbent having a group and a form.
ハイテク産業の拡大に伴い、レアメタルをはじめとする金属資源の確保が大きな問題となっている。レアメタルは我が国では産出せず、すべて海外からの輸入に頼っている。レアメタルは価格の高騰・変動が著しいため、海外資源確保、代替材料開発、一部備蓄と共に、リサイクルが重要課題となっている。一方で、都市鉱山と呼ばれるハイテク機器関連廃棄物中にも低濃度ではあるが有価金属が大量に含まれており、これら廃棄物の中から有価金属を回収するプロジェクトが進められている。このような有価金属の回収・リサイクルシステムの構築において、効率のよい有価金属の除去・分離技術の開発・確立が急務となっている。
With the expansion of the high-tech industry, securing of metal resources including rare metals has become a major problem. Rare metals are not produced in Japan and all depend on imports from overseas. Since rare metals are soaring and fluctuating in price, recycling has become an important issue, as well as securing overseas resources, developing alternative materials, and partially stockpiling. On the other hand, high-tech equipment-related waste called urban mines contain a large amount of valuable metals even at low concentrations, and projects to recover valuable metals from these wastes are underway. In the construction of such a valuable metal recovery / recycling system, there is an urgent need to develop and establish an efficient technique for removing and separating valuable metals.
一般に、金属の除去・回収には、凝集、共沈、溶媒抽出、固体吸着材などの方法が用いられている。設備や環境負荷、さらに再生利用までを考慮すると、イオン交換樹脂やキレート樹脂などの固体吸着材を用いる方法が有効である。これらの固体吸着材に吸着された金属は酸洗浄などにより比較的容易に回収することができ、酸洗浄された吸着材は再度除去・回収に使用することが可能である。これらの吸着材は金属の除去・回収に広く利用されているが、特にキレート樹脂はイオン交換樹脂よりも高い親和性を有しているため、最適な吸着材であるといえる(非特許文献1ないし4参照)。キレート樹脂は、イオン交換樹脂では困難な高濃度塩類を含む溶液中の重金属元素の除去・回収が可能とされている。官能基の構造により金属元素との錯形成能が異なるため、イミノ二酢酸基、低分子ポリアミン基、アミノリン酸基、イソチオニウム基、ジチオカルバミン酸基、グルカミン基等の種々の官能基をもつキレート樹脂が市販されている。この内、広範囲な金属の吸着に適用可能なイミノ二酢酸基が導入されたキレート樹脂が主に利用されている。
Generally, methods such as agglomeration, coprecipitation, solvent extraction, and solid adsorbent are used for removing and collecting metals. In consideration of equipment, environmental load, and recycling, a method using a solid adsorbent such as an ion exchange resin or a chelate resin is effective. The metal adsorbed on these solid adsorbents can be recovered relatively easily by acid cleaning or the like, and the acid cleaned adsorbent can be used again for removal and recovery. These adsorbents are widely used for metal removal / recovery. Particularly, chelate resins have higher affinity than ion exchange resins, and thus can be said to be optimal adsorbents (Non-patent Document 1). To 4). The chelate resin is capable of removing and recovering heavy metal elements in a solution containing high-concentration salts, which is difficult with an ion exchange resin. Since the ability to form a complex with a metal element varies depending on the structure of the functional group, chelating resins having various functional groups such as iminodiacetic acid group, low molecular weight polyamine group, aminophosphoric acid group, isothionium group, dithiocarbamic acid group, glucamine group, etc. It is commercially available. Among them, chelate resins into which iminodiacetic acid groups that can be applied to a wide range of metal adsorption are introduced are mainly used.
キレート樹脂は、活性炭やイオン交換樹脂と同様に粒子状の吸着材で、廃水処理や浄水処理をはじめ広い分野で使用されている。これらの粒子状吸着材を用いる水処理技術は既に確立されており、今後も多用されるものと考えられる。しかしながら、粒子状であるがために特定の缶体に充填して使用しなければならず、使用条件や設置環境によっては適合しにくい場合もある。つまり、多様な要求に対応するには、吸着材の吸着特性だけでなく、粒子状をはじめとした多種多彩な形態に対応できることも必要である。キレート樹脂の製造方法としてはすでに公知である(非特許文献1ないし4参照)。
代表的な製造方法は、架橋粒子状ポリスチレンに適切な反応方法によりクロロメチル基を導入した後、クロロメチル基との反応によってイミノ二酢酸等のキレート性化合物を導入するものである。また、グリシジルメタクリレートなどのグリシジル基を有するモノマーとの架橋共重合体粒子を基材樹脂としてキレート性化合物を導入することも可能である。このような粒子状キレート樹脂において、長鎖型のアミノカルボン酸基の有効性に関して開示されている(特許文献1および特許文献2)。この開示によれば、キレート性官能基の鎖長を長くすることにより錯体の安定度定数が向上し、安定した錯体が形成されることになる。官能基の長鎖化は吸着特性の向上には有効な手法ではあるが、粒子状であるがため上述のような使用上の制限がある。また、クロロメチル基あるいはグリシジル基を有する直鎖状高分子にアミノカルボン酸基を導入すれば、キレート性を有する高分子を得ることが可能であるが、このようにして得られる高分子は水溶性であるため粒子状形態などの固体として操作することは困難であり、このため、粒子状のものよりもむしろ操作性が低下してしまう。 Chelate resins are particulate adsorbents like activated carbon and ion exchange resins, and are used in a wide range of fields including wastewater treatment and water purification. Water treatment techniques using these particulate adsorbents have already been established and are expected to be frequently used in the future. However, since it is in the form of particles, it must be used by filling a specific can body, and it may be difficult to adapt depending on the use conditions and installation environment. In other words, not only the adsorption characteristics of the adsorbent, but also a variety of forms including particulates are required to meet various requirements. A method for producing a chelate resin is already known (see Non-PatentDocuments 1 to 4).
A typical production method is to introduce a chelating compound such as iminodiacetic acid by introducing a chloromethyl group into a crosslinked particulate polystyrene by an appropriate reaction method and then reacting with the chloromethyl group. It is also possible to introduce a chelating compound using a cross-linked copolymer particle with a monomer having a glycidyl group such as glycidyl methacrylate as a base resin. In such a particulate chelate resin, the effectiveness of a long-chain aminocarboxylic acid group is disclosed (Patent Document 1 and Patent Document 2). According to this disclosure, the stability constant of the complex is improved by increasing the chain length of the chelating functional group, and a stable complex is formed. Functional chain lengthening is an effective technique for improving adsorption properties, but it is in the form of particles, and thus has limitations in use as described above. In addition, if an aminocarboxylic acid group is introduced into a linear polymer having a chloromethyl group or a glycidyl group, it is possible to obtain a chelating polymer, but the polymer thus obtained is a water-soluble polymer. Therefore, it is difficult to operate as a solid such as a particulate form, so that the operability rather than the particulate form is lowered.
代表的な製造方法は、架橋粒子状ポリスチレンに適切な反応方法によりクロロメチル基を導入した後、クロロメチル基との反応によってイミノ二酢酸等のキレート性化合物を導入するものである。また、グリシジルメタクリレートなどのグリシジル基を有するモノマーとの架橋共重合体粒子を基材樹脂としてキレート性化合物を導入することも可能である。このような粒子状キレート樹脂において、長鎖型のアミノカルボン酸基の有効性に関して開示されている(特許文献1および特許文献2)。この開示によれば、キレート性官能基の鎖長を長くすることにより錯体の安定度定数が向上し、安定した錯体が形成されることになる。官能基の長鎖化は吸着特性の向上には有効な手法ではあるが、粒子状であるがため上述のような使用上の制限がある。また、クロロメチル基あるいはグリシジル基を有する直鎖状高分子にアミノカルボン酸基を導入すれば、キレート性を有する高分子を得ることが可能であるが、このようにして得られる高分子は水溶性であるため粒子状形態などの固体として操作することは困難であり、このため、粒子状のものよりもむしろ操作性が低下してしまう。 Chelate resins are particulate adsorbents like activated carbon and ion exchange resins, and are used in a wide range of fields including wastewater treatment and water purification. Water treatment techniques using these particulate adsorbents have already been established and are expected to be frequently used in the future. However, since it is in the form of particles, it must be used by filling a specific can body, and it may be difficult to adapt depending on the use conditions and installation environment. In other words, not only the adsorption characteristics of the adsorbent, but also a variety of forms including particulates are required to meet various requirements. A method for producing a chelate resin is already known (see Non-Patent
A typical production method is to introduce a chelating compound such as iminodiacetic acid by introducing a chloromethyl group into a crosslinked particulate polystyrene by an appropriate reaction method and then reacting with the chloromethyl group. It is also possible to introduce a chelating compound using a cross-linked copolymer particle with a monomer having a glycidyl group such as glycidyl methacrylate as a base resin. In such a particulate chelate resin, the effectiveness of a long-chain aminocarboxylic acid group is disclosed (
ところで、ポリエチレン、ポリプロピレン、ポリスチレンなどの熱可塑性樹脂粉末を焼結した樹脂焼結多孔体は、各種フィルターのほか、散気筒、ガスライターの燃料誘導芯、サインペンのインク誘導芯、インクローラー、起泡器などに使用されている。樹脂焼結多孔体は、原料である樹脂粉末の粒子径や粒度分布を調節することにより、5~数百μmの孔径で、30~50%の気孔率を有する多孔体を製造することが可能である。
この技術を利用して粒子状の吸着材を焼結することにより、円柱状、ディスク状、針状、円錐状、カップ状などの多彩な形状の吸着材が作製可能となる。特許文献3では活性炭を、特許文献4ではイオン交換樹脂を、特許文献5および特許文献6ではキレート樹脂を熱可塑性樹脂で焼結した焼結型吸着材について開示されている。これらの技術は吸着材の形態や吸着特性の多様化法として有用である。しかし、形態と大きさに合わせた専用の金型を用いて焼結する必要があり、大小さまざまな形態に合わせた金型を多種類用意しなければならないため多彩なニーズに迅速に対応することは困難である。また、製造方法や製造設備の点を考えると、平板型のものを除き連続・大量製造は困難である。 By the way, the resin-sintered porous body obtained by sintering thermoplastic resin powders such as polyethylene, polypropylene, polystyrene, etc., in addition to various filters, fuel cylinders for gas cylinders, gas lighters, ink induction cores for sign pens, ink rollers, foaming Used in containers. Resin-sintered porous bodies can be manufactured with a pore size of 5 to several hundred μm and a porosity of 30 to 50% by adjusting the particle size and particle size distribution of the raw material resin powder. It is.
By using this technique to sinter the particulate adsorbent, adsorbents of various shapes such as a columnar shape, a disc shape, a needle shape, a conical shape, and a cup shape can be produced. Patent Literature 3 discloses activated carbon, Patent Literature 4 discloses an ion exchange resin, and Patent Literature 5 and Patent Literature 6 disclose a sintered adsorbent obtained by sintering a chelate resin with a thermoplastic resin. These techniques are useful as a method for diversifying the form and adsorption characteristics of the adsorbent. However, it is necessary to sinter using a special mold according to the form and size, and it is necessary to prepare various types of molds according to various sizes, so that we can respond quickly to various needs. It is difficult. Moreover, considering the manufacturing method and manufacturing equipment, continuous and mass production is difficult except for the flat type.
この技術を利用して粒子状の吸着材を焼結することにより、円柱状、ディスク状、針状、円錐状、カップ状などの多彩な形状の吸着材が作製可能となる。特許文献3では活性炭を、特許文献4ではイオン交換樹脂を、特許文献5および特許文献6ではキレート樹脂を熱可塑性樹脂で焼結した焼結型吸着材について開示されている。これらの技術は吸着材の形態や吸着特性の多様化法として有用である。しかし、形態と大きさに合わせた専用の金型を用いて焼結する必要があり、大小さまざまな形態に合わせた金型を多種類用意しなければならないため多彩なニーズに迅速に対応することは困難である。また、製造方法や製造設備の点を考えると、平板型のものを除き連続・大量製造は困難である。 By the way, the resin-sintered porous body obtained by sintering thermoplastic resin powders such as polyethylene, polypropylene, polystyrene, etc., in addition to various filters, fuel cylinders for gas cylinders, gas lighters, ink induction cores for sign pens, ink rollers, foaming Used in containers. Resin-sintered porous bodies can be manufactured with a pore size of 5 to several hundred μm and a porosity of 30 to 50% by adjusting the particle size and particle size distribution of the raw material resin powder. It is.
By using this technique to sinter the particulate adsorbent, adsorbents of various shapes such as a columnar shape, a disc shape, a needle shape, a conical shape, and a cup shape can be produced. Patent Literature 3 discloses activated carbon, Patent Literature 4 discloses an ion exchange resin, and Patent Literature 5 and Patent Literature 6 disclose a sintered adsorbent obtained by sintering a chelate resin with a thermoplastic resin. These techniques are useful as a method for diversifying the form and adsorption characteristics of the adsorbent. However, it is necessary to sinter using a special mold according to the form and size, and it is necessary to prepare various types of molds according to various sizes, so that we can respond quickly to various needs. It is difficult. Moreover, considering the manufacturing method and manufacturing equipment, continuous and mass production is difficult except for the flat type.
