WO2013111531A1 - Plasma display panel and display device - Google Patents

Plasma display panel and display device Download PDF

Info

Publication number
WO2013111531A1
WO2013111531A1 PCT/JP2013/000147 JP2013000147W WO2013111531A1 WO 2013111531 A1 WO2013111531 A1 WO 2013111531A1 JP 2013000147 W JP2013000147 W JP 2013000147W WO 2013111531 A1 WO2013111531 A1 WO 2013111531A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
area
region
electrode
electrodes
Prior art date
Application number
PCT/JP2013/000147
Other languages
French (fr)
Japanese (ja)
Inventor
中島 徹
秀敏 秦
兼治 桐山
上田 健太郎
和也 野本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013111531A1 publication Critical patent/WO2013111531A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/24Sustain electrodes or scan electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/24Sustain electrodes or scan electrodes
    • H01J2211/245Shape, e.g. cross section or pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/36Spacers, barriers, ribs, partitions or the like
    • H01J2211/368Dummy spacers, e.g. in a non display region

Definitions

  • the technology disclosed herein relates to a plasma display panel and a display device using the plasma display panel.
  • a plasma display panel (hereinafter referred to as PDP) having such a structure is known (for example, see Patent Document 1).
  • the disclosed PDP includes an effective display area and a non-display area provided outside the effective display area.
  • the non-display area has a first non-display area and a second non-display area provided outside the first non-display area.
  • the PDP has a back plate and a front plate provided to face the back plate.
  • the reflectance of the area corresponding to the effective display area on the back plate is larger than the reflectance of the area corresponding to the non-display area on the back plate.
  • the aperture ratio of the area corresponding to the effective display area on the front plate is smaller than the aperture ratio of the area corresponding to the first non-display area on the front plate.
  • the aperture ratio of the area corresponding to the first non-display area on the front plate is larger than the aperture ratio of the area corresponding to the second non-display area on the front plate.
  • the PDP 21 includes a front plate 1 and a back plate 2.
  • the PDP 21 has a discharge space 3 between the front plate 1 and the back plate 2 disposed so as to face the PDP 21.
  • the display electrode 7 has a transparent electrode such as ITO (Indium Tin Oxide).
  • the display electrode 7 is made of a conductive metal having a film thickness of several ⁇ m made of silver (Ag) or the like.
  • the scan electrode 5 and the sustain electrode 6 are a laminate of transparent electrodes 5a, 6a and bus electrodes 5b, 6b on the front substrate 4 side.
  • a cell 15 is provided at the intersection where the display electrode 7 and the data electrode 12 intersect.
  • the discharge space 3 is filled with, for example, a mixed gas of neon (Ne) and xenon (Xe) as a discharge gas.
  • Ne neon
  • Xe xenon
  • the structure of the PDP 21 is not limited to that described above.
  • the PDP 21 may include a stripe-shaped partition wall.
  • Each of the scan electrode 5, the sustain electrode 6, and the data electrode 12 is connected to each connection terminal provided in the peripheral portion of the PDP 21.
  • the PDP 21 includes n scan electrodes Y1, Y2, Y3... Yn (scan electrode 5 in FIG. 1) and n sustain electrodes X1, X2 extending in the row direction in FIG. , X3... Xn (sustain electrode 6 in FIG. 1). Further, the PDP 21 has m data electrodes A1... Am (data electrodes 12 in FIG. 1) extending in the column direction in FIG. One cell 15 is provided at a portion where the pair of scan electrode Y1 and sustain electrode X1 and one data electrode A1 intersect. The cell 15 is formed so as to have m ⁇ n cells in the discharge space. Further, as shown in FIG. 3, scan electrode Y1 and sustain electrode X1 are repeated in an array of scan electrode Y1, sustain electrode X1, sustain electrode X2, scan electrode Y2,.
  • the plasma display apparatus 100 includes a PDP 21, an image signal processing circuit 22, a data electrode drive circuit 23, a scan electrode drive circuit 24, a sustain electrode drive circuit 25, a timing generation circuit 26, and a power supply circuit (shown in FIGS. 1 to 3). (Not shown).
  • the data electrode drive circuit 23 has a plurality of data drivers that are connected to one end of the data electrode 12 and are made of semiconductor elements for supplying a voltage to the data electrode 12.
  • PDP 21 is driven by a subfield driving method.
  • the subfield driving method one field is divided into a plurality of subfields. Each subfield has an initialization period, an address period, and a sustain period.
  • sustain electrodes X1 to Xn are maintained at positive voltage Vh (V).
  • a ramp voltage that gently falls from the voltage Vi3 (V) to the voltage Vi4 (V) is applied to the scan electrodes Y1 to Yn.
  • the second weak initializing discharge occurs in all the cells 15.
  • the wall voltage between the scan electrodes Y1 to Yn and the sustain electrodes X1 to Xn is weakened.
  • the wall voltage on the data electrodes A1 to Am is adjusted to a value suitable for the write operation.
  • Address discharge is generated between data electrode Ak and scan electrode Y1 and between sustain electrode X1 and scan electrode Y1.
  • a positive wall voltage is accumulated on the scan electrode Y1 of the cell 15 where the address discharge has occurred.
  • a negative wall voltage is accumulated on sustain electrode X1.
  • a negative wall voltage is accumulated on the data electrode Ak.
  • the address operation is performed in which the address discharge is generated in the cell 15 to be displayed in the first row and the wall voltage is accumulated on each electrode.
  • the voltage at the intersection of the data electrodes A1 to Am to which the address pulse voltage Vd (V) is not applied and the scan electrode Y1 does not exceed the discharge start voltage. Accordingly, no address discharge occurs.
  • the sustain discharge continues in the cell 15 in which the address discharge has occurred in the address period by alternately applying the number of sustain pulses corresponding to the luminance weight to the scan electrodes Y1 to Yn and the sustain electrodes X1 to Xn. Occur.
  • the operations in the initialization period, address period, and sustain period in the subsequent subfield are also substantially the same as those in the first subfield, and thus description thereof is omitted.
  • Scan electrode 5 and sustain electrode 6 are formed on front substrate 4 by photolithography.
  • an electrode paste containing silver (Ag), a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used as a material for scan electrode 5 and sustain electrode 6.
  • an electrode paste is applied to the front substrate 4 by screen printing or the like.
  • the solvent in the electrode paste is removed by a drying furnace.
  • the electrode paste is exposed through a photomask having a predetermined pattern.
  • the electrode paste is developed to form a display electrode pattern.
  • the display electrode pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the display electrode pattern is removed. Further, the glass frit in the electrode pattern is melted. Thereafter, the glass frit that has been melted is vitrified by cooling to room temperature.
  • a sputtering method, a vapor deposition method, or the like can be used.
  • the dielectric layer 8 is formed.
  • a dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used as a material for the dielectric layer 8.
  • a dielectric paste is applied on the front substrate 4 by a die coating method or the like so as to cover the scan electrodes 5 and the sustain electrodes 6 with a predetermined thickness.
  • the solvent in the dielectric paste is removed by a drying furnace.
  • the dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the dielectric paste is removed. Further, the dielectric glass frit is melted. Thereafter, the cooled dielectric glass frit is vitrified by cooling to room temperature.
  • the dielectric layer 8 is formed.
  • a screen printing method, a spin coating method, or the like can be used.
  • a film that becomes the dielectric layer 8 can be formed by CVD (Chemical Vapor Deposition) method or the like without using the dielectric paste.
  • a protective film 9 is formed on the dielectric layer 8.
  • the front plate 1 having the scan electrode 5, the sustain electrode 6, the dielectric layer 8, and the protective film 9 on the front substrate 4 is completed through the above steps.
  • the data electrode 12 is formed by the above process.
  • a sputtering method, a vapor deposition method, or the like can be used.
  • the insulator layer 11 is formed by the above process.
  • a die coating method, a spin coating method, or the like can be used.
  • a film to be the insulator layer 11 can be formed by a CVD (Chemical Vapor Deposition) method or the like without using an insulator paste.
  • the partition wall 13 is formed by photolithography.
  • a partition wall paste including a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used.
  • the barrier rib paste is applied on the insulator layer 11 with a predetermined thickness by a die coating method or the like.
  • the solvent in the partition wall paste is removed by a drying furnace.
  • the barrier rib paste is exposed through a photomask having a predetermined pattern.
  • the barrier rib paste is developed to form a barrier rib pattern.
  • the partition pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the partition pattern is removed.
  • the partition wall 13 is formed by the above process.
  • a sandblast method or the like can be used.
  • a sealing paste is applied around the back plate 2 by a dispensing method or the like.
  • the sealing paste may contain beads, a low-melting glass material, a binder, a solvent, and the like.
  • the applied sealing paste forms a sealing paste layer (not shown).
  • the solvent in the sealing paste layer is removed by a drying furnace.
  • the sealing paste layer is temporarily fired at a temperature of about 350 ° C.
  • the resin component etc. in the sealing paste layer are removed by temporary baking.
  • the front plate 1 and the back plate 2 are arranged to face each other so that the display electrode 7 and the data electrode 12 are orthogonal to each other.
  • the peripheral portions of the front plate 1 and the back plate 2 are held in a state of being pressed by a clip or the like.
  • the low melting point glass material is melted by firing at a predetermined temperature.
  • the low-melting-point glass material that has been melted is vitrified by cooling to room temperature.
  • the front plate 1 and the back plate 2 are hermetically sealed.
  • a discharge gas containing Ne, Xe or the like is sealed in the discharge space, thereby completing the PDP 21.
  • the PDP 21 has an effective display area for displaying an image and a non-display area provided outside the effective display area.
  • the effective display area is an area where an image is displayed.
  • a part of the non-display area is covered with an outer frame 50 (shown in FIG. 10).
  • the transparent electrode 5a extends in the same direction as the bus electrode 5b and extends from the second transparent electrode region 57 toward the discharge gap.
  • a protruding first transparent electrode region 56 is included.
  • region 56 is parallel to the vertical partition 13a as an example.
  • the transparent electrode 6a has a second transparent electrode region 67 extending in the same direction as the extending direction of the bus electrode 6b, and from the second transparent electrode region 67 toward the discharge gap.
  • a protruding first transparent electrode region 66 is included.
  • the first transparent electrode region 66 is parallel to the vertical partition wall 13a.
  • the second transparent electrode region 67 is rectangular as an example.
  • the first transparent electrode region 66 is rectangular.
  • a plurality of the first transparent electrode regions 56 and 66 are preferably provided in one cell 15. This is because the discharge becomes more stable.
  • the transparent electrodes 5a and 6a may be configured not to include the first transparent electrode regions 56 and 66.
  • the effective display area shown in FIG. 6 is an area where the phosphor layer 14 emits light by the discharge generated in the cell 15.
  • a plurality of cells 15 are also provided in the non-display area. However, no discharge occurs in the cell 15 in the non-display area.
  • the non-display area has a first non-display area and a second non-display area.
  • the second non-display area is provided outside the first non-display area.
  • the first non-display area includes a first area and a second area.
  • the first area further includes a third area and a fourth area.
  • three cells 15 are provided in the cross section.
  • two cells 15 are provided in the cross section.
  • the cell 15 provided in the third region has a phosphor layer 14.
  • the cell 15 closest to the effective display area has the data electrode 12. This is to prevent erroneous discharge from occurring in the non-display area.
  • the cell 15 provided in the fourth region does not have the phosphor layer 14 and the data electrode 12. That is, the partition wall 13 is only provided on the insulator layer 11. Note that the second region does not include the cell 15.
  • the transparent electrode 6a provided on the front substrate 4 is terminated at a position corresponding to the cell 15 closest to the effective display area in order to suppress erroneous discharge.
  • the bus electrode 6b has a dividing portion in an area corresponding to the cell 15 closest to the effective display area. The distance of the dividing part is about 100 ⁇ m. Thereby, it is possible to suppress the occurrence of erroneous discharge between the sustain electrode 6 and the scan electrode 5 in the non-display area.
  • the distance of the dividing part is preferably 90 ⁇ m or more and 120 ⁇ m or less.
  • two adjacent bus electrodes 6b are connected in the fourth region to form one bus electrode 6b.
  • One bus electrode 6b is terminated in the second non-display area.
  • the bus electrode 5b is connected to a scanning voltage application terminal (not shown) formed at the right end of the PDP 21.
  • the second area has a smaller reflectance than the effective display area.
  • an insulator layer 11, a partition wall 13, and a phosphor layer 14 are provided in the effective display area.
  • the partition wall 13 and the phosphor layer 14 are not provided in the second region.
  • the second region has a smaller reflectance than the third region.
  • a partition wall 13 and a phosphor layer 14 are provided in the third region.
  • the partition wall 13 and the phosphor layer 14 are not provided in the second region.
  • the third area has a higher reflectance than the fourth area.
  • a partition wall 13 and a phosphor layer 14 are provided in the third region.
  • the phosphor layer 14 is not provided in the fourth region.
  • the aperture ratio varies depending on the area of the front plate 1.
  • the aperture ratio is a ratio of an area through which light passes per unit area of the front plate 1.
  • light is blocked by the display electrode 7. That is, if the area of the display electrode 7 per unit area is large, the aperture ratio is small. On the other hand, if the area of the display electrode 7 per unit area is small, the aperture ratio increases.
  • the area of the display electrode 7 per unit area (region A) in the effective display region is larger than the area of the display electrode 7 per unit area (region B) in the second region.
  • the unit area refers to an area of about 2 vertical cells and 2 horizontal cells in the effective display area. That is, the length is long enough to include two bus electrodes 5b and 6b.
  • the area of the display electrode 7 per unit area (region B) in the second region is the area of the display electrode 7 per unit area (region A) in the effective display region ( 61% to 77% of the area of the bus electrodes 5b and 6b).
  • the width of the bus electrode 6b in the second area may be not less than 40% and not more than 75% of the width of the bus electrode 6b in the effective display area.
  • the electrode width of the bus electrode 6b in the second area is smaller than the electrode width of the bus electrode 6b in the effective display area.
  • the width of the bus electrode 5b in the first non-display area may be equal to the width of the bus electrode 5b in the effective display area.
  • the aperture ratio in the second non-display area is smaller than the aperture ratio in the first non-display area. Considering disconnection of the display electrode 7 and the like, it is advantageous that the area of the display electrode 7 per unit area is large.
  • the plasma display device 100 using the PDP 21 includes an outer frame 50.
  • the outer frame 50 covers a part of the non-display area in the PDP 21.
  • the outer frame 50 does not cover the first non-display area.
  • the outer frame 50 covers the second non-display area.
  • the aperture ratio of the first non-display area on the front plate 1 is larger than the aperture ratio of the second non-display area on the front plate 1.
  • the brightness of the plurality of PDPs 21 is adjusted by adjusting the width of the bus electrode 6b and the electrode area in the unit area of the effective display region and the second region.
  • An example is shown in Table 1.
  • the ratio of the electrode width in the effective display area is calculated from the width of the bus electrode 6b in the effective display area and the width of the bus electrode 6b in the first non-display area. Further, the ratio of the electrode areas is obtained from the total area of the bus electrodes 5b and 6b per unit area in the effective display area and the total area of the bus electrodes 5b and 6b per unit area in the first non-display area.
  • the brightness ratio (%) is a ratio of lightness (L *) in the effective display area and the first non-display area.
  • the lightness (L *) is the lightness in the L * a * b color system defined in JIS Z 8729.
  • Konica Minolta's spectrocolorimeter CM-2600d is used for measuring the lightness (L *).
  • the measurement area is a circular area having a diameter of 5 mm.
  • the determination is C when the brightness ratio (%) is 90% or less.
  • B is 90% or more and 100% or less.
  • A is 100% or more.
  • the PDP 21 of Sample 1-7 has 1080 pixels in the horizontal direction in the effective display area.
  • the PDP 21 of Sample 8 has 720 pixels in the horizontal direction in the effective display area.
  • the PDP 21 of sample 9 has 768 pixels in the horizontal direction in the effective display area.
  • the number of pixels in the horizontal direction is equal to the number of scan electrodes 5 and sustain electrodes 6.
  • Sample 1 has an electrode width ratio of 1.0.
  • the electrode area ratio is also 1.0.
  • the brightness ratio is 88.1%.
  • the boundary between the effective display area and the second area is clearly recognized by the difference in brightness between the effective display area and the second area. Therefore, the determination of sample 1 is C.
  • Sample 2 has an electrode width ratio of 0.84.
  • the electrode area ratio is 0.92.
  • the brightness ratio is 89.1%.
  • the boundary between the effective display area and the second area is clearly recognized based on the difference in brightness between the effective display area and the second area. Therefore, the determination of sample 2 is C.
  • Sample 3 has an electrode width ratio of 0.62.
  • the electrode area ratio is 0.65.
  • the brightness ratio is 96.0%.
  • the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 3 is B.
  • Sample 4 has an electrode width ratio of 0.50.
  • the electrode area ratio is 0.63.
  • the brightness ratio is 98.2%.
  • the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 4 is B.
  • Sample 5 has an electrode width ratio of 0.44.
  • the electrode area ratio is 0.61.
  • the brightness ratio is 98.9%.
  • the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 5 is B.
  • Sample 6 has an electrode width ratio of 0.63.
  • the electrode area ratio is 0.68.
  • the brightness ratio is 101.0%.
  • the difference in brightness between the effective display area and the second area is within 1%, which is relatively smaller. Therefore, the boundary between the effective display area and the second area is less likely to be recognized. Therefore, the determination of sample 6 is A.
  • Sample 7 has an electrode width ratio of 0.74.
  • the electrode area ratio is 0.69.
  • the brightness ratio is 100.7%.
  • the difference in brightness between the effective display area and the second area is within 1%, which is relatively smaller. Therefore, the boundary between the effective display area and the second area is less likely to be recognized. Therefore, the determination of sample 7 is A.
  • Sample 8 has an electrode width ratio of 0.69.
  • the electrode area ratio is 0.75.
  • the brightness ratio is 96.3%.
  • the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 8 is B.
  • Sample 9 has an electrode width ratio of 0.71.
  • the electrode area ratio is 0.75.
  • the brightness ratio is 96.3%.
  • the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 9 is B.
  • the transparent electrodes 5a and 6a may not have the first transparent electrode regions 56 and 66.
  • the display electrode 7 may have a configuration without the transparent electrodes 5a and 6a.
  • the display electrode 7 may have a ladder-shaped bus electrode.
  • Ladder-shaped bus electrode 5b having a structure in which scan electrode 5 and sustain electrode 6 include a first portion, a second portion parallel to the first portion, and a second portion connecting the first portion and the second portion. , 6b will be described.
  • the width of the scan electrode 5 and the sustain electrode 6 is smaller than the effective display region, and the number of the third portions is smaller than the effective display region.
  • the reflectance is relatively low.
  • the area of sustain electrode 6 per unit area of the non-display area is preferably smaller than the area of sustain electrode 6 per unit area of the effective display area. It is preferable to make the difference in reflectance between the effective display area and the non-display area equal (within 5%).
  • a black light shielding layer may be provided between the plurality of scanning electrodes 5 and between the plurality of sustain electrodes 6.
  • the terminal portion of the light shielding layer is provided in the non-display area.
  • the said embodiment is description about the area
  • scan electrode 5 has a dividing portion. That is, in the fourth region, the scanning electrode 5 as a floating electrode that is not electrically connected to the scanning electrode 5 in the effective display region is provided.
  • the PDP 21 includes an effective display area and a non-display area provided outside the effective display area.
  • the non-display area has a first non-display area and a second non-display area provided outside the first non-display area.
  • the PDP 21 has a back plate 2 and a front plate 1 provided to face the back plate 2.
  • the reflectance of the area corresponding to the effective display area on the back plate 2 is larger than the reflectance of the area corresponding to the non-display area on the back plate 2.
  • the aperture ratio of the area corresponding to the effective display area on the front plate 1 is smaller than the aperture ratio of the area corresponding to the first non-display area on the front plate 1.
  • the aperture ratio of the area corresponding to the first non-display area on the front plate 1 is larger than the aperture ratio of the area corresponding to the second non-display area on the front plate.
  • the high quality PDP 21 can be provided.
  • the front plate 1 includes a plurality of display electrodes 7.
  • the width of at least one display electrode 7 among the plurality of display electrodes 7 in the region corresponding to the effective display region is the same as that of at least one display electrode 7 among the plurality of display electrodes 7 in the region corresponding to the first non-display region. Greater than width.
  • the width of at least one display electrode 7 among the plurality of display electrodes 7 in the region corresponding to the first non-display region is at least one display among the plurality of display electrodes 7 in the region corresponding to the second non-display region. It is smaller than the width of the electrode 7.
  • the width of the plurality of display electrodes 7 in the region corresponding to the effective display region is larger than the width of the plurality of display electrodes 7 in the region corresponding to the first non-display region.
  • the width of at least one display electrode 7 among the plurality of display electrodes 7 in the region corresponding to the first non-display region is equal to the plurality of display electrodes 7 in the region corresponding to the effective display region.
  • the width of at least one display electrode 7 is 40% or more and 75% or less.
  • the front plate 1 includes a plurality of display electrodes 7.
  • the area occupied by the plurality of display electrodes 7 per unit area in the area corresponding to the effective display area is larger than the area occupied by the plurality of display electrodes 7 per unit area in the area corresponding to the first non-display area.
  • the area occupied by the plurality of display electrodes 7 per unit area in the region corresponding to the first non-display region is smaller than the area occupied by the plurality of display electrodes 7 per unit area in the region corresponding to the second non-display region. .
  • the area occupied by the plurality of display electrodes 7 per unit area in the region corresponding to the first non-display region is the plurality of display electrodes per unit area in the region corresponding to the effective display region. 7 to 77% of the area occupied by 7.
  • the front plate 1 includes a plurality of display electrodes 7.
  • the plurality of display electrodes 7 include a plurality of scan electrodes 5 and a plurality of sustain electrodes 6.
  • the total number of the plurality of sustain electrodes 6 in the area corresponding to the first non-display area is smaller than the total number of the plurality of sustain electrodes 6 in the area corresponding to the effective display area.
  • the total number of the plurality of sustain electrodes 6 in the region corresponding to the first non-display region is a half of the plurality of sustain electrodes 6 in the region corresponding to the effective display region.
  • the distance of a parting part is 90 micrometers or more and 120 micrometers or less.
  • a plasma display device 100 which is a display device, including the outer frame 50 that includes the PDP 21 described in (1) and covers a second non-display area.
  • constituent elements described in the accompanying drawings and the detailed description may include constituent elements that are not essential for solving the problem. This is to illustrate the above technique.
  • the non-essential components are described in the accompanying drawings and the detailed description, so that the non-essential components should not be recognized as essential.
  • the technology disclosed in the present embodiment can be used for a display device with a large screen.

