WO2013111477A1 - Method for manufacturing inkjet head and inkjet head - Google Patents

Method for manufacturing inkjet head and inkjet head Download PDF

Info

Publication number
WO2013111477A1
WO2013111477A1 PCT/JP2012/082777 JP2012082777W WO2013111477A1 WO 2013111477 A1 WO2013111477 A1 WO 2013111477A1 JP 2012082777 W JP2012082777 W JP 2012082777W WO 2013111477 A1 WO2013111477 A1 WO 2013111477A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon layer
groove
pressure chamber
flow path
ink jet
Prior art date
Application number
PCT/JP2012/082777
Other languages
French (fr)
Japanese (ja)
Inventor
篤郎 梁田
西 泰男
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013111477A1 publication Critical patent/WO2013111477A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/161Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1631Manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics

Definitions

  • the present invention relates to an ink jet head manufacturing method and an ink jet head, and more specifically, an ink jet head manufacturing method and an ink jet head manufacturing method for causing ink droplets to be ejected from nozzle openings by causing pressure fluctuations in a pressure chamber by vibration of a diaphragm. About.
  • a part of the pressure generating chamber that communicates with the nozzle opening that ejects ink is constituted by a diaphragm, the diaphragm is deformed by a piezoelectric vibrator, the pressure generating chamber is pressurized, and ink droplets are ejected from the nozzle opening.
  • Ink jet heads are known.
  • Patent Document 1 in a method of manufacturing a flow path forming substrate using an SOI substrate, etching is easily and reliably stopped by an etching stop layer (insulator layer) when a pressure chamber is formed by etching a silicon layer. It is described that the pressure chamber is formed with high accuracy.
  • Patent Documents 2 and 3 describe a configuration in which a recess is provided between adjacent piezoelectric elements. By providing the recess, the displacement amount of the pressure chamber can be increased and the crosstalk can be reduced.
  • Patent Documents 2 and 3 have the following problems.
  • Patent Document 2 has a configuration in which a piezoelectric layer is laminated on a diaphragm in which a recess is formed.
  • a piezoelectric layer is laminated on a diaphragm in which a recess is formed.
  • the thickness of the piezoelectric layer on the recess tends to vary. As a result, there is a problem that the discharge accuracy is lowered.
  • Patent Document 3 a recess having a depth reaching at least the side wall forming the pressure chamber is formed.
  • the concave portion is formed on the side wall, when the depth of the concave portion varies, the influence on the discharge performance of the nozzle communicating with the adjacent pressure chamber is large, and there is a problem that the discharge accuracy is reduced.
  • an object of the present invention is to provide an ink jet head manufacturing method and an ink jet head capable of suitably achieving both suppression of crosstalk and improvement of ink ejection accuracy.
  • a method of manufacturing an inkjet head comprising a groove, A first silicon layer constituting the diaphragm; a second silicon layer for forming the pressure chamber; and the first silicon layer and the second silicon layer.
  • the flow path forming substrate is formed by laminating an etching stop layer that is not etched under the etching conditions of the silicon layer and the second silicon layer, or is etched at a slower etching rate than the first silicon layer and the second silicon layer. Thereafter, the groove having a depth equal to the thickness of the first silicon layer is formed by performing etching until the etching stop layer is reached from the surface of the first silicon layer of the flow path forming substrate.
  • a method of manufacturing an ink-jet head is performed by laminating an etching stop layer that is not etched under the etching conditions of the silicon layer and the second silicon layer, or is etched at a slower etching rate than the first silicon layer and the second silicon layer.
  • Etching is performed from the surface of the second silicon layer of the flow path forming substrate until the etching stop layer is reached, thereby forming the pressure chamber having a depth equal to the thickness of the second silicon layer. 4. The method for producing an ink-jet head as described in any one of 1 to 3 above.
  • a lower electrode layer serving as a common electrode for driving the plurality of pressure generating means is formed by removing a region overlapping the region where the groove is formed on the surface of the first silicon layer of the flow path forming substrate. 6. The method of manufacturing an ink-jet head according to any one of 1 to 5, wherein the groove is etched using the lower electrode layer as an etching mask.
  • An ink-jet head comprising: a first silicon layer constituting the diaphragm; a second silicon layer in which the pressure chamber is formed; and the first silicon.
  • an ink jet head manufacturing method and an ink jet head capable of suitably achieving both suppression of crosstalk and improvement of ink ejection accuracy.
  • FIG. 1 (ii)-(ii) plane view Sectional view along line (iii)-(iii) in FIG.
  • the top view which shows the other example of the head board
  • FIG. 1 is a plan view showing an example of a head substrate provided in an ink jet head according to the present invention.
  • 2 is a plan view taken along line (ii)-(ii) in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line (iii)-(iii) in FIG. 1, showing the layer structure of the head substrate.
  • the head substrate H1 is a head substrate, and the head substrate H1 includes a flow path forming substrate 1, a piezoelectric element 2, an intermediate plate 3, and a nozzle plate 4.
  • the flow path forming substrate 1 is composed of an etching stop layer 13 and a first silicon layer 11 and a second silicon layer 12 which are provided on both sides thereof and are made of Si.
  • the etching stop layer 13 performs etching that proceeds from both surfaces of the flow path forming substrate 1 (the surfaces of the first silicon layer 11 and the second silicon layer 12) toward the etching stop layer 13, and the etching stop layer 13 It has a function that can stop when it reaches 13.
  • the etching stop layer 13 has a surface in contact with the first silicon layer 11 and the second silicon layer 12 provided on both surfaces, and Si constituting the first silicon layer 11 and the second silicon layer 12.
  • Si constituting the first silicon layer 11 and the second silicon layer 12.
  • a material it is not etched under the etching conditions for etching the first silicon layer 11 and the second silicon layer 12, or the etching rate is higher than that of the first silicon layer 11 and the second silicon layer 12.
  • Slow ones are used, and specifically, SiO 2 , SiN, SiC and the like can be preferably exemplified.
  • SOI Silicon On Insulator
  • a plurality of pressure chambers 120 communicating with the nozzle openings 41 for discharging ink are formed in the second silicon layer 12 constituting the flow path forming substrate 1.
  • the pressure chamber 120 has the same depth as the thickness of the second silicon layer 12 (the vertical depth in FIGS. 2 and 3).
  • Reference numeral 121 denotes a common flow path.
  • the common flow path 121 communicates with an ink tank (not shown) and communicates with each pressure chamber 120 via an ink supply path 122 provided for each pressure chamber 120. Yes.
  • the ink from the ink tank can be supplied from the common flow path 121 to the pressure chambers 120 via the ink supply path 122.
  • the common flow path 121 and the ink supply path 122 are provided in the second silicon layer 12 of the flow path forming substrate 1, and have the same depth as the thickness of the second silicon layer 12, similar to the pressure chamber 120. ing.
  • the nozzle plate 4 is bonded to the lower surface (surface on the second silicon layer 12 side) of the flow path forming substrate 1 via the intermediate plate 3.
  • the intermediate plate 3 is made of, for example, a glass substrate (Tempax glass or the like) and is anodically bonded to the lower surface of the flow path forming substrate 1.
  • the intermediate plate 3 is provided with a through hole 30 that communicates with the pressure chamber 120 and the nozzle opening 41 formed in the nozzle plate 4.
  • the nozzle plate 4 includes a through hole 40 that forms a nozzle opening 41 for discharging droplets on the lower surface 4a.
  • the nozzle plate 4 is joined to the intermediate plate 3 so that the through holes 40 provided in the nozzle plate 4 communicate with the through holes 30 provided in the intermediate plate. Thereby, the nozzle opening 41 communicates with the pressure chamber 120.
  • an ink repellent film is provided on the lower surface 4a of the nozzle plate 4 where the nozzle openings 41 are provided.
  • a plurality of piezoelectric elements 2 are provided on the upper surface (surface on the first silicon layer 11 side) 1a of the flow path forming substrate 1 corresponding to each pressure chamber 120. More specifically, the piezoelectric element 2 is a region facing each pressure chamber 120 via the vibration plate 10 composed of the first silicon layer 11 and the etching stop layer 13 that are part of the side wall of the pressure chamber 120. Is provided.
  • the piezoelectric element 2 serving as the pressure generating means is deformed by applying a driving voltage, and has a function of causing a pressure fluctuation in the pressure chamber 120 via the diaphragm 10.
  • the piezoelectric element 2 is deformed by application of a driving voltage from the driving electrode.
  • the piezoelectric element 2 is laminated between a lower electrode layer 21 provided on the upper surface 1a of the flow path forming substrate 1 and serving as a common electrode, and an upper electrode layer 22 provided on the upper surface of the piezoelectric element 2 and serving as an individual electrode.
  • the drive voltage can be applied.
  • the piezoelectric element 2 and the electrodes 21 and 22 for applying a driving voltage to the piezoelectric element may be bonded to the upper surface 1a of the flow path forming substrate 1 via an adhesive layer, or may be flown by film formation and lithography. It may be formed on the upper surface 1 a of the path forming substrate 1.
  • a groove 110 is provided so as to separate the adjacent piezoelectric elements 2 from each other.
  • the groove 110 is recessed by being etched from the surface of the first silicon layer 11 of the flow path forming substrate until reaching the etching stop layer.