このような課題に対して、種々の形態に容易に加工でき、多彩な要求に対応可能な繊維状の金属吸着材が特許文献7などで開示されている。たとえば、特許文献7には化学的なグラフト法による繊維材料へのキレート性官能基の導入が開示されており、特許文献8および9には放射線照射によるラジカル生成・グラフト重合法によるキレート性官能基の導入が、特許文献10には高温高圧下での汎用繊維への低分子キレート剤の注入方法が開示されている。これらのキレート性繊維は十分な機能をもち、迅速な吸着特性を示すと考えられるが、製造上における問題がある。化学的グラフト法は、グラフト可能な繊維種が限定されると共に製造工程が煩雑である。放射線グラフト法は、化学的グラフト法と異なり種々の繊維に適用できるという利点があるが、放射線の取り扱い上から特定環境下での作業となるため、簡便かつ安価な製造方法とはいえない。また、キレート剤の注入・含浸法も種々の繊維を利用できるという利点があるが、開示されている条件では二酸化炭素等の超臨界流体が最も有効であるとされており、加圧条件も100気圧(9.8×106Pa)~250気圧(2.45×107Pa)と非常に高圧であるため、必ずしも簡便な製造方法であるとはいえない。
With respect to such a problem, Patent Document 7 discloses a fibrous metal adsorbent that can be easily processed into various forms and can meet various requirements. For example, Patent Document 7 discloses the introduction of a chelating functional group into a fiber material by a chemical grafting method, and Patent Documents 8 and 9 disclose chelating functional groups by radical generation and radiation-induced graft polymerization. Patent Document 10 discloses a method for injecting a low-molecular chelating agent into a general-purpose fiber under high temperature and high pressure. Although these chelating fibers have sufficient functions and are thought to exhibit rapid adsorption properties, they have manufacturing problems. In the chemical grafting method, the types of fibers that can be grafted are limited and the manufacturing process is complicated. Unlike the chemical grafting method, the radiation grafting method has the advantage that it can be applied to various fibers. However, it is not a simple and inexpensive manufacturing method because it is a work in a specific environment from the viewpoint of radiation handling. Also, the chelating agent injection / impregnation method has an advantage that various fibers can be used. However, under the disclosed conditions, a supercritical fluid such as carbon dioxide is considered to be most effective, and the pressurizing condition is 100. Since it is a very high pressure of atmospheric pressure (9.8 × 10 6 Pa) to 250 atmospheric pressure (2.45 × 10 7 Pa), it cannot necessarily be said that it is a simple production method.
特許文献11には、混合紡糸法を用いた繊維状金属吸着材の製造法が開示されている。この方法ではキレート能を持つ高分子をビスコースと湿式混合紡糸するものであり、既存設備を用いて安価にかつ大量に製造することが可能である。この繊維状金属吸着材を不織布化したものは混紡量に応じた吸着容量を示すため、二次加工により多彩な形態の吸着体を製造することが可能となる(特許文献12)。さらにこの方法を利用すると、セロファンのような膜状や粉末状の吸着材を作製可能である。この方法において混合紡糸される高分子は水溶性でなければならず、かつビスコースと均一に再生されるものでなければならない。また、この方法により製造された繊維状金属吸着材の吸着特性は、混合紡糸される高分子の特性に依存する。したがって、湿式混合紡糸法によって多彩な吸着特性を有する繊維状金属吸着材を製造するには、これらの条件をすべて満たす新規な高分子をその都度合成しなければならないという難点がある。さらに、この方法により得られる繊維状金属吸着材は、使用上における制限もある。一般に、金属回収の対象となる処理溶液は酸性溶液であり、時には濃度領域の塩酸、硫酸、硝酸などが含まれていることもある。レーヨンは強酸性下に曝されると分解してしまうため、レーヨンを母材とした繊維状金属吸着材は酸性条件下での使用がかなり制限されてしまう。また、環境中の微生物などによっても分解してしまうため、長期間の使用、さらには複数回の繰り返し使用に耐えることができない。
Patent Document 11 discloses a method for producing a fibrous metal adsorbent using a mixed spinning method. In this method, a polymer having a chelating ability is wet-mixed and spun with viscose, and can be produced at low cost and in large quantities using existing equipment. Since this fibrous metal adsorbent made of non-woven fabric exhibits an adsorption capacity according to the amount of blending, various forms of adsorbents can be produced by secondary processing (Patent Document 12). Furthermore, if this method is used, a film-like or powdery adsorbent such as cellophane can be produced. In this method, the polymer that is mixed and spun must be water-soluble and must be uniformly regenerated with viscose. Further, the adsorption characteristics of the fibrous metal adsorbent produced by this method depend on the characteristics of the polymer to be mixed and spun. Therefore, in order to produce a fibrous metal adsorbent having various adsorption characteristics by the wet mixing spinning method, there is a difficulty that a new polymer satisfying all these conditions must be synthesized each time. Furthermore, the fibrous metal adsorbent obtained by this method has limitations in use. In general, the treatment solution to be used for metal recovery is an acidic solution, and sometimes contains hydrochloric acid, sulfuric acid, nitric acid, etc. in a concentration range. Since rayon is decomposed when exposed to strong acidity, the use of a fibrous metal adsorbent based on rayon as a base material is considerably limited under acidic conditions. In addition, since it is also decomposed by microorganisms in the environment, it cannot withstand long-term use or even repeated use multiple times.
本発明は、上記の問題点に鑑みてなされたもので、溶液中の金属やイオン種の除去・回収に用いられる吸着材において、耐久性が高く、多種多様な使用目的に適応可能な多彩な吸着性官能基と形態を有する吸着材を簡便に製造することができる金属およびイオン種の吸着性の高分子吸着体を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems. Adsorbents used for the removal and recovery of metals and ionic species in a solution are highly durable and can be applied to a variety of usage purposes. An object of the present invention is to provide an adsorbent polymer adsorbent of metal and ionic species, which can easily produce an adsorbent having an adsorptive functional group and a form.
本発明の発明者が鋭意研究を行った結果、ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子と、水およびアルコール類に不溶のハロゲン化アルキル基またはグリシジル基を有しない母材高分子とを、それぞれを溶解可能な有機溶媒に溶解して均一な混合溶液とした後、その混合溶液から有機溶媒を除去して所望の形態の固化した担体とし、その後、この固化した担体中のハロゲン化アルキル基またはグリシジル基と、金属およびイオン種の吸着性アミン系化合物とを反応させることにより、耐久性が高く、多種多様な使用目的に適応可能な多彩な吸着性官能基と形態を有する高分子吸着材を簡便に製造できることを見出した。
As a result of intensive studies by the inventor of the present invention, a reactive polymer having a large number of halogenated alkyl groups or glycidyl groups and a matrix polymer having no halogenated alkyl groups or glycidyl groups insoluble in water and alcohols. Are dissolved in an organic solvent that can be dissolved to obtain a uniform mixed solution, and then the organic solvent is removed from the mixed solution to obtain a solidified carrier in a desired form, and then the halogen in the solidified carrier is obtained. By reacting alkylated alkyl groups or glycidyl groups with adsorptive amine compounds of metals and ionic species, it is highly durable and has a wide variety of adsorptive functional groups and forms that can be used for a wide variety of purposes. It has been found that a molecular adsorbent can be easily produced.
本発明は、ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子と、水およびアルコール類に不溶のハロゲン化アルキル基またはグリシジル基を有しない母材高分子とを、それぞれを溶解可能な有機溶媒に溶解して均一な混合溶液とした後、その混合溶液から有機溶媒を除去して所望の形態に固化した担体(以下では、単に固体担体ということがある。)とし、その後、この固化した担体中のハロゲン化アルキル基またはグリシジル基と、金属およびイオン種の吸着性アミン系化合物とを反応させて吸着性官能基を導入することにより製造されたものであることを特徴とする金属およびイオン種の吸着性の高分子吸着体に関する。
ここで、金属およびイオン種の吸着性アミン系化合物としては、エチレンジアミン又はポリエチレンイミン、ポリアリルアミン、又はこれらの部分カルボキシメチル化化合物、あるいはアミノ基またはイミノ基を有するポリカルボン酸あるいはポリアミドが用いられる。
さらに、上記反応性高分子と、上記母材高分子とを、それぞれを溶解可能な有機溶媒に溶解して均一な混合溶液とする場合、有機溶媒除去後の固化した担体に多孔質性を持たせるため水またはアルコール類に可溶な細孔形成剤を混合し、ついで有機溶媒除去後の固化した担体を水またはアルコール類で洗浄して細孔形成剤を除去して多孔質の固化した担体とし、さらに上述の金属およびイオン種の吸着性アミン系化合物と反応させて金属およびイオン種の吸着性の高分子吸着体とするものである。 The present invention provides an organic compound capable of dissolving a reactive polymer having many halogenated alkyl groups or glycidyl groups and a base polymer not having a halogenated alkyl group or glycidyl group insoluble in water and alcohols. After dissolving in a solvent to obtain a uniform mixed solution, the organic solvent is removed from the mixed solution to obtain a carrier solidified into a desired form (hereinafter, sometimes simply referred to as a solid carrier), and then this solidified. Metals and ions produced by introducing an adsorptive functional group by reacting a halogenated alkyl group or glycidyl group in a carrier with an adsorptive amine compound of a metal and an ionic species The present invention relates to a species adsorbing polymer adsorbent.
Here, as the adsorptive amine compound of metal and ionic species, ethylenediamine or polyethyleneimine, polyallylamine, or a partially carboxymethylated compound thereof, or polycarboxylic acid or polyamide having an amino group or imino group is used.
Further, when the reactive polymer and the matrix polymer are dissolved in an organic solvent that can dissolve each of them to form a uniform mixed solution, the solidified carrier after removal of the organic solvent has porosity. A porous solidified carrier by mixing a pore-forming agent soluble in water or alcohols, and then removing the pore-forming agent by washing the solidified carrier after removing the organic solvent with water or alcohols. In addition, it is reacted with the above-described metal and ionic species adsorptive amine compounds to form a metal and ionic species adsorptive polymer adsorbent.
ここで、金属およびイオン種の吸着性アミン系化合物としては、エチレンジアミン又はポリエチレンイミン、ポリアリルアミン、又はこれらの部分カルボキシメチル化化合物、あるいはアミノ基またはイミノ基を有するポリカルボン酸あるいはポリアミドが用いられる。
さらに、上記反応性高分子と、上記母材高分子とを、それぞれを溶解可能な有機溶媒に溶解して均一な混合溶液とする場合、有機溶媒除去後の固化した担体に多孔質性を持たせるため水またはアルコール類に可溶な細孔形成剤を混合し、ついで有機溶媒除去後の固化した担体を水またはアルコール類で洗浄して細孔形成剤を除去して多孔質の固化した担体とし、さらに上述の金属およびイオン種の吸着性アミン系化合物と反応させて金属およびイオン種の吸着性の高分子吸着体とするものである。 The present invention provides an organic compound capable of dissolving a reactive polymer having many halogenated alkyl groups or glycidyl groups and a base polymer not having a halogenated alkyl group or glycidyl group insoluble in water and alcohols. After dissolving in a solvent to obtain a uniform mixed solution, the organic solvent is removed from the mixed solution to obtain a carrier solidified into a desired form (hereinafter, sometimes simply referred to as a solid carrier), and then this solidified. Metals and ions produced by introducing an adsorptive functional group by reacting a halogenated alkyl group or glycidyl group in a carrier with an adsorptive amine compound of a metal and an ionic species The present invention relates to a species adsorbing polymer adsorbent.
Here, as the adsorptive amine compound of metal and ionic species, ethylenediamine or polyethyleneimine, polyallylamine, or a partially carboxymethylated compound thereof, or polycarboxylic acid or polyamide having an amino group or imino group is used.
Further, when the reactive polymer and the matrix polymer are dissolved in an organic solvent that can dissolve each of them to form a uniform mixed solution, the solidified carrier after removal of the organic solvent has porosity. A porous solidified carrier by mixing a pore-forming agent soluble in water or alcohols, and then removing the pore-forming agent by washing the solidified carrier after removing the organic solvent with water or alcohols. In addition, it is reacted with the above-described metal and ionic species adsorptive amine compounds to form a metal and ionic species adsorptive polymer adsorbent.
ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子としては、ハロゲン化アルキル基またはグリシジル基を有するモノマーのホモポリマーあるいは他のモノマーとのコポリマーが使用される。このハロゲン化アルキル基またはグリシジル基が金属およびイオン種の吸着性アミン系化合物(以下では、単に吸着性アミン系化合物ということがある。)中のアミノ基ないしイミノ基と反応することにより、吸着性アミン化合物が金属およびイオン種の吸着性官能基として固化した担体に導入され高分子吸着体となる。
また、水およびアルコール類に不溶のハロゲン化アルキル基またはグリシジル基を有しない母材高分子は、本発明の高分子吸着体が主として水系試料中の金属やイオン種の吸着に使用されるためと、吸着性アミン化合物を反応させる際の反応溶液が水あるいはアルコールであることから、水やアルコールに溶解しない高分子である。さらに、吸着性アミン系化合物と反応性高分子の有するハロゲン化アルキル基またはグリシジル基とを反応させるため、母材高分子はハロゲン化アルキル基またはグリシジル基を有しないものを使用する。 As the reactive polymer having many halogenated alkyl groups or glycidyl groups, homopolymers of monomers having halogenated alkyl groups or glycidyl groups or copolymers with other monomers are used. This halogenated alkyl group or glycidyl group reacts with the amino group or imino group in the adsorptive amine compound of metal and ionic species (hereinafter sometimes simply referred to as an adsorbent amine compound), thereby adsorbing. An amine compound is introduced into a solidified carrier as an adsorptive functional group of metal and ionic species to form a polymer adsorbent.