Abstract

A plasma display panel has an active display area and a non-display area provided outside the active display area. The non-display area has a first non-display area and a second non-display area that is provided outside the first non-display area. Further, the plasma display panel has a rear panel and a front panel that is provided facing the rear panel. The reflectance of an area corresponding to the active display area in the rear panel is larger than the reflectance of an area corresponding to the non-display area in the rear panel. The aperture ratio of an area corresponding to the active display area in the front panel is smaller than the aperture ratio of an area corresponding to the first non-display area in the front panel. The aperture ratio of an area corresponding to the first non-display area in the front panel is larger than the aperture ratio of an area corresponding to the second non-display area in the front panel.

Description

プラズマディスプレイパネルおよび表示装置Plasma display panel and display device
 ここに開示された技術は、プラズマディスプレイパネルおよびプラズマディスプレイパネルが用いられた表示装置に関する。 The technology disclosed herein relates to a plasma display panel and a display device using the plasma display panel.
 表示領域と表示外領域との境界が画像に影響を与えないように目立たなくするために、引き延ばした電極の幅を変えて表示領域と非表示領域とに占める電極面積の比率を同程度に設定する構造のプラズマディスプレイパネル(以降、PDPと記載される)が知られている(例えば、特許文献1参照)。 In order to make the boundary between the display area and the non-display area inconspicuous so as not to affect the image, the width of the stretched electrode is changed to set the ratio of the electrode area to the display area and the non-display area to the same level. A plasma display panel (hereinafter referred to as PDP) having such a structure is known (for example, see Patent Document 1).
特開2010-27489号公報JP 2010-27489 A
 開示されたPDPは、有効表示領域と有効表示領域の外側に設けられる非表示領域を備える。非表示領域は、第1の非表示領域と第1の非表示領域の外側に設けられる第2の非表示領域を有する。さらに、PDPは、背面板と背面板と対向して設けられる前面板を有する。背面板における有効表示領域に相当する領域の反射率は、背面板における非表示領域に相当する領域の反射率より大きい。前面板における有効表示領域に相当する領域の開口率は、前面板における第1の非表示領域に相当する領域の開口率より小さい。前面板における第1の非表示領域に相当する領域の開口率は、前面板における第2の非表示領域に相当する領域の開口率より大きい。 The disclosed PDP includes an effective display area and a non-display area provided outside the effective display area. The non-display area has a first non-display area and a second non-display area provided outside the first non-display area. Further, the PDP has a back plate and a front plate provided to face the back plate. The reflectance of the area corresponding to the effective display area on the back plate is larger than the reflectance of the area corresponding to the non-display area on the back plate. The aperture ratio of the area corresponding to the effective display area on the front plate is smaller than the aperture ratio of the area corresponding to the first non-display area on the front plate. The aperture ratio of the area corresponding to the first non-display area on the front plate is larger than the aperture ratio of the area corresponding to the second non-display area on the front plate.
図1は、PDPの斜視図である。FIG. 1 is a perspective view of a PDP. 図2は、PDPの概略を示す断面図である。FIG. 2 is a cross-sectional view schematically showing the PDP. 図3は、PDPの電極配置を示す図である。FIG. 3 is a diagram showing the electrode arrangement of the PDP. 図4は、プラズマディスプレイ装置の構成を示す図である。FIG. 4 is a diagram showing the configuration of the plasma display device. 図5は、PDPに与えられる駆動波形を示す図である。FIG. 5 is a diagram showing drive waveforms applied to the PDP. 図6は、PDPの概略を示す正面図である。FIG. 6 is a front view showing an outline of the PDP. 図7は、図6における有効表示領域の一部を拡大して示す図である。FIG. 7 is an enlarged view showing a part of the effective display area in FIG. 図8は、図6の端部近傍を拡大して示す図である。FIG. 8 is an enlarged view showing the vicinity of the end of FIG. 図9は、PDPの端部近傍の概略を示す断面図である。FIG. 9 is a cross-sectional view schematically showing the vicinity of the end of the PDP. 図10は、PDPの端部近傍における前面板の電極構成を示す図である。FIG. 10 is a diagram showing the electrode configuration of the front plate in the vicinity of the end portion of the PDP. 図11は、プラズマディスプレイ装置の概略を示す図である。FIG. 11 is a diagram showing an outline of the plasma display device. 図12は、図11の端部近傍を拡大して示す図である。12 is an enlarged view showing the vicinity of the end of FIG.
 以下に、実施の形態が詳細に説明される。実施の形態の説明には、適宜図面が参照される。但し、必要以上に詳細な説明は、省略される場合がある。例えば、既によく知られた事項の詳細な説明や、実質的に同一の構成についての重複した説明は、省略される場合がある。説明が冗長になることを避け、当業者の理解を容易にするためである。 The embodiment will be described in detail below. The drawings are referred to as appropriate for the description of the embodiments. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and overlapping descriptions of substantially the same configuration may be omitted. This is for avoiding redundant description and facilitating understanding by those skilled in the art.
 なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供する。発明者らは、特許請求の範囲に記載された主題が本開示によって限定されることを意図しない。 In addition, the inventors provide the accompanying drawings and the following description for those skilled in the art to fully understand the present disclosure. The inventors do not intend the subject matter recited in the claims to be limited by the present disclosure.
 [1.PDP21の構成]
 PDP21は、前面板1と背面板2とを備える。PDP21は、前面板1と対向配置された背面板2との間に放電空間3を有している。
[1. Configuration of PDP 21]
The PDP 21 includes a front plate 1 and a back plate 2. The PDP 21 has a discharge space 3 between the front plate 1 and the back plate 2 disposed so as to face the PDP 21.
 前面板1は、ガラス製の前面基板4上に導電性の第1電極である走査電極5および第2電極である維持電極6を有している。走査電極5と維持電極6の間に放電ギャップが設けられている。走査電極5と維持電極6は、互いに平行に配置されている。走査電極5と維持電極6とにより表示電極7が構成される。表示電極7は、前面基板4上に、複数して設けられている。表示電極7は、ガラス材料からなる誘電体層8に覆われている。誘電体層8上にはMgOからなる保護膜9が設けられている。 The front plate 1 has a scanning electrode 5 as a conductive first electrode and a sustain electrode 6 as a second electrode on a glass front substrate 4. A discharge gap is provided between scan electrode 5 and sustain electrode 6. Scan electrode 5 and sustain electrode 6 are arranged in parallel to each other. Scan electrode 5 and sustain electrode 6 constitute display electrode 7. A plurality of display electrodes 7 are provided on the front substrate 4. The display electrode 7 is covered with a dielectric layer 8 made of a glass material. A protective film 9 made of MgO is provided on the dielectric layer 8.
 表示電極7は、ITO(Indium Tin Oxide)などの透明電極を有する。表示電極7は、銀(Ag)などからなる膜厚数μmの導電性金属から構成されている。走査電極5および維持電極6は、図2に示されるように、前面基板4側の透明電極5a、6aとバス電極5b、6bの積層である。 The display electrode 7 has a transparent electrode such as ITO (Indium Tin Oxide). The display electrode 7 is made of a conductive metal having a film thickness of several μm made of silver (Ag) or the like. As shown in FIG. 2, the scan electrode 5 and the sustain electrode 6 are a laminate of transparent electrodes 5a, 6a and bus electrodes 5b, 6b on the front substrate 4 side.
 背面板2は、ガラス製の背面基板10上に、Agなどからなる複数のデータ電極12を有している。複数のデータ電極12は、表示電極7と直交する方向に延伸している。データ電極12は、ガラス材料からなる絶縁体層11で覆われている。絶縁体層11上には、放電空間3をセル15毎に区画するためのガラス材料からなる井桁状の隔壁13が設けられている。また、絶縁体層11の表面および隔壁13の側面には、赤色(R)に発光する赤色蛍光体層14R、緑色(G)に発光する緑色蛍光体層14G、青色(B)に発光する青色蛍光体層14Bが設けられている。表示電極7とデータ電極12が交差する交差部分には、図3に示されるように、セル15が設けられている。また、放電空間3には、放電ガスとして、例えばネオン(Ne)とキセノン(Xe)の混合ガスが封入されている。なお、PDP21の構造は上述したものに限られない。例えば、PDP21は、ストライプ状の隔壁を備えてもよい。 The back plate 2 has a plurality of data electrodes 12 made of Ag or the like on a glass back substrate 10. The plurality of data electrodes 12 extend in a direction orthogonal to the display electrode 7. The data electrode 12 is covered with an insulator layer 11 made of a glass material. On the insulator layer 11, a grid-like partition wall 13 made of a glass material for partitioning the discharge space 3 for each cell 15 is provided. Further, on the surface of the insulator layer 11 and the side surface of the partition wall 13, a red phosphor layer 14R that emits red (R), a green phosphor layer 14G that emits green (G), and a blue that emits blue (B). A phosphor layer 14B is provided. As shown in FIG. 3, a cell 15 is provided at the intersection where the display electrode 7 and the data electrode 12 intersect. The discharge space 3 is filled with, for example, a mixed gas of neon (Ne) and xenon (Xe) as a discharge gas. The structure of the PDP 21 is not limited to that described above. For example, the PDP 21 may include a stripe-shaped partition wall.
 図1、2に示されるように、井桁形状の隔壁13は、データ電極12に平行に設けられた縦隔壁13aと、縦隔壁13aに直交するように設けられた横隔壁13bとから構成されている。青色蛍光体層14B、赤色蛍光体層14R、緑色蛍光体層14Gは、それぞれ縦隔壁13aに沿ってストライプ状に設けられている。なお、青色蛍光体層14B、赤色蛍光体層14Rおよび緑色蛍光体層14Gを総称して蛍光体層14と表記する場合もある。 As shown in FIGS. 1 and 2, the cross-shaped partition wall 13 is composed of a vertical partition wall 13 a provided in parallel to the data electrode 12 and a horizontal partition wall 13 b provided so as to be orthogonal to the vertical partition wall 13 a. Yes. The blue phosphor layer 14B, the red phosphor layer 14R, and the green phosphor layer 14G are provided in stripes along the vertical barrier ribs 13a. The blue phosphor layer 14B, the red phosphor layer 14R, and the green phosphor layer 14G may be collectively referred to as the phosphor layer 14 in some cases.
 走査電極5、維持電極6、データ電極12のそれぞれは、PDP21の周辺部に設けられた接続端子それぞれに接続されている。 Each of the scan electrode 5, the sustain electrode 6, and the data electrode 12 is connected to each connection terminal provided in the peripheral portion of the PDP 21.
 図3に示されるように、PDP21は、図3における行方向に延伸したn本の走査電極Y1、Y2、Y3・・・Yn(図1における走査電極5)およびn本の維持電極X1、X2、X3・・・Xn(図1における維持電極6)を有する。さらに、PDP21は、図3における列方向に延伸したm本のデータ電極A1・・・Am(図1におけるデータ電極12)を有する。一対の走査電極Y1および維持電極X1と、一つのデータ電極A1とが交差する部分に一つのセル15が設けられている。セル15は放電空間内にm×n個設けられている形成されている。また、走査電極Y1および維持電極X1は、図3に示されるように、走査電極Y1-維持電極X1-維持電極X2-走査電極Y2・・・・の配列で繰り返される。 As shown in FIG. 3, the PDP 21 includes n scan electrodes Y1, Y2, Y3... Yn (scan electrode 5 in FIG. 1) and n sustain electrodes X1, X2 extending in the row direction in FIG. , X3... Xn (sustain electrode 6 in FIG. 1). Further, the PDP 21 has m data electrodes A1... Am (data electrodes 12 in FIG. 1) extending in the column direction in FIG. One cell 15 is provided at a portion where the pair of scan electrode Y1 and sustain electrode X1 and one data electrode A1 intersect. The cell 15 is formed so as to have m × n cells in the discharge space. Further, as shown in FIG. 3, scan electrode Y1 and sustain electrode X1 are repeated in an array of scan electrode Y1, sustain electrode X1, sustain electrode X2, scan electrode Y2,.
 [2.プラズマディスプレイ装置100の構成]
 プラズマディスプレイ装置100は、図1~図3に示される構成のPDP21、画像信号処理回路22、データ電極駆動回路23、走査電極駆動回路24、維持電極駆動回路25、タイミング発生回路26および電源回路(図示せず)を備えている。データ電極駆動回路23は、データ電極12の一端に接続され、かつデータ電極12に電圧を供給するための半導体素子からなる複数のデータドライバを有している。
[2. Configuration of Plasma Display Device 100]
The plasma display apparatus 100 includes a PDP 21, an image signal processing circuit 22, a data electrode drive circuit 23, a scan electrode drive circuit 24, a sustain electrode drive circuit 25, a timing generation circuit 26, and a power supply circuit (shown in FIGS. 1 to 3). (Not shown). The data electrode drive circuit 23 has a plurality of data drivers that are connected to one end of the data electrode 12 and are made of semiconductor elements for supplying a voltage to the data electrode 12.
 図4において、画像信号処理回路22は、画像信号sigをサブフィールド毎の画像データに変換する。データ電極駆動回路23はサブフィールド毎の画像データを各データ電極A1~Amに対応する信号に変換し、各データ電極A1~Amを駆動する。タイミング発生回路26は水平同期信号Hおよび垂直同期信号Vをもとにして各種のタイミング信号を発生し、各駆動回路ブロックに供給している。走査電極駆動回路24はタイミング信号にもとづいて走査電極Y1~Ynに駆動電圧波形を供給し、維持電極駆動回路25はタイミング信号にもとづいて維持電極X1~Xnに駆動電圧波形を供給する。なお、維持電極側は、PDP21内、またはPDP21外において共通に接続された後、その共通接続配線が維持電極駆動回路25に接続されている。 In FIG. 4, the image signal processing circuit 22 converts the image signal sig into image data for each subfield. The data electrode driving circuit 23 converts the image data for each subfield into signals corresponding to the data electrodes A1 to Am, and drives the data electrodes A1 to Am. The timing generation circuit 26 generates various timing signals based on the horizontal synchronization signal H and the vertical synchronization signal V, and supplies them to each drive circuit block. Scan electrode drive circuit 24 supplies drive voltage waveforms to scan electrodes Y1 to Yn based on timing signals, and sustain electrode drive circuit 25 supplies drive voltage waveforms to sustain electrodes X1 to Xn based on timing signals. Note that the sustain electrode side is commonly connected in the PDP 21 or outside the PDP 21, and then the common connection wiring is connected to the sustain electrode drive circuit 25.
 [3.PDP21の駆動]
 本実施の形態では、PDP21は、サブフィールド駆動法によって駆動される。サブフィールド駆動法においては、1フィールドは複数のサブフィールドに分割される。それぞれのサブフィールドは、初期化期間、書込み期間、維持期間を有している。