  • the groove 110 is defined at a position where the groove bottom reaches the etching stop layer 13 and has a depth equal to the thickness of the first silicon layer 11.
  • the “depth of the groove 110” in the present invention refers to the depth from the upper surface (surface of the first silicon layer 11) 1a of the flow path forming substrate 1 toward the etching stop layer.
  • the depth of the groove 110 between the adjacent piezoelectric elements 2 is uniform between any piezoelectric elements 2, crosstalk between the piezoelectric elements 2 can be prevented uniformly, and the displacement of the pressure chamber 120 is also highly accurate. Therefore, it is possible to obtain an effect that it is possible to suitably achieve both suppression of crosstalk and improvement of ink ejection accuracy.
  • grooves 110 are provided independently for each adjacent pressure chamber 120 .
  • the present invention is not limited to this, and as described below, one groove 110 is provided.
  • a groove may be provided in common for two or more between adjacent pressure chambers.
  • FIG. 4 is a plan view showing another example of the head substrate provided in the ink jet head according to the present invention.
  • the same reference numerals as those in FIGS. 1 to 3 denote the same components.
  • one row of nozzle openings 41 is formed by two rows of pressure chambers 120 each having a plurality of pressure chambers 120 arranged in parallel.
  • the two rows of pressure chambers 120 are juxtaposed so that the pressure chambers 120 of each row are arranged in a staggered manner.
  • one groove 110 having the same depth as that in the example of FIGS. 1 to 3 is provided.
  • the depth of the groove 110 between the adjacent piezoelectric elements 2 is uniform between any piezoelectric elements 2, crosstalk between the piezoelectric elements 2 can be prevented uniformly, and the displacement of the pressure chamber 120 is also highly accurate. Therefore, it is possible to obtain an effect that it is possible to suitably achieve both suppression of crosstalk and improvement of ink ejection accuracy.
  • the groove 110 is preferably provided at least in a region that does not overlap the pressure chamber 120 in plan view.
  • plan view is orthogonal to “a surface fixed to the etching stop layer 11 of one silicon layer 12” and “a surface fixed to the etching stop layer 11 of the other silicon layer 13”. It is synonymous with seeing from the direction to do.
  • the groove 110 and the pressure chamber 120 are formed so that the formation regions do not overlap in a plan view, thereby improving the stability of the diaphragm 10 and improving the ink ejection accuracy. An effect that can be further improved is obtained.
  • the groove 110 is preferably provided at least in a central portion between the adjacent pressure chambers 120 in a plan view.
  • the groove 110 is preferably provided at least at a position where the adjacent pressure chambers 120 are closest to each other in plan view.
  • the width of the groove 110 is not particularly limited, but is preferably in the range of 0.5 to 2 times the depth of the groove 110 (that is, the thickness of the other silicon layer).
  • the width of the groove 110 is preferably in the range of 0.1 to 0.3 times the closest distance between the adjacent pressure chambers 120.
  • the relational expression of “thickness of stop layer 13” + “depth of groove 110” is satisfied.
  • the lower electrode layer 21 provided on the upper surface 1a of the flow path forming substrate 1 is preferably provided on the upper surface 1a so as not to cover the inside or upper portion of the groove 110 of the upper surface 1a. .
  • the uniformity of the groove 110 formed with high accuracy is not impaired, and both suppression of crosstalk and improvement of ink ejection accuracy can be achieved more suitably.
  • the shape of the groove 110 is a straight line
  • the shape of the groove 110 is not necessarily a straight line, and may be a curved line.
  • the width of the groove 110 is not necessarily equal to the entire width of the groove 110, and the depth direction of the groove 110 or the length direction of the groove 110 (direction parallel to the upper surface 1 a of the flow path forming substrate 1). ) May be partially changed.
  • the thicknesses of the first silicon layer 11, the second silicon layer 12, and the etching stop layer 13 are not particularly limited, but the thickness of the first silicon layer 11 is The thickness is preferably in the range of 5 ⁇ m or more and 50 ⁇ m or less, the thickness of the second silicon layer 12 is preferably in the range of 50 ⁇ m or more and 200 ⁇ m or less, and the thickness of the etching stop layer is in the range of 0.5 ⁇ m or more and 2 ⁇ m or less. Is preferred.
  • FIG. 5 is a diagram for explaining a first aspect of the method of manufacturing an ink jet head according to the present invention.
  • a flow path forming substrate 1 composed of an etching stop layer 13 and a first silicon layer 11 and a second silicon layer 12 both of which are provided on both surfaces of Si is prepared (FIG. 5A).
  • a lower electrode layer 21 is laminated in advance on the upper surface (surface on the first silicon layer 11 side) 1 a of the flow path forming substrate 1.
  • the pressure chamber 120 is formed by etching a predetermined region of the second silicon layer 12 of the flow path forming substrate 1 from the surface of the second silicon layer 12 until it preferably reaches the etching stop layer ( FIG. 5B).
  • a groove 110 is formed (FIG. 5C). )).
  • the groove 110 is etched using the lower electrode layer 21 as an etching mask by previously removing a predetermined region of the lower electrode layer 21, that is, a region overlapping with the region where the groove 110 is formed, by lithography. This is preferable because the groove 110 can be formed with high accuracy.
  • the piezoelectric element 2 and the upper electrode layer 22 are joined to the region corresponding to the pressure chamber on the upper surface 1a of the flow path forming substrate 1 via the lower electrode layer 21 (FIG. 5D).
  • the nozzle plate 4 in which the through hole 40 having one end serving as the nozzle opening 41 is provided on the surface of the flow path forming substrate 1 on the second silicon layer 12 side via the intermediate plate 3 in which the through hole 30 is provided. are bonded to obtain a head substrate H3 (FIG. 5E).
  • FIG. 6 is a diagram for explaining a second aspect of the method of manufacturing an ink jet head according to the present invention.
  • a flow path forming substrate 1 composed of an etching stop layer 13 and a first silicon layer 11 and a second silicon layer 12 both of which are provided on both sides of Si is prepared (FIG. 6A). .
  • the lower electrode layer 21, the piezoelectric layer (piezoelectric element) 2 and the upper electrode layer 22 are formed on the upper surface (surface of the first silicon layer 11) 1a of the flow path forming substrate 1, and each layer 21, 2 and 22 are patterned into a predetermined shape by lithography (FIG. 6B).
  • a predetermined region in the first silicon layer 11 of the flow path forming substrate 1 is etched from the surface of the first silicon layer 11 until it reaches the etching stop layer, thereby forming a groove 110 (FIG. 6C). )).
  • the groove 110 is etched using the lower electrode layer 21 as an etching mask by previously removing a predetermined region of the lower electrode layer 21, that is, a region overlapping with the region where the groove 110 is formed, by lithography. This is preferable because the groove 110 can be formed with high accuracy.
  • the pressure chamber 120 is formed by etching a predetermined region of the second silicon layer 12 of the flow path forming substrate 1 from the surface of the second silicon layer 12 until it preferably reaches the etching stop layer ( FIG. 6 (d)).
  • the nozzle plate 4 in which the through hole 40 having one end serving as the nozzle opening 41 is provided on the surface of the flow path forming substrate 1 on the second silicon layer 12 side via the intermediate plate 3 in which the through hole 30 is provided. are bonded to obtain a head substrate H4 (FIG. 6E).
  • an ink jet head having a head substrate having the groove 110 similar to that described with reference to FIGS. 1 to 4 can be manufactured.
  • the etching stop layer 13 is used when the groove 110 is etched, the position of the groove bottom is defined at a position reaching the etching stop layer 13. A depth equal to the thickness of the silicon layer 11 can be provided with high accuracy.
  • the depth of the groove 110 between the adjacent piezoelectric elements 2 can be made uniform between any piezoelectric elements 2, crosstalk between the piezoelectric elements 2 can be prevented uniformly, and the displacement of the pressure chamber 120 can be prevented. Since the amount can be made uniform with high accuracy, it is possible to obtain an effect capable of suitably achieving both suppression of crosstalk and improvement of ink ejection accuracy.
  • the etching method for forming the groove 110 and the pressure chamber 120 is not particularly limited.
  • an etching gas such as sulfur hexafluoride (SF 6 ) is used.
  • the dry etching method used can be preferably used.
  • the etching for forming the groove 110 and the pressure chamber 120 it is preferable to use an etching mask. As described above, when the groove 110 is formed, the lower electrode layer 21 serving as a common electrode is used as an etching mask. It is preferable to use as.
  • the step of forming the piezoelectric element on the upper surface 1a may be performed in any order.
  • the groove 110 can be formed with high accuracy even when the formation of the groove 110 (step (b)) and the formation of the pressure chamber 120 (step (b)) are performed simultaneously by etching.
  • the pressure chamber 120 can be formed, it is possible to more easily achieve both the suppression of crosstalk and the improvement of ink ejection accuracy.

Abstract

The purpose is to provide a manufacturing method for an inkjet head and an inkjet head which are able to both suppress crosstalk and improve ink discharge accuracy. A channel-forming substrate (1) is formed by laminating an etching stop layer (13) between a first silicon layer (11) and a second silicon layer (12). The first silicon layer (11) forms a diaphragm (10) and is subjected to pressure from a plurality of attached pressure-generating means, becomes deformed and applies ink discharge pressure to a plurality of pressure chambers (120) corresponding to each pressure-generating means, and the second silicon layer (12) forms the plurality of pressure chambers (120). The inkjet head is completed by performing etching from the surface of the first silicon layer (11) to the etching stop layer (13) in order to form grooves (110) which divide adjacent pressure-generating means.