In addition, the matrix polymer having no halogenated alkyl group or glycidyl group insoluble in water and alcohols is used because the polymer adsorbent of the present invention is mainly used for adsorption of metals and ionic species in aqueous samples. Since the reaction solution for reacting the adsorptive amine compound is water or alcohol, it is a polymer that does not dissolve in water or alcohol. Further, in order to react the adsorbing amine compound with the halogenated alkyl group or glycidyl group of the reactive polymer, a matrix polymer having no halogenated alkyl group or glycidyl group is used.
また、水およびアルコール類に不溶のハロゲン化アルキル基またはグリシジル基を有しない母材高分子は、本発明の高分子吸着体が主として水系試料中の金属やイオン種の吸着に使用されるためと、吸着性アミン化合物を反応させる際の反応溶液が水あるいはアルコールであることから、水やアルコールに溶解しない高分子である。さらに、吸着性アミン系化合物と反応性高分子の有するハロゲン化アルキル基またはグリシジル基とを反応させるため、母材高分子はハロゲン化アルキル基またはグリシジル基を有しないものを使用する。 As the reactive polymer having many halogenated alkyl groups or glycidyl groups, homopolymers of monomers having halogenated alkyl groups or glycidyl groups or copolymers with other monomers are used. This halogenated alkyl group or glycidyl group reacts with the amino group or imino group in the adsorptive amine compound of metal and ionic species (hereinafter sometimes simply referred to as an adsorbent amine compound), thereby adsorbing. An amine compound is introduced into a solidified carrier as an adsorptive functional group of metal and ionic species to form a polymer adsorbent.
In addition, the matrix polymer having no halogenated alkyl group or glycidyl group insoluble in water and alcohols is used because the polymer adsorbent of the present invention is mainly used for adsorption of metals and ionic species in aqueous samples. Since the reaction solution for reacting the adsorptive amine compound is water or alcohol, it is a polymer that does not dissolve in water or alcohol. Further, in order to react the adsorbing amine compound with the halogenated alkyl group or glycidyl group of the reactive polymer, a matrix polymer having no halogenated alkyl group or glycidyl group is used.
細孔形成剤は、高分子吸着体の吸着表面積を増加させるために使用するものであって、有機溶媒除去後の固化した担体を水またはアルコール類で洗浄して細孔形成剤を除去して担体に多孔質性を持たせるため、水またはアルコール類に可溶な物を使用する。
さらに、金属およびイオン種の吸着性アミン系化合物としては、エチレンジアミン又はポリエチレンイミン、ポリアリルアミン、またはこれらの部分カルボキシメチル化化合物、またはアミノ基またはイミノ基を有するポリカルボン酸あるいはポリアミドが好適に使用される。
これらの反応性高分子、金属およびイオン種の吸着性アミン系化合物、細孔形成剤などについては、発明を実施するための形態のところでさらに詳細に説明する。 The pore-forming agent is used to increase the adsorption surface area of the polymer adsorbent, and the pore-forming agent is removed by washing the solidified carrier after removing the organic solvent with water or alcohols. In order to make the carrier porous, a substance soluble in water or alcohols is used.
Further, as the adsorbing amine compound of metal and ionic species, ethylenediamine or polyethyleneimine, polyallylamine, or a partially carboxymethylated compound thereof, or polycarboxylic acid or polyamide having an amino group or imino group is preferably used. The
These reactive polymers, metal and ionic species adsorptive amine compounds, pore-forming agents, and the like will be described in more detail in the form for carrying out the invention.
さらに、金属およびイオン種の吸着性アミン系化合物としては、エチレンジアミン又はポリエチレンイミン、ポリアリルアミン、またはこれらの部分カルボキシメチル化化合物、またはアミノ基またはイミノ基を有するポリカルボン酸あるいはポリアミドが好適に使用される。
これらの反応性高分子、金属およびイオン種の吸着性アミン系化合物、細孔形成剤などについては、発明を実施するための形態のところでさらに詳細に説明する。 The pore-forming agent is used to increase the adsorption surface area of the polymer adsorbent, and the pore-forming agent is removed by washing the solidified carrier after removing the organic solvent with water or alcohols. In order to make the carrier porous, a substance soluble in water or alcohols is used.
Further, as the adsorbing amine compound of metal and ionic species, ethylenediamine or polyethyleneimine, polyallylamine, or a partially carboxymethylated compound thereof, or polycarboxylic acid or polyamide having an amino group or imino group is preferably used. The
These reactive polymers, metal and ionic species adsorptive amine compounds, pore-forming agents, and the like will be described in more detail in the form for carrying out the invention.
本発明によれば、反応性高分子が母材高分子と均一に混合されているので、母材高分子中に安定して保持され、反応性高分子と反応した吸着性アミン系化合物の脱落がなく、長期間にわたって金属およびイオン種の吸着性能が維持されること、
母材高分子は、水およびアルコール類に不溶であるため、処理液から金属およびイオン種を除去・回収する操作中に処理液に溶解したり膨潤したりせず、長期間形状が保持されると同時に、耐酸性や耐アルカリ性の材料を使用できるので処理液の状態のいかんにかかわらず耐久性が飛躍的に向上し、しかも各種の形態のもの、たとえばフイルム、薄膜、ペレット、ロッド、繊維、ナノファイバーなど、を容易に成形することができるので、容易に所望の形態のものとすることができること、
金属およびイオン種の吸着性アミン系化合物として、各種のものが使用できるのでこの化合物を変化させることにより金属およびイオン種の吸着特性を高めたり調整したりすることができること、
さらに細孔形成剤を使用することにより吸着表面積を大きいものから所望のものへと自由に調整することができ、このため金属およびイオン種の吸着量を容易に所望のものとすることができること、などの優れた特徴を有する金属およびイオン種の吸着性の高分子吸着体を容易に製造することが可能となる。
以上のように、本発明は、ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子と、水およびアルコール類に不溶のハロゲン化アルキル基またはグリシジル基を有しない母材高分子とを、それぞれを溶解可能な有機溶媒に溶解して均一な混合溶液とした後、その混合溶液から有機溶媒を除去して所望の形態の固体とし、その後、この固化した担体中のハロゲン化アルキル基またはグリシジル基と金属およびイオン種の吸着性アミン系化合物とを反応させて金属およびイオン種の吸着性官能基を導入することなどにより、耐久性が高く、多種多様な使用目的に適応可能な多彩な吸着性官能基と形態と吸着性能を有する金属およびイオン種のための高分子吸着体を作り出すことができる。 According to the present invention, since the reactive polymer is uniformly mixed with the matrix polymer, the adsorptive amine compound that is stably held in the matrix polymer and reacted with the reactive polymer is removed. The ability to adsorb metals and ionic species over a long period of time,
Since the matrix polymer is insoluble in water and alcohols, it does not dissolve or swell in the treatment liquid during the operation of removing and recovering metals and ionic species from the treatment liquid, and the shape is maintained for a long time. At the same time, it is possible to use acid- and alkali-resistant materials, so the durability is greatly improved regardless of the state of the treatment liquid, and various forms such as films, thin films, pellets, rods, fibers, Nanofiber etc. can be easily molded, so that it can be easily formed in a desired form,
Since various compounds can be used as the adsorptive amine compounds of metals and ionic species, the adsorption characteristics of metals and ionic species can be enhanced or adjusted by changing this compound.
Furthermore, by using a pore forming agent, the adsorption surface area can be freely adjusted from a large one to a desired one, so that the amount of adsorption of metal and ionic species can be easily made desirable, It is possible to easily produce an adsorbing polymer adsorbent of metal and ionic species having excellent characteristics such as.
As described above, the present invention comprises a reactive polymer having a large number of halogenated alkyl groups or glycidyl groups, and a matrix polymer having no halogenated alkyl group or glycidyl group insoluble in water and alcohols, respectively. Is dissolved in a dissolvable organic solvent to obtain a uniform mixed solution, and then the organic solvent is removed from the mixed solution to obtain a solid in a desired form. Thereafter, the halogenated alkyl group or glycidyl group in the solidified carrier is obtained. Adhesive functional groups of metals and ionic species by reacting them with metal and ionic species adsorptive amine-based compounds, which are highly durable and have a wide variety of adsorptive properties that can be used for a wide variety of purposes Polymer adsorbents for metals and ionic species with functional groups, morphology and adsorption performance can be created.
母材高分子は、水およびアルコール類に不溶であるため、処理液から金属およびイオン種を除去・回収する操作中に処理液に溶解したり膨潤したりせず、長期間形状が保持されると同時に、耐酸性や耐アルカリ性の材料を使用できるので処理液の状態のいかんにかかわらず耐久性が飛躍的に向上し、しかも各種の形態のもの、たとえばフイルム、薄膜、ペレット、ロッド、繊維、ナノファイバーなど、を容易に成形することができるので、容易に所望の形態のものとすることができること、
金属およびイオン種の吸着性アミン系化合物として、各種のものが使用できるのでこの化合物を変化させることにより金属およびイオン種の吸着特性を高めたり調整したりすることができること、
さらに細孔形成剤を使用することにより吸着表面積を大きいものから所望のものへと自由に調整することができ、このため金属およびイオン種の吸着量を容易に所望のものとすることができること、などの優れた特徴を有する金属およびイオン種の吸着性の高分子吸着体を容易に製造することが可能となる。
以上のように、本発明は、ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子と、水およびアルコール類に不溶のハロゲン化アルキル基またはグリシジル基を有しない母材高分子とを、それぞれを溶解可能な有機溶媒に溶解して均一な混合溶液とした後、その混合溶液から有機溶媒を除去して所望の形態の固体とし、その後、この固化した担体中のハロゲン化アルキル基またはグリシジル基と金属およびイオン種の吸着性アミン系化合物とを反応させて金属およびイオン種の吸着性官能基を導入することなどにより、耐久性が高く、多種多様な使用目的に適応可能な多彩な吸着性官能基と形態と吸着性能を有する金属およびイオン種のための高分子吸着体を作り出すことができる。 According to the present invention, since the reactive polymer is uniformly mixed with the matrix polymer, the adsorptive amine compound that is stably held in the matrix polymer and reacted with the reactive polymer is removed. The ability to adsorb metals and ionic species over a long period of time,
Since the matrix polymer is insoluble in water and alcohols, it does not dissolve or swell in the treatment liquid during the operation of removing and recovering metals and ionic species from the treatment liquid, and the shape is maintained for a long time. At the same time, it is possible to use acid- and alkali-resistant materials, so the durability is greatly improved regardless of the state of the treatment liquid, and various forms such as films, thin films, pellets, rods, fibers, Nanofiber etc. can be easily molded, so that it can be easily formed in a desired form,
Since various compounds can be used as the adsorptive amine compounds of metals and ionic species, the adsorption characteristics of metals and ionic species can be enhanced or adjusted by changing this compound.
Furthermore, by using a pore forming agent, the adsorption surface area can be freely adjusted from a large one to a desired one, so that the amount of adsorption of metal and ionic species can be easily made desirable, It is possible to easily produce an adsorbing polymer adsorbent of metal and ionic species having excellent characteristics such as.
As described above, the present invention comprises a reactive polymer having a large number of halogenated alkyl groups or glycidyl groups, and a matrix polymer having no halogenated alkyl group or glycidyl group insoluble in water and alcohols, respectively. Is dissolved in a dissolvable organic solvent to obtain a uniform mixed solution, and then the organic solvent is removed from the mixed solution to obtain a solid in a desired form. Thereafter, the halogenated alkyl group or glycidyl group in the solidified carrier is obtained. Adhesive functional groups of metals and ionic species by reacting them with metal and ionic species adsorptive amine-based compounds, which are highly durable and have a wide variety of adsorptive properties that can be used for a wide variety of purposes Polymer adsorbents for metals and ionic species with functional groups, morphology and adsorption performance can be created.
次に実施例によって本発明を説明するが、この実施例によって本発明を何ら限定するものではない。
EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to the examples.
本発明は、ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子と、水およびアルコール類に不溶のハロゲン化アルキル基またはグリシジル基を有しない母材高分子とを、それぞれを溶解可能な有機溶媒に溶解して均一な混合溶液とした後、その混合溶液から有機溶媒を除去して所望の形態に固化した担体とし、その後、この固化した担体中のハロゲン化アルキル基またはグリシジル基と、金属およびイオン種の吸着性アミン系化合物とを反応させて吸着性官能基を導入することにより耐久性が高く、多種多様な使用目的に適応可能な多彩な吸着性官能基と形態を有する金属およびイオン種のための高分子吸着体を作り出すことができる。
The present invention provides an organic compound capable of dissolving a reactive polymer having many halogenated alkyl groups or glycidyl groups and a base polymer not having a halogenated alkyl group or glycidyl group insoluble in water and alcohols. After dissolving in a solvent to obtain a uniform mixed solution, the organic solvent is removed from the mixed solution to obtain a solidified carrier, and then the halogenated alkyl group or glycidyl group in the solidified carrier and a metal Metals and ions with a wide variety of adsorptive functional groups and forms that are highly durable and adaptable to a wide variety of usage purposes by introducing adsorptive functional groups by reacting them with adsorbable amine compounds of ionic species A polymer adsorber for the seed can be created.
ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子としては、アミノ基あるいはイミノ基と反応可能なハロゲン化アルキル基またはグリシジル基を有するモノマーのホモポリマーあるいは他のモノマーとのコポリマーである。ハロゲン化アルキル基を有するモノマーとしては、例えば、クロロメチルスチレン、3-クロロ-2-ヒドロキシプロピルメタクリレート、3-クロロ-2-ヒドロキシプロピルアクリレート、2-クロロエチルメタクリレート、2-クロロエチルアクリレート等が挙げられる。グリシジル基を有するモノマーとしては、例えば、グリシジルメタクリレート、グリシジルアクリレート、ビニルベンジルグリシジルエーテル等が挙げられる。本発明においては、これらのモノマーのホモポリマーが母材高分子と混合される。また、本発明においては、これらのモノマーのコポリマーも使用することができる。これらのモノマーと共重合が可能なモノマーとしては、スチレン、メタクリル酸エステル、アクリル酸エステルなどがある。これらの共重合可能なモノマーの配合比が多い場合には吸着性官能基の導入量が低くなるため、反応性高分子中のハロゲン化アルキル基またはグリシジル基を有するモノマーの比率は、10~100重量%、好ましくは20~100重量%である。また、ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子の分子量に関しては特に限定するものではないが、高分子量の場合には脆性が高くなり、柔軟性の低い高分子吸着体となってしまう。また、分子量が低すぎる場合には、使用中に溶出する恐れも出てくる。これらの問題は、ハロゲン化アルキル基またはグリシジル基を有するモノマーおよび共重合可能なモノマーの性質、さらには配合比率に依存するため、厳密に設定することはできないが、合成および入手が容易な分子量10000~数十万の高分子を利用する。
The reactive polymer having many halogenated alkyl groups or glycidyl groups is a homopolymer of a monomer having a halogenated alkyl group or glycidyl group capable of reacting with an amino group or imino group, or a copolymer with another monomer. Examples of the monomer having a halogenated alkyl group include chloromethylstyrene, 3-chloro-2-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl acrylate, 2-chloroethyl methacrylate, and 2-chloroethyl acrylate. It is done. Examples of the monomer having a glycidyl group include glycidyl methacrylate, glycidyl acrylate, vinylbenzyl glycidyl ether, and the like. In the present invention, homopolymers of these monomers are mixed with the matrix polymer. In the present invention, a copolymer of these monomers can also be used. Monomers that can be copolymerized with these monomers include styrene, methacrylic acid esters, acrylic acid esters, and the like. When the blending ratio of these copolymerizable monomers is large, the amount of the adsorptive functional group introduced is low, so the ratio of the monomer having an alkyl halide group or glycidyl group in the reactive polymer is 10 to 100. % By weight, preferably 20 to 100% by weight. The molecular weight of the reactive polymer having a large number of halogenated alkyl groups or glycidyl groups is not particularly limited. However, when the molecular weight is high, the polymer becomes brittle and becomes a polymer adsorbent with low flexibility. End up. In addition, if the molecular weight is too low, there is a risk of elution during use. These problems depend on the nature of the monomer having a halogenated alkyl group or glycidyl group and a copolymerizable monomer, and also the blending ratio, and cannot be set strictly, but have a molecular weight of 10,000 which is easy to synthesize and obtain. Uses hundreds of thousands of polymers.
母材高分子としては、水やアルコールに溶解せず、前記ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子を溶解する有機溶媒に溶解する高分子である。本発明の高分子吸着体は主に水系試料中の金属およびイオン種の吸着に使用されること、吸着性官能基導入反応時の反応溶液の液性が水あるいはアルコールであることから、水やアルコールに溶解しない高分子が必要となる。
このような条件を満たす母材高分子としては、例えば、ポリアクリロニトリル、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-塩化ビニル樹脂、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、ポリビニルアセテート、ポリ塩化ビニル、セルロースアセテートなどの汎用性樹脂があげられるが、最終的な高分子吸着体の特性を考慮して選択する。例えば、柔軟なフィルム状や繊維状の高分子吸着体を製造することを目的とする場合には、ポリアクリロニトリル、ポリビニルアセテート、ポリ塩化ビニル、アクリロニトリル-塩化ビニル樹脂、セルロースアセテートなどを用いる。
また、反応性高分子と母材高分子とを共に溶解する有機溶媒に関しては特に限定するものではないが、溶媒除去の容易さ、ハロゲン化アルキル基またはグリシジル基の分解を考慮すると、沸点が180℃以下、好ましくは160℃以下のものを用いる。反応性高分子と母材高分子とを共に溶解することが可能な有機溶媒としては、例えば、トルエンなどの芳香族系溶媒、テトラヒドロフランなどの環状エーテル系溶媒、クロロホルムなどの塩素系溶媒、酢酸エチルなどのエステル系溶媒、メチルエチルケトンなどのケトン系溶媒、さらにはジメチルホルムアミドなどのアミド系溶媒などがあり、反応性高分子と母材高分子との溶解性に合わせて適宜選択をする。
さらに、処理液の状態に応じて耐アルカリ性の材料や、耐酸性の材料を選択使用することができるので、広範囲な処理液の状態に適用できるとともに耐久性も大幅に向上させることができる。 The base polymer is a polymer that does not dissolve in water or alcohol but dissolves in an organic solvent that dissolves the reactive polymer having many halogenated alkyl groups or glycidyl groups. The polymer adsorbent of the present invention is mainly used for the adsorption of metals and ionic species in aqueous samples, and the liquidity of the reaction solution at the time of the adsorptive functional group introduction reaction is water or alcohol. A polymer that does not dissolve in alcohol is required.
Examples of the base polymer satisfying such conditions include polyacrylonitrile, acrylonitrile-styrene resin (AS resin), acrylonitrile-vinyl chloride resin, acrylonitrile-butadiene-styrene resin (ABS resin), polyvinyl acetate, and polyvinyl chloride. And general-purpose resins such as cellulose acetate are selected in consideration of the characteristics of the final polymer adsorbent. For example, for the purpose of producing a flexible film-like or fibrous polymer adsorbent, polyacrylonitrile, polyvinyl acetate, polyvinyl chloride, acrylonitrile-vinyl chloride resin, cellulose acetate, or the like is used.
The organic solvent that dissolves both the reactive polymer and the base polymer is not particularly limited. However, considering the ease of solvent removal and the decomposition of the halogenated alkyl group or glycidyl group, the boiling point is 180. One having a temperature of not higher than 160 ° C., preferably not higher than 160 ° C. is used. Examples of the organic solvent capable of dissolving both the reactive polymer and the matrix polymer include aromatic solvents such as toluene, cyclic ether solvents such as tetrahydrofuran, chlorine solvents such as chloroform, and ethyl acetate. And ester solvents such as methyl ethyl ketone, and amide solvents such as dimethylformamide, which are appropriately selected according to the solubility of the reactive polymer and the base polymer.
Furthermore, since an alkali-resistant material or an acid-resistant material can be selectively used according to the state of the treatment liquid, it can be applied to a wide range of treatment liquid states and the durability can be greatly improved.
このような条件を満たす母材高分子としては、例えば、ポリアクリロニトリル、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-塩化ビニル樹脂、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、ポリビニルアセテート、ポリ塩化ビニル、セルロースアセテートなどの汎用性樹脂があげられるが、最終的な高分子吸着体の特性を考慮して選択する。例えば、柔軟なフィルム状や繊維状の高分子吸着体を製造することを目的とする場合には、ポリアクリロニトリル、ポリビニルアセテート、ポリ塩化ビニル、アクリロニトリル-塩化ビニル樹脂、セルロースアセテートなどを用いる。
また、反応性高分子と母材高分子とを共に溶解する有機溶媒に関しては特に限定するものではないが、溶媒除去の容易さ、ハロゲン化アルキル基またはグリシジル基の分解を考慮すると、沸点が180℃以下、好ましくは160℃以下のものを用いる。反応性高分子と母材高分子とを共に溶解することが可能な有機溶媒としては、例えば、トルエンなどの芳香族系溶媒、テトラヒドロフランなどの環状エーテル系溶媒、クロロホルムなどの塩素系溶媒、酢酸エチルなどのエステル系溶媒、メチルエチルケトンなどのケトン系溶媒、さらにはジメチルホルムアミドなどのアミド系溶媒などがあり、反応性高分子と母材高分子との溶解性に合わせて適宜選択をする。
さらに、処理液の状態に応じて耐アルカリ性の材料や、耐酸性の材料を選択使用することができるので、広範囲な処理液の状態に適用できるとともに耐久性も大幅に向上させることができる。 The base polymer is a polymer that does not dissolve in water or alcohol but dissolves in an organic solvent that dissolves the reactive polymer having many halogenated alkyl groups or glycidyl groups. The polymer adsorbent of the present invention is mainly used for the adsorption of metals and ionic species in aqueous samples, and the liquidity of the reaction solution at the time of the adsorptive functional group introduction reaction is water or alcohol. A polymer that does not dissolve in alcohol is required.
Examples of the base polymer satisfying such conditions include polyacrylonitrile, acrylonitrile-styrene resin (AS resin), acrylonitrile-vinyl chloride resin, acrylonitrile-butadiene-styrene resin (ABS resin), polyvinyl acetate, and polyvinyl chloride. And general-purpose resins such as cellulose acetate are selected in consideration of the characteristics of the final polymer adsorbent. For example, for the purpose of producing a flexible film-like or fibrous polymer adsorbent, polyacrylonitrile, polyvinyl acetate, polyvinyl chloride, acrylonitrile-vinyl chloride resin, cellulose acetate, or the like is used.
The organic solvent that dissolves both the reactive polymer and the base polymer is not particularly limited. However, considering the ease of solvent removal and the decomposition of the halogenated alkyl group or glycidyl group, the boiling point is 180. One having a temperature of not higher than 160 ° C., preferably not higher than 160 ° C. is used. Examples of the organic solvent capable of dissolving both the reactive polymer and the matrix polymer include aromatic solvents such as toluene, cyclic ether solvents such as tetrahydrofuran, chlorine solvents such as chloroform, and ethyl acetate. And ester solvents such as methyl ethyl ketone, and amide solvents such as dimethylformamide, which are appropriately selected according to the solubility of the reactive polymer and the base polymer.
Furthermore, since an alkali-resistant material or an acid-resistant material can be selectively used according to the state of the treatment liquid, it can be applied to a wide range of treatment liquid states and the durability can be greatly improved.
高分子吸着体の金属吸着容量は、前記ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子の母材高分子への混合比率および吸着性官能基の導入量に依存する。反応性高分子の混合量が少ない場合には、吸着性官能基の導入量が低くなり、結果として金属吸着容量は低くなる。
一方、反応性高分子の混合量が高い場合には、多くの吸着性官能基を導入することが可能となるため高い金属吸着容量の高分子吸着体を得ることができる。しかし、本発明に用いられる反応性高分子は柔軟性が乏しい(脆性が高い)ため、得られる高分子吸着体も柔軟性のないものとなる恐れがある。特に、乾式紡糸法によって繊維化する場合には、延伸ができなくなってしまう恐れがある。また、反応性高分子は得られる固化した担体中に母材高分子と均一に存在しているため、混合した反応性高分子のすべての反応性官能基に吸着性官能基を導入できるという訳でなく、表面に出ている反応性官能基に吸着性官能基が導入される。したがって、使用目的・使用条件に応じて混合比率を調節する必要がある。本発明においては、ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子の混合量は、溶媒除去後の固化した担体中に10~80重量%、好ましくは20~70重量%である。 The metal adsorption capacity of the polymer adsorbent depends on the mixing ratio of the reactive polymer having many halogenated alkyl groups or glycidyl groups to the base polymer and the amount of adsorbing functional groups introduced. When the amount of the reactive polymer mixed is small, the amount of the adsorptive functional group introduced is low, and as a result, the metal adsorption capacity is low.
On the other hand, when the amount of the reactive polymer mixed is high, a large number of adsorptive functional groups can be introduced, so that a polymer adsorbent having a high metal adsorption capacity can be obtained. However, since the reactive polymer used in the present invention has poor flexibility (high brittleness), the resulting polymer adsorbent may be inflexible. In particular, when the fiber is formed by a dry spinning method, there is a possibility that the drawing cannot be performed. In addition, since the reactive polymer is present uniformly with the base polymer in the solidified carrier obtained, the adsorptive functional group can be introduced into all the reactive functional groups of the mixed reactive polymer. Instead, an adsorptive functional group is introduced into the reactive functional group on the surface. Therefore, it is necessary to adjust the mixing ratio according to the purpose and conditions of use. In the present invention, the amount of the reactive polymer having many halogenated alkyl groups or glycidyl groups is 10 to 80% by weight, preferably 20 to 70% by weight in the solidified carrier after removal of the solvent.
