WO2013111672A1 - Touch-panel-equipped liquid crystal display device - Google Patents

Touch-panel-equipped liquid crystal display device Download PDF

Info

Publication number
WO2013111672A1
WO2013111672A1 PCT/JP2013/050880 JP2013050880W WO2013111672A1 WO 2013111672 A1 WO2013111672 A1 WO 2013111672A1 JP 2013050880 W JP2013050880 W JP 2013050880W WO 2013111672 A1 WO2013111672 A1 WO 2013111672A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
liquid crystal
crystal display
range
resin
Prior art date
Application number
PCT/JP2013/050880
Other languages
French (fr)
Japanese (ja)
Inventor
啓史 別宮
梅田 博紀
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to CN201380006225.1A priority Critical patent/CN104220965B/en
Priority to JP2013555237A priority patent/JP5831559B2/en
Publication of WO2013111672A1 publication Critical patent/WO2013111672A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/503Arrangements improving the resistance to shock

Definitions

  • the present invention relates to a liquid crystal display device with a touch panel used for a mobile phone or a tablet. More specifically, the present invention relates to a liquid crystal display device with a touch panel that prevents scattering of glass substrates from cracking and prevents generation of ITO electrode cracks.
  • touch panels have been actively used as one of input means to these electronic devices.
  • touch panels There are various types of touch panels, and there is a capacitive touch panel module as a touch panel that is light transmissive and can be attached to the front surface of a liquid crystal display panel of an electronic device via an adhesive layer.
  • a plastic plate with high light transmittance has been used on the surface of the information display section of the portable terminal device from the viewpoint of making the displayed information easy to see and preventing damage even if dropped.
  • mobile terminal devices are required to be thinner and lighter, and there is a problem that the strength is insufficient when the plastic plate is made thinner.
  • a tempered glass substrate has recently been used on the surface of the information display unit.
  • PET film polyethylene terephthalate (PET) film that is inexpensive and has an anti-scattering effect is used as a glass anti-scattering film, but since PET film generally has low adhesion to the adhesive layer, in order to improve adhesion, A PET film with an easy adhesion layer provided with a thin film called an easy adhesion layer is used.
  • PET polyethylene terephthalate
  • the PET film may generate interference fringes due to the refractive index, and in order to improve this, a triacetyl cellulose film with an adhesive layer is bonded to the outermost surface of the glass substrate as a protective film, and the glass It has been studied to prevent scattering of the substrate (for example, see Patent Document 1).
  • an X electrode pattern extending in the X direction by a transparent conductive film and a Y electrode pattern extending in the Y direction by another transparent conductive film are formed on a transparent glass substrate. is there.
  • the X electrode pattern and the Y electrode pattern come into contact with each other by touching with a finger on the surface of the touch panel, and a change in electrostatic capacitance at the position is detected by the X electrode pattern and the Y electrode pattern.
  • the transparent conductive film generally uses ITO (tin-doped indium oxide) as an electrode.
  • the capacitive touch panel module having such a pair of transparent conductive films and having a touch surface made of a glass surface protects the electrode pattern because the ITO electrode pattern is vulnerable to impact.
  • another glass substrate is laminated.
  • the capacitive touch panel module disclosed in Patent Document 2 includes a pair of transparent conductive films in directions orthogonal to each other and a glass substrate. Although it is a touch surface, only one glass substrate is used. Therefore, although there is an advantage that the whole is thin, there is a problem that only one glass substrate is used, and cracks are generated in the ITO electrode pattern due to the force applied during the manufacturing process.
  • the present invention has been made in view of the above-mentioned problems and situations, and its solution is to provide a liquid crystal display device with a touch panel that has a glass scattering prevention function against cracks in the glass substrate and further prevents cracks in the ITO electrodes. Is to provide.
  • the touch panel module is a pair of transparent conductive films formed in a lattice pattern on the outermost glass substrate and glass scattering on the upper surface.
  • the generation of cracks in the ITO electrode was prevented by having a prevention film, and the direction of the maximum elastic modulus of the glass scattering prevention film being oblique to the direction of formation of the transparent conductive film.
  • a liquid crystal display device with a touch panel having a touch panel module and a liquid crystal display panel wherein the touch panel module is an outermost glass substrate and a pair of transparent conductive films formed in a lattice shape in the X direction and the Y direction perpendicular thereto And a glass scattering prevention film on the upper surface thereof, and the direction of the maximum elastic modulus of the glass scattering prevention film is oblique to the X direction or the Y direction of the pair of transparent conductive films formed in the lattice shape
  • a liquid crystal display device with a touch panel is an outermost glass substrate and a pair of transparent conductive films formed in a lattice shape in the X direction and the Y direction perpendicular thereto And a glass scattering prevention film on the upper surface thereof, and the direction of the maximum elastic modulus of the glass scattering prevention film is oblique to the X direction or the Y direction of the pair of transparent conductive films formed in the lattice shape
  • the liquid crystal display device with a touch panel as set forth in claim 1, wherein the liquid crystal display device is in an oblique direction at an angle in a range of 70 ° or in a range of 110 to 160 °.
  • the in-plane retardation value Ro of the glass scattering prevention film is within a range of 0 to 100 nm in a measurement at a light wavelength of 590 nm under an environment of a temperature of 23 ° C. and a relative humidity of 55% RH.
  • the liquid crystal display device with a touch panel as described in any one of Claim 3 to 3.
  • the in-plane retardation value Ro of the glass scattering prevention film is in the range of 105 to 160 nm when measured at a light wavelength of 590 nm in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH.
  • the phase axis is an oblique direction at an angle in the range of 20 to 70 ° or in the range of 110 to 160 ° with respect to the absorption axis of the polarizing plate of the liquid crystal display panel.
  • a liquid crystal display device with a touch panel according to any one of items 1 to 3.
  • liquid crystal display device with a touch panel according to any one of claims 1 to 5, wherein the glass scattering prevention film is a cellulose ester film.
  • liquid crystal display device with a touch panel according to item 6, wherein the cellulose ester film contains cellulose diacetate having an acetyl group substitution degree in the range of 2.0 to 2.5.
  • a feature of the liquid crystal display device with a touch panel according to the present invention is a liquid crystal display device with a touch panel having a touch panel module and a liquid crystal display panel, and the touch panel module is placed on the outermost glass substrate in the X direction and Y orthogonal thereto. It has a pair of transparent conductive films formed in a lattice shape in the direction and a glass scattering prevention film on the upper surface thereof, and the direction of the maximum elastic modulus of the glass scattering prevention film is the X direction or Y direction in which the transparent conductive film is formed.
  • the various forces received by the ITO electrode during the manufacturing process can be dispersed and relaxed as if they were oblique, so that various glass substrates and transparent conductive films can be used. It is presumed that the generation of cracks in the ITO electrode can be effectively prevented by protecting from excessive force.
  • the liquid crystal display device with a touch panel is a liquid crystal display device with a touch panel having a touch panel module and a liquid crystal display panel, and the touch panel module is latticed in the outermost glass substrate and in the X direction and the Y direction perpendicular thereto.
  • a pair of transparent conductive films formed in a shape and a glass scattering prevention film on the upper surface thereof, and the direction of the maximum elastic modulus of the glass scattering prevention film is the X direction or Y direction in which the transparent conductive film is formed. It is characterized by being oblique to the direction.
  • the maximum elastic modulus direction of the glass scattering prevention film is set to 0 ° in the X direction or the Y direction of the pair of transparent conductive films formed in the lattice shape
  • an oblique direction with an angle in the range of 20 to 70 ° or 110 to 160 ° with respect to the forming direction is preferable.
  • the glass scattering prevention film having a hard coat layer containing an acrylic resin increases the strength of the film itself and further improves the effect of the present invention. can do.
  • the in-plane retardation value Ro of the glass scattering prevention film was in the range of 0 to 100 nm when measured at a light wavelength of 590 nm under an environment of a temperature of 23 ° C. and a relative humidity of 55% RH, the display was observed with the naked eye. This is preferable because the visibility at the time is improved.
  • the in-plane retardation value Ro of the glass scattering prevention film is in the range of 105 to 160 nm when measured at a light wavelength of 590 nm in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH.
  • the phase axis is arranged in an oblique direction at an angle in the range of 20 to 70 °, or in the range of 110 to 160 ° with respect to the absorption axis of the polarizing plate of the liquid crystal display panel, display is performed with polarized sunglasses. The visibility when looking at can be greatly improved.
  • This is a combination with a polarizing plate mounted on a liquid crystal display panel by giving a retardation value in the above range to the glass scattering prevention film according to the present invention and arranging it in an oblique direction with respect to the absorption axis of the polarizing plate. It becomes a circularly polarizing plate, and the visibility when wearing polarized sunglasses is improved.
  • the glass scattering prevention film of the touch panel module is preferably a cellulose ester film, and among them, the cellulose acetate having a degree of acetyl group substitution in the range of 2.0 to 2.5 imparts the retardation. This is also preferable from the viewpoint of improving visibility.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • FIG. 1 is a schematic diagram of a liquid crystal display device with a touch panel according to the present invention.
  • the touch panel module includes a glass substrate 1 from the surface side, a first electrode pattern 2 on one surface of the glass substrate, and a transparent formed on the surface so as to cover the first electrode pattern 2
  • An insulating film 3 a second electrode pattern 4 formed on the insulating film, arranged in the Y direction perpendicular to the X direction, which is the direction in which the first electrode pattern 2 extends, and the second electrode pattern 4 It has a pair of lattice-like transparent conductive films composed of a protective film 3 made of a transparent insulating film formed on the surface so as to cover.
  • the surface of the glass substrate is a touch surface.
  • FIG. 2 is a schematic diagram showing the relationship between the formation direction of the lattice-like transparent conductive film according to the present invention and the direction of the maximum elastic modulus of the glass scattering prevention film.
  • the glass scattering prevention film 6 according to the present invention is bonded to the transparent conductive film to constitute a touch panel module T.
  • the direction 12 of the maximum elastic modulus of the glass scattering prevention film 6 according to the present invention is oblique with respect to one formation direction (11 or 12) in the X direction or the Y direction of the pair of transparent conductive films formed in the lattice shape. It is the feature that it is a direction.
  • the “oblique direction” refers to a state where the transparent conductive film does not have an angle in the same direction with respect to one formation direction (11 or 12).
  • the direction 12 of the maximum elastic modulus of the glass scattering prevention film 6 is set to 0 ° in one of the X-direction or Y-direction (11 or 12) of the pair of transparent conductive films formed in the lattice shape.
  • the touch panel module T is constituted by being bonded to the transparent conductive film obliquely at an angle within a range of 20 to 70 ° or 110 to 160 ° with respect to the forming direction.
  • Bonding in an oblique direction at an angle within the above range is preferable because the glass scattering prevention effect and the ITO electrode cracking prevention effect are significantly improved.
  • the angle is preferably in the range of 35 to 60 °, or in the range of 125 to 150 °, from the viewpoint of enhancing the effect of crossing, particularly preferably 40 to 50 °.
  • the touch panel module T is bonded to the liquid crystal display panel 9 through the adhesive layer 8.
  • the glass scattering prevention film 6 is obtained.
  • the basic structure of the liquid crystal display device with a touch panel of the present invention is such that a glass substrate, a transparent conductive film, a glass scattering prevention film, an adhesive layer, and a liquid crystal display panel are bonded from the surface side. Yes.
  • the thickness of the glass scattering prevention film according to the present invention is 10 to 10 in terms of prevention of scattering, weight reduction, and thinning. It is preferably within the range of 60 ⁇ m. More preferably, it is in the range of 20 to 50 ⁇ m.
  • the glass substrate which concerns on this invention consists of a sheet
  • if it is a glass substrate for flat panels, it will not specifically limit, Optical synthetic quartz glass, tempered glass, etc. are used.
  • sheet resin sheets such as polyethylene terephthalate (PET) resin, polycarbonate resin (PC) and other engineering plastic resins, or cyclic olefin-based resins such as norbornene have been used from the viewpoint of weight reduction.
  • PET polyethylene terephthalate
  • PC polycarbonate resin
  • cyclic olefin-based resins such as norbornene
  • the transparent conductive film main body is of an electrostatic capacity type, and includes a first electrode pattern and a second electrode pattern formed on the substrate surface, and a transparent insulating film disposed between these electrode patterns.
  • the transparent insulating film is not particularly limited, and for example, SiO 2 is used.
  • the first electrode pattern and the second electrode pattern are made of a transparent conductive material such as ITO (indium-tin oxide) or IZO (indium-zinc oxide), or a thin metal wire.
  • ITO indium-tin oxide
  • IZO indium-zinc oxide
  • thin metal wire a transparent conductive material such as ITO (indium-tin oxide) or IZO (indium-zinc oxide)
  • ITO is used from the viewpoint of conductivity and transparency.
  • the first electrode pattern is formed by arranging conductive patterns extending in the horizontal direction (X direction), and the second electrode pattern layer is formed by arranging electrode patterns extending in the vertical direction (Y direction), for example.
  • the conductive film can be provided by a method in which the substrate is masked in an electrode pattern shape and formed by an alkali etching process, or by performing predetermined laser irradiation on the substrate and continuously patterning the conductive film.
  • a take-out electrode (not shown) is arranged at the ends of the first electrode pattern and the second electrode pattern.
  • the second electrode pattern comes into contact with the first electrode pattern on the glass substrate.
  • the pressed position is detected by electrically detecting this contact through an extraction electrode at the end.
  • a dot-shaped spacer may be arrange
  • liquid crystal display panel As the liquid crystal display panel, a reflection type, a transmission type, a transflective type liquid crystal display device, or a liquid crystal display device of various driving methods such as a TN type, STN type, OCB type, VA type, IPS type, ECB type, etc. is preferably used. .
  • a polarizing plate (not shown) is bonded to the surface of the liquid crystal cell on the surface of the liquid crystal display panel.
  • the polarizing plate is composed of a polarizing film and a polarizing plate protective film that protects it.
  • the main component, a polarizing film is an element that allows only light in a plane of polarization in a certain direction to pass.
  • a typical polarizing film currently known is a polyvinyl alcohol-based polarizing film, which is a polyvinyl alcohol-based film.
  • the polarizing film is formed by forming a polyvinyl alcohol aqueous solution and uniaxially stretching it and dyeing or dyeing and then uniaxially stretching, and then preferably performing a durability treatment with a boron compound.
  • the protective film is not particularly limited as long as it is a resin film, but a cellulose triacetate film is generally used from the viewpoint of productivity such as optical properties and bonding properties by saponification treatment.
  • Commercially available polarizing plate protective films preferably used include KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC4FRK, Konica Minolta Advanced Layer Co., Ltd.).
  • the glass scattering prevention film according to the present invention is a ⁇ / 4 plate whose in-plane retardation value Ro is in the range of 105 to 160 nm in the measurement at a light wavelength of 590 nm under the environment of a temperature of 23 ° C. and a relative humidity of 55% RH.
  • the angle of the slow axis in the plane of the glass scattering prevention film is preferably in the range of 20 to 70 ° or in the range of 110 to 160 ° with respect to the direction of the absorption axis of the polarizing plate.
  • the polarizing plate functions as a circularly polarizing plate.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer 5 and the pressure-sensitive adhesive layer 8 contains a thermosetting resin or an ultraviolet (UV) curable resin, and exhibits moderate viscoelasticity and pressure-sensitive adhesive properties as well as being optically transparent. Is preferred.
  • Specific adhesives include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethanes, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, synthetic rubbers, etc. Can be mentioned.
  • the adhesive is a film formed and cured by a thermosetting method, a photocuring method, or the like, and among them, an acrylic copolymer and an epoxy resin are most easily controlled in adhesive property and are transparent. It is excellent in properties, weather resistance, durability and the like, and can be preferably used.
  • the thickness of the pressure-sensitive adhesive layer is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 5 to 50 ⁇ m, and particularly preferably in the range of 5 to 30 ⁇ m.
  • the adhesive When coating, the adhesive generally has a viscosity at 25 ° C. in the range of 1000 to 6000 mPa ⁇ sec, preferably in the range of 2000 to 4000 mPa ⁇ sec, for example in the range of 3000 to 4000 mPa ⁇ sec.
  • the viscosity is, for example, a value read by using a B-type viscometer BH II manufactured by Tokimec (Tokyo Keiki) and rotating the rotor for 30 seconds after standing.
  • the Young's modulus (E) of the adhesive resin after being completely cured is preferably in the range of 1 to 100 MPa, for example, in the range of 5 to 20 MPa.
  • the storage elastic modulus of the pressure-sensitive adhesive is preferably in the range of 1.0 ⁇ 10 4 to 1.0 ⁇ 10 8 Pa, and 1.5 ⁇ 10 5 to 1.0 ⁇ 10. More preferably, it is in the range of 7 Pa.
  • the storage elastic modulus of the adhesive is 1.0 ⁇ 10 4 Pa or more, sufficient cutting processability and high pencil hardness are obtained, and when it is 1.0 ⁇ 10 8 Pa or less, sufficient adhesive strength is obtained.
  • the storage elastic modulus of the adhesive layer was measured by forming an adhesive layer molding composition on a polyethylene terephthalate film support, then peeling it off, and using this adhesive layer, a dynamic viscoelasticity measuring device (manufactured by Rheometric Co., Ltd.).
  • the storage elastic modulus at 0 ° C. is measured in the temperature rising mode (temperature rising rate 5 ° C./min, frequency 10 Hz) by “ARES”).
  • Acrylic adhesives include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, (meth) acrylic 1 or 2 or more kinds of alkyl esters of 1 to 20 carbon atoms, such as 2-ethylbutyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, decyl (meth) acrylate, and the alkyl acrylate Copolymerization with functional monomers such as (meth) acrylic acid, itaconic acid, maleic acid, maleic anhydride, 2-hydroxyethyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate that can be copolymerized with esters
  • isocyanate crosslinker epoxy crosslinker, aziridine crosslinker, metal
  • the epoxy resin adhesive examples include a resin composition obtained by modifying an ultraviolet light curable epoxy resin with a silicone elastomer and adding precipitated silica as an inorganic filler.
  • a resin composition obtained by modifying an ultraviolet light curable epoxy resin with a silicone elastomer and adding precipitated silica as an inorganic filler For example, “NORLANDD optical adhesion” by Edmund Optics is available. Agent NOA68 "or" Super Elastic Resin "manufactured by Sony Chemical & Information Device Corporation can be used.
  • a photopolymerization initiator In order to accelerate photocuring of the pressure-sensitive adhesive, it is preferable to further contain a photopolymerization initiator.
  • the photopolymerization initiator examples include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. It is not a thing.
  • Commercially available products may be used, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
  • the adhesive layer As a method for providing the adhesive layer, it is preferable to provide the above-mentioned adhesive-containing composition by coating, for example, bar coating method, knife coating method, roll coating method, blade coating method, die coating method, gravure coating method, curtain coating method.
  • coating for example, bar coating method, knife coating method, roll coating method, blade coating method, die coating method, gravure coating method, curtain coating method.
  • Conventionally known methods such as
  • thermosetting it is preferable to apply heating at 80 ° C. or higher in a dryer, and the heating time is appropriately set.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually in the range of 50 to 1000 mJ / cm 2 , preferably in the range of 50 to 300 mJ / cm 2 .
  • the heat treatment temperature after UV curing is preferably 80 ° C. or higher.
  • the glass scattering prevention film according to the present invention preferably has a refractive index in the range of 1.45 to 1.55 at a light wavelength of 589 nm measured according to JIS K7142-2008.
  • the refractive index of the adhesive layer is preferably in the range of 1.40 to 1.55, more preferably in the range of 1.45 to 1.52.
  • the refractive index of the adhesive layer can be adjusted by, for example, a method of increasing the refractive index by containing an aromatic ring or a method of decreasing the refractive index by containing a fluorine atom.
  • a release sheet is laminated on the surface until the adhesive layer is provided on the glass scattering prevention film of the touch panel module and then bonded to the liquid crystal display panel.
  • release sheet is typically composed of a base sheet having peelability on the surface.
  • the base sheet include films such as polyester resin, polyethylene resin, polypropylene resin, polystyrene resin, and polycarbonate resin, films in which fillers such as fillers are blended with these films, and synthetic paper.
  • paper base materials such as glassine paper, clay coat paper, and quality paper, are mentioned.
  • a release agent such as a thermosetting silicone resin or an ultraviolet curable silicone resin is attached to the surface by coating or the like.
  • the coating amount of the release agent is preferably in the range of 0.03 to 3.0 g / m 2 .
  • the release sheet is laminated with the surface having the release agent in contact with the adhesive layer.
  • the elastic modulus of the glass scattering prevention film was measured by conditioning the sample for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH, and following the method described in JIS K7127 The elastic modulus is obtained using Tensilon RTA-100.
  • the shape of the test piece is No. 1 test piece, the test speed is 10 mm / min, and the maximum elastic modulus is the maximum elastic modulus obtained by measuring from 0 ° to 15 ° in any direction. And that direction is the direction of the maximum elastic modulus.
  • the maximum elastic modulus of the glass scattering prevention film used in the liquid crystal display device with a touch panel of the present invention is preferably 2000 MPa or more, preferably in the range of 3000 to 8000 MPa, and more preferably in the range of 3500 to 7000 MPa.
  • the maximum elastic modulus is 2000 MPa or more, either or both of the glass scattering prevention effect and the ITO electrode cracking prevention effect are sufficient. If it is in the range of 2000 to 8000 MPa, the glass scattering prevention effect and the ITO electrode cracking prevention effect can be achieved sufficiently.
  • the maximum elastic modulus in the above preferred range to the glass scattering prevention film it can be achieved by uniformly orienting the molecules of the resin used in one direction. Although it does not restrict
  • the direction of the maximum elastic modulus coincides with the direction of the stretching treatment.
  • thermoplastic resin As the scattering prevention film according to the present invention, it is preferable to use a thermoplastic resin from the viewpoints of transparency and moldability. Detailed description will be given below.
  • thermoplastic resin refers to a resin that becomes soft when heated to the glass transition temperature or the melting point and can be molded into a desired shape.
  • thermoplastic resins include cellulose ester resin, polyethylene (PE resin), high density polyethylene resin, medium density polyethylene resin, low density polyethylene resin, polypropylene (PP) resin, polyvinyl chloride (PVC). Resin, polyvinylidene chloride resin, polystyrene (PS) resin, polyvinyl acetate (PVAc) resin, Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene resin), AS resin, acrylic resin ( PMMA) or the like can be used.
  • PE resin polyethylene
  • PVC polypropylene
  • PVC polyvinyl chloride
  • Resin polyvinylidene chloride resin
  • PS polystyrene
  • PVAc polyvinyl acetate
  • Teflon registered trademark
  • AS resin acrylic resin
  • acrylic resin PMMA
  • PA polyamide
  • nylon nylon
  • polyacetal (POM) resin polycarbonate (PC) resin
  • poly Butylene terephthalate (PBT) resin polyethylene terephthalate (PET) resin
  • glass fiber reinforced polyethylene terephthalate (GF-PET) resin cyclic polyolefin (COP) resin, and the like
  • PA polyamide
  • nylon polyacetal
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PBT poly Butylene terephthalate
  • PET polyethylene terephthalate
  • GF-PET glass fiber reinforced polyethylene terephthalate
  • COP cyclic polyolefin
  • polyphenylene sulfide (PPS) resin polytetrafluoroethylene (PTFE) resin, polysulfone resin, polyether sulfone resin, amorphous polyarylate resin, liquid crystal A polymer, polyetheretherketone resin, thermoplastic polyimide (PI) resin, polyamideimide (PAI) resin, or the like can be used.
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • PI thermoplastic polyimide
  • PAI polyamideimide
  • the thermoplastic resin is preferably a resin selected from a polycarbonate resin, an acrylic resin, a polyolefin resin, and a cellulose ester resin.
  • a film using a cellulose ester resin is preferable from the viewpoint of transparency, optical properties, and productivity.
  • Polycarbonate resin In the present invention, various known polycarbonate resins can be used. In the present invention, it is particularly preferable to use an aromatic polycarbonate. There is no restriction
  • a polymer material collectively referred to as polycarbonate is a generic term for a polymer material in which a polycondensation reaction is used in its synthesis method and the main chain is linked by a carbonic acid bond.
  • Phosgene, diphenyl carbonate and the like obtained by polycondensation.
  • an aromatic polycarbonate represented by a repeating unit having 2,2-bis (4-hydroxyphenyl) propane called bisphenol-A as a bisphenol component is preferably selected.
  • bisphenol derivatives should be selected as appropriate.
  • an aromatic polycarbonate copolymer can be constituted.
  • bisphenol-A bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) -2-phenyl Ethane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) sulfide, bis ( 4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) -3,3,5-to It can be exemplified methyl cyclohexane.
  • aromatic polyester carbonate partially containing terephthalic acid and / or isophthalic acid components.
  • a structural unit as a part of the structural component of the aromatic polycarbonate composed of bisphenol-A, the properties of the aromatic polycarbonate, such as heat resistance and solubility, can be improved.
  • the present invention is also effective for coalescence.
  • the viscosity average molecular weight of the aromatic polycarbonate used here is preferably 10,000 to 200,000.
  • a viscosity average molecular weight of 20,000 to 120,000 is particularly preferred.
  • the viscosity average molecular weight is in the range of 10,000 to 200,000, the resulting film has sufficient mechanical strength, and the viscosity of the dope does not increase so much that the handleability is good.
  • the viscosity average molecular weight can be measured by commercially available high performance liquid chromatography.
  • the glass transition temperature of the aromatic polycarbonate is preferably 200 ° C. or higher for obtaining a highly heat-resistant film, more preferably 230 ° C. or higher. These can be obtained by appropriately selecting the copolymerization component.
  • the glass transition temperature can be measured with a DSC apparatus (differential scanning calorimetry apparatus), for example, a baseline determined by SII NanoTechnology Co., Ltd .: RDC220 under a temperature rising condition of 10 ° C./min. Is the temperature at which it begins to deviate.
  • the solvent used in the dope composition containing the aromatic polycarbonate is preferably a mixed solvent containing 4 to 14 parts by mass of methylene chloride and a linear or branched aliphatic alcohol having 1 to 6 carbon atoms.
  • the mixing amount of the linear or branched aliphatic alcohol having 1 to 6 carbon atoms is preferably 4 to 12 parts by mass.
  • the type of alcohol added is limited by the solvent used. It is a necessary condition that the alcohol and the solvent are compatible. These may be added alone or in combination of two or more.
  • a linear or branched aliphatic alcohol having 1 to 6, preferably 1 to 4, more preferably 2 to 4 carbon atoms is preferable. Specific examples include methanol, ethanol, isopropanol, and tert-butanol.
  • the solvent in the dope composition is mainly composed of the above methylene chloride and aliphatic alcohol, but other solvents can also be used.
  • the remaining solvent is not particularly limited as long as it dissolves the aromatic polycarbonate at a high concentration and is compatible with alcohol, and further has a low boiling point.
  • halogen solvents such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 1,3-dioxolane, 1, Examples include cyclic ether solvents such as 4-dioxane and tetrahydrofuran, and ketone solvents such as cyclohexanone.
  • the dope composition may be prepared by any method as long as a transparent solution having a low haze is obtained as a result.
  • a predetermined amount of alcohol may be added to an aromatic polycarbonate solution previously dissolved in a solvent, or the aromatic polycarbonate may be dissolved in a mixed solvent containing alcohol.
  • alcohol is a poor solvent, the method of adding after the former may cause clouding of the dope due to the precipitation of the polymer. Therefore, the method of dissolving in the latter mixed solvent is preferable.
  • the acrylic resin that can be used in the present invention includes a methacrylic resin.
  • the resin is not particularly limited, but a resin having a range of 50 to 99% by mass of methyl methacrylate units and a range of 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the acrylic resin preferably has a weight average molecular weight (Mw) in the range of 80,000 to 1,000,000 from the viewpoint of mechanical strength as a film and fluidity when the film is produced. With this molecular weight, both heat resistance and brittleness can be achieved.
  • Mw weight average molecular weight
  • the weight average molecular weight of a resin such as an acrylic resin can be measured by gel permeation chromatography.
  • the measurement conditions are as follows.
  • the method for producing the acrylic resin is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be in the range of 30 to 100 ° C. for suspension or emulsion polymerization, and in the range of 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • acrylic resins can also be used.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
  • Polyolefin resin In the present invention, it is also preferable to use a polyethylene resin or the following cyclic olefin resin.
  • cyclic olefin resin examples include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof.
  • norbornene-based resins can be suitably used because of their good transparency and moldability.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure.
  • Examples thereof include addition polymers of monomers having a monomer, addition copolymers of monomers having a norbornene structure and other monomers, and hydrides thereof.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
  • bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group.
  • these substituents may be the same or different and a plurality may be bonded to the ring.
  • Monomers having a norbornene structure can be used singly or in combination of two or more.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxy group, a carbonyloxycarbonyl group, an epoxy group, a hydroxy group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
  • monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, cyclic conjugated dienes such as cyclohexadiene, cycloheptadiene, and the like. And derivatives thereof.
  • a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
  • ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene.
  • ⁇ -olefin is preferable, and ethylene is more preferable.
  • An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
  • a known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.12,5] decane-7, 9-diyl-ethylene structure
  • the content of these repeating units is 90% by mass or more with respect to the entire repeating units of the norbornene resin
  • the content ratio of X and the content ratio of Y The ratio is preferably in the range of 100: 0 to 40:60 by mass ratio of X: Y.
  • the molecular weight of the cyclic olefin resin used in the present invention is appropriately selected according to the purpose of use.
  • the polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane as the solvent (toluene when the polymer resin does not dissolve) is usually in the range of 20000 to 150,000.
  • the range is preferably 25,000 to 100,000, more preferably 30,000 to 80,000.
  • the weight average molecular weight is in such a range, the mechanical strength and molding processability of the film are highly balanced and suitable.
  • the glass transition temperature of the cyclic olefin resin may be appropriately selected according to the purpose of use. From the viewpoint of durability and stretch processability, it is preferably in the range of 130 to 160 ° C, more preferably in the range of 135 to 150 ° C.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin resin is in the range of 1.2 to 3.5, preferably 1.5 to 3 in terms of relaxation time, productivity, and the like. Is in the range of 0.0, more preferably in the range of 1.8 to 2.7.
  • the cyclic olefin resin used in the present invention preferably has an absolute value of photoelastic coefficient of 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and more preferably 4 ⁇ 10 12 It is particularly preferably ⁇ 12 Pa ⁇ 1 or less.
  • the method for producing the glass scattering prevention film according to the present invention using the above preferred thermoplastic resin is not particularly limited, and a cellulose ester film production method (solution casting method or melt flow) described below is used. It can be carried out in the same manner as in the elongation method.
  • the glass scattering prevention film according to the present invention is preferably a film containing a cellulose ester resin, that is, a cellulose ester film from the viewpoints of transparency, optical properties, productivity, and processability.
  • the cellulose ester resin that can be used is at least one selected from cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate. Preferably there is.
  • particularly preferable cellulose ester resins include cellulose (di, tri) acetate, cellulose acetate propionate and cellulose acetate butyrate.
  • the cellulose triacetate preferably has an acetyl group substitution degree in the range of 2.6 to 2.95, and more preferably cellulose triacetate with an acetyl group substitution degree in the range of 2.8 to 2.9.
  • Cellulose diacetate having an acetyl group substitution degree in the range of 2.0 to 2.5 has high stretchability and is preferably used.
  • Commercially available products include L20, L30, L40, and L50 manufactured by Daicel Corporation, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd. .
  • Mixed lower fatty acid esters such as cellulose acetate propionate and cellulose acetate butyrate have an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution of propionyl group or butyryl group When the degree is Y, a cellulose resin containing a cellulose ester that simultaneously satisfies the following formulas (I) and (II) is preferable.
  • cellulose acetate propionate is preferably used.
  • 1.9 ⁇ X ⁇ 2.5 is satisfied, and 0.1 ⁇ Y ⁇ 0.9 is preferably satisfied.
  • the portion not substituted with the acyl group is usually present as a hydroxy group. These can be synthesized by known methods. The method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • the cellulose ester used in the present invention has a number average molecular weight (Mn) of 60000 or more and less than 180000, a ratio of weight average molecular weight (Mw) / number average molecular weight (Mn), and Mw / Mn of 1.5 to 5. 5 is preferably used, particularly preferably in the range of 2.0 to 5.0, more preferably in the range of 2.5 to 5.0, and still more preferably in the range of 3.0 to 5.0. The cellulose ester in the range is preferably used.
  • the number average molecular weight (Mn) and molecular weight distribution (Mw) of cellulose ester can be measured using high performance liquid chromatography.
  • the measurement conditions are as follows.
  • the raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable.
  • a cotton linter is preferably used from the viewpoint of peelability during film formation.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
  • cellulose ester resin 1 g is added to 20 ml of pure water (electric conductivity 0.1 ⁇ S / cm or less, pH 6.8), and the pH is 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr.
  • the electric conductivity is in the range of 1 to 100 ⁇ S / cm.
  • a plasticizer in combination with the cellulose ester film in order to improve the fluidity and flexibility of the composition and to increase the elastic modulus by stretching.
  • plasticizer examples include phthalate esters, fatty acid esters, trimellitic esters, phosphate esters, polyesters, sugar esters, acrylic polymers, and the like. Of these, polyester, sugar ester and acrylic polymer plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use.
  • the acrylic polymer is preferably a homopolymer or copolymer of acrylic acid or methacrylic acid alkyl ester.
  • acrylate monomer examples include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic Acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), acrylic acid (2-methoxyethyl), acrylic acid 2-ethoxyethyl), etc., or
  • the acrylic polymer is a homopolymer or copolymer of the above-mentioned monomers, but the acrylic acid methyl ester monomer unit preferably has 30% by mass or more, and the methacrylic acid methyl ester monomer unit has 40% by mass or more. preferable. In particular, a homopolymer of methyl acrylate or methyl methacrylate is preferred.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • the polyester plasticizer is preferably an aromatic terminal ester plasticizer.
  • the aromatic terminal ester plasticizer is preferably an ester compound having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid and at least one alkylene glycol having 2 to 12 carbon atoms. As long as it has an adipic acid residue and a phthalic acid residue as the structure of such a compound, when an ester compound is produced, it may be reacted as an acid anhydride or esterified product of dicarboxylic acid.
  • benzene monocarboxylic acid component examples include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can each be used as a 1 type, or 2 or more types of mixture.
  • alkylene glycol component having 2 to 12 carbon atoms examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1 , 3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentane Diol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-
  • the aromatic terminal ester plasticizer may be either an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000.
  • the acid value is 1.5 mgKOH / g or less, the hydroxy (hydroxyl group) value is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxy (hydroxyl group) value is 15 mgKOH / g or less.
  • the sugar ester compound is an ester other than a cellulose ester, and is a compound obtained by esterifying all or part of the OH group of a sugar such as the following monosaccharide, disaccharide, trisaccharide or oligosaccharide. Specific examples include a compound represented by the general formula (1).
  • R 1 ⁇ R 8 is a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms, R 1 ⁇ R 8 may be the same or different.
  • the compounds represented by the general formula (1) are shown below in more detail (compound 1-1 to compound 1-23), but are not limited thereto. In the table below, when the average degree of substitution is less than 8.0, any of R 1 to R 8 represents a hydrogen atom.
  • plasticizers are preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the cellulose ester film.
  • Phase difference adjusting agent In order to adjust the retardation of the cellulose ester film, for example, the compounds represented by the general formulas (I) to (IV) described in JP-A No. 2003-344655 and the general formula described in JP-A No. 2005-134484 are used. A retardation increasing agent such as a compound represented by the formula (IV) or a compound described in [Chemical Formula 1] to [Chemical Formula 11] of JP-A No. 2004-109657 may also be used. By using these phase difference adjusting agents, a desired phase difference can be obtained even under relatively gentle stretching conditions, and failures such as breakage can be reduced.
  • the retardation adjusting agent is preferably added in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 5% by mass, and further in the range of 1 to 5% by mass. It is preferable to do. Two or more of these may be used in combination.
  • the cellulose ester film also preferably contains an antioxidant.
  • Preferred antioxidants are phosphorous or phenolic, and it is more preferred to combine phosphorous and phenolic simultaneously.
  • a phenolic antioxidant is preferably used, and a hindered phenol compound is particularly preferably used.
  • hindered phenol compounds include n-octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, n-octadecyl 3- (3,5-di-t-butyl- 4-hydroxyphenyl) -acetate, n-octadecyl 3,5-di-t-butyl-4-hydroxybenzoate, n-hexyl 3,5-di-t-butyl-4-hydroxyphenylbenzoate, n-dodecyl 3, 5-di-t-butyl-4-hydroxyphenylbenzoate, neo-dodecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, dodecyl ⁇ (3,5-di-t-butyl- 4-hydroxyphenyl) propionate, ethyl ⁇ - (4-hydroxy-3,5-di-t-butyl)
  • phosphorus-based antioxidant phosphorus-based compounds such as phosphite, phosphonite, phosphinite, or tertiary phosphane can be used.
  • a conventionally known compound can be used as the phosphorus compound.
  • the addition amount of the phosphorus compound is usually in the range of 0.01 to 10 parts by mass, preferably in the range of 0.05 to 5 parts by mass, more preferably in the range of 0.1 to 3 parts by mass with respect to 100 parts by mass of the resin. It is a range.
  • phosphorus compounds in addition to the compounds represented by the above general formula, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite Tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphat Phenanthrene-10-oxide, 6- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-t-butyldibenz [d, f] [1 3.2] monophosphite compounds such as dioxaphosphine and tridecyl phosphite;
  • Phosphorus compounds of the above type are, for example, from Sumitomo Chemical Co., Ltd. “Sumilizer GP”, from ADEKA Co., Ltd. “ADK STAB PEP-24G”, “ADK STAB PEP-36” and “ADK STAB 3010”, BASF Japan K.K. "IRGAFOS P-EPQ” and "GSY-P101” from Sakai Chemical Industry Co., Ltd.
  • antioxidants Dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, pentaerythrityltetrakis (3-laurylthiopropionate) Nate) and other sulfur-based antioxidants, 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2-hydroxy -3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, a heat resistant processing stabilizer such as 3,4-dihydro-2H-1 described in JP-B-08-27508 -Benzopyran compounds, 3,3'-spirodichroman compounds, 1,1-spiroindane compounds, morpholine, thio
  • the antioxidant is preferably added in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 5% by mass, and further in the range of 1 to 5% by mass. It is preferable. Two or more of these may be used in combination.
  • the cellulose ester film according to the present invention may contain various compounds as additives in addition to the above-described compounds according to the purpose.
  • the acid scavenger preferably comprises an epoxy compound as an acid scavenger described in US Pat. No. 4,137,201.
  • Epoxy compounds as such acid scavengers are known in the art and are derived by condensation of diglycidyl ethers of various polyglycols, particularly about 8-40 moles of ethylene oxide per mole of polyglycol.
  • Glycol diglycidyl ether of glycerol, metal epoxy compounds (such as those conventionally used in and together with vinyl chloride polymer compositions), epoxidized ether condensation products, diphenols of bisphenol A Glycidyl ether (ie, 4,4'-dihydroxydiphenyldimethylmethane), epoxidized unsaturated fatty acid ester (especially an ester of alkyl of about 2 to 2 carbon atoms of fatty acids of 2 to 22 carbon atoms such as butyl Epoxy stearate ), And various epoxidized long chain fatty acid triglycerides and the like (e.g., epoxidized vegetable oils and other unsaturated natural oils, which may be represented and exemplified by compositions such as epoxidized soybean oil, sometimes epoxidized natural) These are referred to as glycerides or unsaturated fatty acids and these fatty acids generally contain 12 to 22 carbon atoms)).
  • Light stabilizers include hindered amine light stabilizer (HALS) compounds, which are known compounds, such as US Pat. No. 4,619,956, columns 5-11 and US Pat. , 839,405, including 2,2,6,6-tetraalkylpiperidine compounds, or their acid addition salts or complexes of them with metal compounds, as described in columns 3 to 5 of US Pat. It is. Furthermore, the light stabilizer described in JP 2007-63311 A can be used.
  • HALS hindered amine light stabilizer
  • UV absorber from the viewpoint of preventing deterioration due to ultraviolet rays, those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less and those having little absorption of visible light having a wavelength of 400 nm or more are preferable from the viewpoint of liquid crystal display properties.
  • examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, etc., but benzophenone compounds and less colored benzotriazole compounds preferable.
  • ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574, and polymer ultraviolet absorbers described in JP-A-6-148430 may be used.
  • benzotriazole compound examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzo Triazole, 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1 , 1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy-3 ' tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole,
  • TINUVIN 326 As commercially available products, TINUVIN 326, TINUVIN 109, TINUVIN 171, TINUVIN 900, TINUVIN 928, TINUVIN 928, TINUVIN 360 (all manufactured by BASF Japan), LA31 (manufactured by ADEKA), Sumisorb 250 (manufactured by Sumitomo Chemical), and RUVA-100 (manufactured by Otsuka Chemical) are listed.
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
  • the ultraviolet absorber is preferably added in the range of 0.1 to 20% by mass, more preferably in the range of 0.5 to 10% by mass, and further in the range of 1 to 5% by mass. It is preferable. Two or more of these may be used in combination.
  • fine particles such as a matting agent from the viewpoint of improving the handleability and strength.
  • the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.
  • the matting agent is preferably as fine as possible.
  • the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include inorganic fine particles such as magnesium silicate and calcium phosphate, and crosslinked polymer fine particles.
  • silicon dioxide is preferable because it can reduce the haze of the resin substrate.
  • fine particles such as silicon dioxide are surface-treated with an organic material, but such particles are preferable because they can reduce the haze of the resin substrate.
  • Preferred organic materials for the surface treatment include halosilanes, alkoxysilanes, silazanes, siloxanes, and the like. The larger the average particle size of the fine particles, the greater the sliding effect, and the smaller the average particle size, the better the transparency.
  • the average particle size of the secondary particles of the fine particles is in the range of 0.05 to 1.0 ⁇ m.
  • the average particle size of the secondary particles of the fine particles is preferably in the range of 5 to 50 nm, more preferably in the range of 7 to 14 nm.
  • These fine particles are preferably used in the cellulose ester film in order to produce irregularities in the range of 0.01 to 1.0 ⁇ m on the surface of the cellulose ester film.
  • the content of fine particles in the cellulose ester is preferably in the range of 0.005 to 0.3% by mass with respect to the cellulose ester.
  • silicon dioxide fine particles examples include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, OX50, TT600, etc. manufactured by Nippon Aerosil Co., Ltd., preferably Aerosil 200V, R972. , R972V, R974, R202, R812. Two or more kinds of these fine particles may be used in combination. When using 2 or more types together, it can mix and use in arbitrary ratios. In this case, fine particles having different average particle sizes and materials, for example, Aerosil 200V and R972V can be used in a mass ratio of 0.1: 99.9 to 99.9: 0.1.
  • the presence of fine particles in the cellulose ester film used as the matting agent can be used for another purpose to improve the strength of the cellulose ester film.
  • a cellulose ester resin, a heat-shrinkable material, and other additives are dissolved in an organic solvent mainly composed of a good solvent for the cellulose ester resin while stirring to form a dope.
  • a method carried out at normal pressure a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557
  • various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used.
  • the method of pressurizing at a boiling point or higher is preferred.
  • Recycled material is a finely pulverized film, which is generated when the film is formed, cut off on both sides of the film, or the original film that has been speculated out due to scratches, etc. Reused.
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • the temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like.
  • the amount of solvent is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the metal support and the film is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. Further, it is preferable to peel in the range of minimum tension capable of peeling to 166.6 N / m, and then in the range of minimum tension to 137.2 N / m, particularly preferably in the range of minimum tension to 100 N / m. That is.
  • the temperature at the peeling position on the metal support is preferably in the range of ⁇ 50 to 40 ° C., more preferably in the range of 10 to 40 ° C., and most preferably in the range of 15 to 30 ° C. preferable.
  • Drying and stretching step After peeling, using a drying device that alternately conveys the web through rollers arranged in the drying device and / or a tenter stretching device that clips and conveys both ends of the web with clips. , Dry the web.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout, the drying is generally performed in the range of 40 to 250 ° C. It is particularly preferable to dry in the range of 40 to 160 ° C.
  • Extension process In order to provide the maximum elastic modulus of the glass scattering prevention film according to the present invention in a desired direction, the width direction (TD direction) or the longitudinal direction (MD direction) or the longitudinal direction (MD direction) by a tenter method in which both ends of the web are gripped by clips or the like It is preferable to perform stretching in both directions and further in an oblique direction.
  • the stretching treatment not only gives the direction of the maximum elastic modulus of the glass scattering prevention film in a desired direction, but also gives the direction of the slow axis in the plane of the glass scattering prevention film in a direction parallel to the stretching direction. Can do.
  • the stretching temperature when stretching with a tenter is preferably performed at a temperature of Tg ⁇ 20 ° C. or higher of the film. Specifically, in the case of a cellulose ester film, it is preferably performed within the range of 130 to 220 ° C. More preferably, it is carried out in the range of ⁇ 210 ° C.
  • the film may break during stretching, while if it is too high, the orientation will be disturbed and the direction of the maximum elastic modulus will not be constant.
  • the glass transition temperature Tg of the film was measured at a rate of temperature increase of 20 ° C./min using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer), and was determined in accordance with JIS K7121 (1987).
  • the glass transition temperature (Tmg) was measured at a rate of temperature increase of 20 ° C./min using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer), and was determined in accordance with JIS K7121 (1987).
  • Tmg The glass transition temperature
  • the stretching ratio is preferably 1.05 to 2.5 times in the width direction (TD stretching).
  • the range is more preferably 1.1 to 2.0 times, and particularly preferably 1.2 to 1.5 times.
  • the residual solvent amount of the web is preferably in the range of 20 to 100% by mass at the start of the tenter, and the residual solvent amount of the web is 10% by mass. It is preferable to dry while applying a tenter until it becomes less than or equal to 5%, and more preferably less than or equal to 5% by weight.
  • an inter-roller neck-in stretching method In the case of stretching in the longitudinal direction (MD stretching), an inter-roller neck-in stretching method, a proximity roller stretching method, and the like can be given. Adopting the inter-roller neck-in stretching method is desirable because it has the advantage that the retardation can be easily controlled and defects such as scratches and wrinkles are less likely to occur in the retardation film.
  • the stretching ratio when stretching in the longitudinal direction is also preferably in the range of 1.01 to 2 times, and more preferably in the range of 1.05 to 1.5 times.
  • the heat treatment is preferably performed in the range of 80 to 200 ° C, preferably in the range of 100 to 180 ° C, and more preferably in the range of 130 to 160 ° C. At this time, it is preferable to perform the heat treatment in the range of a heat transfer coefficient of 20 to 130 ⁇ 10 3 J / m 2 ⁇ hr. More preferably, it is in the range of 40 to 130 ⁇ 10 3 J / m 2 ⁇ hr, and most preferably in the range of 42 to 84 ⁇ 10 3 J / m 2 ⁇ hr.
  • the temperature distribution of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5 ° C, more preferably within ⁇ 2 ° C. Most preferably, it is within ⁇ 1 ° C.
  • Winding step This is a step of winding the film as a film with a winder after the residual solvent amount in the web is 2% by mass or less, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. Can be obtained. In particular, it is preferable to wind in the range of 0.00 to 0.10% by mass.
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the glass scattering prevention film which is a cellulose ester film according to the present invention, is preferably a long film. Specifically, the film has a thickness of about 100 to 5000 m and is usually provided in a roll form. is there.
  • the film width is preferably in the range of 1.3 to 4 m, more preferably in the range of 1.4 to 3 m.
  • the composition containing a resin used for melt extrusion is usually preferably kneaded in advance and pelletized.
  • Pelletization may be performed by a known method.
  • an additive comprising a dried thermoplastic resin and a heat-shrinkable material is supplied to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and then from a die. It can be formed by extruding into a strand, cooling with water or air, and cutting.
  • the cellulose ester is easy to absorb moisture, and therefore it is preferable to dry it in a dehumidifying hot air dryer or a vacuum dryer for 3 hours or more in the range of 70 to 140 ° C. to keep the moisture content to 200 ppm or less, and further to 100 ppm or less.
  • Additives may be supplied to the extruder or may be supplied by individual feeders. A small amount of an additive such as an antioxidant is preferably mixed in advance in order to mix uniformly.
  • the antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
  • a vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • the melt temperature Tm when extruding the pellets is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, Coextruded into a film, solidified on a cooling roller, and cast while pressing with an elastic touch roller.
  • Tm is the temperature of the die exit portion of the extruder.
  • defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roller is a roller having a structure in which a heat medium or a cooling medium whose temperature can be controlled flows with a highly rigid metal roller, and the size is not limited, but the film is melt extruded.
  • the diameter of the cooling roller is usually about 100 mm to 1 m.
  • the surface material of the cooling roller includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roller surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roller surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • Examples of the elastic touch roller include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97 / 028950, JP-A-11-235747, JP2002-2002.
  • a thin-film metal sleeve-covered silicon rubber roller can be used.
  • the steps after the peeling step are the same as in the solution casting method.
  • the glass scattering prevention film according to the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
  • the in-plane retardation value Ro of the glass scattering prevention film is in the range of 0 to 100 nm when measured at a light wavelength of 590 nm under an environment of a temperature of 23 ° C. and a relative humidity of 55% RH. It is preferable for improving the visibility when it is applied.
  • the thickness direction retardation value Rt is not particularly limited, but is preferably in the range of ⁇ 10 to 100 nm.
  • the in-plane retardation value Ro of the glass scattering prevention film is in the range of 105 to 160 nm in the measurement at a light wavelength of 590 nm under the environment of a temperature of 23 ° C. and a relative humidity of 55% RH.
  • the direction of the maximum elastic modulus and the slow axis of the glass scattering prevention film according to the present invention is the same, and the formation direction of the transparent electrode according to the present invention is the same as the absorption axis direction of the polarizing plate. In this case, it is not necessary to arrange each bonding direction in a complicated manner, which is preferable from the viewpoint of ease of production.
  • the retardation value Rt in the thickness direction is not particularly limited, but is preferably in the range of 20 to 400 nm, and more preferably in the range of 50 to 300 nm.
  • phase difference values Ro and Rt are values defined by the following formulas (i) and (ii).
  • n x is a refractive index in a slow axis direction in the substrate film surface
  • n y is the refractive index in the direction perpendicular to the slow axis in the base film surface
  • the thickness of the n z is a substrate film
  • the refractive index in the direction, d represents the thickness (nm) of the substrate film, respectively.
  • KOBRA-21AWR Oji Scientific Instruments Co., Ltd.
  • the retardation value can be adjusted by the type of resin, the type and amount of additives such as the plasticizer described above, and the film thickness and stretching conditions of the film.
  • the glass scattering prevention film according to the present invention has a hard coat layer containing an acrylic resin in order to further improve the crack generation prevention property of the ITO electrode.
  • the hard coat layer according to the present invention is preferably composed of, for example, an active energy ray curable resin
  • the hard coat layer composition in the present embodiment preferably includes an active energy ray curable acrylic resin.
  • the active energy ray curable type refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams, and specifically, a resin having an ethylenically unsaturated group. More specifically, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, an ultraviolet curable epoxy resin, or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.
  • polyfunctional acrylate is preferable.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • polyfunctional acrylate monomer examples include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • Tetramethylolmethane tetraacrylate pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaether Thritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, Tetramethylol methane trimethacrylate, tetramethylol me
  • isocyanurate derivatives of the active energy ray-curable are preferably exemplified.
  • Commercially available products may be used as these polyfunctional acrylates, such as pentaerythritol tri / tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMM-3L), pentaerythritol triacrylate (manufactured by Kyoeisha Chemical Co., Ltd., PE-3A). Etc. can be obtained.
  • these compounds are used individually or in mixture of 2 or more types, respectively.
  • the isocyanurate derivative of the active energy ray-curable resin is not particularly limited as long as it has a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton, but there are three in the same molecule. Compounds having the above ethylenically unsaturated groups and one or more isocyanurate rings are preferred.
  • an isocyanuric acid triacrylate compound a commercially available product can be used, and examples thereof include A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd.
  • examples of commercially available isocyanuric acid diacrylate compounds include Aronix M-215 manufactured by Toagosei Co., Ltd.
  • examples of the mixture of the isocyanuric acid triacrylate compound and the isocyanuric acid diacrylate compound include Aronix M-315 and Aronix M-313 manufactured by Toagosei Co., Ltd.
  • ⁇ -Caprolactone-modified active energy ray-curable isocyanurate derivatives include ⁇ -caprolactone-modified tris- (acryloxyethyl) isocyanurate, Shin-Nakamura Chemical Co., Ltd. A-9300-1CL, Toagosei Co., Ltd. Examples include, but are not limited to, Aronix M-327.
  • monofunctional acrylate may be used as the active energy ray curable resin.
  • Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate.
  • Monofunctional acrylates can be obtained from Shin Nakamura Chemical Co., Ltd., Osaka Organic Chemical Industry Co., Ltd., and the like. These compounds are used alone or in combination of two or more. Moreover, oligomers, such as a dimer and a trimer of the said monomer, may be sufficient.
  • urethane acrylate may be used as the active energy ray curable resin.
  • the urethane acrylate for example, commercially available products such as Beam Set 575CB manufactured by Arakawa Chemical Industry Co., Ltd. and UA-306H manufactured by Kyoeisha Chemical Co., Ltd. can be used.
  • the viscosity of the polyfunctional acrylate as described above is preferably 3000 mPa ⁇ s or less, more preferably 1500 mPa ⁇ s or less, at 25 ° C. Particularly preferably, it is 1000 mPa ⁇ s or less.
  • a low viscosity resin include glycerin triacrylate, pentaerythritol triacrylate, and pentaerythritol tetraacrylate.
  • the said viscosity is the value measured on 25 degreeC conditions using the E-type viscosity meter.
  • the amount of the active energy ray-curable resin in the hard coat layer composition is usually in the range of 10 to 99 parts by mass, preferably in the range of 35 to 99 parts by mass, with the total composition being 100 parts by mass. is there.
  • the blending amount of the active energy ray-curable resin is small, it is difficult to sufficiently obtain the film strength of the hard coat layer.
  • malfunctions such as a film thickness uniformity at the time of apply
  • the hard coat layer may further contain a cationically polymerizable compound, and any cationic polymerizable compound can be used as long as it undergoes cationic polymerization by energy active ray irradiation or heat to form a resin.
  • any cationic polymerizable compound can be used as long as it undergoes cationic polymerization by energy active ray irradiation or heat to form a resin.
  • Specific examples include an epoxy group, a cyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester compound, and a vinyloxo group.
  • a compound having a functional group such as an epoxy group or a vinyl ether group is preferably used in the present invention.
  • Examples of the cationically polymerizable compound having an epoxy group or a vinyl ether group include phenyl glycidyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, vinylcyclohexene dioxide, limonene dioxide, 3,4-epoxycyclohexylmethyl-3 ′.
  • 4'-epoxycyclohexanecarboxylate bis- (6-methyl-3,4-epoxycyclohexyl) adipate, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, 1 , 4-cyclohexanedimethanol divinyl ether and the like.
  • a polymer compound can also be used as an epoxy compound.
  • the amount of the cation polymerizable compound in the hard coat layer composition is usually 1 to 90 parts by mass when the entire composition is 100 parts by mass.
  • the range is preferably 1 to 50 parts by mass.
  • the hard coat layer may contain fine particles.
  • the fine particles include inorganic fine particles and organic fine particles.
  • Inorganic fine particles include silica, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated Mention may be made of calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate.
  • polymethacrylic acid methyl acrylate resin powder acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder
  • examples thereof include polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, and polyfluorinated ethylene resin powder.
  • the average particle size of these fine particles is preferably in the range of 30 to 200 nm in view of the stability and clearness of the hard coat layer coating composition.
  • the hard coat layer may contain two or more kinds of fine particles having different particle sizes.
  • the hard coat layer preferably further contains a photopolymerization initiator in order to accelerate the curing of the active energy ray-curable resin.
  • the photopolymerization initiator examples include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. It is not a thing.
  • Commercially available products may be used, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
  • the hard coat layer may contain an ultraviolet absorber similar to the above-described ultraviolet absorber.
  • the hard coat layer may be composed of two or more layers.
  • the thickness of the hard coat layer in contact with the glass scattering prevention film is preferably in the range of 0.05 to 2 ⁇ m.
  • Two or more layers may be formed as a simultaneous multilayer.
  • the simultaneous multi-layer is to form a hard coat layer by applying two or more hard coat layers on a glass anti-scattering film without wet process.
  • the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
  • a hard coat layer coating composition diluted with a solvent that swells or partially dissolves a glass scattering prevention film is applied onto the glass scattering prevention film by the following method, dried, and cured. Is preferable from the viewpoint that interlayer adhesion between the hard coat layer and the glass scattering prevention film is easily obtained.
  • a solvent containing ketone and / or acetate is preferable.
  • the ketone include methyl ethyl ketone, acetone, and cyclohexanone.
  • the acetate ester include ethyl acetate, methyl acetate, and butyl acetate.
  • the hard coat layer coating composition may contain an alcohol solvent as another solvent.
  • the coating amount of the hard coat layer coating composition is preferably in the range of 0.1 to 40 ⁇ m as a wet film thickness, and more preferably in the range of 0.5 to 30 ⁇ m. Further, the dry film thickness is preferably about 5 to 20 ⁇ m, preferably 7 to 12 ⁇ m.
  • the hard coat layer is a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die (extrusion) coater, a hard coat coating composition that forms a hard coat layer is applied using a known coating method such as an inkjet method, After application, the film can be dried, irradiated with actinic radiation (also referred to as UV curing treatment), and further subjected to heat treatment after UV curing as necessary.
  • the heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after UV curing at such a high temperature, the mechanical strength (rubbing resistance, pencil hardness) of the hard coat layer becomes better.
  • the drying temperature in the decreasing rate drying section at a high temperature treatment of 80 ° C. or higher. More preferably, the temperature in the decreasing rate drying section is 95 ° C. or higher and 130 ° C. or lower.
  • the drying process changes from a constant state to a gradually decreasing state when drying starts.
  • the decreasing section is called the decreasing rate drying section.
  • the constant rate drying section the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the ultraviolet curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually in the range of 50 to 1000 mJ / cm 2 , preferably in the range of 50 to 300 mJ / cm 2 .
  • the tension to be applied is usually in the range of 30 to 500 N / m, preferably in the range of 30 to 300 N / m.
  • the method for applying the tension is not particularly limited, and the tension may be applied in the conveying direction on the back roller, or the tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
  • the hard coat layer may contain a conductive agent for imparting antistatic properties, and preferred conductive agents include metal oxide particles or ⁇ -conjugated conductive polymers.
  • An ionic liquid is also preferably used as the conductive compound.
  • the fluorine-siloxane graft polymer refers to a copolymer polymer obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone on at least a fluorine resin.
  • Examples of commercially available products include ZX-022H, ZX-007C, ZX-049, ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd.
  • the silicone-based surfactant is a surfactant obtained by substituting a part of the methyl group of the silicone oil with a hydrophilic group.
  • hydrophilic group include polyether, polyglycerin, pyrrolidone, betaine, sulfate, phosphate, and quaternary salt.
  • silicone surfactants include, for example, SH200, BY16-873, PRX413 (dimethylsilicone oil; manufactured by Toray Dow Corning Silicone Co., Ltd.), SH203, SH230, SF8416 (alkyl-modified silicone oil; Toray Dow) Corning Silicone Co., Ltd.), SF8417, BY16-208, BY16-209, BY16-849, BY16-872, FZ-2222, FZ-2207 (dimethylpolysiloxane / polyethylene oxide linear block copolymer; Nippon Unicar ( FZ series), KF-101, KF-102, KF-105 (epoxy-modified silicone oil; manufactured by Shin-Etsu Chemical Co., Ltd.), BYK-UV3500, BYK-UV3510, BYK-333, BYK-33 , BYK-337 (polyether-modified silicone oil, manufactured by BYK Japan KK), but like without limitation.
  • These components are preferably added in a range of 0.01 to 5% by mass with respect to the solid component in the coating solution.
  • the surface of the hard coat layer according to the present invention has an arithmetic average roughness Ra in the range of 4 to 20 nm from the viewpoint of excellent antiblocking effect when wound with a long film, and excellent adhesion to the glass scattering prevention film and the adhesive layer. It is preferable.
  • Arithmetic average roughness Ra is a value measured with an optical interference surface roughness meter (RST / PLUS, manufactured by WYKO) based on JIS B0601: 1994.
  • the uneven average interval Sm is preferably in the range of 3 to 40 ⁇ m.
  • the ratio (Ra / Sm) between the arithmetic average roughness Ra of the hard coat layer and the average irregularity spacing Sm of the hard coat layer coating surface of the glass scattering prevention film is 2 ⁇ 10 ⁇ 4 to 6 ⁇ 10 ⁇ 3. It is preferable that it is the range of these.
  • Sm can be measured with an optical interference surface roughness meter (RST / PLUS, manufactured by WYKO) based on the provisions of JIS B0601: 1994, similarly to the arithmetic average roughness Ra.
  • RST / PLUS optical interference surface roughness meter
  • a method of forming protrusions on the surface by pressing a mold a method of forming surface irregularities by mixing resins having different SP values (solubility parameters), spinodal decomposition, A method of forming protrusions by nucleation or the like can be used.
  • those having fine irregularities and those having fine irregularities can be appropriately selected and applied, and patterns, mats, lenticular lenses, and spherical irregularities are regularly or randomly arranged. Can be used.
  • the haze value of the hard coat film of the present invention is preferably 1% or less from the standpoint of clearness in that sufficient brightness and high contrast can be obtained.
  • the glass scattering prevention film according to the present invention can be provided with functional layers such as a backcoat layer, an antireflection layer, and an antiglare layer in addition to the hard coat layer.
  • the back coat layer includes silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, indium oxide, Particles such as zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate can be added.
  • the particles contained in the backcoat layer are preferably in the range of 0.1 to 50% by mass with respect to the binder.
  • the increase in haze is preferably 0.5% or less, and particularly preferably 0.1% or less.
  • the binder a cellulose ester resin is preferable.
  • the coating composition for forming the backcoat layer contains a solvent for alcohols, ketones and / or acetate ester sugars.
  • the glass scattering prevention film according to the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the hard coat layer.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is composed of a low refractive index layer having a lower refractive index than the protective film as the support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than the protective film as the support.
  • it is.
  • it is an antireflection layer composed of three or more refractive index layers. Three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support).
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • the layer structure of the antireflection film the following structure can be considered, but it is not limited to this.
  • the low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
  • the film thickness of the low refractive index layer is preferably in the range of 5 nm to 0.5 ⁇ m, more preferably in the range of 10 nm to 0.3 ⁇ m, and most preferably in the range of 30 nm to 0.2 ⁇ m.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • the particles having the outer shell layer and porous or hollow inside are preferably hollow silica-based fine particles.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1) or a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1) or a hydrolyzate thereof, or a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
  • a silane coupling agent, a curing agent, a surfactant and the like may be added as necessary.
  • it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group.
  • a fluorine-containing polymer or a fluorine-containing sol-gel compound is used.
  • fluorine-containing polymer examples include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units.
  • the refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm.
  • the thickness of the high refractive index layer is preferably in the range of 5 nm to 1 ⁇ m, more preferably in the range of 10 nm to 0.2 ⁇ m, and most preferably in the range of 30 nm to 0.1 ⁇ m.
  • the means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like.
  • Metal oxide The metal oxide fine particles used preferably have a refractive index in the range of 1.80 to 2.60, and more preferably in the range of 1.85 to 2.50.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S
  • a metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used.
  • at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate is used. It is particularly preferable to use it as the main component. In particular, it is preferable to contain zinc antimonate particles.
  • the average particle diameter of primary particles of these metal oxide fine particles is in the range of 10 to 200 nm, particularly preferably in the range of 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased.
  • the shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • the metal oxide fine particles may be surface-treated with an organic compound.
  • an organic compound By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the surface modification amount with a preferable organic compound is in the range of 0.1 to 5% by mass, more preferably in the range of 0.5 to 3% by mass with respect to the metal oxide particles.
  • the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined.
  • the high refractive index layer may contain a ⁇ -conjugated conductive polymer.
  • the ⁇ -conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a ⁇ -conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
  • the ⁇ -conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group.
  • a functional group such as a group, a hydroxy group, or a cyano group may be introduced.
  • the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 ⁇ and PF 6 ⁇ , CF 3 SO 2 ⁇ , and the like. , (CF 3 SO 2 ) 2 N ⁇ , CF 3 CO 2 —, etc.
  • the ratio of the polymer to the binder is preferably in the range of 10 to 400 parts by weight with respect to 100 parts by weight of the polymer, and particularly preferably in the range of 100 to 200 parts by weight of the binder with respect to 100 parts by weight of the polymer. .
  • Example 1 Provide of touch panel module> An ITO film having a thickness of 20 nm was formed on the tempered glass by a sputtering method, and a first electrode pattern in the X direction was formed by etching.
  • SiO 2 is formed as an insulating layer disposed between the electrode patterns by sputtering to a thickness of 200 nm, and an ITO film is formed thereon by sputtering so as to have a thickness of 20 nm. Then, the second electrode pattern in the Y direction was formed in a lattice shape by etching. Further thereon, SiO 2 was deposited as an insulating layer to a thickness of 200 nm by sputtering.
  • the electrode pattern in the X direction and the Y direction of the formed ITO was connected to a control circuit via a lead wire prepared by applying and sintering Ag paste, respectively.
  • a glass scattering prevention film (cellulose ester film A1) produced under the following conditions was cut out and bonded onto the second electrode pattern via an adhesive layer to produce touch panel module 1.
  • the X direction of the electrode pattern was set to 0 °, and the direction of the maximum elastic modulus of the glass scattering prevention film was bonded so as to have an angle shown in Table 1.
  • CE-1 Cellulose diacetate (acetyl group substitution degree 2.45, Mw 300,000)
  • CE-2 Cellulose triacetate (acetyl group substitution degree 2.88, Mw 320,000)
  • CE-3 cellulose acetate propionate (acetyl group substitution degree 1.9, propionyl group substitution degree 0.55, Mw 280,000)
  • ⁇ Preparation of cellulose ester film A1> ⁇ Fine particle dispersion 1> Silica fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
  • Fine particle addition liquid 1 The fine particle dispersion liquid 1 was slowly added to the dissolution tank containing methylene chloride while sufficiently stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • a main dope A having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Next, cellulose acetate was added to the pressurized dissolution tank containing the solvent while stirring. This was completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope A was prepared by filtration using 244.
  • the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the peeled cellulose ester film was stretched 15% in the width direction using a tenter while applying heat at 160 ° C. The residual solvent at the start of stretching was 15%.
  • drying was completed while the drying zone was conveyed by a number of rollers.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m. After drying, it was slit into a width of 1.5 m, a knurling process with a width of 10 mm and a height of 10 ⁇ m was applied to both ends of the film, wound into a roll, and a cellulose ester film A1 having a dry film thickness of 40 ⁇ m was obtained.
  • the winding length was 5000 m.
  • the direction of the maximum elastic modulus of the cellulose ester film A1 was measured by the following measurement method, and as a result, was the width direction as in the stretching direction.
  • the in-plane phase difference Ro was 50 nm, and the slow axis was in the width direction as in the stretching direction.
  • Methylaluminoxane manufactured by Albemarle, MAO 20% toluene solution
  • methylene cyclopentadienyl
  • tetramethylcyclopentadienyl zirconium dichloride
  • COP1 had a weight average molecular weight of 142,000 and a glass transition temperature of 140 ° C.
  • the polymer resin COP1 having an alicyclic structure synthesized above is dried for 2 hours at 70 ° C. using a hot air dryer in which air is circulated to remove moisture, and then resin melt kneaded with a 65 mm ⁇ screw
  • a COP film having a film thickness of 100 ⁇ m was extruded using a T-die film melt extrusion molding machine (T-die width 500 mm) having a machine under molding conditions of a molten resin temperature of 240 ° C. and a T-die temperature of 240 ° C.
  • the peeled COP film was stretched 90% in the width direction using a tenter while applying heat at 200 ° C.
  • drying was completed while the drying zone was conveyed by a number of rollers.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • the film was slit to a width of 1.5 m, a knurling process having a width of 10 mm and a height of 10 ⁇ m was applied to both ends of the film, wound into a roll, and a COP film having a dry film thickness of 40 ⁇ m was obtained.
  • the winding length was 5000 m.
  • the direction of the maximum elastic modulus of the COP film was measured by the following measurement method, and as a result, it was in the width direction as in the stretching direction.
  • the in-plane retardation value Ro was 135 nm, and the slow axis was in the width direction.
  • ⁇ PC film> In a reactor equipped with a thermometer, a stirrer, and a reflux condenser, 152400 parts of ion-exchanged water and 84320 parts of 25% aqueous sodium hydroxide solution were added, and 9,9-bis (4-hydroxy-3 having a purity of 99.8% by HPLC analysis.
  • biscresol fluorene 34848 parts, 2,2-bis (4-hydroxyphenyl) propane 9008 parts (hereinafter abbreviated as “bisphenol A”) and After dissolving 88 parts of hydrosulfite, 178400 parts of methylene chloride was added, and 18248 parts of phosgene was blown in at a temperature of 15 to 25 ° C. with stirring for 60 minutes.
  • the methylene chloride phase is concentrated and dehydrated to obtain polycarbonate.
  • a solution with a concentration of 20% was obtained.
  • the polycarbonate (copolymer A) obtained by removing the solvent from this solution had a molar ratio of biscresol fluorene to bisphenol A of 70:30 (polymer yield 97%).
  • this polymer had an intrinsic viscosity of 0.674 and a Tg of 226 ° C.
  • the direction of the maximum elastic modulus of the PC film was measured by the following measurement method, and as a result, it was in the width direction as in the stretching direction.
  • the retardation of the PC film was measured by the following measurement method.
  • the in-plane retardation Ro was 140 nm, and the slow axis was in the width direction.
  • ⁇ PET film> ⁇ Polyester A> To 100 parts by mass of dimethyl terephthalate and 64 parts by mass of ethylene glycol, 0.1 part by mass of calcium acetate hydrate was added, and transesterification was performed by a conventional method. The obtained product was mixed with ethylene glycol solution of 5-sodium sulfodi ( ⁇ -hydroxyethyl) isophthalic acid (concentration 35% by mass) (7 mol% / total dicarboxylic acid component), polyethylene glycol (number average molecular weight 3000). 5.8 parts by mass (5% by mass / generated polyester), 0.05 parts by mass of antimony trioxide, and 0.13 parts by mass of trimethyl phosphate.
  • polyester A The intrinsic viscosity was determined according to the method shown below. As a result, the intrinsic viscosity was 0.50.
  • the intrinsic viscosity was calculated according to the following procedure using an Ubbelohde viscometer. Using a mixed solvent of phenol and 1,1,2,2-tetrachloroethane having a mass ratio of about 55:45 (adjusted to a flow time of 42.0 ⁇ 0.1 seconds), the sample was dissolved to a concentration of 0.2 , 0.6, 1.0 (g / dl) solution (temperature 20 ° C.). The specific viscosity ( ⁇ sp) at each concentration (C) was determined by an Ubbelohde viscometer, and the equation [ ⁇ sp / C] was extrapolated to a concentration of zero (C ⁇ 0) to determine the intrinsic viscosity [ ⁇ ]. The unit of intrinsic viscosity [ ⁇ ] is dl / g.
  • the polyester A pellets were vacuum-dried at 150 ° C. for 8 hours, melt-extruded at 285 ° C. using an extruder, closely adhered to a 30 ° C. cooling drum while electrostatically applied, and cooled and solidified to obtain an unstretched sheet. It was. This unstretched sheet was stretched 2.0 times in the longitudinal direction at 90 ° C. using a roller-type longitudinal stretching machine. The temperature difference between the front and back surfaces was within 5 ° C.
  • the obtained uniaxially stretched film was stretched 1.2 times in the transverse direction at 100 ° C. using a tenter-type transverse stretching machine.
  • heat treatment was performed at 70 ° C. for 2 seconds, heat-fixed at 150 ° C. for the first heat setting zone for 10 seconds, heat-fixed for 15 seconds at the second heat setting zone at 180 ° C., and then 2% in the width direction at 160 ° C.
  • a PET film having a width of 1.5 m and a dry film thickness of 60 ⁇ m was prepared by performing relaxation treatment. The winding length was 5000 m.
  • the direction of the maximum elastic modulus of the PET film was measured by the following measurement method, and as a result, it was in the longitudinal direction as in the stretching direction.
  • the in-plane retardation value Ro was 130 nm, and the slow axis was in the longitudinal direction.
  • Touch panel modules 2 to 16 were produced in the same manner using the produced cellulose ester films A2 to A5, COP film, PC film, and PET film.
  • liquid crystal display panel was carefully peeled off from the commercially available liquid crystal display device with a touch panel.
  • the produced touch panel module 1 is bonded to a liquid crystal display panel through the following adhesive so that the transparent electrode forming direction (X direction) is the same direction, and the liquid crystal display device 1 with a touch panel is produced. did.
  • the touch panel module was bonded to the liquid crystal display panel via the applied SVR 1240 and temporarily fixed by irradiating a part of it with ultraviolet rays. After inspecting for bubbles at the interface, the entire surface was irradiated with ultraviolet rays and completely cured, and the touch panel module and the liquid crystal display panel were permanently fixed to produce a liquid crystal display device 1 with a touch panel.
  • the touch panel modules 2 to 16 produced using the cellulose ester films A2 to A5, COP film, PC film, and PET film in Table 1 were bonded to the liquid crystal display panels, respectively. 16 was produced.
  • the retardation value Ro was measured using an automatic birefringence meter KOBRA-21AWR (Oji Scientific Instruments).
  • the liquid crystal display devices 1 to 10 with a touch panel according to the present invention are superior in preventing the ITO electrode from cracking and preventing glass scattering compared to the liquid crystal display devices 11 to 16 with a touch panel of the comparative example. It can be seen that it is excellent.
  • the liquid crystal display device 4 with a touch panel according to the present invention was slightly inferior in preventing glass scattering because the angle for bonding the direction of the maximum elastic modulus of the glass scattering preventing film was 105 °.
  • Example 2 ⁇ Coating of hard coat layer> Extrusion coater obtained by filtering the following hard coat layer composition 1 with a polypropylene filter having a pore size of 0.4 ⁇ m on the surface of each of the produced cellulose ester films A1 to A5, COP film, PC film, and PET film After drying at a temperature of 80 ° C. and applying a nitrogen purge so that the atmosphere has an oxygen concentration of 1.0% by volume or less, the irradiation part is irradiated at an illuminance of 100 mW / cm 2 using an ultraviolet lamp.
  • the coating layer is cured with an amount of 0.25 J / cm 2 , a hard coat layer 1 having a dry film thickness of 3 ⁇ m is formed and wound, and roll-shaped hard coat films A1H to A5H, COP film H, PC film H, PET Film H was produced.
  • ⁇ Hard coat layer composition 1> The following materials were stirred and mixed to obtain hard coat layer coating composition 1.
  • Pentaerythritol tri / tetraacrylate (NK Ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 50 parts by mass Urethane acrylate (Beam Set 575CB, manufactured by Arakawa Chemical Industries, Ltd.) 50 parts by mass Irgacure 184 (BASF Japan) 2 parts by weight Polyether-modified polydimethylsiloxane (BYK-UV3510, manufactured by Big Chemie Japan) 1 part by weight Cyclohexanone 10 parts by weight Methyl ethyl ketone 93 parts by weight Hard coat films A1H to A5H, COP film H , PC film H, and PET film H were used to produce a touch panel module in the same manner as in the liquid crystal display devices 1 to 16 with a touch panel of Example 1, and the liquid crystal display via SVR 1240 It was stuck to the panel.
  • liquid crystal display devices 1b to 16b with a touch panel were prepared in the same manner as in Example 1, and the ITO electrode used in Example 1 was prepared. Evaluation of cracking prevention property was performed. As a result, the liquid crystal display devices 11b to 16b with the touch panel of the comparative example did not improve the prevention of cracking of the ITO electrode, but the liquid crystal display devices 1b to 10b with the touch panel of the present invention were good in Example 1. The results were all the results of ⁇ , and it was found that the protective property against the ITO electrode was further improved by coating the hard coat layer.
  • Example 3 Using the liquid crystal display devices 1 to 13 with a touch panel prepared in Example 1, the liquid crystal display portion was observed without wearing polarized sunglasses.
  • the liquid crystal display devices with a touch panel 11 to 13 of the comparative example had poor visibility, but the liquid crystal display devices with a touch panel 1, 2, and 6 to 10 of the present invention were used. Since the retardation value of the glass scattering prevention film is within a preferable range and is bonded to the liquid crystal display panel at a preferable angle, the image has good visibility without being lost. In the liquid crystal display devices 3 to 5 with a touch panel of the present invention, the visibility of sunglasses was somewhat inferior because the retardation value of the glass scattering prevention film was insufficient.
  • Polarized sunglasses visibility evaluation ⁇ : Good visibility, but the image may be chipped depending on the angle ⁇ : The angle at which the image is chipped is slightly large ⁇ : The angle at which the image is chipped is large, and the visibility is high Bad
  • the liquid crystal display device with a touch panel of the present invention has a function to prevent scattering of the glass substrate, and further includes a glass scattering prevention film for preventing the ITO electrode from cracking.
  • a liquid crystal display device can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)