Description

インクジェットヘッドの製造方法及びインクジェットヘッドInkjet head manufacturing method and inkjet head
 本発明は、インクジェットヘッドの製造方法及びインクジェットヘッドに関し、詳しくは、振動板の振動により圧力室に圧力変動を生じさせてノズル開口からインク滴を吐出するインクジェットヘッドの製造方法及びインクジェットヘッドの製造方法に関する。 The present invention relates to an ink jet head manufacturing method and an ink jet head, and more specifically, an ink jet head manufacturing method and an ink jet head manufacturing method for causing ink droplets to be ejected from nozzle openings by causing pressure fluctuations in a pressure chamber by vibration of a diaphragm. About.
 インクを吐出するノズル開口部と連通する圧力発生室の一部を振動板で構成し、該振動板を圧電振動子により変形させて圧力発生室を加圧し、ノズル開口部からインク滴を吐出するインクジェットヘッドが知られている。 A part of the pressure generating chamber that communicates with the nozzle opening that ejects ink is constituted by a diaphragm, the diaphragm is deformed by a piezoelectric vibrator, the pressure generating chamber is pressurized, and ink droplets are ejected from the nozzle opening. Ink jet heads are known.
 特許文献1には、SOI基板を用いた流路形成基板の製造方法において、シリコン層をエッチングして圧力室を形成する際に、エッチングストップ層(絶縁体層)によって容易且つ確実にエッチングを停止させて、圧力室を高精度に形成することが記載されている。 In Patent Document 1, in a method of manufacturing a flow path forming substrate using an SOI substrate, etching is easily and reliably stopped by an etching stop layer (insulator layer) when a pressure chamber is formed by etching a silicon layer. It is described that the pressure chamber is formed with high accuracy.
 近年、インクジェット記録装置における高速、高精度記録の要望が高まり、ノズルの高密度配列が求められている。これに伴い、圧力室も高密度に配置する必要がある。 In recent years, the demand for high-speed and high-precision recording in an ink jet recording apparatus has increased, and a high-density array of nozzles has been required. Accordingly, it is necessary to arrange the pressure chambers at high density.
 高密度配置の一つの手段として、個々の圧力室及び圧電振動子を小型化することが考えられる。しかし、インク吐出に必要な圧力を得るためにはある程度の面積が必要であるため、小型化には限界がある。 As one means of high density arrangement, it is conceivable to downsize individual pressure chambers and piezoelectric vibrators. However, since a certain area is required to obtain the pressure necessary for ink ejection, there is a limit to downsizing.
 高密度配置の他の手段として、圧力室や圧電素子を高密度に配置すると、隣接する圧力室を変形させる圧電素子の駆動により圧力変動が生じてしまい、吐出精度が低下する、所謂クロストークが発生するという問題があった。 As another means of high density arrangement, when pressure chambers and piezoelectric elements are arranged at high density, pressure fluctuations occur due to driving of the piezoelectric elements that deform the adjacent pressure chambers, so-called crosstalk that lowers discharge accuracy. There was a problem that occurred.
 特許文献2、3には、隣接する圧電素子の間に凹部を設ける構成が記載されている。凹部を設けることにより、圧力室の変位量の増大や、クロストークの低減を可能としている。 Patent Documents 2 and 3 describe a configuration in which a recess is provided between adjacent piezoelectric elements. By providing the recess, the displacement amount of the pressure chamber can be increased and the crosstalk can be reduced.
特開2001-105611号公報JP 2001-105611 A 特開2009-83262号公報JP 2009-83262 A 特開2008-173813号公報JP 2008-173813 A
 しかるに、特許文献2、3に記載の技術には、以下のような問題があった。 However, the techniques described in Patent Documents 2 and 3 have the following problems.
 まず、特許文献2では、凹部が形成された振動板上に圧電体層を積層した構成となっている。しかし、凹部の形状だけでなく、凹部上の圧電層の膜厚もばらつきが生じ易い。その結果、かえって吐出精度が低下する問題があった。 First, Patent Document 2 has a configuration in which a piezoelectric layer is laminated on a diaphragm in which a recess is formed. However, not only the shape of the recess but also the thickness of the piezoelectric layer on the recess tends to vary. As a result, there is a problem that the discharge accuracy is lowered.
 また、特許文献3では、少なくとも圧力室を形成する側壁に到達する深さの凹部を形成している。しかし、側壁に凹部を形成した場合、凹部の深さがばらついた場合に、隣接する圧力室に連通したノズルの吐出性能へ及ぼす影響が大きく、かえって吐出精度が低下する問題があった。 Further, in Patent Document 3, a recess having a depth reaching at least the side wall forming the pressure chamber is formed. However, when the concave portion is formed on the side wall, when the depth of the concave portion varies, the influence on the discharge performance of the nozzle communicating with the adjacent pressure chamber is large, and there is a problem that the discharge accuracy is reduced.
 そこで、本発明の課題は、クロストークの抑制とインク吐出精度の向上を好適に両立できるインクジェットヘッドの製造方法及びインクジェットヘッドを提供することにある。 Therefore, an object of the present invention is to provide an ink jet head manufacturing method and an ink jet head capable of suitably achieving both suppression of crosstalk and improvement of ink ejection accuracy.
 また本発明の他の課題は、以下の記載によって明らかとなる。 Further, other problems of the present invention will become apparent from the following description.
 上記課題は、以下の各発明によって解決される。 The above problems are solved by the following inventions.
1.インクを吐出するためのノズル開口に連通する複数の圧力室が形成された流路形成基板と、前記圧力室の側壁の一部を構成する振動板を介して前記圧力室に対向する領域に設けられ、前記圧力室内に圧力変動を生じさせる複数の圧力発生手段と、前記流路形成基板の前記圧力発生手段が設けられた面から隣接する前記圧力発生手段の間を区切るように凹設された溝と、を備えるインクジェットヘッドの製造方法であって、
 前記振動板を構成する第1のシリコン層と、前記圧力室を形成するための第2のシリコン層と、該第1シリコン層と該第2のシリコン層との間に設けられ、該第1のシリコン層及び第2のシリコン層のエッチング条件においてエッチングされないか又は該第1のシリコン層及び第2のシリコン層よりエッチング速度が遅いエッチングストップ層とを積層して前記流路形成基板を形成した後、前記流路形成基板の前記第1のシリコン層の表面から前記エッチングストップ層に達するまでエッチングを行うことにより、該第1のシリコン層の厚みに等しい深さを有する前記溝を形成することを特徴とするインクジェットヘッドの製造方法。
1. Provided in a region facing the pressure chamber via a flow path forming substrate in which a plurality of pressure chambers communicating with nozzle openings for discharging ink are formed, and a diaphragm constituting a part of the side wall of the pressure chamber A plurality of pressure generating means for causing pressure fluctuations in the pressure chamber and a recess formed so as to separate the pressure generating means adjacent to the surface of the flow path forming substrate on which the pressure generating means is provided. A method of manufacturing an inkjet head comprising a groove,
A first silicon layer constituting the diaphragm; a second silicon layer for forming the pressure chamber; and the first silicon layer and the second silicon layer. The flow path forming substrate is formed by laminating an etching stop layer that is not etched under the etching conditions of the silicon layer and the second silicon layer, or is etched at a slower etching rate than the first silicon layer and the second silicon layer. Thereafter, the groove having a depth equal to the thickness of the first silicon layer is formed by performing etching until the etching stop layer is reached from the surface of the first silicon layer of the flow path forming substrate. A method of manufacturing an ink-jet head.
2.前記溝が、隣接する圧力発生手段の間の中央部に少なくとも設けられていることを特徴とする前記1記載のインクジェットヘッドの製造方法。 2. 2. The method of manufacturing an ink-jet head according to claim 1, wherein the groove is provided at least in a central portion between adjacent pressure generating means.
3.前記溝が、隣接する圧力発生手段が最も近接する位置に少なくとも設けられていることを特徴とする前記1又は2記載のインクジェットヘッドの製造方法。 3. 3. The method of manufacturing an ink-jet head according to claim 1 or 2, wherein the groove is provided at least at a position where adjacent pressure generating means is closest.
4.前記流路形成基板の前記第2のシリコン層の表面から前記エッチングストップ層に達するまでエッチングを行うことにより、該第2のシリコン層の厚みに等しい深さを有する前記圧力室を形成することを特徴とする前記1~3の何れかに記載のインクジェットヘッドの製造方法。 4). Etching is performed from the surface of the second silicon layer of the flow path forming substrate until the etching stop layer is reached, thereby forming the pressure chamber having a depth equal to the thickness of the second silicon layer. 4. The method for producing an ink-jet head as described in any one of 1 to 3 above.
5.前記溝と前記圧力室とを、平面視において形成領域が重ならないように形成することを特徴とする前記1~4の何れかに記載のインクジェットヘッドの製造方法。 5. 5. The method of manufacturing an ink jet head according to any one of 1 to 4, wherein the groove and the pressure chamber are formed so that the formation regions do not overlap in a plan view.
6.前記流路形成基板の前記第1のシリコン層の表面に、前記溝が形成される領域と重なる領域が除去された、前記複数の圧力発生手段を駆動させるための共通電極となる下電極層を形成し、次いで、前記下電極層をエッチングマスクとして前記溝のエッチングを行うことを特徴とする前記1~5の何れかに記載のインクジェットヘッドの製造方法。 6). A lower electrode layer serving as a common electrode for driving the plurality of pressure generating means is formed by removing a region overlapping the region where the groove is formed on the surface of the first silicon layer of the flow path forming substrate. 6. The method of manufacturing an ink-jet head according to any one of 1 to 5, wherein the groove is etched using the lower electrode layer as an etching mask.
7.前記エッチングストップ層の材質がSiOであることを特徴とする前記1~6の何れかに記載のインクジェットヘッドの製造方法。 7). 7. The method for manufacturing an ink jet head according to any one of 1 to 6, wherein the material of the etching stop layer is SiO 2 .
8.前記1~7の何れかに記載のインクジェットヘッドの製造方法により製造されたことを特徴とするインクジェットヘッド。 8). 8. An ink jet head manufactured by the method for manufacturing an ink jet head according to any one of 1 to 7 above.