[3. Driving PDP21]
In the present embodiment, PDP 21 is driven by a subfield driving method. In the subfield driving method, one field is divided into a plurality of subfields. Each subfield has an initialization period, an address period, and a sustain period.
 [3-1.初期化期間]
 図5に示されるように、第1サブフィールドの初期化期間では、データ電極A1~Amおよび維持電極X1~Xnが0(V)に保持される。走査電極Y1~Ynに放電開始電圧以下である電圧Vi1(V)から放電開始電圧を超える電圧Vi2(V)まで緩やかに上昇するランプ電圧が印加される。すると、すべてのセル15において1回目の微弱な初期化放電が発生する。さらに、走査電極Y1~Yn上には、負の壁電圧が蓄えられる。維持電極X1~Xn上およびデータ電極A1~Am上には、正の壁電圧が蓄えられる。壁電圧とは誘電体層8などの放電空間3に露出した構成に蓄積した壁電荷により生じる電圧を指す。
[3-1. Initialization period]
As shown in FIG. 5, in the initialization period of the first subfield, data electrodes A1 to Am and sustain electrodes X1 to Xn are held at 0 (V). A ramp voltage that gradually rises from voltage Vi1 (V) that is equal to or lower than the discharge start voltage to voltage Vi2 (V) that exceeds the discharge start voltage is applied to scan electrodes Y1 to Yn. Then, the first weak setup discharge is generated in all the cells 15. Further, a negative wall voltage is stored on the scan electrodes Y1 to Yn. A positive wall voltage is stored on sustain electrodes X1 to Xn and data electrodes A1 to Am. The wall voltage refers to a voltage generated by wall charges accumulated in a structure exposed to the discharge space 3 such as the dielectric layer 8.
 その後、維持電極X1~Xnが正の電圧Vh(V)に保たれる。走査電極Y1~Ynには、電圧Vi3(V)から電圧Vi4(V)まで緩やかに下降するランプ電圧が印加される。すると、すべてのセル15において2回目の微弱な初期化放電が発生する。走査電極Y1~Yn上と維持電極X1~Xn上との間の壁電圧が弱められる。データ電極A1~Am上の壁電圧は、書込み動作に適した値に調整される。 Thereafter, sustain electrodes X1 to Xn are maintained at positive voltage Vh (V). A ramp voltage that gently falls from the voltage Vi3 (V) to the voltage Vi4 (V) is applied to the scan electrodes Y1 to Yn. Then, the second weak initializing discharge occurs in all the cells 15. The wall voltage between the scan electrodes Y1 to Yn and the sustain electrodes X1 to Xn is weakened. The wall voltage on the data electrodes A1 to Am is adjusted to a value suitable for the write operation.
 [3-2.書込み期間]
 続く書込み期間では、走査電極Y1~Ynは、一旦Vr(V)に保持される。次に、1行目の走査電極Y1に負の走査パルス電圧Va(V)が印加される。同時に、データ電極A1~Amのうち1行目に表示すべきセルのデータ電極Ak(k=1~m)に正の書込みパルス電圧Vd(V)が印加される。このとき、データ電極Akと走査電極Y1との交差部の電圧は、外部印加電圧(Vd-Va)(V)にデータ電極Ak上の壁電圧と走査電極Y1上の壁電圧とが加算されることにより、放電開始電圧を超える。データ電極Akと走査電極Y1との間および維持電極X1と走査電極Y1との間に書込み放電が発生する。書込み放電が発生したセル15の走査電極Y1上に正の壁電圧が蓄積される。維持電極X1上に負の壁電圧が蓄積される。データ電極Ak上に負の壁電圧が蓄積される。
[3-2. Write period]
In the subsequent address period, the scan electrodes Y1 to Yn are temporarily held at Vr (V). Next, a negative scan pulse voltage Va (V) is applied to the scan electrode Y1 in the first row. At the same time, the positive write pulse voltage Vd (V) is applied to the data electrode Ak (k = 1 to m) of the cell to be displayed in the first row among the data electrodes A1 to Am. At this time, the voltage at the intersection of the data electrode Ak and the scan electrode Y1 is obtained by adding the wall voltage on the data electrode Ak and the wall voltage on the scan electrode Y1 to the externally applied voltage (Vd−Va) (V). As a result, the discharge start voltage is exceeded. Address discharge is generated between data electrode Ak and scan electrode Y1 and between sustain electrode X1 and scan electrode Y1. A positive wall voltage is accumulated on the scan electrode Y1 of the cell 15 where the address discharge has occurred. A negative wall voltage is accumulated on sustain electrode X1. A negative wall voltage is accumulated on the data electrode Ak.
 このようにして、1行目に表示すべきセル15において書込み放電を発生させ、各電極上に壁電圧を蓄積する書込み動作が行われる。一方、書込みパルス電圧Vd(V)が印加されなかったデータ電極A1~Amと、走査電極Y1との交差部の電圧は放電開始電圧を超えない。よって、書込み放電は発生しない。以上の書込み動作がn行目のセルに至るまで順次行われると、書込み期間が終了する。 In this way, the address operation is performed in which the address discharge is generated in the cell 15 to be displayed in the first row and the wall voltage is accumulated on each electrode. On the other hand, the voltage at the intersection of the data electrodes A1 to Am to which the address pulse voltage Vd (V) is not applied and the scan electrode Y1 does not exceed the discharge start voltage. Accordingly, no address discharge occurs. When the above write operation is sequentially performed until reaching the cell in the nth row, the write period ends.
 [3-3.維持期間]
 続く維持期間では、走査電極Y1~Ynには第1の電圧として正の維持パルス電圧Vs(V)が印加される。維持電極X1~Xnには第2の電圧として接地電位である0(V)が印加される。このとき、書込み放電が発生したセル15においては、走査電極Yi(i=1~n)上と維持電極Xi上との間の電圧は維持パルス電圧Vs(V)に走査電極Yi上の壁電圧と維持電極Xi上の壁電圧とが加算されることにより、放電開始電圧を超える。そして、走査電極Yiと維持電極Xiとの間に維持放電が発生する。維持放電により発生した紫外線が蛍光体を励起する。励起された蛍光体は、所定の波長の光を発する。さらに、走査電極Yi上に負の壁電圧が蓄積される。維持電極Xi上に正の壁電圧が蓄積される。このとき、データ電極Ak上に正の壁電圧が蓄積される。
[3-3. Maintenance period]
In the subsequent sustain period, positive sustain pulse voltage Vs (V) is applied as the first voltage to scan electrodes Y1 to Yn. A sustain potential of 0 (V) is applied to sustain electrodes X1 to Xn as the second voltage. At this time, in the cell 15 where the address discharge has occurred, the voltage between the scan electrode Yi (i = 1 to n) and the sustain electrode Xi is the sustain pulse voltage Vs (V) and the wall voltage on the scan electrode Yi. And the wall voltage on the sustain electrode Xi are added to exceed the discharge start voltage. A sustain discharge is generated between scan electrode Yi and sustain electrode Xi. Ultraviolet rays generated by the sustain discharge excite the phosphor. The excited phosphor emits light of a predetermined wavelength. Further, a negative wall voltage is accumulated on the scan electrode Yi. A positive wall voltage is accumulated on sustain electrode Xi. At this time, a positive wall voltage is accumulated on the data electrode Ak.
 書込み期間において書込み放電が発生しなかったセル15では、維持放電は発生しない。つまり、初期化期間の終了時における壁電圧が保持される。続いて、走査電極Y1~Ynには第2の電圧である0(V)が印加される。維持電極X1~Xnには第1の電圧である維持パルス電圧Vs(V)が印加される。すると、維持放電が発生したセル15では、維持電極Xi上と走査電極Yi上との間の電圧が放電開始電圧を超えるので、再び維持電極Xiと走査電極Yiとの間に維持放電が発生する。維持電極Xi上に負の壁電圧が蓄積される。走査電極Yi上に正の壁電圧が蓄積される。 In the cell 15 where no address discharge occurred during the address period, no sustain discharge occurs. That is, the wall voltage at the end of the initialization period is maintained. Subsequently, 0 (V) as the second voltage is applied to the scan electrodes Y1 to Yn. A sustain pulse voltage Vs (V), which is a first voltage, is applied to sustain electrodes X1-Xn. Then, in the cell 15 where the sustain discharge has occurred, since the voltage between the sustain electrode Xi and the scan electrode Yi exceeds the discharge start voltage, the sustain discharge occurs again between the sustain electrode Xi and the scan electrode Yi. . A negative wall voltage is accumulated on sustain electrode Xi. A positive wall voltage is accumulated on the scan electrode Yi.
 [3-4.第2サブフィールド以降]
 以降同様に、走査電極Y1~Ynと維持電極X1~Xnとに交互に輝度重みに応じた数の維持パルスが印加されることにより、書込み期間において書込み放電が発生したセル15において維持放電が継続して発生する。続くサブフィールドにおける初期化期間、書込み期間、維持期間の動作も第1サブフィールドにおける動作とほぼ同様のため、説明が省略される。
[3-4. After the second subfield]
Similarly, the sustain discharge continues in the cell 15 in which the address discharge has occurred in the address period by alternately applying the number of sustain pulses corresponding to the luminance weight to the scan electrodes Y1 to Yn and the sustain electrodes X1 to Xn. Occur. The operations in the initialization period, address period, and sustain period in the subsequent subfield are also substantially the same as those in the first subfield, and thus description thereof is omitted.
 [4.PDPの製造方法]
 [4-1.前面板の製造方法]
 フォトリソグラフィ法によって、前面基板4上に、走査電極5および維持電極6が形成される。走査電極5および維持電極6の材料には、銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含む電極ペーストが用いられる。まず、スクリーン印刷法などによって、電極ペーストが、前面基板4に塗布される。次に、乾燥炉によって、電極ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、電極ペーストが露光される。
[4. Manufacturing method of PDP]
[4-1. Manufacturing method of front plate]
Scan electrode 5 and sustain electrode 6 are formed on front substrate 4 by photolithography. As a material for scan electrode 5 and sustain electrode 6, an electrode paste containing silver (Ag), a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used. First, an electrode paste is applied to the front substrate 4 by screen printing or the like. Next, the solvent in the electrode paste is removed by a drying furnace. Next, the electrode paste is exposed through a photomask having a predetermined pattern.
 次に、電極ペーストが現像され、表示電極パターンが形成される。最後に、焼成炉によって、表示電極パターンが所定の温度で焼成される。つまり、表示電極パターン中の感光性樹脂が除去される。また、電極パターン中のガラスフリットが溶融する。その後、室温まで冷却することにより、溶融していたガラスフリットが、ガラス化する。以上の工程によって、走査電極5および維持電極6が形成される。 Next, the electrode paste is developed to form a display electrode pattern. Finally, the display electrode pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the display electrode pattern is removed. Further, the glass frit in the electrode pattern is melted. Thereafter, the glass frit that has been melted is vitrified by cooling to room temperature. Through the above steps, scan electrode 5 and sustain electrode 6 are formed.
 ここで、電極ペーストをスクリーン印刷する方法以外にも、スパッタ法、蒸着法などを用いることができる。 Here, besides the method of screen printing the electrode paste, a sputtering method, a vapor deposition method, or the like can be used.
 次に、誘電体層8が形成される。誘電体層8の材料には、誘電体ガラスフリットと樹脂と溶剤などを含む誘電体ペーストが用いられる。まずダイコート法などによって、誘電体ペーストが所定の厚みで走査電極5、維持電極6を覆うように前面基板4上に塗布される。次に、乾燥炉によって、誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、誘電体ペーストが所定の温度で焼成される。つまり、誘電体ペースト中の樹脂が除去される。また、誘電体ガラスフリットが溶融する。その後、室温まで冷却することにより、溶融していた誘電体ガラスフリットが、ガラス化する。以上の工程によって、誘電体層8が形成される。ここで、誘電体ペーストをダイコートする方法以外にも、スクリーン印刷法、スピンコート法などを用いることができる。また、誘電体ペーストを用いずに、CVD(Chemical Vapor Deposition)法などによって、誘電体層8となる膜を形成することもできる。 Next, the dielectric layer 8 is formed. As a material for the dielectric layer 8, a dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used. First, a dielectric paste is applied on the front substrate 4 by a die coating method or the like so as to cover the scan electrodes 5 and the sustain electrodes 6 with a predetermined thickness. Next, the solvent in the dielectric paste is removed by a drying furnace. Finally, the dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the dielectric paste is removed. Further, the dielectric glass frit is melted. Thereafter, the cooled dielectric glass frit is vitrified by cooling to room temperature. Through the above steps, the dielectric layer 8 is formed. Here, besides the method of die coating the dielectric paste, a screen printing method, a spin coating method, or the like can be used. Further, a film that becomes the dielectric layer 8 can be formed by CVD (Chemical Vapor Deposition) method or the like without using the dielectric paste.
 次に、誘電体層8上に保護膜9が形成される。 Next, a protective film 9 is formed on the dielectric layer 8.
 以上の工程により前面基板4上に走査電極5、維持電極6、誘電体層8および保護膜9を有する前面板1が完成する。 The front plate 1 having the scan electrode 5, the sustain electrode 6, the dielectric layer 8, and the protective film 9 on the front substrate 4 is completed through the above steps.
 [4-2.背面板2の製造方法]
 フォトリソグラフィ法によって、背面基板10上に、データ電極12が形成される。データ電極12の材料には、導電性を確保するための銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含むデータ電極ペーストが用いられる。まず、スクリーン印刷法などによって、データ電極ペーストが所定の厚みで背面基板10上に塗布される。次に、乾燥炉によって、データ電極ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、データ電極ペーストが露光される。次に、データ電極ペーストが現像され、データ電極パターンが形成される。最後に、焼成炉によって、データ電極パターンが所定の温度で焼成される。つまり、データ電極パターン中の感光性樹脂が除去される。また、データ電極パターン中のガラスフリットが溶融する。その後、室温まで冷却することにより、溶融していたガラスフリットが、ガラス化する。以上の工程によって、データ電極12が形成される。ここで、データ電極ペーストをスクリーン印刷する方法以外にも、スパッタ法、蒸着法などを用いることができる。
[4-2. Manufacturing method of back plate 2]
Data electrodes 12 are formed on the back substrate 10 by photolithography. As a material of the data electrode 12, a data electrode paste containing silver (Ag) for ensuring conductivity, a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used. First, the data electrode paste is applied on the back substrate 10 with a predetermined thickness by screen printing or the like. Next, the solvent in the data electrode paste is removed by a drying furnace. Next, the data electrode paste is exposed through a photomask having a predetermined pattern. Next, the data electrode paste is developed to form a data electrode pattern. Finally, the data electrode pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the data electrode pattern is removed. Further, the glass frit in the data electrode pattern is melted. Thereafter, the glass frit that has been melted is vitrified by cooling to room temperature. The data electrode 12 is formed by the above process. Here, besides the method of screen printing the data electrode paste, a sputtering method, a vapor deposition method, or the like can be used.