Abstract

The objective of the present invention is to provide: a touch-panel-equipped liquid crystal display device that has a shatterproof function with respect to glass substrate breakage and in which the occurrence of cracks in ITO electrodes is prevented; and a touch-panel-equipped liquid crystal display device that has excellent viewability even when the display is observed through polarizing sunglasses. This touch-panel-equipped liquid crystal display device is a touch-panel-equipped liquid crystal display device comprising a touch panel module and a liquid crystal display panel, and being characterized in that: the touch panel module includes a glass substrate on the outermost surface, a pair of transparent electroconductive films formed in a grid pattern in an X direction and a Y direction orthogonal thereto, and a glass shatterproofing film provided on the upper surface of the transparent electroconductive films; and the direction of the maximum elasticity modulus of the glass shatterproofing film is in a direction oblique to the X direction or the Y direction of said pair of transparent electroconductive films formed in a grid pattern.

Description

タッチパネル付き液晶表示装置LCD with touch panel
 本発明は、携帯電話やタブレットに用いられるタッチパネル付き液晶表示装置に関する。より詳しくは、ガラス基板の割れに対する飛散防止及びITO電極のクラック発生を防止したタッチパネル付き液晶表示装置に関する。 The present invention relates to a liquid crystal display device with a touch panel used for a mobile phone or a tablet. More specifically, the present invention relates to a liquid crystal display device with a touch panel that prevents scattering of glass substrates from cracking and prevents generation of ITO electrode cracks.
 近年、携帯電話機、携帯端末機又はパーソナルコンピュータなどの各種電子機器が高機能化され多様化されるに伴い、それらの電子機器への入力手段の一つとしてタッチパネルの使用が盛んに行われている。タッチパネルには種々の方式のものがあるが、光透過性で電子機器の液晶表示パネル前面に粘着剤層を介して装着できるタッチパネルとして、静電容量型タッチパネルモジュールがある。 2. Description of the Related Art In recent years, as various electronic devices such as mobile phones, portable terminals, and personal computers have become highly functional and diversified, touch panels have been actively used as one of input means to these electronic devices. . There are various types of touch panels, and there is a capacitive touch panel module as a touch panel that is light transmissive and can be attached to the front surface of a liquid crystal display panel of an electronic device via an adhesive layer.
 従来、携帯端末機器の情報表示部の表面には、表示された情報を見やすくするためや、落としても壊れないようにする観点から、光透過性の高いプラスチック板が用いられていた。しかしながら携帯端末機器は薄型化、軽量化が求められており、該プラスチック板を薄くしていくと強度が不足するという問題がある。これを解消するために、情報表示部の表面には、近年強化ガラス基板が用いられるようになってきている。 Conventionally, a plastic plate with high light transmittance has been used on the surface of the information display section of the portable terminal device from the viewpoint of making the displayed information easy to see and preventing damage even if dropped. However, mobile terminal devices are required to be thinner and lighter, and there is a problem that the strength is insufficient when the plastic plate is made thinner. In order to solve this problem, a tempered glass substrate has recently been used on the surface of the information display unit.
 ところが、強化ガラス基板のみで用いると、携帯端末機器を落とした際にガラス基板が破損し、ガラス基板が飛散するという問題があった。そのため、強化ガラス基板の表面に貼合して飛散を防止するガラス飛散防止フィルムが用いられている。一般に、安価で飛散防止効果のあるポリエチレンテレフタレート(PET)フィルムがガラス飛散防止フィルムとして用いられているが、PETフィルムは一般に粘着剤層との密着性が低いため、密着性を向上させるために、易接着層と呼ばれる薄膜が設けられた易接着層付きPETフィルムが利用されている。 However, when only the tempered glass substrate is used, there is a problem that the glass substrate is broken when the portable terminal device is dropped and the glass substrate is scattered. Therefore, a glass scattering prevention film that is bonded to the surface of a tempered glass substrate to prevent scattering is used. In general, polyethylene terephthalate (PET) film that is inexpensive and has an anti-scattering effect is used as a glass anti-scattering film, but since PET film generally has low adhesion to the adhesive layer, in order to improve adhesion, A PET film with an easy adhesion layer provided with a thin film called an easy adhesion layer is used.
 また、PETフィルムは屈折率の関係から干渉縞を発生する場合があり、これを改善するために、粘着剤層付きトリアセチルセルロースフィルムをガラス基板の最表面に保護フィルムとして貼り合せて、該ガラス基板の飛散を防止することが検討されている(例えば、特許文献1参照。)。 In addition, the PET film may generate interference fringes due to the refractive index, and in order to improve this, a triacetyl cellulose film with an adhesive layer is bonded to the outermost surface of the glass substrate as a protective film, and the glass It has been studied to prevent scattering of the substrate (for example, see Patent Document 1).
 一方、静電容量型タッチパネルモジュールには、透明なガラス基板上に透明導電膜によるX方向に延びるX電極パターンと、他の透明導電膜によるY方向に延びるY電極パターンとが形成されたものがある。タッチパネルの表面の指で触れることによりX電極パターンとY電極パターンが接触し、その位置での静電容量の変化を該X電極パターン及びY電極パターンにより検出している。該透明導電膜には、一般にITO(スズドープ酸化インジウム)を電極として用いている。 On the other hand, in the capacitive touch panel module, an X electrode pattern extending in the X direction by a transparent conductive film and a Y electrode pattern extending in the Y direction by another transparent conductive film are formed on a transparent glass substrate. is there. The X electrode pattern and the Y electrode pattern come into contact with each other by touching with a finger on the surface of the touch panel, and a change in electrostatic capacitance at the position is detected by the X electrode pattern and the Y electrode pattern. The transparent conductive film generally uses ITO (tin-doped indium oxide) as an electrode.
 このような一対の透明導電膜を持ち、しかもタッチ面がガラス面になっている構成の静電容量型タッチパネルモジュールは、前記ITOの電極パターンが衝撃に弱いため、該電極パターンを保護するために更にもう一枚のガラス基板を張り合わせる構成を有している。 The capacitive touch panel module having such a pair of transparent conductive films and having a touch surface made of a glass surface protects the electrode pattern because the ITO electrode pattern is vulnerable to impact. In addition, another glass substrate is laminated.
 しかしながら、さらなる軽量化、電池容量のスペース確保が求められており、特許文献2に開示されている静電容量型タッチパネルモジュールは、互いに直交する方向の一対の透明導電膜を備え、かつガラス基板をタッチ面としているが、ガラス基板は1枚しか使用されていない。そのため全体が薄型となる利点はあるが、ガラス基板が1枚しか使用されていないこともあり、製造工程中にかかる力によってITOの電極パターンにクラックが発生するというが問題があった。 However, further weight reduction and securing of battery capacity space are required, and the capacitive touch panel module disclosed in Patent Document 2 includes a pair of transparent conductive films in directions orthogonal to each other and a glass substrate. Although it is a touch surface, only one glass substrate is used. Therefore, although there is an advantage that the whole is thin, there is a problem that only one glass substrate is used, and cracks are generated in the ITO electrode pattern due to the force applied during the manufacturing process.
特開2011-209512号公報JP 2011-209512 A 特開2011-186717号公報JP 2011-186717 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、ガラス基板の割れに対するガラス飛散防止機能を有し、更にITO電極のクラック発生を防止するタッチパネル付き液晶表示装置を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and its solution is to provide a liquid crystal display device with a touch panel that has a glass scattering prevention function against cracks in the glass substrate and further prevents cracks in the ITO electrodes. Is to provide.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、前記タッチパネルモジュールが、最表面のガラス基板に格子状に形成した一対の透明導電膜とその上面にガラス飛散防止フィルムを有し、該ガラス飛散防止フィルムの最大弾性率の方向が、該透明導電膜の形成方向に対して斜め方向であることによって、ガラス飛散防止に加え、ITO電極のクラック発生を防止したタッチパネル付き液晶表示装置が得られることを見出し本発明に至った。 In order to solve the above problems, the present inventor, in the process of studying the cause of the above problems, the touch panel module is a pair of transparent conductive films formed in a lattice pattern on the outermost glass substrate and glass scattering on the upper surface. In addition to preventing glass scattering, the generation of cracks in the ITO electrode was prevented by having a prevention film, and the direction of the maximum elastic modulus of the glass scattering prevention film being oblique to the direction of formation of the transparent conductive film The inventors have found that a liquid crystal display device with a touch panel can be obtained, and have reached the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.タッチパネルモジュールと液晶表示パネルとを有するタッチパネル付き液晶表示装置であって、該タッチパネルモジュールが、最表面のガラス基板と、X方向とそれに直交するY方向に格子状に形成された一対の透明導電膜と、その上面にガラス飛散防止フィルムとを有し、該ガラス飛散防止フィルムの最大弾性率の方向が、該格子状に形成された一対の透明導電膜のX方向又はY方向に対して斜め方向であることを特徴とするタッチパネル付き液晶表示装置。 1. A liquid crystal display device with a touch panel having a touch panel module and a liquid crystal display panel, wherein the touch panel module is an outermost glass substrate and a pair of transparent conductive films formed in a lattice shape in the X direction and the Y direction perpendicular thereto And a glass scattering prevention film on the upper surface thereof, and the direction of the maximum elastic modulus of the glass scattering prevention film is oblique to the X direction or the Y direction of the pair of transparent conductive films formed in the lattice shape A liquid crystal display device with a touch panel.
 2.前記ガラス飛散防止フィルムの最大弾性率の方向が、前記格子状に形成された一対の透明導電膜のX方向又はY方向の一方の方向を0°としたときに、該方向に対して20~70°の範囲内、又は110~160°の範囲内の角度で斜め方向であることを特徴とする第1項に記載のタッチパネル付き液晶表示装置。 2. When the direction of the maximum elastic modulus of the glass scattering prevention film is 0 ° with respect to one of the X direction and the Y direction of the pair of transparent conductive films formed in the lattice shape, 2. The liquid crystal display device with a touch panel as set forth in claim 1, wherein the liquid crystal display device is in an oblique direction at an angle in a range of 70 ° or in a range of 110 to 160 °.
 3.前記ガラス飛散防止フィルムが、アクリル樹脂を含有するハードコート層を有することを特徴とする第1項又は第2項に記載のタッチパネル付き液晶表示装置。 3. The liquid crystal display device with a touch panel according to claim 1 or 2, wherein the glass scattering prevention film has a hard coat layer containing an acrylic resin.
 4.前記ガラス飛散防止フィルムの面内位相差値Roが、温度23℃、相対湿度55%RHの環境下、光波長590nmによる測定において、0~100nmの範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載のタッチパネル付き液晶表示装置。 4. The in-plane retardation value Ro of the glass scattering prevention film is within a range of 0 to 100 nm in a measurement at a light wavelength of 590 nm under an environment of a temperature of 23 ° C. and a relative humidity of 55% RH. The liquid crystal display device with a touch panel as described in any one of Claim 3 to 3.
 5.前記ガラス飛散防止フィルムの面内位相差値Roが、温度23℃、相対湿度55%RHの環境下、光波長590nmによる測定において、105~160nmの範囲内であり、該ガラス飛散防止フィルムの遅相軸が、前記液晶表示パネルの偏光板の吸収軸に対し20~70°の範囲内、又は110~160°の範囲内の角度で斜め方向であることを特徴とする第1項から第3項までのいずれか一項に記載のタッチパネル付き液晶表示装置。 5. The in-plane retardation value Ro of the glass scattering prevention film is in the range of 105 to 160 nm when measured at a light wavelength of 590 nm in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH. The phase axis is an oblique direction at an angle in the range of 20 to 70 ° or in the range of 110 to 160 ° with respect to the absorption axis of the polarizing plate of the liquid crystal display panel. A liquid crystal display device with a touch panel according to any one of items 1 to 3.
 6.前記ガラス飛散防止フィルムが、セルロースエステルフィルムであることを特徴とする第1項から第5項までのいずれか一項に記載のタッチパネル付き液晶表示装置。 6. The liquid crystal display device with a touch panel according to any one of claims 1 to 5, wherein the glass scattering prevention film is a cellulose ester film.
 7.前記セルロースエステルフィルムが、アセチル基置換度が2.0~2.5の範囲内のセルロースジアセテートを含有することを特徴とする第6項に記載のタッチパネル付き液晶表示装置。 7. The liquid crystal display device with a touch panel according to item 6, wherein the cellulose ester film contains cellulose diacetate having an acetyl group substitution degree in the range of 2.0 to 2.5.
 本発明の上記手段により、ガラス基板の割れに対するガラス飛散防止機能を有し、更にITO電極のクラック発生を防止するタッチパネル付き液晶表示装置を提供することができる。 By the above means of the present invention, it is possible to provide a liquid crystal display device with a touch panel that has a glass scattering prevention function against the crack of the glass substrate and further prevents the ITO electrode from cracking.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明のタッチパネル付き液晶表示装置の特徴は、タッチパネルモジュールと液晶表示パネルとを有するタッチパネル付き液晶表示装置であって、該タッチパネルモジュールが、最表面のガラス基板上に、X方向及びそれと直交するY方向に格子状に形成した一対の透明導電膜とその上面にガラス飛散防止フィルムを有し、該ガラス飛散防止フィルムの最大弾性率の方向が、該透明導電膜の形成方向であるX方向又はY方向に対して、斜め方向にあることで、製造工程中にITO電極が受ける様々な力をいわば斜交い(はすかい)として分散、緩和することができ、ガラス基板及び透明導電膜を様々な力から保護することによって、該ITO電極のクラック発生を効果的に防止できるものと推定している。 A feature of the liquid crystal display device with a touch panel according to the present invention is a liquid crystal display device with a touch panel having a touch panel module and a liquid crystal display panel, and the touch panel module is placed on the outermost glass substrate in the X direction and Y orthogonal thereto. It has a pair of transparent conductive films formed in a lattice shape in the direction and a glass scattering prevention film on the upper surface thereof, and the direction of the maximum elastic modulus of the glass scattering prevention film is the X direction or Y direction in which the transparent conductive film is formed. By being oblique with respect to the direction, the various forces received by the ITO electrode during the manufacturing process can be dispersed and relaxed as if they were oblique, so that various glass substrates and transparent conductive films can be used. It is presumed that the generation of cracks in the ITO electrode can be effectively prevented by protecting from excessive force.
本発明のタッチパネル付き液晶表示装置の模式図Schematic diagram of a liquid crystal display device with a touch panel of the present invention 本発明に係る格子状の透明導電膜の形成方向と、ガラス飛散防止フィルムの最大弾性率の方向との関係を示した模式図The schematic diagram which showed the relationship between the formation direction of the lattice-shaped transparent conductive film which concerns on this invention, and the direction of the maximum elasticity modulus of a glass scattering prevention film.
 本発明のタッチパネル付き液晶表示装置は、タッチパネルモジュールと液晶表示パネルとを有するタッチパネル付き液晶表示装置であって、該タッチパネルモジュールが、最表面のガラス基板と、X方向及びそれと直交するY方向に格子状に形成された一対の透明導電膜と、その上面にガラス飛散防止フィルムとを有し、該ガラス飛散防止フィルムの最大弾性率の方向が、該透明導電膜の形成方向であるX方向又はY方向に対して斜め方向であることを特徴とする。 The liquid crystal display device with a touch panel according to the present invention is a liquid crystal display device with a touch panel having a touch panel module and a liquid crystal display panel, and the touch panel module is latticed in the outermost glass substrate and in the X direction and the Y direction perpendicular thereto. A pair of transparent conductive films formed in a shape and a glass scattering prevention film on the upper surface thereof, and the direction of the maximum elastic modulus of the glass scattering prevention film is the X direction or Y direction in which the transparent conductive film is formed. It is characterized by being oblique to the direction.
 この特徴は、請求項1から請求項7までの請求項に係る発明に共通する技術的特徴である。 This feature is a technical feature common to the inventions according to claims 1 to 7.
 本発明の実施態様としては、前記ガラス飛散防止フィルムの最大弾性率の方向が、前記格子状に形成された一対の透明導電膜のX方向又はY方向の一方の方向を0°としたときに、該形成方向に対して20~70°の範囲内、又は110~160°の範囲内の角度で斜め方向であることが、ITO電極のクラック発生を効果的に防止する観点で好ましい。 As an embodiment of the present invention, when the maximum elastic modulus direction of the glass scattering prevention film is set to 0 ° in the X direction or the Y direction of the pair of transparent conductive films formed in the lattice shape, From the viewpoint of effectively preventing the generation of cracks in the ITO electrode, an oblique direction with an angle in the range of 20 to 70 ° or 110 to 160 ° with respect to the forming direction is preferable.
 また、ガラスの飛散防止性及びITOクラック発生防止の両者の観点では、前記ガラス飛散防止フィルムがアクリル樹脂を含有するハードコート層を有することが、フィルム自体の強度を高め本発明の効果をより向上することができる。 Further, from the viewpoint of both prevention of glass scattering and prevention of ITO cracking, the glass scattering prevention film having a hard coat layer containing an acrylic resin increases the strength of the film itself and further improves the effect of the present invention. can do.
 また、前記ガラス飛散防止フィルムの面内位相差値Roが、温度23℃、相対湿度55%RHの環境下、光波長590nmによる測定において0~100nmの範囲である場合、裸眼で表示を観察した時の視認性が向上するため好ましい。 In addition, when the in-plane retardation value Ro of the glass scattering prevention film was in the range of 0 to 100 nm when measured at a light wavelength of 590 nm under an environment of a temperature of 23 ° C. and a relative humidity of 55% RH, the display was observed with the naked eye. This is preferable because the visibility at the time is improved.
 また、前記ガラス飛散防止フィルムの面内位相差値Roが、温度23℃、相対湿度55%RHの環境下、光波長590nmによる測定において105~160nmの範囲であり、該ガラス飛散防止フィルムの遅相軸が、前記液晶表示パネルの偏光板の吸収軸に対し20~70°の範囲内、又は110~160°の範囲内の角度で斜め方向に配置されている場合、偏光サングラスをかけて表示を見た時の視認性を格段に向上することができる。これは、本発明に係るガラス飛散防止フィルムに上記範囲の位相差値を付与し、偏光板の吸収軸に対し斜め方向に配置することによって、液晶表示パネルに装着されている偏光板との組み合わせで円偏光板化し、偏光サングラス着用時の視認性が向上するものである。 Further, the in-plane retardation value Ro of the glass scattering prevention film is in the range of 105 to 160 nm when measured at a light wavelength of 590 nm in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH. When the phase axis is arranged in an oblique direction at an angle in the range of 20 to 70 °, or in the range of 110 to 160 ° with respect to the absorption axis of the polarizing plate of the liquid crystal display panel, display is performed with polarized sunglasses. The visibility when looking at can be greatly improved. This is a combination with a polarizing plate mounted on a liquid crystal display panel by giving a retardation value in the above range to the glass scattering prevention film according to the present invention and arranging it in an oblique direction with respect to the absorption axis of the polarizing plate. It becomes a circularly polarizing plate, and the visibility when wearing polarized sunglasses is improved.
 さらに、前記タッチパネルモジュールのガラス飛散防止フィルムがセルロースエステルフィルムであることが好ましく、中でもアセチル基置換度が2.0~2.5の範囲のセルロースジアセテートを含有することが、上記位相差を付与しやすく視認性を向上する観点からも好ましい。 Furthermore, the glass scattering prevention film of the touch panel module is preferably a cellulose ester film, and among them, the cellulose acetate having a degree of acetyl group substitution in the range of 2.0 to 2.5 imparts the retardation. This is also preferable from the viewpoint of improving visibility.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 <タッチパネル付き液晶表示装置>
 本発明のガラス飛散防止フィルムを有するタッチパネル付き液晶表示装置の構成の一例を、図1及び図2をもって説明する。
<Liquid crystal display with touch panel>
An example of the configuration of a liquid crystal display device with a touch panel having the glass scattering prevention film of the present invention will be described with reference to FIGS.
 図1は、本発明のタッチパネル付き液晶表示装置の模式図である。 FIG. 1 is a schematic diagram of a liquid crystal display device with a touch panel according to the present invention.
 本発明に係るタッチパネルモジュールは、表面側からガラス基板1、該ガラス基板の一方の表面上に第1電極パターン2と、第1電極パターン2上を被うように前記表面上に形成された透明な絶縁膜3と、該絶縁膜上に形成され、第1電極パターン2の延びる方向であるX方向とは直交するY方向に配置される第2電極パターン4と、第2電極パターン4上を被うように前記表面上に形成された透明な絶縁膜からなる保護膜3、から構成される格子状の一対の透明導電膜を有する。前記ガラス基板の表面はタッチ面となっている。 The touch panel module according to the present invention includes a glass substrate 1 from the surface side, a first electrode pattern 2 on one surface of the glass substrate, and a transparent formed on the surface so as to cover the first electrode pattern 2 An insulating film 3, a second electrode pattern 4 formed on the insulating film, arranged in the Y direction perpendicular to the X direction, which is the direction in which the first electrode pattern 2 extends, and the second electrode pattern 4 It has a pair of lattice-like transparent conductive films composed of a protective film 3 made of a transparent insulating film formed on the surface so as to cover. The surface of the glass substrate is a touch surface.
 図2は、本発明に係る格子状の透明導電膜の形成方向と、ガラス飛散防止フィルムの最大弾性率の方向との関係を示した模式図である。 FIG. 2 is a schematic diagram showing the relationship between the formation direction of the lattice-like transparent conductive film according to the present invention and the direction of the maximum elastic modulus of the glass scattering prevention film.
 本発明に係るガラス飛散防止フィルム6は、前記透明導電膜に貼合され、タッチパネルモジュールTを構成する。 The glass scattering prevention film 6 according to the present invention is bonded to the transparent conductive film to constitute a touch panel module T.
 本発明に係るガラス飛散防止フィルム6の最大弾性率の方向12は、前記格子状に形成された一対の透明導電膜のX方向又はY方向の一方の形成方向(11又は12)に対して斜め方向であることが特徴である。本発明でいう「斜め方向」とは、該透明導電膜の一方の形成方向(11又は12)に対して同一の方向の角度を有しない状態をいう。このように斜め方向に貼合することで、ガラス飛散防止効果とともに、ITO電極にかかる力を緩和しクラックの発生を防止することができる。 The direction 12 of the maximum elastic modulus of the glass scattering prevention film 6 according to the present invention is oblique with respect to one formation direction (11 or 12) in the X direction or the Y direction of the pair of transparent conductive films formed in the lattice shape. It is the feature that it is a direction. In the present invention, the “oblique direction” refers to a state where the transparent conductive film does not have an angle in the same direction with respect to one formation direction (11 or 12). By bonding in an oblique direction in this way, the force applied to the ITO electrode can be relaxed and the occurrence of cracks can be prevented together with the glass scattering prevention effect.
 更に、該ガラス飛散防止フィルム6の最大弾性率の方向12が、該格子状に形成された一対の透明導電膜のX方向又はY方向の一方の形成方向(11又は12)を0°としたときに、該形成方向に対して20~70°の範囲内、又は110~160°の範囲内の角度で斜め方向に透明導電膜に貼合され、タッチパネルモジュールTを構成することが好ましい。 Further, the direction 12 of the maximum elastic modulus of the glass scattering prevention film 6 is set to 0 ° in one of the X-direction or Y-direction (11 or 12) of the pair of transparent conductive films formed in the lattice shape. Sometimes, it is preferable that the touch panel module T is constituted by being bonded to the transparent conductive film obliquely at an angle within a range of 20 to 70 ° or 110 to 160 ° with respect to the forming direction.
 上記範囲内の角度で斜め方向に貼合されると、ガラス飛散防止効果、及びITO電極のクラック発生防止効果が顕著に向上し好ましい。また上記角度は35~60°の範囲内、又は125~150°の範囲内であることが、斜交い(はすかい)の効果を高める上でより好ましく、特に好ましくは40~50°の範囲内、又は130~140°の範囲内の角度である。 Bonding in an oblique direction at an angle within the above range is preferable because the glass scattering prevention effect and the ITO electrode cracking prevention effect are significantly improved. Further, the angle is preferably in the range of 35 to 60 °, or in the range of 125 to 150 °, from the viewpoint of enhancing the effect of crossing, particularly preferably 40 to 50 °. An angle within a range or within a range of 130-140 °.
 更に該タッチパネルモジュールTは粘着層8を介して液晶表示パネル9に貼合される。ガラス飛散防止フィルム6にハードコート層が設けられる場合は、ハードコート層7を有するガラス飛散防止フィルムとなる。 Further, the touch panel module T is bonded to the liquid crystal display panel 9 through the adhesive layer 8. When a hard coat layer is provided on the glass scattering prevention film 6, the glass scattering prevention film having the hard coat layer 7 is obtained.
 すなわち、本発明のタッチパネル付き液晶表示装置の基本的な構成は、表面側からガラス基板、透明導電膜、ガラス飛散防止フィルム、粘着層、液晶表示パネルの各々が貼合されている構成をなしている。 That is, the basic structure of the liquid crystal display device with a touch panel of the present invention is such that a glass substrate, a transparent conductive film, a glass scattering prevention film, an adhesive layer, and a liquid crystal display panel are bonded from the surface side. Yes.
 ガラス飛散防止フィルムを用いる第1の目的はガラス基板が割れた時の飛散防止であるから、本発明に係るガラス飛散防止フィルムの厚さは、飛散防止、軽量化、薄膜化の観点から10~60μmの範囲内であることが好ましい。より好ましくは20~50μmの範囲内である。 Since the first purpose of using the glass scattering prevention film is to prevent scattering when the glass substrate is cracked, the thickness of the glass scattering prevention film according to the present invention is 10 to 10 in terms of prevention of scattering, weight reduction, and thinning. It is preferably within the range of 60 μm. More preferably, it is in the range of 20 to 50 μm.
 最初に本発明に係るガラス飛散防止フィルム以外の各要素について説明する。 First, each element other than the glass scattering prevention film according to the present invention will be described.
 (ガラス基板)
 本発明に係るガラス基板は、強化ガラスのシートからなり、フラットパネル用のガラス基板であれば特に限定されないが、光学用の合成石英ガラス、強化ガラスなどが用いられる。従来は軽量化の観点でポリエチレンテレフタレート(PET)樹脂、ポリカーボネート樹脂(PC)その他のエンプラ樹脂、又はノルボルネン等の環状オレフィン系樹脂などのシート樹脂シートが用いられる場合があったが、いずれも視認性や高級感、強度の点に問題があり、強化ガラスのシートが剥き出しのまま用いられている。
(Glass substrate)
Although the glass substrate which concerns on this invention consists of a sheet | seat of a tempered glass, if it is a glass substrate for flat panels, it will not specifically limit, Optical synthetic quartz glass, tempered glass, etc. are used. Conventionally, sheet resin sheets such as polyethylene terephthalate (PET) resin, polycarbonate resin (PC) and other engineering plastic resins, or cyclic olefin-based resins such as norbornene have been used from the viewpoint of weight reduction. There is a problem in terms of high quality and strength, and a sheet of tempered glass is used as it is exposed.
 ところが、強化ガラス基板のみで用いると、携帯端末機器を落とした際にガラス基板が破損し、ガラス基板が飛散するという問題があった。そのため、その強化ガラス基板の表面に粘着剤層付きのガラス飛散防止フィルムフィルムを貼り合せて、ガラス基板の飛散を防止することが検討された。例えば安価で飛散防止効果のあるポリエチレンテレフタレート(PET)フィルムや、特許文献1に開示されているようなトリアセチルセルロースフィルムを表面に貼合する技術が挙げられるが、いずれもガラス基板表面に貼合するガラス飛散防止フィルムであるため、本発明の効果であるガラス飛散防止効果とともに、ITO電極のクラック発生を防止することを目的としたものではない。 However, when only the tempered glass substrate is used, there is a problem that the glass substrate is broken when the portable terminal device is dropped and the glass substrate is scattered. Therefore, it has been studied to prevent the glass substrate from scattering by bonding a glass scattering prevention film film with an adhesive layer to the surface of the tempered glass substrate. For example, there is a technique for bonding a polyethylene terephthalate (PET) film that is inexpensive and has an anti-scattering effect or a triacetyl cellulose film as disclosed in Patent Document 1 to the surface. Since it is a glass scattering prevention film, it is not intended to prevent the ITO electrode from cracking with the glass scattering prevention effect which is the effect of the present invention.
 (透明導電膜)
 透明導電膜本体は静電容量方式のものであって、基板表面に形成される第1電極パターン及び第2電極パターンと、これら電極パターンの間に配置される透明な絶縁膜とからなる。透明な絶縁膜は特に制限されるものではなく、例えばSiOなどが用いられる。
(Transparent conductive film)
The transparent conductive film main body is of an electrostatic capacity type, and includes a first electrode pattern and a second electrode pattern formed on the substrate surface, and a transparent insulating film disposed between these electrode patterns. The transparent insulating film is not particularly limited, and for example, SiO 2 is used.
 第1電極パターン及び第2電極パターンは、ITO(インジウム-スズ酸化物)又はIZO(インジウム-亜鉛酸化物)などの透明導電材料、又は金属細線からなる。特に導電性、透明性の観点からITOが用いられている。 The first electrode pattern and the second electrode pattern are made of a transparent conductive material such as ITO (indium-tin oxide) or IZO (indium-zinc oxide), or a thin metal wire. In particular, ITO is used from the viewpoint of conductivity and transparency.
 第1電極パターンは、例えばヨコ方向(X方向)に延びる導電パターンが配列されてなり、第2電極パターン層は、例えばタテ方向(Y方向)に延びる電極パターンが配列されて格子状の導電膜を形成する。該導電膜は、基板上を電極パターン形状にマスキングしアルカリエッチング処理により形成する方法や、基板に所定のレーザー照射を行い導電膜を連続的にパターニングすることで設けることができる。 For example, the first electrode pattern is formed by arranging conductive patterns extending in the horizontal direction (X direction), and the second electrode pattern layer is formed by arranging electrode patterns extending in the vertical direction (Y direction), for example. Form. The conductive film can be provided by a method in which the substrate is masked in an electrode pattern shape and formed by an alkali etching process, or by performing predetermined laser irradiation on the substrate and continuously patterning the conductive film.
 第1電極パターン及び第2電極パターンの端部には、不図示の取り出し電極が配置されている。ユーザが、ガラス基板表面導を指やペン等で押下することにより、第2電極パターンが、ガラス基板上の第1電極パターンと接触する。この接触を端部の取り出し電極を介して電気的に検出することにより、押下された位置が検出される構成である。ガラス基板の第1電極パターン上には、必要に応じてドット状のスペーサが配置されてもよい。 A take-out electrode (not shown) is arranged at the ends of the first electrode pattern and the second electrode pattern. When the user presses the glass substrate surface guide with a finger or a pen, the second electrode pattern comes into contact with the first electrode pattern on the glass substrate. The pressed position is detected by electrically detecting this contact through an extraction electrode at the end. On the 1st electrode pattern of a glass substrate, a dot-shaped spacer may be arrange | positioned as needed.
 (液晶表示パネル)
 液晶表示パネルとしては、反射型、透過型、半透過型液晶表示装置又は、TN型、STN型、OCB型、VA型、IPS型、ECB型等の各種駆動方式の液晶表示装置が好ましく用いられる。
(LCD panel)
As the liquid crystal display panel, a reflection type, a transmission type, a transflective type liquid crystal display device, or a liquid crystal display device of various driving methods such as a TN type, STN type, OCB type, VA type, IPS type, ECB type, etc. is preferably used. .
 液晶表示パネル表面には不図示の偏光板が液晶セルの表面に貼合されている。 A polarizing plate (not shown) is bonded to the surface of the liquid crystal cell on the surface of the liquid crystal display panel.
 偏光板は偏光膜とそれを保護する偏光板保護フィルムによって構成されている。主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるが、これのみに限定されるものではない。 The polarizing plate is composed of a polarizing film and a polarizing plate protective film that protects it. The main component, a polarizing film, is an element that allows only light in a plane of polarization in a certain direction to pass. A typical polarizing film currently known is a polyvinyl alcohol-based polarizing film, which is a polyvinyl alcohol-based film. There are dyed iodine and dyed dichroic dye, but it is not limited to this.
 例えば、偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5~30μmの範囲、好ましくは8~15μmの範囲の偏光膜が好ましく用いられる。 For example, the polarizing film is formed by forming a polyvinyl alcohol aqueous solution and uniaxially stretching it and dyeing or dyeing and then uniaxially stretching, and then preferably performing a durability treatment with a boron compound. . A polarizing film with a thickness of 5 to 30 μm, preferably 8 to 15 μm, is preferably used.
 前記保護フィルムは樹脂フィルムであれば特に制限はないが、光学特性、ケン化処理による貼合性等の生産性の観点から、セルトーストリアセテートフィルムが一般に使用されている。好ましく用いられる市販の偏光板保護フィルムとしては、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC4FR-2、KC8UE、KC4UE(コニカミノルタアドバンストレイヤー(株)製)等が挙げられる。 The protective film is not particularly limited as long as it is a resin film, but a cellulose triacetate film is generally used from the viewpoint of productivity such as optical properties and bonding properties by saponification treatment. Commercially available polarizing plate protective films preferably used include KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC4FRK, Konica Minolta Advanced Layer Co., Ltd.).
 本発明に係るガラス飛散防止フィルムが、面内位相差値Roが、温度23℃、相対湿度55%RHの環境下、光波長590nmによる測定において105~160nmの範囲であるλ/4板であり、かつ該ガラス飛散防止フィルムの面内の遅相軸の方向が、前記偏光板の吸収軸の方向に対して、好ましくは20~70°の範囲内、又は110~160°の範囲内の角度で斜め方向に配置されている場合は、該偏光板は円偏光板として機能する。このように本発明に係るガラス飛散防止フィルムと前記偏光板の貼合の仕方を調整することで、偏光サングラスを着用して表示を観察した時の視認性が格段に改善される。 The glass scattering prevention film according to the present invention is a λ / 4 plate whose in-plane retardation value Ro is in the range of 105 to 160 nm in the measurement at a light wavelength of 590 nm under the environment of a temperature of 23 ° C. and a relative humidity of 55% RH. The angle of the slow axis in the plane of the glass scattering prevention film is preferably in the range of 20 to 70 ° or in the range of 110 to 160 ° with respect to the direction of the absorption axis of the polarizing plate. In this case, the polarizing plate functions as a circularly polarizing plate. Thus, the visibility at the time of observing a display wearing polarized sunglasses is remarkably improved by adjusting the way of bonding of the glass scattering prevention film according to the present invention and the polarizing plate.
 (粘着層)
 粘着層5及び粘着層8に用いられる粘着剤は、熱硬化性樹脂や紫外線(UV)硬化性樹脂を含有し、光学的に透明であることはもとより、適度な粘弾性や粘着特性を示すものが好ましい。
(Adhesive layer)
The pressure-sensitive adhesive used for the pressure-sensitive adhesive layer 5 and the pressure-sensitive adhesive layer 8 contains a thermosetting resin or an ultraviolet (UV) curable resin, and exhibits moderate viscoelasticity and pressure-sensitive adhesive properties as well as being optically transparent. Is preferred.
 具体的な粘着剤としては、アクリル系共重合体やエポキシ系樹脂、ポリウレタン、シリコーン系ポリマー、ポリエーテル、ブチラール系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、合成ゴムなどの接着剤若しくは粘着剤等を挙げることができる。本発明では、熱硬化法、光硬化法等により膜形成させ、硬化せしめる粘着剤であることが好ましく、中でも、アクリル系共重合体、エポキシ系樹脂は、最も粘着物性を制御しやすく、かつ透明性や耐候性、耐久性などに優れていて好ましく用いることができる。 Specific adhesives include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethanes, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, synthetic rubbers, etc. Can be mentioned. In the present invention, it is preferable that the adhesive is a film formed and cured by a thermosetting method, a photocuring method, or the like, and among them, an acrylic copolymer and an epoxy resin are most easily controlled in adhesive property and are transparent. It is excellent in properties, weather resistance, durability and the like, and can be preferably used.
 粘着層の厚さは1~100μmの範囲であることが好ましく、5~50μmの範囲であることが好ましく、5~30μmの範囲であることが特に好ましい。塗布を行う場合、接着剤は、25℃での粘度が一般に1000~6000mPa・secの範囲であり、好ましくは2000~4000mPa・secの範囲、例えば3000~4000mPa・secの範囲である。ここで、粘度は、例えば、トキメック(東京計器)社のB型粘度計BH IIを用い、静置後、ローターを30秒間回転させて読み取った値である。完全に硬化した後の接着剤樹脂のヤング率(E)は、好ましくは1~100MPaの範囲、例えば5~20MPaの範囲である。 The thickness of the pressure-sensitive adhesive layer is preferably in the range of 1 to 100 μm, more preferably in the range of 5 to 50 μm, and particularly preferably in the range of 5 to 30 μm. When coating, the adhesive generally has a viscosity at 25 ° C. in the range of 1000 to 6000 mPa · sec, preferably in the range of 2000 to 4000 mPa · sec, for example in the range of 3000 to 4000 mPa · sec. Here, the viscosity is, for example, a value read by using a B-type viscometer BH II manufactured by Tokimec (Tokyo Keiki) and rotating the rotor for 30 seconds after standing. The Young's modulus (E) of the adhesive resin after being completely cured is preferably in the range of 1 to 100 MPa, for example, in the range of 5 to 20 MPa.
 粘着剤の貯蔵弾性率としては、25℃における貯蔵弾性率が1.0×10~1.0×10Paの範囲であることが好ましく、1.5×10~1.0×10Paの範囲であることがより好ましい。粘着剤の貯蔵弾性率が1.0×10Pa以上の場合、十分な裁断加工適性及び高い鉛筆硬度が得られ、1.0×10Pa以下の場合、十分な粘着力が得られる。粘着層の貯蔵弾性率の測定は、粘着層成形組成物をポリエチレンテレフタレートフィルム支持体上に形成した後、これを剥離し、この粘着剤層について、動的粘弾性測定装置(レオメトリック社製の「ARES」)により、昇温モード(昇温速度5℃/分、周波数10Hz)で、0℃の貯蔵弾性率を測定する。 As the storage elastic modulus of the pressure-sensitive adhesive, the storage elastic modulus at 25 ° C. is preferably in the range of 1.0 × 10 4 to 1.0 × 10 8 Pa, and 1.5 × 10 5 to 1.0 × 10. More preferably, it is in the range of 7 Pa. When the storage elastic modulus of the adhesive is 1.0 × 10 4 Pa or more, sufficient cutting processability and high pencil hardness are obtained, and when it is 1.0 × 10 8 Pa or less, sufficient adhesive strength is obtained. The storage elastic modulus of the adhesive layer was measured by forming an adhesive layer molding composition on a polyethylene terephthalate film support, then peeling it off, and using this adhesive layer, a dynamic viscoelasticity measuring device (manufactured by Rheometric Co., Ltd.). The storage elastic modulus at 0 ° C. is measured in the temperature rising mode (temperature rising rate 5 ° C./min, frequency 10 Hz) by “ARES”).
 アクリル系粘着剤としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸デシル等の炭素数1~20アクリル酸アルキルエステルの一種又は二種以上と、前記アクリル酸アルキルエステルと共重合可能な(メタ)アクリル酸、イタコン酸、マレイン酸、無水マレイン酸、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル等の官能基モノマーとの共重合体に、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等の架橋剤を反応させたものが挙げられる。 Acrylic adhesives include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, (meth) acrylic 1 or 2 or more kinds of alkyl esters of 1 to 20 carbon atoms, such as 2-ethylbutyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, decyl (meth) acrylate, and the alkyl acrylate Copolymerization with functional monomers such as (meth) acrylic acid, itaconic acid, maleic acid, maleic anhydride, 2-hydroxyethyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate that can be copolymerized with esters In combination, isocyanate crosslinker, epoxy crosslinker, aziridine crosslinker, metal chelate crosslinker It includes a crosslinking agent that is reacted.
 エポキシ系樹脂粘着剤としては、紫外線光硬化性のエポキシ樹脂をシリコーンエラストマーで変性し、沈降シリカを無機充填材として加えた樹脂組成物を挙げることができ、例えば、Edmund Optics社の「NORLAND光学接着剤NOA68」や、ソニーケミカル&インフォメーションデバイス社の「光学弾性樹脂(Super View Resin)」を用いることができる。 Examples of the epoxy resin adhesive include a resin composition obtained by modifying an ultraviolet light curable epoxy resin with a silicone elastomer and adding precipitated silica as an inorganic filler. For example, “NORLANDD optical adhesion” by Edmund Optics is available. Agent NOA68 "or" Super Elastic Resin "manufactured by Sony Chemical & Information Device Corporation can be used.
 前記粘着剤の光硬化促進のため、さらに光重合開始剤を含有させることが好ましい。光重合開始剤の配合量としては、質量比で、光重合開始剤:粘着剤=20:100~0.01:100の範囲で含有することが好ましい。 In order to accelerate photocuring of the pressure-sensitive adhesive, it is preferable to further contain a photopolymerization initiator. The blending amount of the photopolymerization initiator is preferably contained in a mass ratio in the range of photopolymerization initiator: adhesive = 20: 100 to 0.01: 100.
 光重合開始剤としては、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。これらは市販のものを使用してもよく、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例として挙げられる。 Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. It is not a thing. Commercially available products may be used, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
 粘着層を設ける方法としては、上記粘着剤含有組成物を塗布により設けることが好ましく、例えば、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法、カーテンコート法などの従来公知の方法が挙げられる。 As a method for providing the adhesive layer, it is preferable to provide the above-mentioned adhesive-containing composition by coating, for example, bar coating method, knife coating method, roll coating method, blade coating method, die coating method, gravure coating method, curtain coating method. Conventionally known methods such as
 熱硬化の場合は、乾燥機内で80℃以上の加熱を加えることが好ましく、加熱時間は適宜設定される。 In the case of thermosetting, it is preferable to apply heating at 80 ° C. or higher in a dryer, and the heating time is appropriately set.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cmの範囲、好ましくは50~300mJ/cmの範囲である。またUV硬化後の加熱処理温度としては80℃以上が好ましい。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually in the range of 50 to 1000 mJ / cm 2 , preferably in the range of 50 to 300 mJ / cm 2 . The heat treatment temperature after UV curing is preferably 80 ° C. or higher.
 本発明に係るガラス飛散防止フィルムは、JIS K7142-2008に準拠して測定した光波長589nmにおける屈折率が1.45~1.55の範囲が好ましい。 The glass scattering prevention film according to the present invention preferably has a refractive index in the range of 1.45 to 1.55 at a light wavelength of 589 nm measured according to JIS K7142-2008.
 また、粘着層の屈折率は1.40~1.55の範囲が好ましく、更に好ましくは1.45~1.52の範囲である。ガラス飛散防止フィルムと粘着層の屈折率を前記範囲とすることで、ガラス基板等に貼り合わせた際の屈折率が小さく、干渉縞に優れる。 Also, the refractive index of the adhesive layer is preferably in the range of 1.40 to 1.55, more preferably in the range of 1.45 to 1.52. By making the refractive index of a glass scattering prevention film and an adhesion layer into the said range, the refractive index at the time of bonding to a glass substrate etc. is small, and it is excellent in an interference fringe.
 粘着層の屈折率は、例えば芳香環を含有させることで屈折率を高くする方法、又は、フッ素原子を含有させることで屈折率を低くする方法などで調節できる。 The refractive index of the adhesive layer can be adjusted by, for example, a method of increasing the refractive index by containing an aromatic ring or a method of decreasing the refractive index by containing a fluorine atom.
 本発明では、前記タッチパネルモジュールのガラス飛散防止フィルムに上記粘着層を設けた後、液晶表示パネルと貼合するまで表面に剥離シートが積層されることが好ましい。 In the present invention, it is preferable that a release sheet is laminated on the surface until the adhesive layer is provided on the glass scattering prevention film of the touch panel module and then bonded to the liquid crystal display panel.
 剥離シートは、種々の剥離シートを使用できるが、代表的には剥離性を表面に有する基材シートから構成される。基材シートとしては、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂などのフィルムや、これらのフィルムに填料などの充填剤を配合したフィルムや合成紙などが挙げられる。また、グラシン紙、クレーコート紙、上質紙などの紙基材が挙げられる。 Although various release sheets can be used as the release sheet, it is typically composed of a base sheet having peelability on the surface. Examples of the base sheet include films such as polyester resin, polyethylene resin, polypropylene resin, polystyrene resin, and polycarbonate resin, films in which fillers such as fillers are blended with these films, and synthetic paper. Moreover, paper base materials, such as glassine paper, clay coat paper, and quality paper, are mentioned.
 基材シートの表面に剥離性を持たせるには、その表面に熱硬化性シリコーン樹脂や、紫外線硬化型シリコーン樹脂等の剥離剤を塗布等により付着させる。剥離剤の塗布量は、0.03~3.0g/mの範囲が好ましい。剥離シートは、剥離剤を有する表面を前記粘着層に接して積層される。 In order to give the surface of the substrate sheet peelability, a release agent such as a thermosetting silicone resin or an ultraviolet curable silicone resin is attached to the surface by coating or the like. The coating amount of the release agent is preferably in the range of 0.03 to 3.0 g / m 2 . The release sheet is laminated with the surface having the release agent in contact with the adhesive layer.
 <ガラス飛散防止フィルムの弾性率>
 ガラス飛散防止フィルムの弾性率の測定は、温度23℃、相対湿度55%RHの環境下で試料を24時間調湿し、JIS K7127に記載の方法に準じて、引っ張り試験器(株)オリエンテック製テンシロンRTA-100を使用して弾性率を求める。試験片の形状は1号形試験片で、試験速度は10mm/分の条件で、任意方向に対し0°から15°毎の方向に測定し求めた弾性率のうち最大のものを最大弾性率とし、更にその方向を最大弾性率の方向とする。
<Elastic modulus of glass scattering prevention film>
The elastic modulus of the glass scattering prevention film was measured by conditioning the sample for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH, and following the method described in JIS K7127 The elastic modulus is obtained using Tensilon RTA-100. The shape of the test piece is No. 1 test piece, the test speed is 10 mm / min, and the maximum elastic modulus is the maximum elastic modulus obtained by measuring from 0 ° to 15 ° in any direction. And that direction is the direction of the maximum elastic modulus.
 本発明のタッチパネル付き液晶表示装置に使用されるガラス飛散防止フィルムの最大弾性率は、2000MPa以上であることが好ましく、3000~8000MPaの範囲が好ましく、3500~7000MPaの範囲がより好ましい。 The maximum elastic modulus of the glass scattering prevention film used in the liquid crystal display device with a touch panel of the present invention is preferably 2000 MPa or more, preferably in the range of 3000 to 8000 MPa, and more preferably in the range of 3500 to 7000 MPa.
 最大弾性率が2000MPa以上であると、ガラス飛散防止効果及びITO電極のクラック発生防止効果の両者が、又はいずれかが十分となる。2000~8000MPaの範囲であれば十分にガラス飛散防止効果及びITO電極のクラック発生防止効果を達成できる。 If the maximum elastic modulus is 2000 MPa or more, either or both of the glass scattering prevention effect and the ITO electrode cracking prevention effect are sufficient. If it is in the range of 2000 to 8000 MPa, the glass scattering prevention effect and the ITO electrode cracking prevention effect can be achieved sufficiently.
 ガラス飛散防止フィルムに前記好ましい範囲の最大弾性率を付与するには、用いる樹脂の分子を一方向に均一に配向させることで達成できる。用いる樹脂の分子を一方向に均一に配向させるには、特に制限されるものではないが、樹脂フィルムを製造する際にフィルムの幅手方向、長手方向又は斜め方向に延伸処理を行うことが好ましい。最大弾性率の方向は該延伸処理の方向に一致する。 In order to give the maximum elastic modulus in the above preferred range to the glass scattering prevention film, it can be achieved by uniformly orienting the molecules of the resin used in one direction. Although it does not restrict | limit in particular in order to orientate the molecule | numerator of resin to be used uniformly in one direction, It is preferable to perform a extending | stretching process in the width direction, longitudinal direction, or diagonal direction of a film when manufacturing a resin film. . The direction of the maximum elastic modulus coincides with the direction of the stretching treatment.
 <ガラス飛散防止フィルム>
 本発明に係る飛散防止フィルムとしては、熱可塑性樹脂を用いることが透明性や成型性の観点で好ましい。以下、詳細な説明をする。
<Glass scattering prevention film>
As the scattering prevention film according to the present invention, it is preferable to use a thermoplastic resin from the viewpoints of transparency and moldability. Detailed description will be given below.
 (熱可塑性樹脂)
 本発明において、「熱可塑性樹脂」とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂のことをいう。
(Thermoplastic resin)
In the present invention, the “thermoplastic resin” refers to a resin that becomes soft when heated to the glass transition temperature or the melting point and can be molded into a desired shape.
 熱可塑性樹脂としては、一般的汎用樹脂としては、セルロースエステル樹脂、ポリエチレン(PE樹脂)、高密度ポリエチレン樹脂、中密度ポリエチレン樹脂、低密度ポリエチレン樹脂、ポリプロピレン(PP)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン(PS)樹脂、ポリ酢酸ビニル(PVAc)樹脂、テフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、AS樹脂、アクリル樹脂(PMMA)等を用いることができる。 General thermoplastic resins include cellulose ester resin, polyethylene (PE resin), high density polyethylene resin, medium density polyethylene resin, low density polyethylene resin, polypropylene (PP) resin, polyvinyl chloride (PVC). Resin, polyvinylidene chloride resin, polystyrene (PS) resin, polyvinyl acetate (PVAc) resin, Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene resin), AS resin, acrylic resin ( PMMA) or the like can be used.
 また、強度や壊れにくさを特に要求される場合、ポリアミド(PA)樹脂、ナイロン、ポリアセタール(POM)樹脂、ポリカーボネート(PC)樹脂、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリエチレンテレフタレート(PET)樹脂、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)樹脂、環状ポリオレフィン(COP)樹脂等を用いることができる。 When strength and resistance to breakage are particularly required, polyamide (PA) resin, nylon, polyacetal (POM) resin, polycarbonate (PC) resin, modified polyphenylene ether (m-PPE, modified PPE, PPO) resin, poly Butylene terephthalate (PBT) resin, polyethylene terephthalate (PET) resin, glass fiber reinforced polyethylene terephthalate (GF-PET) resin, cyclic polyolefin (COP) resin, and the like can be used.
 さらに高い熱変形温度と長期使用できる特性を要求される場合は、ポリフェニレンスルファイド(PPS)樹脂、ポリテトラフロロエチレン(PTFE)樹脂、ポリスルホン樹脂、ポリエーテルサルフォン樹脂、非晶ポリアリレート樹脂、液晶ポリマー、ポリエーテルエーテルケトン樹脂、熱可塑性ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂等を用いることができる。 When higher heat distortion temperature and long-term use characteristics are required, polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, polysulfone resin, polyether sulfone resin, amorphous polyarylate resin, liquid crystal A polymer, polyetheretherketone resin, thermoplastic polyimide (PI) resin, polyamideimide (PAI) resin, or the like can be used.
 本発明の効果発現の観点から、熱可塑性樹脂が、ポリカーボネート樹脂、アクリル樹脂、ポリオレフィン樹脂、セルロースエステル樹脂、から選ばれる樹脂であることが好ましい。中でも透明性、光学特性、生産性の観点でセルロースエステル樹脂を用いたフィルムであることが好ましい。 From the viewpoint of manifesting the effects of the present invention, the thermoplastic resin is preferably a resin selected from a polycarbonate resin, an acrylic resin, a polyolefin resin, and a cellulose ester resin. Among these, a film using a cellulose ester resin is preferable from the viewpoint of transparency, optical properties, and productivity.
 以下、本発明において、特に好適な樹脂について詳細な説明をする。 Hereinafter, a particularly suitable resin in the present invention will be described in detail.
 〈ポリカーボネート樹脂〉
 本発明では、種々の公知のポリカーボネート樹脂を使用することができる。本発明においては、特に芳香族ポリカーボネートを用いることが好ましい。当該芳香族ポリカーボネートについて特に制約はなく、所望するフィルムの諸特性が得られる芳香族ポリカーボネートであれば特に制約はない。
<Polycarbonate resin>
In the present invention, various known polycarbonate resins can be used. In the present invention, it is particularly preferable to use an aromatic polycarbonate. There is no restriction | limiting in particular about the said aromatic polycarbonate, and there will be no restriction | limiting in particular if it is an aromatic polycarbonate from which the various characteristics of a desired film are acquired.
 一般に、ポリカーボネートと総称される高分子材料は、その合成手法において重縮合反応が用いられて、主鎖が炭酸結合で結ばれているものを総称するが、これらの内でも、一般に、フェノール誘導体と、ホスゲン、ジフェニルカーボネートらから重縮合で得られるものを意味する。通常、ビスフェノール-Aと呼称されている2,2-ビス(4-ヒドロキシフェニル)プロパンをビスフェノール成分とする繰り返し単位で表される芳香族ポリカーボネートが好ましく選ばれるが、適宜各種ビスフェノール誘導体を選択することで、芳香族ポリカーボネート共重合体を構成することができる。 In general, a polymer material collectively referred to as polycarbonate is a generic term for a polymer material in which a polycondensation reaction is used in its synthesis method and the main chain is linked by a carbonic acid bond. , Phosgene, diphenyl carbonate and the like obtained by polycondensation. Usually, an aromatic polycarbonate represented by a repeating unit having 2,2-bis (4-hydroxyphenyl) propane called bisphenol-A as a bisphenol component is preferably selected. Various bisphenol derivatives should be selected as appropriate. Thus, an aromatic polycarbonate copolymer can be constituted.
 かかる共重合成分としてこのビスフェノール-A以外に、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)-2-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフロロプロパン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)サルファイド、ビス(4-ヒドロキシフェニル)スルホン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等を挙げることができる。 In addition to this bisphenol-A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) -2-phenyl Ethane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) sulfide, bis ( 4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) -3,3,5-to It can be exemplified methyl cyclohexane.
 また、一部にテレフタル酸及び/又はイソフタル酸成分を含む芳香族ポリエステルカーボネートを使用することも可能である。このような構成単位をビスフェノール-Aからなる芳香族ポリカーボネートの構成成分の一部に使用することにより芳香族ポリカーボネートの性質、例えば耐熱性、溶解性を改良することができるが、このような共重合体についても本発明は有効である。 It is also possible to use an aromatic polyester carbonate partially containing terephthalic acid and / or isophthalic acid components. By using such a structural unit as a part of the structural component of the aromatic polycarbonate composed of bisphenol-A, the properties of the aromatic polycarbonate, such as heat resistance and solubility, can be improved. The present invention is also effective for coalescence.
 ここで用いられる芳香族ポリカーボネートの粘度平均分子量は、10000以上、200000以下であれば好適に用いられる。粘度平均分子量20000~120000の範囲が特に好ましい。粘度平均分子量が10000~200000の範囲であると、得られるフィルムの機械的強度が十分となり、またドープの粘度が大きくなり過ぎず取り扱い性がよい。粘度平均分子量は市販の高速液体クロマトグラフィー等で測定することができる。 The viscosity average molecular weight of the aromatic polycarbonate used here is preferably 10,000 to 200,000. A viscosity average molecular weight of 20,000 to 120,000 is particularly preferred. When the viscosity average molecular weight is in the range of 10,000 to 200,000, the resulting film has sufficient mechanical strength, and the viscosity of the dope does not increase so much that the handleability is good. The viscosity average molecular weight can be measured by commercially available high performance liquid chromatography.
 芳香族ポリカーボネートのガラス転移温度は200℃以上であることが高耐熱性のフィルムを得る上で好ましく、より好ましくは230℃以上である。これらは、上記共重合成分を適宜選択して得ることができる。ガラス転移温度は、DSC装置(示差走査熱量分析装置)にて測定することができ、例えばエスアイアイ・ナノテクノロジー株式会社製:RDC220にて、10℃/分の昇温条件によって求められる、ベースラインが偏奇し始める温度である。 The glass transition temperature of the aromatic polycarbonate is preferably 200 ° C. or higher for obtaining a highly heat-resistant film, more preferably 230 ° C. or higher. These can be obtained by appropriately selecting the copolymerization component. The glass transition temperature can be measured with a DSC apparatus (differential scanning calorimetry apparatus), for example, a baseline determined by SII NanoTechnology Co., Ltd .: RDC220 under a temperature rising condition of 10 ° C./min. Is the temperature at which it begins to deviate.
 上記芳香族ポリカーボネートを含むドープ組成物に用いる溶媒は、メチレンクロライド、及び炭素数1~6の直鎖又は分岐鎖状の脂肪族アルコールを4~14質量部含有する混合溶媒であることが好ましい。 The solvent used in the dope composition containing the aromatic polycarbonate is preferably a mixed solvent containing 4 to 14 parts by mass of methylene chloride and a linear or branched aliphatic alcohol having 1 to 6 carbon atoms.
 上記炭素数1~6の直鎖又は分岐鎖状の脂肪族アルコールの混合量は、好ましくは4~12質量部である。このような混合溶媒を用い、従来よりも高い残留溶媒濃度でウェブを剥離することにより、ウェブ剥離時の強い静電気の発生を抑制し、これによりベルトが損傷したり、フィルムのスジやムラ、微小傷の発生を防止することができる。 The mixing amount of the linear or branched aliphatic alcohol having 1 to 6 carbon atoms is preferably 4 to 12 parts by mass. By using such a mixed solvent, the web is peeled off at a higher residual solvent concentration than before, thereby suppressing the generation of strong static electricity when the web is peeled off, thereby causing damage to the belt, film streaks, unevenness, and minuteness. Scratches can be prevented from occurring.
 加えるアルコールの種類は用いる溶媒により制限される。アルコールと当該溶媒とが相溶性があることが必要条件である。これらは単独で加えても良いし、二種類以上組み合わせても問題ない。アルコールとしては、炭素数1~6、好ましくは1~4、より好ましくは2~4の鎖状、あるいは分岐した脂肪族アルコールが好ましい。具体的にはメタノール、エタノール、イソプロパノール、ターシャリ-ブタノールなどが挙げられる。 The type of alcohol added is limited by the solvent used. It is a necessary condition that the alcohol and the solvent are compatible. These may be added alone or in combination of two or more. As the alcohol, a linear or branched aliphatic alcohol having 1 to 6, preferably 1 to 4, more preferably 2 to 4 carbon atoms is preferable. Specific examples include methanol, ethanol, isopropanol, and tert-butanol.
 ドープ組成物中の溶媒は、上記メチレンクロライドと脂肪族アルコールで主に構成されるが、他の溶媒を使用することもできる。その他残りの溶媒としては芳香族ポリカーボネートを高濃度に溶解し、かつアルコールと相溶性があること、更に低沸点溶媒であれば特に限定はない。例えば、芳香族ポリカーボネートに対して溶解力のある溶媒として、メチレンクロライド以外にクロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼンなどのハロゲン系溶媒、1,3-ジオキソラン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル系の溶媒、シクロヘキサノン等のケトン系の溶媒が挙げられる。 The solvent in the dope composition is mainly composed of the above methylene chloride and aliphatic alcohol, but other solvents can also be used. The remaining solvent is not particularly limited as long as it dissolves the aromatic polycarbonate at a high concentration and is compatible with alcohol, and further has a low boiling point. For example, as a solvent having a solubility in aromatic polycarbonate, in addition to methylene chloride, halogen solvents such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 1,3-dioxolane, 1, Examples include cyclic ether solvents such as 4-dioxane and tetrahydrofuran, and ketone solvents such as cyclohexanone.
 ドープ組成物は、結果としてヘイズの低い透明な溶液が得られればいかなる方法で調製してもよい。あらかじめ、ある溶媒に溶解させた芳香族ポリカーボネート溶液に、アルコールを所定量添加してもよいし、アルコールを含む混合溶媒に芳香族ポリカーボネートを溶解させてもよい。ただ先にも述べたようにアルコールは貧溶媒であるため、前者の後から添加する方法ではポリマーの析出によるドープ白濁の可能性があるため、後者の混合溶媒に溶解させる方法が好ましい。 The dope composition may be prepared by any method as long as a transparent solution having a low haze is obtained as a result. A predetermined amount of alcohol may be added to an aromatic polycarbonate solution previously dissolved in a solvent, or the aromatic polycarbonate may be dissolved in a mixed solvent containing alcohol. However, as described above, since alcohol is a poor solvent, the method of adding after the former may cause clouding of the dope due to the precipitation of the polymer. Therefore, the method of dissolving in the latter mixed solvent is preferable.
 〈アクリル樹脂〉
 本発明に用いることができるアクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50~99質量%の範囲、及びこれと共重合可能な他の単量体単位1~50質量%の範囲からなるものが好ましい。
<acrylic resin>
The acrylic resin that can be used in the present invention includes a methacrylic resin. The resin is not particularly limited, but a resin having a range of 50 to 99% by mass of methyl methacrylate units and a range of 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
 共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは二種以上を併用して用いることができる。 Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Saturated acids, maleic acids, fumaric acids, divalent carboxylic acids containing unsaturated groups such as itaconic acid, aromatic vinyl compounds such as styrene, α-methylstyrene, and nucleus-substituted styrene, α, β- such as acrylonitrile, methacrylonitrile, etc. Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used.
 アクリル樹脂は、フィルムとしての機械的強度、フィルムを生産する際の流動性の点から重量平均分子量(Mw)が80000~1000000の範囲であることが好ましい。この分子量とすることで、耐熱性と脆性の両立を図ることができる。 The acrylic resin preferably has a weight average molecular weight (Mw) in the range of 80,000 to 1,000,000 from the viewpoint of mechanical strength as a film and fluidity when the film is produced. With this molecular weight, both heat resistance and brittleness can be achieved.
 なお、アクリル樹脂等の樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下のとおりである。 The weight average molecular weight of a resin such as an acrylic resin can be measured by gel permeation chromatography. The measurement conditions are as follows.
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製) ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Science) Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 2,800,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 アクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁又は乳化重合では30~100℃の範囲、塊状又は溶液重合では80~160℃の範囲で実施しうる。さらに、生成共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The method for producing the acrylic resin is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. The polymerization temperature may be in the range of 30 to 100 ° C. for suspension or emulsion polymerization, and in the range of 80 to 160 ° C. for bulk or solution polymerization. Furthermore, in order to control the reduced viscosity of the produced copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
 アクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。 Commercially available acrylic resins can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
 〈ポリオレフィン樹脂〉
 本発明においては、ポリエチレン樹脂や下記の環状オレフィン樹脂を用いることも好ましい。
<Polyolefin resin>
In the present invention, it is also preferable to use a polyethylene resin or the following cyclic olefin resin.
 環状オレフィン樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。 Examples of the cyclic olefin resin include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
 ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体、又はそれらの水素化物等を挙げることができる。 Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure. Examples thereof include addition polymers of monomers having a monomer, addition copolymers of monomers having a norbornene structure and other monomers, and hydrides thereof.
 これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適に用いることができる。 Among these, a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
 ノルボルネン構造を有する単量体としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一又は相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は一種単独で、あるいは二種以上を組み合わせて用いることができる。 As monomers having a norbornene structure, bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. In addition, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
 極性基の種類としては、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシ基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシ基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。 Examples of the polar group include heteroatoms or atomic groups having heteroatoms. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom. Specific examples of the polar group include a carboxy group, a carbonyloxycarbonyl group, an epoxy group, a hydroxy group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類及びその誘導体、シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエン及びその誘導体などが挙げられる。 Other monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, cyclic conjugated dienes such as cyclohexadiene, cycloheptadiene, and the like. And derivatives thereof.
 ノルボルネン構造を有する単量体の開環重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。 A ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
 ノルボルネン構造を有する単量体と付加共重合可能なほかの単量体としては、例えば、エチレン、プロピレン、1-ブテンなどの炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は一種単独で、あるいは二種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。 Other monomers that can be copolymerized with a monomer having a norbornene structure include, for example, α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, α-olefin is preferable, and ethylene is more preferable.
 ノルボルネン構造を有する単量体の付加重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。 An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
 ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、及びノルボルネン構造を有する単量体とこれと付加共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。 A hydrogenated product of a ring-opening polymer of a monomer having a norbornene structure, a hydrogenated product of a ring-opening copolymer of a monomer having a norbornene structure and another monomer capable of ring-opening copolymerization thereof, Hydrogenated products of addition polymers of monomers having a norbornene structure, and hydrogenated products of addition copolymers of monomers having a norbornene structure and other monomers capable of addition copolymerization with these A known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
 ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90質量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの質量比で100:0~40:60の範囲であるものが好ましい。このような樹脂を用いることにより、長期的に寸法変化がなく、光学特性の安定性に優れる光学フィルムを得ることができる。 Among norbornene-based resins, as a repeating unit, X: bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.12,5] decane-7, 9-diyl-ethylene structure, the content of these repeating units is 90% by mass or more with respect to the entire repeating units of the norbornene resin, and the content ratio of X and the content ratio of Y The ratio is preferably in the range of 100: 0 to 40:60 by mass ratio of X: Y. By using such a resin, it is possible to obtain an optical film that has no dimensional change in the long term and is excellent in stability of optical characteristics.
 本発明に用いる環状オレフィン樹脂の分子量は使用目的に応じて適宜選定される。溶媒としてシクロヘキサン(重合体樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン又はポリスチレン換算の重量平均分子量(Mw)で、通常20000~150000の範囲である。好ましくは25000~100000の範囲、より好ましくは30000~80000の範囲である。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度及び成型加工性が高度にバランスされ好適である。 The molecular weight of the cyclic olefin resin used in the present invention is appropriately selected according to the purpose of use. The polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane as the solvent (toluene when the polymer resin does not dissolve) is usually in the range of 20000 to 150,000. The range is preferably 25,000 to 100,000, more preferably 30,000 to 80,000. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the film are highly balanced and suitable.
 環状オレフィン樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよい。耐久性及び延伸加工性の観点から、好ましくは130~160℃の範囲、より好ましくは135~150℃の範囲である。 The glass transition temperature of the cyclic olefin resin may be appropriately selected according to the purpose of use. From the viewpoint of durability and stretch processability, it is preferably in the range of 130 to 160 ° C, more preferably in the range of 135 to 150 ° C.
 環状オレフィン樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、緩和時間、生産性等の観点から、1.2~3.5の範囲、好ましくは1.5~3.0の範囲、さらに好ましくは1.8~2.7の範囲である。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin resin is in the range of 1.2 to 3.5, preferably 1.5 to 3 in terms of relaxation time, productivity, and the like. Is in the range of 0.0, more preferably in the range of 1.8 to 2.7.
 本発明に用いる環状オレフィン樹脂は、光弾性係数の絶対値が10×10-12Pa-1以下であることが好ましく、7×10-12Pa-1以下であることがより好ましく、4×10-12Pa-1以下であることが特に好ましい。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、C=Δn/σで表される値である。 The cyclic olefin resin used in the present invention preferably has an absolute value of photoelastic coefficient of 10 × 10 −12 Pa −1 or less, more preferably 7 × 10 −12 Pa −1 or less, and more preferably 4 × 10 12 It is particularly preferably −12 Pa −1 or less. The photoelastic coefficient C is a value represented by C = Δn / σ where birefringence is Δn and stress is σ.
 以上の好ましい熱可塑性樹脂を用いて本発明に係るガラス飛散防止フィルムを製造する方法については特に限定されるものではなく、以下に説明するセルロースエステルフィルムの製造方法(溶液流延法、又は溶融流延法)と同様にして行うことができる。 The method for producing the glass scattering prevention film according to the present invention using the above preferred thermoplastic resin is not particularly limited, and a cellulose ester film production method (solution casting method or melt flow) described below is used. It can be carried out in the same manner as in the elongation method.
 <セルロースエステルフィルム>
 本発明に係るガラス飛散防止フィルムは、セルロースエステル樹脂を含有するフィルム、即ちセルロースエステルフィルムであることが透明性、光学特性、生産性、加工性の観点から好ましい。
<Cellulose ester film>
The glass scattering prevention film according to the present invention is preferably a film containing a cellulose ester resin, that is, a cellulose ester film from the viewpoints of transparency, optical properties, productivity, and processability.
 (セルロースエステル樹脂)
 用いることができるセルロースエステル樹脂は、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも一種であることが好ましい。
(Cellulose ester resin)
The cellulose ester resin that can be used is at least one selected from cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate. Preferably there is.
 これらの中で特に好ましいセルロースエステル樹脂は、セルロース(ジ、トリ)アセテート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。 Among these, particularly preferable cellulose ester resins include cellulose (di, tri) acetate, cellulose acetate propionate and cellulose acetate butyrate.
 セルローストリアセテートは、アセチル基置換度が2.6~2.95の範囲のものが好ましく用いられ、更に好ましいのは、アセチル基置換度が2.8~2.9の範囲のセルローストリアセテートである。 The cellulose triacetate preferably has an acetyl group substitution degree in the range of 2.6 to 2.95, and more preferably cellulose triacetate with an acetyl group substitution degree in the range of 2.8 to 2.9.
 セルロースジアセテートは、アセチル基置換度が2.0~2.5の範囲のものが延伸適性が高く、好ましく用いられる。市販品としては、(株)ダイセル製のL20、L30、L40、L50、イーストマンケミカルジャパン(株)製のCa398-3、Ca398-6、Ca398-10、Ca398-30、Ca394-60Sが挙げられる。 Cellulose diacetate having an acetyl group substitution degree in the range of 2.0 to 2.5 has high stretchability and is preferably used. Commercially available products include L20, L30, L40, and L50 manufactured by Daicel Corporation, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd. .
 セルロースアセテートプロピオネートやセルロースアセテートブチレート等の混合低級脂肪酸エステルは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルを含むセルロース樹脂であることが好ましい。 Mixed lower fatty acid esters such as cellulose acetate propionate and cellulose acetate butyrate have an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution of propionyl group or butyryl group When the degree is Y, a cellulose resin containing a cellulose ester that simultaneously satisfies the following formulas (I) and (II) is preferable.
 式(I)  2.6≦X+Y≦3.0
 式(II)  1.0≦X≦2.5
 特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5であり、0.1≦Y≦0.9を満たすことが好ましい。上記アシル基で置換されていない部分は通常ヒドロキシ基として存在しているものである。これらは公知の方法で合成することができる。上記アシル基の置換度の測定方法はASTM-D817-96に準じて測定することができる。
Formula (I) 2.6 ≦ X + Y ≦ 3.0
Formula (II) 1.0 ≦ X ≦ 2.5
In particular, cellulose acetate propionate is preferably used. Among them, 1.9 ≦ X ≦ 2.5 is satisfied, and 0.1 ≦ Y ≦ 0.9 is preferably satisfied. The portion not substituted with the acyl group is usually present as a hydroxy group. These can be synthesized by known methods. The method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
 更に、本発明で用いられるセルロースエステルは、数平均分子量(Mn)が60000以上、180000未満、重量平均分子量(Mw)/数平均分子量(Mn)の比、Mw/Mnが1.5~5.5の範囲のものが好ましく用いられ、特に好ましくは2.0~5.0の範囲であり、更に好ましくは2.5~5.0の範囲であり、更に好ましくは3.0~5.0の範囲のセルロースエステルが好ましく用いられる。 Furthermore, the cellulose ester used in the present invention has a number average molecular weight (Mn) of 60000 or more and less than 180000, a ratio of weight average molecular weight (Mw) / number average molecular weight (Mn), and Mw / Mn of 1.5 to 5. 5 is preferably used, particularly preferably in the range of 2.0 to 5.0, more preferably in the range of 2.5 to 5.0, and still more preferably in the range of 3.0 to 5.0. The cellulose ester in the range is preferably used.
 セルロースエステルの数平均分子量(Mn)及び分子量分布(Mw)は、高速液体クロマトグラフィーを用い測定できる。測定条件は以下のとおりである。 The number average molecular weight (Mn) and molecular weight distribution (Mw) of cellulose ester can be measured using high performance liquid chromatography. The measurement conditions are as follows.
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500までの13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) Mw = 1000,000 to 500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、あるいは単独で使用することができる。 The raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable. A cotton linter is preferably used from the viewpoint of peelability during film formation. The cellulose ester made from these can be mixed suitably or can be used independently.
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。 For example, the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
 本発明において、セルロースエステル樹脂は、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて撹拌した時のpHが6~7の範囲、電気伝導度が1~100μS/cmの範囲であることが好ましい。 In the present invention, 1 g of cellulose ester resin is added to 20 ml of pure water (electric conductivity 0.1 μS / cm or less, pH 6.8), and the pH is 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. Preferably, the electric conductivity is in the range of 1 to 100 μS / cm.
 (添加剤)
 セルロースエステルフィルムには、組成物の流動性や柔軟性を向上するとともに、延伸処理によって高弾性率化するために、可塑剤を併用することが好ましい。
(Additive)
It is preferable to use a plasticizer in combination with the cellulose ester film in order to improve the fluidity and flexibility of the composition and to increase the elastic modulus by stretching.
 可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、糖エステル系、アクリル系ポリマー等が挙げられる。この中では、ポリエステル系、糖エステル系及びアクリル系ポリマーの可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れる。用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。アクリル系ポリマーとしては、アクリル酸又はメタクリル酸アルキルエステルのホモポリマー又はコポリマーが好ましい。アクリル酸エステルのモノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸(2-メトキシエチル)、アクリル酸(2-エトキシエチル)等、又は上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。アクリル系ポリマーは上記モノマーのホモポリマー又はコポリマーであるが、アクリル酸メチルエステルモノマー単位が30質量%以上を有していることが好ましく、またメタクリル酸メチルエステルモノマー単位が40質量%以上有することが好ましい。特にアクリル酸メチル又はメタクリル酸メチルのホモポリマーが好ましい。 Examples of the plasticizer include phthalate esters, fatty acid esters, trimellitic esters, phosphate esters, polyesters, sugar esters, acrylic polymers, and the like. Of these, polyester, sugar ester and acrylic polymer plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use. The acrylic polymer is preferably a homopolymer or copolymer of acrylic acid or methacrylic acid alkyl ester. Examples of the acrylate monomer include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid (ε-caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic Acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), acrylic acid (2-methoxyethyl), acrylic acid 2-ethoxyethyl), etc., or the acrylic acid ester may include those obtained by changing the methacrylic acid ester. The acrylic polymer is a homopolymer or copolymer of the above-mentioned monomers, but the acrylic acid methyl ester monomer unit preferably has 30% by mass or more, and the methacrylic acid methyl ester monomer unit has 40% by mass or more. preferable. In particular, a homopolymer of methyl acrylate or methyl methacrylate is preferred.
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。またポリエステル系可塑剤の好ましくは、芳香族末端エステル系可塑剤である。芳香族末端エステル系可塑剤としては、フタル酸、アジピン酸、少なくとも一種のベンゼンモノカルボン酸及び少なくとも一種の炭素数2~12のアルキレングリコールとを反応させた構造を有するエステル化合物が好ましく、最終的な化合物の構造としてアジピン酸残基及びフタル酸残基を有していればよく、エステル化合物を製造する際には、ジカルボン酸の酸無水物又はエステル化物として反応させてもよい。 The polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol. . Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like. The polyester plasticizer is preferably an aromatic terminal ester plasticizer. The aromatic terminal ester plasticizer is preferably an ester compound having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid and at least one alkylene glycol having 2 to 12 carbon atoms. As long as it has an adipic acid residue and a phthalic acid residue as the structure of such a compound, when an ester compound is produced, it may be reacted as an acid anhydride or esterified product of dicarboxylic acid.
 ベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、安息香酸であることが最も好ましい。また、これらはそれぞれ一種又は二種以上の混合物として使用することができる。 Examples of the benzene monocarboxylic acid component include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can each be used as a 1 type, or 2 or more types of mixture.
 炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が挙げられる。これらの中では特に1,2-プロピレングリコールが好ましい。これらのグリコールは、一種又は二種以上の混合物として使用してもよい。 Examples of the alkylene glycol component having 2 to 12 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1 , 3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentane Diol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexa Diol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecane diol. Of these, 1,2-propylene glycol is particularly preferred. These glycols may be used as one kind or a mixture of two or more kinds.
 芳香族末端エステル系可塑剤は、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは350~3000の範囲である。また酸価は、1.5mgKOH/g以下、ヒドロキシ(水酸基)価は25mgKOH/g以下、より好ましくは酸価0.5mgKOH/g以下、ヒドロキシ(水酸基)価は15mgKOH/g以下のものである。 The aromatic terminal ester plasticizer may be either an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000. The acid value is 1.5 mgKOH / g or less, the hydroxy (hydroxyl group) value is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxy (hydroxyl group) value is 15 mgKOH / g or less.
 具体的には以下に示す化合物などが挙げられるがこれらに限定されない。 Specific examples include, but are not limited to, the following compounds.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 糖エステル系化合物としては、セルロースエステル以外のエステルであって、下記単糖、二糖、三糖又はオリゴ糖などの糖のOH基の全て若しくは一部をエステル化した化合物であり、より具体的な例示としては、一般式(1)で表される化合物などを挙げることができる。 The sugar ester compound is an ester other than a cellulose ester, and is a compound obtained by esterifying all or part of the OH group of a sugar such as the following monosaccharide, disaccharide, trisaccharide or oligosaccharide. Specific examples include a compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000004
(式中、R~Rは、水素原子、置換若しくは無置換の炭素数2~22のアルキルカルボニル基、又は置換若しくは無置換の炭素数2~22のアリールカルボニル基を表し、R~Rは、同じであっても、異なっていてもよい。)
 以下に一般式(1)で示される化合物をより具体的(化合物1-1~化合物1-23)に示すが、これらに限定はされない。なお、下表において平均置換度が8.0未満の場合、R~Rのいずれかは水素原子を表す。
Figure JPOXMLDOC01-appb-C000004
(Wherein, R 1 ~ R 8 is a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms, R 1 ~ R 8 may be the same or different.)
The compounds represented by the general formula (1) are shown below in more detail (compound 1-1 to compound 1-23), but are not limited thereto. In the table below, when the average degree of substitution is less than 8.0, any of R 1 to R 8 represents a hydrogen atom.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 これら可塑剤は、セルロースエステルフィルム100質量部に対して、0.5~30質量部を添加するのが好ましい。 These plasticizers are preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the cellulose ester film.
 (位相差調整剤)
 セルロースエステルフィルムは位相差を調整するために、例えば特開2003-344655号公報に記載の一般式(I)~(IV)で表される化合物や、特開2005-134884号公報に記載の一般式(IV)で表される化合物、特開2004-109657号公報の〔化1〕~〔化11〕に記載の化合物などの位相差上昇剤を用いることもできる。これら位相差調整剤を用いることで、比較的緩やかな延伸条件でも所望の位相差を得ることができ、破断などの故障を低減することができる。
(Phase difference adjusting agent)
In order to adjust the retardation of the cellulose ester film, for example, the compounds represented by the general formulas (I) to (IV) described in JP-A No. 2003-344655 and the general formula described in JP-A No. 2005-134484 are used. A retardation increasing agent such as a compound represented by the formula (IV) or a compound described in [Chemical Formula 1] to [Chemical Formula 11] of JP-A No. 2004-109657 may also be used. By using these phase difference adjusting agents, a desired phase difference can be obtained even under relatively gentle stretching conditions, and failures such as breakage can be reduced.
 本発明においては、位相差調整剤は0.1~10質量%の範囲添加することが好ましく、さらに0.5~5質量%の範囲添加することが好ましく、さらに1~5質量%の範囲添加することが好ましい。これらは二種以上を併用してもよい。 In the present invention, the retardation adjusting agent is preferably added in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 5% by mass, and further in the range of 1 to 5% by mass. It is preferable to do. Two or more of these may be used in combination.
 (酸化防止剤)
 セルロースエステルフィルムは、酸化防止剤を含むことも好ましい。
(Antioxidant)
The cellulose ester film also preferably contains an antioxidant.
 好ましい酸化防止剤はリン系又はフェノール系であり、リン系とフェノール系を同時に組み合わせるとより好ましい。 Preferred antioxidants are phosphorous or phenolic, and it is more preferred to combine phosphorous and phenolic simultaneously.
 以下、本発明において好適に用いることができる酸化防止剤について説明する。 Hereinafter, the antioxidant that can be suitably used in the present invention will be described.
 〈フェノール系酸化防止剤〉
 本発明においては、フェノール系の酸化防止剤が好ましく用いられ、特にヒンダードフェノール化合物が好ましく用いられる。
<Phenolic antioxidant>
In the present invention, a phenolic antioxidant is preferably used, and a hindered phenol compound is particularly preferably used.
 ヒンダードフェノール化合物の具体例には、n-オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、n-オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-アセテート、n-オクタデシル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、n-ヘキシル3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、n-ドデシル3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、ネオ-ドデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ドデシルβ(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、エチルα-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシルα-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシルα-(4-ヒドロキシ-3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-(n-オクチルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシ-ベンゾエート、2-(n-オクチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-フェニルアセテート、2-(n-オクタデシルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート、2-(n-オクタデシルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシ-ベンゾエート、2-(2-ヒドロキシエチルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、ジエチルグリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-フェニル)プロピオネート、2-(n-オクタデシルチオ)エチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ステアルアミド-N,N-ビス-[エチレン3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、n-ブチルイミノ-N,N-ビス-[エチレン3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-(2-ステアロイルオキシエチルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(2-ステアロイルオキシエチルチオ)エチル-7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,2-プロピレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、グリセリン-l-n-オクタデカノエート-2,3-ビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、ペンタエリトリトール-テトラキス-[3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]、1,1,1-トリメチロールエタン-トリス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-ヒドロキシエチル-7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-ステアロイルオキシエチル-7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,6-n-ヘキサンジオール-ビス[(3′,5′-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリトリトール-テトラキス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナメート)が含まれる。上記タイプのヒンダードフェノール化合物は、例えば、BASFジャパン(株)から、”Irganox1076”及び”Irganox1010”という商品名で市販されている。 Specific examples of hindered phenol compounds include n-octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, n-octadecyl 3- (3,5-di-t-butyl- 4-hydroxyphenyl) -acetate, n-octadecyl 3,5-di-t-butyl-4-hydroxybenzoate, n-hexyl 3,5-di-t-butyl-4-hydroxyphenylbenzoate, n-dodecyl 3, 5-di-t-butyl-4-hydroxyphenylbenzoate, neo-dodecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, dodecyl β (3,5-di-t-butyl- 4-hydroxyphenyl) propionate, ethyl α- (4-hydroxy-3,5-di-t-butylphenyl) isobutyrate, octa Decyl α- (4-hydroxy-3,5-di-t-butylphenyl) isobutyrate, octadecyl α- (4-hydroxy-3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2- (n -Octylthio) ethyl-3,5-di-t-butyl-4-hydroxy-benzoate, 2- (n-octylthio) ethyl 3,5-di-t-butyl-4-hydroxy-phenylacetate, 2- (n -Octadecylthio) ethyl-3,5-di-t-butyl-4-hydroxyphenyl acetate, 2- (n-octadecylthio) ethyl-3,5-di-t-butyl-4-hydroxy-benzoate, 2- (2-hydroxyethylthio) ethyl-3,5-di-t-butyl-4-hydroxybenzoate, diethyl glycol bis- (3,5-di-t- Butyl-4-hydroxy-phenyl) propionate, 2- (n-octadecylthio) ethyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, stearamide-N, N-bis- [ethylene 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], n-butylimino-N, N-bis- [ethylene 3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate], 2- (2-stearoyloxyethylthio) ethyl-3,5-di-t-butyl-4-hydroxybenzoate, 2- (2-stearoyloxyethylthio) ethyl-7- (3-methyl- 5-t-butyl-4-hydroxyphenyl) heptanoate, 1,2-propylene glycol bis- [3- (3,5-di-t-butyl) -4-hydroxyphenyl) propionate], ethylene glycol bis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], neopentylglycol bis- [3- (3,5-di-) t-butyl-4-hydroxyphenyl) propionate], ethylene glycol bis- (3,5-di-t-butyl-4-hydroxyphenyl acetate), glycerin-ln-octadecanoate-2,3-bis -(3,5-di-t-butyl-4-hydroxyphenyl acetate), pentaerythritol-tetrakis- [3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate], 1 , 1,1-trimethylolethane-tris- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propiyl Nate], sorbitol hexa- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2-hydroxyethyl-7- (3-methyl-5-tert-butyl-4-hydroxyphenyl) ) Propionate, 2-stearoyloxyethyl-7- (3-methyl-5-tert-butyl-4-hydroxyphenyl) heptanoate, 1,6-n-hexanediol-bis [(3 ', 5'-di-t -Butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis (3,5-di-t-butyl-4-hydroxyhydrocinnamate). The above type of hindered phenol compounds are commercially available from BASF Japan, for example, under the trade names “Irganox 1076” and “Irganox 1010”.
 〈リン系酸化防止剤〉
 リン系酸化防止剤としては、ホスファイト(phosphite)、ホスホナイト(phosphonite)、ホスフィナイト(phosphinite)、又は第3級ホスファン(phosphane)等のリン系化合物を使用することができる。リン系化合物としては、従来既知の化合物を用いることができる。例えば、特開2002-138188号、特開2005-344044号段落番号0022~0027、特開2004-182979号段落番号0023~0039、特開平10-306175号、特開平1-254744号、特開平2-270892号、特開平5-202078号、特開平5-178870号、特表2004-504435号、特表2004-530759号、及び特願2005-353229号公報の明細書中に記載されているものが好ましい。
<Phosphorus antioxidant>
As the phosphorus-based antioxidant, phosphorus-based compounds such as phosphite, phosphonite, phosphinite, or tertiary phosphane can be used. A conventionally known compound can be used as the phosphorus compound. For example, Japanese Patent Application Laid-Open Nos. 2002-138188, 2005-344444, paragraph numbers 0022 to 0027, Japanese Patent Application Laid-Open No. 2004-182979, paragraphs 0023 to 0039, Japanese Patent Application Laid-Open Nos. 10-306175, 1-254744, and Japanese Patent Application Laid-Open No. -270892, JP-A-5-202078, JP-A-5-178870, JP-T-2004-504435, JP-T-2004-530759, and JP-A-2005-353229 Is preferred.
 リン系化合物の添加量は、樹脂100質量部に対して、通常0.01~10質量部の範囲、好ましくは0.05~5質量部の範囲、さらに好ましくは0.1~3質量部の範囲である。 The addition amount of the phosphorus compound is usually in the range of 0.01 to 10 parts by mass, preferably in the range of 0.05 to 5 parts by mass, more preferably in the range of 0.1 to 3 parts by mass with respect to 100 parts by mass of the resin. It is a range.
 リン系化合物としては、上記一般式で表される化合物のほかに、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピン、トリデシルホスファイト等のモノホスファイト系化合物;4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4′-イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)等のジホスファイト系化合物;トリフェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)[1,1-ビフェニル]-4,4′-ジイルビスホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)[1,1-ビフェニル]-4,4′-ジイルビスホスホナイト等のホスホナイト系化合物;トリフェニルホスフィナイト、2,6-ジメチルフェニルジフェニルホスフィナイト等のホスフィナイト系化合物;トリフェニルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン等のホスフィン系化合物;等が挙げられる。 As phosphorus compounds, in addition to the compounds represented by the above general formula, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite Tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphat Phenanthrene-10-oxide, 6- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-t-butyldibenz [d, f] [1 3.2] monophosphite compounds such as dioxaphosphine and tridecyl phosphite; 4,4'-butylidene- Diphosphite compounds such as bis (3-methyl-6-t-butylphenyl-di-tridecyl phosphite), 4,4'-isopropylidene-bis (phenyl-di-alkyl (C12-C15) phosphite); Triphenylphosphonite, tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonite, tetrakis (2,4-di-tert-butyl-5- Phosphonite compounds such as methylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonite; phosphinite compounds such as triphenylphosphinite and 2,6-dimethylphenyldiphenylphosphinite; triphenyl Phosphine compounds such as phosphine and tris (2,6-dimethoxyphenyl) phosphine; And the like.
 上記タイプのリン系化合物は、例えば、住友化学株式会社から、“SumilizerGP”、株式会社ADEKAから“ADK STAB PEP-24G”、“ADK STAB PEP-36”及び“ADK STAB 3010”、BASFジャパン株式会社から“IRGAFOS P-EPQ”、堺化学工業株式会社から“GSY-P101”という商品名で市販されている。 Phosphorus compounds of the above type are, for example, from Sumitomo Chemical Co., Ltd. “Sumilizer GP”, from ADEKA Co., Ltd. “ADK STAB PEP-24G”, “ADK STAB PEP-36” and “ADK STAB 3010”, BASF Japan K.K. "IRGAFOS P-EPQ" and "GSY-P101" from Sakai Chemical Industry Co., Ltd.
 (その他の酸化防止剤)
 また、ジラウリル-3,3′-チオジプロピオネート、ジミリスチル-3,3′-チオジプロピオネート、ジステアリル-3,3′-チオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)等のイオウ系酸化防止剤、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等の耐熱加工安定剤、特公平08-27508号記載の3,4-ジヒドロ-2H-1-ベンゾピラン系化合物、3,3′-スピロジクロマン系化合物、1,1-スピロインダン系化合物、モルホリン、チオモルホリン、チオモルホリンオキシド、チオモルホリンジオキシド、ピペラジン骨格を部分構造に有する化合物、特開平03-174150記載のジアルコキシベンゼン系化合物等の酸素スカベンジャー等が挙げられる。これら酸化防止剤の部分構造が、ポリマーの一部、あるいは規則的にポリマーへペンダントされていてもよく、可塑剤、酸捕捉剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
(Other antioxidants)
Dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, pentaerythrityltetrakis (3-laurylthiopropionate) Nate) and other sulfur-based antioxidants, 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2-hydroxy -3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, a heat resistant processing stabilizer such as 3,4-dihydro-2H-1 described in JP-B-08-27508 -Benzopyran compounds, 3,3'-spirodichroman compounds, 1,1-spiroindane compounds, morpholine, thiomorpho Emissions, thiomorpholine oxide, thiomorpholine dioxide, a compound having a piperazine skeleton partial structure, oxygen scavenger dialkoxy benzene type compound in JP-03-174150 describes the like. These antioxidant partial structures may be part of the polymer or regularly pendant into the polymer and introduced into part of the molecular structure of additives such as plasticizers, acid scavengers, and UV absorbers. It may be.
 本発明においては、酸化防止剤は0.1~10質量%の範囲添加することが好ましく、さらに0.5~5質量%の範囲添加することが好ましく、さらに1~5質量%の範囲添加することが好ましい。これらは二種以上を併用してもよい。 In the present invention, the antioxidant is preferably added in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 5% by mass, and further in the range of 1 to 5% by mass. It is preferable. Two or more of these may be used in combination.
 (その他添加剤)
 本発明に係るセルロースエステルフィルムには、上記の化合物等のほかに、目的に応じて種々の化合物等を添加剤として含有させることができる。
(Other additives)
The cellulose ester film according to the present invention may contain various compounds as additives in addition to the above-described compounds according to the purpose.
 〈酸捕捉剤〉
 酸捕捉剤としては、米国特許第4,137,201号明細書に記載されている酸捕捉剤としてのエポキシ化合物を含んでなるのが好ましい。このような酸捕捉剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8~40モルのエチレンオキシドなどの縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテルなど、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(即ち、4,4′-ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2~22この炭素原子の脂肪酸の4~2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)など)、及び種々のエポキシ化長鎖脂肪酸トリグリセリドなど(例えば、エポキシ化大豆油などの組成物によって代表され、例示され得る、エポキシ化植物油及び他の不飽和天然油(これらは時としてエポキシ化天然グリセリド又は不飽和脂肪酸と称され、これらの脂肪酸は一般に12~22個の炭素原子を含有している))が含まれる。
<Acid scavenger>
The acid scavenger preferably comprises an epoxy compound as an acid scavenger described in US Pat. No. 4,137,201. Epoxy compounds as such acid scavengers are known in the art and are derived by condensation of diglycidyl ethers of various polyglycols, particularly about 8-40 moles of ethylene oxide per mole of polyglycol. Glycol, diglycidyl ether of glycerol, metal epoxy compounds (such as those conventionally used in and together with vinyl chloride polymer compositions), epoxidized ether condensation products, diphenols of bisphenol A Glycidyl ether (ie, 4,4'-dihydroxydiphenyldimethylmethane), epoxidized unsaturated fatty acid ester (especially an ester of alkyl of about 2 to 2 carbon atoms of fatty acids of 2 to 22 carbon atoms such as butyl Epoxy stearate ), And various epoxidized long chain fatty acid triglycerides and the like (e.g., epoxidized vegetable oils and other unsaturated natural oils, which may be represented and exemplified by compositions such as epoxidized soybean oil, sometimes epoxidized natural) These are referred to as glycerides or unsaturated fatty acids and these fatty acids generally contain 12 to 22 carbon atoms)).
 〈光安定剤〉
 光安定剤としては、ヒンダードアミン光安定剤(HALS)化合物が挙げられ、これは既知の化合物であり、例えば、米国特許第4,619,956号明細書の第5~11欄及び米国特許第4,839,405号明細書の第3~5欄に記載されているように、2,2,6,6-テトラアルキルピペリジン化合物、又はそれらの酸付加塩若しくはそれらと金属化合物との錯体が含まれる。さらに、特開2007-63311号公報に記載されている光安定剤を用いることができる。
<Light stabilizer>
Light stabilizers include hindered amine light stabilizer (HALS) compounds, which are known compounds, such as US Pat. No. 4,619,956, columns 5-11 and US Pat. , 839,405, including 2,2,6,6-tetraalkylpiperidine compounds, or their acid addition salts or complexes of them with metal compounds, as described in columns 3 to 5 of US Pat. It is. Furthermore, the light stabilizer described in JP 2007-63311 A can be used.
 〈紫外線吸収剤〉
 紫外線吸収剤としては、紫外線による劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、ベンゾフェノン系化合物や着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10-182621号公報、特開平8-337574号公報記載の紫外線吸収剤、特開平6-148430号公報記載の高分子紫外線吸収剤を用いてもよい。
<Ultraviolet absorber>
As the ultraviolet absorber, from the viewpoint of preventing deterioration due to ultraviolet rays, those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less and those having little absorption of visible light having a wavelength of 400 nm or more are preferable from the viewpoint of liquid crystal display properties. Examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, etc., but benzophenone compounds and less colored benzotriazole compounds preferable. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574, and polymer ultraviolet absorbers described in JP-A-6-148430 may be used.
 ベンゾトリアゾール系化合物の具体例として、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-(2-オクチルオキシカルボニルエチル)-フェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(1-メチル-1-フェニルエチル)-5′-(1,1,3,3-テトラメチルブチル)-フェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。 Specific examples of the benzotriazole compound include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzo Triazole, 2- (2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1 , 1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy-3 ' tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5 '-(2-octyloxycarbonylethyl) -phenyl) -5-chloro Benzotriazole, 2- (2′-hydroxy-3 ′-(1-methyl-1-phenylethyl) -5 ′-(1,1,3,3-tetramethylbutyl) -phenyl) benzotriazole, 2- ( 2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol, octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazole) -2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H- Benzotriazole-2-yl) can be mentioned mixtures of phenyl] propionate, but not limited thereto.
 また、市販品として、チヌビン(TINUVIN)326、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)900、チヌビン(TINUVIN)928、チヌビン(TINUVIN)360(いずれもBASFジャパン社製)、LA31(ADEKA社製)、Sumisorb250(住友化学社製)、RUVA-100(大塚化学製)が挙げられる。 As commercially available products, TINUVIN 326, TINUVIN 109, TINUVIN 171, TINUVIN 900, TINUVIN 928, TINUVIN 928, TINUVIN 360 (all manufactured by BASF Japan), LA31 (manufactured by ADEKA), Sumisorb 250 (manufactured by Sumitomo Chemical), and RUVA-100 (manufactured by Otsuka Chemical) are listed.
 ベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されるものではない。 Specific examples of benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
 本発明においては、紫外線吸収剤は0.1~20質量%の範囲添加することが好ましく、さらに0.5~10質量%の範囲添加することが好ましく、さらに1~5質量%の範囲添加することが好ましい。これらは二種以上を併用してもよい。 In the present invention, the ultraviolet absorber is preferably added in the range of 0.1 to 20% by mass, more preferably in the range of 0.5 to 10% by mass, and further in the range of 1 to 5% by mass. It is preferable. Two or more of these may be used in combination.
 〈マット剤〉
 本発明に係るセルロースエステルフィルムには、マット剤等の微粒子を添加することが取り扱い性、強度向上の観点で好ましく、微粒子としては、無機化合物の微粒子又は有機化合物の微粒子が挙げられる。マット剤はできるだけ微粒子のものが好ましく、微粒子としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素が樹脂基板のヘイズを低くできるので好ましい。二酸化ケイ素のような微粒子は有機物により表面処理されている場合が多いが、このようなものは樹脂基板のヘイズを低下できるため好ましい。
<Matting agent>
In the cellulose ester film according to the present invention, it is preferable to add fine particles such as a matting agent from the viewpoint of improving the handleability and strength. Examples of the fine particles include fine particles of an inorganic compound or fine particles of an organic compound. The matting agent is preferably as fine as possible. Examples of the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include inorganic fine particles such as magnesium silicate and calcium phosphate, and crosslinked polymer fine particles. Among these, silicon dioxide is preferable because it can reduce the haze of the resin substrate. In many cases, fine particles such as silicon dioxide are surface-treated with an organic material, but such particles are preferable because they can reduce the haze of the resin substrate.
 表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサンなどが挙げられる。微粒子の平均粒径が大きい方が滑り性効果は大きく、反対に平均粒径の小さい方は透明性に優れる。 Preferred organic materials for the surface treatment include halosilanes, alkoxysilanes, silazanes, siloxanes, and the like. The larger the average particle size of the fine particles, the greater the sliding effect, and the smaller the average particle size, the better the transparency.
 また、微粒子の二次粒子の平均粒径は、0.05~1.0μmの範囲である。好ましい微粒子の二次粒子の平均粒径は5~50nmの範囲が好ましく、さらに好ましくは、7~14nmの範囲である。これらの微粒子はセルロースエステルフィルム中では、セルロースエステルフィルム表面に0.01~1.0μmの範囲の凹凸を生成させるために好ましく用いられる。微粒子のセルロースエステル中の含有量はセルロースエステルに対して0.005~0.3質量%の範囲が好ましい。 Further, the average particle size of the secondary particles of the fine particles is in the range of 0.05 to 1.0 μm. The average particle size of the secondary particles of the fine particles is preferably in the range of 5 to 50 nm, more preferably in the range of 7 to 14 nm. These fine particles are preferably used in the cellulose ester film in order to produce irregularities in the range of 0.01 to 1.0 μm on the surface of the cellulose ester film. The content of fine particles in the cellulose ester is preferably in the range of 0.005 to 0.3% by mass with respect to the cellulose ester.
 二酸化ケイ素の微粒子としては、日本アエロジル(株)製のアエロジル(AEROSIL)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600等を挙げることができ、好ましくはアエロジル200V、R972、R972V、R974、R202、R812である。これらの微粒子は二種以上併用してもよい。二種以上併用する場合、任意の割合で混合して使用することができる。この場合、平均粒径や材質の異なる微粒子、例えば、アエロジル200VとR972Vを質量比で0.1:99.9~99.9:0.1の範囲で使用できる。 Examples of the silicon dioxide fine particles include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, OX50, TT600, etc. manufactured by Nippon Aerosil Co., Ltd., preferably Aerosil 200V, R972. , R972V, R974, R202, R812. Two or more kinds of these fine particles may be used in combination. When using 2 or more types together, it can mix and use in arbitrary ratios. In this case, fine particles having different average particle sizes and materials, for example, Aerosil 200V and R972V can be used in a mass ratio of 0.1: 99.9 to 99.9: 0.1.
 上記マット剤として用いられるセルロースエステルフィルム中の微粒子の存在は、別の目的としてセルロースエステルフィルムの強度向上のために用いることもできる。 The presence of fine particles in the cellulose ester film used as the matting agent can be used for another purpose to improve the strength of the cellulose ester film.
 〈溶液流延法によるセルロースエステルフィルムの製造〉
 本発明に係るガラス飛散防止フィルムの製造方法について、セルロースエステルフィルムを例にとって好ましい製膜方法について説明する。ただしこれに限定されるものではない。ポリカーボネート樹脂、アクリル樹脂、及びポリオレフィン樹脂のフィルム製膜も同様にして行うことができる。
<Manufacture of cellulose ester film by solution casting method>
About the manufacturing method of the glass scattering prevention film which concerns on this invention, a preferable film forming method is demonstrated taking a cellulose-ester film as an example. However, it is not limited to this. Film formation of polycarbonate resin, acrylic resin, and polyolefin resin can be performed in the same manner.
 (1)溶解工程
 セルロースエステル樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中でセルロースエステル樹脂、熱収縮材料、その他の添加剤を撹拌しながら溶解しドープを形成する工程である。
(1) Dissolution Step In this step, a cellulose ester resin, a heat-shrinkable material, and other additives are dissolved in an organic solvent mainly composed of a good solvent for the cellulose ester resin while stirring to form a dope.
 セルロースエステル樹脂の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For dissolving the cellulose ester resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
 返材とは、フィルムを細かく粉砕した物で、フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたフィルム原反のことをいい、これも再使用される。 Recycled material is a finely pulverized film, which is generated when the film is formed, cut off on both sides of the film, or the original film that has been speculated out due to scratches, etc. Reused.
 (2)流延工程
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液し、無限に移送する無端の金属ベルト、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
(2) Casting process An endless metal belt that feeds the dope to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and transfers it infinitely, such as a stainless steel belt, or a metal such as a rotating metal drum This is a step of casting the dope from the pressure die slit to the casting position on the support.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 (3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
(3) Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法の乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 To evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc. High efficiency and preferable. A method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
 面品質、透湿性、剥離性の観点から、30~120秒の範囲で該ウェブを支持体から剥離することが好ましい。 From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support in the range of 30 to 120 seconds.
 (4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
(4) Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は好ましくは10~40℃の範囲であり、さらに好ましくは11~30℃の範囲である。 The temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生しやすいため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. When peeling at a higher residual solvent amount, if the web is too soft, the flatness at the time of peeling is impaired, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
 ウェブの残留溶媒量は下記式で定義される。 The amount of residual solvent in the web is defined by the following formula.
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (%) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mの範囲であるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、さらには、剥離できる最低張力~166.6N/mの範囲、次いで、最低張力~137.2N/mの範囲で剥離することが好ましいが、特に好ましくは最低張力~100N/mの範囲で剥離することである。 The peeling tension at the time of peeling the metal support and the film is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. Further, it is preferable to peel in the range of minimum tension capable of peeling to 166.6 N / m, and then in the range of minimum tension to 137.2 N / m, particularly preferably in the range of minimum tension to 100 N / m. That is.
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃の範囲とするのが好ましく、10~40℃の範囲がより好ましく、15~30℃の範囲とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably in the range of −50 to 40 ° C., more preferably in the range of 10 to 40 ° C., and most preferably in the range of 15 to 30 ° C. preferable.
 (5)乾燥及び延伸工程
 剥離後、ウェブを乾燥装置内に複数配置したローラーに交互に通して搬送する乾燥装置、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置を用いて、ウェブを乾燥する。
(5) Drying and stretching step After peeling, using a drying device that alternately conveys the web through rollers arranged in the drying device and / or a tenter stretching device that clips and conveys both ends of the web with clips. , Dry the web.
 乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は出来上がりのフィルムの平面性を損ねやすい。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥はおおむね40~250℃の範囲で行われる。特に40~160℃の範囲で乾燥させることが好ましい。 The drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout, the drying is generally performed in the range of 40 to 250 ° C. It is particularly preferable to dry in the range of 40 to 160 ° C.
 (延伸処理)
 本発明に係るガラス飛散防止フィルムの最大弾性率を所望の方向に付与するには、ウェブの両端をクリップ等で把持するテンター方式で幅手方向(TD方向)又は長手方向(MD方向)、もしくは両方向、更には斜め方向に延伸を行うことが好ましい。
(Extension process)
In order to provide the maximum elastic modulus of the glass scattering prevention film according to the present invention in a desired direction, the width direction (TD direction) or the longitudinal direction (MD direction) or the longitudinal direction (MD direction) by a tenter method in which both ends of the web are gripped by clips or the like It is preferable to perform stretching in both directions and further in an oblique direction.
 延伸処理は、ガラス飛散防止フィルムの最大弾性率の方向を所望の方向に付与するのみならず、該ガラス飛散防止フィルムの面内の遅相軸の方向も延伸方向と平行な方向に付与することができる。 The stretching treatment not only gives the direction of the maximum elastic modulus of the glass scattering prevention film in a desired direction, but also gives the direction of the slow axis in the plane of the glass scattering prevention film in a direction parallel to the stretching direction. Can do.
 テンターで延伸を行う場合の延伸温度は、フィルムのTg-20℃以上の温度で行うことが好ましく、具体的にはセルロースエステルフィルムの場合は、130~220℃の範囲で行うことが好ましく、130~210℃の範囲で行うことがより好ましい。 The stretching temperature when stretching with a tenter is preferably performed at a temperature of Tg−20 ° C. or higher of the film. Specifically, in the case of a cellulose ester film, it is preferably performed within the range of 130 to 220 ° C. More preferably, it is carried out in the range of ˜210 ° C.
 低過ぎると延伸時にフィルムが破断するおそれがある一方、高過ぎると、配向に乱れが生じ、最大弾性率の方向が一定しない。 If it is too low, the film may break during stretching, while if it is too high, the orientation will be disturbed and the direction of the maximum elastic modulus will not be constant.
 なお、フィルムのガラス転移温度Tgは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。 The glass transition temperature Tg of the film was measured at a rate of temperature increase of 20 ° C./min using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer), and was determined in accordance with JIS K7121 (1987). The glass transition temperature (Tmg).
 また延伸倍率は、幅手方向の延伸(TD延伸)は1.05~2.5倍の範囲で施すことが好ましい。より好ましくは1.1~2.0倍の範囲であり、特に好ましくは1.2~1.5倍である。 The stretching ratio is preferably 1.05 to 2.5 times in the width direction (TD stretching). The range is more preferably 1.1 to 2.0 times, and particularly preferably 1.2 to 1.5 times.
 延伸をテンターで行う場合、ウェブの残留溶媒量を制御することが好ましく、ウェブの残留溶媒量はテンター開始時に20~100質量%の範囲であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になるまでテンターを掛けながら乾燥を行うことが好ましく、さらに好ましくは5質量%以下である。 When stretching is performed with a tenter, it is preferable to control the residual solvent amount of the web, the residual solvent amount of the web is preferably in the range of 20 to 100% by mass at the start of the tenter, and the residual solvent amount of the web is 10% by mass. It is preferable to dry while applying a tenter until it becomes less than or equal to 5%, and more preferably less than or equal to 5% by weight.
 長手方向(MD延伸)に延伸する場合は、ローラー間ネックイン延伸法、近接ローラー延伸法等が挙げられる。位相差を制御しやすく、位相差フィルムに傷や皺等の不良が発生しにくいといった利点を有するので、ローラー間ネックイン延伸法を採用することが望ましい。 In the case of stretching in the longitudinal direction (MD stretching), an inter-roller neck-in stretching method, a proximity roller stretching method, and the like can be given. Adopting the inter-roller neck-in stretching method is desirable because it has the advantage that the retardation can be easily controlled and defects such as scratches and wrinkles are less likely to occur in the retardation film.
 長手方向に延伸する場合の延伸倍率も、1.01~2倍の範囲が好ましく、1.05~1.5倍の範囲がより好ましい。 The stretching ratio when stretching in the longitudinal direction is also preferably in the range of 1.01 to 2 times, and more preferably in the range of 1.05 to 1.5 times.
 また、延伸後、熱処理(アニール処理)して残存する歪みを緩和することも好ましい。熱処理は80~200℃の範囲、好ましくは100~180℃の範囲で行うことが好ましく、更に好ましくは130~160℃の範囲で行うことである。このとき、熱伝達係数20~130×10J/m・hrの範囲で熱処理を行うのが好ましい。更に好ましくは、40~130×10J/m・hrの範囲であり、最も好ましくは42~84×10J/m・hrの範囲である。 It is also preferable to relax the remaining strain by heat treatment (annealing) after stretching. The heat treatment is preferably performed in the range of 80 to 200 ° C, preferably in the range of 100 to 180 ° C, and more preferably in the range of 130 to 160 ° C. At this time, it is preferable to perform the heat treatment in the range of a heat transfer coefficient of 20 to 130 × 10 3 J / m 2 · hr. More preferably, it is in the range of 40 to 130 × 10 3 J / m 2 · hr, and most preferably in the range of 42 to 84 × 10 3 J / m 2 · hr.
 これによって、残存する歪みが低減され、最大弾性率の方向が均一になりやすい。 This reduces the remaining strain and tends to make the direction of maximum elastic modulus uniform.
 テンター工程において、雰囲気の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、例えばテンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。 In the tenter process, it is preferable that the temperature distribution of the atmosphere is small from the viewpoint of improving the uniformity of the film. For example, the temperature distribution in the width direction in the tenter process is preferably within ± 5 ° C, more preferably within ± 2 ° C. Most preferably, it is within ± 1 ° C.
 (6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻き取り機により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%の範囲で巻き取ることが好ましい。
(6) Winding step This is a step of winding the film as a film with a winder after the residual solvent amount in the web is 2% by mass or less, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. Can be obtained. In particular, it is preferable to wind in the range of 0.00 to 0.10% by mass.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As a winding method, a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
 本発明に係るセルロースエステルフィルムであるガラス飛散防止フィルムは、長尺フィルムであることが好ましく、具体的には、100~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mの範囲であることが好ましく、1.4~3mの範囲であることがより好ましい。 The glass scattering prevention film, which is a cellulose ester film according to the present invention, is preferably a long film. Specifically, the film has a thickness of about 100 to 5000 m and is usually provided in a roll form. is there. The film width is preferably in the range of 1.3 to 4 m, more preferably in the range of 1.4 to 3 m.
 〈溶融流延法によるセルロースエステルフィルムの製造〉
 本発明に係るセルロースエステルフィルムを、溶融流延法により製造する場合について説明する。
<Manufacture of cellulose ester film by melt casting method>
The case where the cellulose ester film according to the present invention is produced by the melt casting method will be described.
 〈溶融ペレット製造工程〉
 溶融押出に用いる、樹脂を含む組成物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
<Melted pellet manufacturing process>
The composition containing a resin used for melt extrusion is usually preferably kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、乾燥した熱可塑性樹脂と熱収縮材料等からなる添加剤をフィーダーで押出機に供給し一軸や二軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。 Pelletization may be performed by a known method. For example, an additive comprising a dried thermoplastic resin and a heat-shrinkable material is supplied to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and then from a die. It can be formed by extruding into a strand, cooling with water or air, and cutting.
 原材料は、押し出しする前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃の範囲で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。 It is important to dry the raw materials before extruding them in order to prevent the raw materials from being decomposed. In particular, the cellulose ester is easy to absorb moisture, and therefore it is preferable to dry it in a dehumidifying hot air dryer or a vacuum dryer for 3 hours or more in the range of 70 to 140 ° C. to keep the moisture content to 200 ppm or less, and further to 100 ppm or less.
 添加剤は、押出機に供給しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 Additives may be supplied to the extruder or may be supplied by individual feeders. A small amount of an additive such as an antioxidant is preferably mixed in advance in order to mix uniformly.
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、熱可塑性樹脂に含浸させて混合してもよく、あるいは噴霧して混合してもよい。 The antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
 真空ナウターミキサーなどは乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したNガスなどの雰囲気下にすることが好ましい。 A vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、二軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
 〈溶融混合物をダイから冷却ローラーへ押し出す工程〉
 まず、作製したペレットを一軸や二軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ローラー上で固化し、弾性タッチローラーと押圧しながら流延する。
<Process of extruding the molten mixture from the die to the cooling roller>
First, using a single-screw or twin-screw type extruder, the melt temperature Tm when extruding the pellets is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, Coextruded into a film, solidified on a cooling roller, and cast while pressing with an elastic touch roller.
 供給ホッパーから押出機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。 When introducing into the extruder from the supply hopper, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere. Tm is the temperature of the die exit portion of the extruder.
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。 ∙ If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。 The inner surface that comes into contact with the molten resin, such as an extruder or a die, is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy. Specifically, a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
 冷却ローラーには特に制限はないが、高剛性の金属ローラーで内部に温度制御可能な熱媒体又は冷媒体が流れるような構造を備えるローラーであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ローラーの直径は100mmから1m程度である。 There is no particular limitation on the cooling roller, but it is a roller having a structure in which a heat medium or a cooling medium whose temperature can be controlled flows with a highly rigid metal roller, and the size is not limited, but the film is melt extruded. The diameter of the cooling roller is usually about 100 mm to 1 m.
 冷却ローラーの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。 The surface material of the cooling roller includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
 冷却ローラー表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ローラー表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。 The surface roughness of the cooling roller surface is preferably 0.1 μm or less in terms of Ra, and more preferably 0.05 μm or less. The smoother the roller surface, the smoother the surface of the resulting film. Of course, it is preferable that the surface processed is further polished to have the above-described surface roughness.
 弾性タッチローラーとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97/028950号、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号公報に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムローラーを使用することができる。 Examples of the elastic touch roller include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97 / 028950, JP-A-11-235747, JP2002-2002. As described in Japanese Patent No. 36332, Japanese Patent Application Laid-Open No. 2005-172940 and Japanese Patent Application Laid-Open No. 2005-280217, a thin-film metal sleeve-covered silicon rubber roller can be used.
 冷却ローラーからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roller, it is preferable to control the tension to prevent deformation of the film.
 上記剥離工程以降の工程は前記溶液流延法と同様である。 The steps after the peeling step are the same as in the solution casting method.
 〈光学特性〉
 本発明に係るガラス飛散防止フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。
<optical properties>
The glass scattering prevention film according to the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
 また、ガラス飛散防止フィルムの面内位相差値Roが、温度23℃、相対湿度55%RHの環境下、光波長590nmによる測定において、0~100nmの範囲であることが、裸眼で表示を観察した時の視認性を向上する上で好ましい。 In addition, the in-plane retardation value Ro of the glass scattering prevention film is in the range of 0 to 100 nm when measured at a light wavelength of 590 nm under an environment of a temperature of 23 ° C. and a relative humidity of 55% RH. It is preferable for improving the visibility when it is applied.
 厚さ方向の位相差値Rtは特に限定されるものではないが、-10~100nmの範囲であることが好ましい。 The thickness direction retardation value Rt is not particularly limited, but is preferably in the range of −10 to 100 nm.
 また、ガラス飛散防止フィルムの面内位相差値Roが、温度23℃、相対湿度55%RHの環境下、光波長590nmによる測定において、105~160nmの範囲内であり、該ガラス飛散防止フィルムの遅相軸の方向を偏光板の吸収軸の方向に対して斜めに配置することで、前述したように偏光サングラスを着用した時の視認性を格段に向上する。 Further, the in-plane retardation value Ro of the glass scattering prevention film is in the range of 105 to 160 nm in the measurement at a light wavelength of 590 nm under the environment of a temperature of 23 ° C. and a relative humidity of 55% RH. By arranging the direction of the slow axis obliquely with respect to the direction of the absorption axis of the polarizing plate, as described above, the visibility when wearing polarized sunglasses is significantly improved.
 従って、ITO電極のクラック発生防止性、ガラス飛散防止性、及び偏光サングラス着用時の視認性向上を同時に満足するには、本発明に係るガラス飛散防止フィルムの最大弾性率の方向と遅相軸の方向が一致しており、かつ本発明に係る透明電極の形成方向と偏光板の吸収軸の方向が一致している構成であることが好ましい。この場合は、各々の貼合の向きを複雑に整える必要がなく、生産の容易性という観点からも好ましい。 Therefore, in order to simultaneously satisfy the crack prevention property of the ITO electrode, the glass scattering prevention property, and the visibility improvement when wearing polarized sunglasses, the direction of the maximum elastic modulus and the slow axis of the glass scattering prevention film according to the present invention. It is preferable that the direction is the same, and the formation direction of the transparent electrode according to the present invention is the same as the absorption axis direction of the polarizing plate. In this case, it is not necessary to arrange each bonding direction in a complicated manner, which is preferable from the viewpoint of ease of production.
 該ガラス飛散防止フィルムの最大弾性率の方向と遅相軸の方向を一致させるには、前述のように延伸処理を行うことが好ましい。 In order to make the direction of the maximum elastic modulus of the glass scattering prevention film coincide with the direction of the slow axis, it is preferable to perform a stretching treatment as described above.
 この場合の厚さ方向の位相差値Rtは特に限定されるものではないが、20~400nmの範囲であることが好ましく、50~300nmの範囲であることがより好ましい。 In this case, the retardation value Rt in the thickness direction is not particularly limited, but is preferably in the range of 20 to 400 nm, and more preferably in the range of 50 to 300 nm.
 位相差値Ro及びRtは下記式(i)及び(ii)で定義された値である。 The phase difference values Ro and Rt are values defined by the following formulas (i) and (ii).
 式(i): Ro=(n-n)×d
 式(ii): Rt={(n+n)/2-n}×d
(式中、nは基材フィルム面内の遅相軸方向の屈折率、nは基材フィルム面内で遅相軸に直交する方向の屈折率、nは基材フィルムの厚さ方向の屈折率、dは基材フィルムの厚さ(nm)をそれぞれ表す。)
 上記位相差値の測定は、例えばKOBRA-21AWR(王子計測機器(株))を用いることができる。
Formula (i): Ro = (n x −n y ) × d
Formula (ii): Rt = {(n x + n y ) / 2−n z } × d
(Wherein, n x is a refractive index in a slow axis direction in the substrate film surface, n y is the refractive index in the direction perpendicular to the slow axis in the base film surface, the thickness of the n z is a substrate film (The refractive index in the direction, d represents the thickness (nm) of the substrate film, respectively.)
For the measurement of the phase difference value, for example, KOBRA-21AWR (Oji Scientific Instruments Co., Ltd.) can be used.
 上記位相差値は、樹脂の種類、前述した可塑剤等の添加剤の種類や添加量、及びフィルムの膜厚や延伸条件などで調整できる。 The retardation value can be adjusted by the type of resin, the type and amount of additives such as the plasticizer described above, and the film thickness and stretching conditions of the film.
 (ハードコート層)
 本発明に係るガラス飛散防止フィルムは、アクリル樹脂を含有するハードコート層を有することが、ITO電極のクラック発生防止性を更に改善する上で好ましい。
(Hard coat layer)
It is preferable that the glass scattering prevention film according to the present invention has a hard coat layer containing an acrylic resin in order to further improve the crack generation prevention property of the ITO electrode.
 以下、ハードコート層について説明する。 Hereinafter, the hard coat layer will be described.
 〈活性エネルギー線硬化型樹脂〉
 本発明に係るハードコート層は、例えば、活性エネルギー線硬化型樹脂で構成されることが好ましいため、本実施形態におけるハードコート層組成物には活性エネルギー線硬化型アクリル樹脂が含まれることが好ましい。
<Active energy ray-curable resin>
Since the hard coat layer according to the present invention is preferably composed of, for example, an active energy ray curable resin, the hard coat layer composition in the present embodiment preferably includes an active energy ray curable acrylic resin. .
 活性エネルギー線硬化型とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂をいい、具体的にはエチレン性不飽和基を有する樹脂である。さらに具体的には、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。 The active energy ray curable type refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams, and specifically, a resin having an ethylenically unsaturated group. More specifically, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, an ultraviolet curable epoxy resin, or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.
 紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基又はメタクロイルオキシ基を有する化合物である。 As the ultraviolet curable acrylate resin, polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
 多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、活性エネルギー線硬化型のイソシアヌレート誘導体等が好ましく挙げられる。これら多官能アクリレートとしては市販品を用いてもよく、ペンタエリスリトールトリ/テトラアクリレート(新中村化学工業株式会社製、A-TMM-3Lなど)、ペンタエリスリトールトリアクリレート(共栄社化学製、PE-3A)等を入手できる。なお、これらの化合物は、それぞれ単独又は二種以上を混合して用いられる。 Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaether Thritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, Tetramethylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerin trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetra Methacrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate, etc. isocyanurate derivatives of the active energy ray-curable are preferably exemplified. Commercially available products may be used as these polyfunctional acrylates, such as pentaerythritol tri / tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMM-3L), pentaerythritol triacrylate (manufactured by Kyoeisha Chemical Co., Ltd., PE-3A). Etc. can be obtained. In addition, these compounds are used individually or in mixture of 2 or more types, respectively.
 活性エネルギー線硬化型樹脂のイソシアヌレート誘導体としては、イソシアヌル酸骨格に1個以上のエチレン性不飽和基が結合した構造を有する化合物であればよく、特に制限はないが、同一分子内に3個以上のエチレン性不飽和基及び1個以上のイソシアヌレート環を有する化合物が好ましい。 The isocyanurate derivative of the active energy ray-curable resin is not particularly limited as long as it has a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton, but there are three in the same molecule. Compounds having the above ethylenically unsaturated groups and one or more isocyanurate rings are preferred.
 このようなイソシアヌル酸トリアクリレート化合物としては市販品を用いることもでき、例えば新中村化学工業株式会社製A-9300などが挙げられる。イソシアヌル酸ジアクリレート化合物の市販品としては、例えば東亞合成株式会社製アロニックスM-215などが挙げられる。イソシアヌル酸トリアクリレート化合物及びイソシアヌル酸ジアクリレート化合物の混合物としては、例えば東亞合成株式会社製アロニックスM-315、アロニックスM-313などが挙げられる。ε-カプロラクトン変性の活性エネルギー線硬化型のイソシアヌレート誘導体としては、ε-カプロラクトン変性トリス-(アクリロキシエチル)イソシアヌレートである新中村化学工業株式会社製A-9300-1CL、東亞合成株式会社製アロニックスM-327などを挙げることができるが、これらに限定されない。 As such an isocyanuric acid triacrylate compound, a commercially available product can be used, and examples thereof include A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd. Examples of commercially available isocyanuric acid diacrylate compounds include Aronix M-215 manufactured by Toagosei Co., Ltd. Examples of the mixture of the isocyanuric acid triacrylate compound and the isocyanuric acid diacrylate compound include Aronix M-315 and Aronix M-313 manufactured by Toagosei Co., Ltd. ε-Caprolactone-modified active energy ray-curable isocyanurate derivatives include ε-caprolactone-modified tris- (acryloxyethyl) isocyanurate, Shin-Nakamura Chemical Co., Ltd. A-9300-1CL, Toagosei Co., Ltd. Examples include, but are not limited to, Aronix M-327.
 また、活性エネルギー線硬化型樹脂としては単官能アクリレートを用いても良い。単官能アクリレートとしては、イソボロニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、シクロヘキシルアクリレートなどが挙げられる。単官能アクリレートとしては、新中村化学工業株式会社や大阪有機化学工業株式会社等から入手できる。これらの化合物は、それぞれ単独又は二種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。 Further, monofunctional acrylate may be used as the active energy ray curable resin. Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate. Monofunctional acrylates can be obtained from Shin Nakamura Chemical Co., Ltd., Osaka Organic Chemical Industry Co., Ltd., and the like. These compounds are used alone or in combination of two or more. Moreover, oligomers, such as a dimer and a trimer of the said monomer, may be sufficient.
 さらに、活性エネルギー線硬化型樹脂としてはウレタンアクリレートを用いてもよい。ウレタンアクリレートとしては、例えば、荒川化学工業(株)製のビームセット575CB、共栄社化学製のUA-306Hなどの市販品を用いることができる。 Furthermore, urethane acrylate may be used as the active energy ray curable resin. As the urethane acrylate, for example, commercially available products such as Beam Set 575CB manufactured by Arakawa Chemical Industry Co., Ltd. and UA-306H manufactured by Kyoeisha Chemical Co., Ltd. can be used.
 上述したような多官能アクリレートの粘度は、25℃における粘度が3000mPa・s以下であることが好ましく、1500mPa・s以下がさらに好ましい。特に好ましくは、1000mPa・s以下である。このような低粘度樹脂としては、グリセリントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートなどを挙げることができる。なお、前記粘度はE型粘度計を用いて25℃の条件にて測定した値である。 The viscosity of the polyfunctional acrylate as described above is preferably 3000 mPa · s or less, more preferably 1500 mPa · s or less, at 25 ° C. Particularly preferably, it is 1000 mPa · s or less. Examples of such a low viscosity resin include glycerin triacrylate, pentaerythritol triacrylate, and pentaerythritol tetraacrylate. In addition, the said viscosity is the value measured on 25 degreeC conditions using the E-type viscosity meter.
 ハードコート層組成物中における、前記活性エネルギー線硬化型樹脂の配合量は、組成物全体を100質量部とすると、通常、10~99質量部の範囲、好ましくは35~99質量部の範囲である。活性エネルギー線硬化型樹脂の配合量が少ないと、ハードコート層の膜強度が十分に得られにくい。また、配合量が多いと、後述する公知の塗布方法で塗布した際の膜厚均一性や塗布筋などの故障が発生するため好ましくない。 The amount of the active energy ray-curable resin in the hard coat layer composition is usually in the range of 10 to 99 parts by mass, preferably in the range of 35 to 99 parts by mass, with the total composition being 100 parts by mass. is there. When the blending amount of the active energy ray-curable resin is small, it is difficult to sufficiently obtain the film strength of the hard coat layer. Moreover, when there are many compounding quantities, since malfunctions, such as a film thickness uniformity at the time of apply | coating with the well-known coating method mentioned later and an application | coating streak, are not preferable.
 〈カチオン重合性化合物〉
 ハードコート層はさらにカチオン重合性化合物を含有しても良く、カチオン重合性化合物とはエネルギー活性線照射や熱によってカチオン重合を起こして樹脂化するものであればいずれも使用できる。具体的には、エポキシ基、環状エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル化合物、ビニルオキソ基等が挙げられる。中でもエポキシ基やビニルエーテル基などの官能基を有する化合物が本発明においては、好適に用いられる。エポキシ基又はビニルエーテル基を有するカチオン重合性化合物としては、例えば、フェニルグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ビニルシクロヘキセンジオキサイド、リモネンジオキサイド、3,4-エポキシシクロヘキシルメチル-3′,4′-エポキシシクロヘキサンカルボキシレート、ビス-(6-メチル-3,4-エポキシシクロヘキシル)アジペート、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル等が挙げられる。また、エポキシ化合物としては、ポリマー化合物も使用することができる。
<Cationically polymerizable compound>
The hard coat layer may further contain a cationically polymerizable compound, and any cationic polymerizable compound can be used as long as it undergoes cationic polymerization by energy active ray irradiation or heat to form a resin. Specific examples include an epoxy group, a cyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester compound, and a vinyloxo group. Among them, a compound having a functional group such as an epoxy group or a vinyl ether group is preferably used in the present invention. Examples of the cationically polymerizable compound having an epoxy group or a vinyl ether group include phenyl glycidyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, vinylcyclohexene dioxide, limonene dioxide, 3,4-epoxycyclohexylmethyl-3 ′. , 4'-epoxycyclohexanecarboxylate, bis- (6-methyl-3,4-epoxycyclohexyl) adipate, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, 1 , 4-cyclohexanedimethanol divinyl ether and the like. Moreover, a polymer compound can also be used as an epoxy compound.
 ハードコート層組成物に前記カチオン重合性化合物が含まれる場合、ハードコート層組成物中における、カチオン重合性化合物の配合量は、組成物全体を100質量部とすると、通常、1~90質量部の範囲、好ましくは1~50質量部の範囲である。 When the cation polymerizable compound is contained in the hard coat layer composition, the amount of the cation polymerizable compound in the hard coat layer composition is usually 1 to 90 parts by mass when the entire composition is 100 parts by mass. The range is preferably 1 to 50 parts by mass.
 〈微粒子〉
 ハードコート層は微粒子を含有しても良い。微粒子としては無機微粒子と有機微粒子が挙げられる。無機微粒子としては、シリカ、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、又はポリフッ化エチレン系樹脂粉末等を挙げることができる。これら微粒子の平均粒径は、ハードコート層塗布組成物の安定性やクリア性から、30~200nmの範囲が好ましい。また、ハードコート層には粒径が異なる二種以上の微粒子を含有させてもよい。
<Fine particles>
The hard coat layer may contain fine particles. Examples of the fine particles include inorganic fine particles and organic fine particles. Inorganic fine particles include silica, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated Mention may be made of calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. As organic fine particles, polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, Examples thereof include polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, and polyfluorinated ethylene resin powder. The average particle size of these fine particles is preferably in the range of 30 to 200 nm in view of the stability and clearness of the hard coat layer coating composition. The hard coat layer may contain two or more kinds of fine particles having different particle sizes.
 〈その他の添加剤、ハードコート層の製造方法〉
 ハードコート層には、前記活性エネルギー線硬化型樹脂の硬化促進のため、さらに光重合開始剤を含有させることが好ましい。光重合開始剤の配合量としては、質量比で、光重合開始剤:活性エネルギー線硬化型樹脂=20:100~0.01:100の範囲で含有することが好ましい。
<Other additives, manufacturing method of hard coat layer>
The hard coat layer preferably further contains a photopolymerization initiator in order to accelerate the curing of the active energy ray-curable resin. The blending amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: active energy ray-curable resin = 20: 100 to 0.01: 100.
 光重合開始剤としては、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。これらは市販のものを使用してもよく、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。 Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. It is not a thing. Commercially available products may be used, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
 またハードコート層は、上述の紫外線吸収剤と同様の紫外線吸収剤を含有していてもよい。 The hard coat layer may contain an ultraviolet absorber similar to the above-described ultraviolet absorber.
 さらには、ハードコート層は二層以上で構成されてもよい。ハードコート層を二層以上設ける場合、ガラス飛散防止フィルムと接するハードコート層の膜厚は、0.05~2μmの範囲であることが好ましい。二層以上の積層は同時重層で形成しても良い。同時重層とは、乾燥工程を経ずにガラス飛散防止フィルム上に二層以上のハードコート層をwet on wetで塗布して、ハードコート層を形成することである。第1ハードコート層の上に乾燥工程を経ずに、第2ハードコート層をwet on wetで積層するには、押し出しコーターにより逐次重層するか、若しくは複数のスリットを有するスロットダイにて同時重層を行えばよい。 Furthermore, the hard coat layer may be composed of two or more layers. When two or more hard coat layers are provided, the thickness of the hard coat layer in contact with the glass scattering prevention film is preferably in the range of 0.05 to 2 μm. Two or more layers may be formed as a simultaneous multilayer. The simultaneous multi-layer is to form a hard coat layer by applying two or more hard coat layers on a glass anti-scattering film without wet process. In order to laminate the second hard coat layer on the first hard coat layer without using a drying process, the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
 またハードコート層の作製方法としては、ガラス飛散防止フィルムを膨潤又は一部溶解をする溶剤で希釈したハードコート層塗布組成物を、以下の方法でガラス飛散防止フィルム上に塗布、乾燥、硬化して設ける方法が、ハードコート層とガラス飛散防止フィルムとの層間密着が得られやすい点から好ましい。 In addition, as a method for producing a hard coat layer, a hard coat layer coating composition diluted with a solvent that swells or partially dissolves a glass scattering prevention film is applied onto the glass scattering prevention film by the following method, dried, and cured. Is preferable from the viewpoint that interlayer adhesion between the hard coat layer and the glass scattering prevention film is easily obtained.
 ガラス飛散防止フィルムを膨潤又は一部溶解する溶剤としては、ケトン及び/又は酢酸エステルを含む溶剤が好ましい。具体的にはケトンとしてはメチルエチルケトン、アセトン、シクロヘキサノンなどを挙げることができる。また、酢酸エステルとしては酢酸エチル、酢酸メチル、酢酸ブチルなどを挙げることができる。ハードコート層塗布組成物にはその他の溶剤として、アルコール系溶剤を含んでも良い。 As the solvent that swells or partially dissolves the glass scattering prevention film, a solvent containing ketone and / or acetate is preferable. Specific examples of the ketone include methyl ethyl ketone, acetone, and cyclohexanone. Examples of the acetate ester include ethyl acetate, methyl acetate, and butyl acetate. The hard coat layer coating composition may contain an alcohol solvent as another solvent.
 ハードコート層塗布組成物の塗布量はウェット膜厚として0.1~40μmの範囲が好適で、さらに好ましくは、0.5~30μmの範囲である。また、ドライ膜厚としては平均膜厚5~20μm程度、好ましくは7~12μmの範囲が好ましい。 The coating amount of the hard coat layer coating composition is preferably in the range of 0.1 to 40 μm as a wet film thickness, and more preferably in the range of 0.5 to 30 μm. Further, the dry film thickness is preferably about 5 to 20 μm, preferably 7 to 12 μm.
 ハードコート層は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイ(押し出し)コーター、インクジェット法等公知の塗布方法を用いて、ハードコート層を形成するハードコート塗布組成物を塗布し、塗布後、乾燥し、活性線を照射(UV硬化処理ともいう)し、更に必要に応じて、UV硬化後に加熱処理することで形成できる。UV硬化後の加熱処理温度としては80℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化後の加熱処理を行うことで、ハードコート層の機械的強度(耐擦性、鉛筆硬度)がより良好となる。 The hard coat layer is a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die (extrusion) coater, a hard coat coating composition that forms a hard coat layer is applied using a known coating method such as an inkjet method, After application, the film can be dried, irradiated with actinic radiation (also referred to as UV curing treatment), and further subjected to heat treatment after UV curing as necessary. The heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after UV curing at such a high temperature, the mechanical strength (rubbing resistance, pencil hardness) of the hard coat layer becomes better.
 ハードコート層に防眩性を付与する場合は、減率乾燥区間の乾燥温度を80℃以上の高温処理で行うことが好ましい。更に好ましくは減率乾燥区間の温度は95℃以上、130℃以下である。減率乾燥区間の温度を高温処理とすることで、ハードコート層の形成時に塗膜樹脂中で対流が生じるため、その結果ハードコート層表面に微細な表面粗れが発現しやすく、後述する算術平均粗さRa値も得られやすい点から好ましい。 In the case of imparting antiglare properties to the hard coat layer, it is preferable to perform the drying temperature in the decreasing rate drying section at a high temperature treatment of 80 ° C. or higher. More preferably, the temperature in the decreasing rate drying section is 95 ° C. or higher and 130 ° C. or lower. By setting the temperature of the rate-decreasing drying section to a high temperature treatment, convection occurs in the coating resin during the formation of the hard coat layer. As a result, fine surface roughness tends to appear on the hard coat layer surface, and the arithmetic described later The average roughness Ra value is also preferable because it is easy to obtain.
 一般に乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られており、乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。恒率乾燥区間においては流入する熱量は全て塗膜表面の溶媒蒸発に費やされており、塗膜表面の溶媒が少なくなると蒸発面が表面から内部に移動して減率乾燥区間に入る。これ以降は塗膜表面の温度が上昇し熱風温度に近づいていくため、紫外線硬化型樹脂組成物の温度が上昇し、樹脂粘度が低下して流動性が増すと考えられる。 In general, it is known that the drying process changes from a constant state to a gradually decreasing state when drying starts. The decreasing section is called the decreasing rate drying section. In the constant rate drying section, the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the ultraviolet curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cmの範囲、好ましくは50~300mJ/cmの範囲である。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually in the range of 50 to 1000 mJ / cm 2 , preferably in the range of 50 to 300 mJ / cm 2 .
 また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は、通常30~500N/mの範囲、好ましくは30~300N/mの範囲である。張力を付与する方法は特に限定されず、バックローラー上で搬送方向に張力を付与してもよく、テンターにて幅方向、又は二軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。 Further, when irradiating active rays, it is preferably performed while applying tension in the film transport direction, more preferably while applying tension in the width direction. The tension to be applied is usually in the range of 30 to 500 N / m, preferably in the range of 30 to 300 N / m. The method for applying the tension is not particularly limited, and the tension may be applied in the conveying direction on the back roller, or the tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
 ハードコート層には、帯電防止性を付与するために導電剤を含有させても良く、好ましい導電剤としては、金属酸化物粒子又はπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。 The hard coat layer may contain a conductive agent for imparting antistatic properties, and preferred conductive agents include metal oxide particles or π-conjugated conductive polymers. An ionic liquid is also preferably used as the conductive compound.
 フッ素-シロキサングラフトポリマーとは、少なくともフッ素系樹脂に、シロキサン及び/又はオルガノシロキサン単体を含むポリシロキサン及び/又はオルガノポリシロキサンをグラフト化させて得られる共重合体のポリマーをいう。市販品としては、富士化成工業株式会社製のZX-022H、ZX-007C、ZX-049、ZX-047-D等を挙げることができる。 The fluorine-siloxane graft polymer refers to a copolymer polymer obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone on at least a fluorine resin. Examples of commercially available products include ZX-022H, ZX-007C, ZX-049, ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd.
 シリコーン系界面活性剤は、シリコーンオイルのメチル基の一部を親水性基に置換した界面活性剤である。親水性基としては、ポリエーテル、ポリグリセリン、ピロリドン、ベタイン、硫酸塩、リン酸塩、4級塩等がある。シリコーン界面活性剤の具体的商品として、例えば、SH200、BY16-873、PRX413(ジメチルシリコーンオイル;東レ・ダウコーニング・シリコーン(株)製)、SH203、SH230、SF8416(アルキル変性シリコーンオイル;東レ・ダウコーニング・シリコーン(株)製)、SF8417、BY16-208、BY16-209、BY16-849、BY16-872、FZ-2222、FZ-2207(ジメチルポリシロキサン・ポリエチレンオキサイド直鎖状ブロックコポリマー;日本ユニカー(株)製のFZシリーズ)、KF-101、KF-102、KF-105(エポキシ変性シリコーンオイル;信越化学工業社製)、BYK-UV3500、BYK-UV3510、BYK-333、BYK-331、BYK-337(ポリエーテル変性シリコーンオイル、ビックケミー・ジャパン社製)等が挙げられるがこれらに限定されない。 The silicone-based surfactant is a surfactant obtained by substituting a part of the methyl group of the silicone oil with a hydrophilic group. Examples of the hydrophilic group include polyether, polyglycerin, pyrrolidone, betaine, sulfate, phosphate, and quaternary salt. Specific products of silicone surfactants include, for example, SH200, BY16-873, PRX413 (dimethylsilicone oil; manufactured by Toray Dow Corning Silicone Co., Ltd.), SH203, SH230, SF8416 (alkyl-modified silicone oil; Toray Dow) Corning Silicone Co., Ltd.), SF8417, BY16-208, BY16-209, BY16-849, BY16-872, FZ-2222, FZ-2207 (dimethylpolysiloxane / polyethylene oxide linear block copolymer; Nippon Unicar ( FZ series), KF-101, KF-102, KF-105 (epoxy-modified silicone oil; manufactured by Shin-Etsu Chemical Co., Ltd.), BYK-UV3500, BYK-UV3510, BYK-333, BYK-33 , BYK-337 (polyether-modified silicone oil, manufactured by BYK Japan KK), but like without limitation.
 またこれら成分は、塗布液中の固形分成分に対し、0.01~5質量%の範囲で添加することが好ましい。 These components are preferably added in a range of 0.01 to 5% by mass with respect to the solid component in the coating solution.
 (ハードコート層の表面形状)
 本発明に係るハードコート層面は、長尺フィルムで巻き取った際のブロッキング防止効果やガラス飛散防止フィルムや粘着層との密着性に優れる点から算術平均粗さRaが4~20nmの範囲であることが好ましい。
(Surface shape of hard coat layer)
The surface of the hard coat layer according to the present invention has an arithmetic average roughness Ra in the range of 4 to 20 nm from the viewpoint of excellent antiblocking effect when wound with a long film, and excellent adhesion to the glass scattering prevention film and the adhesive layer. It is preferable.
 算術平均粗さRaは、JIS B0601:1994の規定に基づいて、光学干渉式表面粗さ計(RST/PLUS、WYKO社製)で測定した値である。 Arithmetic average roughness Ra is a value measured with an optical interference surface roughness meter (RST / PLUS, manufactured by WYKO) based on JIS B0601: 1994.
 また、凹凸平均間隔Smは3~40μmの範囲が好ましい。また該ハードコート層の算術平均粗さRaと前記ガラス飛散防止フィルムのハードコート層塗設面の凹凸平均間隔Smとの比率(Ra/Sm)が、2×10-4~6×10-3の範囲であることが好ましい。 Further, the uneven average interval Sm is preferably in the range of 3 to 40 μm. Further, the ratio (Ra / Sm) between the arithmetic average roughness Ra of the hard coat layer and the average irregularity spacing Sm of the hard coat layer coating surface of the glass scattering prevention film is 2 × 10 −4 to 6 × 10 −3. It is preferable that it is the range of these.
 Smは算術平均粗さRaと同様に、JIS B0601:1994の規定に基づいて、光学干渉式表面粗さ計(RST/PLUS、WYKO社製)で測定できる。 Sm can be measured with an optical interference surface roughness meter (RST / PLUS, manufactured by WYKO) based on the provisions of JIS B0601: 1994, similarly to the arithmetic average roughness Ra.
 算術平均粗さRaを前記範囲とするために、鋳型を押し当てて表面に突起を形成させる方法や、SP値(溶解度パラメーター)が異なる樹脂を混ぜて、表面凹凸を形成させる方法、スピノーダル分解や核生成などで突起形成させる方法を用いることができる。 In order to set the arithmetic average roughness Ra within the above range, a method of forming protrusions on the surface by pressing a mold, a method of forming surface irregularities by mixing resins having different SP values (solubility parameters), spinodal decomposition, A method of forming protrusions by nucleation or the like can be used.
 なお、突起形成に用いられる鋳型ローラーとしては、凹凸が細かいもの、粗いものまで、適宜選択して適用でき、模様、マット状、レンチキュラーレンズ状、球状の凹凸が規則正しく、若しくはランダムに配列されたものが使用できる。 In addition, as the mold roller used for forming the protrusions, those having fine irregularities and those having fine irregularities can be appropriately selected and applied, and patterns, mats, lenticular lenses, and spherical irregularities are regularly or randomly arranged. Can be used.
 また、本発明のハードコートフィルムのヘイズ値は、クリア性から1枚値の値が、1%以下が、十分な輝度や高いコントラストが得られる点で好ましい。 Further, the haze value of the hard coat film of the present invention is preferably 1% or less from the standpoint of clearness in that sufficient brightness and high contrast can be obtained.
 <機能性層>
 本発明に係るガラス飛散防止フィルムは、ハードコート層以外に、バックコート層、反射防止層、防眩層等の機能性層を設けることができる。
<Functional layer>
The glass scattering prevention film according to the present invention can be provided with functional layers such as a backcoat layer, an antireflection layer, and an antiglare layer in addition to the hard coat layer.
 (バックコート層)
 本発明に係るガラス飛散防止フィルムのハードコート層を設けた側と反対側の面に、カールやブロッキング防止のためにバックコート層を設けてもよい。
(Back coat layer)
You may provide a backcoat layer in the surface on the opposite side to the side which provided the hard-coat layer of the glass scattering prevention film which concerns on this invention in order to prevent a curl and blocking.
 カールやブロッキング防止の点から、バックコート層には、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等の粒子を添加することができる。 In terms of curling and blocking prevention, the back coat layer includes silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, indium oxide, Particles such as zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate can be added.
 バックコート層に含まれる粒子は、バインダーに対して0.1~50質量%の範囲が好ましい。バックコート層を設けた場合のヘイズの増加は0.5%以下であることが好ましく、特に0.1%以下であることが好ましい。バインダーとしては、セルロースエステル樹脂が好ましい。また、バックコート層を形成するための塗布組成物には、アルコール類、ケトン類及び/又は酢酸エステル類糖の溶媒を含有することが好ましい。 The particles contained in the backcoat layer are preferably in the range of 0.1 to 50% by mass with respect to the binder. When the back coat layer is provided, the increase in haze is preferably 0.5% or less, and particularly preferably 0.1% or less. As the binder, a cellulose ester resin is preferable. Moreover, it is preferable that the coating composition for forming the backcoat layer contains a solvent for alcohols, ketones and / or acetate ester sugars.
 (反射防止層)
 本発明に係るガラス飛散防止フィルムは、ハードコート層の上層に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることもできる。
(Antireflection layer)
The glass scattering prevention film according to the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the hard coat layer.
 反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体である保護フィルムよりも屈折率の低い低屈折率層、若しくは支持体である保護フィルムよりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、三層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる三層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。又は、二層以上の高屈折率層と二層以上の低屈折率層とを交互に積層した四層以上の層構成の反射防止層も好ましく用いられる。 The antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference. The antireflection layer is composed of a low refractive index layer having a lower refractive index than the protective film as the support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than the protective film as the support. Preferably it is. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers. Three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer. Alternatively, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
 反射防止フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。 As the layer structure of the antireflection film, the following structure can be considered, but it is not limited to this.
 ガラス飛散防止フィルム/ハードコート層/低屈折率層
 ガラス飛散防止フィルム/ハードコート層/中屈折率層/低屈折率層
 ガラス飛散防止フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
 ガラス飛散防止フィルム/ハードコート層/高屈折率層(導電性層)/低屈折率層
 (低屈折率層)
 低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、23℃、波長550nm測定で、1.30~1.45の範囲であることが好ましい。
Glass scattering prevention film / hard coat layer / low refractive index layer Glass scattering prevention film / hard coat layer / medium refractive index layer / low refractive index layer Glass scattering prevention film / hard coat layer / medium refractive index layer / high refractive index layer / Low refractive index layer Glass scattering prevention film / hard coat layer / high refractive index layer (conductive layer) / low refractive index layer (low refractive index layer)
The low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
 低屈折率層の膜厚は、5nm~0.5μmの範囲であることが好ましく、10nm~0.3μmの範囲であることが更に好ましく、30nm~0.2μmの範囲であることが最も好ましい。 The film thickness of the low refractive index layer is preferably in the range of 5 nm to 0.5 μm, more preferably in the range of 10 nm to 0.3 μm, and most preferably in the range of 30 nm to 0.2 μm.
 低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質又は空洞の粒子を少なくとも一種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質又は空洞である粒子が、中空シリカ系微粒子であることが好ましい。 The composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. In particular, the particles having the outer shell layer and porous or hollow inside are preferably hollow silica-based fine particles.
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機ケイ素化合物若しくはその加水分解物、あるいは、その重縮合物を併せて含有させても良い。 The composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1) or a hydrolyzate thereof, or a polycondensate thereof.
 一般式(OSi-1):Si(OR)
 前記一般式で表される有機ケイ素化合物は、式中、Rは炭素数1~4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
General formula (OSi-1): Si (OR) 4
In the organosilicon compound represented by the general formula, R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
 ほかに溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。またフッ素原子を35~80質量%の範囲で含み、且つ架橋性若しくは重合性の官能基を含む含フッ素化合物を主としてなる熱硬化性及び/又は光硬化性を有する化合物を含有しても良い。具体的には含フッ素ポリマー、あるいは含フッ素ゾルゲル化合物などである。含フッ素ポリマーとしては、例えばパーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物のほか、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。その他、溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。 In addition, a silane coupling agent, a curing agent, a surfactant and the like may be added as necessary. Further, it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. Specifically, a fluorine-containing polymer or a fluorine-containing sol-gel compound is used. Examples of the fluorine-containing polymer include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units. In addition, you may add a solvent, a silane coupling agent, a hardening | curing agent, surfactant, etc. as needed.
 (高屈折率層)
 高屈折率層の屈折率は、23℃、波長550nm測定で、屈折率を1.4~2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm~1μmの範囲が好ましく、10nm~0.2μmの範囲であることが更に好ましく、30nm~0.1μmの範囲であることが最も好ましい。屈折率を調整する手段は、金属酸化物微粒子等を添加することで達成できる。金属酸化また、用いる金属酸化物微粒子の屈折率は1.80~2.60の範囲であるものが好ましく、1.85~2.50の範囲であるものが更に好ましい。
(High refractive index layer)
The refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm. The thickness of the high refractive index layer is preferably in the range of 5 nm to 1 μm, more preferably in the range of 10 nm to 0.2 μm, and most preferably in the range of 30 nm to 0.1 μm. The means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like. Metal oxide The metal oxide fine particles used preferably have a refractive index in the range of 1.80 to 2.60, and more preferably in the range of 1.85 to 2.50.
 金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム-スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。 The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used. In the present invention, at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate is used. It is particularly preferable to use it as the main component. In particular, it is preferable to contain zinc antimonate particles.
 これら金属酸化物微粒子の一次粒子の平均粒子径は10~200nmの範囲であり、10~150nmの範囲であることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状あるいは不定形状であることが好ましい。 The average particle diameter of primary particles of these metal oxide fine particles is in the range of 10 to 200 nm, particularly preferably in the range of 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
 金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1~5質量%の範囲、より好ましくは0.5~3質量%の範囲である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。また高屈折率層は、π共役系導電性ポリマーを含有しても良い。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。 The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the surface modification amount with a preferable organic compound is in the range of 0.1 to 5% by mass, more preferably in the range of 0.5 to 3% by mass with respect to the metal oxide particles. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined. The high refractive index layer may contain a π-conjugated conductive polymer. The π-conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a π-conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
 π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。 The π-conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group. A functional group such as a group, a hydroxy group, or a cyano group may be introduced.
 また、イオン性化合物を含有しても良い。イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系の陰イオンとからなる化合物等が挙げられる。該ポリマーとバインダーの比率はポリマー100質量部に対して、バインダーが10~400質量部の範囲が好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100~200質量部の範囲である。 Moreover, you may contain an ionic compound. Examples of the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 and PF 6 , CF 3 SO 2 −, and the like. , (CF 3 SO 2 ) 2 N , CF 3 CO 2 —, etc. The ratio of the polymer to the binder is preferably in the range of 10 to 400 parts by weight with respect to 100 parts by weight of the polymer, and particularly preferably in the range of 100 to 200 parts by weight of the binder with respect to 100 parts by weight of the polymer. .
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 実施例1
 <タッチパネルモジュールの作製>
 強化ガラスにスパッタリング法によりITO膜を厚さが20nmになるように成膜し、エッチングでX方向の第1電極パターンを形成した。
Example 1
<Production of touch panel module>
An ITO film having a thickness of 20 nm was formed on the tempered glass by a sputtering method, and a first electrode pattern in the X direction was formed by etching.
 次に電極パターンの間に配置される絶縁層としてSiOをスパッタリング法を用いて厚さが200nmになるように成膜し、その上にITO膜を厚さが20nmになるようにスパッタリングで成膜し、エッチングでY方向の第2電極パターンを格子状に形成した。更にその上に絶縁層としてSiOをスパッタリング法を用いて厚さ200nmになるように成膜した。 Next, SiO 2 is formed as an insulating layer disposed between the electrode patterns by sputtering to a thickness of 200 nm, and an ITO film is formed thereon by sputtering so as to have a thickness of 20 nm. Then, the second electrode pattern in the Y direction was formed in a lattice shape by etching. Further thereon, SiO 2 was deposited as an insulating layer to a thickness of 200 nm by sputtering.
 形成したITOのX方向、及びY方向の電極パターンにそれぞれAgペーストを塗布、及び焼結することで作製したリード線を介して制御回路に接続させた。 The electrode pattern in the X direction and the Y direction of the formed ITO was connected to a control circuit via a lead wire prepared by applying and sintering Ag paste, respectively.
 次いで、下記条件で作製したガラス飛散防止フィルム(セルロースエステルフィルムA1)を切り出して、第2電極パターン上に粘着層を介して貼合し、タッチパネルモジュール1を作製した。 Next, a glass scattering prevention film (cellulose ester film A1) produced under the following conditions was cut out and bonded onto the second electrode pattern via an adhesive layer to produce touch panel module 1.
 その際、電極パターンのX方向を0°とし、ガラス飛散防止フィルムの最大弾性率の方向を表1記載の角度となるように貼合した。 At that time, the X direction of the electrode pattern was set to 0 °, and the direction of the maximum elastic modulus of the glass scattering prevention film was bonded so as to have an angle shown in Table 1.
 <ガラス飛散防止フィルムの作製>
 〈セルロースエステル樹脂〉
 以下、実施例で用いたセルロースエステル樹脂の種類、内容は下記のとおりである。
<Production of glass scattering prevention film>
<Cellulose ester resin>
Hereinafter, the types and contents of the cellulose ester resins used in the examples are as follows.
 CE-1:セルロースジアセテート(アセチル基置換度2.45、Mw30万)
 CE-2:セルローストリアセテート(アセチル基置換度2.88、Mw32万)
 CE-3:セルロースアセテートプロピオネート(アセチル基置換度1.9、プロピオニル基置換度0.55、Mw28万)
 〈セルロースエステルフィルムA1の作製〉
 〈微粒子分散液1〉
 シリカ微粒子(アエロジル R972V 日本アエロジル(株)製)  
                             11質量部
 エタノール                       89質量部
 以上をディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。
CE-1: Cellulose diacetate (acetyl group substitution degree 2.45, Mw 300,000)
CE-2: Cellulose triacetate (acetyl group substitution degree 2.88, Mw 320,000)
CE-3: cellulose acetate propionate (acetyl group substitution degree 1.9, propionyl group substitution degree 0.55, Mw 280,000)
<Preparation of cellulose ester film A1>
<Fine particle dispersion 1>
Silica fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.)
11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
 〈微粒子添加液1〉 メチレンクロライドを入れた溶解タンクに十分撹拌しながら、微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。 <Fine particle addition liquid 1> The fine particle dispersion liquid 1 was slowly added to the dissolution tank containing methylene chloride while sufficiently stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
 メチレンクロライド                   99質量部
 微粒子分散液1                      5質量部
 〈主ドープA〉
 下記組成の主ドープAを調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。次に溶剤の入った加圧溶解タンクにセルロースアセテートを撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解した。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープAを調製した。
Methylene chloride 99 parts by mass Fine particle dispersion 1 5 parts by mass <Main dope A>
A main dope A having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Next, cellulose acetate was added to the pressurized dissolution tank containing the solvent while stirring. This was completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope A was prepared by filtration using 244.
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 CE-1 セルロースジアセテート
(平均アセチル基置換度2.45、Mw30万)      100質量部
 ポリエステル系化合物AP-16              6質量部
 糖エステル化合物1-3                  6質量部
 微粒子添加液1                      1質量部
 以上を密閉容器に投入し、撹拌しながら溶解してドープを調製した。次いで、無端ベルト流延装置を用い、ドープを温度33℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
Methylene chloride 340 parts by mass Ethanol 64 parts by mass CE-1 Cellulose diacetate (average acetyl group substitution degree 2.45, Mw 300,000) 100 parts by mass Polyester compound AP-16 6 parts by mass Sugar ester compound 1-3 6 parts by mass Fine particles 1 part by mass or more of additive solution 1 was put into a sealed container and dissolved while stirring to prepare a dope. Then, using an endless belt casting apparatus, the dope was cast uniformly on a stainless steel belt support at a temperature of 33 ° C. and a width of 1500 mm. The temperature of the stainless steel belt was controlled at 30 ° C.
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。 On the stainless steel belt support, the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
 剥離したセルロースエステルフィルムを、160℃の熱をかけながらテンターを用いて幅手方向に15%延伸した。延伸開始時の残留溶媒は15%であった。次いで、乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。乾燥後、1.5m幅にスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、ロール状に巻き取り、乾燥膜厚40μmのセルロースエステルフィルムA1を得た。巻長は5000mであった。 The peeled cellulose ester film was stretched 15% in the width direction using a tenter while applying heat at 160 ° C. The residual solvent at the start of stretching was 15%. Next, drying was completed while the drying zone was conveyed by a number of rollers. The drying temperature was 130 ° C. and the transport tension was 100 N / m. After drying, it was slit into a width of 1.5 m, a knurling process with a width of 10 mm and a height of 10 μm was applied to both ends of the film, wound into a roll, and a cellulose ester film A1 having a dry film thickness of 40 μm was obtained. The winding length was 5000 m.
 セルロースエステルフィルムA1の最大弾性率の方向は下記測定法によって測定した結果、延伸方向と同様に幅手方向にあった。 The direction of the maximum elastic modulus of the cellulose ester film A1 was measured by the following measurement method, and as a result, was the width direction as in the stretching direction.
 また、位相差は下記測定法によって測定した結果、面内位相差Roが50nmであり、遅相軸は延伸方向と同様に幅手方向にあった。 Further, as a result of measuring the phase difference by the following measuring method, the in-plane phase difference Ro was 50 nm, and the slow axis was in the width direction as in the stretching direction.
 〈セルロースエステルフィルムA2~A5の作製〉
 表1記載のように樹脂(種類、置換度)、延伸倍率を変化させた以外はセルロースエステルフィルムA1と同様にして、セルロースエステルフィルムA2~A5を作製した。
<Preparation of cellulose ester films A2 to A5>
Cellulose ester films A2 to A5 were prepared in the same manner as the cellulose ester film A1, except that the resin (type and degree of substitution) and the draw ratio were changed as described in Table 1.
 〈COPフィルムの作製〉
 〈脂環式構造を有する重合体樹脂の合成〉
 エチレン雰囲気下、容量1.6lのオートクレーブにフェニルノルボルネン濃度が20mol/lで、総液量が640mlとなるようにトルエンとフェニルノルボルネン-トルエン溶液を入れた。メチルアルミノキサン(アルベマール社製、MAO20%トルエン溶液)をAl基準で5.88mmol、メチレン(シクロペンタジエニル)(テトラメチルシクロペンタジエニル)ジルコニウムジクロリド1.5μmolを添加し、エチレンを導入して圧力を0.2MPaに保持しながら、80℃で60分間反応させた。
<Production of COP film>
<Synthesis of polymer resin having alicyclic structure>
Under an ethylene atmosphere, toluene and a phenylnorbornene-toluene solution were put in an autoclave having a volume of 1.6 l so that the phenylnorbornene concentration was 20 mol / l and the total liquid volume was 640 ml. Methylaluminoxane (manufactured by Albemarle, MAO 20% toluene solution) was added with 5.88 mmol and methylene (cyclopentadienyl) (tetramethylcyclopentadienyl) zirconium dichloride 1.5 μmol based on Al, ethylene was introduced and pressure was added. Was kept at 0.2 MPa for 60 minutes at 80 ° C.
 反応終了後、放冷しながらエチレンを脱圧し、系内を窒素で置換した。その後、吸着水分量を10質量%に調整したシリカ(富士シリシア社製、グレード:G-3粒径:50μm)を3.0g加えて1時間反応させた。その反応液を濾紙(5C、90mm)とセライト(和光純薬工業社)をセットした加圧ろ過器(アドバンテック東洋株式会社、型式KST-90-UH)に入れ、窒素で加圧ろ過して重合液を回収した。その重合液を5倍量のアセトン中に少量ずつ滴下して析出させ、脂環式構造を有する重合体樹脂COP1を得た。COP1の重量平均分子量は142000であり、またガラス転移温度は140℃であった。 After completion of the reaction, ethylene was depressurized while allowing to cool and the system was replaced with nitrogen. Thereafter, 3.0 g of silica (manufactured by Fuji Silysia Co., grade: G-3 particle size: 50 μm) with the adsorbed water content adjusted to 10% by mass was added and reacted for 1 hour. The reaction solution was placed in a pressure filter (Advantech Toyo Co., Ltd., model KST-90-UH) set with filter paper (5C, 90 mm) and Celite (Wako Pure Chemical Industries, Ltd.), and pressure filtered with nitrogen for polymerization. The liquid was collected. The polymerization solution was dropped dropwise in 5 times amount of acetone and deposited to obtain a polymer resin COP1 having an alicyclic structure. COP1 had a weight average molecular weight of 142,000 and a glass transition temperature of 140 ° C.
 上記で合成した脂環式構造を有する重合体樹脂COP1を、空気を流通させた熱風乾燥機を用いて70℃で2時間乾燥して水分を除去した後に、65mmφのスクリューを備えた樹脂溶融混練機を有するTダイ式フィルム溶融押し出し成形機(Tダイ幅500mm)を使用し、溶融樹脂温度240℃、Tダイ温度240℃の成形条件にて、膜厚100μmのCOPフィルムを押し出し成形した。 The polymer resin COP1 having an alicyclic structure synthesized above is dried for 2 hours at 70 ° C. using a hot air dryer in which air is circulated to remove moisture, and then resin melt kneaded with a 65 mmφ screw A COP film having a film thickness of 100 μm was extruded using a T-die film melt extrusion molding machine (T-die width 500 mm) having a machine under molding conditions of a molten resin temperature of 240 ° C. and a T-die temperature of 240 ° C.
 次いで、剥離したCOPフィルムを、200℃の熱をかけながらテンターを用いて幅手方向に90%延伸した。次いで、乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。乾燥後、1.5m幅にスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、ロール状に巻き取り、乾燥膜厚40μmのCOPフィルムを得た。巻長は5000mであった。 Next, the peeled COP film was stretched 90% in the width direction using a tenter while applying heat at 200 ° C. Next, drying was completed while the drying zone was conveyed by a number of rollers. The drying temperature was 130 ° C. and the transport tension was 100 N / m. After drying, the film was slit to a width of 1.5 m, a knurling process having a width of 10 mm and a height of 10 μm was applied to both ends of the film, wound into a roll, and a COP film having a dry film thickness of 40 μm was obtained. The winding length was 5000 m.
 COPフィルムの最大弾性率の方向は下記測定法によって測定した結果、延伸方向と同様に幅手方向にあった。 The direction of the maximum elastic modulus of the COP film was measured by the following measurement method, and as a result, it was in the width direction as in the stretching direction.
 また、COPフィルムの位相差は下記測定法によって測定した結果、面内位相差値Roが135nmであり、遅相軸は幅手方向にあった。 Further, as a result of measuring the retardation of the COP film by the following measuring method, the in-plane retardation value Ro was 135 nm, and the slow axis was in the width direction.
 〈PCフィルム〉
 温度計、撹拌機、還流冷却器付き反応器にイオン交換水152400部、25%水酸化ナトリウム水溶液84320部を入れ、HPLC分析で純度99.8%の9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“ビスクレゾールフルオレン”と略称することがある)34848部、2,2-ビス(4-ヒドロキシフェニル)プロパン9008部(以下“ビスフェノールA”と略称することがある)及びハイドロサルファイト88部を溶解した後、メチレンクロライド178400部を加え、撹拌下15~25℃でホスゲン18248部を60分を要して吹き込んだ。ホスゲン吹き込み終了後、p-tert-ブチルフェノール177.8部をメチレンクロライド2640部に溶解した溶液及び25%水酸化ナトリウム水溶液10560部を加え、乳化後、トリエチルアミン32部を加えて28~33℃で1時間撹拌して反応を終了した。反応終了後、生成物をメチレンクロライドで希釈して水洗したのち塩酸酸性にして水洗し、水相の導電率がイオン交換水とほとんど同じになったところで、メチレンクロライド相を濃縮、脱水してポリカーボネート濃度が20%の溶液を得た。この溶液から溶媒を除去して得たポリカーボネート(共重合体A)はビスクレゾールフルオレンとビスフェノールAとの構成単位の比がモル比で70:30であった(ポリマー収率97%)。また、このポリマーの極限粘度は0.674、Tgは226℃であった。
<PC film>
In a reactor equipped with a thermometer, a stirrer, and a reflux condenser, 152400 parts of ion-exchanged water and 84320 parts of 25% aqueous sodium hydroxide solution were added, and 9,9-bis (4-hydroxy-3 having a purity of 99.8% by HPLC analysis. -Methylphenyl) fluorene (hereinafter abbreviated as “biscresol fluorene”) 34848 parts, 2,2-bis (4-hydroxyphenyl) propane 9008 parts (hereinafter abbreviated as “bisphenol A”) and After dissolving 88 parts of hydrosulfite, 178400 parts of methylene chloride was added, and 18248 parts of phosgene was blown in at a temperature of 15 to 25 ° C. with stirring for 60 minutes. After the completion of phosgene blowing, a solution obtained by dissolving 177.8 parts of p-tert-butylphenol in 2640 parts of methylene chloride and 10560 parts of a 25% aqueous sodium hydroxide solution were added. After emulsification, 32 parts of triethylamine was added and the mixture was added at 28 to 33 ° C. The reaction was terminated by stirring for a period of time. After completion of the reaction, the product is diluted with methylene chloride, washed with water, acidified with hydrochloric acid and washed with water. When the conductivity of the aqueous phase is almost the same as that of ion-exchanged water, the methylene chloride phase is concentrated and dehydrated to obtain polycarbonate. A solution with a concentration of 20% was obtained. The polycarbonate (copolymer A) obtained by removing the solvent from this solution had a molar ratio of biscresol fluorene to bisphenol A of 70:30 (polymer yield 97%). In addition, this polymer had an intrinsic viscosity of 0.674 and a Tg of 226 ° C.
 エタノールを4質量部含む、メチレンクロライドとエタノール混合溶媒75質量部に対して、前記ポリカーボネート25質量部を25℃で撹拌しながら溶解して、透明で粘ちょうなドープを得た。このドープを、乾燥空気を送風して露点を12℃以下に制御した100mステンレスベルト上に流延し、剥離した。その時の残留溶媒濃度は35%だった。剥離性は良好であり帯電も少ないことより目視観察ではフィルム表面に剥離段や剥離筋等は見られなかった。その後、残留溶媒濃度が2%のとき、幅手方向に2倍延伸処理した後、幅を保持をして乾燥させた。その後、残留溶媒濃度が1%以下になるまで乾燥し幅1.5m、乾燥膜厚40μmのPCフィルムを得た。巻長は5200mであった。 25 parts by mass of the polycarbonate was dissolved with stirring at 25 ° C. with respect to 75 parts by mass of a mixed solvent of methylene chloride and ethanol containing 4 parts by mass of ethanol to obtain a transparent and viscous dope. The dope was cast on a 100 m stainless steel belt, which was blown with dry air and the dew point was controlled to 12 ° C. or less, and was peeled off. The residual solvent concentration at that time was 35%. From the fact that the peelability was good and the charge was small, no peeling step or peeling streaks were observed on the film surface by visual observation. Thereafter, when the residual solvent concentration was 2%, the film was stretched twice in the width direction and then dried while maintaining the width. Then, it dried until the residual solvent density | concentration became 1% or less, and obtained the PC film with a width | variety of 1.5 m and a dry film thickness of 40 micrometers. The winding length was 5200 m.
 PCフィルムの最大弾性率の方向は下記測定法によって測定した結果、延伸方向と同様に幅手方向にあった。 The direction of the maximum elastic modulus of the PC film was measured by the following measurement method, and as a result, it was in the width direction as in the stretching direction.
 PCフィルムの位相差は下記測定法によって測定した結果、面内位相差Roが140nmであり、遅相軸は幅手方向にあった。 The retardation of the PC film was measured by the following measurement method. As a result, the in-plane retardation Ro was 140 nm, and the slow axis was in the width direction.
 〈PETフィルム〉
 〈ポリエステルA〉
 テレフタル酸ジメチル100質量部、エチレングリコール64質量部に酢酸カルシウム水和物0.1質量部を添加し、常法によりエステル交換反応を行った。得られた生成物に5-ナトリウムスルホジ(β-ヒドロキシエチル)イソフタル酸のエチレングリコール溶液(濃度35質量%)39質量部(7モル%/全ジカルボン酸成分)、ポリエチレングリコール(数平均分子量3000)5.8質量部(5質量%/生成したポリエステル)、三酸化アンチモン0.05質量部、リン酸トリメチルエステル0.13質量部を添加した。次いで徐々に昇温、減圧にし、280℃、40Paで重合を行い、ポリエステルAを得た。以下に示す方法に従って固有粘度を求めた。その結果、固有粘度は0.50であった。
<PET film>
<Polyester A>
To 100 parts by mass of dimethyl terephthalate and 64 parts by mass of ethylene glycol, 0.1 part by mass of calcium acetate hydrate was added, and transesterification was performed by a conventional method. The obtained product was mixed with ethylene glycol solution of 5-sodium sulfodi (β-hydroxyethyl) isophthalic acid (concentration 35% by mass) (7 mol% / total dicarboxylic acid component), polyethylene glycol (number average molecular weight 3000). 5.8 parts by mass (5% by mass / generated polyester), 0.05 parts by mass of antimony trioxide, and 0.13 parts by mass of trimethyl phosphate. Next, the temperature was gradually raised and the pressure was reduced, and polymerization was carried out at 280 ° C. and 40 Pa to obtain polyester A. The intrinsic viscosity was determined according to the method shown below. As a result, the intrinsic viscosity was 0.50.
 固有粘度についてはウベローデ型粘度計を用いて以下の手順で算出した。質量比が約55:45(流下時間42.0±0.1秒に調整)であるフェノールと1,1,2,2-テトラクロロエタンとの混合溶媒を用い、サンプルを溶かして濃度0.2,0.6,1.0(g/dl)の溶液(温度20℃)を調製した。ウベローデ型粘度計によって、それぞれの濃度(C)における比粘度(ηsp)を求め、式[ηsp/C]を濃度零に補外(C→0)し固有粘度[η]を求めた。固有粘度[η]の単位はdl/gである。 The intrinsic viscosity was calculated according to the following procedure using an Ubbelohde viscometer. Using a mixed solvent of phenol and 1,1,2,2-tetrachloroethane having a mass ratio of about 55:45 (adjusted to a flow time of 42.0 ± 0.1 seconds), the sample was dissolved to a concentration of 0.2 , 0.6, 1.0 (g / dl) solution (temperature 20 ° C.). The specific viscosity (ηsp) at each concentration (C) was determined by an Ubbelohde viscometer, and the equation [ηsp / C] was extrapolated to a concentration of zero (C → 0) to determine the intrinsic viscosity [η]. The unit of intrinsic viscosity [η] is dl / g.
 上記ポリエステルAのペレットを150℃で8時間真空乾燥した後、押出機を用いて285℃で溶融押出し、30℃の冷却ドラム上に静電印加しながら密着させ、冷却固化させ未延伸シートを得た。この未延伸シートを、ローラー式縦延伸機を用いて、90℃で縦方向に2.0倍延伸した。表裏面の温度差は5℃以内であった。 The polyester A pellets were vacuum-dried at 150 ° C. for 8 hours, melt-extruded at 285 ° C. using an extruder, closely adhered to a 30 ° C. cooling drum while electrostatically applied, and cooled and solidified to obtain an unstretched sheet. It was. This unstretched sheet was stretched 2.0 times in the longitudinal direction at 90 ° C. using a roller-type longitudinal stretching machine. The temperature difference between the front and back surfaces was within 5 ° C.
 得られた一軸延伸フィルムをテンター式横延伸機を用いて、100℃で横方向に1.2倍延伸した。次いで、70℃で2秒間熱処理し、さらに第一熱固定ゾーン150℃で10秒間熱固定し、第二熱固定ゾーン180℃で15秒間熱固定して、次いで160℃で幅手方向に2%弛緩処理し巻き取り、幅1.5m、乾燥膜厚60μmのPETフィルムを作製した。巻長は5000mであった。 The obtained uniaxially stretched film was stretched 1.2 times in the transverse direction at 100 ° C. using a tenter-type transverse stretching machine. Next, heat treatment was performed at 70 ° C. for 2 seconds, heat-fixed at 150 ° C. for the first heat setting zone for 10 seconds, heat-fixed for 15 seconds at the second heat setting zone at 180 ° C., and then 2% in the width direction at 160 ° C. A PET film having a width of 1.5 m and a dry film thickness of 60 μm was prepared by performing relaxation treatment. The winding length was 5000 m.
 PETフィルムの最大弾性率の方向は下記測定法によって測定した結果、延伸方向と同様に長手方向にあった。 The direction of the maximum elastic modulus of the PET film was measured by the following measurement method, and as a result, it was in the longitudinal direction as in the stretching direction.
 また、PETフィルムの位相差は下記測定法によって測定した結果、面内位相差値Roが130nmであり、遅相軸は長手方向にあった。 Moreover, as a result of measuring the retardation of the PET film by the following measurement method, the in-plane retardation value Ro was 130 nm, and the slow axis was in the longitudinal direction.
 以上、作製したセルロースエステルフィルムA2~A5、COPフィルム、PCフィルム、及びPETフィルムを用いて同様にしてタッチパネルモジュール2~16を作製した。 Touch panel modules 2 to 16 were produced in the same manner using the produced cellulose ester films A2 to A5, COP film, PC film, and PET film.
 <液晶表示パネルの作製>
 液晶表示パネルは市販のタッチパネル付き液晶表示装置から、タッチパネルモジュールを注意深く剥離した。
<Production of liquid crystal display panel>
The liquid crystal display panel was carefully peeled off from the commercially available liquid crystal display device with a touch panel.
 また、該液晶表示装置に貼合されている偏光板の吸収軸の方向を測定したところ、前記タッチパネルモジュールの透明電極の形成方向(X方向)と平行であった。 Further, when the direction of the absorption axis of the polarizing plate bonded to the liquid crystal display device was measured, it was parallel to the transparent electrode forming direction (X direction) of the touch panel module.
 次いで、上記作製したタッチパネルモジュール1を、透明電極の形成方向(X方向)が同じ向きとなるように、以下の粘着剤を介して液晶表示パネルに貼合し、タッチパネル付き液晶表示装置1を作製した。 Next, the produced touch panel module 1 is bonded to a liquid crystal display panel through the following adhesive so that the transparent electrode forming direction (X direction) is the same direction, and the liquid crystal display device 1 with a touch panel is produced. did.
 タッチパネルモジュールのフィルムの表面にソニーケミカル&インフォメーションデバイス社製のSVR1240を塗布した。 SVR1240 manufactured by Sony Chemical & Information Device Co. was applied to the surface of the touch panel module film.
 次いで、塗布したSVR1240を介して当該タッチパネルモジュールを液晶表示パネルに貼り合わせて、一部分に紫外線を照射して仮固定した。界面に気泡が生じていないか検査した後、全体に紫外線を照射して完全に硬化させ、タッチパネルモジュールと液晶表示パネルを本固定しタッチパネル付き液晶表示装置1を作製した。 Next, the touch panel module was bonded to the liquid crystal display panel via the applied SVR 1240 and temporarily fixed by irradiating a part of it with ultraviolet rays. After inspecting for bubbles at the interface, the entire surface was irradiated with ultraviolet rays and completely cured, and the touch panel module and the liquid crystal display panel were permanently fixed to produce a liquid crystal display device 1 with a touch panel.
 同様にして、表1のセルロースエステルフィルムA2~A5、COPフィルム、PCフィルム、及びPETフィルムを用いて作製したタッチパネルモジュール2~16を各々液晶表示パネルに貼合した、タッチパネル付き液晶表示装置2~16を作製した。 Similarly, the touch panel modules 2 to 16 produced using the cellulose ester films A2 to A5, COP film, PC film, and PET film in Table 1 were bonded to the liquid crystal display panels, respectively. 16 was produced.
 <ガラス飛散防止フィルムの評価>
 [弾性率の評価]
 ガラス飛散防止フィルムの弾性率の測定は、23℃、55%RHの環境下で試料を24時間調湿し、JIS K7127に記載の方法に準じて、引っ張り試験器(株)オリエンテック製テンシロンRTA-100を使用して弾性率を求めた。試験片の形状は1号形試験片で、試験速度は10mm/分の条件で、任意方向に対し0°から15°毎の方向に測定し求めた弾性率のうち最大のものを最大弾性率とし、更にその方向を最大弾性率の方向とした。
<Evaluation of glass scattering prevention film>
[Evaluation of elastic modulus]
The elastic modulus of the glass scattering prevention film was measured by conditioning the sample for 24 hours in an environment of 23 ° C. and 55% RH, and according to the method described in JIS K7127, Tensilon RTA manufactured by Orientec Co., Ltd. Elastic modulus was determined using -100. The shape of the test piece is No. 1 test piece, the test speed is 10 mm / min, and the maximum elastic modulus is the maximum elastic modulus obtained by measuring from 0 ° to 15 ° in any direction. Further, the direction was defined as the direction of the maximum elastic modulus.
 [位相差の評価]
 (遅相軸の方向)
 アッベ屈折率計(1T)によりフィルム試料の、温度23℃、相対湿度55%RHの環境下、光波長590nmでの面内の平均屈折率を測定し、遅相軸の方向を求めた。
[Evaluation of phase difference]
(Slow axis direction)
The average refractive index in the plane at an optical wavelength of 590 nm was measured under an environment of a temperature of 23 ° C. and a relative humidity of 55% RH with an Abbe refractometer (1T) to determine the direction of the slow axis.
 (位相差:リターデーションの測定)
 面内位相差値Roは以下の式によって求めた。
(Phase difference: measurement of retardation)
The in-plane retardation value Ro was obtained by the following equation.
 式(i):Ro=(n-n)×d(nm)
 ここにおいて、dはフィルムの厚さ(nm)、屈折率n(遅相軸方向の屈折率)、n(フィルム面内で遅相軸に直角な方向の屈折率)である。
Formula (i): Ro = (n x −n y ) × d (nm)
Here, d is the thickness of the film (nm), (refractive index in a slow axis direction) refractive index n x, a n y (refractive index of the direction perpendicular to the slow axis in the film plane).
 また上記位相差値Roは自動複屈折率計KOBRA-21AWR(王子計測機器(株))を用いて測定した。 The retardation value Ro was measured using an automatic birefringence meter KOBRA-21AWR (Oji Scientific Instruments).
 <タッチパネル付き液晶表示装置の評価>
(1)ITO電極のクラック発生防止性の評価
 上記タッチパネル付き液晶表示装置を1000個連続生産し、ITOクラックの発生を目視にて評価し、その発生比率を測定した。
<Evaluation of LCD with touch panel>
(1) Evaluation of crack prevention property of ITO electrode 1000 liquid crystal display devices with a touch panel were continuously produced, the occurrence of ITO cracks was visually evaluated, and the generation ratio was measured.
 ◎:1%未満
 ○:1%以上3%未満
 △:3%以上5%未満
 ×:5%以上
 生産上の許容範囲は○以上である。
(2)ガラス飛散防止性
 長さ150mm×幅170mm×厚さ1mmのガラス板に、セルロースエステルフィルムA1~A5、COPフィルム、PCフィルム、PETフィルムを各々ガラス飛散防止フィルムとして貼り合せた後、高さ10mmの台上、このガラス板と、ガラス飛散防止フィルムからなる積層体を、ガラス飛散防止フィルムが上向き(上記の台とは反対側の向き)となり、この積層体の長辺方向の一端から10mmの部分(一端部)がアーチ状に浮いた状態となるように配置し、その一端部に対して、高さ30cmから直径31.75mmの鉄球を落下させ、ガラスの飛散状況を目視により観察した。
◎: Less than 1% ○: 1% or more and less than 3% △: 3% or more and less than 5% ×: 5% or more The production tolerance is ◯ or more.
(2) Glass scattering prevention property After bonding cellulose ester films A1 to A5, COP film, PC film, and PET film as glass scattering prevention films on a glass plate having a length of 150 mm, a width of 170 mm, and a thickness of 1 mm, respectively, A laminated body composed of this glass plate and a glass scattering prevention film on a 10-mm-thick stand, the glass scattering prevention film faces upward (the direction opposite to the above-mentioned stage), and from one end in the long side direction of the laminated body Place the 10mm part (one end) in an arched state, drop an iron ball with a diameter of 31.75mm from a height of 30cm to the one end, and visually observe the scattering of the glass. Observed.
 このテストを20回繰り返し、フィルムが全く裂けなかった場合は○、フィルムが20回中3回以内裂けた場合を△、フィルムが20回中4回以上裂けた場合は×と評価した。×の評価ではガラス飛散防止フィルムとして使用できない。 This test was repeated 20 times. When the film was not torn at all, it was evaluated as ○, when the film was torn within 3 times in 20 times, and when the film was torn 4 times or more in 20 times as x. In evaluation of x, it cannot be used as a glass scattering prevention film.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1の内容から、本発明のタッチパネル付き液晶表示装置1~10は、比較例のタッチパネル付き液晶表示装置11~16に対して、ITO電極のクラック発生防止性に優れ、またガラス飛散防止性にも優れていることが分かる。 From the contents of Table 1, the liquid crystal display devices 1 to 10 with a touch panel according to the present invention are superior in preventing the ITO electrode from cracking and preventing glass scattering compared to the liquid crystal display devices 11 to 16 with a touch panel of the comparative example. It can be seen that it is excellent.
 本発明に係るタッチパネル付き液晶表示装置4は、ガラス飛散防止フィルムの最大弾性率の方向を貼合する角度が105°であったため、ややガラス飛散防止性が劣った。 The liquid crystal display device 4 with a touch panel according to the present invention was slightly inferior in preventing glass scattering because the angle for bonding the direction of the maximum elastic modulus of the glass scattering preventing film was 105 °.
 実施例2
 〈ハードコート層の塗設〉
 上記作製したセルロースエステルフィルムA1~A5、COPフィルム、及びPCフィルム、PETフィルムの各々の表面に、下記のハードコート層組成物1を孔径0.4μmのポリプロピレン製フィルターで濾過したものを、押し出しコーターを用いて塗布し、温度80℃で乾燥の後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.25J/cmとして塗布層を硬化させ、ドライ膜厚3μmのハードコート層1を形成して巻き取り、ロール状のハードコートフィルムA1H~A5H、COPフィルムH、PCフィルムH、PETフィルムHを作製した。
Example 2
<Coating of hard coat layer>
Extrusion coater obtained by filtering the following hard coat layer composition 1 with a polypropylene filter having a pore size of 0.4 μm on the surface of each of the produced cellulose ester films A1 to A5, COP film, PC film, and PET film After drying at a temperature of 80 ° C. and applying a nitrogen purge so that the atmosphere has an oxygen concentration of 1.0% by volume or less, the irradiation part is irradiated at an illuminance of 100 mW / cm 2 using an ultraviolet lamp. The coating layer is cured with an amount of 0.25 J / cm 2 , a hard coat layer 1 having a dry film thickness of 3 μm is formed and wound, and roll-shaped hard coat films A1H to A5H, COP film H, PC film H, PET Film H was produced.
 〈ハードコート層組成物1〉
 下記材料を撹拌、混合しハードコート層塗布組成物1とした。
<Hard coat layer composition 1>
The following materials were stirred and mixed to obtain hard coat layer coating composition 1.
 ペンタエリスリトールトリ/テトラアクリレート
(NKエステルA-TMM-3L、新中村化学工業(株)製) 50質量部
 ウレタンアクリレート
(ビームセット575CB、荒川化学工業(株)製)     50質量部
 イルガキュア184(BASFジャパン(株)製)      2質量部
 ポリエーテル変性ポリジメチルシロキサン
(BYK-UV3510、ビックケミー・ジャパン(株)製)  1質量部
 シクロヘキサノン                    10質量部
 メチルエチルケトン                   93質量部
 作製したハードコートフィルムA1H~A5H、COPフィルムH、PCフィルムH、及びPETフィルムHを用いて、実施例1のタッチパネル付き液晶表示装置1~16と同様にしてタッチパネルモジュールを作製し、SVR1240を介して液晶表示パネルと貼合した。
Pentaerythritol tri / tetraacrylate (NK Ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 50 parts by mass Urethane acrylate (Beam Set 575CB, manufactured by Arakawa Chemical Industries, Ltd.) 50 parts by mass Irgacure 184 (BASF Japan) 2 parts by weight Polyether-modified polydimethylsiloxane (BYK-UV3510, manufactured by Big Chemie Japan) 1 part by weight Cyclohexanone 10 parts by weight Methyl ethyl ketone 93 parts by weight Hard coat films A1H to A5H, COP film H , PC film H, and PET film H were used to produce a touch panel module in the same manner as in the liquid crystal display devices 1 to 16 with a touch panel of Example 1, and the liquid crystal display via SVR 1240 It was stuck to the panel.
 作製したハードコートフィルムA1H~A5H、COPフィルムH、PCフィルムH、PETフィルムHを用いて実施例1と同様にしてタッチパネル付き液晶表示装置1b~16bを作製し、実施例1で行ったITO電極のクラック発生防止性の評価を実施した。その結果、比較例のタッチパネル付き液晶表示装置11b~16bはITO電極のクラック発生防止性は改善されなかったが、本発明のタッチパネル付き液晶表示装置1b~10bは、実施例1で○であった水準も全て◎の結果となり、ハードコート層を塗設することによりITO電極に対する保護性が更に優れることが分かった。 Using the prepared hard coat films A1H to A5H, COP film H, PC film H, and PET film H, liquid crystal display devices 1b to 16b with a touch panel were prepared in the same manner as in Example 1, and the ITO electrode used in Example 1 was prepared. Evaluation of cracking prevention property was performed. As a result, the liquid crystal display devices 11b to 16b with the touch panel of the comparative example did not improve the prevention of cracking of the ITO electrode, but the liquid crystal display devices 1b to 10b with the touch panel of the present invention were good in Example 1. The results were all the results of ◎, and it was found that the protective property against the ITO electrode was further improved by coating the hard coat layer.
 実施例3
 実施例1で作製したタッチパネル付き液晶表示装置1~13を用いて、偏光サングラスを着用せずに液晶表示部を観察したところ、全水準特に視認性に問題なかった。
Example 3
Using the liquid crystal display devices 1 to 13 with a touch panel prepared in Example 1, the liquid crystal display portion was observed without wearing polarized sunglasses.
 偏光サングラスを着用して液晶表示部を観察したところ、比較例のタッチパネル付き液晶表示装置11~13は視認性が不良であったが、本発明のタッチパネル付き液晶表示装置1、2、6~10はガラス飛散防止フィルムの位相差値が好ましい範囲内であり、また好ましい角度で液晶表示パネルに貼合されているため、画像が欠けることなく視認性が良好であった。本発明のタッチパネル付き液晶表示装置3~5はガラス飛散防止フィルムの位相差値が不足しているためか、サングラス視認性はやや劣る結果であった。
(3)偏光サングラス視認性評価
 ◎:視認性が良好
 ○:視認性良好だが角度によっては画像が欠ける場合がある
 △:画像が欠ける角度がやや大きい
 ×:画像が欠ける角度が大きく、視認性が不良
Figure JPOXMLDOC01-appb-T000009
When the liquid crystal display unit was observed by wearing polarized sunglasses, the liquid crystal display devices with a touch panel 11 to 13 of the comparative example had poor visibility, but the liquid crystal display devices with a touch panel 1, 2, and 6 to 10 of the present invention were used. Since the retardation value of the glass scattering prevention film is within a preferable range and is bonded to the liquid crystal display panel at a preferable angle, the image has good visibility without being lost. In the liquid crystal display devices 3 to 5 with a touch panel of the present invention, the visibility of sunglasses was somewhat inferior because the retardation value of the glass scattering prevention film was insufficient.
(3) Polarized sunglasses visibility evaluation ◎: Good visibility ○: Good visibility, but the image may be chipped depending on the angle △: The angle at which the image is chipped is slightly large ×: The angle at which the image is chipped is large, and the visibility is high Bad
Figure JPOXMLDOC01-appb-T000009
 本発明のタッチパネル付き液晶表示装置は、ガラス基板の割れに対する飛散防止機能を有し、更にITO電極のクラック発生を防止するガラス飛散防止フィルムを具備することによって、生産性、取り扱い性のよいタッチパネル付き液晶表示装置を提供できる。 The liquid crystal display device with a touch panel of the present invention has a function to prevent scattering of the glass substrate, and further includes a glass scattering prevention film for preventing the ITO electrode from cracking. A liquid crystal display device can be provided.
1 ガラス基板
2 第1電極パターン
3 絶縁層
4 第2電極パターン
5 粘着層
6 ガラス飛散防止フィルム
7 ハードコート層
T タッチパネルモジュール
8 粘着層
9 液晶表示パネル
10 第1電極パターン(X方向)
11 第2電極パターン(Y方向)
12 ガラス飛散防止フィルムの最大弾性率方向
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 1st electrode pattern 3 Insulating layer 4 2nd electrode pattern 5 Adhesion layer 6 Glass scattering prevention film 7 Hard-coat layer T Touch panel module 8 Adhesion layer 9 Liquid crystal display panel 10 1st electrode pattern (X direction)
11 Second electrode pattern (Y direction)
12 Maximum elastic modulus direction of glass shatterproof film