一方、反応性高分子の混合量が高い場合には、多くの吸着性官能基を導入することが可能となるため高い金属吸着容量の高分子吸着体を得ることができる。しかし、本発明に用いられる反応性高分子は柔軟性が乏しい(脆性が高い)ため、得られる高分子吸着体も柔軟性のないものとなる恐れがある。特に、乾式紡糸法によって繊維化する場合には、延伸ができなくなってしまう恐れがある。また、反応性高分子は得られる固化した担体中に母材高分子と均一に存在しているため、混合した反応性高分子のすべての反応性官能基に吸着性官能基を導入できるという訳でなく、表面に出ている反応性官能基に吸着性官能基が導入される。したがって、使用目的・使用条件に応じて混合比率を調節する必要がある。本発明においては、ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子の混合量は、溶媒除去後の固化した担体中に10~80重量%、好ましくは20~70重量%である。 The metal adsorption capacity of the polymer adsorbent depends on the mixing ratio of the reactive polymer having many halogenated alkyl groups or glycidyl groups to the base polymer and the amount of adsorbing functional groups introduced. When the amount of the reactive polymer mixed is small, the amount of the adsorptive functional group introduced is low, and as a result, the metal adsorption capacity is low.
On the other hand, when the amount of the reactive polymer mixed is high, a large number of adsorptive functional groups can be introduced, so that a polymer adsorbent having a high metal adsorption capacity can be obtained. However, since the reactive polymer used in the present invention has poor flexibility (high brittleness), the resulting polymer adsorbent may be inflexible. In particular, when the fiber is formed by a dry spinning method, there is a possibility that the drawing cannot be performed. In addition, since the reactive polymer is present uniformly with the base polymer in the solidified carrier obtained, the adsorptive functional group can be introduced into all the reactive functional groups of the mixed reactive polymer. Instead, an adsorptive functional group is introduced into the reactive functional group on the surface. Therefore, it is necessary to adjust the mixing ratio according to the purpose and conditions of use. In the present invention, the amount of the reactive polymer having many halogenated alkyl groups or glycidyl groups is 10 to 80% by weight, preferably 20 to 70% by weight in the solidified carrier after removal of the solvent.
ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子を含む固化した担体に吸着性官能基を導入するための化合物としては、金属およびイオン種を吸着することが可能な官能基を有するアミン系化合物である。
その第一の形態としては、エチレンジアミン、ポリエチレンイミンおよびポリアリルアミンが好適である。これらの化合物は、金属キレート基および陰イオン交換基として機能することができる。また、この様な長鎖型の高分子アミンを用いることにより、金属に対する錯体の安定度定数を向上させることが可能である。さらに、これらの官能基を導入後、ハロゲン化酢酸を用いてカルボキシメチル化することにより、広範囲な金属の吸着に利用できるキレート官能基とすることが可能である。さらには、無水酢酸でアセチル化してアミド基とすることも可能であり、貴金属の吸着材として利用できる。
また、ハロゲン化アルキル化合物を反応させてアミノ基あるいはイミノ基を三級化、四級化することにより、陰イオン交換能を向上させることが可能である。なお、これらのポリアミンには複数のアミノ基あるいはイミノ基が存在しているため、一分子で複数の反応性官能基と結合することができる。すなわち、固体担体中のハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子を架橋できるため、反応性高分子が母材高分子から溶出・脱離することを防ぐことができる。 As a compound for introducing an adsorptive functional group into a solidified carrier containing a reactive polymer having many halogenated alkyl groups or glycidyl groups, an amine system having a functional group capable of adsorbing metal and ionic species is used. A compound.
As its first form, ethylenediamine, polyethyleneimine and polyallylamine are suitable. These compounds can function as metal chelate groups and anion exchange groups. Moreover, the stability constant of the complex with respect to a metal can be improved by using such a long-chain type polymer amine. Furthermore, by introducing these functional groups and then carboxymethylating with a halogenated acetic acid, it is possible to obtain chelate functional groups that can be used for adsorption of a wide range of metals. Furthermore, it can also be acetylated with acetic anhydride to form an amide group, which can be used as a noble metal adsorbent.
Further, the anion exchange ability can be improved by reacting an alkyl halide compound to tertiary or quaternize the amino group or imino group. Since these polyamines have a plurality of amino groups or imino groups, they can be bonded to a plurality of reactive functional groups in one molecule. That is, since the reactive polymer having many halogenated alkyl groups or glycidyl groups in the solid support can be cross-linked, it is possible to prevent the reactive polymer from eluting and desorbing from the matrix polymer.
その第一の形態としては、エチレンジアミン、ポリエチレンイミンおよびポリアリルアミンが好適である。これらの化合物は、金属キレート基および陰イオン交換基として機能することができる。また、この様な長鎖型の高分子アミンを用いることにより、金属に対する錯体の安定度定数を向上させることが可能である。さらに、これらの官能基を導入後、ハロゲン化酢酸を用いてカルボキシメチル化することにより、広範囲な金属の吸着に利用できるキレート官能基とすることが可能である。さらには、無水酢酸でアセチル化してアミド基とすることも可能であり、貴金属の吸着材として利用できる。
また、ハロゲン化アルキル化合物を反応させてアミノ基あるいはイミノ基を三級化、四級化することにより、陰イオン交換能を向上させることが可能である。なお、これらのポリアミンには複数のアミノ基あるいはイミノ基が存在しているため、一分子で複数の反応性官能基と結合することができる。すなわち、固体担体中のハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子を架橋できるため、反応性高分子が母材高分子から溶出・脱離することを防ぐことができる。 As a compound for introducing an adsorptive functional group into a solidified carrier containing a reactive polymer having many halogenated alkyl groups or glycidyl groups, an amine system having a functional group capable of adsorbing metal and ionic species is used. A compound.
As its first form, ethylenediamine, polyethyleneimine and polyallylamine are suitable. These compounds can function as metal chelate groups and anion exchange groups. Moreover, the stability constant of the complex with respect to a metal can be improved by using such a long-chain type polymer amine. Furthermore, by introducing these functional groups and then carboxymethylating with a halogenated acetic acid, it is possible to obtain chelate functional groups that can be used for adsorption of a wide range of metals. Furthermore, it can also be acetylated with acetic anhydride to form an amide group, which can be used as a noble metal adsorbent.
Further, the anion exchange ability can be improved by reacting an alkyl halide compound to tertiary or quaternize the amino group or imino group. Since these polyamines have a plurality of amino groups or imino groups, they can be bonded to a plurality of reactive functional groups in one molecule. That is, since the reactive polymer having many halogenated alkyl groups or glycidyl groups in the solid support can be cross-linked, it is possible to prevent the reactive polymer from eluting and desorbing from the matrix polymer.
アミン系化合物の第二の形態は、第一の形態のアミン化合物のアミノ基またはイミノ基を残存させた部分カルボキシメチル化ポリアミンである。上述のようにポリエチレンイミンおよびポリアリルアミンを導入した後、カルボキシメチル化することが可能であると記載したが、事前にアミノ基またはイミノ基が残存するように、ポリエチレンイミンおよびポリアリルアミンをハロゲン化酢酸によって部分カルボキシメチル化した化合物を導入してもよい。アミノ基またはイミノ基を残存させる部分カルボキシメチル化に際しては、事前に一部のアミノ基あるいはイミノ基に保護基を付けた後カルボキシメチル化してもよいし、ポリエチレンイミンおよびポリアリルアミンに対するカルボキシメチル化試薬の比率を低くして反応させてもよい。なお、アミノ基またはイミノ基を残存させたカルボキシメチル化ポリアミンを反応させる場合にも、アミノ基またはイミノ基が複数存在していれば上述のような架橋反応が生じる。
The second form of the amine compound is a partially carboxymethylated polyamine in which the amino group or imino group of the amine compound of the first form is left. Although it has been described that carboxymethylation can be carried out after introducing polyethyleneimine and polyallylamine as described above, polyethyleneimine and polyallylamine are converted to halogenated acetic acid so that an amino group or imino group remains in advance. Alternatively, a partially carboxymethylated compound may be introduced. In the partial carboxymethylation to leave the amino group or imino group, a protective group may be added to a part of the amino group or imino group before carboxymethylation, or a carboxymethylation reagent for polyethyleneimine and polyallylamine The reaction may be carried out at a lower ratio. Even when the carboxymethylated polyamine having the amino group or imino group remaining is reacted, the cross-linking reaction as described above occurs if a plurality of amino groups or imino groups are present.
アミン系化合物の第三の形態は、アミノ基またはイミノ基を有するポリカルボン酸あるいはポリアミドである。これらの官能基も金属やイオン種の吸着に利用することが可能である。カルボン酸は弱陽イオン交換基として作用し、陽イオンおよび金属陽イオンを吸着させることができる。コハク酸型のようなジカルボン酸は金属キレート性官能基として機能する。アミド基は、貴金属の吸着に利用できる。アミノ基またはイミノ基を有するポリカルボン酸としては、例えば、アリルアミン-マレイン酸、ジアリルアミン-マレイン酸、アリルアミン-アクリル酸、ジアリルアミン-アクリル酸などのコポリマーがあげられる。また、アミノ基またはイミノ基を有するポリアミドとしては、例えば、アリルアミン-アクリルアミド、ジアリルアミン-アクリルアミドなどのコポリマーがあげられる。これらの化合物を反応させた場合にも、上述のような架橋反応が生じる。
A third form of the amine compound is a polycarboxylic acid or polyamide having an amino group or an imino group. These functional groups can also be used for adsorption of metals and ionic species. Carboxylic acids act as weak cation exchange groups and can adsorb cations and metal cations. A dicarboxylic acid such as succinic acid type functions as a metal chelating functional group. Amide groups can be used for adsorption of noble metals. Examples of the polycarboxylic acid having an amino group or imino group include copolymers such as allylamine-maleic acid, diallylamine-maleic acid, allylamine-acrylic acid, and diallylamine-acrylic acid. Examples of the polyamide having an amino group or imino group include copolymers such as allylamine-acrylamide and diallylamine-acrylamide. Even when these compounds are reacted, the crosslinking reaction as described above occurs.
本発明における高分子吸着体の形状は、フィルム、薄膜、粒子、ペレット、ロッド、繊維、ナノファイバーである。本発明によると、反応性高分子と母材高分子との混合溶液から有機溶媒除去により反応性高分子が均一に保持された反応性官能基を有する固体担体が得られるが、溶媒除去時に公知の方法を用いて成形することにより所望の形態の固体担体を得ることができる。
フィルムおよび薄膜状のものは、反応性高分子と母材高分子との混合溶液を調製し、粘度調節後、公知の溶液流延製膜法をはじめとする種々の公知の溶液製膜法を用いてフィルム状あるいは薄膜状の固体担体とし、その後に吸着性官能基を導入すれば高分子吸着体を調製することができる。
粒子状のものは、反応性高分子と母材高分子との混合溶液を調製し、溶媒を除去後、得られた固体担体をボールミルなどの粉砕器を用いて粉砕して粒子状の固体担体とし、その後に吸着性官能基を導入すれば高分子吸着体を得ることができる。
ペレットあるいはロッド状のものは、反応性高分子と母材高分子との混合溶液を調製し、粘度調節後、適切な径のノズルから押し出しながら有機溶媒を除去してペレット状あるいはロッド状の固体担体とし、その後に吸着性官能基を導入することにより調製することが可能である。
繊維状のものは、反応性高分子と母材高分子との混合溶液を調製し、公知の乾式紡糸法により繊維状の固体担体とし、その後に吸着性官能基を導入することにより調製可能である。ナノファイバー状のものにおいても同様の方法で調製可能であり、反応性高分子と母材高分子との混合溶液を調製し、公知のエレクトロスピニング法によりナノファイバー状の固体担体とし、その後に吸着性官能基を導入すれば調製可能である。これにより微小な繊維径の繊維からなる表面積の大きい不織布状の高分子吸着体を得ることが可能である。また、これらの形態の高分子吸着体を製造する際に、柔軟性、可塑性、耐候性などをさらに向上させるために、適切な添加剤を反応性高分子と母材高分子の混合溶液に添加して固体担体を得ることも可能である。 The shape of the polymer adsorbent in the present invention is a film, thin film, particle, pellet, rod, fiber, or nanofiber. According to the present invention, a solid support having a reactive functional group in which the reactive polymer is uniformly held can be obtained by removing the organic solvent from the mixed solution of the reactive polymer and the matrix polymer. A solid support in a desired form can be obtained by molding using the method.
Films and thin films are prepared by preparing a mixed solution of a reactive polymer and a matrix polymer, adjusting the viscosity, and performing various known solution casting methods including known solution casting film forming methods. A polymer adsorbent can be prepared by using it as a solid support in the form of a film or thin film and then introducing an adsorptive functional group.
For particulates, prepare a mixed solution of reactive polymer and matrix polymer, remove the solvent, and then grind the obtained solid carrier using a pulverizer such as a ball mill to obtain a particulate solid carrier Then, a polymer adsorbent can be obtained by introducing an adsorptive functional group.
For pellets or rods, prepare a mixed solution of reactive polymer and base polymer, adjust the viscosity, remove the organic solvent while extruding from a nozzle of appropriate diameter, and remove the pellet or rod-like solid It can be prepared by using as a carrier and then introducing an adsorptive functional group.
A fibrous material can be prepared by preparing a mixed solution of a reactive polymer and a matrix polymer, forming a fibrous solid support by a known dry spinning method, and then introducing an adsorptive functional group. is there. Nanofibers can also be prepared by the same method. Prepare a mixed solution of reactive polymer and matrix polymer, and use nanofiber-like solid support by a known electrospinning method. It can be prepared by introducing a functional group. As a result, it is possible to obtain a non-woven polymer adsorbent having a large surface area made of fibers having a minute fiber diameter. In addition, when manufacturing these types of polymer adsorbents, appropriate additives are added to the mixed solution of reactive polymer and matrix polymer in order to further improve flexibility, plasticity, weather resistance, etc. It is also possible to obtain a solid support.