 次に、絶縁体層11が形成される。絶縁体層11の材料には、絶縁体ガラスフリットと樹脂と溶剤などを含む絶縁体ペーストが用いられる。まず、スクリーン印刷法などによって、絶縁体ペーストが所定の厚みでデータ電極12が形成された背面基板10上にデータ電極12を覆うように塗布される。次に、乾燥炉によって、絶縁体ペースト中の溶剤が除去される。最後に、焼成炉によって、絶縁体ペーストが所定の温度で焼成される。つまり、絶縁体ペースト中の樹脂が除去される。また、絶縁体ガラスフリットが溶融する。その後、室温まで冷却することにより、溶融していた絶縁体ガラスフリットが、ガラス化する。以上の工程によって、絶縁体層11が形成される。ここで、絶縁体ペーストをスクリーン印刷する方法以外にも、ダイコート法、スピンコート法などを用いることができる。また、絶縁体ペーストを用いずに、CVD(Chemical Vapor Deposition)法などによって、絶縁体層11となる膜を形成することもできる。 Next, the insulator layer 11 is formed. As a material of the insulator layer 11, an insulator paste containing an insulator glass frit, a resin, a solvent, and the like is used. First, an insulating paste is applied by a screen printing method or the like so as to cover the data electrode 12 on the back substrate 10 on which the data electrode 12 is formed with a predetermined thickness. Next, the solvent in the insulator paste is removed by a drying furnace. Finally, the insulator paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the insulator paste is removed. Moreover, the insulator glass frit is melted. Thereafter, by cooling to room temperature, the molten insulator glass frit is vitrified. The insulator layer 11 is formed by the above process. Here, in addition to the method of screen printing the insulator paste, a die coating method, a spin coating method, or the like can be used. In addition, a film to be the insulator layer 11 can be formed by a CVD (Chemical Vapor Deposition) method or the like without using an insulator paste.
 次に、フォトリソグラフィ法によって、隔壁13が形成される。隔壁13の材料には、フィラーと、フィラーを結着させるためのガラスフリットと、感光性樹脂と、溶剤などを含む隔壁ペーストが用いられる。まず、ダイコート法などによって、隔壁ペーストが所定の厚みで絶縁体層11上に塗布される。次に、乾燥炉によって、隔壁ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、隔壁ペーストが露光される。次に、隔壁ペーストが現像され、隔壁パターンが形成される。最後に、焼成炉によって、隔壁パターンが所定の温度で焼成される。つまり、隔壁パターン中の感光性樹脂が除去される。また、隔壁パターン中のガラスフリットが溶融する。その後、室温まで冷却することにより、溶融していたガラスフリットが、ガラス化する。以上の工程によって、隔壁13が形成される。ここで、フォトリソグラフィ法以外にも、サンドブラスト法などを用いることができる。 Next, the partition wall 13 is formed by photolithography. As a material of the partition wall 13, a partition wall paste including a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used. First, the barrier rib paste is applied on the insulator layer 11 with a predetermined thickness by a die coating method or the like. Next, the solvent in the partition wall paste is removed by a drying furnace. Next, the barrier rib paste is exposed through a photomask having a predetermined pattern. Next, the barrier rib paste is developed to form a barrier rib pattern. Finally, the partition pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the partition pattern is removed. Further, the glass frit in the partition wall pattern is melted. Thereafter, the glass frit that has been melted is vitrified by cooling to room temperature. The partition wall 13 is formed by the above process. Here, in addition to the photolithography method, a sandblast method or the like can be used.
 次に、蛍光体層14が形成される。蛍光体層14の材料には、蛍光体粒子とバインダと溶剤などとを含む蛍光体ペーストが用いられる。まず、ディスペンス法などによって、蛍光体ペーストが所定の厚みで隣接する複数の隔壁13間の絶縁体層11上および隔壁13の側面に塗布される。次に、乾燥炉によって、蛍光体ペースト中の溶剤が除去される。最後に、焼成炉によって、蛍光体ペーストが所定の温度で焼成される。つまり、蛍光体ペースト中の樹脂が除去される。以上の工程によって、蛍光体層14が形成される。ここで、ディスペンス法以外にも、スクリーン印刷法などを用いることができる。 Next, the phosphor layer 14 is formed. As a material for the phosphor layer 14, a phosphor paste containing phosphor particles, a binder, a solvent, and the like is used. First, the phosphor paste is applied to the insulating layer 11 between the plurality of adjacent barrier ribs 13 and to the side surfaces of the barrier ribs 13 by a dispensing method or the like. Next, the solvent in the phosphor paste is removed by a drying furnace. Finally, the phosphor paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the phosphor paste is removed. The phosphor layer 14 is formed by the above steps. Here, in addition to the dispensing method, a screen printing method or the like can be used.
 以上の工程により、背面基板10上に、データ電極12、絶縁体層11、隔壁13および蛍光体層14を有する背面板2が完成する。 Through the above steps, the back plate 2 having the data electrode 12, the insulator layer 11, the partition wall 13, and the phosphor layer 14 on the back substrate 10 is completed.
 [4-3.前面板1と背面板2との組立方法]
 まず、ディスペンス法などによって、背面板2の周囲に封着ペーストが塗布される。封着ペーストは、ビーズと低融点ガラス材料とバインダと溶剤などを含んでいてもよい。塗布された封着ペーストは、封着ペースト層(図示せず)を形成する。次に乾燥炉によって、封着ペースト層中の溶剤が除去される。その後、封着ペースト層は、約350℃の温度で仮焼成される。仮焼成によって、封着ペースト層中の樹脂成分などが除去される。次に、表示電極7とデータ電極12とが直交するように、前面板1と背面板2とが対向配置される。
[4-3. Assembly method of front plate 1 and rear plate 2]
First, a sealing paste is applied around the back plate 2 by a dispensing method or the like. The sealing paste may contain beads, a low-melting glass material, a binder, a solvent, and the like. The applied sealing paste forms a sealing paste layer (not shown). Next, the solvent in the sealing paste layer is removed by a drying furnace. Thereafter, the sealing paste layer is temporarily fired at a temperature of about 350 ° C. The resin component etc. in the sealing paste layer are removed by temporary baking. Next, the front plate 1 and the back plate 2 are arranged to face each other so that the display electrode 7 and the data electrode 12 are orthogonal to each other.
 さらに、前面板1と背面板2の周縁部が、クリップなどにより押圧した状態で保持される。この状態で、所定の温度で焼成することにより、低融点ガラス材料が溶融する。その後、室温まで冷却することにより、溶融していた低融点ガラス材料がガラス化する。これにより、前面板1と背面板2とが気密封着される。最後に、放電空間にNe、Xeなどを含む放電ガスが封入されることによりPDP21が完成する。 Furthermore, the peripheral portions of the front plate 1 and the back plate 2 are held in a state of being pressed by a clip or the like. In this state, the low melting point glass material is melted by firing at a predetermined temperature. Then, the low-melting-point glass material that has been melted is vitrified by cooling to room temperature. Thereby, the front plate 1 and the back plate 2 are hermetically sealed. Finally, a discharge gas containing Ne, Xe or the like is sealed in the discharge space, thereby completing the PDP 21.
 図6に示されるように、PDP21は、画像を表示する有効表示領域と、有効表示領域の外側に設けられた非表示領域を有する。有効表示領域とは、画像が表示される領域である。非表示領域の一部は、外枠50(図10で示される)で覆われる。 As shown in FIG. 6, the PDP 21 has an effective display area for displaying an image and a non-display area provided outside the effective display area. The effective display area is an area where an image is displayed. A part of the non-display area is covered with an outer frame 50 (shown in FIG. 10).
 [5.表示電極7の詳細]
 [5-1.透明電極5a、6aの構造について]
 図7に示されるように、透明電極5aはバス電極5bの延伸方向と同じ方向に延伸して設けられた第2の透明電極領域57と、第2の透明電極領域57から放電ギャップに向かって突出した第1の透明電極領域56を含む。第1の透明電極領域56は、一例として、縦隔壁13aと平行である。
[5. Details of display electrode 7]
[5-1. Regarding the structure of the transparent electrodes 5a and 6a]
As shown in FIG. 7, the transparent electrode 5a extends in the same direction as the bus electrode 5b and extends from the second transparent electrode region 57 toward the discharge gap. A protruding first transparent electrode region 56 is included. The 1st transparent electrode area | region 56 is parallel to the vertical partition 13a as an example.
 第2の透明電極領域57は、一例として、矩形である。第1の透明電極領域56は、一例として、矩形である。 The second transparent electrode region 57 is rectangular as an example. As an example, the first transparent electrode region 56 is rectangular.
 図7に示されるように、透明電極6aはバス電極6bの延伸方向と同じ方向に延伸して設けられた第2の透明電極領域67と、第2の透明電極領域67から放電ギャップに向かって突出した第1の透明電極領域66を含む。第1の透明電極領域66は、一例として、縦隔壁13aと平行である。 As shown in FIG. 7, the transparent electrode 6a has a second transparent electrode region 67 extending in the same direction as the extending direction of the bus electrode 6b, and from the second transparent electrode region 67 toward the discharge gap. A protruding first transparent electrode region 66 is included. For example, the first transparent electrode region 66 is parallel to the vertical partition wall 13a.
 第2の透明電極領域67は、一例として、矩形である。第1の透明電極領域66は、一例として、矩形である。 The second transparent electrode region 67 is rectangular as an example. As an example, the first transparent electrode region 66 is rectangular.
 セル15において、走査電極5が有する第1の透明電極領域56の先端部と、維持電極6が有する第1の透明電極領域66の先端部との間に放電ギャップが設けられる。 In the cell 15, a discharge gap is provided between the distal end portion of the first transparent electrode region 56 included in the scan electrode 5 and the distal end portion of the first transparent electrode region 66 included in the sustain electrode 6.
 なお、第1の透明電極領域56、66は、一つのセル15内において、複数設けられていることが好ましい。放電が、より安定するからである。 Note that a plurality of the first transparent electrode regions 56 and 66 are preferably provided in one cell 15. This is because the discharge becomes more stable.
 なお、透明電極5a、6aは、第1の透明電極領域56、66を備えない構成であってもよい。 The transparent electrodes 5a and 6a may be configured not to include the first transparent electrode regions 56 and 66.
 [6.有効表示領域および非表示領域における表示電極7の構造]
 図6に示される有効表示領域は、セル15において発生する放電によって蛍光体層14が発光する領域である。一方、非表示領域にも、複数のセル15が設けられている。しかし、非表示領域におけるセル15では、放電が発生しない。
[6. Structure of display electrode 7 in effective display area and non-display area]
The effective display area shown in FIG. 6 is an area where the phosphor layer 14 emits light by the discharge generated in the cell 15. On the other hand, a plurality of cells 15 are also provided in the non-display area. However, no discharge occurs in the cell 15 in the non-display area.
 さらに、図8に示されるように、非表示領域は、第1の非表示領域と、第2の非表示領域を有する。第2の非表示領域は、第1の非表示領域の外側に設けられる。 Further, as shown in FIG. 8, the non-display area has a first non-display area and a second non-display area. The second non-display area is provided outside the first non-display area.
 より詳細な構成が図9および図10に示される。なお、図9においては、誘電体層8、保護膜9は省略されている。第1の非表示領域は、第1の領域と第2の領域を含む。第1の領域は、さらに第3の領域と第4の領域から構成される。第3の領域には、断面において三つのセル15が設けられている。第4の領域には、断面において二つのセル15が設けられている。第3の領域に設けられたセル15は、蛍光体層14を有する。さらに、最も有効表示領域に近いセル15は、データ電極12を有する。非表示領域において、誤放電が発生することを抑制するためである。第4の領域に設けられたセル15は、蛍光体層14およびデータ電極12を有さない。つまり、絶縁体層11上に隔壁13が設けられているのみである。なお、第2の領域はセル15を備えない。 A more detailed configuration is shown in FIG. 9 and FIG. In FIG. 9, the dielectric layer 8 and the protective film 9 are omitted. The first non-display area includes a first area and a second area. The first area further includes a third area and a fourth area. In the third region, three cells 15 are provided in the cross section. In the fourth region, two cells 15 are provided in the cross section. The cell 15 provided in the third region has a phosphor layer 14. Further, the cell 15 closest to the effective display area has the data electrode 12. This is to prevent erroneous discharge from occurring in the non-display area. The cell 15 provided in the fourth region does not have the phosphor layer 14 and the data electrode 12. That is, the partition wall 13 is only provided on the insulator layer 11. Note that the second region does not include the cell 15.
 前面基板4に設けられる透明電極6aは誤放電抑制のため、有効表示領域に最も近いセル15に対応する位置で終端している。バス電極6bは、有効表示領域に最も近いセル15に対応する領域に分断部を有する。分断部の距離は、100μm程度である。これにより、非表示領域における維持電極6と走査電極5との間に誤放電が発生することを抑制できる。 The transparent electrode 6a provided on the front substrate 4 is terminated at a position corresponding to the cell 15 closest to the effective display area in order to suppress erroneous discharge. The bus electrode 6b has a dividing portion in an area corresponding to the cell 15 closest to the effective display area. The distance of the dividing part is about 100 μm. Thereby, it is possible to suppress the occurrence of erroneous discharge between the sustain electrode 6 and the scan electrode 5 in the non-display area.
 なお、分断部の距離は90μm以上120μm以下が好ましい。さらに、図8に示されるように、隣接する二つのバス電極6bは、第4の領域においてそれぞれが接続され一つのバス電極6bとなる。そして、一つのバス電極6bは第2の非表示領域において終端されている。 In addition, the distance of the dividing part is preferably 90 μm or more and 120 μm or less. Further, as shown in FIG. 8, two adjacent bus electrodes 6b are connected in the fourth region to form one bus electrode 6b. One bus electrode 6b is terminated in the second non-display area.
 一方、バス電極5bはPDP21の右側端部に形成される走査電圧印加端子(図示せず)へ接続される。 On the other hand, the bus electrode 5b is connected to a scanning voltage application terminal (not shown) formed at the right end of the PDP 21.
 [6.-1 背面板2の反射率]
 PDP21の表示画面側から見ると、背面板2が有する絶縁体層11、隔壁13および蛍光体層14などの有無によって、外光の反射率が異なる領域が生じる場合がある。その場合、領域ごとの見た目の明るさが異なり、領域間の境界が視認されやすくなる。
[6. -1 Reflectance of back plate 2]
When viewed from the display screen side of the PDP 21, there may be a region where the reflectance of external light differs depending on the presence or absence of the insulator layer 11, the partition wall 13, the phosphor layer 14, and the like included in the back plate 2. In that case, the apparent brightness of each region is different, and the boundary between the regions is easily visually recognized.