9.インクを吐出するためのノズル開口に連通する複数の圧力室が形成された流路形成基板と、前記圧力室の側壁の一部を構成する振動板を介して前記圧力室に対向する領域に設けられ、前記圧力室内に圧力変動を生じさせる複数の圧力発生手段と、前記流路形成基板の前記圧力発生手段が設けられた面から、隣接する前記圧力発生手段の間を区切るように凹設された溝と、を備えるインクジェットヘッドであって、前記流路形成基板は、前記振動板を構成する第1のシリコン層と、前記圧力室が形成された第2のシリコン層と、該第1シリコン層と該第2のシリコン層との間に設けられ、該第1のシリコン層及び第2のシリコン層のエッチング時にエッチングされないか又は該第1のシリコン層及び第2のシリコン層よりエッチング速度が遅いエッチングストップ層とを積層して成り、前記溝は、前記第1のシリコン層の厚みに等しい深さを有することを特徴とするインクジェットヘッド。 9. Provided in a region facing the pressure chamber via a flow path forming substrate in which a plurality of pressure chambers communicating with nozzle openings for discharging ink are formed, and a diaphragm constituting a part of the side wall of the pressure chamber A plurality of pressure generating means for causing pressure fluctuations in the pressure chamber and a surface provided with the pressure generating means of the flow path forming substrate so as to separate the adjacent pressure generating means. An ink-jet head comprising: a first silicon layer constituting the diaphragm; a second silicon layer in which the pressure chamber is formed; and the first silicon. Between the first silicon layer and the second silicon layer, and is not etched when the first silicon layer and the second silicon layer are etched, or has an etching rate higher than that of the first silicon layer and the second silicon layer. slow Made by laminating a Tsu quenching stop layer, wherein the groove is an ink jet head is characterized by having a depth equal to the thickness of the first silicon layer.
10.前記溝が、隣接する圧力発生手段の間の中央部に少なくとも設けられていることを特徴とする前記9記載のインクジェットヘッド。 10. 10. The ink jet head according to 9, wherein the groove is provided at least in a central portion between adjacent pressure generating means.
11.前記溝が、隣接する圧力発生手段が最も近接する位置に少なくとも設けられていることを特徴とする前記9又は10記載のインクジェットヘッド。 11. 11. The ink jet head according to claim 9, wherein the groove is provided at least at a position where adjacent pressure generating means is closest.
12.前記圧力室は、前記第2のシリコン層の厚みに等しい深さを有することを特徴とする前記9~11の何れかに記載のインクジェットヘッド。 12 12. The ink jet head according to any one of 9 to 11, wherein the pressure chamber has a depth equal to the thickness of the second silicon layer.
13.前記溝と前記圧力室とは、平面視において形成領域が重ならないように設けられていることを特徴とする前記9~12の何れかに記載のインクジェットヘッドの製造方法。 13. 13. The method of manufacturing an ink jet head according to any one of 9 to 12, wherein the groove and the pressure chamber are provided so that formation regions do not overlap in a plan view.
14.前記エッチングストップ層の材質がSiOであることを特徴とする前記9~13の何れかに記載のインクジェットヘッド。 14 14. The ink jet head according to any one of 9 to 13, wherein the material of the etching stop layer is SiO 2 .
 本発明によれば、クロストークの抑制とインク吐出精度の向上を好適に両立できるインクジェットヘッドの製造方法及びインクジェットヘッドを提供することができる。 According to the present invention, it is possible to provide an ink jet head manufacturing method and an ink jet head capable of suitably achieving both suppression of crosstalk and improvement of ink ejection accuracy.
本発明に係るインクジェットヘッドが備えるヘッド基板の一例を示す平面図The top view which shows an example of the head substrate with which the inkjet head which concerns on this invention is provided 図1の(ii)-(ii)線平面図FIG. 1 (ii)-(ii) plane view 図1の(iii)-(iii)線断面図Sectional view along line (iii)-(iii) in FIG. 本発明に係るインクジェットヘッドが備えるヘッド基板の他の例を示す平面図The top view which shows the other example of the head board | substrate with which the inkjet head which concerns on this invention is provided. 本発明に係るインクジェットヘッドの製造方法の第1態様を説明する図The figure explaining the 1st aspect of the manufacturing method of the inkjet head which concerns on this invention. 本発明に係るインクジェットヘッドの製造方法の第2態様を説明する図The figure explaining the 2nd aspect of the manufacturing method of the inkjet head which concerns on this invention.
 以下に、図面を参照して本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図1は、本発明に係るインクジェットヘッドが備えるヘッド基板の一例を示す平面図である。また、図2は、図1の(ii)-(ii)線平面図、図3は、図1の(iii)-(iii)線断面図であり、ヘッド基板の層構成を示している。 FIG. 1 is a plan view showing an example of a head substrate provided in an ink jet head according to the present invention. 2 is a plan view taken along line (ii)-(ii) in FIG. 1, and FIG. 3 is a cross-sectional view taken along line (iii)-(iii) in FIG. 1, showing the layer structure of the head substrate.
 H1はヘッド基板であり、該ヘッド基板H1は、流路形成基板1、圧電素子2、中間プレート3、ノズルプレート4から構成されている。 H1 is a head substrate, and the head substrate H1 includes a flow path forming substrate 1, a piezoelectric element 2, an intermediate plate 3, and a nozzle plate 4.
 流路形成基板1は、エッチングストップ層13とその両面に設けられた共にSiからなる第1のシリコン層11及び第2のシリコン層12とで構成されている。 The flow path forming substrate 1 is composed of an etching stop layer 13 and a first silicon layer 11 and a second silicon layer 12 which are provided on both sides thereof and are made of Si.
 エッチングストップ層13は、流路形成基板1の両表面(第1のシリコン層11及び第2のシリコン層12の各表面)から当該エッチングストップ層13に向けて進行するエッチングを、当該エッチングストップ層13に到達したところで停止し得る機能を有する。 The etching stop layer 13 performs etching that proceeds from both surfaces of the flow path forming substrate 1 (the surfaces of the first silicon layer 11 and the second silicon layer 12) toward the etching stop layer 13, and the etching stop layer 13 It has a function that can stop when it reaches 13.
 従って、エッチングストップ層13は、両面に設けられた第1のシリコン層11及び第2のシリコン層12と接する面が、該第1のシリコン層11及び第2のシリコン層12を構成するSiとは異なる材質から構成されている。このような材質としては、第1のシリコン層11及び第2のシリコン層12をエッチングするエッチング条件において、エッチングされないか、又は該第1のシリコン層11及び第2のシリコン層12よりエッチング速度が遅いものが用いられ、具体的には、SiO、SiN、SiC等を好ましく例示できる。 Accordingly, the etching stop layer 13 has a surface in contact with the first silicon layer 11 and the second silicon layer 12 provided on both surfaces, and Si constituting the first silicon layer 11 and the second silicon layer 12. Are made of different materials. As such a material, it is not etched under the etching conditions for etching the first silicon layer 11 and the second silicon layer 12, or the etching rate is higher than that of the first silicon layer 11 and the second silicon layer 12. Slow ones are used, and specifically, SiO 2 , SiN, SiC and the like can be preferably exemplified.
 エッチングストップ層として機能し得るSiO層の両面に、シリコン層を有する基板として、トランジスタ分野において所謂SOI(Silicon On Insulator)基板と称されるものが知られており、本発明における流路形成基板として好ましく用いることができる。 As a substrate having silicon layers on both sides of an SiO 2 layer that can function as an etching stop layer, what is called a so-called SOI (Silicon On Insulator) substrate in the transistor field is known. Can be preferably used.
 流路形成基板1を構成する第2のシリコン層12には、インクを吐出するためのノズル開口41に連通する複数の圧力室120が形成されている。 A plurality of pressure chambers 120 communicating with the nozzle openings 41 for discharging ink are formed in the second silicon layer 12 constituting the flow path forming substrate 1.
 圧力室120は、第2のシリコン層12の厚みと同じ深さ(図2及び3における上下方向の深さ)を有している。 The pressure chamber 120 has the same depth as the thickness of the second silicon layer 12 (the vertical depth in FIGS. 2 and 3).
 121は共通流路であり、該共通流路121は、不図示のインクタンクに連通されると共に、圧力室120ごとに設けられたインク供給路122を介して、各圧力室120に連通されている。 Reference numeral 121 denotes a common flow path. The common flow path 121 communicates with an ink tank (not shown) and communicates with each pressure chamber 120 via an ink supply path 122 provided for each pressure chamber 120. Yes.
 これにより、インクタンクからのインクが、共通流路121からインク供給路122を介して各圧力室120に供給可能とされている。 Thereby, the ink from the ink tank can be supplied from the common flow path 121 to the pressure chambers 120 via the ink supply path 122.
 共通流路121及びインク供給路122は、流路形成基板1の第2のシリコン層12に設けられ、圧力室120と同様に、該第2のシリコン層12の厚みと同じ深さを有している。 The common flow path 121 and the ink supply path 122 are provided in the second silicon layer 12 of the flow path forming substrate 1, and have the same depth as the thickness of the second silicon layer 12, similar to the pressure chamber 120. ing.
 流路形成基板1の下面(第2のシリコン層12側の面)には、中間プレート3を介してノズルプレート4が接合されている。 The nozzle plate 4 is bonded to the lower surface (surface on the second silicon layer 12 side) of the flow path forming substrate 1 via the intermediate plate 3.
 中間プレート3は、例えばガラス基板(テンパックスガラス等)等により構成され、流路形成基板1の下面と陽極接合されている。 The intermediate plate 3 is made of, for example, a glass substrate (Tempax glass or the like) and is anodically bonded to the lower surface of the flow path forming substrate 1.
 中間プレート3には、圧力室120とノズルプレート4に形成されたノズル開口41とに連通する貫通孔30が設けられている。 The intermediate plate 3 is provided with a through hole 30 that communicates with the pressure chamber 120 and the nozzle opening 41 formed in the nozzle plate 4.
 ノズルプレート4は、下面4aに液滴を吐出するためのノズル開口41を形成する貫通孔40を備えている。 The nozzle plate 4 includes a through hole 40 that forms a nozzle opening 41 for discharging droplets on the lower surface 4a.
 ノズルプレート4は、該ノズルプレート4に設けられた貫通孔40が、中間プレートに設けられた貫通孔30と連通するように、中間プレート3に接合されている。これにより、ノズル開口41が圧力室120と連通している。 The nozzle plate 4 is joined to the intermediate plate 3 so that the through holes 40 provided in the nozzle plate 4 communicate with the through holes 30 provided in the intermediate plate. Thereby, the nozzle opening 41 communicates with the pressure chamber 120.
 ノズルプレート4のノズル開口41が設けられた下面4aには、撥インク膜が設けられていることが好ましい。 It is preferable that an ink repellent film is provided on the lower surface 4a of the nozzle plate 4 where the nozzle openings 41 are provided.
 圧電素子2は、流路形成基板1の上面(第1のシリコン層11側の面)1aに、各圧力室120に対応して複数設けられている。より具体的には、圧電素子2は、圧力室120の側壁の一部となる第1のシリコン層11及びエッチングストップ層13から構成される振動板10を介して各圧力室120に対向する領域に設けられている。 A plurality of piezoelectric elements 2 are provided on the upper surface (surface on the first silicon layer 11 side) 1a of the flow path forming substrate 1 corresponding to each pressure chamber 120. More specifically, the piezoelectric element 2 is a region facing each pressure chamber 120 via the vibration plate 10 composed of the first silicon layer 11 and the etching stop layer 13 that are part of the side wall of the pressure chamber 120. Is provided.
 圧力発生手段となる圧電素子2は、駆動電圧が印加されることで変形し、振動板10を介して、該圧力室120内に圧力変動を生じさせる機能を有している。 The piezoelectric element 2 serving as the pressure generating means is deformed by applying a driving voltage, and has a function of causing a pressure fluctuation in the pressure chamber 120 via the diaphragm 10.