フィルムおよび薄膜状のものは、反応性高分子と母材高分子との混合溶液を調製し、粘度調節後、公知の溶液流延製膜法をはじめとする種々の公知の溶液製膜法を用いてフィルム状あるいは薄膜状の固体担体とし、その後に吸着性官能基を導入すれば高分子吸着体を調製することができる。
粒子状のものは、反応性高分子と母材高分子との混合溶液を調製し、溶媒を除去後、得られた固体担体をボールミルなどの粉砕器を用いて粉砕して粒子状の固体担体とし、その後に吸着性官能基を導入すれば高分子吸着体を得ることができる。
ペレットあるいはロッド状のものは、反応性高分子と母材高分子との混合溶液を調製し、粘度調節後、適切な径のノズルから押し出しながら有機溶媒を除去してペレット状あるいはロッド状の固体担体とし、その後に吸着性官能基を導入することにより調製することが可能である。
繊維状のものは、反応性高分子と母材高分子との混合溶液を調製し、公知の乾式紡糸法により繊維状の固体担体とし、その後に吸着性官能基を導入することにより調製可能である。ナノファイバー状のものにおいても同様の方法で調製可能であり、反応性高分子と母材高分子との混合溶液を調製し、公知のエレクトロスピニング法によりナノファイバー状の固体担体とし、その後に吸着性官能基を導入すれば調製可能である。これにより微小な繊維径の繊維からなる表面積の大きい不織布状の高分子吸着体を得ることが可能である。また、これらの形態の高分子吸着体を製造する際に、柔軟性、可塑性、耐候性などをさらに向上させるために、適切な添加剤を反応性高分子と母材高分子の混合溶液に添加して固体担体を得ることも可能である。 The shape of the polymer adsorbent in the present invention is a film, thin film, particle, pellet, rod, fiber, or nanofiber. According to the present invention, a solid support having a reactive functional group in which the reactive polymer is uniformly held can be obtained by removing the organic solvent from the mixed solution of the reactive polymer and the matrix polymer. A solid support in a desired form can be obtained by molding using the method.
Films and thin films are prepared by preparing a mixed solution of a reactive polymer and a matrix polymer, adjusting the viscosity, and performing various known solution casting methods including known solution casting film forming methods. A polymer adsorbent can be prepared by using it as a solid support in the form of a film or thin film and then introducing an adsorptive functional group.
For particulates, prepare a mixed solution of reactive polymer and matrix polymer, remove the solvent, and then grind the obtained solid carrier using a pulverizer such as a ball mill to obtain a particulate solid carrier Then, a polymer adsorbent can be obtained by introducing an adsorptive functional group.
For pellets or rods, prepare a mixed solution of reactive polymer and base polymer, adjust the viscosity, remove the organic solvent while extruding from a nozzle of appropriate diameter, and remove the pellet or rod-like solid It can be prepared by using as a carrier and then introducing an adsorptive functional group.
A fibrous material can be prepared by preparing a mixed solution of a reactive polymer and a matrix polymer, forming a fibrous solid support by a known dry spinning method, and then introducing an adsorptive functional group. is there. Nanofibers can also be prepared by the same method. Prepare a mixed solution of reactive polymer and matrix polymer, and use nanofiber-like solid support by a known electrospinning method. It can be prepared by introducing a functional group. As a result, it is possible to obtain a non-woven polymer adsorbent having a large surface area made of fibers having a minute fiber diameter. In addition, when manufacturing these types of polymer adsorbents, appropriate additives are added to the mixed solution of reactive polymer and matrix polymer in order to further improve flexibility, plasticity, weather resistance, etc. It is also possible to obtain a solid support.
本発明により得られる固化した担体は溶媒除去の際に生成する微細孔を有しているが、非吸着成分が十分に浸透できる細孔径ではないため、有効吸着表面積は決して高いものではない。そこで、反応性高分子と母材高分子との混合溶液に、細孔を形成して多孔質とするための細孔形成剤を加えることで有効吸着表面積の大きい多孔質の固化した担体を得ることができる。すなわち、反応性高分子と母材高分子との混合溶液に、混合溶液を調製した有機溶媒に可溶で、かつ水またはアルコール類にも可溶な細孔形成剤を混合・溶解して均一な混合溶液とし、これらの混合溶液から有機溶媒を除去して所望の形態の固化した担体とした後、水またはアルコール類で洗浄して細孔形成剤を除去する。これにより多孔質の固体担体を得ることができ、その後、多孔質の固化した担体中のハロゲン化アルキル基またはグリシジル基に吸着性官能基を導入すれば多孔質の高分子吸着体を得ることができる。反応性高分子と母材高分子とを溶解可能な有機溶媒に可溶で、かつ水あるいはアルコール洗浄によって除去可能な化合物としては、例えば、ポリエチレングリコール、ポリエチレングリコールアルキル(アリ-ル)エーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリ酢酸ビニルなどの高分子、ドデカノールなどの長鎖アルキルアルコールなどがあげられる。この方法を用いることにより高分子吸着体の比表面積を増加させることができ、単位重量当たりの吸着容量を増加させることが可能となる。この多孔質化する方法は前述の種々の形態、すなわちフィルム、薄膜、粒子、ペレット、ロッド、繊維、ナノファイバーなどにおいても適用させることが可能である。ただし、繊維状の固化した担体を得る場合には公知の乾式紡糸法により繊維状とするため、多孔質化により強度が不足して延伸できないなどの不都合も生じることがある。そのため、繊維断面を異形化して表面積を増加させるほうが有効となることのほうが多い。ナノファイバー状の固化した担体にも適用可能であるが、細孔形成剤の添加によりアスペクト比の小さい短繊維となってしてしまう恐れがあるため、使用用途によっては不都合となる場合がある。そのため、繊維径の調節により表面積調整を行うほうが好ましい。
Although the solidified carrier obtained by the present invention has fine pores generated upon solvent removal, the effective adsorption surface area is not high because the pore diameter is not sufficiently penetrated by non-adsorbed components. Therefore, a porous solid support having a large effective adsorption surface area is obtained by adding a pore-forming agent for forming pores into a mixed solution of a reactive polymer and a matrix polymer. be able to. In other words, a pore-forming agent that is soluble in the organic solvent in which the mixed solution is prepared and is soluble in water or alcohols is mixed and dissolved in the mixed solution of the reactive polymer and the base polymer, and then homogeneous. Then, the organic solvent is removed from these mixed solutions to obtain a solidified carrier having a desired form, and the pore-forming agent is removed by washing with water or alcohols. As a result, a porous solid support can be obtained, and then a porous polymer adsorbent can be obtained by introducing an adsorptive functional group into the halogenated alkyl group or glycidyl group in the porous solidified support. it can. Examples of the compound that is soluble in an organic solvent capable of dissolving the reactive polymer and the base polymer and that can be removed by washing with water or alcohol include polyethylene glycol, polyethylene glycol alkyl (aryl) ether, and polyvinyl. Examples thereof include polymers such as alcohol, polyvinylpyrrolidone and polyvinyl acetate, and long-chain alkyl alcohols such as dodecanol. By using this method, the specific surface area of the polymer adsorbent can be increased, and the adsorption capacity per unit weight can be increased. This porous method can be applied to the various forms described above, that is, films, thin films, particles, pellets, rods, fibers, nanofibers, and the like. However, in the case of obtaining a fibrous solidified carrier, since it is made into a fiber by a known dry spinning method, there may be a disadvantage that the porous structure is insufficient in strength and cannot be stretched. For this reason, it is more effective to increase the surface area by deforming the fiber cross section. Although it can be applied to a nanofiber solidified carrier, there is a possibility that it becomes a short fiber having a small aspect ratio by adding a pore forming agent, which may be inconvenient depending on the intended use. Therefore, it is preferable to adjust the surface area by adjusting the fiber diameter.
固化した担体表面の反応性官能基への吸着性官能基の導入は、金属およびイオン種の吸着性アミン系化合物を溶解した溶液中に固化した担体を浸漬することにより行う。金属およびイオン種の吸着性アミン系化合物は、ハロゲン化アルキル基またはグリシジル基とアミノ基またはイミノ基との反応によって固化した担体に結合される。グリシジル基の場合、反応性を改善するために、事前に塩酸と反応させてクロロヒドリン化を行ってもよい。アミン系化合物を溶解する溶液は水溶液でもよいが、固化した担体が均一に分散する溶媒、あるいは固化した担体に対して親和性の高い溶媒であることが好ましい。親和性の低い場合には、固化した担体表面のハロゲン化アルキル基またはグリシジル基との反応率が低くなる。そのため、固化した担体が溶解しないような、アルコールなどを添加して親和性を高めた溶液、あるいはアルコール溶液中で反応させることが好ましい。また、必要に応じて、加温を行ってもよい。反応後の固化した担体中には未反応のハロゲン化アルキル基またはグリシジル基が残存するが、アルカリや酸で処理して水酸基を導入するほか、アミノ基、カルボキシル基、スルホ基などを導入するなどの後処理を行ってもよい。
The introduction of the adsorptive functional group to the reactive functional group on the solidified carrier surface is performed by immersing the solidified carrier in a solution in which the adsorbing amine compound of metal and ionic species is dissolved. The adsorptive amine compound of metal and ionic species is bound to a support solidified by reaction of an alkyl halide group or glycidyl group with an amino group or imino group. In the case of a glycidyl group, in order to improve the reactivity, chlorohydrin may be preliminarily reacted with hydrochloric acid. The solution for dissolving the amine compound may be an aqueous solution, but is preferably a solvent in which the solidified carrier is uniformly dispersed or a solvent having a high affinity for the solidified carrier. When the affinity is low, the reaction rate with the halogenated alkyl group or glycidyl group on the solidified carrier surface is low. Therefore, it is preferable to react in a solution in which the affinity is increased by adding alcohol or the like so that the solidified carrier does not dissolve, or in an alcohol solution. Moreover, you may heat as needed. An unreacted halogenated alkyl group or glycidyl group remains in the solidified carrier after the reaction. In addition to introducing a hydroxyl group by treatment with an alkali or acid, an amino group, a carboxyl group, a sulfo group, or the like is introduced. After-treatment may be performed.
ポリ塩化ビニル(和光純薬工業社製、重合度:約1100)10gとグリシジル基含有高分子(日油製、マープルーフ、スチレン系、分子量:約20000、エポキシ価:310g/eq)6g、細孔形成剤4gとを100mLのテトラヒドロフラン(THF)に溶解し、均一な高分子溶液とした。細孔形成剤としては、ポリ酢酸ビニル(和光純薬工業社製、重合度:約1500)とポリオキシエチレンオクチルフェニルエーテル(TritonX-100、和光純薬工業社製、ポリオキシエチレン重合度:約10)を用いた。この混合溶液を攪拌減圧下でゆっくりとTHFを除去させ、粘稠液とした後、ガラス製の容器にあけ、厚さ2mmの高分子塊を得た。この高分子塊を粗破砕した後、ボールミルを用いて粉砕した。得られた破砕状粒子を標準ふるいで90~250μmに分級した。分級後の粉砕粒子をメタノール中に分散し、攪拌しながら細孔形成剤を洗い出した。洗浄後の粒子を、10%のペンタエチレンヘキサミンを含む30%イソプロピルアルコール水溶液に浸漬し、40℃で4時間反応させてペンタエチレンヘキサミンを導入した。反応後、純水で洗浄し、ペンタエチレンヘキサミン導入粒子状高分子吸着体を得た。得られた3種の粒子状高分子吸着体を20ppmの硫酸銅溶液(pH5.5に調整)に浸漬し、銅を吸着させた。銅溶液中の銅の減少量から各粒子状高分子吸着体の銅吸着量を求めた。結果を表1に示す。得られた3種の粒子状高分子吸着体は明確に銅を吸着したが、細孔形成剤を用いて調製したもののほうが明らかに高い値となった。3種の粒子状高分子吸着体の比表面積をBeckman Coulter SA3100 Surface Area Analyzerで測定した。その結果を表1に示すが、細孔調節剤を添加しなかった粒子状高分子吸着体の比表面積は測定できなかった。各粒子状高分子吸着体の銅吸着量は,粒子状吸着体の比表面積に依存する結果となった。また,細孔形成剤を用いて調製した粒子状高分子吸着体の電子顕微鏡写真を図1及び図2に示す。写真で明白なように細孔調節剤を添加することにより,穴状あるいはクレバス状の細孔が生成されているのが判る。なお,細孔調節剤を添加しなかった粒子状高分子吸着体では同倍率では細孔が明確に観察されなかったため倍率を高めて電子顕微鏡写真を撮った。結果を図3に示すが,短繊維の束を溶融固化させたような表面状態となっており,一部にそれらの絡み合いによって奥行きの浅い細孔様の構造が観察された。得られた粒子状高分子吸着体を3Mの硝酸に50時間浸漬した。浸漬後、水洗して、再度銅吸着量を求めた。硝酸浸漬洗浄後も吸着量は低下することなく、酸性下での性能低下は確認されなかった。
10 g of polyvinyl chloride (manufactured by Wako Pure Chemical Industries, degree of polymerization: about 1100) and 6 g of glycidyl group-containing polymer (manufactured by NOF, Marproof, styrene, molecular weight: about 20000, epoxy value: 310 g / eq), fine 4 g of the pore forming agent was dissolved in 100 mL of tetrahydrofuran (THF) to obtain a uniform polymer solution. As the pore forming agent, polyvinyl acetate (manufactured by Wako Pure Chemical Industries, degree of polymerization: about 1500) and polyoxyethylene octylphenyl ether (Triton X-100, manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization of polyoxyethylene: about 10) was used. The mixed solution was slowly stirred under reduced pressure to remove THF to make a viscous liquid, which was then opened in a glass container to obtain a polymer mass having a thickness of 2 mm. The polymer mass was roughly crushed and then pulverized using a ball mill. The obtained crushed particles were classified to 90 to 250 μm using a standard sieve. The classified pulverized particles were dispersed in methanol, and the pore forming agent was washed out while stirring. The washed particles were immersed in a 30% aqueous isopropyl alcohol solution containing 10% pentaethylenehexamine and reacted at 40 ° C. for 4 hours to introduce pentaethylenehexamine. After the reaction, it was washed with pure water to obtain a pentaethylenehexamine-introduced particulate polymer adsorbent. The obtained three types of particulate polymer adsorbents were immersed in a 20 ppm copper sulfate solution (adjusted to pH 5.5) to adsorb copper. The amount of copper adsorbed on each particulate polymer adsorbent was determined from the amount of copper reduced in the copper solution. The results are shown in Table 1. The obtained three types of particulate polymer adsorbents clearly adsorbed copper, but those prepared using a pore-forming agent clearly had higher values. The specific surface areas of the three types of particulate polymer adsorbents were measured with a Beckman Coulter SA3100 Surface Area Analyzer. The results are shown in Table 1, but the specific surface area of the particulate polymer adsorbent to which no pore regulator was added could not be measured. The amount of copper adsorbed on each particulate polymer adsorbent depended on the specific surface area of the particulate adsorbent. Moreover, the electron micrograph of the particulate polymer adsorbent prepared using the pore-forming agent is shown in FIGS. It is clear from the photograph that pore-shaped or crevasse-shaped pores are generated by adding a pore regulator. In the particulate polymer adsorbent to which no pore modifier was added, pores were not clearly observed at the same magnification, so an electron micrograph was taken at an increased magnification. The result is shown in FIG. 3, which is a surface state in which a bundle of short fibers is melted and solidified, and a pore-like structure with a shallow depth is observed in part due to the entanglement thereof. The obtained particulate polymer adsorbent was immersed in 3M nitric acid for 50 hours. After soaking, it was washed with water, and the copper adsorption amount was determined again. Even after the nitric acid immersion cleaning, the amount of adsorption did not decrease, and performance degradation under acidic conditions was not confirmed.