 本実施の形態において、第2の領域は、有効表示領域と比較して反射率が小さい。有効表示領域には、絶縁体層11、隔壁13および蛍光体層14が設けられている。一方、第2の領域には、隔壁13および蛍光体層14が設けられていないからである。 In the present embodiment, the second area has a smaller reflectance than the effective display area. In the effective display area, an insulator layer 11, a partition wall 13, and a phosphor layer 14 are provided. On the other hand, the partition wall 13 and the phosphor layer 14 are not provided in the second region.
 第2の領域は、第3の領域と比較して反射率が小さい。第3の領域には隔壁13および蛍光体層14が設けられている。一方、第2の領域には隔壁13および蛍光体層14が設けられていないからである。 The second region has a smaller reflectance than the third region. A partition wall 13 and a phosphor layer 14 are provided in the third region. On the other hand, the partition wall 13 and the phosphor layer 14 are not provided in the second region.
 第3の領域は、第4の領域と比較して反射率が大きい。第3の領域には隔壁13および蛍光体層14が設けられている。一方、第4の領域には蛍光体層14が設けられていないからである。 The third area has a higher reflectance than the fourth area. A partition wall 13 and a phosphor layer 14 are provided in the third region. On the other hand, the phosphor layer 14 is not provided in the fourth region.
 [6.-2 前面板1の開口率]
 そこで、本実施の形態においては、図9に示されるように、前面板1の領域によって開口率が異なる。開口率とは、前面板1の単位面積あたりに光が通過する面積の割合である。一例として、光は表示電極7によって遮られる。つまり、単位面積あたりの表示電極7の面積が大きければ、開口率は小さくなる。一方、単位面積あたりの表示電極7の面積が小さければ、開口率は大きくなる。
[6. -2 Opening ratio of front plate 1]
Therefore, in the present embodiment, as shown in FIG. 9, the aperture ratio varies depending on the area of the front plate 1. The aperture ratio is a ratio of an area through which light passes per unit area of the front plate 1. As an example, light is blocked by the display electrode 7. That is, if the area of the display electrode 7 per unit area is large, the aperture ratio is small. On the other hand, if the area of the display electrode 7 per unit area is small, the aperture ratio increases.
 図10に示されるように、有効表示領域における単位面積(領域A)あたりの表示電極7の面積は、第2の領域における単位面積(領域B)あたりの表示電極7の面積より大きい。本実施の形態において、単位面積とは有効表示領域において縦2セル、横2セル程度の領域を指す。つまり、縦は、バス電極5b、6bがそれぞれ二つずつ含まれる程度の長さである。 As shown in FIG. 10, the area of the display electrode 7 per unit area (region A) in the effective display region is larger than the area of the display electrode 7 per unit area (region B) in the second region. In this embodiment, the unit area refers to an area of about 2 vertical cells and 2 horizontal cells in the effective display area. That is, the length is long enough to include two bus electrodes 5b and 6b.
 一例として、第2の領域における単位面積(領域B)あたりの表示電極7の面積(バス電極5b、6bの面積)は、有効表示領域における単位面積(領域A)あたりの表示電極7の面積(バス電極5b、6bの面積)の61%以上77%以下である。 As an example, the area of the display electrode 7 per unit area (region B) in the second region (the area of the bus electrodes 5b and 6b) is the area of the display electrode 7 per unit area (region A) in the effective display region ( 61% to 77% of the area of the bus electrodes 5b and 6b).
 第2の領域におけるバス電極6bの幅は、有効表示領域におけるバス電極6bの幅の40%以上75%以下であってもよい。 The width of the bus electrode 6b in the second area may be not less than 40% and not more than 75% of the width of the bus electrode 6b in the effective display area.
 つまり、第2の領域におけるバス電極6bの電極幅は、有効表示領域におけるバス電極6bの電極幅より小さい。一方、第1の非表示領域におけるバス電極5bの幅は、有効表示領域におけるバス電極5bの幅と同等であってもよい。これにより、有効表示領域と第1の非表示領域とで反射光の量の差が小さくなる。よって、有効表示領域と非表示領域の境界が見えにくくなる。 That is, the electrode width of the bus electrode 6b in the second area is smaller than the electrode width of the bus electrode 6b in the effective display area. On the other hand, the width of the bus electrode 5b in the first non-display area may be equal to the width of the bus electrode 5b in the effective display area. As a result, the difference in the amount of reflected light between the effective display area and the first non-display area is reduced. Therefore, it becomes difficult to see the boundary between the effective display area and the non-display area.
 一方、第2の非表示領域における開口率は、第1の非表示領域における開口率より小さい。表示電極7の断線などを考慮すると、単位面積あたりの表示電極7の面積は大きい方が有利である。 On the other hand, the aperture ratio in the second non-display area is smaller than the aperture ratio in the first non-display area. Considering disconnection of the display electrode 7 and the like, it is advantageous that the area of the display electrode 7 per unit area is large.
 図11および12に示されるように、PDP21が用いられたプラズマディスプレイ装置100は、外枠50を備える。外枠50は、PDP21における非表示領域の一部を覆う。外枠50は、第1の非表示領域は覆わない。一方、外枠50は、第2の非表示領域を覆う。 11 and 12, the plasma display device 100 using the PDP 21 includes an outer frame 50. The outer frame 50 covers a part of the non-display area in the PDP 21. The outer frame 50 does not cover the first non-display area. On the other hand, the outer frame 50 covers the second non-display area.
 つまり、第2の非表示領域は、外枠50に覆われているため、反射光の量の差を考慮しなくてもよい。よって、本実施の形態において、前面板1における第1の非表示領域の開口率は、前面板1における第2の非表示領域の開口率より大きい。 That is, since the second non-display area is covered with the outer frame 50, it is not necessary to consider the difference in the amount of reflected light. Therefore, in the present embodiment, the aperture ratio of the first non-display area on the front plate 1 is larger than the aperture ratio of the second non-display area on the front plate 1.
 [7.評価]
 複数のPDP21についてバス電極6bの幅と有効表示領域と第2の領域との単位面積における電極面積が調整され、明るさの判定が行われる。一例が表1に示される。
[7. Evaluation]
The brightness of the plurality of PDPs 21 is adjusted by adjusting the width of the bus electrode 6b and the electrode area in the unit area of the effective display region and the second region. An example is shown in Table 1.
 PDP21において、有効表示領域におけるバス電極6bの幅と第1の非表示領域におけるバス電極6bの幅から有効表示領域における電極幅の比が計算される。さらに、有効表示領域における単位面積あたりのバス電極5b、6bの合計面積と、第1の非表示領域における単位面積あたりのバス電極5b、6bの合計面積から電極面積の比が求められる。明るさ比率(%)は、有効表示領域および第1の非表示領域における明度(L*)の比である。明度(L*)とは、JIS Z 8729に規定されているL*a*b表色系における明度である。明度(L*)の測定には、一例として、コニカミノルタの分光測色計CM-2600dが用いられる。測定領域は、直径5mmの円領域である。判定は、明るさの比率(%)が90%以下のときがCである。90%以上100%以下のときがBである。100%以上のときがAである。 In the PDP 21, the ratio of the electrode width in the effective display area is calculated from the width of the bus electrode 6b in the effective display area and the width of the bus electrode 6b in the first non-display area. Further, the ratio of the electrode areas is obtained from the total area of the bus electrodes 5b and 6b per unit area in the effective display area and the total area of the bus electrodes 5b and 6b per unit area in the first non-display area. The brightness ratio (%) is a ratio of lightness (L *) in the effective display area and the first non-display area. The lightness (L *) is the lightness in the L * a * b color system defined in JIS Z 8729. For example, Konica Minolta's spectrocolorimeter CM-2600d is used for measuring the lightness (L *). The measurement area is a circular area having a diameter of 5 mm. The determination is C when the brightness ratio (%) is 90% or less. B is 90% or more and 100% or less. A is 100% or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 サンプル1-7のPDP21は、それぞれ有効表示領域における水平方向の画素数が1080である。サンプル8のPDP21は、有効表示領域における水平方向の画素数が720である。サンプル9のPDP21は、有効表示領域における水平方向の画素数が768である。本実施の形態において、水平方向の画素数と、走査電極5および維持電極6の数は等しい。 The PDP 21 of Sample 1-7 has 1080 pixels in the horizontal direction in the effective display area. The PDP 21 of Sample 8 has 720 pixels in the horizontal direction in the effective display area. The PDP 21 of sample 9 has 768 pixels in the horizontal direction in the effective display area. In the present embodiment, the number of pixels in the horizontal direction is equal to the number of scan electrodes 5 and sustain electrodes 6.
 サンプル1は、電極幅の比が1.0である。電極面積の比も1.0である。明るさ比率は、88.1%である。サンプル1では、有効表示領域と第2の領域との明るさの差によって、有効表示領域と第2の領域との境界がはっきり認識される。したがって、サンプル1の判定はCである。 Sample 1 has an electrode width ratio of 1.0. The electrode area ratio is also 1.0. The brightness ratio is 88.1%. In sample 1, the boundary between the effective display area and the second area is clearly recognized by the difference in brightness between the effective display area and the second area. Therefore, the determination of sample 1 is C.
 サンプル2は、電極幅の比が0.84である。電極面積の比が0.92である。明るさ比率は、89.1%である。サンプル2では、有効表示領域と第2の領域との明るさの差によって、有効表示領域と第2の領域との境界がはっきり認識される。したがって、サンプル2の判定はCである。 Sample 2 has an electrode width ratio of 0.84. The electrode area ratio is 0.92. The brightness ratio is 89.1%. In Sample 2, the boundary between the effective display area and the second area is clearly recognized based on the difference in brightness between the effective display area and the second area. Therefore, the determination of sample 2 is C.
 サンプル3は、電極幅の比が0.62である。電極面積の比が0.65である。明るさ比率は、96.0%である。サンプル3では、有効表示領域と第2の領域との明るさの差が、5%以内であり、相対的に小さい。よって、有効表示領域と第2の領域との境界が認識されにくい。したがって、サンプル3の判定はBである。 Sample 3 has an electrode width ratio of 0.62. The electrode area ratio is 0.65. The brightness ratio is 96.0%. In sample 3, the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 3 is B.
 サンプル4は、電極幅の比が0.50である。電極面積の比が0.63である。明るさ比率は、98.2%である。サンプル4では、有効表示領域と第2の領域との明るさの差が、5%以内であり、相対的に小さい。よって、有効表示領域と第2の領域との境界が認識されにくい。したがって、サンプル4の判定はBである。 Sample 4 has an electrode width ratio of 0.50. The electrode area ratio is 0.63. The brightness ratio is 98.2%. In sample 4, the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 4 is B.
 サンプル5は、電極幅の比が0.44である。電極面積の比が0.61である。明るさ比率は、98.9%である。サンプル5では、有効表示領域と第2の領域との明るさの差が、5%以内であり、相対的に小さい。よって、有効表示領域と第2の領域との境界が認識されにくい。したがって、サンプル5の判定はBである。 Sample 5 has an electrode width ratio of 0.44. The electrode area ratio is 0.61. The brightness ratio is 98.9%. In sample 5, the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 5 is B.
 サンプル6は、電極幅の比が0.63である。電極面積の比が0.68である。明るさ比率は、101.0%である。サンプル6では、有効表示領域と第2の領域との明るさの差が1%以内であり、相対的により小さい。よって、有効表示領域と第2の領域との境界がより認識されにくい。したがって、サンプル6の判定はAである。 Sample 6 has an electrode width ratio of 0.63. The electrode area ratio is 0.68. The brightness ratio is 101.0%. In sample 6, the difference in brightness between the effective display area and the second area is within 1%, which is relatively smaller. Therefore, the boundary between the effective display area and the second area is less likely to be recognized. Therefore, the determination of sample 6 is A.
 サンプル7は、電極幅の比が0.74である。電極面積の比が0.69である。明るさ比率は、100.7%である。サンプル7では、有効表示領域と第2の領域との明るさの差が1%以内であり、相対的により小さい。よって、有効表示領域と第2の領域との境界がより認識されにくい。したがって、サンプル7の判定はAである。 Sample 7 has an electrode width ratio of 0.74. The electrode area ratio is 0.69. The brightness ratio is 100.7%. In sample 7, the difference in brightness between the effective display area and the second area is within 1%, which is relatively smaller. Therefore, the boundary between the effective display area and the second area is less likely to be recognized. Therefore, the determination of sample 7 is A.
 サンプル8は、電極幅の比が0.69である。電極面積の比が0.75である。明るさ比率は、96.3%である。サンプル8では、有効表示領域と第2の領域との明るさの差が、5%以内であり、相対的に小さい。よって、有効表示領域と第2の領域との境界が認識されにくい。したがって、サンプル8の判定はBである。 Sample 8 has an electrode width ratio of 0.69. The electrode area ratio is 0.75. The brightness ratio is 96.3%. In sample 8, the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 8 is B.
 サンプル9は、電極幅の比が0.71である。電極面積の比が0.75である。明るさ比率は、96.3%である。サンプル8では、有効表示領域と第2の領域との明るさの差が、5%以内であり、相対的に小さい。よって、有効表示領域と第2の領域との境界が認識されにくい。したがって、サンプル9の判定はBである。 Sample 9 has an electrode width ratio of 0.71. The electrode area ratio is 0.75. The brightness ratio is 96.3%. In sample 8, the difference in brightness between the effective display area and the second area is within 5%, which is relatively small. Therefore, it is difficult to recognize the boundary between the effective display area and the second area. Therefore, the determination of sample 9 is B.
 [8.他の実施の形態]
 他の実施の形態として、透明電極5a、6aが第1の透明電極領域56、66を有さない構成であってもかまわない。
[8. Other Embodiments]
As another embodiment, the transparent electrodes 5a and 6a may not have the first transparent electrode regions 56 and 66.
 あるいは、表示電極7は、透明電極5a、6aを有さない構成であってもかまわない。この場合、表示電極7は、はしご型形状のバス電極を有する構成であってもよい。走査電極5および維持電極6が第1部分と、第1部分と平行な第2部分と、第1部分と第2部分とを接続する第2部分を備える構造であるはしご型形状のバス電極5b、6bを有する場合について説明される。第2の領域において、走査電極5および維持電極6の幅は有効表示領域より小さく、第3部分の数は有効表示領域より少ない。蛍光体層14が設けられない第4の領域では反射率が相対的に低くなる。よって、非表示領域の単位面積あたりの維持電極6の面積は、有効表示領域の単位面積あたりの維持電極6の面積より小さいことが好ましい。有効表示領域と非表示領域の反射率の差を同等(5%以内)とすることが好ましい。 Alternatively, the display electrode 7 may have a configuration without the transparent electrodes 5a and 6a. In this case, the display electrode 7 may have a ladder-shaped bus electrode. Ladder-shaped bus electrode 5b having a structure in which scan electrode 5 and sustain electrode 6 include a first portion, a second portion parallel to the first portion, and a second portion connecting the first portion and the second portion. , 6b will be described. In the second region, the width of the scan electrode 5 and the sustain electrode 6 is smaller than the effective display region, and the number of the third portions is smaller than the effective display region. In the fourth region where the phosphor layer 14 is not provided, the reflectance is relatively low. Therefore, the area of sustain electrode 6 per unit area of the non-display area is preferably smaller than the area of sustain electrode 6 per unit area of the effective display area. It is preferable to make the difference in reflectance between the effective display area and the non-display area equal (within 5%).
 さらに、複数の走査電極5の間および複数の維持電極6の間に黒色の遮光層が設けられてもよい。遮光層が形成されている場合は、非表示領域において遮光層の終端部が設けられる。 Furthermore, a black light shielding layer may be provided between the plurality of scanning electrodes 5 and between the plurality of sustain electrodes 6. When the light shielding layer is formed, the terminal portion of the light shielding layer is provided in the non-display area.
 そして、上記実施の形態は、走査電極5の端子があるPDP21の右側の領域についての説明である。しかし、維持電極6の端子があるPDP21の左側の領域に関しても、同様である。走査電極5と維持電極6の相関関係が変化するだけで、同様の構造だからである。具体的には、維持電極6の端子があるPDP21の左側における第3の領域では、走査電極5が分断部を有する。つまり、第4の領域において、有効表示領域の走査電極5と導通していないフローティング電極としての走査電極5が設けられる。PDP21の右側の領域の構成と同様にすることによって、有効表示領域と第2の領域との境界が認識されにくくなる。 And the said embodiment is description about the area | region on the right side of PDP21 in which the terminal of the scanning electrode 5 exists. However, the same applies to the left region of the PDP 21 where the terminals of the sustain electrodes 6 are provided. This is because the structure is the same except that the correlation between the scan electrode 5 and the sustain electrode 6 changes. Specifically, in the third region on the left side of PDP 21 where the terminal of sustain electrode 6 is located, scan electrode 5 has a dividing portion. That is, in the fourth region, the scanning electrode 5 as a floating electrode that is not electrically connected to the scanning electrode 5 in the effective display region is provided. By adopting the same configuration as that of the right area of the PDP 21, it becomes difficult to recognize the boundary between the effective display area and the second area.
 [9.実施の形態のまとめ]
 上記実施形態において特徴的な部分を以下に列記する。なお、上記実施形態に含まれる発明は、以下に限定されるものではない。
[9. Summary of Embodiment]
Characteristic parts in the above embodiment are listed below. In addition, the invention included in the said embodiment is not limited to the following.
 (1)
 本開示のPDP21は、有効表示領域と有効表示領域の外側に設けられる非表示領域を備える。非表示領域は、第1の非表示領域と第1の非表示領域の外側に設けられる第2の非表示領域を有する。さらに、PDP21は、背面板2と背面板2と対向して設けられる前面板1を有する。背面板2における有効表示領域に相当する領域の反射率は、背面板2における非表示領域に相当する領域の反射率より大きい。前面板1における有効表示領域に相当する領域の開口率は、前面板1における第1の非表示領域に相当する領域の開口率より小さい。前面板1における第1の非表示領域に相当する領域の開口率は、前面板における第2の非表示領域に相当する領域の開口率より大きい。
(1)
The PDP 21 according to the present disclosure includes an effective display area and a non-display area provided outside the effective display area. The non-display area has a first non-display area and a second non-display area provided outside the first non-display area. Further, the PDP 21 has a back plate 2 and a front plate 1 provided to face the back plate 2. The reflectance of the area corresponding to the effective display area on the back plate 2 is larger than the reflectance of the area corresponding to the non-display area on the back plate 2. The aperture ratio of the area corresponding to the effective display area on the front plate 1 is smaller than the aperture ratio of the area corresponding to the first non-display area on the front plate 1. The aperture ratio of the area corresponding to the first non-display area on the front plate 1 is larger than the aperture ratio of the area corresponding to the second non-display area on the front plate.
 これにより、表示画面における領域ごとの反射率の差異により境界部が目立つことが抑制される。よって、高品質のPDP21を提供することができる。 This makes it possible to suppress the conspicuous boundary due to the difference in the reflectance of each area on the display screen. Therefore, the high quality PDP 21 can be provided.
 (2)
 (1)に記載のPDP21において、前面板1は、複数の表示電極7を備える。有効表示領域に相当する領域における複数の表示電極7のうち少なくとも一つの表示電極7の幅は、第1の非表示領域に相当する領域における複数の表示電極7のうち少なくとも一つの表示電極7の幅より大きい。第1の非表示領域に相当する領域における複数の表示電極7のうち少なくとも一つの表示電極7の幅は、第2の非表示領域に相当する領域における複数の表示電極7のうち少なくとも一つの表示電極7の幅より小さい。
(2)
In the PDP 21 described in (1), the front plate 1 includes a plurality of display electrodes 7. The width of at least one display electrode 7 among the plurality of display electrodes 7 in the region corresponding to the effective display region is the same as that of at least one display electrode 7 among the plurality of display electrodes 7 in the region corresponding to the first non-display region. Greater than width. The width of at least one display electrode 7 among the plurality of display electrodes 7 in the region corresponding to the first non-display region is at least one display among the plurality of display electrodes 7 in the region corresponding to the second non-display region. It is smaller than the width of the electrode 7.
 (3)
 (2)に記載のPDP21において、有効表示領域に相当する領域における複数の表示電極7の幅は、第1の非表示領域に相当する領域における複数の表示電極7の幅より大きい。
(3)
In the PDP 21 described in (2), the width of the plurality of display electrodes 7 in the region corresponding to the effective display region is larger than the width of the plurality of display electrodes 7 in the region corresponding to the first non-display region.
 (4)
 (2)に記載のPDP21において、第1の非表示領域に相当する領域における複数の表示電極7のうち少なくとも一つの表示電極7の幅は、有効表示領域に相当する領域における複数の表示電極7のうち少なくとも一つの表示電極7の幅の40%以上75%以下である。
(4)
In the PDP 21 described in (2), the width of at least one display electrode 7 among the plurality of display electrodes 7 in the region corresponding to the first non-display region is equal to the plurality of display electrodes 7 in the region corresponding to the effective display region. The width of at least one display electrode 7 is 40% or more and 75% or less.
 (5)
 (1)に記載のPDP21において、前面板1は、複数の表示電極7を備える。
(5)
In the PDP 21 described in (1), the front plate 1 includes a plurality of display electrodes 7.
 有効表示領域に相当する領域において単位面積あたりの複数の表示電極7が占める面積は、第1の非表示領域に相当する領域において単位面積あたりの複数の表示電極7が占める面積より大きい。第1の非表示領域に相当する領域において単位面積あたりの複数の表示電極7が占める面積は、第2の非表示領域に相当する領域において単位面積あたりの複数の表示電極7が占める面積より小さい。 The area occupied by the plurality of display electrodes 7 per unit area in the area corresponding to the effective display area is larger than the area occupied by the plurality of display electrodes 7 per unit area in the area corresponding to the first non-display area. The area occupied by the plurality of display electrodes 7 per unit area in the region corresponding to the first non-display region is smaller than the area occupied by the plurality of display electrodes 7 per unit area in the region corresponding to the second non-display region. .
 (6)
 (5)に記載のPDP21において、第1の非表示領域に相当する領域において単位面積あたりに複数の表示電極7が占める面積は、有効表示領域に相当する領域において単位面積あたりに複数の表示電極7が占める面積の61%以上77%以下である。
(6)
In the PDP 21 described in (5), the area occupied by the plurality of display electrodes 7 per unit area in the region corresponding to the first non-display region is the plurality of display electrodes per unit area in the region corresponding to the effective display region. 7 to 77% of the area occupied by 7.
 (7)
 (1)に記載のPDP21において、前面板1は、複数の表示電極7を備える。複数の表示電極7は、複数の走査電極5と複数の維持電極6を含む。第1の非表示領域に相当する領域における複数の維持電極6の合計数は、有効表示領域に相当する領域における複数の維持電極6の合計数より少ない。
(7)
In the PDP 21 described in (1), the front plate 1 includes a plurality of display electrodes 7. The plurality of display electrodes 7 include a plurality of scan electrodes 5 and a plurality of sustain electrodes 6. The total number of the plurality of sustain electrodes 6 in the area corresponding to the first non-display area is smaller than the total number of the plurality of sustain electrodes 6 in the area corresponding to the effective display area.
 (8)
 (7)に記載のPDP21において、第1の非表示領域に相当する領域における複数の維持電極6の合計数は、有効表示領域に相当する領域における複数の維持電極6の半数である。
(8)
In the PDP 21 described in (7), the total number of the plurality of sustain electrodes 6 in the region corresponding to the first non-display region is a half of the plurality of sustain electrodes 6 in the region corresponding to the effective display region.
 (9)
 (2)-(6)に記載のPDP21において、背面板2は、有効表示領域に相当する領域と非表示領域に相当する領域の間に、さらにダミー領域である第3の領域を備える。背面板2は、第3の領域において複数の隔壁13と、複数の隔壁13の間に設けられた蛍光体層14を有する。複数の表示電極7は、複数の走査電極5と複数の維持電極6を含む。複数の維持電極6のうち少なくとも一つの維持電極6は、第3の領域と対向する領域において分断部を有する。
(9)
In the PDP 21 described in (2) to (6), the back plate 2 further includes a third area which is a dummy area between an area corresponding to the effective display area and an area corresponding to the non-display area. The back plate 2 includes a plurality of partition walls 13 and a phosphor layer 14 provided between the plurality of partition walls 13 in the third region. The plurality of display electrodes 7 include a plurality of scan electrodes 5 and a plurality of sustain electrodes 6. At least one of the plurality of sustain electrodes 6 has a dividing portion in a region facing the third region.
 これにより、誤放電の発生が抑制される。 This prevents the occurrence of erroneous discharge.
 (10)
 (9)に記載のPDP21において、分断部の距離は、90μm以上120μm以下である。
(10)
In PDP21 as described in (9), the distance of a parting part is 90 micrometers or more and 120 micrometers or less.
 これにより、誤放電の発生が、より抑制される。 This prevents the occurrence of erroneous discharge more.
 (11)
 (1)に記載のPDP21を備え、第2の非表示領域を覆う外枠50を有する、表示装置であるプラズマディスプレイ装置100。
(11)
A plasma display device 100, which is a display device, including the outer frame 50 that includes the PDP 21 described in (1) and covers a second non-display area.
 これにより、表示画面における領域ごとの反射率の差異により境界部が目立つことが抑制される。よって、高品質のPDP21を備えたプラズマディスプレイ装置100を提供することができる。 This makes it possible to suppress the conspicuous boundary due to the difference in the reflectance of each area on the display screen. Therefore, it is possible to provide the plasma display device 100 including the high-quality PDP 21.
 以上のように、本開示における技術の例示として、実施の形態が説明された。そのために、添付図面および詳細な説明が提供された。 As described above, the embodiment has been described as an example of the technique in the present disclosure. To that end, the accompanying drawings and detailed description have been provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のためには必須でない構成要素も含まれ得る。上記技術を例示するためである。必須ではない構成要素が添付図面や詳細な説明に記載されていることによって、それら必須ではない構成要素が必須であるとの認定がなされるべきではない。 Therefore, the constituent elements described in the accompanying drawings and the detailed description may include constituent elements that are not essential for solving the problem. This is to illustrate the above technique. The non-essential components are described in the accompanying drawings and the detailed description, so that the non-essential components should not be recognized as essential.
 また、上述の実施の形態は、本開示における技術を例示するためのものである。よって、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, the above-described embodiment is for illustrating the technique in the present disclosure. Therefore, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 以上のように本実施の形態に開示された技術は、大画面の表示デバイスなど利用可能である。 As described above, the technology disclosed in the present embodiment can be used for a display device with a large screen.
 1  前面板
 2  背面板
 3  放電空間
 4  前面基板
 5  走査電極
 6  維持電極
 5a,6a  透明電極
 5b,6b  バス電極
 7  表示電極
 8  誘電体層
 9  保護膜
 10  背面基板
 11  絶縁体層
 12  データ電極
 13  隔壁
 13a  縦隔壁
 13b  横隔壁
 14  蛍光体層
 14R  赤色蛍光体層
 14G  緑色蛍光体層
 14B  青色蛍光体層
 15  セル
 21  PDP
 22  画像信号処理回路
 23  データ電極駆動回路
 24  走査電極駆動回路
 25  維持電極駆動回路
 26  タイミング発生回路
 50  外枠
 56,66  第1の透明電極領域
 57,67  第2の透明電極領域
 100  プラズマディスプレイ装置
DESCRIPTION OF SYMBOLS 1 Front plate 2 Back plate 3 Discharge space 4 Front substrate 5 Scan electrode 6 Sustain electrode 5a, 6a Transparent electrode 5b, 6b Bus electrode 7 Display electrode 8 Dielectric layer 9 Protective film 10 Back substrate 11 Insulator layer 12 Data electrode 13 Partition 13a Vertical barrier rib 13b Horizontal barrier rib 14 Phosphor layer 14R Red phosphor layer 14G Green phosphor layer 14B Blue phosphor layer 15 Cell 21 PDP
DESCRIPTION OF SYMBOLS 22 Image signal processing circuit 23 Data electrode drive circuit 24 Scan electrode drive circuit 25 Sustain electrode drive circuit 26 Timing generation circuit 50 Outer frame 56,66 1st transparent electrode area | region 57,67 2nd transparent electrode area | region 100 Plasma display apparatus

