WO2013111717A1 - Foam diffuse reflector - Google Patents

Foam diffuse reflector Download PDF

Info

Publication number
WO2013111717A1
WO2013111717A1 PCT/JP2013/051128 JP2013051128W WO2013111717A1 WO 2013111717 A1 WO2013111717 A1 WO 2013111717A1 JP 2013051128 W JP2013051128 W JP 2013051128W WO 2013111717 A1 WO2013111717 A1 WO 2013111717A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuse reflector
meth
foam
weight
foamed
Prior art date
Application number
PCT/JP2013/051128
Other languages
French (fr)
Japanese (ja)
Inventor
平尾 昭
智紀 兵藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2013111717A1 publication Critical patent/WO2013111717A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]

Definitions

  • the present invention relates to a foamed diffuse reflector.
  • the foaming diffused reflection body which has the special foaming surface structure formed by including specific resin.
  • Diffuse reflectors are provided in various light sources (for example, LED substrates, backlight devices for liquid crystal display devices, lighting devices such as fluorescent lamps, incandescent lamps, and light duct system devices such as natural lighting), and due to their diffuse reflection performance, Luminous efficiency from a device using an external light source is improved.
  • LED substrates for example, LED substrates, backlight devices for liquid crystal display devices, lighting devices such as fluorescent lamps, incandescent lamps, and light duct system devices such as natural lighting
  • a diffuse reflector is required to have high diffuse reflection performance.
  • the film contains a diffuse reflector formed by depositing a metal vapor-deposited film on the surface of a substrate such as metal to form a metal mirror surface, or a pigment or fine particles that enhance light scattering.
  • Diffuse reflectors are known.
  • the diffuse reflector formed with the metal mirror surface has a problem that the light scattering performance is low although the light reflecting performance is high.
  • a diffuse reflector in which a film containing pigments and fine particles that enhance light scattering properties needs to increase the amount of pigments and fine particles added in order to suppress the leakage of light to the back side, There is a problem in that the loss due to light absorption cannot be ignored and the light reflection performance decreases as the amount of pigment or fine particles added increases.
  • a polyester foam containing fine bubbles has been reported as a new diffuse reflector (for example, Patent Document 1).
  • This diffuse reflector utilizes the property that light is diffusely reflected by a large number of fine bubbles.
  • the polyester foam reported in Patent Document 1 has fine bubbles arranged inside the polyester foam and has an unfoamed skin layer near both surfaces. For this reason, there is a problem that fine bubbles do not exist in the vicinity of both surfaces, and sufficient diffuse reflection performance cannot be exhibited.
  • light sources for example, LEDs
  • the amount of heat generated from the light sources has increased, and the heat load on the reflector has also increased.
  • a diffuse reflector used in a natural light daylight duct device or the like deteriorates the diffuse reflection performance due to yellowing or deformation.
  • the diffuse reflector used in the device has light resistance.
  • high heat resistance is required to prevent dimensional changes due to heat or the like.
  • An object of the present invention is a foamed diffuse reflector having a cell structure, the cell structure is precisely controlled, the cell rate is high, and has a large number of finely controlled surface openings.
  • An object of the present invention is to provide a foamed diffuse reflector that can exhibit very excellent diffuse reflection performance and has excellent heat resistance and light resistance.
  • the foamed diffuse reflector of the present invention includes a foam having an open cell structure having through-holes between adjacent spherical cells, the foam includes a hydrophilic polyurethane polymer, and the average pore size of the spherical cells is 20 ⁇ m.
  • the average pore diameter of the through-holes is 5 ⁇ m or less, the surface of the foam has a surface opening with an average pore diameter of 20 ⁇ m or less, and the diffuse reflectance in the wavelength region of 400 nm to 600 nm is 90% or more. is there.
  • the foamed diffuse reflector of the present invention has a thickness of 0.1 mm or more.
  • the foamed diffuse reflector of the present invention has a dimensional change rate of less than ⁇ 5% when stored at 125 ° C. for 22 hours.
  • the foamed diffuse reflector of the present invention has a reflectance decrease of less than 10% at a wavelength of 550 nm before and after irradiation with ultraviolet rays having an illuminance of 90 mW / cm 2 for 100 hours.
  • a light shielding layer is further provided on the surface opposite to the reflecting surface of the foamed diffuse reflector.
  • the foamed diffuse reflector of the present invention has a hole penetrating in the thickness direction of the foam diffuse reflector, and the diameter of the hole penetrating in the thickness direction is 20 mm to 60 mm.
  • a method for producing a foamed diffuse reflector is provided.
  • the production method is a method of producing a foamed diffuse reflector including a foam having an open cell structure having a through-hole between adjacent spherical cells, the continuous oil phase component being immiscible with the continuous oil phase component.
  • the step (III) and the step (IV) of dehydrating the obtained water-containing polymer are included, and the continuous oil phase component includes a hydrophilic polyurethane-based polymer, an ethylenically unsaturated monomer, and a crosslinking agent.
  • the crosslinking agent has at least one selected from polyfunctional (meth) acrylates, polyfunctional (meth) acrylamides, and polymerization reactive oligomers having a weight average molecular weight of 800 or more, and a weight average molecular weight. 1 or more types chosen from polyfunctional (meth) acrylate and polyfunctional (meth) acrylamide which are 500 or less are included.
  • the foamed diffuse reflector is obtained by the production method.
  • the foam diffuse reflector having a cell structure the cell structure is precisely controlled, the cell rate is high, and has a number of fine surface openings that are precisely controlled, It is possible to provide a foamed diffuse reflector that can exhibit very excellent diffuse reflection performance and has excellent heat resistance and light resistance. Since the foamed diffuse reflector of the present invention is excellent in dimensional stability even at high temperatures, it can maintain excellent diffuse reflection performance even at high temperatures, and can be preferably used for, for example, an LED substrate.
  • FIG. 1 It is a schematic sectional drawing which shows preferable embodiment of the foaming diffused reflection body of this invention. It is a schematic sectional drawing which shows another preferable embodiment of the foaming diffused reflection body of this invention. It is a photograph figure of a section SEM photograph of a foaming diffused reflector of the present invention, and is a photograph figure clearly showing open cell structure which has a penetration hole between adjacent spherical bubbles.
  • A is a foaming diffused reflection body by one Embodiment of this invention, and is a schematic sectional drawing which shows the foaming diffused reflection body which has an inclination through-hole.
  • (B) is a schematic cross-sectional perspective view of the inclined through-hole. It is a photograph figure of the surface / cross-section SEM photograph which image
  • the foaming diffused reflection body of this invention contains the foam containing a hydrophilic polyurethane type polymer, and this foam has an open-cell structure which has a through-hole between adjacent spherical cells.
  • Typical structures include a foam diffuse reflector 100 (FIG. 1) made of the foam 10, and a foam diffuse reflector 100 (FIG. 2) including a base material 20 (described later) between the foam 10a and the foam 10b. ).
  • the release film 30 is provided for protecting the surface of the foaming diffuse reflector, but the release film may not be provided.
  • the thickness of the foamed diffuse reflector of the present invention is preferably 0.1 mm or more, more preferably 0.1 mm to 10 mm, still more preferably 0.2 mm to 5 mm, particularly preferably 0.2 mm to 1 mm. It is.
  • the foamed diffuse reflector of the present invention is excellent in mechanical strength even if it is thin.
  • the “spherical bubble” does not have to be a strict true spherical bubble, and may be, for example, a substantially spherical bubble having a partial strain or a bubble composed of a space having a large strain. .
  • the average pore diameter of the spherical bubbles that the foam contained in the foamed diffuse reflector of the present invention may have is less than 20 ⁇ m, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the lower limit value of the average pore diameter of the spherical bubbles of the foam contained in the foamed diffuse reflector of the present invention is not particularly limited. For example, it is preferably 0.01 ⁇ m, more preferably 0.1 ⁇ m, and still more preferably. 1 ⁇ m.
  • the average pore diameter of the spherical bubbles contained in the foamed diffuse reflector of the present invention falls within the above range, the average pore diameter of the spherical bubbles of the foam contained in the foamed diffuse reflector of the present invention is precisely reduced.
  • a novel foamed diffuse reflector that can be controlled and is excellent in flexibility and heat resistance can be provided.
  • the foam contained in the foamed diffuse reflector of the present invention has an open cell structure having through holes between adjacent spherical cells.
  • This open cell structure may be an open cell structure having through holes between most or all adjacent spherical cells, or may be a semi-independent semi-open cell structure having a relatively small number of through holes. .
  • the foamed diffuse reflector of the present invention can have a sufficient adhesive force. This is because, when the foam diffuse reflector is pressed against the adherend, the spherical bubbles and the through holes are compressed, and air is released from the foam surface to the outside. Is presumed to be exhibited.
  • the open cell structure extends in all directions inside the foam, air easily escapes outward by pressing. As a result, it is presumed that a sufficient atmospheric pressure difference is generated and excellent adsorptivity is exhibited.
  • the adhesive force of the foaming diffused reflection body of this invention utilizes adsorption power, peeling and sticking are possible any number of times. Since such a foaming diffused reflector is easy to attach and excellent in reworkability, for example, when used in an LED substrate or a backlight device, it can contribute to improvement in workability at the time of manufacture.
  • FIG. 3 is a photographic view of a cross-sectional SEM photograph of the foamed diffuse reflector of the present invention, and shows a photographic view clearly showing an open cell structure having through holes between adjacent spherical bubbles.
  • the average pore diameter of the through holes between adjacent spherical bubbles is 5 ⁇ m or less, preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the lower limit value of the average pore diameter of the through holes between adjacent spherical bubbles is not particularly limited, and is preferably 0.001 ⁇ m, and more preferably 0.01 ⁇ m, for example.
  • a novel foamed diffuse reflector having excellent flexibility and heat resistance can be provided.
  • the foam contained in the foamed diffuse reflector of the present invention has a surface opening on the surface.
  • the average pore diameter of the surface opening is 20 ⁇ m or less, preferably less than 20 ⁇ m, more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less, further preferably 5 ⁇ m or less, and particularly preferably 4 ⁇ m or less. And most preferably 3 ⁇ m or less.
  • the lower limit of the average pore diameter of the surface opening is not particularly limited, and is preferably 0.001 ⁇ m, and more preferably 0.01 ⁇ m, for example.
  • the density of the foam contained in the foamed diffuse reflector of the present invention is preferably 0.15 g / cm 3 to 0.6 g / cm 3 , more preferably 0.15 g / cm 3 to 0.5 g / cm 3. , and still more preferably from 0.15g / cm 3 ⁇ 0.45g / cm 3, particularly preferably from 0.15g / cm 3 ⁇ 0.4g / cm 3.
  • the density of the foam contained in the foamed diffuse reflector of the present invention falls within the above range, the range of density of the foam contained in the foamed diffuse reflector of the present invention is widely controlled, and flexibility and diffusion are achieved.
  • a novel foaming diffused reflector excellent in reflectivity can be provided.
  • the foam contained in the foamed diffuse reflector of the present invention has a cell ratio of preferably 30% or more, more preferably 40% or more, and further preferably 50% or more.
  • the foam ratio falls within the above range, so that the foam diffused reflector of the present invention can exhibit very excellent diffuse reflective performance, and has excellent flexibility and excellent diffuse reflectivity. Can have.
  • the foam contained in the foamed diffuse reflector of the present invention contains a hydrophilic polyurethane polymer. Since the foam contained in the foamed diffuse reflector of the present invention contains a hydrophilic polyurethane polymer, the cell structure is precisely controlled, the cell rate is high, and a large number of fine surface openings controlled precisely. It is possible to provide a novel foamed diffuse reflector that has a portion, can exhibit very excellent diffuse reflection performance, and has excellent flexibility and excellent heat resistance.
  • the diffuse reflectance in the wavelength region of 400 nm to 600 nm is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and particularly preferably. It is 99% or more, and most preferably 99.5% or more.
  • the foamed diffuse reflector of the present invention has a decrease in reflectance at a wavelength of 550 nm before and after being irradiated with ultraviolet rays having an illuminance of 90 mW / cm 2 for 100 hours, preferably less than 20%, more preferably less than 10%, More preferably, it is less than 5%.
  • the foamed diffuse reflector of the present invention can have very excellent light resistance.
  • the foamed diffuse reflector of the present invention has a normal shear adhesive strength of preferably 1 N / cm 2 or more, more preferably 3 N / cm 2 or more, still more preferably 5 N / cm 2 or more, and further preferably 7 N / cm 2 or more, particularly preferably 9 N / cm 2 or more, and most preferably 10 N / cm 2 or more.
  • the foamed diffuse reflector of the present invention can exhibit sufficient adhesive strength.
  • the foamed diffuse reflector of the present invention has a 180 ° peel test force of preferably 1 N / 25 mm or less, more preferably 0.8 N / 25 mm or less, still more preferably 0.5 N / 25 mm or less. Preferably it is 0.3 N / 25 mm or less.
  • the foamed diffuse reflector of the present invention exhibits an excellent effect that it can be easily peeled despite its high adhesive strength as described above. obtain.
  • the foamed diffuse reflector of the present invention has a 100 ° C. holding force of preferably 0.5 mm or less, more preferably 0.4 mm or less, still more preferably 0.3 mm or less, and particularly preferably 0.2 mm. It is as follows. When the 100 ° C. holding force falls within the above range, the foamed diffuse reflector of the present invention can achieve both excellent heat resistance and sufficient adhesive strength.
  • the dimensional change rate when stored at 125 ° C. for 22 hours is preferably less than ⁇ 5%, more preferably ⁇ 3% or less, and further preferably ⁇ 1% or less. is there.
  • the dimensional change rate when stored at 125 ° C. for 22 hours is within the above range, whereby the foamed diffuse reflector of the present invention can have excellent heat resistance.
  • Such a foamed diffuse reflector can prevent changes in reflection characteristics even at high temperatures.
  • the foamed diffuse reflector of the present invention can take any appropriate shape.
  • lengths such as a long side and a short side, can take arbitrary appropriate values.
  • the foamed diffuse reflector of the present invention is used for an LED substrate (for example, an LED substrate of a direct type backlight device).
  • the foaming diffused reflector of the present invention can be used as an LED substrate itself, and can also be used as a reflector laminated on the LED substrate.
  • the foamed diffuse reflector of the present invention is provided so as to allow the LED to pass through at a position corresponding to the LED on the LED substrate. May have a hole).
  • the through hole can be obtained, for example, by perforating a foamed diffuse reflector obtained by polymerizing a W / O emulsion as described later by a known counterbore processing method.
  • the plan view shape of the through hole may be a substantially circular shape or a substantially regular polygon. Preferably it is substantially circular.
  • the diameter is preferably 20 mm to 60 mm, more preferably 25 mm to 40 mm.
  • the diameter of a circle inscribed in the substantially regular polygon is preferably 20 mm to 60 mm, and more preferably 25 mm to 40 mm.
  • FIGS. 4 (a) and 4 (b) the through holes of the foamed diffuse reflector are preferably shown in FIGS. 4 (a) and 4 (b). As shown, it is an inclined through hole that forms a mortar-shaped inclined surface on the inside.
  • FIG. 4A is a schematic perspective view of a foamed diffuse reflector according to one embodiment of the present invention, showing a foamed diffuse reflector having inclined through holes.
  • FIG. 4B is a schematic cross-sectional perspective view of the inclined through hole. If it has the inclined through-hole 1, since the light from LED can be reflected by making an inclined surface into a reflective surface, the foaming diffused reflection body which can express the outstanding diffuse reflection performance can be provided.
  • the inclined through hole 1 is provided at a position corresponding to the LED on the LED substrate.
  • a plurality of inclined through holes 1 are shown, but one inclined through hole 1 may be provided according to the number of LEDs on the LED substrate.
  • the opening of the inclined through hole 1 may be substantially circular or substantially regular polygonal on both the upper and lower sides. Preferably, it is substantially circular as shown in FIGS. 4 (a) and 4 (b).
  • the diameter a of the upper opening is preferably 25 mm to 60 mm, more preferably 30 mm to 40 mm.
  • the diameter b of the lower opening is shorter than the diameter a of the upper opening, preferably 20 mm to 40 mm, more preferably 20 mm to 30 mm.
  • the diameter of a circle inscribed in the substantially regular polygon is preferably 25 mm to 60 mm, and more preferably 30 mm to 40 mm.
  • the diameter of a circle inscribed in the substantially regular polygon is preferably 20 mm to 40 mm, and more preferably 20 mm to 30 mm.
  • the inclination angle x of the inclined surface of the inclined through hole 1 is preferably 5 ° to 80 °, more preferably 15 ° to 70 °, and further preferably 25 ° to 60 °.
  • the foamed diffuse reflector of the present invention is used as a diffuse reflector for an edge light type backlight device and a lighting fixture.
  • a through hole can be provided as necessary.
  • the surface of the foamed diffuse reflector can be a flat surface or an uneven surface.
  • the foamed diffuse reflector of the present invention may contain any appropriate base material as long as the effects of the present invention are not impaired.
  • a form in which the base material is contained in the foamed diffuse reflector of the present invention for example, a form in which a layer of the base material is provided in one surface or inside of the foamed diffuse reflector can be mentioned.
  • a substrate include fiber woven fabric, fiber nonwoven fabric, fiber laminated fabric, fiber knitted fabric, resin sheet, metal foil film sheet, and inorganic fiber.
  • the substrate is a light shielding layer.
  • the base material for example, a metallic processed resin sheet, a metal foil film sheet, or the like is used, and the base material (light shielding layer) is opposite to the reflecting surface of the foaming diffuse reflector. On the side surface.
  • the fiber woven fabric a woven fabric formed of any appropriate fiber can be adopted.
  • fibers include natural fibers such as plant fibers, animal fibers, and mineral fibers; artificial fibers such as regenerated fibers, synthetic fibers, semi-synthetic fibers, and artificial inorganic fibers.
  • synthetic fibers include fibers obtained by melt spinning thermoplastic fibers.
  • the fiber woven fabric may be metallic processed by plating or sputtering.
  • the fiber nonwoven fabric a nonwoven fabric formed of any appropriate fiber can be adopted.
  • fibers include natural fibers such as plant fibers, animal fibers, and mineral fibers; artificial fibers such as regenerated fibers, synthetic fibers, semi-synthetic fibers, and artificial inorganic fibers.
  • synthetic fibers include fibers obtained by melt spinning thermoplastic fibers.
  • the fiber nonwoven fabric may be metallic-processed by plating, sputtering, etc. More specifically, for example, a spunbond nonwoven fabric can be mentioned.
  • the fiber laminated fabric a laminated fabric formed of any appropriate fiber can be adopted.
  • fibers include natural fibers such as plant fibers, animal fibers, and mineral fibers; artificial fibers such as regenerated fibers, synthetic fibers, semi-synthetic fibers, and artificial inorganic fibers.
  • synthetic fibers include fibers obtained by melt spinning thermoplastic fibers.
  • the fiber laminated fabric may be metallic processed by plating, sputtering, or the like. More specifically, for example, a polyester fiber laminated fabric can be mentioned.
  • the fiber knitted fabric for example, a knitted fabric formed of any appropriate fiber can be adopted.
  • fibers include natural fibers such as plant fibers, animal fibers, and mineral fibers; artificial fibers such as regenerated fibers, synthetic fibers, semi-synthetic fibers, and artificial inorganic fibers.
  • synthetic fibers include fibers obtained by melt spinning thermoplastic fibers.
  • the fiber knitted fabric may be metallically processed by plating or sputtering.
  • the resin sheet a sheet formed of any appropriate resin can be adopted.
  • An example of such a resin is a thermoplastic resin.
  • the resin sheet may be metallic processed by plating or sputtering. When the resin sheet is subjected to metallic processing, the resin sheet functions as a light shielding layer.
  • metal foil film sheet a sheet formed of any appropriate metal foil film can be adopted.
  • any appropriate inorganic fiber can be adopted as the inorganic fiber.
  • specific examples of such inorganic fibers include glass fibers, metal fibers, and carbon fibers.
  • the same material as the foamed diffuse reflector may be present in part or all of the voids.
  • the substrate may be used alone or in combination of two or more.
  • the foaming diffuse reflector of this invention can be manufactured by arbitrary appropriate methods.
  • the foamed diffuse reflector of the present invention can be preferably produced by shaping and polymerizing a W / O emulsion.
  • a W / O type that can be used to continuously supply a continuous oil phase component and an aqueous phase component to an emulsifier to obtain the foamed diffuse reflector of the present invention.
  • a continuous method in which an emulsion is prepared, and then the obtained W / O emulsion is polymerized to produce a water-containing polymer, and then the obtained water-containing polymer is dehydrated.
  • an appropriate amount of an aqueous phase component is charged into an emulsifier with respect to the continuous oil phase component, and the aqueous phase component is continuously supplied while stirring.
  • a W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention is prepared, and the resulting W / O emulsion is polymerized to produce a hydrous polymer, followed by the hydrous weight obtained.
  • a “batch method” in which the coalescence is dehydrated can be mentioned.
  • a continuous polymerization method in which a W / O emulsion is continuously polymerized is a preferable method because it has high production efficiency and can most effectively utilize the effect of shortening the polymerization time and the shortening of the polymerization apparatus.
  • the foamed diffuse reflector of the present invention is preferably Step (I) of preparing a W / O type emulsion that can be used to obtain the foamed diffuse reflector of the present invention; Step (II) of shaping the obtained W / O emulsion, Polymerizing the shaped W / O emulsion (III); Step (IV) of dehydrating the obtained hydrous polymer; It can manufacture with the manufacturing method containing.
  • Step (II) for shaping the obtained W / O emulsion and the step (III) for polymerizing the shaped W / O emulsion may be performed simultaneously.
  • Step for preparing W / O type emulsion (I) is a W / O type emulsion containing a continuous oil phase component and an aqueous phase component immiscible with the continuous oil phase component. More specifically, the W / O type emulsion is obtained by dispersing an aqueous phase component in a continuous oil phase component.
  • the ratio of the water phase component to the continuous oil phase component in the W / O type emulsion that can be used to obtain the foamed diffuse reflector of the present invention is any suitable ratio within a range in which the W / O type emulsion can be formed. It can be taken.
  • the ratio of the water phase component and the continuous oil phase component in the W / O type emulsion that can be used to obtain the foamed diffuse reflector of the present invention is the structural ratio of the foam obtained by polymerization of the W / O type emulsion. It can be an important factor in determining mechanical and performance characteristics.
  • the ratio of the water phase component to the continuous oil phase component in the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention is the foam obtained by polymerization of the W / O emulsion. It can be an important factor in determining the body density, bubble size, bubble structure, and dimensions of the wall forming the porous structure.
  • the ratio of the aqueous phase component in the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention is preferably 30% by weight, more preferably 40% by weight, and still more preferably as the lower limit. Is 50% by weight, particularly preferably 55% by weight, and the upper limit is preferably 95% by weight, more preferably 90% by weight, still more preferably 85% by weight, and particularly preferably 80% by weight. % By weight. If the ratio of the aqueous phase component in the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention is within the above range, the effects of the present invention can be sufficiently exhibited.
  • the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention may contain any appropriate additive as long as the effects of the present invention are not impaired.
  • additives include tackifying resins; talc; calcium carbonate, magnesium carbonate, silicic acid and salts thereof, clay, mica powder, aluminum hydroxide, magnesium hydroxide, zinc white, bentonine, carbon black, Examples thereof include fillers such as silica, alumina, aluminum silicate, acetylene black, and aluminum powder; pigments; dyes; Only one kind of such an additive may be contained, or two or more kinds thereof may be contained.
  • Any appropriate method can be adopted as a method for producing a W / O type emulsion that can be used for obtaining the foamed diffuse reflector of the present invention.
  • a method for producing a W / O type emulsion that can be used for obtaining the foamed diffuse reflector of the present invention for example, a continuous oil phase component and an aqueous phase component are continuously supplied to an emulsifier to obtain a W / O type.
  • a W / O type emulsion can be obtained by adding an appropriate amount of aqueous phase component to the continuous oil phase component in an emulsion machine and supplying the aqueous phase component continuously with stirring. Examples include “batch method” to be formed.
  • a shearing means for obtaining an emulsion state for example, a rotor stator mixer, a homogenizer, a microfluidizer or the like was used. Application of high shear conditions.
  • a shearing means for obtaining an emulsion state for example, gentle mixing of continuous and dispersed phases by application of low shear conditions using a moving blade mixer or a pin mixer, low stirring conditions using a magnetic stir bar, etc. Can be mentioned.
  • Examples of the apparatus for preparing the W / O emulsion by the “continuous method” include a static mixer, a rotor stator mixer, and a pin mixer. More intense agitation may be achieved by increasing the agitation speed or by using an apparatus designed to finely disperse the aqueous phase component in the W / O emulsion by a mixing method.
  • Examples of the apparatus for preparing the W / O emulsion by the “batch method” include manual mixing and shaking, a driven blade mixer, and a three-propeller mixing blade. Specifically, “TK Ajihomomica (trade name)” and “TK Combimix (trade name)” manufactured by Primix Co., Ltd. produce the target W / O emulsion under reduced pressure. This is possible, and the resulting W / O emulsion greatly reduces the incorporation of bubbles.
  • any appropriate method can be adopted as a method for preparing the continuous oil phase component.
  • a method for preparing the continuous oil phase component typically, for example, a mixed syrup containing a hydrophilic polyurethane-based polymer and an ethylenically unsaturated monomer is prepared, and subsequently, a polymerization initiator, It is preferable to prepare a continuous oil phase component by blending a crosslinking agent and any other appropriate components.
  • a typical method for preparing a hydrophilic polyurethane-based polymer is, for example, by reacting polyoxyethylene polyoxypropylene glycol and a diisocyanate compound in the presence of a urethane reaction catalyst.
  • the aqueous phase component can be any aqueous fluid that is substantially immiscible with the continuous oil phase component. From the viewpoint of ease of handling and low cost, water such as ion-exchanged water is preferable.
  • the water phase component may contain any appropriate additive as long as the effects of the present invention are not impaired.
  • additives include polymerization initiators and water-soluble salts.
  • the water-soluble salt can be an effective additive for further stabilizing the W / O emulsion.
  • water-soluble salts include sodium carbonate, calcium carbonate, potassium carbonate, sodium phosphate, calcium phosphate, potassium phosphate, sodium chloride, potassium chloride and the like. Only one kind of such an additive may be contained, or two or more kinds thereof may be contained.
  • the additive that can be contained in the aqueous phase component may be only one kind or two or more kinds.
  • the continuous oil phase component preferably contains a hydrophilic polyurethane polymer and an ethylenically unsaturated monomer.
  • the content ratio of the hydrophilic polyurethane polymer and the ethylenically unsaturated monomer in the continuous oil phase component can take any appropriate content ratio as long as the effects of the present invention are not impaired.
  • the hydrophilic polyurethane-based polymer depends on the polyoxyethylene ratio in the polyoxyethylene polyoxypropylene glycol unit constituting the hydrophilic polyurethane-based polymer or the amount of the aqueous phase component to be blended.
  • the hydrophilic polyurethane polymer is in the range of 10 to 30 parts by weight with respect to 70 to 90 parts by weight of the ethylenically unsaturated monomer, and more preferably hydrophilic with respect to 75 to 90 parts by weight of the ethylenically unsaturated monomer.
  • the polyurethane polymer is in the range of 10 to 25 parts by weight.
  • the hydrophilic polyurethane polymer is preferably in the range of 1 to 30 parts by weight, more preferably 1 to 25 parts by weight of the hydrophilic polyurethane polymer with respect to 100 parts by weight of the aqueous phase component. It is a range. If the content ratio of the hydrophilic polyurethane polymer is within the above range, the effects of the present invention can be sufficiently exhibited.
  • the hydrophilic polyurethane-based polymer preferably contains a polyoxyethylene polyoxypropylene unit derived from polyoxyethylene polyoxypropylene glycol, and 5 to 25% by weight of the polyoxyethylene polyoxypropylene unit is polyoxyethylene polyoxypropylene unit. Ethylene.
  • the content of polyoxyethylene in the polyoxyethylene polyoxypropylene unit is preferably 5% by weight to 25% by weight, and the lower limit is more preferably 10% by weight. More preferably, it is 25% by weight, and more preferably 20% by weight.
  • the polyoxyethylene in the polyoxyethylene polyoxypropylene unit exhibits an effect of stably dispersing the aqueous phase component in the continuous oil phase component.
  • the content of polyoxyethylene in the polyoxyethylene polyoxypropylene unit is less than 5% by weight, it may be difficult to stably disperse the water phase component in the continuous oil phase component.