 図示の例において、圧電素子2は、駆動電極からの駆動電圧の印加によって変形する。 In the illustrated example, the piezoelectric element 2 is deformed by application of a driving voltage from the driving electrode.
 圧電素子2は、流路形成基板1の上面1aに設けられ共通電極となる下電極層21と、該圧電素子2の上面に設けられ個別電極となる上電極層22との間に積層されており、これにより、駆動電圧の印加が可能とされている。 The piezoelectric element 2 is laminated between a lower electrode layer 21 provided on the upper surface 1a of the flow path forming substrate 1 and serving as a common electrode, and an upper electrode layer 22 provided on the upper surface of the piezoelectric element 2 and serving as an individual electrode. Thus, the drive voltage can be applied.
 圧電素子2及び該圧電素子に駆動電圧を印加するための電極21、22は、接着層を介して流路形成基板1の上面1aに接合されていてもよいし、成膜及びリソグラフィ法により流路形成基板1の上面1aに形成されていてもよい。 The piezoelectric element 2 and the electrodes 21 and 22 for applying a driving voltage to the piezoelectric element may be bonded to the upper surface 1a of the flow path forming substrate 1 via an adhesive layer, or may be flown by film formation and lithography. It may be formed on the upper surface 1 a of the path forming substrate 1.
 流路形成基板1の上面1a、即ち流路形成基板1の圧電素子2が設けられた第1のシリコン層11の表面には、隣接する圧電素子2の間を区切るように溝110が凹設されている。 On the upper surface 1a of the flow path forming substrate 1, that is, on the surface of the first silicon layer 11 on which the piezoelectric element 2 of the flow path forming substrate 1 is provided, a groove 110 is provided so as to separate the adjacent piezoelectric elements 2 from each other. Has been.
 本発明に係るインクジェットヘッドにおいて、溝110は、流路形成基板の第1のシリコン層11の表面からエッチングストップ層に達するまでエッチングされることで凹設されている。 In the inkjet head according to the present invention, the groove 110 is recessed by being etched from the surface of the first silicon layer 11 of the flow path forming substrate until reaching the etching stop layer.
 即ち、本発明に係るインクジェットヘッドにおいて、溝110は、溝底の位置がエッチングストップ層13に達する位置で規定されており、第1のシリコン層11の厚みに等しい深さを有している。なお、本発明でいう「溝110の深さ」とは、流路形成基板1の上面(第1のシリコン層11の表面)1aからエッチングストップ層側に向かう深さを指す。 That is, in the inkjet head according to the present invention, the groove 110 is defined at a position where the groove bottom reaches the etching stop layer 13 and has a depth equal to the thickness of the first silicon layer 11. The “depth of the groove 110” in the present invention refers to the depth from the upper surface (surface of the first silicon layer 11) 1a of the flow path forming substrate 1 toward the etching stop layer.
 これにより、隣接する圧電素子2間における溝110の深さが、どの圧電素子2間においても均一となり、圧電素子2間におけるクロストークを均一に防止でき、更に圧力室120の変位量も高精度に均一化できるため、クロストークの抑制とインク吐出精度の向上を好適に両立できる効果が得られる。 As a result, the depth of the groove 110 between the adjacent piezoelectric elements 2 is uniform between any piezoelectric elements 2, crosstalk between the piezoelectric elements 2 can be prevented uniformly, and the displacement of the pressure chamber 120 is also highly accurate. Therefore, it is possible to obtain an effect that it is possible to suitably achieve both suppression of crosstalk and improvement of ink ejection accuracy.
 以上の説明では、溝110が、隣接する圧力室120間ごとに独立して複数設けられる場合について説明したが、本発明はこれに限定されるものではなく、以下に説明するように、1つの溝が、隣接する圧力室間の2以上の複数に共通して設けられていてもよい。 In the above description, the case where a plurality of grooves 110 are provided independently for each adjacent pressure chamber 120 has been described. However, the present invention is not limited to this, and as described below, one groove 110 is provided. A groove may be provided in common for two or more between adjacent pressure chambers.
 図4は、本発明に係るインクジェットヘッドが備えるヘッド基板の他の例を示す平面図である。図中、図1~3と同符号は同一構成を指している。 FIG. 4 is a plan view showing another example of the head substrate provided in the ink jet head according to the present invention. In the figure, the same reference numerals as those in FIGS. 1 to 3 denote the same components.
 図示のヘッド基板H2においては、1列のノズル開口41列が、各々が複数の圧力室120を並設してなる2列の圧力室120列によって形成されている。 In the head substrate H2 shown in the drawing, one row of nozzle openings 41 is formed by two rows of pressure chambers 120 each having a plurality of pressure chambers 120 arranged in parallel.
 2列の圧力室120列は、各列の圧力室120が互いに千鳥状に配設されるように並列されている。 The two rows of pressure chambers 120 are juxtaposed so that the pressure chambers 120 of each row are arranged in a staggered manner.
 これら千鳥状に隣接する圧力室120間の複数に共通して、図1~3の例と同様の深さを有する1つの溝110が設けられている。 In common with the plurality of pressure chambers 120 adjacent to each other in a staggered manner, one groove 110 having the same depth as that in the example of FIGS. 1 to 3 is provided.
 これにより、隣接する圧電素子2間における溝110の深さが、どの圧電素子2間においても均一となり、圧電素子2間におけるクロストークを均一に防止でき、更に圧力室120の変位量も高精度に均一化できるため、クロストークの抑制とインク吐出精度の向上を好適に両立できる効果が得られる。 As a result, the depth of the groove 110 between the adjacent piezoelectric elements 2 is uniform between any piezoelectric elements 2, crosstalk between the piezoelectric elements 2 can be prevented uniformly, and the displacement of the pressure chamber 120 is also highly accurate. Therefore, it is possible to obtain an effect that it is possible to suitably achieve both suppression of crosstalk and improvement of ink ejection accuracy.
 本発明において、溝110は、平面視において圧力室120と重ならない領域に少なくとも設けられることが好ましい。なお、本発明において、「平面視」とは、「一方のシリコン層12のエッチングストップ層11と固着される面」や「他方のシリコン層13のエッチングストップ層11と固着される面」と直交する方向から見ることと同義である。 In the present invention, the groove 110 is preferably provided at least in a region that does not overlap the pressure chamber 120 in plan view. In the present invention, “plan view” is orthogonal to “a surface fixed to the etching stop layer 11 of one silicon layer 12” and “a surface fixed to the etching stop layer 11 of the other silicon layer 13”. It is synonymous with seeing from the direction to do.
 本発明において、好ましくは、溝110と圧力室120とは、平面視において形成領域が重ならないように形成されていることであり、これにより振動板10の安定性が向上し、インク吐出精度を更に向上できる効果が得られる。 In the present invention, preferably, the groove 110 and the pressure chamber 120 are formed so that the formation regions do not overlap in a plan view, thereby improving the stability of the diaphragm 10 and improving the ink ejection accuracy. An effect that can be further improved is obtained.
 より具体的には、図4に示されるように、溝110は、平面視において、隣接する圧力室120間の中央部に少なくとも設けられていることが好ましい。 More specifically, as shown in FIG. 4, the groove 110 is preferably provided at least in a central portion between the adjacent pressure chambers 120 in a plan view.
 また、図4に示されるように、溝110は、平面視において、隣接する圧力室120が最も近接する位置に少なくとも設けられることが好ましい。 Further, as shown in FIG. 4, the groove 110 is preferably provided at least at a position where the adjacent pressure chambers 120 are closest to each other in plan view.
 溝110の幅は、格別限定されるものではないが、該溝110の深さ(即ち他方のシリコン層の厚さ)の0.5倍以上2倍以下の範囲であることが好ましい。 The width of the groove 110 is not particularly limited, but is preferably in the range of 0.5 to 2 times the depth of the groove 110 (that is, the thickness of the other silicon layer).
 また、溝110の幅は、隣接する圧力室120間の最近接距離の0.1倍以上0.3倍以下の範囲であることが好ましい。 Further, the width of the groove 110 is preferably in the range of 0.1 to 0.3 times the closest distance between the adjacent pressure chambers 120.
 溝の深さは、圧力室120の深さが第2のシリコン層12の厚みと同じに設けられる場合は、「流路形成基板1の厚み」=「圧力室120の深さ」+「エッチングストップ層13の厚み」+「溝110の深さ」の関係式を満たす。 When the depth of the pressure chamber 120 is the same as the thickness of the second silicon layer 12, the depth of the groove is “thickness of the flow path forming substrate 1” = “depth of the pressure chamber 120” + “etching” The relational expression of “thickness of stop layer 13” + “depth of groove 110” is satisfied.
 また、本発明においては、流路形成基板1の上面1aに設けられる下電極層21は、該上面1aのうち、溝110の内部乃至上部を覆わないように該上面1aに設けられることが好ましい。これにより、高精度に形成された溝110の均一性を損なうことがなく、クロストークの抑制とインク吐出精度の向上をより好適に両立できる。 In the present invention, the lower electrode layer 21 provided on the upper surface 1a of the flow path forming substrate 1 is preferably provided on the upper surface 1a so as not to cover the inside or upper portion of the groove 110 of the upper surface 1a. . Thereby, the uniformity of the groove 110 formed with high accuracy is not impaired, and both suppression of crosstalk and improvement of ink ejection accuracy can be achieved more suitably.
 以上の説明では、溝110の形状が直線状である場合について示したが、本発明において、溝110の形状は必ずしも直線状である必要はなく、曲線状であってもよい。 In the above description, the case where the shape of the groove 110 is a straight line has been described, but in the present invention, the shape of the groove 110 is not necessarily a straight line, and may be a curved line.
 また、溝110の幅は、1つの溝110全体が必ずしも等幅である必要はなく、溝110の深さ方向、あるいは溝110の長さ方向(流路形成基板1の上面1aに平行な方向)で、部分的に変化していてもよい。 In addition, the width of the groove 110 is not necessarily equal to the entire width of the groove 110, and the depth direction of the groove 110 or the length direction of the groove 110 (direction parallel to the upper surface 1 a of the flow path forming substrate 1). ) May be partially changed.
 また、流路形成基板1において、第1のシリコン層11、第2のシリコン層12及びエッチングストップ層13の各厚みは、格別限定されるものではないが、第1のシリコン層11の厚みは5μm以上50μm以下の範囲であることが好ましく、第2のシリコン層12の厚みは50μm以上200μm以下の範囲であることが好ましく、エッチングストップ層の厚みは0.5μm以上2μm以下の範囲であることが好ましい。 In the flow path forming substrate 1, the thicknesses of the first silicon layer 11, the second silicon layer 12, and the etching stop layer 13 are not particularly limited, but the thickness of the first silicon layer 11 is The thickness is preferably in the range of 5 μm or more and 50 μm or less, the thickness of the second silicon layer 12 is preferably in the range of 50 μm or more and 200 μm or less, and the thickness of the etching stop layer is in the range of 0.5 μm or more and 2 μm or less. Is preferred.