Claims (7)

  1.  タッチパネルモジュールと液晶表示パネルとを有するタッチパネル付き液晶表示装置であって、該タッチパネルモジュールが、最表面のガラス基板と、X方向とそれに直交するY方向に格子状に形成された一対の透明導電膜と、その上面にガラス飛散防止フィルムとを有し、該ガラス飛散防止フィルムの最大弾性率の方向が、該格子状に形成された一対の透明導電膜のX方向又はY方向に対して斜め方向であることを特徴とするタッチパネル付き液晶表示装置。 A liquid crystal display device with a touch panel having a touch panel module and a liquid crystal display panel, wherein the touch panel module is an outermost glass substrate and a pair of transparent conductive films formed in a lattice shape in the X direction and the Y direction perpendicular thereto And a glass scattering prevention film on the upper surface thereof, and the direction of the maximum elastic modulus of the glass scattering prevention film is oblique to the X direction or the Y direction of the pair of transparent conductive films formed in the lattice shape A liquid crystal display device with a touch panel.
  2.  前記ガラス飛散防止フィルムの最大弾性率の方向が、前記格子状に形成された一対の透明導電膜のX方向又はY方向の一方の方向を0°としたときに、該方向に対して20~70°の範囲内、又は110~160°の範囲内の角度で斜め方向であることを特徴とする請求項1に記載のタッチパネル付き液晶表示装置。 When the direction of the maximum elastic modulus of the glass scattering prevention film is 0 ° with respect to one of the X direction and the Y direction of the pair of transparent conductive films formed in the lattice shape, 2. The liquid crystal display device with a touch panel according to claim 1, wherein the liquid crystal display device is in an oblique direction at an angle within a range of 70 ° or within a range of 110 to 160 °.
  3.  前記ガラス飛散防止フィルムが、アクリル樹脂を含有するハードコート層を有することを特徴とする請求項1又は請求項2に記載のタッチパネル付き液晶表示装置。 The liquid crystal display device with a touch panel according to claim 1 or 2, wherein the glass scattering prevention film has a hard coat layer containing an acrylic resin.
  4.  前記ガラス飛散防止フィルムの面内位相差値Roが、温度23℃、相対湿度55%RHの環境下、光波長590nmによる測定において、0~100nmの範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載のタッチパネル付き液晶表示装置。 The in-plane retardation value Ro of the glass scattering prevention film is in the range of 0 to 100 nm in a measurement at a light wavelength of 590 nm under an environment of a temperature of 23 ° C. and a relative humidity of 55% RH. The liquid crystal display device with a touch panel as described in any one of Claims 1-3.
  5.  前記ガラス飛散防止フィルムの面内位相差値Roが、温度23℃、相対湿度55%RHの環境下、光波長590nmによる測定において、105~160nmの範囲内であり、該ガラス飛散防止フィルムの遅相軸が、前記液晶表示パネルの偏光板の吸収軸に対し20~70°の範囲内、又は110~160°の範囲内の角度で斜め方向であることを特徴とする請求項1から請求項3までのいずれか一項に記載のタッチパネル付き液晶表示装置。 The in-plane retardation value Ro of the glass scattering prevention film is in the range of 105 to 160 nm when measured at a light wavelength of 590 nm in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH. The phase axis is an oblique direction at an angle in the range of 20 to 70 ° or in the range of 110 to 160 ° with respect to the absorption axis of the polarizing plate of the liquid crystal display panel. 4. A liquid crystal display device with a touch panel according to any one of items 3 to 3.
  6.  前記ガラス飛散防止フィルムが、セルロースエステルフィルムであることを特徴とする請求項1から請求項5までのいずれか一項に記載のタッチパネル付き液晶表示装置。 The liquid crystal display device with a touch panel according to any one of claims 1 to 5, wherein the glass scattering prevention film is a cellulose ester film.
  7.  前記セルロースエステルフィルムが、アセチル基置換度が2.0~2.5の範囲内のセルロースジアセテートを含有することを特徴とする請求項6に記載のタッチパネル付き液晶表示装置。 The liquid crystal display device with a touch panel according to claim 6, wherein the cellulose ester film contains cellulose diacetate having an acetyl group substitution degree in the range of 2.0 to 2.5.
PCT/JP2013/050880 2012-01-26 2013-01-18 Touch-panel-equipped liquid crystal display device WO2013111672A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380006225.1A CN104220965B (en) 2012-01-26 2013-01-18 Liquid crystal indicator with touch panel
JP2013555237A JP5831559B2 (en) 2012-01-26 2013-01-18 LCD with touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-013647 2012-01-26
JP2012013647 2012-01-26