  • a conventional hydrophilic polyurethane polymer can be obtained by reacting a diisocyanate compound with a hydrophobic long-chain diol, polyoxyethylene glycol and derivatives thereof, and a low molecular active hydrogen compound (chain extender). Since the number of polyoxyethylene groups contained in the hydrophilic polyurethane polymer obtained in 1) is uneven, the emulsion stability of such a W / O emulsion containing such a hydrophilic polyurethane polymer may be reduced. There is. On the other hand, the hydrophilic polyurethane-based polymer contained in the continuous oil phase component of the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention has a characteristic structure as described above. When included in the continuous oil phase component of the / O type emulsion, excellent emulsifiability and excellent stationary storage stability can be expressed without positively adding an emulsifier or the like.
  • the hydrophilic polyurethane polymer is preferably obtained by reacting polyoxyethylene polyoxypropylene glycol with a diisocyanate compound.
  • the ratio between the polyoxyethylene polyoxypropylene glycol and the diisocyanate compound is NCO / OH (equivalent ratio), and the lower limit is preferably 1, more preferably 1.2, and still more preferably 1. .4, particularly preferably 1.6, and the upper limit is preferably 3, more preferably 2.5, and even more preferably 2.
  • NCO / OH (equivalent ratio) is less than 1, a gelled product may be easily formed when a hydrophilic polyurethane polymer is produced.
  • NCO / OH (equivalent ratio) exceeds 3, the residual diisocyanate compound increases, and the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention may become unstable.
  • polyoxyethylene polyoxypropylene glycol for example, polyether polyol (ADEKA (registered trademark) Pluronic L-31, L-61, L-71, L-101, L-121, L-42 manufactured by ADEKA Corporation) , L-62, L-72, L-122, 25R-1, 25R-2, 17R-2) and polyoxyethylene polyoxypropylene glycol (Pronon (registered trademark) 052, 102, 202).
  • polyoxyethylene polyoxypropylene glycol only 1 type may be used and 2 or more types may be used together.
  • diisocyanate compound examples include aromatic, aliphatic, and alicyclic diisocyanates, dimers and trimers of these diisocyanates, polyphenylmethane polyisocyanate, and the like.
  • Aromatic, aliphatic, and alicyclic diisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate.
  • the diisocyanate trimer include isocyanurate type, burette type, and allophanate type. Only 1 type may be used for a diisocyanate compound and it may use 2 or more types together.
  • the diisocyanate compound may be selected as appropriate from the viewpoint of urethane reactivity with a polyol, and the like. From the viewpoint of rapid urethane reactivity with polyol and suppression of reaction with water, it is preferable to use alicyclic diisocyanate.
  • the weight average molecular weight of the hydrophilic polyurethane polymer is preferably 5000 as a lower limit, more preferably 7000, still more preferably 8000, particularly preferably 10,000, and preferably 50,000 as an upper limit. More preferably, it is 40000, more preferably 30000, and particularly preferably 20000.
  • the hydrophilic polyurethane-based polymer may have an unsaturated double bond capable of radical polymerization at the terminal.
  • an unsaturated double bond capable of radical polymerization at the terminal of the hydrophilic polyurethane-based polymer By having an unsaturated double bond capable of radical polymerization at the terminal of the hydrophilic polyurethane-based polymer, the effects of the present invention can be further exhibited.
  • ethylenically unsaturated monomer As the ethylenically unsaturated monomer, any appropriate monomer can be adopted as long as it is a monomer having an ethylenically unsaturated double bond. Only one type of ethylenically unsaturated monomer may be used, or two or more types may be used.
  • the ethylenically unsaturated monomer preferably contains a (meth) acrylic acid ester.
  • the content ratio of the (meth) acrylic acid ester in the ethylenically unsaturated monomer is preferably 80% by weight, more preferably 85% by weight as the lower limit, and preferably 100% by weight as the upper limit. More preferably, it is 98% by weight. Only one (meth) acrylic acid ester may be used, or two or more may be used.
  • the (meth) acrylic acid ester is preferably an alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms (concept including a cycloalkyl group, an alkyl (cycloalkyl) group, and a (cycloalkyl) alkyl group). It is.
  • the number of carbon atoms of the alkyl group is preferably 4-18.
  • (meth) acryl means acryl and / or methacryl
  • (meth) acrylate means acrylate and / or methacrylate.
  • alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and s-butyl.
  • n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isobornyl (meth) acrylate are preferable.
  • the alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms may be only one type or two or more types.
  • the ethylenically unsaturated monomer preferably further contains a polar monomer copolymerizable with (meth) acrylic acid ester.
  • a polar monomer copolymerizable with (meth) acrylic acid ester By including the polar monomer, the effects of the present invention can be further exhibited.
  • the content of the polar monomer in the ethylenically unsaturated monomer is preferably 0% by weight, more preferably 2% by weight as the lower limit, and preferably 20% by weight, more preferably as the upper limit. 15% by weight. Only one type of polar monomer may be used, or two or more types may be used.
  • polar monomers examples include (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, ⁇ -carboxy-polycaprolactone monoacrylate, phthalic acid monohydroxyethyl acrylate, itaconic acid, maleic acid, and fumaric acid.
  • Carboxyl group-containing monomers such as acid and crotonic acid; acid anhydride monomers such as maleic anhydride and itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth) acrylic acid 4-hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethyl) Hydroxyl group-containing monomers such as (rucyclohexyl) methyl (meth) acrylate; amide group-containing monomers such as N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, and hydroxyethyl (meth) acrylamide; Can be mentioned.
  • the continuous oil phase component preferably contains a polymerization initiator.
  • Examples of the polymerization initiator include radical polymerization initiators and redox polymerization initiators.
  • Examples of the radical polymerization initiator include a thermal polymerization initiator and a photopolymerization initiator.
  • thermal polymerization initiator examples include azo compounds, peroxides, peroxycarbonic acid, peroxycarboxylic acid, potassium persulfate, t-butylperoxyisobutyrate, 2,2′-azobisisobutyronitrile and the like. .
  • photopolymerization initiator examples include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone (for example, Ciba Japan, trade name: Darocur-2959), ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone (for example, Ciba Japan, trade name: Darocur-1173), methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone (for example, Ciba Japan, trade name) Acetophenone-based photopolymerization initiators such as Irgacure-651) and 2-hydroxy-2-cyclohexylacetophenone (for example, product name; Irgacure-184 manufactured by Ciba Japan); Ketal-based photopolymerization initiators such as benzyldimethyl ketal Agents; Other halogenated ketones; Acylphosphine oxa (As an example, Ciba Japan Co., Ltd., trade name: Irgacure
  • the polymerization initiator may contain only 1 type, and may contain 2 or more types.
  • the content of the polymerization initiator is preferably 0.05% by weight, more preferably 0.1% by weight, more preferably 0.1%, and preferably 5.0% as a lower limit with respect to the entire continuous oil phase component. % By weight, more preferably 1.0% by weight.
  • the content of the polymerization initiator is less than 0.05% by weight based on the entire continuous oil phase component, the amount of unreacted monomer components increases, and the amount of residual monomer in the resulting foamed diffuse reflector may increase. There is.
  • the content of the polymerization initiator exceeds 5.0% by weight with respect to the entire continuous oil phase component, the mechanical properties of the obtained foamed diffuse reflector may be lowered.
  • the amount of radicals generated by the photopolymerization initiator also varies depending on the type and intensity of irradiated light, the irradiation time, the amount of dissolved oxygen in the monomer and solvent mixture, and the like. And when there is much dissolved oxygen, the radical generation amount by a photoinitiator is suppressed, superposition
  • an inert gas such as nitrogen is blown into the reaction system before the light irradiation, and oxygen is replaced with an inert gas or deaerated by a reduced pressure treatment.
  • the continuous oil phase component preferably includes a cross-linking agent.
  • the cross-linking agent is typically used for linking polymer chains to build a more three-dimensional molecular structure.
  • the selection of the type and content of the cross-linking agent depends on the structural, mechanical and fluid treatment characteristics desired for the resulting foam diffuse reflector. Selection of the specific type and content of the cross-linking agent is important in achieving a desirable combination of structural properties, mechanical properties, and fluid treatment properties of the foamed diffuse reflector.
  • crosslinking agent In producing the foamed diffuse reflector of the present invention, preferably, at least two types of crosslinking agents having different weight average molecular weights are used as the crosslinking agent.
  • foamed diffuse reflector of the present invention more preferably, as a crosslinking agent, "from a polyfunctional (meth) acrylate having a weight average molecular weight of 800 or more, a polyfunctional (meth) acrylamide, and a polymerization reactive oligomer. “One or more selected” and “one or more selected from polyfunctional (meth) acrylate and polyfunctional (meth) acrylamide having a weight average molecular weight of 500 or less” are used in combination.
  • the polyfunctional (meth) acrylate is specifically a polyfunctional (meth) acrylate having at least two ethylenically unsaturated groups in one molecule
  • the polyfunctional (meth) acrylamide is Specifically, it is polyfunctional (meth) acrylamide having at least two ethylenically unsaturated groups in one molecule.
  • polyfunctional (meth) acrylates examples include diacrylates, triacrylates, tetraacrylates, dimethacrylates, trimethacrylates, and tetramethacrylates.
  • polyfunctional (meth) acrylamide examples include diacrylamides, triacrylamides, tetraacrylamides, dimethacrylamides, trimethacrylamides, tetramethacrylamides and the like.
  • the polyfunctional (meth) acrylate can be derived from, for example, diols, triols, tetraols, bisphenol A and the like. Specifically, for example, 1,10-decanediol, 1,8-octanediol, 1,6 hexanediol, 1,4-butanediol, 1,3-butanediol, 1,4 butane-2-enediol , Ethylene glycol, diethylene glycol, trimethylolpropane, pentaerythritol, hydroquinone, catechol, resorcinol, triethylene glycol, polyethylene glycol, sorbitol, polypropylene glycol, polytetramethylene glycol, bisphenol A propylene oxide modified product, and the like.
  • Polyfunctional (meth) acrylamide can be derived from, for example, corresponding diamines, triamines, tetraamines and the like.
  • polymerization-reactive oligomer examples include urethane (meth) acrylate, epoxy (meth) acrylate, copolyester (meth) acrylate, and oligomer di (meth) acrylate.
  • urethane (meth) acrylate epoxy (meth) acrylate, copolyester (meth) acrylate, and oligomer di (meth) acrylate.
  • it is hydrophobic urethane (meth) acrylate.
  • the weight average molecular weight of the polymerization-reactive oligomer is preferably 1500 or more, more preferably 2000 or more.
  • the upper limit of the weight average molecular weight of a polymerization reactive oligomer is not specifically limited, For example, Preferably it is 10,000 or less.
  • cross-linking agent “one or more selected from polyfunctional (meth) acrylates having a weight average molecular weight of 800 or more, polyfunctional (meth) acrylamides, and polymerization reactive oligomers” and “a weight average molecular weight of 500 or less.
  • the amount of “one or more selected from reactive oligomers” is preferably 40% by weight as a lower limit with respect to the total amount of the hydrophilic polyurethane polymer and the ethylenically unsaturated monomer in the continuous oil phase component.
  • the upper limit is preferably 100% by weight, and more preferably 80% by weight.
  • the amount of use of “one or more selected from a polyfunctional (meth) acrylate having a weight average molecular weight of 800 or more, a polyfunctional (meth) acrylamide, and a polymerization reactive oligomer” is a hydrophilic polyurethane-based heavy in the continuous oil phase component
  • the amount is less than 40% by weight based on the total amount of the coalesced monomer and the ethylenically unsaturated monomer, the cohesive force of the resulting foamed diffuse reflector may be lowered, and it may be difficult to achieve both toughness and flexibility. There is.
  • the amount of use of “one or more selected from a polyfunctional (meth) acrylate having a weight average molecular weight of 800 or more, a polyfunctional (meth) acrylamide, and a polymerization reactive oligomer” is a hydrophilic polyurethane-based heavy in the continuous oil phase component When it exceeds 100 weight% with respect to the total amount of a coalescence and an ethylenically unsaturated monomer, the emulsion stability of a W / O type emulsion will fall and there exists a possibility that a desired foaming diffused reflection body may not be obtained.
  • cross-linking agent “one or more selected from polyfunctional (meth) acrylates having a weight average molecular weight of 800 or more, polyfunctional (meth) acrylamides, and polymerization reactive oligomers” and “a weight average molecular weight of 500 or less.
  • the amount of “one or more” used is preferably 1% by weight, more preferably 5% as a lower limit with respect to the total amount of the hydrophilic polyurethane polymer and the ethylenically unsaturated monomer in the continuous oil phase component.
  • the upper limit is preferably 30% by weight, and more preferably 20% by weight.
  • Use amount of “one or more selected from polyfunctional (meth) acrylate having a weight average molecular weight of 500 or less and polyfunctional (meth) acrylamide” is a hydrophilic polyurethane polymer and ethylenic unsaturated in a continuous oil phase component
  • the amount is less than 1% by weight based on the total amount of monomers, the heat resistance is lowered, and the cell structure may be crushed by contraction in the step (IV) of dehydrating the water-containing polymer.
  • Use amount of “one or more selected from polyfunctional (meth) acrylate having a weight average molecular weight of 500 or less and polyfunctional (meth) acrylamide” is a hydrophilic polyurethane polymer and ethylenic unsaturated in a continuous oil phase component When it exceeds 30% by weight with respect to the total amount of the monomers, the toughness of the foamed diffuse reflector to be obtained is lowered, and there is a possibility that brittleness is exhibited.
  • the crosslinking agent may contain only 1 type and may contain 2 or more types.
  • the continuous oil phase component may contain any appropriate other component as long as the effects of the present invention are not impaired.
  • examples of such other components typically include a catalyst, an antioxidant, a light stabilizer, and an organic solvent.
  • Such other components may be only one type or two or more types.
  • the catalyst examples include a urethane reaction catalyst. Any appropriate catalyst can be adopted as the urethane reaction catalyst. Specific examples include dibutyltin dilaurate.
  • any appropriate content ratio can be adopted depending on the target catalytic reaction.
  • the catalyst may contain only one type or two or more types.
  • antioxidants examples include phenolic antioxidants, thioether antioxidants, and phosphorus antioxidants.
  • any appropriate content ratio can be adopted as long as the effects of the present invention are not impaired.
  • An antioxidant may contain only 1 type and may contain 2 or more types.
  • organic solvent any appropriate organic solvent can be adopted as long as the effects of the present invention are not impaired.
  • Any appropriate content ratio can be adopted as the content ratio of the organic solvent as long as the effects of the present invention are not impaired.
  • the organic solvent may contain only 1 type, and may contain 2 or more types.
  • any appropriate light stabilizer can be adopted as long as the effects of the present invention are not impaired.
  • Any appropriate content ratio can be adopted as the content ratio of the light stabilizer as long as the effects of the present invention are not impaired.
  • the light stabilizer may contain only 1 type, and may contain 2 or more types.
  • Step of shaping W / O type emulsion (II) >>
  • any appropriate shaping method can be adopted as a method for shaping the W / O emulsion.
  • a W / O emulsion is continuously supplied onto a traveling belt and shaped into a smooth sheet on the belt.
  • coating to one surface of a thermoplastic resin film, and shaping is mentioned.
  • step (II) as a method of shaping the W / O type emulsion, when adopting a method of coating and shaping on one surface of a thermoplastic resin film, as a method of coating, for example, a roll coater, Examples include a method using a die coater, a knife coater, or the like.
  • Step of polymerizing shaped W / O emulsion (III) any appropriate polymerization method can be adopted as a method for polymerizing the shaped W / O emulsion.
  • the belt surface of a belt conveyor is heated by a heating device, and a W / O type emulsion is continuously supplied onto a traveling belt and shaped into a smooth sheet on the belt by heating.
  • a W / O emulsion is continuously supplied onto the running belt, with a method of polymerization and a structure in which the belt surface of the belt conveyor is heated by irradiation of active energy rays, and a smooth sheet is formed on the belt.
  • polymerizing by irradiation of an active energy ray is mentioned, shaping.
  • the polymerization temperature is preferably 23 ° C., more preferably 50 ° C., still more preferably 70 ° C., particularly preferably 80 ° C. as the lower limit.
  • the upper limit is preferably 90 ° C, and is preferably 150 ° C, more preferably 130 ° C, and even more preferably 110 ° C.
  • the polymerization temperature is less than 23 ° C., the polymerization takes a long time, and industrial productivity may be reduced.
  • the polymerization temperature exceeds 150 ° C., the pore diameter of the foamed diffuse reflector obtained may be non-uniform or the strength of the foamed diffuse reflector may be reduced.
  • the polymerization temperature need not be constant. For example, the polymerization temperature may be varied in two stages or multiple stages during the polymerization.
  • examples of the active energy rays include ultraviolet rays, visible rays, and electron beams.
  • the active energy rays are preferably ultraviolet rays and visible rays, and more preferably visible to ultraviolet rays having a wavelength of 200 nm to 800 nm. Since the W / O type emulsion has a strong tendency to scatter light, it is possible to penetrate the W / O type emulsion by using visible to ultraviolet light having a wavelength of 200 nm to 800 nm.
  • a photopolymerization initiator that can be activated at a wavelength of 200 nm to 800 nm is easily available and a light source is easily available.
  • the wavelength of the active energy ray is preferably 200 nm as a lower limit, more preferably 300 nm, and preferably 800 nm, more preferably 450 nm as an upper limit.
  • an ultraviolet lamp capable of performing ultraviolet irradiation includes an apparatus having a spectral distribution in a wavelength region of 300 nm to 400 nm. , Black light (trade name manufactured by Toshiba Lighting & Technology Co., Ltd.), metal halide lamp and the like.
  • the illuminance at the time of irradiation with active energy rays can be set to any appropriate illuminance by adjusting the distance from the irradiation device to the irradiated object and the voltage.
  • ultraviolet irradiation in each step is performed in a plurality of stages, and thereby the adhesive performance can be precisely adjusted.
  • a W / O emulsion is applied to one surface of a substrate such as a thermoplastic resin film and then shaped under an inert gas atmosphere.
  • UV rays such as polyethylene terephthalate coated with a release agent such as silicone after passing through a W / O emulsion on one surface of a substrate such as a thermoplastic resin film and shaping, but blocking oxygen It is preferable to carry out by covering the film.
  • thermoplastic resin film any appropriate thermoplastic resin film can be adopted as long as it can be formed by coating a W / O emulsion on one surface.
  • thermoplastic resin film include plastic films and sheets such as polyester, olefin resin, and polyvinyl chloride. Further, the film may be subjected to a peeling treatment on one side or both sides thereof.
  • the inert gas atmosphere is an atmosphere in which oxygen in the light irradiation zone is replaced with an inert gas. Therefore, in the inert gas atmosphere, it is necessary that oxygen is not present as much as possible, and the oxygen concentration is preferably 5000 ppm or less.
  • step (IV) the obtained water-containing polymer is dehydrated.
  • the aqueous phase component is present in a dispersed state.
  • a foam contained in the foamed diffuse reflector of the present invention is obtained.
  • the obtained foam can be directly used as the foamed diffuse reflector of the present invention. Further, as described later, by combining with a base material, the foamed diffuse reflector of the present invention can be obtained.
  • the foaming diffused reflection body in which the foaming diffused reflection body of this invention has the hole (through-hole) which penetrates in said thickness direction can be obtained by perforating a foaming diffused reflection body by the well-known counterbore processing method, for example. it can.
  • any appropriate drying method can be adopted as the dehydration method in step (IV).
  • a drying method include vacuum drying, freeze drying, press drying, microwave drying, drying in a heat oven, drying with infrared rays, or a combination of these techniques.
  • the foamed diffuse reflector of the present invention contains a base material
  • a W / O emulsion is applied to one surface of the substrate, W / O emulsion is polymerized by heating or irradiation with active energy rays in an active gas atmosphere or in a state where oxygen is blocked by coating with a UV transparent film coated with a release agent such as silicone.
  • the water-containing polymer include dehydrating the obtained water-containing polymer to form a foamed diffuse reflector having a substrate / foamed layer laminate structure.
  • two sheets of W / O type emulsions coated on one surface of an ultraviolet transmissive film coated with a release agent such as silicone are prepared.
  • a base material is laminated on the application surface of one of the two W / O emulsion application sheets, and another W / O emulsion application sheet is provided on the other surface of the laminated base material.
  • the W / O emulsion is polymerized by heating or irradiation with active energy rays to form a water-containing polymer, and the resulting water-containing polymer is dehydrated to produce foam.
  • the form made into the foaming diffused reflection body which has the laminated structure of a layer / base material / foaming layer is mentioned.
  • Examples of the method of applying the W / O type emulsion to one side of the base material or one surface of the ultraviolet ray transmissive film coated with a release agent such as silicone include a roll coater, a die coater, and a knife coater.
  • the normal temperature means 23 ° C.
  • the obtained foam was cut in the thickness direction with a microtome cutter as a measurement sample.
  • the cut surface of the measurement sample was photographed with a scanning electron microscope (Hitachi, S-3400N) at 800 to 5000 times.
  • a scanning electron microscope Hitachi, S-3400N
  • Using the photographed image measure the pore diameter of an arbitrary range of spherical bubbles, the diameter of a through-hole penetrating between the spherical bubbles of an arbitrary range, and the pore diameter of the surface opening of an arbitrary range.
  • the average hole diameter, the average hole diameter of the through holes, and the average hole diameter of the surface openings were calculated.
  • the diffuse reflectance and transmittance in the wavelength region of 220 nm to 800 nm were measured every 1 nm. Measurement incident light was incident on the foam at an incident angle of 0 °, and the reflectance at this time was defined as diffuse reflectance. At this time, the measuring apparatus was adjusted with the reflectance of the barium sulfate powder as 100%.
  • the heating dimensional change of the obtained foamed diffuse reflector was measured in accordance with JIS-K-6767 dimensional stability evaluation at high temperature. That is, the obtained foamed diffuse reflector was cut into a size of 100 mm ⁇ 100 mm to form a test piece, stored in an oven at 125 ° C. for 22 hours, and then conformed to the dimensional stability evaluation at high temperature of JIS-K-6767. Then, the rate of change in dimensions before and after the heat storage treatment was determined.
  • the obtained foamed diffuse reflector (3) was lined with a polyester adhesive tape (Nitto Denko No. 31B 80 ⁇ m).
  • the obtained foam diffuse reflector (2) and the foam diffuse reflector (3) lined with polyester adhesive tape are cut to 10 mm x 100 mm, one separator is peeled off, and the foam surface is attached to the bake plate at 10 mm x 20 mm.
  • Affixing was performed so as to have an attachment area, and a 2 kg roller was reciprocated once to perform pressure bonding. After the pressure bonding, a bake plate was fixed so that the sample was vertical in an atmosphere of 100 ° C., and a load of 500 g was applied to one of the foams and left for 2 hours. After leaving, the amount of deviation of the sample application position after 2 hours was measured.
  • Adeka registered trademark
  • Pluronic L-62 molecular weight 2500, polyether polyol manufactured by ADEKA Corporation
  • Dibutyltin dilaurate manufactured by Kishida Chemical Co., Ltd., hereinafter abbreviated as “DBTL”
  • NCO / OH equivalent ratio
  • 2-hydroxyethyl acrylate manufactured by Kishida Chemical Co., Ltd., hereinafter abbreviated as “HEA”
  • HOA 2-hydroxyethyl acrylate
  • HEA 5.6 parts by weight of HEA was added dropwise and reacted at 65 ° C. for 2 hours to obtain a hydrophilic polyurethane polymer / ethylenically unsaturated monomer mixed syrup having acryloyl groups at both ends.
  • the weight average molecular weight of the obtained hydrophilic polyurethane polymer having acryloyl groups at both ends was 15,000.
  • Example 1 To 100 parts by weight of the hydrophilic polyurethane-based polymer / ethylenically unsaturated monomer mixed syrup 1 obtained in Production Example 1, 15.9 parts by weight of 1,6-hexanediol diacrylate, and as a reactive oligomer, polytetra Polyurethane synthesized from methylene glycol (hereinafter abbreviated as “PTMG”) and isophorone diisocyanate (hereinafter abbreviated as “IPDI”), both ends of which are treated with HEA, urethane acrylate having ethylenically unsaturated groups at both ends (Hereinafter abbreviated as “UA”) (molecular weight 3720) 47.7 parts by weight, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (manufactured by BASF, trade name “Lucirin TPO”) 0.48 parts by weight Part, hindered phenolic antioxidant (Ciba Japan,
  • aqueous phase 300 parts by weight of ion-exchanged water as an aqueous phase component (hereinafter referred to as “aqueous phase”) with respect to 100 parts by weight of the oil phase is continuously introduced into a stirring mixer that is an emulsifier charged with the oil phase at room temperature. Were added dropwise to prepare a stable W / O emulsion. The weight ratio of the water phase to the oil phase was 75/25. The obtained W / O emulsion was stored at room temperature for 1 hour, and then applied onto a substrate that had been subjected to a release treatment so that the thickness after light irradiation was 0.5 mm, and was continuously molded.
  • a 38 ⁇ m-thick polyethylene terephthalate (PET) film subjected to a release treatment was placed thereon.
  • This sheet was irradiated with ultraviolet light having a light illuminance of 5 mW / cm 2 (measured with Topcon UVR-T1 having a peak sensitivity maximum wavelength of 350 nm) using black light (15 W / cm), and a highly water-containing crosslinked polymer having a thickness of 0.5 mm was obtained. Obtained.
  • the top film was peeled off, and the high water content crosslinked polymer was heated at 130 ° C. for 20 minutes to obtain a foamed diffuse reflector (1) containing a foam having a thickness of 0.5 mm.
  • the obtained foaming diffused reflection body (1) was used for the said evaluation.
  • the results are shown in Table 1.
  • photographed the obtained foaming diffused reflection body (1) from diagonally was shown in FIG.
  • Example 2 The W / O emulsion prepared in Example 1 is 0.135 mm in thickness after light irradiation on the PET surface side of an aluminum-deposited PET substrate (manufactured by Toray Film Processing Co., Ltd., Metal Me 25S).
  • the obtained foaming diffused reflection body (2) was used for the said evaluation. The results are shown in Table 1.
  • Example 3 To 100 parts by weight of the hydrophilic polyurethane polymer / ethylenically unsaturated monomer mixed syrup 1 obtained in Production Example 2, 1,6-hexanediol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “NK Ester A” -HD-N ”) (molecular weight 226) 11.9 parts by weight, as a reactive oligomer, both ends of polyurethane synthesized from PTMG and IPDI were treated with HEA, UA having ethylenically unsaturated groups at both ends 47.7 parts by weight (molecular weight 3720), 0.48 parts by weight of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (manufactured by BASF, trade name “Lucirin TPO”) as a photoinitiator, hindered 0.95 parts by weight of a phenolic antioxidant (Ciba Japan, trade name “Irganox
  • aqueous phase 300 parts by weight of ion-exchanged water as an aqueous phase component (hereinafter referred to as “aqueous phase”) with respect to 100 parts by weight of the oil phase is continuously introduced into a stirring mixer that is an emulsifier charged with the oil phase at room temperature.
  • a stirring mixer that is an emulsifier charged with the oil phase at room temperature.
  • the weight ratio of the water phase to the oil phase was 75/25.
  • the W / O emulsion which was stored at room temperature for 30 minutes from the preparation, was applied on the release-treated polyethylene terephthalate film with a thickness of 38 ⁇ m so that the thickness of the foamed layer after light irradiation was 150 ⁇ m.
  • the sheet was continuously formed into a sheet shape.
  • polyester fiber laminated fabric (trade name “MILIFE (registered trademark) TY0503FE” manufactured by JX Nippon Mining & Chemicals, Inc., Inc.), in which stretched polyester long fibers are aligned and stacked vertically, was laminated. . Further, separately from the preparation, the W / O type emulsion, which was stored at room temperature for 30 minutes, was placed on a PET film having a thickness of 38 ⁇ m, and the foamed layer after light irradiation had a thickness of 150 ⁇ m. A coated material was prepared, and the coated surface was covered with the polyester fiber laminated fabric.
  • MILIFE registered trademark
  • TY0503FE manufactured by JX Nippon Mining & Chemicals, Inc., Inc.
  • This sheet was irradiated with ultraviolet light having a light illuminance of 5 mW / cm 2 (measured with Topcon UVR-T1 having a peak sensitivity maximum wavelength of 350 nm) using black light (15 W / cm) to obtain a highly hydrous crosslinked polymer having a thickness of 310 ⁇ m. .
  • the top film was peeled off, and the high water content crosslinked polymer was heated at 130 ° C. for 10 minutes, so that the total thickness was about 0.31 mm (foam thickness: 0.13 mm ⁇ 2, intermediate group).
  • a foamed diffuse reflector (3) having a thickness of the material of 0.05 mm was obtained.
  • the obtained foaming diffused reflection body (3) was used for the said evaluation.
  • the results are shown in Table 1.
  • the foamed diffuse reflector of the present invention is useful as a diffuse reflector provided in lighting fixtures such as LED substrates, backlight devices of liquid crystal display devices, fluorescent lamps, incandescent lamps, and natural light daylight duct devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The purpose of the present invention is to provide a foam diffuse reflector that has a minutely controlled bubble structure with high air content and multiple minutely controlled fine surface openings, and exhibits excellent diffuse reflection, as well as excellent heat resistance and mechanical strength. The foam diffuse reflector according to the present invention includes a foam body which has a continuous bubble structure having through-holes between adjoining spherical bubbles, and the foam body includes a hydrophilic <span style='font-family:"Courier New"'>polyurethane</span> polymer. The average bubble diameter of the spherical bubbles is less than 20 μm and the average pore diameter of the through-holes is 5 µm or less. The foam body has surface openings with an average pore diameter of 20 µm or less on the surface thereof, and the diffuse reflection ratio within the wavelength range of 400 nm to 600 nm is 90% or more.

Description

発泡拡散反射体Foam diffuse reflector
 本発明は、発泡拡散反射体に関する。詳細には、特定の樹脂を含むことによって形成される特殊な発泡表面構造を有する発泡拡散反射体に関する。 The present invention relates to a foamed diffuse reflector. In detail, it is related with the foaming diffused reflection body which has the special foaming surface structure formed by including specific resin.
 拡散反射体は、各種光源(例えば、LED基板、液晶表示装置のバックライト装置、蛍光灯、白熱灯などの照明器具、自然採光などの光ダクトシステム装置)に備えられ、その拡散反射性能により、外光源を用いる装置等からの発光効率を向上させている。 Diffuse reflectors are provided in various light sources (for example, LED substrates, backlight devices for liquid crystal display devices, lighting devices such as fluorescent lamps, incandescent lamps, and light duct system devices such as natural lighting), and due to their diffuse reflection performance, Luminous efficiency from a device using an external light source is improved.
 通常、拡散反射体には高い拡散反射性能が要求される。 Usually, a diffuse reflector is required to have high diffuse reflection performance.
 高い拡散反射性能を有する拡散反射体として、金属などの基材の表面に金属蒸着膜を堆積して金属鏡面を形成した拡散反射体や、光の散乱性を高める顔料や微粒子をフィルムに含有させた拡散反射体が知られている。しかし、金属鏡面を形成した拡散反射体は、光反射性能は高いものの、光散乱性能は低いという問題がある。また、光の散乱性を高める顔料や微粒子をフィルムに含有させた拡散反射体は、背面への光の漏洩を抑制するために顔料や微粒子の添加量を多くする必要があるが、一方で、顔料や微粒子の添加量が多いほど光吸収による損失が無視できなくなり、光反射性能が低下するという問題がある。 As a diffuse reflector with high diffuse reflection performance, the film contains a diffuse reflector formed by depositing a metal vapor-deposited film on the surface of a substrate such as metal to form a metal mirror surface, or a pigment or fine particles that enhance light scattering. Diffuse reflectors are known. However, the diffuse reflector formed with the metal mirror surface has a problem that the light scattering performance is low although the light reflecting performance is high. In addition, a diffuse reflector in which a film containing pigments and fine particles that enhance light scattering properties needs to increase the amount of pigments and fine particles added in order to suppress the leakage of light to the back side, There is a problem in that the loss due to light absorption cannot be ignored and the light reflection performance decreases as the amount of pigment or fine particles added increases.
 新しい拡散反射体として、微細気泡を含有するポリエステル発泡体が報告されている(例えば、特許文献1)。この拡散反射体は、多数の微細気泡によって光が拡散反射する性質を利用したものである。 A polyester foam containing fine bubbles has been reported as a new diffuse reflector (for example, Patent Document 1). This diffuse reflector utilizes the property that light is diffusely reflected by a large number of fine bubbles.
 しかし、特許文献1で報告されているポリエステル発泡体は、微細気泡がポリエステル発泡体の内部に配置されており、両表面付近には未発泡のスキン層を有している。このため、両表面付近には微細気泡が存在せず、十分な拡散反射性能が発現できないという問題がある。 However, the polyester foam reported in Patent Document 1 has fine bubbles arranged inside the polyester foam and has an unfoamed skin layer near both surfaces. For this reason, there is a problem that fine bubbles do not exist in the vicinity of both surfaces, and sufficient diffuse reflection performance cannot be exhibited.
 さらに、近年、光源(例えば、LED)はより高輝度化しており、それに伴い光源からの発熱量も増大し、反射体にかかる熱負荷も増大している。また、前記LED光源のほか、自然光の採光ダクト装置などに用いられる拡散反射体は、黄変化や変形により拡散反射性能が低下するため、例えば、前記装置に用いられる拡散反射体には、耐光性や、熱等による寸法変化を防止するべく高耐熱性が要求される。 Furthermore, in recent years, light sources (for example, LEDs) have become more bright, and accordingly, the amount of heat generated from the light sources has increased, and the heat load on the reflector has also increased. Further, in addition to the LED light source, a diffuse reflector used in a natural light daylight duct device or the like deteriorates the diffuse reflection performance due to yellowing or deformation. For example, the diffuse reflector used in the device has light resistance. In addition, high heat resistance is required to prevent dimensional changes due to heat or the like.
特再公表97/1117号公報Japanese Patent Publication No. 97/1117
 本発明の課題は、気泡構造を有する発泡拡散反射体であって、該気泡構造が精密に制御されており、気泡率が高く、精密に制御された多数の微細な表面開口部を有し、非常に優れた拡散反射性能を発現でき、優れた耐熱性および耐光性を有する発泡拡散反射体を提供することにある。 An object of the present invention is a foamed diffuse reflector having a cell structure, the cell structure is precisely controlled, the cell rate is high, and has a large number of finely controlled surface openings. An object of the present invention is to provide a foamed diffuse reflector that can exhibit very excellent diffuse reflection performance and has excellent heat resistance and light resistance.
 本発明の発泡拡散反射体は、隣接する球状気泡間に貫通孔を有する連続気泡構造を有する発泡体を含み、該発泡体が親水性ポリウレタン系重合体を含み、該球状気泡の平均孔径が20μm未満であり、該貫通孔の平均孔径が5μm以下であり、該発泡体の表面に平均孔径が20μm以下の表面開口部を有し、400nm~600nmの波長域における拡散反射率が90%以上である。 The foamed diffuse reflector of the present invention includes a foam having an open cell structure having through-holes between adjacent spherical cells, the foam includes a hydrophilic polyurethane polymer, and the average pore size of the spherical cells is 20 μm. The average pore diameter of the through-holes is 5 μm or less, the surface of the foam has a surface opening with an average pore diameter of 20 μm or less, and the diffuse reflectance in the wavelength region of 400 nm to 600 nm is 90% or more. is there.
 好ましい実施形態においては、本発明の発泡拡散反射体は、厚みが、0.1mm以上である。 In a preferred embodiment, the foamed diffuse reflector of the present invention has a thickness of 0.1 mm or more.
 好ましい実施形態においては、本発明の発泡拡散反射体は、125℃で22時間保存したときの寸法変化率が、±5%未満である。 In a preferred embodiment, the foamed diffuse reflector of the present invention has a dimensional change rate of less than ± 5% when stored at 125 ° C. for 22 hours.
 好ましい実施形態においては、本発明の発泡拡散反射体は、照度90mW/cmの紫外線を100時間照射した前後での波長550nmにおける反射率の低下が、10%未満である。 In a preferred embodiment, the foamed diffuse reflector of the present invention has a reflectance decrease of less than 10% at a wavelength of 550 nm before and after irradiation with ultraviolet rays having an illuminance of 90 mW / cm 2 for 100 hours.
 好ましい実施形態においては、上記発泡拡散反射体の反射面とは反対側の表面に、遮光層をさらに有する。 In a preferred embodiment, a light shielding layer is further provided on the surface opposite to the reflecting surface of the foamed diffuse reflector.
 好ましい実施形態においては、本発明の発泡拡散反射体は、該発泡拡散反射体の厚み方向に貫通する穴を有し、該厚み方向に貫通する穴の直径が20mm~60mmである。 In a preferred embodiment, the foamed diffuse reflector of the present invention has a hole penetrating in the thickness direction of the foam diffuse reflector, and the diameter of the hole penetrating in the thickness direction is 20 mm to 60 mm.
 本発明の別の局面によれば、発泡拡散反射体の製造方法が提供される。該製造方法は、隣接する球状気泡間に貫通孔を有する連続気泡構造を有する発泡体を含む発泡拡散反射体を製造する方法であって、連続油相成分と該連続油相成分と不混和性の水相成分を含むW/O型エマルションを調製する工程(I)と、得られたW/O型エマルションを賦形する工程(II)と、賦形されたW/O型エマルションを重合する工程(III)と、得られた含水重合体を脱水する工程(IV)とを含み、該連続油相成分は、親水性ポリウレタン系重合体とエチレン性不飽和モノマーと架橋剤を含む。 According to another aspect of the present invention, a method for producing a foamed diffuse reflector is provided. The production method is a method of producing a foamed diffuse reflector including a foam having an open cell structure having a through-hole between adjacent spherical cells, the continuous oil phase component being immiscible with the continuous oil phase component The step (I) of preparing a W / O type emulsion containing the aqueous phase component, the step (II) of shaping the obtained W / O type emulsion, and polymerizing the shaped W / O type emulsion The step (III) and the step (IV) of dehydrating the obtained water-containing polymer are included, and the continuous oil phase component includes a hydrophilic polyurethane-based polymer, an ethylenically unsaturated monomer, and a crosslinking agent.
 好ましい実施形態においては、上記架橋剤が、重量平均分子量が800以上である多官能(メタ)アクリレート、多官能(メタ)アクリルアミド、および重合反応性オリゴマーから選ばれる1種以上と、重量平均分子量が500以下である多官能(メタ)アクリレートおよび多官能(メタ)アクリルアミドから選ばれる1種以上を含む。 In a preferred embodiment, the crosslinking agent has at least one selected from polyfunctional (meth) acrylates, polyfunctional (meth) acrylamides, and polymerization reactive oligomers having a weight average molecular weight of 800 or more, and a weight average molecular weight. 1 or more types chosen from polyfunctional (meth) acrylate and polyfunctional (meth) acrylamide which are 500 or less are included.
 好ましい実施形態においては、上記発泡拡散反射体は、上記製造方法により得られる。 In a preferred embodiment, the foamed diffuse reflector is obtained by the production method.
 本発明によれば、気泡構造を有する発泡拡散反射体であって、該気泡構造が精密に制御されており、気泡率が高く、精密に制御された多数の微細な表面開口部を有し、非常に優れた拡散反射性能を発現でき、優れた耐熱性および耐光性を有する発泡拡散反射体を提供することができる。本発明の発泡拡散反射体は、高温下においても寸法安定性に優れることから、高温下においても優れた拡散反射性能を維持し得、例えば、LED基板に好ましく用いられ得る。 According to the present invention, the foam diffuse reflector having a cell structure, the cell structure is precisely controlled, the cell rate is high, and has a number of fine surface openings that are precisely controlled, It is possible to provide a foamed diffuse reflector that can exhibit very excellent diffuse reflection performance and has excellent heat resistance and light resistance. Since the foamed diffuse reflector of the present invention is excellent in dimensional stability even at high temperatures, it can maintain excellent diffuse reflection performance even at high temperatures, and can be preferably used for, for example, an LED substrate.
本発明の発泡拡散反射体の好ましい実施形態を示す概略断面図である。It is a schematic sectional drawing which shows preferable embodiment of the foaming diffused reflection body of this invention. 本発明の発泡拡散反射体の別の好ましい実施形態を示す概略断面図である。It is a schematic sectional drawing which shows another preferable embodiment of the foaming diffused reflection body of this invention. 本発明の発泡拡散反射体の断面SEM写真の写真図であって、隣接する球状気泡間に貫通孔を有する連続気泡構造を明確に表す写真図である。It is a photograph figure of a section SEM photograph of a foaming diffused reflector of the present invention, and is a photograph figure clearly showing open cell structure which has a penetration hole between adjacent spherical bubbles. (a)は、本発明の一つの実施形態による発泡拡散反射体であり、傾斜貫通孔を有する発泡拡散反射体を示す概略断面図である。(b)は、該傾斜貫通孔の概略断面斜視図である。(A) is a foaming diffused reflection body by one Embodiment of this invention, and is a schematic sectional drawing which shows the foaming diffused reflection body which has an inclination through-hole. (B) is a schematic cross-sectional perspective view of the inclined through-hole. 実施例1において作製した発泡拡散反射体を斜めから撮影した表面/断面SEM写真の写真図である。It is a photograph figure of the surface / cross-section SEM photograph which image | photographed the foaming diffused reflection body produced in Example 1 from diagonally.
≪≪A.発泡拡散反射体≫≫
 本発明の発泡拡散反射体は、親水性ポリウレタン系重合体を含む発泡体を含み、該発泡体は、隣接する球状気泡間に貫通孔を有する連続気泡構造を有する。代表的な構造としては、発泡体10からなる発泡拡散反射体100(図1)や、発泡体10aと発泡体10bの間に基材20(後述する)を含む発泡拡散反射体100(図2)が挙げられる。なお、図1および図2においては、発泡拡散反射体の表面の保護のために剥離フィルム30が設けられているが、該剥離フィルムは設けられていなくても良い。
≪ << A. Foam diffuse reflector >>>>
The foaming diffused reflection body of this invention contains the foam containing a hydrophilic polyurethane type polymer, and this foam has an open-cell structure which has a through-hole between adjacent spherical cells. Typical structures include a foam diffuse reflector 100 (FIG. 1) made of the foam 10, and a foam diffuse reflector 100 (FIG. 2) including a base material 20 (described later) between the foam 10a and the foam 10b. ). In FIG. 1 and FIG. 2, the release film 30 is provided for protecting the surface of the foaming diffuse reflector, but the release film may not be provided.
 本発明の発泡拡散反射体の厚みは、好ましくは0.1mm以上であり、より好ましくは0.1mm~10mmであり、さらに好ましくは0.2mm~5mmであり、特に好ましくは0.2mm~1mmである。本発明の発泡拡散反射体は、薄くとも機械的強度に優れる。 The thickness of the foamed diffuse reflector of the present invention is preferably 0.1 mm or more, more preferably 0.1 mm to 10 mm, still more preferably 0.2 mm to 5 mm, particularly preferably 0.2 mm to 1 mm. It is. The foamed diffuse reflector of the present invention is excellent in mechanical strength even if it is thin.
 本明細書において「球状気泡」とは、厳密な真球状の気泡でなくても良く、例えば、部分的にひずみのある略球状の気泡や、大きなひずみを有する空間からなる気泡であっても良い。 In the present specification, the “spherical bubble” does not have to be a strict true spherical bubble, and may be, for example, a substantially spherical bubble having a partial strain or a bubble composed of a space having a large strain. .
 本発明の発泡拡散反射体に含まれる発泡体が有し得る球状気泡の平均孔径は、20μm未満であり、好ましくは15μm以下であり、より好ましくは10μm以下である。本発明の発泡拡散反射体に含まれる発泡体が有する球状気泡の平均孔径の下限値は特に限定されず、例えば、好ましくは0.01μmであり、より好ましくは0.1μmであり、さらに好ましくは1μmである。本発明の発泡拡散反射体に含まれる発泡体が有する球状気泡の平均孔径が上記範囲内に収まることにより、本発明の発泡拡散反射体に含まれる発泡体の球状気泡の平均孔径を精密に小さく制御でき、柔軟性および耐熱性に優れた、新規な発泡拡散反射体を提供することができる。 The average pore diameter of the spherical bubbles that the foam contained in the foamed diffuse reflector of the present invention may have is less than 20 μm, preferably 15 μm or less, more preferably 10 μm or less. The lower limit value of the average pore diameter of the spherical bubbles of the foam contained in the foamed diffuse reflector of the present invention is not particularly limited. For example, it is preferably 0.01 μm, more preferably 0.1 μm, and still more preferably. 1 μm. When the average pore diameter of the spherical bubbles contained in the foamed diffuse reflector of the present invention falls within the above range, the average pore diameter of the spherical bubbles of the foam contained in the foamed diffuse reflector of the present invention is precisely reduced. A novel foamed diffuse reflector that can be controlled and is excellent in flexibility and heat resistance can be provided.
 本発明の発泡拡散反射体に含まれる発泡体は、隣接する球状気泡間に貫通孔を有する連続気泡構造を有している。この連続気泡構造は、ほとんどまたは全ての隣接する球状気泡間に貫通孔を有する連続気泡構造であっても良いし、該貫通孔の数が比較的少ない半独立半連続気泡構造であっても良い。このような連続気泡構造を有する発泡体を用いることにより、本発明の発泡拡散反射体は十分な粘着力を有し得る。これは、発泡拡散反射体を被着体に押圧すると、球状気泡および貫通孔が圧縮されて発泡体表面から空気が外部に抜け、これにより生じる外部との大気圧差に起因して、吸着性が発揮されるためと推測される。具体的には、上記発泡体の内部においては、連続気泡構造があらゆる方向に伸びているので、押圧により空気が容易に外方に抜ける。その結果、十分な大気圧差が生じて優れた吸着性が発揮されると推測される。また、上記の通り、本発明の発泡拡散反射体の粘着力は吸着力を利用しているので、剥離および貼着が何度でも可能である。このような発泡拡散反射体は、貼りつけが容易であり、リワーク性にも優れるので、例えば、LED基板やバックライト装置に用いた場合、製造時の作業性向上に寄与し得る。 The foam contained in the foamed diffuse reflector of the present invention has an open cell structure having through holes between adjacent spherical cells. This open cell structure may be an open cell structure having through holes between most or all adjacent spherical cells, or may be a semi-independent semi-open cell structure having a relatively small number of through holes. . By using a foam having such an open cell structure, the foamed diffuse reflector of the present invention can have a sufficient adhesive force. This is because, when the foam diffuse reflector is pressed against the adherend, the spherical bubbles and the through holes are compressed, and air is released from the foam surface to the outside. Is presumed to be exhibited. Specifically, since the open cell structure extends in all directions inside the foam, air easily escapes outward by pressing. As a result, it is presumed that a sufficient atmospheric pressure difference is generated and excellent adsorptivity is exhibited. Moreover, as above-mentioned, since the adhesive force of the foaming diffused reflection body of this invention utilizes adsorption power, peeling and sticking are possible any number of times. Since such a foaming diffused reflector is easy to attach and excellent in reworkability, for example, when used in an LED substrate or a backlight device, it can contribute to improvement in workability at the time of manufacture.
 隣接する球状気泡間に有する貫通孔は、発泡拡散反射体の物性に影響する。例えば、貫通孔の平均孔径が小さいほど、発泡拡散反射体の強度が高くなる傾向がある。図3に、本発明の発泡拡散反射体の断面SEM写真の写真図であって、隣接する球状気泡間に貫通孔を有する連続気泡構造を明確に表す写真図を示す。 The through hole between adjacent spherical bubbles affects the physical properties of the foam diffuse reflector. For example, the strength of the foamed diffuse reflector tends to increase as the average hole diameter of the through holes decreases. FIG. 3 is a photographic view of a cross-sectional SEM photograph of the foamed diffuse reflector of the present invention, and shows a photographic view clearly showing an open cell structure having through holes between adjacent spherical bubbles.
 隣接する球状気泡間に有する貫通孔の平均孔径は、5μm以下であり、好ましくは4μm以下であり、より好ましくは3μm以下である。隣接する球状気泡間に有する貫通孔の平均孔径の下限値は特に限定されず、例えば、好ましくは0.001μmであり、より好ましくは0.01μmである。隣接する球状気泡間に有する貫通孔の平均孔径が上記範囲内に収まることにより、柔軟性および耐熱性に優れた、新規な発泡拡散反射体を提供することができる。 The average pore diameter of the through holes between adjacent spherical bubbles is 5 μm or less, preferably 4 μm or less, more preferably 3 μm or less. The lower limit value of the average pore diameter of the through holes between adjacent spherical bubbles is not particularly limited, and is preferably 0.001 μm, and more preferably 0.01 μm, for example. When the average pore diameter of the through holes between adjacent spherical bubbles is within the above range, a novel foamed diffuse reflector having excellent flexibility and heat resistance can be provided.
 本発明の発泡拡散反射体に含まれる発泡体は、表面に表面開口部を有する。この表面開口部の平均孔径は、20μm以下であり、好ましくは20μm未満であり、より好ましくは15μm以下であり、さらに好ましくは10μm以下であり、さらに好ましくは5μm以下であり、特に好ましくは4μm以下であり、最も好ましくは3μm以下である。表面開口部の平均孔径の下限値は特に限定されず、例えば、好ましくは0.001μmであり、より好ましくは0.01μmである。本発明の発泡拡散反射体に含まれる発泡体が表面開口部を有し、且つ、該表面開口部の平均孔径が上記範囲内に収まることにより、非常に優れた拡散反射性能を発現できる。 The foam contained in the foamed diffuse reflector of the present invention has a surface opening on the surface. The average pore diameter of the surface opening is 20 μm or less, preferably less than 20 μm, more preferably 15 μm or less, further preferably 10 μm or less, further preferably 5 μm or less, and particularly preferably 4 μm or less. And most preferably 3 μm or less. The lower limit of the average pore diameter of the surface opening is not particularly limited, and is preferably 0.001 μm, and more preferably 0.01 μm, for example. When the foam contained in the foamed diffuse reflector of the present invention has a surface opening, and the average pore diameter of the surface opening is within the above range, very excellent diffuse reflection performance can be expressed.
 本発明の発泡拡散反射体に含まれる発泡体の密度は、好ましくは0.15g/cm~0.6g/cmであり、より好ましくは0.15g/cm~0.5g/cmであり、さらに好ましくは0.15g/cm~0.45g/cmであり、特に好ましくは0.15g/cm~0.4g/cmである。本発明の発泡拡散反射体に含まれる発泡体の密度が上記範囲内に収まることにより、本発明の発泡拡散反射体に含まれる発泡体の密度の範囲を広く制御した上で、柔軟性および拡散反射性に優れた、新規な発泡拡散反射体を提供することができる。 The density of the foam contained in the foamed diffuse reflector of the present invention is preferably 0.15 g / cm 3 to 0.6 g / cm 3 , more preferably 0.15 g / cm 3 to 0.5 g / cm 3. , and still more preferably from 0.15g / cm 3 ~ 0.45g / cm 3, particularly preferably from 0.15g / cm 3 ~ 0.4g / cm 3. When the density of the foam contained in the foamed diffuse reflector of the present invention falls within the above range, the range of density of the foam contained in the foamed diffuse reflector of the present invention is widely controlled, and flexibility and diffusion are achieved. A novel foaming diffused reflector excellent in reflectivity can be provided.
 本発明の発泡拡散反射体に含まれる発泡体は、気泡率が、好ましくは30%以上であり、より好ましくは40%以上、さらに好ましくは50%以上である。本発明の発泡拡散反射体において気泡率が上記範囲内に収まることにより、本発明の発泡拡散反射体は、非常に優れた拡散反射性能を発現でき、優れた柔軟性と優れた拡散反射性を有することができる。 The foam contained in the foamed diffuse reflector of the present invention has a cell ratio of preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. In the foamed diffuse reflector of the present invention, the foam ratio falls within the above range, so that the foam diffused reflector of the present invention can exhibit very excellent diffuse reflective performance, and has excellent flexibility and excellent diffuse reflectivity. Can have.
 本発明の発泡拡散反射体に含まれる発泡体は、親水性ポリウレタン系重合体を含む。本発明の発泡拡散反射体に含まれる発泡体が親水性ポリウレタン系重合体を含むことにより、気泡構造が精密に制御されており、気泡率が高く、精密に制御された多数の微細な表面開口部を有し、非常に優れた拡散反射性能を発現でき、優れた柔軟性と優れた耐熱性を有する、新規な発泡拡散反射体を提供することができる。 The foam contained in the foamed diffuse reflector of the present invention contains a hydrophilic polyurethane polymer. Since the foam contained in the foamed diffuse reflector of the present invention contains a hydrophilic polyurethane polymer, the cell structure is precisely controlled, the cell rate is high, and a large number of fine surface openings controlled precisely. It is possible to provide a novel foamed diffuse reflector that has a portion, can exhibit very excellent diffuse reflection performance, and has excellent flexibility and excellent heat resistance.
 本発明の発泡拡散反射体に含まれる発泡体の詳細や、それに含まれる親水性ポリウレタン系重合体の詳細については、後述の製造方法の説明において言及する。 The details of the foam contained in the foamed diffuse reflector of the present invention and the details of the hydrophilic polyurethane polymer contained therein will be mentioned in the description of the production method described later.
 本発明の発泡拡散反射体は、400nm~600nmの波長域における拡散反射率が、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上であり、特に好ましくは99%以上であり、最も好ましくは99.5%以上である。 In the foamed diffuse reflector of the present invention, the diffuse reflectance in the wavelength region of 400 nm to 600 nm is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and particularly preferably. It is 99% or more, and most preferably 99.5% or more.
 本発明の発泡拡散反射体は、照度90mW/cmの紫外線を100時間照射した前後での波長550nmにおける反射率の低下が、好ましくは20%未満であり、より好ましくは10%未満であり、さらに好ましくは5%未満である。紫外線照射前後の反射率の低下が上記範囲に収まることにより、本発明の発泡拡散反射体は非常に優れた耐光性を有し得る。 The foamed diffuse reflector of the present invention has a decrease in reflectance at a wavelength of 550 nm before and after being irradiated with ultraviolet rays having an illuminance of 90 mW / cm 2 for 100 hours, preferably less than 20%, more preferably less than 10%, More preferably, it is less than 5%. When the reduction in reflectance before and after the ultraviolet irradiation falls within the above range, the foamed diffuse reflector of the present invention can have very excellent light resistance.
 本発明の発泡拡散反射体は、常態せん断接着力が、好ましくは1N/cm以上であり、より好ましくは3N/cm以上であり、さらに好ましくは5N/cm以上であり、さらに好ましくは7N/cm以上であり、特に好ましくは9N/cm以上であり、最も好ましくは10N/cm以上である。常態せん断接着力が上記範囲内に収まることにより、本発明の発泡拡散反射体は十分な粘着力を発現し得る。 The foamed diffuse reflector of the present invention has a normal shear adhesive strength of preferably 1 N / cm 2 or more, more preferably 3 N / cm 2 or more, still more preferably 5 N / cm 2 or more, and further preferably 7 N / cm 2 or more, particularly preferably 9 N / cm 2 or more, and most preferably 10 N / cm 2 or more. When the normal shear adhesive strength falls within the above range, the foamed diffuse reflector of the present invention can exhibit sufficient adhesive strength.
 本発明の発泡拡散反射体は、180°ピール試験力が、好ましくは1N/25mm以下であり、より好ましくは0.8N/25mm以下であり、さらに好ましくは0.5N/25mm以下であり、特に好ましくは0.3N/25mm以下である。180°ピール試験力が上記範囲内に収まることにより、本発明の発泡拡散反射体は、上記のように粘着力が高いにもかかわらず、容易に剥離が可能であるという優れた効果を発現し得る。 The foamed diffuse reflector of the present invention has a 180 ° peel test force of preferably 1 N / 25 mm or less, more preferably 0.8 N / 25 mm or less, still more preferably 0.5 N / 25 mm or less. Preferably it is 0.3 N / 25 mm or less. When the 180 ° peel test force is within the above range, the foamed diffuse reflector of the present invention exhibits an excellent effect that it can be easily peeled despite its high adhesive strength as described above. obtain.
 本発明の発泡拡散反射体は、100℃保持力が、好ましくは0.5mm以下であり、より好ましくは0.4mm以下であり、さらに好ましくは0.3mm以下であり、特に好ましくは0.2mm以下である。100℃保持力が上記範囲内に収まることにより、本発明の発泡拡散反射体は、優れた耐熱性と十分な粘着力とを両立し得る。 The foamed diffuse reflector of the present invention has a 100 ° C. holding force of preferably 0.5 mm or less, more preferably 0.4 mm or less, still more preferably 0.3 mm or less, and particularly preferably 0.2 mm. It is as follows. When the 100 ° C. holding force falls within the above range, the foamed diffuse reflector of the present invention can achieve both excellent heat resistance and sufficient adhesive strength.
 本発明の発泡拡散反射体は、125℃で22時間保存したときの寸法変化率が、好ましくは±5%未満であり、より好ましくは±3%以下であり、さらに好ましくは±1%以下である。本発明の発泡拡散反射体において125℃で22時間保存したときの寸法変化率が上記範囲内に収まることにより、本発明の発泡拡散反射体は優れた耐熱性を有し得る。このような発泡拡散反射体は、高温下においても反射特性の変化が防止される。 In the foamed diffuse reflector of the present invention, the dimensional change rate when stored at 125 ° C. for 22 hours is preferably less than ± 5%, more preferably ± 3% or less, and further preferably ± 1% or less. is there. In the foamed diffuse reflector of the present invention, the dimensional change rate when stored at 125 ° C. for 22 hours is within the above range, whereby the foamed diffuse reflector of the present invention can have excellent heat resistance. Such a foamed diffuse reflector can prevent changes in reflection characteristics even at high temperatures.
 本発明の発泡拡散反射体は、任意の適切な形状を採り得る。本発明の発泡拡散反射体における、長辺および短辺等の長さは、任意の適切な値を採り得る。 The foamed diffuse reflector of the present invention can take any appropriate shape. In the foaming diffused reflection body of this invention, lengths, such as a long side and a short side, can take arbitrary appropriate values.
 一つの実施形態においては、本発明の発泡拡散反射体は、LED基板(例えば、直下型バックライト装置のLED基板)に用いられる。本発明の発泡拡散反射体は、LED基板そのものとして用いられ得る他、LED基板上に積層する反射体としても用いられ得る。LED基板上に積層する反射体として用いられる場合、本発明の発泡拡散反射体は、LED基板上のLEDに対応した位置でLEDを通すように設けられる、厚み方向に貫通する穴(以下、貫通穴という)を有し得る。貫通穴は、例えば、後述のようにW/O型エマルションを重合して得られた発泡拡散反射体を、公知のザグリ加工法で穿孔して得ることができる。貫通穴の平面視形状は、略円形であってもよく、略正多角形であってもよい。好ましくは略円形である。貫通穴の平面視形状が略円形である場合、直径は、好ましくは20mm~60mmであり、より好ましくは25mm~40mmである。貫通穴の平面視形状が略正多角形である場合、該略正多角形に内接する円の直径は、好ましくは20mm~60mmであり、より好ましくは25mm~40mmである。 In one embodiment, the foamed diffuse reflector of the present invention is used for an LED substrate (for example, an LED substrate of a direct type backlight device). The foaming diffused reflector of the present invention can be used as an LED substrate itself, and can also be used as a reflector laminated on the LED substrate. When used as a reflector laminated on an LED substrate, the foamed diffuse reflector of the present invention is provided so as to allow the LED to pass through at a position corresponding to the LED on the LED substrate. May have a hole). The through hole can be obtained, for example, by perforating a foamed diffuse reflector obtained by polymerizing a W / O emulsion as described later by a known counterbore processing method. The plan view shape of the through hole may be a substantially circular shape or a substantially regular polygon. Preferably it is substantially circular. When the through hole has a substantially circular shape in plan view, the diameter is preferably 20 mm to 60 mm, more preferably 25 mm to 40 mm. When the through hole has a substantially regular polygonal shape in plan view, the diameter of a circle inscribed in the substantially regular polygon is preferably 20 mm to 60 mm, and more preferably 25 mm to 40 mm.
 上記のように本発明の発泡拡散反射対がLED基板上に積層する反射体として用いられる場合、該発泡拡散反射体が有する上記貫通穴は、好ましくは、図4(a)および(b)に示すように、内側にすり鉢状の傾斜面を形成する傾斜貫通穴である。図4(a)は、本発明における一つの実施形態による発泡拡散反射体の概略斜視図であり、傾斜貫通穴を有する発泡拡散反射体を示す。図4(b)は、該傾斜貫通穴の概略断面斜視図である。傾斜貫通穴1を有していれば、傾斜面を反射面としてLEDからの光を反射させ得るので、優れた拡散反射性能を発現し得る発泡拡散反射体を提供することができる。傾斜貫通穴1は、LED基板上のLEDに対応した位置に設けられる。図4(a)においては、複数の傾斜貫通穴1を示しているが、LED基板上のLEDの数に応じて、傾斜貫通穴1はひとつであってもよい。傾斜貫通穴1の開口部は、上側下側とも、略円形であってもよく、略正多角形であってもよい。好ましくは、図4(a)および(b)に示すように略円形である。傾斜貫通穴1の上側開口部が略円形である場合、上側開口部の直径aは、好ましくは25mm~60mmであり、より好ましくは30mm~40mmである。傾斜貫通穴1の下側開口部が略円形である場合、下側開口部の直径bは上側開口部の直径aよりも短く、好ましくは20mm~40mmであり、より好ましくは20mm~30mmである。傾斜貫通穴1の上側開口部が略正多角形である場合、該略正多角形に内接する円の直径は、好ましくは25mm~60mmであり、より好ましくは30mm~40mmである。傾斜貫通穴1の下側開口部が略正多角形である場合、該略正多角形に内接する円の直径は、好ましくは20mm~40mmであり、より好ましくは20mm~30mmである。傾斜貫通穴1の傾斜面の傾斜角度xは、好ましくは5°~80°であり、より好ましくは15°~70°であり、さらに好ましくは25°~60°である。 When the foamed diffuse reflection pair of the present invention is used as a reflector laminated on the LED substrate as described above, the through holes of the foamed diffuse reflector are preferably shown in FIGS. 4 (a) and 4 (b). As shown, it is an inclined through hole that forms a mortar-shaped inclined surface on the inside. FIG. 4A is a schematic perspective view of a foamed diffuse reflector according to one embodiment of the present invention, showing a foamed diffuse reflector having inclined through holes. FIG. 4B is a schematic cross-sectional perspective view of the inclined through hole. If it has the inclined through-hole 1, since the light from LED can be reflected by making an inclined surface into a reflective surface, the foaming diffused reflection body which can express the outstanding diffuse reflection performance can be provided. The inclined through hole 1 is provided at a position corresponding to the LED on the LED substrate. In FIG. 4A, a plurality of inclined through holes 1 are shown, but one inclined through hole 1 may be provided according to the number of LEDs on the LED substrate. The opening of the inclined through hole 1 may be substantially circular or substantially regular polygonal on both the upper and lower sides. Preferably, it is substantially circular as shown in FIGS. 4 (a) and 4 (b). When the upper opening of the inclined through hole 1 is substantially circular, the diameter a of the upper opening is preferably 25 mm to 60 mm, more preferably 30 mm to 40 mm. When the lower opening of the inclined through hole 1 is substantially circular, the diameter b of the lower opening is shorter than the diameter a of the upper opening, preferably 20 mm to 40 mm, more preferably 20 mm to 30 mm. . When the upper opening of the inclined through hole 1 is a substantially regular polygon, the diameter of a circle inscribed in the substantially regular polygon is preferably 25 mm to 60 mm, and more preferably 30 mm to 40 mm. When the lower opening of the inclined through hole 1 is a substantially regular polygon, the diameter of a circle inscribed in the substantially regular polygon is preferably 20 mm to 40 mm, and more preferably 20 mm to 30 mm. The inclination angle x of the inclined surface of the inclined through hole 1 is preferably 5 ° to 80 °, more preferably 15 ° to 70 °, and further preferably 25 ° to 60 °.
 別の実施形態においては、本発明の発泡拡散反射体は、エッジライト型バックライト装置用および照明器具用の拡散反射体として用いられる。エッジライト型バックライト装置用として用いられる場合は、貫通穴を設ける必要はない。また、照明用の拡散反射体として用いられる場合は、必要に応じて貫通穴を設けることができる。発泡拡散反射体の表面は、平面または凹凸面であり得る。 In another embodiment, the foamed diffuse reflector of the present invention is used as a diffuse reflector for an edge light type backlight device and a lighting fixture. When used for an edge light type backlight device, it is not necessary to provide a through hole. Further, when used as a diffuse reflector for illumination, a through hole can be provided as necessary. The surface of the foamed diffuse reflector can be a flat surface or an uneven surface.
 本発明の発泡拡散反射体は、本発明の効果を損なわない範囲で、任意の適切な基材を含有していても良い。本発明の発泡拡散反射体に基材が含有される形態としては、例えば、発泡拡散反射体の一方の面内、または内部に基材の層が設けられている形態が挙げられる。このような基材としては、例えば、繊維織布、繊維不織布、繊維積層布、繊維編布、樹脂シート、金属箔膜シート、無機繊維などが挙げられる。一つの実施形態においては、基材は遮光層である。この実施形態においては、基材(遮光層)として、例えば、メタリック加工された樹脂シート、金属箔膜シート等が用いられ、該基材(遮光層)は発泡拡散反射体の反射面とは反対側の表面に設けられる。 The foamed diffuse reflector of the present invention may contain any appropriate base material as long as the effects of the present invention are not impaired. As a form in which the base material is contained in the foamed diffuse reflector of the present invention, for example, a form in which a layer of the base material is provided in one surface or inside of the foamed diffuse reflector can be mentioned. Examples of such a substrate include fiber woven fabric, fiber nonwoven fabric, fiber laminated fabric, fiber knitted fabric, resin sheet, metal foil film sheet, and inorganic fiber. In one embodiment, the substrate is a light shielding layer. In this embodiment, as the base material (light shielding layer), for example, a metallic processed resin sheet, a metal foil film sheet, or the like is used, and the base material (light shielding layer) is opposite to the reflecting surface of the foaming diffuse reflector. On the side surface.
 繊維織布としては、任意の適切な繊維から形成される織布を採用し得る。このような繊維としては、例えば、植物繊維、動物繊維、鉱物繊維などの天然繊維;再生繊維、合成繊維、半合成繊維、人造無機繊維などの人造繊維;などが挙げられる。合成繊維としては、例えば、熱可塑性繊維を溶融紡糸した繊維などが挙げられる。また、繊維織布は、メッキやスパッタリングなどによってメタリック加工されていても良い。 As the fiber woven fabric, a woven fabric formed of any appropriate fiber can be adopted. Examples of such fibers include natural fibers such as plant fibers, animal fibers, and mineral fibers; artificial fibers such as regenerated fibers, synthetic fibers, semi-synthetic fibers, and artificial inorganic fibers. Examples of synthetic fibers include fibers obtained by melt spinning thermoplastic fibers. Further, the fiber woven fabric may be metallic processed by plating or sputtering.
 繊維不織布としては、任意の適切な繊維から形成される不織布を採用し得る。このような繊維としては、例えば、植物繊維、動物繊維、鉱物繊維などの天然繊維;再生繊維、合成繊維、半合成繊維、人造無機繊維などの人造繊維;などが挙げられる。合成繊維としては、例えば、熱可塑性繊維を溶融紡糸した繊維などが挙げられる。また、繊維不織布は、メッキやスパッタリングなどによってメタリック加工されていても良い。より具体的には、例えば、スパンボンド不織布が挙げられる。 As the fiber nonwoven fabric, a nonwoven fabric formed of any appropriate fiber can be adopted. Examples of such fibers include natural fibers such as plant fibers, animal fibers, and mineral fibers; artificial fibers such as regenerated fibers, synthetic fibers, semi-synthetic fibers, and artificial inorganic fibers. Examples of synthetic fibers include fibers obtained by melt spinning thermoplastic fibers. Moreover, the fiber nonwoven fabric may be metallic-processed by plating, sputtering, etc. More specifically, for example, a spunbond nonwoven fabric can be mentioned.
 繊維積層布としては、任意の適切な繊維から形成される積層布を採用し得る。このような繊維としては、例えば、植物繊維、動物繊維、鉱物繊維などの天然繊維;再生繊維、合成繊維、半合成繊維、人造無機繊維などの人造繊維;などが挙げられる。合成繊維としては、例えば、熱可塑性繊維を溶融紡糸した繊維などが挙げられる。また、繊維積層布は、メッキやスパッタリングなどによってメタリック加工されていても良い。より具体的には、例えば、ポリエステル繊維積層布が挙げられる。 As the fiber laminated fabric, a laminated fabric formed of any appropriate fiber can be adopted. Examples of such fibers include natural fibers such as plant fibers, animal fibers, and mineral fibers; artificial fibers such as regenerated fibers, synthetic fibers, semi-synthetic fibers, and artificial inorganic fibers. Examples of synthetic fibers include fibers obtained by melt spinning thermoplastic fibers. In addition, the fiber laminated fabric may be metallic processed by plating, sputtering, or the like. More specifically, for example, a polyester fiber laminated fabric can be mentioned.
 繊維編布としては、例えば、任意の適切な繊維から形成される編布を採用し得る。このような繊維としては、例えば、植物繊維、動物繊維、鉱物繊維などの天然繊維;再生繊維、合成繊維、半合成繊維、人造無機繊維などの人造繊維;などが挙げられる。合成繊維としては、例えば、熱可塑性繊維を溶融紡糸した繊維などが挙げられる。また、繊維編布は、メッキやスパッタリングなどによってメタリック加工されていても良い。 As the fiber knitted fabric, for example, a knitted fabric formed of any appropriate fiber can be adopted. Examples of such fibers include natural fibers such as plant fibers, animal fibers, and mineral fibers; artificial fibers such as regenerated fibers, synthetic fibers, semi-synthetic fibers, and artificial inorganic fibers. Examples of synthetic fibers include fibers obtained by melt spinning thermoplastic fibers. Further, the fiber knitted fabric may be metallically processed by plating or sputtering.
 樹脂シートとしては、任意の適切な樹脂から形成されるシートを採用し得る。このような樹脂としては、例えば、熱可塑性樹脂が挙げられる。樹脂シートは、メッキやスパッタリングなどによってメタリック加工されていても良い。樹脂シートがメタリック加工された場合、前記樹脂シートは遮光層として機能する。 As the resin sheet, a sheet formed of any appropriate resin can be adopted. An example of such a resin is a thermoplastic resin. The resin sheet may be metallic processed by plating or sputtering. When the resin sheet is subjected to metallic processing, the resin sheet functions as a light shielding layer.
 金属箔膜シートとしては、任意の適切な金属の箔膜から形成されるシートを採用し得る。 As the metal foil film sheet, a sheet formed of any appropriate metal foil film can be adopted.
 無機繊維としては、任意の適切な無機繊維を採用し得る。このような無機繊維としては、具体的には、例えば、ガラス繊維、金属繊維、炭素繊維などが挙げられる。 Any appropriate inorganic fiber can be adopted as the inorganic fiber. Specific examples of such inorganic fibers include glass fibers, metal fibers, and carbon fibers.
 本発明の発泡拡散反射体は、基材中に空隙が存在する場合、該空隙の一部または全部に発泡拡散反射体と同じ材料が存在していても良い。 In the foamed diffuse reflector of the present invention, when there are voids in the substrate, the same material as the foamed diffuse reflector may be present in part or all of the voids.
 基材は、1種のみを用いても良いし、2種以上を併用しても良い。 The substrate may be used alone or in combination of two or more.
≪≪B.発泡拡散反射体の製造方法≫≫
 本発明の発泡拡散反射体は、任意の適切な方法で製造し得る。本発明の発泡拡散反射体は、好ましくは、W/O型エマルションを賦形および重合することによって製造し得る。
≪≪B. Manufacturing method of foamed diffuse reflector >>>>
The foaming diffuse reflector of this invention can be manufactured by arbitrary appropriate methods. The foamed diffuse reflector of the present invention can be preferably produced by shaping and polymerizing a W / O emulsion.
 本発明の発泡拡散反射体の製造方法としては、例えば、連続的に連続油相成分と水相成分を乳化機に供給して本発明の発泡拡散反射体を得るために用い得るW/O型エマルションを調製し、続いて、得られたW/O型エマルションを重合して含水重合体を製造し、続いて、得られた含水重合体を脱水する、「連続法」が挙げられる。本発明の発泡拡散反射体の製造方法としては、また、例えば、連続油相成分に対して適当な量の水相成分を乳化機に仕込み、攪拌しながら連続的に水相成分を供給することで本発明の発泡拡散反射体を得るために用い得るW/O型エマルションを調製し、得られたW/O型エマルションを重合して含水重合体を製造し、続いて、得られた含水重合体を脱水する、「バッチ法」が挙げられる。 As a method for producing the foamed diffuse reflector of the present invention, for example, a W / O type that can be used to continuously supply a continuous oil phase component and an aqueous phase component to an emulsifier to obtain the foamed diffuse reflector of the present invention. There is a “continuous method” in which an emulsion is prepared, and then the obtained W / O emulsion is polymerized to produce a water-containing polymer, and then the obtained water-containing polymer is dehydrated. As a method for producing the foamed diffuse reflector of the present invention, for example, an appropriate amount of an aqueous phase component is charged into an emulsifier with respect to the continuous oil phase component, and the aqueous phase component is continuously supplied while stirring. A W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention is prepared, and the resulting W / O emulsion is polymerized to produce a hydrous polymer, followed by the hydrous weight obtained. A “batch method” in which the coalescence is dehydrated can be mentioned.
 W/O型エマルションを連続的に重合する連続重合法は生産効率が高く、重合時間の短縮効果と重合装置の短縮化とを最も有効に利用できるので好ましい方法である。 A continuous polymerization method in which a W / O emulsion is continuously polymerized is a preferable method because it has high production efficiency and can most effectively utilize the effect of shortening the polymerization time and the shortening of the polymerization apparatus.
 本発明の発泡拡散反射体は、より具体的には、好ましくは、
本発明の発泡拡散反射体を得るために用い得るW/O型エマルションを調製する工程(I)と、
得られたW/O型エマルションを賦形する工程(II)と、
賦形されたW/O型エマルションを重合する工程(III)と、
得られた含水重合体を脱水する工程(IV)と、
を含む製造方法によって製造することができる。ここで、得られたW/O型エマルションを賦形する工程(II)と賦形されたW/O型エマルションを重合する工程(III)とは少なくとも一部を同時に行っても良い。
More specifically, the foamed diffuse reflector of the present invention is preferably
Step (I) of preparing a W / O type emulsion that can be used to obtain the foamed diffuse reflector of the present invention;
Step (II) of shaping the obtained W / O emulsion,
Polymerizing the shaped W / O emulsion (III);
Step (IV) of dehydrating the obtained hydrous polymer;
It can manufacture with the manufacturing method containing. Here, at least a part of the step (II) for shaping the obtained W / O emulsion and the step (III) for polymerizing the shaped W / O emulsion may be performed simultaneously.
≪B-1.W/O型エマルションを調製する工程(I)≫
 本発明の発泡拡散反射体を得るために用い得るW/O型エマルションは、連続油相成分と該連続油相成分と不混和性の水相成分を含むW/O型エマルションである。W/O型エマルションは、より具体的に説明すると、連続油相成分中に水相成分が分散したものである。
<< B-1. Step for preparing W / O type emulsion (I) >>
The W / O type emulsion that can be used to obtain the foamed diffuse reflector of the present invention is a W / O type emulsion containing a continuous oil phase component and an aqueous phase component immiscible with the continuous oil phase component. More specifically, the W / O type emulsion is obtained by dispersing an aqueous phase component in a continuous oil phase component.
 本発明の発泡拡散反射体を得るために用い得るW/O型エマルションにおける、水相成分と連続油相成分との比率は、W/O型エマルションを形成し得る範囲で任意の適切な比率を採り得る。本発明の発泡拡散反射体を得るために用い得るW/O型エマルションにおける、水相成分と連続油相成分との比率は、該W/O型エマルションの重合によって得られる発泡体の構造的、機械的、および性能的特性を決定する上で重要な因子となり得る。具体的には、本発明の発泡拡散反射体を得るために用い得るW/O型エマルションにおける、水相成分と連続油相成分との比率は、該W/O型エマルションの重合によって得られる発泡体の密度、気泡サイズ、気泡構造、および多孔構造を形成する壁体の寸法などを決定する上で重要な因子となり得る。 The ratio of the water phase component to the continuous oil phase component in the W / O type emulsion that can be used to obtain the foamed diffuse reflector of the present invention is any suitable ratio within a range in which the W / O type emulsion can be formed. It can be taken. The ratio of the water phase component and the continuous oil phase component in the W / O type emulsion that can be used to obtain the foamed diffuse reflector of the present invention is the structural ratio of the foam obtained by polymerization of the W / O type emulsion. It can be an important factor in determining mechanical and performance characteristics. Specifically, the ratio of the water phase component to the continuous oil phase component in the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention is the foam obtained by polymerization of the W / O emulsion. It can be an important factor in determining the body density, bubble size, bubble structure, and dimensions of the wall forming the porous structure.
 本発明の発泡拡散反射体を得るために用い得るW/O型エマルション中の水相成分の比率は、下限値として、好ましくは30重量%であり、より好ましくは40重量%であり、さらに好ましくは50重量%であり、特に好ましくは55重量%であり、上限値として、好ましくは95重量%であり、より好ましくは90重量%であり、さらに好ましくは85重量%であり、特に好ましくは80重量%である。本発明の発泡拡散反射体を得るために用い得るW/O型エマルション中の水相成分の比率が上記範囲内にあれば、本発明の効果を十分に発現し得る。 The ratio of the aqueous phase component in the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention is preferably 30% by weight, more preferably 40% by weight, and still more preferably as the lower limit. Is 50% by weight, particularly preferably 55% by weight, and the upper limit is preferably 95% by weight, more preferably 90% by weight, still more preferably 85% by weight, and particularly preferably 80% by weight. % By weight. If the ratio of the aqueous phase component in the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention is within the above range, the effects of the present invention can be sufficiently exhibited.
 本発明の発泡拡散反射体を得るために用い得るW/O型エマルションは、本発明の効果を損なわない範囲で、任意の適切な添加剤が含まれ得る。このような添加剤としては、例えば、粘着付与樹脂;タルク;炭酸カルシウム、炭酸マグネシウム、ケイ酸やその塩類、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、亜鉛華、ベントナイン、カーボンブラック、シリカ、アルミナ、アルミニウムシリケート、アセチレンブラック、アルミニウム粉などの充填剤;顔料;染料;などが挙げられる。このような添加剤は、1種のみ含まれていても良いし、2種以上が含まれていても良い。 The W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention may contain any appropriate additive as long as the effects of the present invention are not impaired. Examples of such additives include tackifying resins; talc; calcium carbonate, magnesium carbonate, silicic acid and salts thereof, clay, mica powder, aluminum hydroxide, magnesium hydroxide, zinc white, bentonine, carbon black, Examples thereof include fillers such as silica, alumina, aluminum silicate, acetylene black, and aluminum powder; pigments; dyes; Only one kind of such an additive may be contained, or two or more kinds thereof may be contained.
 本発明の発泡拡散反射体を得るために用い得るW/O型エマルションを製造する方法としては、任意の適切な方法を採用し得る。本発明の発泡拡散反射体を得るために用い得るW/O型エマルションを製造する方法としては、例えば、連続油相成分と水相成分を連続的に乳化機に供給することでW/O型エマルションを形成する「連続法」や、連続油相成分に対して適当な量の水相成分を乳化機に仕込み、攪拌しながら連続的に水相成分を供給することでW/O型エマルションを形成する「バッチ法」などが挙げられる。 Any appropriate method can be adopted as a method for producing a W / O type emulsion that can be used for obtaining the foamed diffuse reflector of the present invention. As a method for producing a W / O type emulsion that can be used for obtaining the foamed diffuse reflector of the present invention, for example, a continuous oil phase component and an aqueous phase component are continuously supplied to an emulsifier to obtain a W / O type. A W / O type emulsion can be obtained by adding an appropriate amount of aqueous phase component to the continuous oil phase component in an emulsion machine and supplying the aqueous phase component continuously with stirring. Examples include “batch method” to be formed.