 次に、以上に説明したインクジェットヘッドを製造するための本発明に係るインクジェットヘッドの製造方法について説明する。 Next, an ink jet head manufacturing method according to the present invention for manufacturing the ink jet head described above will be described.
 図5は、本発明に係るインクジェットヘッドの製造方法の第1態様を説明する図である。 FIG. 5 is a diagram for explaining a first aspect of the method of manufacturing an ink jet head according to the present invention.
 まず、エッチングストップ層13とその両面に設けられた共にSiからなる第1のシリコン層11及び第2のシリコン層12とで構成された流路形成基板1を用意する(図5(a))。ここで、流路形成基板1の上面(第1のシリコン層11側の表面)1aには、あらかじめ下電極層21が積層されている。 First, a flow path forming substrate 1 composed of an etching stop layer 13 and a first silicon layer 11 and a second silicon layer 12 both of which are provided on both surfaces of Si is prepared (FIG. 5A). . Here, a lower electrode layer 21 is laminated in advance on the upper surface (surface on the first silicon layer 11 side) 1 a of the flow path forming substrate 1.
 次いで、流路形成基板1の第2のシリコン層12における所定領域を、該第2のシリコン層12の表面から、好ましくはエッチングストップ層に達するまでエッチングすることにより、圧力室120を形成する(図5(b))。 Next, the pressure chamber 120 is formed by etching a predetermined region of the second silicon layer 12 of the flow path forming substrate 1 from the surface of the second silicon layer 12 until it preferably reaches the etching stop layer ( FIG. 5B).
 次いで、流路形成基板1の第1のシリコン層11における所定領域を、該第1のシリコン層11の表面からエッチングストップ層に達するまでエッチングすることにより、溝110を形成する(図5(c))。このとき、下電極層21の所定領域、すなわち溝110が形成される領域と重なる領域をあらかじめリソグラフィ法により除去しておくことによって、該下電極層21をエッチングマスクとして溝110のエッチングを行うことができ、溝110を精度良く形成できるため好ましい。 Next, by etching a predetermined region in the first silicon layer 11 of the flow path forming substrate 1 from the surface of the first silicon layer 11 until reaching the etching stop layer, a groove 110 is formed (FIG. 5C). )). At this time, the groove 110 is etched using the lower electrode layer 21 as an etching mask by previously removing a predetermined region of the lower electrode layer 21, that is, a region overlapping with the region where the groove 110 is formed, by lithography. This is preferable because the groove 110 can be formed with high accuracy.
 次いで、流路形成基板1の上面1aの圧力室に対応する領域に、下電極層21を介して、圧電素子2及び上電極層22を接合する(図5(d))。 Next, the piezoelectric element 2 and the upper electrode layer 22 are joined to the region corresponding to the pressure chamber on the upper surface 1a of the flow path forming substrate 1 via the lower electrode layer 21 (FIG. 5D).
 次いで、流路形成基板1の第2のシリコン層12側の面に、貫通孔30が設けられた中間プレート3を介して、一端がノズル開口41となる貫通孔40が設けられたノズルプレート4を接合して、ヘッド基板H3が得られる(図5(e))。 Next, the nozzle plate 4 in which the through hole 40 having one end serving as the nozzle opening 41 is provided on the surface of the flow path forming substrate 1 on the second silicon layer 12 side via the intermediate plate 3 in which the through hole 30 is provided. Are bonded to obtain a head substrate H3 (FIG. 5E).
 一方、図6は、本発明に係るインクジェットヘッドの製造方法の第2態様を説明する図である。 On the other hand, FIG. 6 is a diagram for explaining a second aspect of the method of manufacturing an ink jet head according to the present invention.
 まず、エッチングストップ層13とその両面に設けられた共にSiからなる第1のシリコン層11及び第2のシリコン層12とで構成された流路形成基板1を用意する(図6(a))。 First, a flow path forming substrate 1 composed of an etching stop layer 13 and a first silicon layer 11 and a second silicon layer 12 both of which are provided on both sides of Si is prepared (FIG. 6A). .
 次いで、流路形成基板1の上面(第1のシリコン層11の表面)1aに、下電極層21、圧電体層(圧電素子)2、及び上電極層22を成膜すると共に、各層21、2、22をリソグラフィ法により所定の形状にパターン加工する(図6(b))。 Next, the lower electrode layer 21, the piezoelectric layer (piezoelectric element) 2 and the upper electrode layer 22 are formed on the upper surface (surface of the first silicon layer 11) 1a of the flow path forming substrate 1, and each layer 21, 2 and 22 are patterned into a predetermined shape by lithography (FIG. 6B).
 次いで、流路形成基板1の第1のシリコン層11における所定領域を、該第1のシリコン層11の表面からエッチングストップ層に達するまでエッチングすることにより、溝110を形成する(図6(c))。このとき、下電極層21の所定領域、すなわち溝110が形成される領域と重なる領域をあらかじめリソグラフィ法により除去しておくことによって、該下電極層21をエッチングマスクとして溝110のエッチングを行うことができ、溝110を精度良く形成できるため好ましい。 Next, a predetermined region in the first silicon layer 11 of the flow path forming substrate 1 is etched from the surface of the first silicon layer 11 until it reaches the etching stop layer, thereby forming a groove 110 (FIG. 6C). )). At this time, the groove 110 is etched using the lower electrode layer 21 as an etching mask by previously removing a predetermined region of the lower electrode layer 21, that is, a region overlapping with the region where the groove 110 is formed, by lithography. This is preferable because the groove 110 can be formed with high accuracy.
 次いで、流路形成基板1の第2のシリコン層12における所定領域を、該第2のシリコン層12の表面から、好ましくはエッチングストップ層に達するまでエッチングすることにより、圧力室120を形成する(図6(d))。 Next, the pressure chamber 120 is formed by etching a predetermined region of the second silicon layer 12 of the flow path forming substrate 1 from the surface of the second silicon layer 12 until it preferably reaches the etching stop layer ( FIG. 6 (d)).
 次いで、流路形成基板1の第2のシリコン層12側の面に、貫通孔30が設けられた中間プレート3を介して、一端がノズル開口41となる貫通孔40が設けられたノズルプレート4を接合して、ヘッド基板H4が得られる(図6(e))。 Next, the nozzle plate 4 in which the through hole 40 having one end serving as the nozzle opening 41 is provided on the surface of the flow path forming substrate 1 on the second silicon layer 12 side via the intermediate plate 3 in which the through hole 30 is provided. Are bonded to obtain a head substrate H4 (FIG. 6E).
 以上のようにして、図1~4にて説明したものと同様の溝110を備えたヘッド基板を有するインクジェットヘッドを製造することができる。 As described above, an ink jet head having a head substrate having the groove 110 similar to that described with reference to FIGS. 1 to 4 can be manufactured.
 本発明に係るインクジェットヘッドの製造方法では、溝110のエッチング時にエッチングストップ層13を利用するから、溝底の位置が該エッチングストップ層13に達する位置で規定され、溝110に対して、第1のシリコン層11の厚みに等しい深さを高精度に付与することができる。 In the inkjet head manufacturing method according to the present invention, since the etching stop layer 13 is used when the groove 110 is etched, the position of the groove bottom is defined at a position reaching the etching stop layer 13. A depth equal to the thickness of the silicon layer 11 can be provided with high accuracy.
 これにより、隣接する圧電素子2間における溝110の深さが、どの圧電素子2間においても均一とすることができ、圧電素子2間におけるクロストークを均一に防止でき、更に圧力室120の変位量も高精度に均一化できるため、クロストークの抑制とインク吐出精度の向上を好適に両立できる効果が得られる。 Thereby, the depth of the groove 110 between the adjacent piezoelectric elements 2 can be made uniform between any piezoelectric elements 2, crosstalk between the piezoelectric elements 2 can be prevented uniformly, and the displacement of the pressure chamber 120 can be prevented. Since the amount can be made uniform with high accuracy, it is possible to obtain an effect capable of suitably achieving both suppression of crosstalk and improvement of ink ejection accuracy.
 本発明において、溝110及び圧力室120を形成するためのエッチング方法は格別限定されないが、エッチングストップ層13の材質がSiOの場合は、6フッ化硫黄(SF)等のエッチングガスを用いたドライエッチング法を好ましく用いることができる。 In the present invention, the etching method for forming the groove 110 and the pressure chamber 120 is not particularly limited. However, when the material of the etching stop layer 13 is SiO 2 , an etching gas such as sulfur hexafluoride (SF 6 ) is used. The dry etching method used can be preferably used.
 また、溝110及び圧力室120を形成するためのエッチングに際しては、エッチングマスクを用いることが好ましく、特に上述したように、溝110を形成する際に、共通電極となる下電極層21をエッチングマスクとして用いることが好ましい。 In the etching for forming the groove 110 and the pressure chamber 120, it is preferable to use an etching mask. As described above, when the groove 110 is formed, the lower electrode layer 21 serving as a common electrode is used as an etching mask. It is preferable to use as.
 また、本発明において、(イ)第1のシリコン層11に溝110を形成する工程、(ロ)第2のシリコン層12に圧力室120を形成する工程、及び(ハ)流路形成基板1の上面1aに圧電素子を形成する工程は、如何なる順で行われてもよい。特に、エッチングストップ層を用いる本発明では、エッチングによって、溝110の形成(上記(イ)工程)と圧力室120の形成(上記(ロ)工程)を同時に行う場合においても、高精度に溝110及び圧力室120を形成できるため、より簡単に、クロストークの抑制とインク吐出精度の向上を好適に両立できる効果を奏する。 In the present invention, (a) a step of forming a groove 110 in the first silicon layer 11, (b) a step of forming a pressure chamber 120 in the second silicon layer 12, and (c) a flow path forming substrate 1 The step of forming the piezoelectric element on the upper surface 1a may be performed in any order. In particular, in the present invention using an etching stop layer, the groove 110 can be formed with high accuracy even when the formation of the groove 110 (step (b)) and the formation of the pressure chamber 120 (step (b)) are performed simultaneously by etching. In addition, since the pressure chamber 120 can be formed, it is possible to more easily achieve both the suppression of crosstalk and the improvement of ink ejection accuracy.
 1:流路形成基板
  10:振動板
  11:第1のシリコン層
   110:溝
  12:第2のシリコン層
   120:圧力室
   121:共通流路
   122:インク供給路
  13:エッチングストップ層
 1a:上面
 2:圧電素子(圧電体層)
  21:下電極層(共通電極)
  22:上電極層(個別電極)
 3:中間プレート
  30:貫通孔
 4:ノズルプレート
  40:貫通孔
  41:ノズル開口
 4a:下面
 H1~H4:ヘッド基板
1: flow path forming substrate 10: diaphragm 11: first silicon layer 110: groove 12: second silicon layer 120: pressure chamber 121: common flow path 122: ink supply path 13: etching stop layer 1a: upper surface 2 : Piezoelectric element (piezoelectric layer)
21: Lower electrode layer (common electrode)
22: Upper electrode layer (individual electrode)
3: Intermediate plate 30: Through hole 4: Nozzle plate 40: Through hole 41: Nozzle opening 4a: Lower surface H1 to H4: Head substrate