Claims (11)

  1. 有効表示領域と前記有効表示領域の外側に設けられる非表示領域を備え、
     前記非表示領域は、第1の非表示領域と前記第1の非表示領域の外側に設けられる第2の非表示領域を有し、
     さらに、背面板と前記背面板と対向して設けられる前面板を有し、
      前記背面板における前記有効表示領域に相当する領域の反射率は、前記背面板における前記非表示領域に相当する領域の反射率より大きく、
       前記前面板における前記有効表示領域に相当する領域の開口率は、前記前面板における前記第1の非表示領域に相当する領域の開口率より小さく、
       前記前面板における前記第1の非表示領域に相当する領域の開口率は、前記前面板における前記第2の非表示領域に相当する領域の開口率より大きい、
    プラズマディスプレイパネル。
    An effective display area and a non-display area provided outside the effective display area;
    The non-display area includes a first non-display area and a second non-display area provided outside the first non-display area,
    Furthermore, it has a front plate provided opposite to the back plate and the back plate,
    The reflectance of the area corresponding to the effective display area on the back plate is larger than the reflectance of the area corresponding to the non-display area on the back plate,
    The aperture ratio of the area corresponding to the effective display area on the front plate is smaller than the aperture ratio of the area corresponding to the first non-display area on the front plate,
    The aperture ratio of the area corresponding to the first non-display area in the front plate is larger than the aperture ratio of the area corresponding to the second non-display area in the front plate,
    Plasma display panel.
  2. 前記前面板は、複数の表示電極を備え、
     前記有効表示領域に相当する領域における前記複数の表示電極のうち少なくとも一つの表示電極の幅は、前記第1の非表示領域に相当する領域における前記複数の表示電極のうち少なくとも一つの表示電極の幅より大きく、
     前記第1の非表示領域に相当する領域における前記複数の表示電極のうち少なくとも一つの表示電極の幅は、前記第2の非表示領域に相当する領域における前記複数の表示電極のうち少なくとも一つの表示電極の幅より小さい、
    請求項1に記載のプラズマディスプレイパネル。
    The front plate includes a plurality of display electrodes,
    The width of at least one of the plurality of display electrodes in the region corresponding to the effective display region is equal to the width of at least one of the plurality of display electrodes in the region corresponding to the first non-display region. Larger than width,
    The width of at least one display electrode among the plurality of display electrodes in the region corresponding to the first non-display region is at least one of the plurality of display electrodes in the region corresponding to the second non-display region. Smaller than the width of the display electrode,
    The plasma display panel according to claim 1.
  3. 前記有効表示領域に相当する領域における前記複数の表示電極の幅は、前記第1の非表示領域に相当する領域における前記複数の表示電極の幅より大きい、
    請求項2に記載のプラズマディスプレイパネル。
    A width of the plurality of display electrodes in a region corresponding to the effective display region is larger than a width of the plurality of display electrodes in a region corresponding to the first non-display region;
    The plasma display panel according to claim 2.
  4. 前記第1の非表示領域に相当する領域における前記複数の表示電極のうち少なくとも一つの表示電極の幅は、前記有効表示領域に相当する領域における前記複数の表示電極のうち少なくとも一つの表示電極の幅の40%以上75%以下である、
    請求項2に記載のプラズマディスプレイパネル。
    The width of at least one display electrode among the plurality of display electrodes in the region corresponding to the first non-display region is equal to the width of at least one display electrode among the plurality of display electrodes in the region corresponding to the effective display region. 40% or more and 75% or less of the width,
    The plasma display panel according to claim 2.
  5. 前記前面板は、複数の表示電極を備え、
     前記有効表示領域に相当する領域において単位面積あたりの前記複数の表示電極が占める面積は、前記第1の非表示領域に相当する領域において単位面積あたりの前記複数の表示電極が占める面積より大きく、
     前記第1の非表示領域に相当する領域において単位面積あたりの前記複数の表示電極が占める面積は、前記第2の非表示領域に相当する領域において単位面積あたりの前記複数の表示電極が占める面積より小さい、
    請求項1に記載のプラズマディスプレイパネル。
    The front plate includes a plurality of display electrodes,
    The area occupied by the plurality of display electrodes per unit area in the area corresponding to the effective display area is larger than the area occupied by the plurality of display electrodes per unit area in the area corresponding to the first non-display area,
    The area occupied by the plurality of display electrodes per unit area in the region corresponding to the first non-display region is the area occupied by the plurality of display electrodes per unit area in the region corresponding to the second non-display region. Smaller,
    The plasma display panel according to claim 1.
  6. 前記第1の非表示領域に相当する領域において単位面積あたりの前記複数の表示電極が占める面積は、前記有効表示領域に相当する領域において単位面積あたりの前記複数の表示電極が占める面積の61%以上77%以下である、
    請求項5に記載のプラズマディスプレイパネル。
    The area occupied by the plurality of display electrodes per unit area in the region corresponding to the first non-display region is 61% of the area occupied by the plurality of display electrodes per unit area in the region corresponding to the effective display region. 77% or less,
    The plasma display panel according to claim 5.
  7. 前記前面板は、複数の表示電極を備え、
     前記複数の表示電極は、複数の走査電極と複数の維持電極を含み、
      前記第1の非表示領域に相当する領域における前記複数の維持電極の合計数は、前記有効表示領域に相当する領域における前記複数の維持電極の合計数より少ない、
    請求項1に記載のプラズマディスプレイパネル。
    The front plate includes a plurality of display electrodes,
    The plurality of display electrodes include a plurality of scan electrodes and a plurality of sustain electrodes,
    A total number of the plurality of sustain electrodes in a region corresponding to the first non-display region is smaller than a total number of the plurality of sustain electrodes in a region corresponding to the effective display region;
    The plasma display panel according to claim 1.
  8. 前記第1の非表示領域に相当する領域における前記複数の維持電極の合計数は、前記有効表示領域に相当する領域における前記複数の維持電極の半数である、
    請求項7に記載のプラズマディスプレイパネル。
    The total number of the plurality of sustain electrodes in the region corresponding to the first non-display region is a half of the plurality of sustain electrodes in the region corresponding to the effective display region.
    The plasma display panel according to claim 7.
  9. 前記背面板は、前記有効表示領域に相当する領域と前記非表示領域に相当する領域の間に、さらにダミー領域を備え、
    前記背面板は、前記ダミー領域において複数の隔壁と、前記複数の隔壁間に設けられた蛍光体層を有し、
     前記複数の表示電極は、複数の走査電極と複数の維持電極を含み、
      前記複数の維持電極のうち少なくとも一つの維持電極は、前記ダミー領域と対向する領域において分断部を有する、
    請求項2から6のいずれか一項に記載のプラズマディスプレイパネル。
    The back plate further includes a dummy area between an area corresponding to the effective display area and an area corresponding to the non-display area,
    The back plate has a plurality of partition walls in the dummy region, and a phosphor layer provided between the plurality of partition walls,
    The plurality of display electrodes include a plurality of scan electrodes and a plurality of sustain electrodes,
    At least one sustain electrode among the plurality of sustain electrodes has a dividing portion in a region facing the dummy region.
    The plasma display panel according to any one of claims 2 to 6.
  10. 前記分断部の幅は、90μm以上120μm以下である、
    請求項9に記載のプラズマディスプレイパネル。
    The width of the divided portion is 90 μm or more and 120 μm or less,
    The plasma display panel according to claim 9.
  11. 請求項1に記載のプラズマディスプレイパネルを備え、
    前記第2の非表示領域を覆う外枠を有する、
    表示装置。
    A plasma display panel according to claim 1,
    An outer frame covering the second non-display area;
    Display device.
PCT/JP2013/000147 2012-01-25 2013-01-16 Plasma display panel and display device WO2013111531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-012703 2012-01-25
JP2012012703A JP2013152837A (en) 2012-01-25 2012-01-25 Plasma display panel

Publications (1)

Publication Number Publication Date
WO2013111531A1 true WO2013111531A1 (en) 2013-08-01

Family

ID=48873265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000147 WO2013111531A1 (en) 2012-01-25 2013-01-16 Plasma display panel and display device

Country Status (2)

Country Link
JP (1) JP2013152837A (en)
WO (1) WO2013111531A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149797A (en) * 1998-11-16 2000-05-30 Nec Corp Plasma display panel and its display method
JP2003295779A (en) * 2002-03-29 2003-10-15 Fujitsu Hitachi Plasma Display Ltd Front surface film for flat display panel, and flat display device using this film
JP2005294138A (en) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd Plasma display panel
JP2006019299A (en) * 2004-06-30 2006-01-19 Samsung Sdi Co Ltd Plasma display panel
JP2006114483A (en) * 2004-10-12 2006-04-27 Samsung Sdi Co Ltd Plasma display panel
WO2009145408A1 (en) * 2008-05-29 2009-12-03 Lg Electronics Inc. Plasma display apparatus
JP2010027489A (en) * 2008-07-23 2010-02-04 Hitachi Plasma Display Ltd Plasma display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149797A (en) * 1998-11-16 2000-05-30 Nec Corp Plasma display panel and its display method
JP2003295779A (en) * 2002-03-29 2003-10-15 Fujitsu Hitachi Plasma Display Ltd Front surface film for flat display panel, and flat display device using this film
JP2005294138A (en) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd Plasma display panel
JP2006019299A (en) * 2004-06-30 2006-01-19 Samsung Sdi Co Ltd Plasma display panel
JP2006114483A (en) * 2004-10-12 2006-04-27 Samsung Sdi Co Ltd Plasma display panel
WO2009145408A1 (en) * 2008-05-29 2009-12-03 Lg Electronics Inc. Plasma display apparatus
JP2010027489A (en) * 2008-07-23 2010-02-04 Hitachi Plasma Display Ltd Plasma display panel

Also Published As

Publication number Publication date
JP2013152837A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2013111531A1 (en) Plasma display panel and display device
JP4650569B2 (en) Plasma display device
US20120313914A1 (en) Plasma display device
WO2013111530A1 (en) Plasma display panel
KR100976668B1 (en) Plasma display device
KR100820964B1 (en) Plasma display panel
WO2012101973A1 (en) Plasma display panel
WO2007108119A1 (en) Three-electrode surface discharge display
WO2012102013A1 (en) Plasma display panel
WO2011096180A1 (en) Plasma display device
JP3764897B2 (en) Driving method of plasma display panel
JP2013157117A (en) Plasma display panel
KR100768197B1 (en) Plasma display panel
JPWO2007102329A1 (en) Plasma display device
JP2013157118A (en) Plasma display panel
WO2011096191A1 (en) Plasma display panel
JP2013152889A (en) Plasma display panel
JP2011181496A (en) Plasma display device
JP2013152888A (en) Plasma display panel and plasma display panel manufacturing method
JP2013037979A (en) Plasma display panel
JP2013152838A (en) Plasma display panel
JP2013211120A (en) Plasma display panel
JP2008016373A (en) Plasma display panel
JP2013152836A (en) Plasma display panel manufacturing method
JP2012104303A (en) Plasma display panel and plasma display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740535

Country of ref document: EP

Kind code of ref document: A1