 本発明の発泡拡散反射体を得るために用い得るW/O型エマルションを製造する際、エマルション状態を得るための剪断手段としては、例えば、ローターステーターミキサー、ホモジナイザー、ミクロ流動化装置などを用いた高剪断条件の適用が挙げられる。また、エマルション状態を得るための別の剪断手段としては、例えば、動翼ミキサーまたはピンミキサーを使用した振盪、電磁撹拌棒などを用いた低剪断条件の適用による連続および分散相の穏やかな混合が挙げられる。 When producing a W / O type emulsion that can be used to obtain the foamed diffuse reflector of the present invention, as a shearing means for obtaining an emulsion state, for example, a rotor stator mixer, a homogenizer, a microfluidizer or the like was used. Application of high shear conditions. In addition, as another shearing means for obtaining an emulsion state, for example, gentle mixing of continuous and dispersed phases by application of low shear conditions using a moving blade mixer or a pin mixer, low stirring conditions using a magnetic stir bar, etc. Can be mentioned.
 「連続法」によってW/O型エマルションを調製するための装置としては、例えば、静的ミキサー、ローターステーターミキサー、ピンミキサーなどが挙げられる。撹拌速度を上げることで、または、混合方法でW/O型エマルション中に水相成分をより微細に分散するようデザインされた装置を使用することで、より激しい撹拌を達成しても良い。 Examples of the apparatus for preparing the W / O emulsion by the “continuous method” include a static mixer, a rotor stator mixer, and a pin mixer. More intense agitation may be achieved by increasing the agitation speed or by using an apparatus designed to finely disperse the aqueous phase component in the W / O emulsion by a mixing method.
 「バッチ法」によってW/O型エマルションを調製するための装置としては、例えば、手動での混合や振盪、被動動翼ミキサー、3枚プロペラ混合羽根などが挙げられる。具体的には、プライミクス社製「T.K.アジホモミクサー(商品名)」や「T.K.コンビミックス(商品名)」などは、減圧下で目的とするW/O型エマルションを製造可能であり、得られるW/O型エマルションは気泡の混入が大幅に低減される。 Examples of the apparatus for preparing the W / O emulsion by the “batch method” include manual mixing and shaking, a driven blade mixer, and a three-propeller mixing blade. Specifically, “TK Ajihomomica (trade name)” and “TK Combimix (trade name)” manufactured by Primix Co., Ltd. produce the target W / O emulsion under reduced pressure. This is possible, and the resulting W / O emulsion greatly reduces the incorporation of bubbles.
 連続油相成分を調製する方法としては、任意の適切な方法を採用し得る。連続油相成分を調製する方法としては、代表的には、例えば、親水性ポリウレタン系重合体とエチレン性不飽和モノマーを含む混合シロップを調製し、続いて、該混合シロップに、重合開始剤、架橋剤、その他の任意の適切な成分を配合し、連続油相成分を調製することが好ましい。 Any appropriate method can be adopted as a method for preparing the continuous oil phase component. As a method for preparing the continuous oil phase component, typically, for example, a mixed syrup containing a hydrophilic polyurethane-based polymer and an ethylenically unsaturated monomer is prepared, and subsequently, a polymerization initiator, It is preferable to prepare a continuous oil phase component by blending a crosslinking agent and any other appropriate components.
 親水性ポリウレタン系重合体を調製する方法としては、任意の適切な方法を採用し得る。親水性ポリウレタン系重合体を調製する方法としては、代表的には、例えば、ポリオキシエチレンポリオキシプロピレングリコールとジイソシアネート化合物とをウレタン反応触媒の存在下で反応させることにより得られる。 Any appropriate method can be adopted as a method for preparing the hydrophilic polyurethane-based polymer. A typical method for preparing a hydrophilic polyurethane-based polymer is, for example, by reacting polyoxyethylene polyoxypropylene glycol and a diisocyanate compound in the presence of a urethane reaction catalyst.
<B-1-1.水相成分>
 水相成分としては、実質的に連続油相成分と不混和性のあらゆる水性流体を採用し得る。取り扱いやすさや低コストの観点から、好ましくは、イオン交換水などの水である。
<B-1-1. Water phase component>
The aqueous phase component can be any aqueous fluid that is substantially immiscible with the continuous oil phase component. From the viewpoint of ease of handling and low cost, water such as ion-exchanged water is preferable.
 水相成分には、本発明の効果を損なわない範囲で、任意の適切な添加剤が含まれ得る。このような添加剤としては、例えば、重合開始剤、水溶性の塩などが挙げられる。水溶性の塩は、W/O型エマルションをより安定化させるために有効な添加剤となり得る。このような水溶性の塩としては、例えば、炭酸ナトリウム、炭酸カルシウム、炭酸カリウム、リン酸ナトリウム、リン酸カルシウム、リン酸カリウム、塩化ナトリウム、塩化カリウムなどが挙げられる。このような添加剤は、1種のみ含まれていても良いし、2種以上が含まれていても良い。水相成分に含まれ得る添加剤は、1種のみでも良いし、2種以上でも良い。 The water phase component may contain any appropriate additive as long as the effects of the present invention are not impaired. Examples of such additives include polymerization initiators and water-soluble salts. The water-soluble salt can be an effective additive for further stabilizing the W / O emulsion. Examples of such water-soluble salts include sodium carbonate, calcium carbonate, potassium carbonate, sodium phosphate, calcium phosphate, potassium phosphate, sodium chloride, potassium chloride and the like. Only one kind of such an additive may be contained, or two or more kinds thereof may be contained. The additive that can be contained in the aqueous phase component may be only one kind or two or more kinds.
<B-1-2.連続油相成分>
 連続油相成分は、好ましくは、親水性ポリウレタン系重合体とエチレン性不飽和モノマーを含む。連続油相成分中の親水性ポリウレタン系重合体およびエチレン性不飽和モノマーの含有割合は、本発明の効果を損なわない範囲で、任意の適切な含有割合を採り得る。
<B-1-2. Continuous oil phase component>
The continuous oil phase component preferably contains a hydrophilic polyurethane polymer and an ethylenically unsaturated monomer. The content ratio of the hydrophilic polyurethane polymer and the ethylenically unsaturated monomer in the continuous oil phase component can take any appropriate content ratio as long as the effects of the present invention are not impaired.
 親水性ポリウレタン系重合体は、該親水性ポリウレタン系重合体を構成するポリオキシエチレンポリオキシプロピレングリコール単位中のポリオキシエチレン比率、または、配合する水相成分量にもよるが、例えば、好ましくは、エチレン性不飽和モノマー70~90重量部に対して親水性ポリウレタン系重合体が10~30重量部の範囲であり、より好ましくは、エチレン性不飽和モノマー75~90重量部に対して親水性ポリウレタン系重合体が10~25重量部の範囲である。また、例えば、水相成分100重量部に対し、好ましくは、親水性ポリウレタン系重合体が1~30重量部の範囲であり、より好ましくは、親水性ポリウレタン系重合体が1~25重量部の範囲である。親水性ポリウレタン系重合体の含有割合が上記範囲内にあれば、本発明の効果を十分に発現し得る。 The hydrophilic polyurethane-based polymer depends on the polyoxyethylene ratio in the polyoxyethylene polyoxypropylene glycol unit constituting the hydrophilic polyurethane-based polymer or the amount of the aqueous phase component to be blended. The hydrophilic polyurethane polymer is in the range of 10 to 30 parts by weight with respect to 70 to 90 parts by weight of the ethylenically unsaturated monomer, and more preferably hydrophilic with respect to 75 to 90 parts by weight of the ethylenically unsaturated monomer. The polyurethane polymer is in the range of 10 to 25 parts by weight. Further, for example, the hydrophilic polyurethane polymer is preferably in the range of 1 to 30 parts by weight, more preferably 1 to 25 parts by weight of the hydrophilic polyurethane polymer with respect to 100 parts by weight of the aqueous phase component. It is a range. If the content ratio of the hydrophilic polyurethane polymer is within the above range, the effects of the present invention can be sufficiently exhibited.
(B-1-2-1.親水性ポリウレタン系重合体)
 親水性ポリウレタン系重合体は、好ましくは、ポリオキシエチレンポリオキシプロピレングリコール由来のポリオキシエチレンポリオキシプロピレン単位を含み、該ポリオキシエチレンポリオキシプロピレン単位中の5重量%~25重量%がポリオキシエチレンである。
(B-1-2-1. Hydrophilic polyurethane polymer)
The hydrophilic polyurethane-based polymer preferably contains a polyoxyethylene polyoxypropylene unit derived from polyoxyethylene polyoxypropylene glycol, and 5 to 25% by weight of the polyoxyethylene polyoxypropylene unit is polyoxyethylene polyoxypropylene unit. Ethylene.
 上記ポリオキシエチレンポリオキシプロピレン単位中のポリオキシエチレンの含有割合は、上記のように、好ましくは5重量%~25重量%であり、下限値として、より好ましくは10重量%であり、上限値として、より好ましくは25重量%であり、さらに好ましくは20重量%である。上記ポリオキシエチレンポリオキシプロピレン単位中のポリオキシエチレンは、連続油相成分中に水相成分を安定に分散させる効果を発現するものである。上記ポリオキシエチレンポリオキシプロピレン単位中のポリオキシエチレンの含有割合が5重量%未満の場合、連続油相成分中に水相成分を安定に分散させることが困難になるおそれがある。上記ポリオキシエチレンポリオキシプロピレン単位中のポリオキシエチレンの含有割合が25重量%を超える場合、HIPE条件に近づくにつれてW/O型エマルションからO/W型(水中油型)エマルションに転相するおそれがある。 As described above, the content of polyoxyethylene in the polyoxyethylene polyoxypropylene unit is preferably 5% by weight to 25% by weight, and the lower limit is more preferably 10% by weight. More preferably, it is 25% by weight, and more preferably 20% by weight. The polyoxyethylene in the polyoxyethylene polyoxypropylene unit exhibits an effect of stably dispersing the aqueous phase component in the continuous oil phase component. When the content of polyoxyethylene in the polyoxyethylene polyoxypropylene unit is less than 5% by weight, it may be difficult to stably disperse the water phase component in the continuous oil phase component. If the polyoxyethylene content in the polyoxyethylene polyoxypropylene unit exceeds 25% by weight, there is a risk of phase inversion from a W / O type emulsion to an O / W type (oil-in-water type) emulsion as it approaches the HIPE condition. There is.
 従来の親水性ポリウレタン系重合体は、ジイソシアネート化合物と疎水性長鎖ジオール、ポリオキシエチレングリコールならびにその誘導体、低分子活性水素化合物(鎖伸長剤)を反応させることによって得られるが、このような方法で得られる親水性ポリウレタン系重合体中に含まれるポリオキシエチレン基の数は不均一であるため、このような親水性ポリウレタン系重合体を含むW/O型エマルションは乳化安定性が低下するおそれがある。一方、本発明の発泡拡散反射体を得るために用い得るW/O型エマルションの連続油相成分に含まれる親水性ポリウレタン系重合体は、上記のような特徴的な構造を有することにより、W/O型エマルションの連続油相成分に含ませた場合に、乳化剤等を積極的に添加せずとも、優れた乳化性および優れた静置保存安定性を発現することができる。 A conventional hydrophilic polyurethane polymer can be obtained by reacting a diisocyanate compound with a hydrophobic long-chain diol, polyoxyethylene glycol and derivatives thereof, and a low molecular active hydrogen compound (chain extender). Since the number of polyoxyethylene groups contained in the hydrophilic polyurethane polymer obtained in 1) is uneven, the emulsion stability of such a W / O emulsion containing such a hydrophilic polyurethane polymer may be reduced. There is. On the other hand, the hydrophilic polyurethane-based polymer contained in the continuous oil phase component of the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention has a characteristic structure as described above. When included in the continuous oil phase component of the / O type emulsion, excellent emulsifiability and excellent stationary storage stability can be expressed without positively adding an emulsifier or the like.
 親水性ポリウレタン系重合体は、好ましくは、ポリオキシエチレンポリオキシプロピレングリコールとジイソシアネート化合物とを反応させることにより得られる。この場合、ポリオキシエチレンポリオキシプロピレングリコールとジイソシアネート化合物との比率は、NCO/OH(当量比)で、下限値として、好ましくは1であり、より好ましくは1.2であり、さらに好ましくは1.4であり、特に好ましくは1.6であり、上限値として、好ましくは3であり、より好ましくは2.5であり、さらに好ましくは2である。NCO/OH(当量比)が1未満の場合は、親水性ポリウレタン系重合体を製造する際にゲル化物が生成しやすくなるおそれがある。NCO/OH(当量比)が3を超える場合は、残存ジイソシアネート化合物が多くなってしまい、本発明の発泡拡散反射体を得るために用い得るW/O型エマルションが不安定になるおそれがある。 The hydrophilic polyurethane polymer is preferably obtained by reacting polyoxyethylene polyoxypropylene glycol with a diisocyanate compound. In this case, the ratio between the polyoxyethylene polyoxypropylene glycol and the diisocyanate compound is NCO / OH (equivalent ratio), and the lower limit is preferably 1, more preferably 1.2, and still more preferably 1. .4, particularly preferably 1.6, and the upper limit is preferably 3, more preferably 2.5, and even more preferably 2. When NCO / OH (equivalent ratio) is less than 1, a gelled product may be easily formed when a hydrophilic polyurethane polymer is produced. When NCO / OH (equivalent ratio) exceeds 3, the residual diisocyanate compound increases, and the W / O emulsion that can be used to obtain the foamed diffuse reflector of the present invention may become unstable.
 ポリオキシエチレンポリオキシプロピレングリコールとしては、例えば、ADEKA株式会社製のポリエーテルポリオール(アデカ(登録商標)プルロニックL-31、L-61、L-71、L-101、L-121、L-42、L-62、L-72、L-122、25R-1、25R-2、17R-2)や、日本油脂株式会社製のポリオキシエチレンポリオキシプロピレングリコール(プロノン(登録商標)052、102、202)などが挙げられる。ポリオキシエチレンポリオキシプロピレングリコールは、1種のみを用いても良いし、2種以上を併用しても良い。 As polyoxyethylene polyoxypropylene glycol, for example, polyether polyol (ADEKA (registered trademark) Pluronic L-31, L-61, L-71, L-101, L-121, L-42 manufactured by ADEKA Corporation) , L-62, L-72, L-122, 25R-1, 25R-2, 17R-2) and polyoxyethylene polyoxypropylene glycol (Pronon (registered trademark) 052, 102, 202). As for polyoxyethylene polyoxypropylene glycol, only 1 type may be used and 2 or more types may be used together.
 ジイソシアネート化合物としては、例えば、芳香族、脂肪族、脂環族のジイソシアネート、これらのジイソシアネートの二量体や三量体、ポリフェニルメタンポリイソシアネートなどが挙げられる。芳香族、脂肪族、脂環族のジイソシアネートとしては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、ブタン-1,4-ジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、m-テトラメチルキシリレンジイソシアネートなどが挙げられる。ジイソシアネートの三量体としては、イソシアヌレート型、ビューレット型、アロファネート型等が挙げられる。ジイソシアネート化合物は、1種のみを用いても良いし、2種以上を併用しても良い。 Examples of the diisocyanate compound include aromatic, aliphatic, and alicyclic diisocyanates, dimers and trimers of these diisocyanates, polyphenylmethane polyisocyanate, and the like. Aromatic, aliphatic, and alicyclic diisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate. 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, butane-1,4-diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4 -Diisocyanate, dicyclohexylmethane-4,4-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methyl Cyclohexane diisocyanate, m- tetramethylxylylene diisocyanate. Examples of the diisocyanate trimer include isocyanurate type, burette type, and allophanate type. Only 1 type may be used for a diisocyanate compound and it may use 2 or more types together.
 ジイソシアネート化合物は、ポリオールとのウレタン反応性などの観点から、その種類や組み合わせ等を適宜選択すれば良い。ポリオールとの速やかなウレタン反応性や水との反応の抑制などの観点からは、脂環族ジイソシアネートを使用することが好ましい。 The diisocyanate compound may be selected as appropriate from the viewpoint of urethane reactivity with a polyol, and the like. From the viewpoint of rapid urethane reactivity with polyol and suppression of reaction with water, it is preferable to use alicyclic diisocyanate.
 親水性ポリウレタン系重合体の重量平均分子量は、下限値として、好ましくは5000であり、より好ましくは7000であり、さらに好ましくは8000であり、特に好ましくは10000であり、上限値として、好ましくは50000であり、より好ましくは40000であり、さらに好ましくは30000であり、特に好ましくは20000である。 The weight average molecular weight of the hydrophilic polyurethane polymer is preferably 5000 as a lower limit, more preferably 7000, still more preferably 8000, particularly preferably 10,000, and preferably 50,000 as an upper limit. More preferably, it is 40000, more preferably 30000, and particularly preferably 20000.
 親水性ポリウレタン系重合体は、末端にラジカル重合可能な不飽和二重結合を有していても良い。親水性ポリウレタン系重合体の末端にラジカル重合可能な不飽和二重結合を有することにより、本発明の効果がより一層発現され得る。 The hydrophilic polyurethane-based polymer may have an unsaturated double bond capable of radical polymerization at the terminal. By having an unsaturated double bond capable of radical polymerization at the terminal of the hydrophilic polyurethane-based polymer, the effects of the present invention can be further exhibited.
(B-1-2-2.エチレン性不飽和モノマー)
 エチレン性不飽和モノマーとしては、エチレン性不飽和二重結合を有するモノマーであれば、任意の適切なモノマーを採用し得る。エチレン性不飽和モノマーは、1種のみであっても良いし、2種以上であっても良い。
(B-1-2. Ethylenically unsaturated monomer)
As the ethylenically unsaturated monomer, any appropriate monomer can be adopted as long as it is a monomer having an ethylenically unsaturated double bond. Only one type of ethylenically unsaturated monomer may be used, or two or more types may be used.
 エチレン性不飽和モノマーは、好ましくは、(メタ)アクリル酸エステルを含む。エチレン性不飽和モノマー中の(メタ)アクリル酸エステルの含有割合は、下限値として、好ましくは80重量%であり、より好ましくは85重量%であり、上限値として、好ましくは100重量%であり、より好ましくは98重量%である。(メタ)アクリル酸エステルは、1種のみであっても良いし、2種以上であっても良い。 The ethylenically unsaturated monomer preferably contains a (meth) acrylic acid ester. The content ratio of the (meth) acrylic acid ester in the ethylenically unsaturated monomer is preferably 80% by weight, more preferably 85% by weight as the lower limit, and preferably 100% by weight as the upper limit. More preferably, it is 98% by weight. Only one (meth) acrylic acid ester may be used, or two or more may be used.
 (メタ)アクリル酸エステルとしては、好ましくは、炭素数が1~20のアルキル基(シクロアルキル基、アルキル(シクロアルキル)基、(シクロアルキル)アルキル基も含む概念)を有するアルキル(メタ)アクリレートである。上記アルキル基の炭素数は、好ましくは4~18である。なお、(メタ)アクリルとは、アクリルおよび/またはメタクリルの意味であり、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートの意味である。 The (meth) acrylic acid ester is preferably an alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms (concept including a cycloalkyl group, an alkyl (cycloalkyl) group, and a (cycloalkyl) alkyl group). It is. The number of carbon atoms of the alkyl group is preferably 4-18. In addition, (meth) acryl means acryl and / or methacryl, and (meth) acrylate means acrylate and / or methacrylate.
 炭素数が1~20のアルキル基を有するアルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、n-トリデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどが挙げられる。これらの中でも、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレートが好ましい。炭素数が1~20のアルキル基を有するアルキル(メタ)アクリレートは、1種のみであっても良いし、2種以上であっても良い。 Examples of the alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and s-butyl. (Meth) acrylate, t-butyl (meth) acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, isoamyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, iso Sil (meth) acrylate, n-dodecyl (meth) acrylate, isomyristyl (meth) acrylate, n-tridecyl (meth) acrylate, n-tetradecyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, pentadecyl (Meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, nonadecyl (meth) acrylate, eicosyl (meth) acrylate, isostearyl (meth) acrylate, isobornyl (meth) acrylate, etc. It is done. Among these, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isobornyl (meth) acrylate are preferable. The alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms may be only one type or two or more types.
 エチレン性不飽和モノマーは、好ましくは、(メタ)アクリル酸エステルと共重合可能な極性モノマーをさらに含む。当該極性モノマーを含むことにより、本発明の効果がより一層発現され得る。エチレン性不飽和モノマー中の極性モノマーの含有割合は、下限値として、好ましくは0重量%であり、より好ましくは2重量%であり、上限値として、好ましくは20重量%であり、より好ましくは15重量%である。極性モノマーは、1種のみであっても良いし、2種以上であっても良い。 The ethylenically unsaturated monomer preferably further contains a polar monomer copolymerizable with (meth) acrylic acid ester. By including the polar monomer, the effects of the present invention can be further exhibited. The content of the polar monomer in the ethylenically unsaturated monomer is preferably 0% by weight, more preferably 2% by weight as the lower limit, and preferably 20% by weight, more preferably as the upper limit. 15% by weight. Only one type of polar monomer may be used, or two or more types may be used.
 極性モノマーとしては、例えば、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトンモノアクリレート、フタル酸モノヒドロキシエチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミドなどのアミド基含有モノマー;などが挙げられる。 Examples of polar monomers include (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, ω-carboxy-polycaprolactone monoacrylate, phthalic acid monohydroxyethyl acrylate, itaconic acid, maleic acid, and fumaric acid. Carboxyl group-containing monomers such as acid and crotonic acid; acid anhydride monomers such as maleic anhydride and itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth) acrylic acid 4-hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethyl) Hydroxyl group-containing monomers such as (rucyclohexyl) methyl (meth) acrylate; amide group-containing monomers such as N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, and hydroxyethyl (meth) acrylamide; Can be mentioned.
(B-1-2-3.重合開始剤)
 連続油相成分には、好ましくは、重合開始剤が含まれる。
(B-1-2-3. Polymerization initiator)
The continuous oil phase component preferably contains a polymerization initiator.
 重合開始剤としては、例えば、ラジカル重合開始剤、レドックス重合開始剤などが挙げられる。ラジカル重合開始剤としては、例えば、熱重合開始剤、光重合開始剤が挙げられる。 Examples of the polymerization initiator include radical polymerization initiators and redox polymerization initiators. Examples of the radical polymerization initiator include a thermal polymerization initiator and a photopolymerization initiator.
 熱重合開始剤としては、例えば、アゾ化合物、過酸化物、ペルオキシ炭酸、ペルオキシカルボン酸、過硫酸カリウム、t-ブチルペルオキシイソブチレート、2,2’-アゾビスイソブチロニトリルなどが挙げられる。 Examples of the thermal polymerization initiator include azo compounds, peroxides, peroxycarbonic acid, peroxycarboxylic acid, potassium persulfate, t-butylperoxyisobutyrate, 2,2′-azobisisobutyronitrile and the like. .
 光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン(例として、チバ・ジャパン社製、商品名;ダロキュア-2959)、α-ヒドロキシ-α,α’-ジメチルアセトフェノン(例として、チバ・ジャパン社製、商品名;ダロキュア-1173)、メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン(例として、チバ・ジャパン社製、商品名;イルガキュア-651)、2-ヒドロキシ-2-シクロヘキシルアセトフェノン(例として、チバ・ジャパン社製、商品名;イルガキュア-184)などのアセトフェノン系光重合開始剤;ベンジルジメチルケタールなどのケタール系光重合開始剤;その他のハロゲン化ケトン;アシルフォスフィンオキサイド(例として、チバ・ジャパン社製、商品名;イルガキュア-819);などを挙げることができる。 Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone (for example, Ciba Japan, trade name: Darocur-2959), α-hydroxy- α, α'-dimethylacetophenone (for example, Ciba Japan, trade name: Darocur-1173), methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone (for example, Ciba Japan, trade name) Acetophenone-based photopolymerization initiators such as Irgacure-651) and 2-hydroxy-2-cyclohexylacetophenone (for example, product name; Irgacure-184 manufactured by Ciba Japan); Ketal-based photopolymerization initiators such as benzyldimethyl ketal Agents; Other halogenated ketones; Acylphosphine oxa (As an example, Ciba Japan Co., Ltd., trade name: Irgacure -819); de and the like.
 重合開始剤は、1種のみを含んでいても良く、2種以上を含んでいてもよい。 The polymerization initiator may contain only 1 type, and may contain 2 or more types.
 重合開始剤の含有割合は、連続油相成分全体に対し、下限値として、好ましくは0.05重量%であり、より好ましくは0.1重量%であり、上限値として、好ましくは5.0重量%であり、より好ましくは1.0重量%である。重合開始剤の含有割合が連続油相成分全体に対して0.05重量%未満の場合には、未反応のモノマー成分が多くなり、得られる発泡拡散反射体中の残存モノマー量が増加するおそれがある。重合開始剤の含有割合が連続油相成分全体に対して5.0重量%を超える場合には、得られる発泡拡散反射体の機械的物性が低下するおそれがある。 The content of the polymerization initiator is preferably 0.05% by weight, more preferably 0.1% by weight, more preferably 0.1%, and preferably 5.0% as a lower limit with respect to the entire continuous oil phase component. % By weight, more preferably 1.0% by weight. When the content of the polymerization initiator is less than 0.05% by weight based on the entire continuous oil phase component, the amount of unreacted monomer components increases, and the amount of residual monomer in the resulting foamed diffuse reflector may increase. There is. When the content of the polymerization initiator exceeds 5.0% by weight with respect to the entire continuous oil phase component, the mechanical properties of the obtained foamed diffuse reflector may be lowered.
 なお、光重合開始剤によるラジカル発生量は、照射する光の種類や強度や照射時間、モノマーおよび溶剤混合物中の溶存酸素量などによっても変化する。そして、溶存酸素が多い場合には、光重合開始剤によるラジカル発生量が抑制され、重合が十分に進行せず、未反応物が多くなることがある。したがって、光照射の前に、反応系中に窒素等の不活性ガスを吹き込み、酸素を不活性ガスで置換、または、減圧処理によって脱気しておくことが好ましい。 Note that the amount of radicals generated by the photopolymerization initiator also varies depending on the type and intensity of irradiated light, the irradiation time, the amount of dissolved oxygen in the monomer and solvent mixture, and the like. And when there is much dissolved oxygen, the radical generation amount by a photoinitiator is suppressed, superposition | polymerization does not fully advance and an unreacted substance may increase. Therefore, it is preferable that an inert gas such as nitrogen is blown into the reaction system before the light irradiation, and oxygen is replaced with an inert gas or deaerated by a reduced pressure treatment.
(B-1-2-4.架橋剤)
 連続油相成分には、好ましくは、架橋剤が含まれる。