Claims (14)

  1.  インクを吐出するためのノズル開口に連通する複数の圧力室が形成された流路形成基板と、
     前記圧力室の側壁の一部を構成する振動板を介して前記圧力室に対向する領域に設けられ、前記圧力室内に圧力変動を生じさせる複数の圧力発生手段と、
     前記流路形成基板の前記圧力発生手段が設けられた面から隣接する前記圧力発生手段の間を区切るように凹設された溝と、
     を備えるインクジェットヘッドの製造方法であって、
     前記振動板を構成する第1のシリコン層と、前記圧力室を形成するための第2のシリコン層と、該第1シリコン層と該第2のシリコン層との間に設けられ、該第1のシリコン層及び第2のシリコン層のエッチング条件においてエッチングされないか又は該第1のシリコン層及び第2のシリコン層よりエッチング速度が遅いエッチングストップ層とを積層して前記流路形成基板を形成した後、
     前記流路形成基板の前記第1のシリコン層の表面から前記エッチングストップ層に達するまでエッチングを行うことにより、該第1のシリコン層の厚みに等しい深さを有する前記溝を形成することを特徴とするインクジェットヘッドの製造方法。
    A flow path forming substrate in which a plurality of pressure chambers communicating with nozzle openings for discharging ink are formed;
    A plurality of pressure generating means provided in a region facing the pressure chamber via a diaphragm constituting a part of a side wall of the pressure chamber, and causing pressure fluctuation in the pressure chamber;
    A groove recessed so as to divide between the pressure generating means adjacent to the surface of the flow path forming substrate provided with the pressure generating means;
    An inkjet head manufacturing method comprising:
    A first silicon layer constituting the diaphragm; a second silicon layer for forming the pressure chamber; and the first silicon layer and the second silicon layer. The flow path forming substrate is formed by laminating an etching stop layer that is not etched under the etching conditions of the silicon layer and the second silicon layer, or is etched at a slower etching rate than the first silicon layer and the second silicon layer. rear,
    Etching is performed from the surface of the first silicon layer of the flow path forming substrate to the etching stop layer, thereby forming the groove having a depth equal to the thickness of the first silicon layer. A method for manufacturing an inkjet head.
  2.  前記溝が、隣接する圧力発生手段の間の中央部に少なくとも設けられていることを特徴とする請求項1記載のインクジェットヘッドの製造方法。 2. The method of manufacturing an ink jet head according to claim 1, wherein the groove is provided at least in a central portion between adjacent pressure generating means.
  3.  前記溝が、隣接する圧力発生手段が最も近接する位置に少なくとも設けられていることを特徴とする請求項1又は2記載のインクジェットヘッドの製造方法。 3. The method of manufacturing an ink jet head according to claim 1, wherein the groove is provided at least at a position where the adjacent pressure generating means is closest.
  4.  前記流路形成基板の前記第2のシリコン層の表面から前記エッチングストップ層に達するまでエッチングを行うことにより、該第2のシリコン層の厚みに等しい深さを有する前記圧力室を形成することを特徴とする請求項1~3の何れかに記載のインクジェットヘッドの製造方法。 Etching is performed from the surface of the second silicon layer of the flow path forming substrate until the etching stop layer is reached, thereby forming the pressure chamber having a depth equal to the thickness of the second silicon layer. The method of manufacturing an ink jet head according to any one of claims 1 to 3, wherein
  5.  前記溝と前記圧力室とを、平面視において形成領域が重ならないように形成することを特徴とする請求項1~4の何れかに記載のインクジェットヘッドの製造方法。 5. The method of manufacturing an ink jet head according to claim 1, wherein the groove and the pressure chamber are formed so that the formation regions do not overlap in a plan view.
  6.  前記流路形成基板の前記第1のシリコン層の表面に、前記溝が形成される領域と重なる領域が除去された、前記複数の圧力発生手段を駆動させるための共通電極となる下電極層を形成し、
     次いで、前記下電極層をエッチングマスクとして前記溝のエッチングを行うことを特徴とする請求項1~5の何れかに記載のインクジェットヘッドの製造方法。
    A lower electrode layer serving as a common electrode for driving the plurality of pressure generating means is formed by removing a region overlapping the region where the groove is formed on the surface of the first silicon layer of the flow path forming substrate. Forming,
    6. The method of manufacturing an ink jet head according to claim 1, wherein the groove is etched using the lower electrode layer as an etching mask.
  7.  前記エッチングストップ層の材質がSiOであることを特徴とする請求項1~6の何れかに記載のインクジェットヘッドの製造方法。 7. The method of manufacturing an ink jet head according to claim 1, wherein the material of the etching stop layer is SiO 2 .
  8.  請求項1~7の何れかに記載のインクジェットヘッドの製造方法により製造されたことを特徴とするインクジェットヘッド。 An ink jet head manufactured by the method of manufacturing an ink jet head according to any one of claims 1 to 7.
  9.  インクを吐出するためのノズル開口に連通する複数の圧力室が形成された流路形成基板と、
     前記圧力室の側壁の一部を構成する振動板を介して前記圧力室に対向する領域に設けられ、前記圧力室内に圧力変動を生じさせる複数の圧力発生手段と、
     前記流路形成基板の前記圧力発生手段が設けられた面から、隣接する前記圧力発生手段の間を区切るように凹設された溝と、
     を備えるインクジェットヘッドであって、
     前記流路形成基板は、前記振動板を構成する第1のシリコン層と、前記圧力室が形成された第2のシリコン層と、該第1シリコン層と該第2のシリコン層との間に設けられ、該第1のシリコン層及び第2のシリコン層のエッチング時にエッチングされないか又は該第1のシリコン層及び第2のシリコン層よりエッチング速度が遅いエッチングストップ層とを積層して成り、
     前記溝は、前記第1のシリコン層の厚みに等しい深さを有することを特徴とするインクジェットヘッド。
    A flow path forming substrate in which a plurality of pressure chambers communicating with nozzle openings for discharging ink are formed;
    A plurality of pressure generating means provided in a region facing the pressure chamber via a diaphragm constituting a part of a side wall of the pressure chamber, and causing pressure fluctuation in the pressure chamber;
    A groove that is recessed so as to separate the adjacent pressure generating means from the surface of the flow path forming substrate on which the pressure generating means is provided;
    An inkjet head comprising:
    The flow path forming substrate includes a first silicon layer constituting the diaphragm, a second silicon layer in which the pressure chamber is formed, and between the first silicon layer and the second silicon layer. And is formed by stacking an etching stop layer that is not etched at the time of etching the first silicon layer and the second silicon layer or has an etching rate slower than that of the first silicon layer and the second silicon layer,
    The inkjet head according to claim 1, wherein the groove has a depth equal to a thickness of the first silicon layer.
  10.  前記溝が、隣接する圧力発生手段の間の中央部に少なくとも設けられていることを特徴とする請求項9記載のインクジェットヘッド。 10. The ink jet head according to claim 9, wherein the groove is provided at least in a central portion between adjacent pressure generating means.
  11.  前記溝が、隣接する圧力発生手段が最も近接する位置に少なくとも設けられていることを特徴とする請求項9又は10記載のインクジェットヘッド。 11. The ink jet head according to claim 9, wherein the groove is provided at least at a position where an adjacent pressure generating means is closest.
  12.  前記圧力室は、前記第2のシリコン層の厚みに等しい深さを有することを特徴とする請求項9~11の何れかに記載のインクジェットヘッド。 12. The ink jet head according to claim 9, wherein the pressure chamber has a depth equal to a thickness of the second silicon layer.
  13.  前記溝と前記圧力室とは、平面視において形成領域が重ならないように設けられていることを特徴とする請求項9~12の何れかに記載のインクジェットヘッドの製造方法。 13. The method of manufacturing an ink jet head according to claim 9, wherein the groove and the pressure chamber are provided so that formation regions do not overlap in a plan view.
  14.  前記エッチングストップ層の材質がSiOであることを特徴とする請求項9~13の何れかに記載のインクジェットヘッド。
     