Publications (1)

Publication Number Publication Date
WO2013111672A1 true WO2013111672A1 (en) 2013-08-01

Family

ID=48873393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050880 WO2013111672A1 (en) 2012-01-26 2013-01-18 Touch-panel-equipped liquid crystal display device

Country Status (4)

Country Link
JP (1) JP5831559B2 (en)
CN (1) CN104220965B (en)
TW (1) TWI491908B (en)
WO (1) WO2013111672A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096297A (en) * 2013-11-15 2015-05-21 リンテック株式会社 Hard coat film, transparent electroconductive film and capacitance touch panel
JP2015114464A (en) * 2013-12-11 2015-06-22 旭化成イーマテリアルズ株式会社 Function transfer body, and method of transferring functional layer
JP2015133090A (en) * 2014-01-14 2015-07-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. touch panel
JP2015163998A (en) * 2011-08-31 2015-09-10 コニカミノルタ株式会社 Organic electroluminescence image display device
WO2015151672A1 (en) * 2014-04-02 2015-10-08 株式会社ダイセル Transparent layered film, process for producing same, and electrode for touch panel
JP2015194566A (en) * 2014-03-31 2015-11-05 東レ株式会社 film for display
JP2016162284A (en) * 2015-03-03 2016-09-05 株式会社きもと Scattering prevention sheet
KR20170126477A (en) * 2015-12-08 2017-11-17 후아웨이 테크놀러지 컴퍼니 리미티드 Touch display screen
WO2018168388A1 (en) * 2017-03-14 2018-09-20 パナソニックIpマネジメント株式会社 Touch sensor
US10838528B2 (en) 2017-03-14 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Touch panel and design structure provided with same
CN113302051A (en) * 2019-01-17 2021-08-24 富士胶片株式会社 Laminate and image display device
WO2021193599A1 (en) * 2020-03-23 2021-09-30 大日本印刷株式会社 Flexible organic el display device, and front surface plate for display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635373B (en) * 2015-02-13 2018-03-16 上海天马微电子有限公司 Liquid crystal display panel and liquid crystal display device
JP6819156B2 (en) * 2015-11-11 2021-01-27 住友化学株式会社 Liquid crystal display device
JP6612668B2 (en) * 2016-03-30 2019-11-27 三菱製紙株式会社 Light transmissive electrode laminate
CN109240550B (en) * 2018-08-10 2022-04-15 业泓科技(成都)有限公司 Touch display module and electronic device using same
CN112134025B (en) * 2020-09-25 2022-06-10 合肥工业大学 Multi-frequency metamaterial wave absorber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040004A (en) * 1996-07-22 1998-02-13 Ricoh Co Ltd Liquid crystal display device with input touch panel
JP2000067765A (en) * 1998-08-14 2000-03-03 Asahi Glass Co Ltd Protecting plate for plasma display panel and its manufacture
WO2008047785A1 (en) * 2006-10-17 2008-04-24 Seiko Instruments Inc. Display device
WO2010074144A1 (en) * 2008-12-26 2010-07-01 日本写真印刷株式会社 Protection panel with touch input function for electronic device display window, and method for manufacturing same
JP2011096234A (en) * 2009-09-29 2011-05-12 Kyocera Corp Input device and display apparatus including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753196B2 (en) * 2002-08-29 2011-08-24 綜研化学株式会社 Optical member pressure-sensitive adhesive composition and optical member-use pressure-sensitive adhesive sheet using the pressure-sensitive adhesive composition
TW200745923A (en) * 2005-10-20 2007-12-16 Nitto Denko Corp Transparent conductive laminate body and touch panel equipped with above
TWI485214B (en) * 2008-09-05 2015-05-21 Kyoritsu Chemical Co Ltd And a photohardenable resin composition for bonding an optical functional material
JP2010097070A (en) * 2008-10-17 2010-04-30 Nitto Denko Corp Transparent pressure-sensitive adhesive sheet for flat panel display, and flat panel display
CN101465173B (en) * 2008-12-31 2011-02-09 广东东邦科技有限公司 Touch screen transparent conductive film and preparation method thereof
JP4930520B2 (en) * 2009-01-26 2012-05-16 ソニー株式会社 Display device
CN102361947B (en) * 2009-03-23 2013-12-25 Dic株式会社 Adhesive protective film, screen panel, and portable electronic terminal
JP5577074B2 (en) * 2009-11-09 2014-08-20 日東電工株式会社 Optical adhesive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040004A (en) * 1996-07-22 1998-02-13 Ricoh Co Ltd Liquid crystal display device with input touch panel
JP2000067765A (en) * 1998-08-14 2000-03-03 Asahi Glass Co Ltd Protecting plate for plasma display panel and its manufacture
WO2008047785A1 (en) * 2006-10-17 2008-04-24 Seiko Instruments Inc. Display device
WO2010074144A1 (en) * 2008-12-26 2010-07-01 日本写真印刷株式会社 Protection panel with touch input function for electronic device display window, and method for manufacturing same
JP2011096234A (en) * 2009-09-29 2011-05-12 Kyocera Corp Input device and display apparatus including the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163998A (en) * 2011-08-31 2015-09-10 コニカミノルタ株式会社 Organic electroluminescence image display device
JP2015096297A (en) * 2013-11-15 2015-05-21 リンテック株式会社 Hard coat film, transparent electroconductive film and capacitance touch panel
JP2015114464A (en) * 2013-12-11 2015-06-22 旭化成イーマテリアルズ株式会社 Function transfer body, and method of transferring functional layer
JP2015133090A (en) * 2014-01-14 2015-07-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. touch panel
JP2015194566A (en) * 2014-03-31 2015-11-05 東レ株式会社 film for display
US9902826B2 (en) 2014-04-02 2018-02-27 Daicel Corporation Transparent layered film, process for producing same, and electrode for touch panel
WO2015151672A1 (en) * 2014-04-02 2015-10-08 株式会社ダイセル Transparent layered film, process for producing same, and electrode for touch panel
JP2015196347A (en) * 2014-04-02 2015-11-09 株式会社ダイセル Transparent laminated film, production method thereof and electrode for touch panel
CN106163804A (en) * 2014-04-02 2016-11-23 株式会社大赛璐 Transparent overlay film and manufacture method thereof and touch panel electrode
TWI650244B (en) * 2014-04-02 2019-02-11 日商大賽璐股份有限公司 Transparent laminated film, manufacturing method thereof and electrode for touch panel
TWI684897B (en) * 2015-03-03 2020-02-11 日商木本股份有限公司 Anti-scattering flakes
JP2016162284A (en) * 2015-03-03 2016-09-05 株式会社きもと Scattering prevention sheet
JP2018517962A (en) * 2015-12-08 2018-07-05 華為技術有限公司Huawei Technologies Co.,Ltd. Touch display screen
KR20170126477A (en) * 2015-12-08 2017-11-17 후아웨이 테크놀러지 컴퍼니 리미티드 Touch display screen
US10274771B2 (en) 2015-12-08 2019-04-30 Huawei Technologies Co., Ltd. Touch display screen
KR102006837B1 (en) * 2015-12-08 2019-08-02 후아웨이 테크놀러지 컴퍼니 리미티드 Touch display screen
JPWO2018168388A1 (en) * 2017-03-14 2020-01-23 パナソニックIpマネジメント株式会社 Touch sensor
CN110402194A (en) * 2017-03-14 2019-11-01 松下知识产权经营株式会社 Touch sensor
WO2018168388A1 (en) * 2017-03-14 2018-09-20 パナソニックIpマネジメント株式会社 Touch sensor
US10838528B2 (en) 2017-03-14 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Touch panel and design structure provided with same
US10921940B2 (en) 2017-03-14 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Touch sensor
CN110402194B (en) * 2017-03-14 2022-04-29 松下知识产权经营株式会社 Touch sensor
JP7065462B2 (en) 2017-03-14 2022-05-12 パナソニックIpマネジメント株式会社 Touch sensor
CN113302051A (en) * 2019-01-17 2021-08-24 富士胶片株式会社 Laminate and image display device
WO2021193599A1 (en) * 2020-03-23 2021-09-30 大日本印刷株式会社 Flexible organic el display device, and front surface plate for display device

Also Published As

Publication number Publication date
CN104220965A (en) 2014-12-17
TWI491908B (en) 2015-07-11
JPWO2013111672A1 (en) 2015-05-11
TW201346315A (en) 2013-11-16
JP5831559B2 (en) 2015-12-09
CN104220965B (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP5831559B2 (en) LCD with touch panel
JP5884915B2 (en) Display device with touch panel
JP5835358B2 (en) LCD with touch panel
JP5799954B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and liquid crystal display device
WO2011114884A1 (en) Hard coat film, production method therefor, polarizing plate, and liquid crystal display device
JP5958550B2 (en) Display device with touch panel
WO2017104623A1 (en) Display device having irregular shape
JP5971121B2 (en) Manufacturing method of optical film
KR101342183B1 (en) Polarizing plate and liquid crystal display device
JP2013064821A (en) Hard coat film, polarizing plate and image display apparatus
WO2012026192A1 (en) Hardcoat film, polarizing plate, and liquid crystal display device
KR101627958B1 (en) Hard coating film and touch panel display device provided with same
TWI645964B (en) Optical film, optical film roll body and optical film manufacturing method
JP6048506B2 (en) Optical film
KR101530797B1 (en) Vertically aligned liquid crystal display device and method for manufacturing same
JP2013088438A (en) Optical film, production method of the same, and image display device
JP2014061643A (en) Production method of optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740812

Country of ref document: EP

Kind code of ref document: A1