(B-1-2-4. Crosslinking agent)
The continuous oil phase component preferably includes a cross-linking agent.
 架橋剤は、典型的には、ポリマー鎖同士を連結して、より三次元的な分子構造を構築するために用いられる。架橋剤の種類と含有量の選択は、得られる発泡拡散反射体に所望される構造的特性、機械的特性、および流体処理特性に左右される。架橋剤の具体的な種類および含有量の選択は、発泡拡散反射体の構造的特性、機械的特性、および流体処理特性の望ましい組み合わせを実現する上で重要となる。 The cross-linking agent is typically used for linking polymer chains to build a more three-dimensional molecular structure. The selection of the type and content of the cross-linking agent depends on the structural, mechanical and fluid treatment characteristics desired for the resulting foam diffuse reflector. Selection of the specific type and content of the cross-linking agent is important in achieving a desirable combination of structural properties, mechanical properties, and fluid treatment properties of the foamed diffuse reflector.
 本発明の発泡拡散反射体を製造する上では、好ましくは、架橋剤として、重量平均分子量の異なる少なくとも2種類の架橋剤を用いる。 In producing the foamed diffuse reflector of the present invention, preferably, at least two types of crosslinking agents having different weight average molecular weights are used as the crosslinking agent.
 本発明の発泡拡散反射体を製造する上では、より好ましくは、架橋剤として、「重量平均分子量が800以上である多官能(メタ)アクリレート、多官能(メタ)アクリルアミド、および重合反応性オリゴマーから選ばれる1種以上」と「重量平均分子量が500以下である多官能(メタ)アクリレートおよび多官能(メタ)アクリルアミドから選ばれる1種以上」とを併用する。ここで、多官能(メタ)アクリレートとは、具体的には、1分子中に少なくとも2個のエチレン性不飽和基を有する多官能(メタ)アクリレートであり、多官能(メタ)アクリルアミドとは、具体的には、1分子中に少なくとも2個のエチレン性不飽和基を有する多官能(メタ)アクリルアミドである。 In producing the foamed diffuse reflector of the present invention, more preferably, as a crosslinking agent, "from a polyfunctional (meth) acrylate having a weight average molecular weight of 800 or more, a polyfunctional (meth) acrylamide, and a polymerization reactive oligomer. “One or more selected” and “one or more selected from polyfunctional (meth) acrylate and polyfunctional (meth) acrylamide having a weight average molecular weight of 500 or less” are used in combination. Here, the polyfunctional (meth) acrylate is specifically a polyfunctional (meth) acrylate having at least two ethylenically unsaturated groups in one molecule, and the polyfunctional (meth) acrylamide is Specifically, it is polyfunctional (meth) acrylamide having at least two ethylenically unsaturated groups in one molecule.
 多官能(メタ)アクリレートとしては、ジアクリレート類、トリアクリレート類、テトラアクリレート類、ジメタクリレート類、トリメタクリレート類、テトラメタクリレート類などが挙げられる。 Examples of polyfunctional (meth) acrylates include diacrylates, triacrylates, tetraacrylates, dimethacrylates, trimethacrylates, and tetramethacrylates.
 多官能(メタ)アクリルアミドとしては、ジアクリルアミド類、トリアクリルアミド類、テトラアクリルアミド類、ジメタクリルアミド類、トリメタクリルアミド類、テトラメタクリルアミド類などが挙げられる。 Examples of the polyfunctional (meth) acrylamide include diacrylamides, triacrylamides, tetraacrylamides, dimethacrylamides, trimethacrylamides, tetramethacrylamides and the like.
 多官能(メタ)アクリレートは、例えば、ジオール類、トリオール類、テトラオール類、ビスフェノールA類などから誘導できる。具体的には、例えば、1,10-デカンジオール、1,8-オクタンジオール、1,6ヘキサンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,4ブタン-2-エンジオール、エチレングリコール、ジエチレングリコール、トリメチロールプロパン、ペンタエリトリトール、ヒドロキノン、カテコール、レゾルシノール、トリエチレングリコール、ポリエチレングリコール、ソルビトール、ポリプロピレングリコール、ポリテトラメチレングリコール、ビスフェノールAプロピレンオキサイド変性物などから誘導できる。 The polyfunctional (meth) acrylate can be derived from, for example, diols, triols, tetraols, bisphenol A and the like. Specifically, for example, 1,10-decanediol, 1,8-octanediol, 1,6 hexanediol, 1,4-butanediol, 1,3-butanediol, 1,4 butane-2-enediol , Ethylene glycol, diethylene glycol, trimethylolpropane, pentaerythritol, hydroquinone, catechol, resorcinol, triethylene glycol, polyethylene glycol, sorbitol, polypropylene glycol, polytetramethylene glycol, bisphenol A propylene oxide modified product, and the like.
 多官能(メタ)アクリルアミドは、例えば、対応するジアミン類、トリアミン類、テトラアミン類などから誘導できる。 Polyfunctional (meth) acrylamide can be derived from, for example, corresponding diamines, triamines, tetraamines and the like.
 重合反応性オリゴマーとしては、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、コポリエステル(メタ)アクリレート、オリゴマージ(メタ)アクリレートなどが挙げられる。好ましくは、疎水性ウレタン(メタ)アクリレートである。 Examples of the polymerization-reactive oligomer include urethane (meth) acrylate, epoxy (meth) acrylate, copolyester (meth) acrylate, and oligomer di (meth) acrylate. Preferably, it is hydrophobic urethane (meth) acrylate.
 重合反応性オリゴマーの重量平均分子量は、好ましくは1500以上、より好ましくは2000以上である。重合反応性オリゴマーの重量平均分子量の上限は特に限定されないが、例えば、好ましくは10000以下である。 The weight average molecular weight of the polymerization-reactive oligomer is preferably 1500 or more, more preferably 2000 or more. Although the upper limit of the weight average molecular weight of a polymerization reactive oligomer is not specifically limited, For example, Preferably it is 10,000 or less.
 架橋剤として、「重量平均分子量が800以上である多官能(メタ)アクリレート、多官能(メタ)アクリルアミド、および重合反応性オリゴマーから選ばれる1種以上」と「重量平均分子量が500以下である多官能(メタ)アクリレートおよび多官能(メタ)アクリルアミドから選ばれる1種以上」とを併用する場合、「重量平均分子量が800以上である多官能(メタ)アクリレート、多官能(メタ)アクリルアミド、および重合反応性オリゴマーから選ばれる1種以上」の使用量は、連続油相成分中の親水性ポリウレタン系重合体およびエチレン性不飽和モノマーの合計量に対して、下限値として、好ましくは40重量%であり、上限値として、好ましくは100重量%であり、より好ましくは80重量%である。「重量平均分子量が800以上である多官能(メタ)アクリレート、多官能(メタ)アクリルアミド、および重合反応性オリゴマーから選ばれる1種以上」の使用量が連続油相成分中の親水性ポリウレタン系重合体およびエチレン性不飽和モノマーの合計量に対して40重量%未満の場合、得られる発泡拡散反射体の凝集力が低下してしまうおそれがあり、じん性と柔軟性の両立が困難になるおそれがある。「重量平均分子量が800以上である多官能(メタ)アクリレート、多官能(メタ)アクリルアミド、および重合反応性オリゴマーから選ばれる1種以上」の使用量が連続油相成分中の親水性ポリウレタン系重合体およびエチレン性不飽和モノマーの合計量に対して100重量%を超える場合、W/O型エマルションは乳化安定性が低下してしまい、所望の発泡拡散反射体が得られないおそれがある。 As the cross-linking agent, “one or more selected from polyfunctional (meth) acrylates having a weight average molecular weight of 800 or more, polyfunctional (meth) acrylamides, and polymerization reactive oligomers” and “a weight average molecular weight of 500 or less. When using together with “one or more selected from functional (meth) acrylate and polyfunctional (meth) acrylamide” ”,“ polyfunctional (meth) acrylate having a weight average molecular weight of 800 or more, polyfunctional (meth) acrylamide, and polymerization ” The amount of “one or more selected from reactive oligomers” is preferably 40% by weight as a lower limit with respect to the total amount of the hydrophilic polyurethane polymer and the ethylenically unsaturated monomer in the continuous oil phase component. The upper limit is preferably 100% by weight, and more preferably 80% by weight. The amount of use of “one or more selected from a polyfunctional (meth) acrylate having a weight average molecular weight of 800 or more, a polyfunctional (meth) acrylamide, and a polymerization reactive oligomer” is a hydrophilic polyurethane-based heavy in the continuous oil phase component When the amount is less than 40% by weight based on the total amount of the coalesced monomer and the ethylenically unsaturated monomer, the cohesive force of the resulting foamed diffuse reflector may be lowered, and it may be difficult to achieve both toughness and flexibility. There is. The amount of use of “one or more selected from a polyfunctional (meth) acrylate having a weight average molecular weight of 800 or more, a polyfunctional (meth) acrylamide, and a polymerization reactive oligomer” is a hydrophilic polyurethane-based heavy in the continuous oil phase component When it exceeds 100 weight% with respect to the total amount of a coalescence and an ethylenically unsaturated monomer, the emulsion stability of a W / O type emulsion will fall and there exists a possibility that a desired foaming diffused reflection body may not be obtained.
 架橋剤として、「重量平均分子量が800以上である多官能(メタ)アクリレート、多官能(メタ)アクリルアミド、および重合反応性オリゴマーから選ばれる1種以上」と「重量平均分子量が500以下である多官能(メタ)アクリレートおよび多官能(メタ)アクリルアミドから選ばれる1種以上」とを併用する場合、「重量平均分子量が500以下である多官能(メタ)アクリレートおよび多官能(メタ)アクリルアミドから選ばれる1種以上」の使用量は、連続油相成分中の親水性ポリウレタン系重合体およびエチレン性不飽和モノマーの合計量に対して、下限値として、好ましくは1重量%であり、より好ましくは5重量%であり、上限値として、好ましくは30重量%であり、より好ましくは20重量%である。「重量平均分子量が500以下である多官能(メタ)アクリレートおよび多官能(メタ)アクリルアミドから選ばれる1種以上」の使用量が連続油相成分中の親水性ポリウレタン系重合体およびエチレン性不飽和モノマーの合計量に対して1重量%未満の場合、耐熱性が低下してしまい、含水重合体を脱水する工程(IV)において収縮によって気泡構造が潰れてしまうおそれがある。「重量平均分子量が500以下である多官能(メタ)アクリレートおよび多官能(メタ)アクリルアミドから選ばれる1種以上」の使用量が連続油相成分中の親水性ポリウレタン系重合体およびエチレン性不飽和モノマーの合計量に対して30重量%を超える場合、得られる発泡拡散反射体のじん性が低下してしまい、脆性を示してしまうおそれがある。 As the cross-linking agent, “one or more selected from polyfunctional (meth) acrylates having a weight average molecular weight of 800 or more, polyfunctional (meth) acrylamides, and polymerization reactive oligomers” and “a weight average molecular weight of 500 or less. When using together with “one or more selected from functional (meth) acrylate and polyfunctional (meth) acrylamide” ”,“ selected from polyfunctional (meth) acrylate and polyfunctional (meth) acrylamide having a weight average molecular weight of 500 or less ” The amount of “one or more” used is preferably 1% by weight, more preferably 5% as a lower limit with respect to the total amount of the hydrophilic polyurethane polymer and the ethylenically unsaturated monomer in the continuous oil phase component. The upper limit is preferably 30% by weight, and more preferably 20% by weight. Use amount of “one or more selected from polyfunctional (meth) acrylate having a weight average molecular weight of 500 or less and polyfunctional (meth) acrylamide” is a hydrophilic polyurethane polymer and ethylenic unsaturated in a continuous oil phase component When the amount is less than 1% by weight based on the total amount of monomers, the heat resistance is lowered, and the cell structure may be crushed by contraction in the step (IV) of dehydrating the water-containing polymer. Use amount of “one or more selected from polyfunctional (meth) acrylate having a weight average molecular weight of 500 or less and polyfunctional (meth) acrylamide” is a hydrophilic polyurethane polymer and ethylenic unsaturated in a continuous oil phase component When it exceeds 30% by weight with respect to the total amount of the monomers, the toughness of the foamed diffuse reflector to be obtained is lowered, and there is a possibility that brittleness is exhibited.
 架橋剤は、1種のみを含んでいても良く、2種以上を含んでいてもよい。 The crosslinking agent may contain only 1 type and may contain 2 or more types.
(B-1-2-5.連続油相成分中のその他の成分)
 連続油相成分には、本発明の効果を損なわない範囲で、任意の適切なその他の成分が含まれ得る。このようなその他の成分としては、代表的には、好ましくは、触媒、酸化防止剤、光安定剤、有機溶媒などが挙げられる。このようなその他の成分は、1種のみであっても良いし、2種以上であっても良い。
(B-1-2-5. Other components in the continuous oil phase component)
The continuous oil phase component may contain any appropriate other component as long as the effects of the present invention are not impaired. Examples of such other components typically include a catalyst, an antioxidant, a light stabilizer, and an organic solvent. Such other components may be only one type or two or more types.
 触媒としては、例えば、ウレタン反応触媒が挙げられる。ウレタン反応触媒としては、任意の適切な触媒を採用し得る。具体的には、例えば、ジブチル錫ジラウリレートが挙げられる。 Examples of the catalyst include a urethane reaction catalyst. Any appropriate catalyst can be adopted as the urethane reaction catalyst. Specific examples include dibutyltin dilaurate.
 触媒の含有割合は、目的とする触媒反応に応じて、任意の適切な含有割合を採用し得る。 As the catalyst content ratio, any appropriate content ratio can be adopted depending on the target catalytic reaction.
 触媒は、1種のみを含んでいても良く、2種以上を含んでいてもよい。 The catalyst may contain only one type or two or more types.
 酸化防止剤としては、例えば、フェノール系酸化防止剤、チオエーテル系酸化防止剤、リン系酸化防止剤などが挙げられる。 Examples of the antioxidant include phenolic antioxidants, thioether antioxidants, and phosphorus antioxidants.
 酸化防止剤の含有割合は、本発明の効果を損なわない範囲で、任意の適切な含有割合を採用し得る。 As the content ratio of the antioxidant, any appropriate content ratio can be adopted as long as the effects of the present invention are not impaired.
 酸化防止剤は、1種のみを含んでいても良く、2種以上を含んでいてもよい。 An antioxidant may contain only 1 type and may contain 2 or more types.
 有機溶媒としては、本発明の効果を損なわない範囲で、任意の適切な有機溶媒を採用し得る。 As the organic solvent, any appropriate organic solvent can be adopted as long as the effects of the present invention are not impaired.
 有機溶媒の含有割合は、本発明の効果を損なわない範囲で、任意の適切な含有割合を採用し得る。 Any appropriate content ratio can be adopted as the content ratio of the organic solvent as long as the effects of the present invention are not impaired.
 有機溶媒は、1種のみを含んでいても良く、2種以上を含んでいてもよい。 The organic solvent may contain only 1 type, and may contain 2 or more types.
 光安定剤としては、本発明の効果を損なわない範囲で、任意の適切な光安定剤を採用し得る。 As the light stabilizer, any appropriate light stabilizer can be adopted as long as the effects of the present invention are not impaired.
 光安定剤の含有割合は、本発明の効果を損なわない範囲で、任意の適切な含有割合を採用し得る。 Any appropriate content ratio can be adopted as the content ratio of the light stabilizer as long as the effects of the present invention are not impaired.
 光安定剤は、1種のみを含んでいても良く、2種以上を含んでいてもよい。 The light stabilizer may contain only 1 type, and may contain 2 or more types.
≪B-2.W/O型エマルションを賦形する工程(II)≫
 工程(II)において、W/O型エマルションを賦形する方法としては、任意の適切な賦形方法を採用し得る。例えば、走行するベルト上にW/O型エマルションを連続的に供給し、ベルトの上で平滑なシート状に賦形する方法が挙げられる。また、熱可塑性樹脂フィルムの一面に塗工して賦形する方法が挙げられる。
<< B-2. Step of shaping W / O type emulsion (II) >>
In the step (II), any appropriate shaping method can be adopted as a method for shaping the W / O emulsion. For example, there is a method in which a W / O emulsion is continuously supplied onto a traveling belt and shaped into a smooth sheet on the belt. Moreover, the method of apply | coating to one surface of a thermoplastic resin film, and shaping is mentioned.
 工程(II)において、W/O型エマルションを賦形する方法として、熱可塑性樹脂フィルムの一面に塗工して賦形する方法を採用する場合、塗工する方法としては、例えば、ロールコーター、ダイコーター、ナイフコーターなどを用いる方法が挙げられる。 In the step (II), as a method of shaping the W / O type emulsion, when adopting a method of coating and shaping on one surface of a thermoplastic resin film, as a method of coating, for example, a roll coater, Examples include a method using a die coater, a knife coater, or the like.
≪B-3.賦形されたW/O型エマルションを重合する工程(III)≫
 工程(III)において、賦形されたW/O型エマルションを重合する方法としては、任意の適切な重合方法を採用し得る。例えば、加熱装置によってベルトコンベアーのベルト表面が加温される構造の、走行するベルト上にW/O型エマルションを連続的に供給し、ベルトの上で平滑なシート状に賦形しつつ加熱によって重合する方法や、活性エネルギー線の照射によってベルトコンベアーのベルト表面が加温される構造の、走行するベルト上にW/O型エマルションを連続的に供給し、ベルトの上で平滑なシート状に賦形しつつ活性エネルギー線の照射によって重合する方法が挙げられる。
<< B-3. Step of polymerizing shaped W / O emulsion (III) >>
In the step (III), any appropriate polymerization method can be adopted as a method for polymerizing the shaped W / O emulsion. For example, the belt surface of a belt conveyor is heated by a heating device, and a W / O type emulsion is continuously supplied onto a traveling belt and shaped into a smooth sheet on the belt by heating. A W / O emulsion is continuously supplied onto the running belt, with a method of polymerization and a structure in which the belt surface of the belt conveyor is heated by irradiation of active energy rays, and a smooth sheet is formed on the belt. The method of superposing | polymerizing by irradiation of an active energy ray is mentioned, shaping.
 加熱によって重合する場合、重合温度(加熱温度)は、下限値として、好ましくは23℃であり、より好ましくは50℃であり、さらに好ましくは70℃であり、特に好ましくは80℃であり、最も好ましくは90℃であり、上限値としては、好ましくは150℃であり、より好ましくは130℃であり、さらに好ましくは110℃である。重合温度が23℃未満の場合は、重合に長時間を要し、工業的な生産性が低下するおそれがある。重合温度が150℃を越える場合は、得られる発泡拡散反射体の孔径が不均一となるおそれや、発泡拡散反射体の強度が低下するおそれがある。なお、重合温度は、一定である必要はなく、例えば、重合中に2段階や多段階で変動させてもよい。 In the case of polymerization by heating, the polymerization temperature (heating temperature) is preferably 23 ° C., more preferably 50 ° C., still more preferably 70 ° C., particularly preferably 80 ° C. as the lower limit. The upper limit is preferably 90 ° C, and is preferably 150 ° C, more preferably 130 ° C, and even more preferably 110 ° C. When the polymerization temperature is less than 23 ° C., the polymerization takes a long time, and industrial productivity may be reduced. When the polymerization temperature exceeds 150 ° C., the pore diameter of the foamed diffuse reflector obtained may be non-uniform or the strength of the foamed diffuse reflector may be reduced. The polymerization temperature need not be constant. For example, the polymerization temperature may be varied in two stages or multiple stages during the polymerization.
 活性エネルギー線の照射によって重合する場合、活性エネルギー線としては、例えば、紫外線、可視光線、電子線などが挙げられる。活性エネルギー線としては、好ましくは、紫外線、可視光線であり、より好ましくは、波長が200nm~800nmの可視~紫外の光である。W/O型エマルションは光を散乱させる傾向が強いため、波長が200nm~800nmの可視~紫外の光を用いればW/O型エマルションに光を貫通させることができる。また、200nm~800nmの波長で活性化できる光重合開始剤は入手しやすく、光源が入手しやすい。 In the case of polymerization by irradiation with active energy rays, examples of the active energy rays include ultraviolet rays, visible rays, and electron beams. The active energy rays are preferably ultraviolet rays and visible rays, and more preferably visible to ultraviolet rays having a wavelength of 200 nm to 800 nm. Since the W / O type emulsion has a strong tendency to scatter light, it is possible to penetrate the W / O type emulsion by using visible to ultraviolet light having a wavelength of 200 nm to 800 nm. In addition, a photopolymerization initiator that can be activated at a wavelength of 200 nm to 800 nm is easily available and a light source is easily available.
 活性エネルギー線の波長は、下限値として、好ましくは200nmであり、より好ましくは300nmであり、上限値として、好ましくは800nmであり、より好ましくは450nmである。 The wavelength of the active energy ray is preferably 200 nm as a lower limit, more preferably 300 nm, and preferably 800 nm, more preferably 450 nm as an upper limit.
 活性エネルギー線の照射に用いられる代表的な装置としては、例えば、紫外線照射を行うことができる紫外線ランプとして、波長300nm~400nm領域にスペクトル分布を持つ装置が挙げられ、その例としては、ケミカルランプ、ブラックライト(東芝ライテック(株)製の商品名)、メタルハライドランプなどが挙げられる。 As a typical apparatus used for irradiation of active energy rays, for example, an ultraviolet lamp capable of performing ultraviolet irradiation includes an apparatus having a spectral distribution in a wavelength region of 300 nm to 400 nm. , Black light (trade name manufactured by Toshiba Lighting & Technology Co., Ltd.), metal halide lamp and the like.
 活性エネルギー線の照射を行う際の照度は、照射装置から被照射物までの距離や電圧の調節によって、任意の適切な照度に設定され得る。例えば、特開2003-13015号公報に開示された方法によって、各工程における紫外線照射をそれぞれ複数段階に分割して行い、それにより粘着性能を精密に調節することができる。 The illuminance at the time of irradiation with active energy rays can be set to any appropriate illuminance by adjusting the distance from the irradiation device to the irradiated object and the voltage. For example, by the method disclosed in Japanese Patent Application Laid-Open No. 2003-13015, ultraviolet irradiation in each step is performed in a plurality of stages, and thereby the adhesive performance can be precisely adjusted.
 紫外線照射は、重合禁止作用のある酸素が及ぼす悪影響を防ぐために、例えば、熱可塑性樹脂フィルム等の基材の一面にW/O型エマルションを塗工して賦形した後に不活性ガス雰囲気下で行うことや、熱可塑性樹脂フィルム等の基材の一面にW/O型エマルションを塗工して賦形した後にシリコーン等の剥離剤をコートしたポリエチレンテレフタレート等の紫外線は通過するが酸素を遮断するフィルムを被覆させて行うことが好ましい。 In order to prevent the adverse effect of oxygen having an inhibitory action on the ultraviolet rays, for example, a W / O emulsion is applied to one surface of a substrate such as a thermoplastic resin film and then shaped under an inert gas atmosphere. UV rays such as polyethylene terephthalate coated with a release agent such as silicone after passing through a W / O emulsion on one surface of a substrate such as a thermoplastic resin film and shaping, but blocking oxygen It is preferable to carry out by covering the film.
 熱可塑性樹脂フィルムとしては、一面にW/O型エマルションを塗工して賦形できるものであれば、任意の適切な熱可塑性樹脂フィルムを採用し得る。熱可塑性樹脂フィルムとしては、例えば、ポリエステル、オレフィン系樹脂、ポリ塩化ビニルなどのプラスチックフィルムやシートが挙げられる。また、該フィルムは、一方またはその両面に剥離処理されていてもよい。 As the thermoplastic resin film, any appropriate thermoplastic resin film can be adopted as long as it can be formed by coating a W / O emulsion on one surface. Examples of the thermoplastic resin film include plastic films and sheets such as polyester, olefin resin, and polyvinyl chloride. Further, the film may be subjected to a peeling treatment on one side or both sides thereof.
 不活性ガス雰囲気とは、光照射ゾーン中の酸素を不活性ガスにより置換した雰囲気をいう。したがって、不活性ガス雰囲気においては、できるだけ酸素が存在しないことが必要であり、酸素濃度で5000ppm以下であることが好ましい。 The inert gas atmosphere is an atmosphere in which oxygen in the light irradiation zone is replaced with an inert gas. Therefore, in the inert gas atmosphere, it is necessary that oxygen is not present as much as possible, and the oxygen concentration is preferably 5000 ppm or less.
≪B-4.得られた含水重合体を脱水する工程(IV)≫
 工程(IV)では、得られた含水重合体を脱水する。工程(III)で得られた含水重合体中には水相成分が分散状態で存在する。この水相成分を脱水により除去して乾燥することにより、本発明の発泡拡散反射体に含まれる発泡体が得られる。得られた発泡体は、そのまま本発明の発泡拡散反射体となり得る。また、後述するように、基材と組み合わせることによって、本発明の発泡拡散反射体となり得る。また、本発明の発泡拡散反射体が、上記の厚み方向に貫通する穴(貫通穴)を有する発泡拡散反射体は、例えば、公知のザグリ加工法で発泡拡散反射体を穿孔して得ることができる。
<< B-4. Step of dehydrating the obtained water-containing polymer (IV) >>
In step (IV), the obtained water-containing polymer is dehydrated. In the water-containing polymer obtained in step (III), the aqueous phase component is present in a dispersed state. By removing the aqueous phase component by dehydration and drying, a foam contained in the foamed diffuse reflector of the present invention is obtained. The obtained foam can be directly used as the foamed diffuse reflector of the present invention. Further, as described later, by combining with a base material, the foamed diffuse reflector of the present invention can be obtained. Moreover, the foaming diffused reflection body in which the foaming diffused reflection body of this invention has the hole (through-hole) which penetrates in said thickness direction can be obtained by perforating a foaming diffused reflection body by the well-known counterbore processing method, for example. it can.
 工程(IV)における脱水方法としては、任意の適切な乾燥方法を採用し得る。このような乾燥方法としては、例えば、真空乾燥、凍結乾燥、圧搾乾燥、電子レンジ乾燥、熱オーブン内での乾燥、赤外線による乾燥、またはこれらの技術の組み合わせ、などが挙げられる。 Any appropriate drying method can be adopted as the dehydration method in step (IV). Examples of such a drying method include vacuum drying, freeze drying, press drying, microwave drying, drying in a heat oven, drying with infrared rays, or a combination of these techniques.
≪B-5.本発明の発泡拡散反射体が基材を含有する場合≫
 本発明の発泡拡散反射体が基材を含有する場合、本発明の発泡拡散反射体の製造方法の好ましい実施形態の一つとして、W/O型エマルションを基材の一面に塗工し、不活性ガス雰囲気下あるいはシリコーン等の剥離剤をコートした紫外線透過性のフィルムにより被覆して酸素が遮断された状態において、加熱または活性エネルギー線の照射を行うことによってW/O型エマルションを重合させて含水重合体とし、得られた含水重合体を脱水することで、基材/発泡層の積層構造を有する発泡拡散反射体とする形態が挙げられる。
<< B-5. When the foamed diffuse reflector of the present invention contains a base material >>
When the foamed diffuse reflector of the present invention contains a substrate, as one preferred embodiment of the method for producing the foamed diffuse reflector of the present invention, a W / O emulsion is applied to one surface of the substrate, W / O emulsion is polymerized by heating or irradiation with active energy rays in an active gas atmosphere or in a state where oxygen is blocked by coating with a UV transparent film coated with a release agent such as silicone. Examples of the water-containing polymer include dehydrating the obtained water-containing polymer to form a foamed diffuse reflector having a substrate / foamed layer laminate structure.
 本発明の発泡拡散反射体の製造方法の好ましい別の実施形態の一つとして、W/O型エマルションをシリコーン等の剥離剤をコートした紫外線透過性のフィルムの一面に塗布したものを2枚準備し、該2枚のうちの1枚のW/O型エマルション塗布シートの塗布面に基材を積層し、積層した該基材の他方の面に、もう1枚のW/O型エマルション塗布シートの塗布面を合わせるように積層した状態において、加熱または活性エネルギー線の照射を行うことによってW/O型エマルションを重合させて含水重合体とし、得られた含水重合体を脱水することで、発泡層/基材/発泡層の積層構造を有する発泡拡散反射体とする形態が挙げられる。 As another preferred embodiment of the method for producing a foamed diffuse reflector of the present invention, two sheets of W / O type emulsions coated on one surface of an ultraviolet transmissive film coated with a release agent such as silicone are prepared. Then, a base material is laminated on the application surface of one of the two W / O emulsion application sheets, and another W / O emulsion application sheet is provided on the other surface of the laminated base material. In a state where the coating surfaces are laminated so as to match, the W / O emulsion is polymerized by heating or irradiation with active energy rays to form a water-containing polymer, and the resulting water-containing polymer is dehydrated to produce foam. The form made into the foaming diffused reflection body which has the laminated structure of a layer / base material / foaming layer is mentioned.
 W/O型エマルションを基材またはシリコーン等の剥離剤をコートした紫外線透過性のフィルムの一面に塗工する方法としては、例えば、ロールコーター、ダイコーター、ナイフコーターなどが挙げられる。 Examples of the method of applying the W / O type emulsion to one side of the base material or one surface of the ultraviolet ray transmissive film coated with a release agent such as silicone include a roll coater, a die coater, and a knife coater.
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。なお、常温とは23℃を意味する。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto. The normal temperature means 23 ° C.
(分子量測定)
 GPC(ゲル浸透クロマトグラフィー)により重量平均分子量を求めた。
  装置:東ソー(株)製「HLC-8020」
  カラム:東ソー(株)製「TSKgel GMHHR-H(20)」
  溶媒:テトラヒドロフラン
  標準物質:ポリスチレン
(Molecular weight measurement)
The weight average molecular weight was determined by GPC (gel permeation chromatography).
Equipment: “HLC-8020” manufactured by Tosoh Corporation
Column: “TSKgel GMH HR- H (20)” manufactured by Tosoh Corporation
Solvent: Tetrahydrofuran Standard: Polystyrene
(平均孔径の測定)
 得られた発泡体をミクロトームカッターで厚み方向に切断したものを測定用試料とした。測定用試料の切断面を走査型電子顕微鏡(日立製、S-3400N)で800~5000倍にて撮影した。撮影した画像を用いて、任意範囲の球状気泡の孔径や、任意範囲の球状気泡間を貫通する貫通孔の孔径や、任意範囲の表面開口部の孔径を測定し、その測定値から球状気泡の平均孔径や貫通孔の平均孔径や表面開口部の平均孔径を算出した。
(Measurement of average pore diameter)
The obtained foam was cut in the thickness direction with a microtome cutter as a measurement sample. The cut surface of the measurement sample was photographed with a scanning electron microscope (Hitachi, S-3400N) at 800 to 5000 times. Using the photographed image, measure the pore diameter of an arbitrary range of spherical bubbles, the diameter of a through-hole penetrating between the spherical bubbles of an arbitrary range, and the pore diameter of the surface opening of an arbitrary range. The average hole diameter, the average hole diameter of the through holes, and the average hole diameter of the surface openings were calculated.
(気泡率の測定)
 エマルションを製造する際の油相成分のみを重合し、得られた重合体シートを100mm×100mmの大きさに5枚切りだして試験片とし、重量を体積で除して見掛け密度を求めた。得られた見掛け密度の平均値を、発泡層を構成する樹脂成分の密度とした。発泡層の気泡率は、発泡層の密度を上記樹脂成分の密度で除した相対密度を用いて、下記式のように算出した。
 気泡率=(1-相対密度)×100
(Measurement of bubble rate)
Only the oil phase component at the time of producing the emulsion was polymerized, and the obtained polymer sheet was cut into five pieces of 100 mm × 100 mm to obtain test pieces, and the apparent density was obtained by dividing the weight by the volume. The average value of the apparent density obtained was taken as the density of the resin component constituting the foamed layer. The cell ratio of the foam layer was calculated by the following formula using the relative density obtained by dividing the density of the foam layer by the density of the resin component.
Bubble ratio = (1−relative density) × 100
(拡散反射率、透過率)
 積分球装置を備えた島津製作所製の分光光度計UV-2250を用いて、220nm~800nmの波長領域における拡散反射率、透過率を1nm毎に測定した。測定入射光は入射角0°で発泡体に入射し、このときの反射率を拡散反射率とした。この際、硫酸バリウム粉末の反射率を100%として測定装置を調整した。
(Diffuse reflectance, transmittance)
Using a spectrophotometer UV-2250 manufactured by Shimadzu Corporation equipped with an integrating sphere device, the diffuse reflectance and transmittance in the wavelength region of 220 nm to 800 nm were measured every 1 nm. Measurement incident light was incident on the foam at an incident angle of 0 °, and the reflectance at this time was defined as diffuse reflectance. At this time, the measuring apparatus was adjusted with the reflectance of the barium sulfate powder as 100%.
(耐光性試験)
 ダイプラメタルウェザーKU-R5N-W(ダイプラウィンテス社製)を用いて、温度63℃、湿度50%の条件下において、メタルハライドランプにより照度90mW/cmの紫外線を100時間連続照射した。
(Light resistance test)
Using a die plastic metal weather KU-R5N-W (manufactured by Daipura Wintes Co., Ltd.), ultraviolet rays with an illuminance of 90 mW / cm 2 were continuously irradiated for 100 hours with a metal halide lamp under the conditions of a temperature of 63 ° C. and a humidity of 50%.
(125℃で22時間保存したときの寸法変化率)
 得られた発泡拡散反射体の加熱寸法変化を、JIS-K-6767の高温時の寸法安定性評価に準拠して測定した。すなわち、得られた発泡拡散反射体を100mm×100mmの大きさに切りだして試験片とし、125℃のオーブンに22時間保存した後に、JIS-K-6767の高温時の寸法安定性評価に準拠して、該加熱保存処理の前後における寸法の変化率を求めた。
(Dimensional change rate when stored at 125 ° C for 22 hours)
The heating dimensional change of the obtained foamed diffuse reflector was measured in accordance with JIS-K-6767 dimensional stability evaluation at high temperature. That is, the obtained foamed diffuse reflector was cut into a size of 100 mm × 100 mm to form a test piece, stored in an oven at 125 ° C. for 22 hours, and then conformed to the dimensional stability evaluation at high temperature of JIS-K-6767. Then, the rate of change in dimensions before and after the heat storage treatment was determined.
(100℃保持力の測定)
 得られた発泡拡散反射体(3)をポリエステル粘着テープ(日東電工社製 No.31B 80μm)で裏打ちした。得られた発泡拡散反射材(2)およびポリエステル粘着テープで裏打ちされた発泡拡散反射材(3)を10mm×100mmに切断し、一方のセパレータを剥がして発泡体面をベーク板に10mm×20mmの貼り付け面積になるように貼り付け、2kgローラーを一往復させて圧着した。圧着後、100℃の雰囲気下、サンプルが垂直になるようにベーク板を固定し、一方の発泡体に500gの荷重を掛けて、2時間放置した。放置後、2時間後のサンプル貼付位置のずれ量を測定した。
(Measurement of 100 ° C holding power)
The obtained foamed diffuse reflector (3) was lined with a polyester adhesive tape (Nitto Denko No. 31B 80 μm). The obtained foam diffuse reflector (2) and the foam diffuse reflector (3) lined with polyester adhesive tape are cut to 10 mm x 100 mm, one separator is peeled off, and the foam surface is attached to the bake plate at 10 mm x 20 mm. Affixing was performed so as to have an attachment area, and a 2 kg roller was reciprocated once to perform pressure bonding. After the pressure bonding, a bake plate was fixed so that the sample was vertical in an atmosphere of 100 ° C., and a load of 500 g was applied to one of the foams and left for 2 hours. After leaving, the amount of deviation of the sample application position after 2 hours was measured.
〔製造例1〕:混合シロップ1の調製
 冷却管、温度計、および攪拌装置を備えた反応容器に、エチレン性不飽和モノマーとしてイソボルニルアクリレート(大阪有機化学工業(株)製、以下「IBXA」と略す)173.2重量部と、ポリオキシエチレンポリオキシプロピレングリコールとしてアデカ(登録商標)プルロニックL-62(分子量2500、ADEKA(株)製、ポリエーテルポリオール)100重量部と、ウレタン反応触媒としてジブチル錫ジラウレート(キシダ化学(株)製、以下「DBTL」と略す)0.014重量部とを投入し、攪拌しながら、水素化キシリレンジイソシアネート(武田薬品(株)製、タケネート600、以下「HXDI」と略す)12.4重量部滴下し、65℃で4時間反応させた。なお、ポリイソシアネート成分とポリオール成分の使用量は、NCO/OH(当量比)=1.6であった。その後、2ヒドロキシエチルアクリレート(キシダ化学(株)製、以下「HEA」と略す)5.6重量部滴下し、65℃で2時間反応させ、親水性ポリウレタン系重合体/エチレン性不飽和モノマー混合シロップを得た。得られた親水性ポリウレタン系重合体の重量平均分子量は1.5万であった。得られた親水性ポリウレタン系重合体/エチレン性不飽和モノマー混合シロップ100重量部に対してアクリル酸2-エチルヘキシル(東亜合成(株)製、以下「2EHA」と略す)24.7重量部、IBXAを69.3重量部、極性モノマーとしてアクリル酸(東亜合成(株)製、以下「AA」と略す)10.5重量部を加え、親水性ポリウレタン系重合体/エチレン性不飽和モノマー混合シロップ1とした。
[Production Example 1]: Preparation of mixed syrup 1 In a reaction vessel equipped with a cooling tube, a thermometer, and a stirrer, isobornyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., hereinafter "IBXA") was used as an ethylenically unsaturated monomer. 173.2 parts by weight, 100 parts by weight of Adeka (registered trademark) Pluronic L-62 (molecular weight 2500, polyether polyol manufactured by ADEKA Corporation) as polyoxyethylene polyoxypropylene glycol, and urethane reaction catalyst Dibutyltin dilaurate (manufactured by Kishida Chemical Co., Ltd., hereinafter abbreviated as “DBTL”) is added in an amount of 0.014 part by weight and stirred, while hydrogenated xylylene diisocyanate (Takeda Pharmaceutical Co., Ltd., Takenate 600, below). 12.4 parts by weight of the solution was added dropwise and reacted at 65 ° C. for 4 hours. In addition, the usage-amount of the polyisocyanate component and the polyol component was NCO / OH (equivalent ratio) = 1.6. Thereafter, 5.6 parts by weight of 2-hydroxyethyl acrylate (manufactured by Kishida Chemical Co., Ltd., hereinafter abbreviated as “HEA”) was added dropwise and reacted at 65 ° C. for 2 hours to mix a hydrophilic polyurethane polymer / ethylenically unsaturated monomer. A syrup was obtained. The weight average molecular weight of the obtained hydrophilic polyurethane polymer was 15,000. 24.7 parts by weight of 2-ethylhexyl acrylate (manufactured by Toa Gosei Co., Ltd., hereinafter abbreviated as “2EHA”) per 100 parts by weight of the obtained hydrophilic polyurethane polymer / ethylenically unsaturated monomer mixed syrup, IBXA 69.3 parts by weight, 10.5 parts by weight of acrylic acid (manufactured by Toa Gosei Co., Ltd., hereinafter abbreviated as “AA”) as a polar monomer, and a hydrophilic polyurethane polymer / ethylenically unsaturated monomer mixed syrup 1 It was.
〔製造例2〕:混合シロップ2の調製
 冷却管、温度計、および攪拌装置を備えた反応容器に、エチレン性不飽和モノマーとして2EHA173.2重量部と、ポリオキシエチレンポリオキシプロピレングリコールとしてアデカ(登録商標)プルロニックL-62(分子量2500、ADEKA社製、ポリエーテルポリオール)100重量部と、ウレタン反応触媒としてDBTL0.014重量部とを投入し、攪拌しながら、HXDI12.4重量部を滴下し、65℃で4時間反応させた。なお、ポリイソシアネート成分とポリオール成分の使用量は、NCO/OH(当量比)=1.6であった。その後、HEA5.6重量部を滴下し、65℃で2時間反応させ、両末端にアクリロイル基を有する親水性ポリウレタン系重合体/エチレン性不飽和モノマー混合シロップを得た。得られた両末端にアクリロイル基を有する親水性ポリウレタン系重合体の重量平均分子量は1.5万であった。得られた両末端にアクリロイル基を有する親水性ポリウレタン系重合体/エチレン性不飽和モノマー混合シロップ100重量部に対して2EHAを27.3重量部、n-ブチルアクリレート(東亜合成社製、以下「BA」と略す)51.8重量部、IBXA17.6重量部、極性モノマーとしてAAを10.5重量部加え、親水性ポリウレタン系重合体/エチレン性不飽和モノマー混合シロップ2とした。
[Production Example 2]: Preparation of mixed syrup 2 In a reaction vessel equipped with a condenser, a thermometer, and a stirrer, 173.2 parts by weight of 2EHA as an ethylenically unsaturated monomer, and ADEKA (polyoxyethylene polyoxypropylene glycol) (Registered trademark) Pluronic L-62 (molecular weight 2500, ADEKA, polyether polyol) 100 parts by weight and 0.014 parts by weight of DBTL as a urethane reaction catalyst were added, and 12.4 parts by weight of HXDI was added dropwise while stirring. , Reacted at 65 ° C. for 4 hours. In addition, the usage-amount of the polyisocyanate component and the polyol component was NCO / OH (equivalent ratio) = 1.6. Thereafter, 5.6 parts by weight of HEA was added dropwise and reacted at 65 ° C. for 2 hours to obtain a hydrophilic polyurethane polymer / ethylenically unsaturated monomer mixed syrup having acryloyl groups at both ends. The weight average molecular weight of the obtained hydrophilic polyurethane polymer having acryloyl groups at both ends was 15,000. 27.3 parts by weight of 2EHA, n-butyl acrylate (manufactured by Toa Gosei Co., Ltd., hereinafter “100 parts by weight of a hydrophilic polyurethane polymer having an acryloyl group at both ends / ethylenically unsaturated monomer mixed syrup”) 51.8 parts by weight, 17.6 parts by weight of IBXA, and 10.5 parts by weight of AA as a polar monomer were added to obtain a hydrophilic polyurethane polymer / ethylenically unsaturated monomer mixed syrup 2.
〔実施例1〕
 製造例1で得られた親水性ポリウレタン系重合体/エチレン性不飽和モノマー混合シロップ1の100重量部に、1,6-ヘキサンジオールジアクリレートを15.9重量部、反応性オリゴマーとして、ポリテトラメチレングリコール(以下、「PTMG」と略す)とイソホロンジイソシアネート(以下、「IPDI」と略す)から合成されるポリウレタンの両末端がHEAで処理された、両末端にエチレン性不飽和基を有するウレタンアクリレート(以下、「UA」と略す)(分子量3720)を47.7重量部、ジフェニル(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド(BASF社製、商品名「ルシリンTPO」)0.48重量部、ヒンダードフェノール系酸化防止剤(チバ・ジャパン社製、商品名「イルガノックス1010」)0.95重量部、光安定剤(BASF社製、商品名;TINUVIN123)2重量部を均一混合し、連続油相成分(以下、「油相」と称する)とした。一方、上記油相100重量部に対して水相成分(以下、「水相」と称する)としてイオン交換水300重量部を常温下、上記油相を仕込んだ乳化機である攪拌混合機内に連続的に滴下供給し、安定なW/O型エマルションを調製した。なお、水相と油相の重量比は75/25であった。
 得られたW/O型エマルションを常温で1時間静置保存した後、光照射後の厚さが0.5mmとなるように離型処理された基材上に塗布し連続的に成形した。さらにその上に厚さ38μmの離型処理されたポリエチレンテレフタレート(PET)フィルムを被せた。このシートにブラックライト(15W/cm)を用いて光照度5mW/cm(ピーク感度最大波長350nmのトプコンUVR-T1で測定)の紫外線を照射し、厚さ0.5mmの高含水架橋重合体を得た。次に上面フィルムを剥離し、上記高含水架橋重合体を130℃にて20分間に亘って加熱することによって、厚さ0.5mmの発泡体を含む発泡拡散反射体(1)を得た。
 得られた発泡拡散反射体(1)を上記評価に供した。結果を表1に示した。
 また、得られた発泡拡散反射体(1)を斜めから撮影した表面/断面SEM写真の写真図を図5に示した。
[Example 1]
To 100 parts by weight of the hydrophilic polyurethane-based polymer / ethylenically unsaturated monomer mixed syrup 1 obtained in Production Example 1, 15.9 parts by weight of 1,6-hexanediol diacrylate, and as a reactive oligomer, polytetra Polyurethane synthesized from methylene glycol (hereinafter abbreviated as “PTMG”) and isophorone diisocyanate (hereinafter abbreviated as “IPDI”), both ends of which are treated with HEA, urethane acrylate having ethylenically unsaturated groups at both ends (Hereinafter abbreviated as “UA”) (molecular weight 3720) 47.7 parts by weight, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (manufactured by BASF, trade name “Lucirin TPO”) 0.48 parts by weight Part, hindered phenolic antioxidant (Ciba Japan, trade name “Irganox” 010 ") 0.95 parts by weight of a light stabilizer (BASF Corp., trade name; TINUVIN123) 2 parts by weight were uniformly mixed, continuous oil phase component (hereinafter, was referred to as) an" oil phase ". On the other hand, 300 parts by weight of ion-exchanged water as an aqueous phase component (hereinafter referred to as “aqueous phase”) with respect to 100 parts by weight of the oil phase is continuously introduced into a stirring mixer that is an emulsifier charged with the oil phase at room temperature. Were added dropwise to prepare a stable W / O emulsion. The weight ratio of the water phase to the oil phase was 75/25.
The obtained W / O emulsion was stored at room temperature for 1 hour, and then applied onto a substrate that had been subjected to a release treatment so that the thickness after light irradiation was 0.5 mm, and was continuously molded. Further, a 38 μm-thick polyethylene terephthalate (PET) film subjected to a release treatment was placed thereon. This sheet was irradiated with ultraviolet light having a light illuminance of 5 mW / cm 2 (measured with Topcon UVR-T1 having a peak sensitivity maximum wavelength of 350 nm) using black light (15 W / cm), and a highly water-containing crosslinked polymer having a thickness of 0.5 mm was obtained. Obtained. Next, the top film was peeled off, and the high water content crosslinked polymer was heated at 130 ° C. for 20 minutes to obtain a foamed diffuse reflector (1) containing a foam having a thickness of 0.5 mm.
The obtained foaming diffused reflection body (1) was used for the said evaluation. The results are shown in Table 1.
Moreover, the photograph figure of the surface / cross-section SEM photograph which image | photographed the obtained foaming diffused reflection body (1) from diagonally was shown in FIG.
〔実施例2〕
 実施例1で調製したW/O型エマルションを、アルミ蒸着されたPET基材(東レフィルム加工(株)製、メタルミー25S)のPET面側に、光照射後の厚さが0.135mmとなるように塗布した以外は、実施例1と同様の操作によって、総厚0.16mm(発泡体の厚み:0.135mm、PET基材(遮光層)の厚み:0.025mm)の発泡拡散反射体(2)を得た。
 得られた発泡拡散反射体(2)を上記評価に供した。結果を表1に示した。
[Example 2]
The W / O emulsion prepared in Example 1 is 0.135 mm in thickness after light irradiation on the PET surface side of an aluminum-deposited PET substrate (manufactured by Toray Film Processing Co., Ltd., Metal Me 25S). A foamed diffuse reflector having a total thickness of 0.16 mm (foam thickness: 0.135 mm, PET base material (light-shielding layer) thickness: 0.025 mm) by the same operation as in Example 1 except that the coating was performed as described above. (2) was obtained.
The obtained foaming diffused reflection body (2) was used for the said evaluation. The results are shown in Table 1.
〔実施例3〕
 製造例2で得られた親水性ポリウレタン系重合体/エチレン性不飽和モノマー混合シロップ1の100重量部に、1,6-ヘキサンジオールジアクリレート(新中村化学工業社製、商品名「NKエステルA-HD-N」)(分子量226)11.9重量部、反応性オリゴマーとして、PTMGとIPDIから合成されるポリウレタンの両末端がHEAで処理された、両末端にエチレン性不飽和基を有するUA(分子量3720)を47.7重量部、光開始剤として、ジフェニル(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド(BASF社製、商品名「ルシリンTPO」)0.48重量部、ヒンダードフェノール系酸化防止剤(チバ・ジャパン社製、商品名「イルガノックス1010」)0.95重量部、光安定剤(例として、BASF社製、商品名;TINUVIN123)2重量部を均一混合し、連続油相成分(以下、「油相」と称する)とした。一方、上記油相100重量部に対して水相成分(以下、「水相」と称する)としてイオン交換水300重量部を常温下、上記油相を仕込んだ乳化機である攪拌混合機内に連続的に滴下供給し、安定なW/O型エマルションを調製した。なお、水相と油相の重量比は75/25であった。
 調製から常温下で30分間静置保存したW/O型エマルションを、離型処理された厚さ38μmのポリエチレンテレフタレートフィルム上に、光照射後の発泡層の厚さが150μmとなるように塗布し、連続的にシート状に成形した。さらにその上に、延伸したポリエステル長繊維をタテヨコに整列させて積層させた厚さ50μmのポリエステル繊維積層布(JX日鉱日石ANCI社製、商品名「ミライフ(登録商標)TY0503FE」)を積層した。さらに、別途、調製から室温下で30分間静置保存したW/O型エマルションを、離型処理された厚さ38μmのPETフィルム上に、光照射後の発泡層の厚さが150μmとなるように塗布したものを用意し、塗布面を上記ポリエステル繊維積層布に被せた。このシートにブラックライト(15W/cm)を用いて光照度5mW/cm(ピーク感度最大波長350nmのトプコンUVR-T1で測定)の紫外線を照射し、厚さ310μmの高含水架橋重合体を得た。次に上面フィルムを剥離し、上記高含水架橋重合体を130℃にて10分間に亘って加熱することによって、総厚が約0.31mm(発泡体の厚み:0.13mm×2、中間基材の厚み:0.05mm)の発泡拡散反射体(3)を得た。
 得られた発泡拡散反射体(3)を上記評価に供した。結果を表1に示した。
Example 3
To 100 parts by weight of the hydrophilic polyurethane polymer / ethylenically unsaturated monomer mixed syrup 1 obtained in Production Example 2, 1,6-hexanediol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “NK Ester A” -HD-N ") (molecular weight 226) 11.9 parts by weight, as a reactive oligomer, both ends of polyurethane synthesized from PTMG and IPDI were treated with HEA, UA having ethylenically unsaturated groups at both ends 47.7 parts by weight (molecular weight 3720), 0.48 parts by weight of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (manufactured by BASF, trade name “Lucirin TPO”) as a photoinitiator, hindered 0.95 parts by weight of a phenolic antioxidant (Ciba Japan, trade name “Irganox 1010”), light stabilizer (as an example Manufactured by BASF, trade name; TINUVIN123) 2 parts by weight were uniformly mixed, continuous oil phase component (hereinafter, was referred to as) an "oil phase". On the other hand, 300 parts by weight of ion-exchanged water as an aqueous phase component (hereinafter referred to as “aqueous phase”) with respect to 100 parts by weight of the oil phase is continuously introduced into a stirring mixer that is an emulsifier charged with the oil phase at room temperature. Were added dropwise to prepare a stable W / O emulsion. The weight ratio of the water phase to the oil phase was 75/25.
The W / O emulsion, which was stored at room temperature for 30 minutes from the preparation, was applied on the release-treated polyethylene terephthalate film with a thickness of 38 μm so that the thickness of the foamed layer after light irradiation was 150 μm. The sheet was continuously formed into a sheet shape. Furthermore, a 50 μm thick polyester fiber laminated fabric (trade name “MILIFE (registered trademark) TY0503FE” manufactured by JX Nippon Mining & Chemicals, Inc., Inc.), in which stretched polyester long fibers are aligned and stacked vertically, was laminated. . Further, separately from the preparation, the W / O type emulsion, which was stored at room temperature for 30 minutes, was placed on a PET film having a thickness of 38 μm, and the foamed layer after light irradiation had a thickness of 150 μm. A coated material was prepared, and the coated surface was covered with the polyester fiber laminated fabric. This sheet was irradiated with ultraviolet light having a light illuminance of 5 mW / cm 2 (measured with Topcon UVR-T1 having a peak sensitivity maximum wavelength of 350 nm) using black light (15 W / cm) to obtain a highly hydrous crosslinked polymer having a thickness of 310 μm. . Next, the top film was peeled off, and the high water content crosslinked polymer was heated at 130 ° C. for 10 minutes, so that the total thickness was about 0.31 mm (foam thickness: 0.13 mm × 2, intermediate group). A foamed diffuse reflector (3) having a thickness of the material of 0.05 mm was obtained.
The obtained foaming diffused reflection body (3) was used for the said evaluation. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 なお、表1中、拡散反射率が100%を超えている実施例があるが、これは硫酸バリウム粉末の拡散反射率を100%として測定装置の調整を行ったことに起因するものと推測される。しかしながら、理論的に100%の拡散反射率を示す硫酸バリウム粉末を比較物質とした場合の拡散反射率の測定結果が100%を超えている実施例は、硫酸バリウム粉末と同等以上の拡散反射率を示しているものと考えられる。 In Table 1, there is an example in which the diffuse reflectance exceeds 100%, which is presumed to be caused by adjusting the measuring apparatus with the diffuse reflectance of the barium sulfate powder being 100%. The However, an example in which the measurement result of the diffuse reflectance when the barium sulfate powder that theoretically exhibits 100% diffuse reflectance is used as a comparative material exceeds 100% is equivalent to or higher than that of the barium sulfate powder. It is thought that it shows.
 本発明の発泡拡散反射体は、LED基板、液晶表示装置のバックライト装置、蛍光灯、白熱灯、自然光の採光ダクト装置などの照明器具などに備えられる拡散反射体として有用である。 The foamed diffuse reflector of the present invention is useful as a diffuse reflector provided in lighting fixtures such as LED substrates, backlight devices of liquid crystal display devices, fluorescent lamps, incandescent lamps, and natural light daylight duct devices.
100     発泡拡散反射体
10      発泡体
10a     発泡体
10b     発泡体
20      基材
30      剥離フィルム
 
100 Foam Diffuse Reflector 10 Foam 10a Foam 10b Foam 20 Base Material 30 Release Film

Claims (9)

  1.  隣接する球状気泡間に貫通孔を有する連続気泡構造を有する発泡体を含み、
     該発泡体が親水性ポリウレタン系重合体を含み、
     該球状気泡の平均孔径が20μm未満であり、
     該貫通孔の平均孔径が5μm以下であり、
     該発泡体の表面に平均孔径が20μm以下の表面開口部を有し、
     400nm~600nmの波長域における拡散反射率が90%以上である、
     発泡拡散反射体。
    Comprising a foam having an open cell structure with through-holes between adjacent spherical cells;
    The foam comprises a hydrophilic polyurethane polymer;
    The average pore size of the spherical bubbles is less than 20 μm,
    The average pore diameter of the through holes is 5 μm or less,
    The surface of the foam has a surface opening having an average pore diameter of 20 μm or less,
    The diffuse reflectance in the wavelength region of 400 nm to 600 nm is 90% or more.
    Foam diffuse reflector.
  2.  厚みが、0.1mm以上である、請求項1に記載の発泡拡散反射体。 The foaming diffused reflection body of Claim 1 whose thickness is 0.1 mm or more.
  3.  125℃で22時間保存したときの寸法変化率が、±5%未満である、請求項1または2に記載の発泡拡散反射体。 The foaming diffused reflector of Claim 1 or 2 whose dimensional change rate when preserve | saved at 125 degreeC for 22 hours is less than +/- 5%.
  4.  照度90mW/cmの紫外線を100時間照射した前後での波長550nmにおける反射率の低下が、10%未満である、請求項1から3のいずれかに記載の発泡拡散反射体。 The foaming diffused reflection body in any one of Claim 1 to 3 whose fall of the reflectance in wavelength 550nm before and behind irradiating the ultraviolet-ray with an illuminance of 90 mW / cm < 2 > for 100 hours is less than 10%.
  5.  前記発泡拡散反射体の反射面とは反対側の表面に、遮光層をさらに有する、請求項1から4のいずれかに記載の発泡拡散反射体。 The foamed diffuse reflector according to any one of claims 1 to 4, further comprising a light-shielding layer on a surface opposite to the reflective surface of the foamed diffuse reflector.
  6.  前記発泡拡散反射体の厚み方向に貫通する穴を有し、該厚み方向に貫通する穴の直径が20mm~60mmである、請求項1から5のいずれかに記載の発泡拡散反射体。 The foamed diffuse reflector according to any one of claims 1 to 5, which has a hole penetrating in the thickness direction of the foamed diffuse reflector, and a diameter of the hole penetrating in the thickness direction is 20 mm to 60 mm.
  7.  隣接する球状気泡間に貫通孔を有する連続気泡構造を有する発泡体を含む発泡拡散反射体を製造する方法であって、
     連続油相成分と該連続油相成分と不混和性の水相成分を含むW/O型エマルションを調製する工程(I)と、得られたW/O型エマルションを賦形する工程(II)と、賦形されたW/O型エマルションを重合する工程(III)と、得られた含水重合体を脱水する工程(IV)とを含み、
     該連続油相成分は、親水性ポリウレタン系重合体とエチレン性不飽和モノマーと架橋剤を含む、
     発泡拡散反射体の製造方法。
    A method for producing a foamed diffuse reflector comprising a foam having an open-cell structure having a through-hole between adjacent spherical cells,
    Step (I) for preparing a continuous oil phase component and a W / O emulsion containing an aqueous phase component immiscible with the continuous oil phase component, and a step (II) for shaping the obtained W / O emulsion And a step (III) of polymerizing the shaped W / O emulsion, and a step (IV) of dehydrating the obtained water-containing polymer,
    The continuous oil phase component includes a hydrophilic polyurethane polymer, an ethylenically unsaturated monomer, and a crosslinking agent.
    Method for producing foamed diffuse reflector.
  8.  前記架橋剤が、重量平均分子量が800以上である多官能(メタ)アクリレート、多官能(メタ)アクリルアミド、および重合反応性オリゴマーから選ばれる1種以上と、重量平均分子量が500以下である多官能(メタ)アクリレートおよび多官能(メタ)アクリルアミドから選ばれる1種以上を含む、請求項7に記載の発泡拡散反射体の製造方法。 The cross-linking agent is one or more selected from polyfunctional (meth) acrylates having a weight average molecular weight of 800 or more, polyfunctional (meth) acrylamides, and polymerization reactive oligomers, and polyfunctional having a weight average molecular weight of 500 or less. The manufacturing method of the foaming diffused reflection body of Claim 7 containing 1 or more types chosen from (meth) acrylate and polyfunctional (meth) acrylamide.
  9.  請求項7または8に記載の製造方法により得られた、発泡拡散反射体。 A foamed diffuse reflector obtained by the production method according to claim 7 or 8.
PCT/JP2013/051128 2012-01-24 2013-01-22 Foam diffuse reflector WO2013111717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012011910A JP2013152271A (en) 2012-01-24 2012-01-24 Foam diffuse reflector
JP2012-011910 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013111717A1 true WO2013111717A1 (en) 2013-08-01

Family

ID=48873437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051128 WO2013111717A1 (en) 2012-01-24 2013-01-22 Foam diffuse reflector

Country Status (3)

Country Link
JP (1) JP2013152271A (en)
TW (1) TW201335615A (en)
WO (1) WO2013111717A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205367A (en) * 2015-02-12 2017-09-26 飞利浦灯具控股公司 Aquarium illuminating
WO2022189187A1 (en) * 2021-03-11 2022-09-15 Signify Holding B.V. Illumination device, optical element and luminaire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215429A (en) * 2014-05-09 2015-12-03 株式会社明電舎 Led display device and manufacturing method of led display device
JP6266135B2 (en) * 2015-01-21 2018-01-24 古河電気工業株式会社 Lighting device
CN113437531B (en) * 2021-05-20 2022-07-12 西安电子科技大学 Super-miniature angle-insensitive metamaterial wave absorber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004921A (en) * 2001-06-26 2003-01-08 Sk Kaken Co Ltd Open type porous reflector
JP2003107626A (en) * 2001-09-27 2003-04-09 Konica Corp Processing member, image forming method and method for creating image information
JP2011118170A (en) * 2009-12-03 2011-06-16 Fujibo Holdings Inc Reflection suppressing sheet
WO2012029537A1 (en) * 2010-08-31 2012-03-08 日東電工株式会社 Foam, production method for foam, and functional foam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004921A (en) * 2001-06-26 2003-01-08 Sk Kaken Co Ltd Open type porous reflector
JP2003107626A (en) * 2001-09-27 2003-04-09 Konica Corp Processing member, image forming method and method for creating image information
JP2011118170A (en) * 2009-12-03 2011-06-16 Fujibo Holdings Inc Reflection suppressing sheet
WO2012029537A1 (en) * 2010-08-31 2012-03-08 日東電工株式会社 Foam, production method for foam, and functional foam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205367A (en) * 2015-02-12 2017-09-26 飞利浦灯具控股公司 Aquarium illuminating
CN107205367B (en) * 2015-02-12 2021-07-06 昕诺飞控股有限公司 Aquarium lighting
WO2022189187A1 (en) * 2021-03-11 2022-09-15 Signify Holding B.V. Illumination device, optical element and luminaire

Also Published As

Publication number Publication date
JP2013152271A (en) 2013-08-08
TW201335615A (en) 2013-09-01

Similar Documents

Publication Publication Date Title
JP5481324B2 (en) Foam adhesive
JP5642489B2 (en) Heat resistant low thermal conductive foam
WO2012026361A1 (en) Composite sheet
WO2013111717A1 (en) Foam diffuse reflector
JP2013124279A (en) Protection material
WO2013089094A1 (en) Non-slip material, and temporary fixing material
JP6027422B2 (en) Temporary fixing material
WO2013011882A1 (en) Foam sheet
JP5877656B2 (en) Foam sheet
JP5695863B2 (en) Method for producing foam
JP2013114137A (en) Foam body with print layer
WO2013089086A1 (en) Affixed material for display
JP2013147521A (en) Near-infrared light reflective material
JP2013112768A (en) Impact absorbing foam
WO2013081039A1 (en) Shock absorbing member
JP5749986B2 (en) Composite sheet
WO2013121907A1 (en) Foam diffuser-reflector
JP2012097250A (en) High airtight foam
JP5496024B2 (en) Foam diffuse reflector
JP2012082258A (en) Liquid-absorptive communicating porous body
JP5513309B2 (en) Foam sheet
JP2013144789A (en) Non-slip material
JP2012188610A (en) Foam sheet
JP2012082256A (en) Highly recoverable foam
JP2012056986A (en) Chemically resistant foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741217

Country of ref document: EP

Kind code of ref document: A1