ポリ塩化ビニル(和光純薬工業社製、重合度:約1100)70gとグリシジル基含有高分子(日油製、マープルーフ、分子量:アクリル系、約12000、エポキシ価:170g/eq)30gとを250mLのテトラヒドロフラン(THF)に溶解し、均一な高分子溶液とした。この溶液をガラス板上に塗布し、一晩かけてゆっくりとTHFを自然除去させ、厚さ0.3mmのフィルムを得た。このフィルムを30mm角にカットし、10%のポリアミンを含む30%イソプロピルアルコール水溶液に浸漬し、40℃で4時間反応させてポリアミンを導入した。ポリアミンとしては、エチレンジアミン、ペンタエチレンヘキサミン、ポリエチレンイミン(分子量:600)を用いた。ポリアミン反応後、純水で洗浄し、ポリアミン導入フィルム状高分子吸着体を得た。得られた3種のフィルム状高分子吸着体を20ppmの硫酸銅溶液(pH5.5に調整)に浸漬し、銅を吸着させた。銅溶液中の銅の減少量から各フィルム状高分子吸着体の銅吸着量を求めた。結果を表2に示す。得られたフィルム状高分子吸着体は明確に銅を吸着したが、導入するポリアミンの種類により吸着量が変化した。この検討では、ペンタエチレンヘキサミンを導入したものが最も高い銅吸着量を示した。これは、ポリアミンの分子量が大きくなると反応率が低下するためと推定される。また、ペンタエチレンヘキサミンはエチレンジアミンよりも鎖長が長く、一分子に複数の銅が吸着するため高い値が得られたものと推定される。得られたフィルム状高分子吸着体を3Mの硝酸に50時間浸漬した。浸漬後、水洗して、再度銅吸着量を求めた。結果は表2に示したとおりで、硝酸浸漬洗浄後も吸着量の低下はなく、酸性下での性能低下は確認されなかった。
70 g of polyvinyl chloride (manufactured by Wako Pure Chemical Industries, polymerization degree: about 1100) and 30 g of a glycidyl group-containing polymer (manufactured by NOF Corporation, Marproof, molecular weight: acrylic, about 12000, epoxy value: 170 g / eq) Dissolved in 250 mL of tetrahydrofuran (THF) to obtain a uniform polymer solution. This solution was applied onto a glass plate, and THF was naturally removed slowly over night to obtain a film having a thickness of 0.3 mm. This film was cut into 30 mm square, immersed in a 30% aqueous isopropyl alcohol solution containing 10% polyamine, and reacted at 40 ° C. for 4 hours to introduce polyamine. As the polyamine, ethylenediamine, pentaethylenehexamine, and polyethyleneimine (molecular weight: 600) were used. After the polyamine reaction, it was washed with pure water to obtain a polyamine-introduced polymer adsorbent. The obtained three types of film-like polymer adsorbents were immersed in a 20 ppm copper sulfate solution (adjusted to pH 5.5) to adsorb copper. The amount of copper adsorbed on each film polymer adsorbent was determined from the amount of copper reduced in the copper solution. The results are shown in Table 2. The obtained film-like polymer adsorbent clearly adsorbed copper, but the amount of adsorption varied depending on the type of polyamine introduced. In this examination, the one having introduced pentaethylenehexamine showed the highest copper adsorption amount. This is presumably because the reaction rate decreases as the molecular weight of the polyamine increases. In addition, pentaethylenehexamine has a longer chain length than ethylenediamine, and it is presumed that a high value was obtained because a plurality of copper adsorbed on one molecule. The obtained film-like polymer adsorbent was immersed in 3M nitric acid for 50 hours. After soaking, it was washed with water, and the copper adsorption amount was determined again. The results are as shown in Table 2. There was no decrease in the amount of adsorption even after the nitric acid immersion cleaning, and no decrease in performance under acidic conditions was confirmed.
本発明によれば、a) 分子内にハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子を用意する、b) 水やアルコールに不溶の母材高分子を用意する、c) 反応性高分子と母材高分子とを有機溶媒に溶解して混合溶液とする、d) 有機溶媒を除去して所望の形態の固体担体とする、e) 固体担体中のハロゲン化アルキル基またはグリシジル基に金属およびイオン種の吸着性アミン系化合物を反応させて吸着性官能基を導入する、という簡便な方法により、耐久性が高く、多種多様な使用目的に適応可能な多彩な吸着性官能基および形態を有する金属およびイオン種の除去・回収用の高分子吸着体を簡便に製造することが可能となる。本発明により得られる高分子吸着体中の吸着性官能基が導入された反応性高分子は、固化した担体の骨格をなす母材高分子によって安定して保持され、かつアミン系化合物によって架橋されているため、高分子吸着体から溶出することはなく、繰り返し使用が可能である。また、母材高分子に混合された反応性高分子の反応性官能基、すなわち有機溶媒除去により得られる固化した担体表面の反応性官能基には多種多彩な吸着性官能基を導入することが可能であるため、吸着特性の異なる種々の高分子吸着体を容易に製造することが可能となる。さらに、使用目的に応じて母材高分子の物性を選択することにより、酸性あるいはアルカリ性、さらには有機溶媒を含有した水溶液などの液性の異なる種々の溶液中からの金属およびイオン種の吸着回収に使用することが可能な高分子吸着体を製造することができる。
According to the present invention, a) a reactive polymer having many halogenated alkyl groups or glycidyl groups in the molecule is prepared, b) a matrix polymer insoluble in water or alcohol is prepared, and c) a highly reactive polymer is prepared. Molecule and matrix polymer are dissolved in organic solvent to form mixed solution, d) organic solvent is removed to form solid support in desired form, e) halogenated alkyl group or glycidyl group in solid support A variety of adsorptive functional groups and forms that are highly durable and adaptable to a wide variety of uses by a simple method of introducing adsorptive functional groups by reacting adsorbable amine compounds of metals and ionic species It is possible to easily produce a polymer adsorbent for removing and recovering metals having ionic species and ionic species. The reactive polymer introduced with the adsorptive functional group in the polymer adsorbent obtained by the present invention is stably held by the base polymer that forms the skeleton of the solidified carrier and is crosslinked by the amine compound. Therefore, it does not elute from the polymer adsorbent and can be used repeatedly. In addition, a wide variety of adsorptive functional groups can be introduced into the reactive functional group of the reactive polymer mixed with the matrix polymer, that is, the reactive functional group on the solidified carrier surface obtained by removing the organic solvent. Therefore, various polymer adsorbents having different adsorption characteristics can be easily produced. Furthermore, by selecting the physical properties of the matrix polymer according to the purpose of use, adsorption and recovery of metals and ionic species from various solutions with different liquid properties such as aqueous solutions containing acidic or alkaline, and organic solvents. It is possible to produce a polymer adsorbent that can be used for the above.
Claims (5)
- ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子と、水およびアルコール類に不溶のハロゲン化アルキル基またはグリシジル基を有しない母材高分子とを、それぞれを溶解可能な有機溶媒に溶解して均一な混合溶液とした後、その混合溶液から有機溶媒を除去して所望の形態に固化した担体とし、その後、この固化した担体中のハロゲン化アルキル基またはグリシジル基と、金属およびイオン種の吸着性アミン系化合物とを反応させて吸着性官能基を導入することにより製造されたものであることを特徴とする金属およびイオン種の吸着性の高分子吸着体。 A reactive polymer having a large number of halogenated alkyl groups or glycidyl groups and a base polymer not having a halogenated alkyl group or glycidyl group insoluble in water and alcohols are dissolved in an organic solvent capable of dissolving them. A uniform mixed solution, and then removing the organic solvent from the mixed solution to obtain a solidified support in a desired form. Thereafter, the halogenated alkyl group or glycidyl group in the solidified support and the metal and ionic species An adsorbing polymer adsorbent for metals and ionic species, which is produced by reacting an adsorbing amine compound and introducing an adsorptive functional group.
- 金属およびイオン種の吸着性アミン系化合物が、エチレンジアミン又はポリエチレンイミン、ポリアリルアミン、又はこれらの部分カルボキシメチル化化合物であることを特徴とする請求項第1項に記載の金属およびイオン種の吸着性の高分子吸着体。 2. The adsorptivity of metal and ionic species according to claim 1, wherein the adsorptive amine compound of metal and ionic species is ethylenediamine or polyethyleneimine, polyallylamine, or a partially carboxymethylated compound thereof. Polymer adsorbent.
- 金属およびイオン種の吸着性アミン系化合物が、アミノ基またはイミノ基を有するポリカルボン酸あるいはポリアミドであることを特徴とする請求項第1項に記載の金属およびイオン種の吸着性の高分子吸着体。 2. The adsorptive polymer adsorption of metal and ionic species according to claim 1, wherein the adsorptive amine compound of metal and ionic species is a polycarboxylic acid or polyamide having an amino group or imino group body.
- ハロゲン化アルキル基またはグリシジル基を多数有する反応性高分子と、水およびアルコール類に不溶であって、ハロゲン化アルキル基またはグリシジル基を有しない母材高分子とを溶解した混合溶液に、さらに有機溶媒除去後の固化した担体に多孔質性を持たせるための細孔形成剤を混合し、これらの混合溶液から有機溶媒を除去して所望の形態の固化した担体とした後、水またはアルコール類で洗浄して細孔形成剤を除去することにより多孔質の固化した担体とした後、固化した担体中のハロゲン化アルキル基またはグリシジル基と、金属およびイオン種の吸着性アミン系化合物とを反応させて吸着性官能基を導入することにより製造されたものであることを特徴とする金属およびイオン種の吸着性の高分子吸着体。 In a mixed solution in which a reactive polymer having a large number of halogenated alkyl groups or glycidyl groups and a matrix polymer that is insoluble in water and alcohol and does not have a halogenated alkyl group or glycidyl group are dissolved, further organic A pore forming agent for imparting porosity to the solidified carrier after removal of the solvent is mixed, and after removing the organic solvent from these mixed solutions to obtain a solidified carrier in a desired form, water or alcohols After removing the pore-forming agent by washing with a catalyst, the halogenated alkyl group or glycidyl group in the solidified carrier is reacted with the adsorptive amine compound of metal and ionic species. An adsorbing polymer adsorbent of metal and ionic species, which is produced by introducing an adsorbing functional group.
- 金属およびイオン種の吸着性アミン系化合物が、エチレンジアミン又はポリエチレンイミン、ポリアリルアミン、又はこれらの部分カルボキシメチル化化合物、あるいはアミノ基またはイミノ基を有するポリカルボン酸あるいはポリアミドであることを特徴とする請求項第4項に記載の金属およびイオン種の吸着性の高分子吸着体。
The adsorptive amine compound of metal and ionic species is ethylenediamine or polyethyleneimine, polyallylamine, or a partially carboxymethylated compound thereof, or a polycarboxylic acid or polyamide having an amino group or imino group. Item 5. Adsorbing polymer adsorbent of metal and ionic species according to item 4.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13740672.4A EP2808080A4 (en) | 2012-01-27 | 2013-01-26 | Polymer adsorbent |
US14/374,735 US9452426B2 (en) | 2012-01-27 | 2013-01-26 | Polymer adsorbent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012015850A JP5940313B2 (en) | 2012-01-27 | 2012-01-27 | Polymer adsorbent |
JP2012-015850 | 2012-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013111891A1 true WO2013111891A1 (en) | 2013-08-01 |
Family
ID=48873602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/051678 WO2013111891A1 (en) | 2012-01-27 | 2013-01-26 | Polymer adsorbent |
Country Status (4)
Country | Link |
---|---|
US (1) | US9452426B2 (en) |
EP (1) | EP2808080A4 (en) |
JP (1) | JP5940313B2 (en) |
WO (1) | WO2013111891A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103449624A (en) * | 2013-09-02 | 2013-12-18 | 苏州富奇诺水治理设备有限公司 | Treatment method of coking wastewater |
US20150224474A1 (en) * | 2012-09-05 | 2015-08-13 | Nippon Filcon Co., Limited | Fibrous metal-adsorbing material |
WO2015129559A1 (en) * | 2014-02-26 | 2015-09-03 | 日本フイルコン株式会社 | Metal adsorbent having nonwoven fabric form, and production method for same |
JP2015188809A (en) * | 2014-03-27 | 2015-11-02 | 島根県 | Arsenic adsorptive resin particle |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5590594B2 (en) * | 2009-04-23 | 2014-09-17 | 日本フイルコン株式会社 | Chelating polymer compound-containing metal adsorbent |
US20220135442A1 (en) * | 2019-02-22 | 2022-05-05 | Massachusetts Institute Of Technology | Thin-films for capturing heavy metal |
CN112717896A (en) * | 2021-01-07 | 2021-04-30 | 齐鲁工业大学 | Pyrogallol-based polyphenylamine adsorption material and preparation method thereof |
CN116351400B (en) * | 2022-12-07 | 2024-10-18 | 万华化学集团股份有限公司 | Adsorbent, preparation method and method for purifying ethylene and alpha-olefin copolymer by using adsorbent |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0217989A (en) | 1988-06-07 | 1990-01-22 | American Cyanamid Co | Liquid filter |
JPH07204429A (en) | 1993-12-21 | 1995-08-08 | Porex Technol Corp | Combined product of filter and ion-exchanging material and method for treating fluid using said combined product |
JP2001113272A (en) | 1999-10-20 | 2001-04-24 | Agency Of Ind Science & Technol | Method for capturing selenium or arsenic in aqueous solution |
JP3247704B2 (en) | 1991-08-29 | 2002-01-21 | 日本原子力研究所 | Heavy metal removal method |
JP2005213477A (en) | 2004-02-02 | 2005-08-11 | Hitachi Chem Co Ltd | Chelate resin and method for producing the same |
WO2007018138A1 (en) * | 2005-08-05 | 2007-02-15 | Shiga Prefecture | Material for transfer of substance in liquid comprising polymer blend |
JP2007247104A (en) | 2006-03-16 | 2007-09-27 | Mitsuya:Kk | Method for producing chelate fiber and chelate fiber and fabric containing this chelate fiber |
JP4119966B2 (en) | 2000-07-13 | 2008-07-16 | 独立行政法人 日本原子力研究開発機構 | Elution recovery of metal from metal collector and method of regenerating eluent |
JP2010194509A (en) | 2009-02-27 | 2010-09-09 | Nippon Filcon Co Ltd | Chelate resin |
JP2010253359A (en) * | 2009-04-23 | 2010-11-11 | Nippon Filcon Co Ltd | Metal adsorbent containing chelating polymer compound |
JP2010256225A (en) | 2009-04-27 | 2010-11-11 | Nippon Filcon Co Ltd | Sintered-type adsorbent for solid phase extraction, and cartridge |
JP2010254841A (en) | 2009-04-27 | 2010-11-11 | Nippon Filcon Co Ltd | Metal-adsorptive sintered porous body and method for producing the same |
JP2011056350A (en) | 2009-09-08 | 2011-03-24 | Nippon Filcon Co Ltd | Nonwoven fabric capable of adsorbing metal, and method of producing the same |
JP2011056349A (en) | 2009-09-08 | 2011-03-24 | Nippon Filcon Co Ltd | Fibrous adsorbent for adsorbing metal, and method of producing the same |
JP2011088047A (en) * | 2009-10-21 | 2011-05-06 | Nippon Filcon Co Ltd | Polymer fixed type metal adsorbent and method of manufacturing the same |
JP2011240287A (en) * | 2010-05-20 | 2011-12-01 | Hitachi Ltd | Solid chelating agent and method of manufacturing the same, and method for separation of cobalt, manganese and nickel employing the agent |
JP2012005487A (en) * | 2004-06-09 | 2012-01-12 | Pathogen Removal & Diagnostic Technologies Inc | Device and method for removing target agent from sample |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB858137A (en) * | 1958-02-11 | 1961-01-04 | Permutit Co Ltd | Improvements in ion-exchange materials and processes |
CH586726A5 (en) * | 1972-08-02 | 1977-04-15 | Basf Ag | |
JPS5550032A (en) * | 1978-10-04 | 1980-04-11 | Kanegafuchi Chem Ind Co Ltd | Manufacturing of ion exchange fiber |
-
2012
- 2012-01-27 JP JP2012015850A patent/JP5940313B2/en not_active Expired - Fee Related
-
2013
- 2013-01-26 US US14/374,735 patent/US9452426B2/en not_active Expired - Fee Related
- 2013-01-26 WO PCT/JP2013/051678 patent/WO2013111891A1/en active Application Filing
- 2013-01-26 EP EP13740672.4A patent/EP2808080A4/en not_active Withdrawn
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0217989A (en) | 1988-06-07 | 1990-01-22 | American Cyanamid Co | Liquid filter |
JP3247704B2 (en) | 1991-08-29 | 2002-01-21 | 日本原子力研究所 | Heavy metal removal method |
JPH07204429A (en) | 1993-12-21 | 1995-08-08 | Porex Technol Corp | Combined product of filter and ion-exchanging material and method for treating fluid using said combined product |
JP2001113272A (en) | 1999-10-20 | 2001-04-24 | Agency Of Ind Science & Technol | Method for capturing selenium or arsenic in aqueous solution |
JP4119966B2 (en) | 2000-07-13 | 2008-07-16 | 独立行政法人 日本原子力研究開発機構 | Elution recovery of metal from metal collector and method of regenerating eluent |
JP2005213477A (en) | 2004-02-02 | 2005-08-11 | Hitachi Chem Co Ltd | Chelate resin and method for producing the same |
JP2012005487A (en) * | 2004-06-09 | 2012-01-12 | Pathogen Removal & Diagnostic Technologies Inc | Device and method for removing target agent from sample |
WO2007018138A1 (en) * | 2005-08-05 | 2007-02-15 | Shiga Prefecture | Material for transfer of substance in liquid comprising polymer blend |
JP2007247104A (en) | 2006-03-16 | 2007-09-27 | Mitsuya:Kk | Method for producing chelate fiber and chelate fiber and fabric containing this chelate fiber |
JP2010194509A (en) | 2009-02-27 | 2010-09-09 | Nippon Filcon Co Ltd | Chelate resin |
JP2010253359A (en) * | 2009-04-23 | 2010-11-11 | Nippon Filcon Co Ltd | Metal adsorbent containing chelating polymer compound |
JP2010256225A (en) | 2009-04-27 | 2010-11-11 | Nippon Filcon Co Ltd | Sintered-type adsorbent for solid phase extraction, and cartridge |
JP2010254841A (en) | 2009-04-27 | 2010-11-11 | Nippon Filcon Co Ltd | Metal-adsorptive sintered porous body and method for producing the same |
JP2011056350A (en) | 2009-09-08 | 2011-03-24 | Nippon Filcon Co Ltd | Nonwoven fabric capable of adsorbing metal, and method of producing the same |
JP2011056349A (en) | 2009-09-08 | 2011-03-24 | Nippon Filcon Co Ltd | Fibrous adsorbent for adsorbing metal, and method of producing the same |
JP2011088047A (en) * | 2009-10-21 | 2011-05-06 | Nippon Filcon Co Ltd | Polymer fixed type metal adsorbent and method of manufacturing the same |
JP2011240287A (en) * | 2010-05-20 | 2011-12-01 | Hitachi Ltd | Solid chelating agent and method of manufacturing the same, and method for separation of cobalt, manganese and nickel employing the agent |
Non-Patent Citations (5)
Title |
---|
"Saisentan Ion-Kokan Gijutsu no Subete", 2009, KOGYO CHOSAKAI PUBLISHING |
MANABU SENOO; MITSUO ABE; TAKASHI SUZUKI: "Ion-Kokan, Kodo-Bunri Gijutsu no Kiso", 1991, KODANSHA SCIENTIFIC |
NAOKI TOSHIMA; TSUYOSHI ENDO; RYUICHI YAMAMOTO: "Kinosei Kobunshi Zairyo no Kagaku", 1998, ASAKURA PUBLISHING |
NOBUMASA HOJO: "Kireto Jushi/Ion-Kokan Jushi", 1976, KODANSHA SCIENTIFIC |
See also references of EP2808080A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150224474A1 (en) * | 2012-09-05 | 2015-08-13 | Nippon Filcon Co., Limited | Fibrous metal-adsorbing material |
US9687814B2 (en) * | 2012-09-05 | 2017-06-27 | Nippon Filcon Co., Limited | Fibrous metal-adsorbing material |
CN103449624A (en) * | 2013-09-02 | 2013-12-18 | 苏州富奇诺水治理设备有限公司 | Treatment method of coking wastewater |
WO2015129559A1 (en) * | 2014-02-26 | 2015-09-03 | 日本フイルコン株式会社 | Metal adsorbent having nonwoven fabric form, and production method for same |
JP2015160147A (en) * | 2014-02-26 | 2015-09-07 | 日本フイルコン株式会社 | Metal adsorbent with nonwoven fabric form, and method for producing the same |
JP2015188809A (en) * | 2014-03-27 | 2015-11-02 | 島根県 | Arsenic adsorptive resin particle |
Also Published As
Publication number | Publication date |
---|---|
EP2808080A1 (en) | 2014-12-03 |
JP5940313B2 (en) | 2016-06-29 |
JP2013154283A (en) | 2013-08-15 |
EP2808080A4 (en) | 2015-10-21 |
US20140332714A1 (en) | 2014-11-13 |
US9452426B2 (en) | 2016-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5940313B2 (en) | Polymer adsorbent | |
Almasian et al. | Removal of heavy metal ions by modified PAN/PANI-nylon core-shell nanofibers membrane: Filtration performance, antifouling and regeneration behavior | |
Saeed et al. | Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption | |
Liu et al. | Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions | |
JP5590594B2 (en) | Chelating polymer compound-containing metal adsorbent | |
Wei et al. | Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals | |
Huang et al. | Electrospun fibrous membranes for efficient heavy metal removal | |
Kampalanonwat et al. | Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal | |
JP5924807B2 (en) | Gel-like metal adsorbent and gel-like metal adsorbent-carrying adsorbent | |
Pereao et al. | Adsorption of Ce3+ and Nd3+ by diglycolic acid functionalised electrospun polystyrene nanofiber from aqueous solution | |
JP5896486B2 (en) | Nonwoven metal adsorbent and method for producing the same | |
Song et al. | Synthesis of cross-linking chitosan-PVA composite hydrogel and adsorption of Cu (II) ions | |
da Costa et al. | Effective recovery of ytterbium through biosorption using crosslinked sericin-alginate beads: a complete continuous packed-bed column study | |
Guo et al. | Regenerated cellulose/polyethyleneimine composite aerogel for efficient and selective adsorption of anionic dyes | |
Chen et al. | Preparation of flexible electrospun AOPAN/PVDF membranes for removing Pb2+ from water | |
JP5954823B2 (en) | Fibrous metal adsorbent | |
Lou et al. | A novel blending nanofibrous membrane of Poly (ionic liquid) for efficient and fast adsorption of ReO4− | |
CN102941070A (en) | Polyethylene-methacrylic acid-polyethylene polyamine fiber and method for preparing same | |
Kalantari et al. | Evaluation of heavy metals removal by cross-linked (polyvinyl alcohol/chitosan/magnetic) nano fibrous membrane prepared by electro spinning technique | |
CN114177787A (en) | Self-supporting nanofiber anion exchange chromatographic membrane and preparation method thereof | |
Ali et al. | Science and technology roadmap for adsorption of metallic contaminants from aqueous effluents using biopolymers and its’ derivatives | |
Haji | Modified textile fibers for waste water treatment | |
Zeng et al. | Triethylene tetramine-modified crosslinked acrylonitrile as Cu (II) ion adsorbent by photo-induced precipitation polymerization | |
Wu et al. | Research Status of Polyvinyl Alcohol-Based Chelating Materials | |
Wang et al. | Removal of Pb (II) using Polyethylenimine-Crosslinked Polyvinyl Chloride Fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13740672 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14374735 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013740672 Country of ref document: EP |