    The inkjet head according to any one of claims 9 to 13, wherein a material of the etching stop layer is SiO 2 .
PCT/JP2012/082777 2012-01-23 2012-12-18 Method for manufacturing inkjet head and inkjet head WO2013111477A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-011578 2012-01-23
JP2012011578A JP2015062995A (en) 2012-01-23 2012-01-23 Manufacturing method of ink jet head and ink jet head

Publications (1)

Publication Number Publication Date
WO2013111477A1 true WO2013111477A1 (en) 2013-08-01

Family

ID=48873216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082777 WO2013111477A1 (en) 2012-01-23 2012-12-18 Method for manufacturing inkjet head and inkjet head

Country Status (2)

Country Link
JP (1) JP2015062995A (en)
WO (1) WO2013111477A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136871A (en) * 2014-01-23 2015-07-30 ブラザー工業株式会社 Liquid discharge device and method for production thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264346A (en) * 2001-03-14 2002-09-18 Ricoh Co Ltd Ink jet head
JP2003311954A (en) * 2002-02-19 2003-11-06 Brother Ind Ltd Inkjet head and inkjet printer comprising it
JP2005041054A (en) * 2003-07-25 2005-02-17 Kyocera Corp Printing head, its manufacturing method and inkjet printer
JP2007203733A (en) * 2006-02-01 2007-08-16 Samsung Electronics Co Ltd Piezoelectric inkjet printing head
JP2010220348A (en) * 2009-03-16 2010-09-30 Brother Ind Ltd Manufacturing method of piezoelectric actuator and piezoelectric actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264346A (en) * 2001-03-14 2002-09-18 Ricoh Co Ltd Ink jet head
JP2003311954A (en) * 2002-02-19 2003-11-06 Brother Ind Ltd Inkjet head and inkjet printer comprising it
JP2005041054A (en) * 2003-07-25 2005-02-17 Kyocera Corp Printing head, its manufacturing method and inkjet printer
JP2007203733A (en) * 2006-02-01 2007-08-16 Samsung Electronics Co Ltd Piezoelectric inkjet printing head
JP2010220348A (en) * 2009-03-16 2010-09-30 Brother Ind Ltd Manufacturing method of piezoelectric actuator and piezoelectric actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136871A (en) * 2014-01-23 2015-07-30 ブラザー工業株式会社 Liquid discharge device and method for production thereof

Also Published As

Publication number Publication date
JP2015062995A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP4770413B2 (en) Inkjet recording head
JP5454016B2 (en) Inkjet head
KR100738102B1 (en) Piezoelectric inkjet printhead
US8985746B2 (en) Liquid jet head, liquid jet apparatus, and method of manufacturing liquid jet head
KR20080054710A (en) Inkjet head having plurality of restrictors for restraining crosstalk
JP5573052B2 (en) Inkjet head
WO2011068006A1 (en) Inkjet head
JP2017081114A (en) Liquid injection head and liquid injection device
JP6064470B2 (en) Liquid ejection head and image forming apparatus
JP5849131B1 (en) Ink jet head and manufacturing method thereof
WO2013111477A1 (en) Method for manufacturing inkjet head and inkjet head
JP2009051081A (en) Droplet discharge head, integrated droplet discharge head unit, and image forming apparatus
JP7031293B2 (en) Piezoelectric devices, liquid discharge heads, and liquid discharge devices
WO2018128030A1 (en) Inkjet head, method for manufacturing inkjet head, and image forming device
JP7247556B2 (en) Piezoelectric actuator and method for manufacturing piezoelectric actuator
JP6056269B2 (en) Inkjet head
JP2001018383A (en) Ink jet head
US8820892B2 (en) Inkjet printing head substrate, inkjet printing head and inkjet printing apparatus
JP2008207493A (en) Liquid droplet discharging head, manufacturing method for liquid droplet discharging head, and liquid droplet discharging device
JP6584251B2 (en) Liquid discharge head, liquid discharge apparatus, and method of manufacturing liquid discharge head
JP2015157395A (en) Liquid ejection head and liquid ejection device
JP2010208111A (en) Piezoelectric element, liquid ejection head with the use of the same, and recorder
JPH06166179A (en) Ink jet head
JP6685736B2 (en) Inkjet head
JP5930701B2 (en) Liquid discharge head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP