WO2013110873A1 - Method for the thermal protection of the components of the exhaust line of a heat engine - Google Patents

Method for the thermal protection of the components of the exhaust line of a heat engine Download PDF

Info

Publication number
WO2013110873A1
WO2013110873A1 PCT/FR2013/050072 FR2013050072W WO2013110873A1 WO 2013110873 A1 WO2013110873 A1 WO 2013110873A1 FR 2013050072 W FR2013050072 W FR 2013050072W WO 2013110873 A1 WO2013110873 A1 WO 2013110873A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
setpoint
engine
determined
exhaust
Prior art date
Application number
PCT/FR2013/050072
Other languages
French (fr)
Inventor
Guillaume Allegre
Efstratios KRETZAS
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Priority to BR112014017533-0A priority Critical patent/BR112014017533B1/en
Priority to CN201380006875.6A priority patent/CN104246160B/en
Priority to EP13704153.9A priority patent/EP2807353B1/en
Publication of WO2013110873A1 publication Critical patent/WO2013110873A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • F01N11/005Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus the temperature or pressure being estimated, e.g. by means of a theoretical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus

Definitions

  • the present invention relates to a method of thermal protection of the components of the exhaust line of a heat engine whose fuel is gasoline, whether the engine is supercharged or not and that it is direct injection or indirect.
  • the components of the exhaust line of a heat engine are constituted by the elements in the exhaust gas evacuation circuit, starting, in the direction of evacuation of gases, by the valves of exhaust, passing successively through the exhaust manifold, the turbocharger for supercharged engines, the catalyst equipped with probes (oxygen probes for example), and ending with the silencer.
  • the components can be more or less hot depending on the operating conditions of the engine. If the temperature of the exhaust gas is too high, the temperature of a component may possibly exceed a critical temperature from which the component may be damaged. It is therefore important to control the temperature in the exhaust line to avoid damaging a component and therefore not exceeding the critical temperature.
  • JP4060106 relates to a device for comparing the measurement of the exotherm of a catalyst, by a temperature sensor, with the estimation of this exotherm to determine the aging state of the catalyst. If the exotherm does not correspond to that estimated, it can be deduced that the catalyst is deteriorated.
  • This device does not concern the protection of a component of an exhaust line by thermal limitation.
  • JP5312074 (A) relates to a method of compensating an oxygen sensor exhaust, downstream of the catalyst, depending on the catalyst temperature and the oxygen stored in the catalyst. However, this document does not concern the thermal protection of the exhaust line by enriching the combustion.
  • US6691507 (B1) describes a device for heating and maintaining temperature of a post-treatment element of nitrogen oxides, and the regeneration of this device by alternating rich / poor operation of the control of the richness of the fuel / air combustion mixture. This patent does not concern the thermal protection of a component by playing on wealth.
  • Patent FR2141049 (A5) relates to the determination of the input richness of a catalyst to optimize the aftertreatment of the exhaust gas.
  • the present invention provides a method for thermally protecting the components of an exhaust line by controlling the wealth.
  • the invention relates to a method of thermal protection of the components of the exhaust line of a heat engine according to which the temperatures of the exhaust gas and the walls of the exhaust line are determined. (estimated or measured) and that the component of the exhaust line having reached its maximum temperature limit is detected. According to said method,
  • a target temperature T 3 is determined with respect to exhaust gases at the output of said engine, and a setpoint of richness is developed (Setpoint for ensuring the said setpoint temperature of the exhaust gases.
  • Setpoint is determined within the limit of the maximum wealth acceptable by the engine.
  • said set temperature T3 con sign of engine output in the exhaust gas is determined by presetting the reference temperature and by controlling, said prepositioning delivering a basic set temperature T3 (x) base determined using mappings based on engine operating point and x component to be protected.
  • Said maps can be load-engine speed mappings with parameter T3 motor output temperature.
  • Said regulation is preferably of the proportional and integral type which delivers a corrective term. Said corrective term is added to the prepositioning value T3 (x) base to provide said temperature T3 CO nsign-
  • said setpoint temperature T3 CO nsigne exhaust gas engine output can be determined by inversion of the models of the exhaust line.
  • a temperature of the exhaust gas at engine output T3 is determined for a richness ⁇ .T3
  • said temperature T3 is tim is determined from a temperature T3 es tim ⁇
  • > i being corrected by means of a correction function f (Q eC h > ⁇ ) determined by mapping (flow rate Q eC h of the exhaust gases - setpoint richness ⁇ ).
  • said temperature T3 is tim is determined from the relation:
  • FIG. 1 schematically represents an exhaust line 10 of a heat engine 12 with its cylinder head 14.
  • the exhaust gases leave the cylinders 16 via the exhaust valves 18 to enter the exhaust manifold 20
  • the gases then pass successively by a turbocharger 22 (for a supercharged engine) provided with a turbine 24 and a bypass 26 ("waste gate"), a catalyst 28 with an upstream oxygen sensor 30 and a downstream probe 32, and
  • the points to be thermally monitored, and the components that it is desired to thermally protect, are mainly the upstream 40 of the turbocharger 22, the upstream 42 and the downstream 44 of the catalyst 28 with the probes 30 and 32. as well as the interior 46 of the catalyst 28 and the collector 20 (the monitored point of the collector is designated 48 in FIG. 1).
  • the components are thermally protected by an adaptation of the control of the engine.
  • the aim is that the temperatures at the monitored points do not exceed a critical value for which and beyond which the components (here the turbocharger and the catalyst with its probes) could be damaged.
  • the invention consists in limiting the temperature of the exhaust gas at the engine outlet, by determining the enrichment necessary to not exceed the critical temperature of the component having reached this critical temperature, by reversal of the thermal models of the exhaust line.
  • a target temperature is determined at the engine output T3 con sign and wealth (Setpoint to ensure said setpoint temperature.
  • FIG. 2 schematically illustrates the main steps of the method.
  • the first two steps corresponding to the modules 50 and 52, are generally known, the scope of the invention concerning the following two modules 54 and 56 surrounded by the rectangle 55.
  • the module 50 can estimate, using one or more model (s), the temperatures in the exhaust line according to various parameters such as the engine speed, the load, the advance on ignition and the temperature outside the vehicle.
  • the module 50 provides Tech tim es temperatures of the gas and the walls of the exhaust line, which are modeled separately or may be measured by sensors.
  • the module 52 makes it possible to detect, in other words to identify among the components of the exhaust line that it is desired to protect thermally, from the Tech es tim information provided by the module 50, the component having reached its critical temperature (temperature from which the component may be damaged). For this purpose, it is possible to use a known monitor that scans all the monitored temperatures and indicates the element to be protected. Module 52 provides three pieces of information:
  • T3 CO nsign also indicated in FIG. 1
  • T3 CO nsign also indicated in FIG. 1
  • This setpoint temperature T3 with a sign is supplied to a module 56 which generates a setpoint of richness (reference to be applied to the motor controller.)
  • the detailed description of the module 56 will be made hereinafter with reference to FIGS. .
  • a target temperature of the exhaust gases at the output of the engine is determined (module 54).
  • a wealth is determined in order to respect the temperature setpoint exhaust gas at the output of the previously defined engine (module 56).
  • the maximum allowable wealth of the engine is the limit below which the quality of combustion is acceptable (stability of combustion).
  • the temperature setpoint of the exhaust gas at the engine outlet, T3 CO nsigne represents the temperature of the exhaust gas to be met at the output of the engine not to exceed the maximum limit of critical temperature Tech [x] max of the identified element x.
  • the difference between the two temperatures, T3 CO nsign and Tech [x] max can be defined by a transfer function that takes into account the heat exchange in the exhaust line between the motor output and the element x.
  • a transfer function is complex to model.
  • FIG. 3 shows in detail an advantageous mode of implementation of the process concerning the elaboration of the temperature setpoint of the exhaust gas at the outlet of the engine, T3 con sign (module 54), making it possible to avoid modeling such a transfer function.
  • the prepositioning of the target temperature (illustrated by the rectangle 58) which provides, for the element x, a base temperature T3 (x) base (the temperature T3 is the temperature exhaust gas at the engine outlet, more precisely at the outlet of the exhaust manifold) and, on the other hand, a temperature regulation (rectangle 60) which provides a temperature correction term T3 (x) base ⁇
  • the prepositioning allows to initiate the regulation from a base temperature T3 (x) base close to the temperature setpoint of the exhaust gas output of the desired engine, which allows a faster regulation.
  • T3 (x) base close to the temperature setpoint of the exhaust gas output of the desired engine
  • maps 62 mapping by element x (only one element is monitored at a time, the element x).
  • the index x of the element to be monitored is introduced by the input 64 of a selector 66 which selects the mapping of the element x.
  • the maps advantageously represent the air load of the motor 76 on the ordinate according to the engine speed 74 on the abscissa, with parameter temperature T3.
  • the mapping relating to the element x gives the temperature T3 (x) base in open loop that is refined using the regulator 60.
  • the regulator 60 is preferably of the proportional and integral type, although another type could be used (eg proportional, integral and derivative or proportional and derivative type or more complex type). It provides a corrective term for the temperature T3 (x) base.
  • the controller consists of a proportional control 68 and an integral control 70. These two commands receive information 72 which represents the temperature error of the component x to to protect, this error being equal to (Tech (x) max - Tech (x) es tim) -
  • the two commands 68 and 70 also receive the engine speed 74 and the air load 76.
  • the proportional command 68 delivers a corrective term 78 which is proportional to the error 72 and the integral control 70 provides a correction term 80 which represents the integration of the error as a function of time so as to converge the error signal.
  • the correction terms 78 and 80 are added in an adder 82 which provides the corrective term 84.
  • the latter is added with the temperature T3 (x) base provided by the prepositioning 58, in an adder 86.
  • the regulated temperature (T3 (x) aS + b e the corrective term) is provided to an input 88 of a selector 90. This allows to choose either the regulated temperature, a T default temperature value is necessary (supplied by a module 92 values temperatures without protection) when the protection is not active.
  • the choice between these two inputs is made by means of a signal "activation protection component" applied to the input 94 of the module 90.
  • the latter delivers the temperature of the desired exhaust gas T3 CO nsign-
  • the calculation of the exhaust temperature setpoint T3 CO nsigne to achieve the protection of the components of the exhaust line can be composed by: a prepositioning (or open loop) mapped according to the engine operating point and the element to be protected (rectangle 58);
  • the embodiment shown schematically in Figure 3 can be replaced by an inversion of the models of the exhaust line.
  • This variant makes it possible to reduce the calibration time as well as the number of calibrations.
  • it has the disadvantages of being complex to implement and not to offer a degree of freedom in the calibration for controlling the behavior of the system.
  • the mode of implementation illustrated in FIG. 3 is then preferred.
  • FIGS. 4 and 5 schematically represent an embodiment of the development of a setpoint of richness (module 56 of FIG. 2), FIG. 4 schematically showing a direct model of the temperature of the exhaust gases. and wealth dependence and Figure 5 illustrating an inverse model for the determination of wealth for the protection of components. [00031] In FIG.
  • the temperature T3 is tim ⁇
  • > i of the exhaust gas, estimated for a setpoint combustion richness ⁇ equal to 1 and for a considered operating point, is delivered by the module 100 depending on the different engine parameters (operating point, water temperature, ignition advance degradation, position of the camshafts, etc .%) - Mapping 102, obtained at the test bench and representing ordinate flow Q eC h exhaust gas and abscissa wealth ⁇ , provide a function correction f () of the exhaust temperature as a function of the flow Qech exhaust gas and wealth ⁇ .
  • the correction function f () is delivered to a multiplier 104.
  • the latter delivers at its output the temperature T3 es tim which is the estimated temperature of the exhaust gas at the engine output (output of the exhaust manifold) for a richness ⁇ , which which is expressed by:
  • T3 CO nsigne the set temperature of the exhaust gas at the engine output
  • f 1 () the inverse function of f () with respect to wealth. This function f 1 () is provided by a mapping resulting from the inversion of the map of f ().
  • a divider 106 (it is indeed a divider since the multiplier 104 of FIG. 4 is inverted) receives on one of its inputs the temperature T3 CO nsign (given by the module 54 of FIG. 2) and on another input the estimated temperature T3 is tim ⁇
  • Module 50 of Figure 2 (estimation of temperatures in the exhaust line) provides this temperature directly T3 es tim ⁇
  • > i -
  • the present invention allows a reduction of C0 2 emissions since it defines a just needed enrichment.
  • it allows a good performance of limiting the temperature of the components of the exhaust line resulting in either a possibility of reducing the cost of the components by allowing operation at temperatures closer to the limits of the materials (dimensioning at most fair ), or by reducing C0 2 emissions by not anticipating activation of the function.
  • the invention also allows a gain calibration cost: in fact, the direct models are already calibrated, no additional testing is necessary since it is sufficient to digitally invert the maps of direct models.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The invention relates to a method for the thermal protection of the components of the exhaust line of a heat engine according to which the temperatures of the exhaust gases and the walls of the exhaust line are predetermined and according to which, when the component of the exhaust line has reached the maximum temperature limit thereof, this is detected. According to the invention, the method consists of: - determining (54) a setpoint temperature (T3setpoint) of the exhaust gases at the outlet of said engine, and - developing (56) a setpoint richness (ϕsetpoint) used to ensure said setpoint temperature of the exhaust gases.

Description

PROCEDE DE PROTECTION THERMIQUE DES COMPOSANTS DE LA LIGNE D'ECHAPPEMENT D'UN  METHOD OF THERMALLY PROTECTING COMPONENTS OF THE EXHAUST LINE OF A
MOTEUR THERMIQUE [0001 ] La présente invention concerne un procédé de protection thermique des composants de la ligne d'échappement d'un moteur thermique dont le carburant est l'essence, que le moteur soit suralimenté ou non et qu'il soit à injection directe ou indirecte.  The present invention relates to a method of thermal protection of the components of the exhaust line of a heat engine whose fuel is gasoline, whether the engine is supercharged or not and that it is direct injection or indirect.
[0002] Les composants de la ligne d'échappement d'un moteur thermique sont constitués par les éléments se trouvant dans le circuit d'évacuation des gaz brûlés, en commençant , dans le sens d'évacuation des gaz, par les soupapes d'échappement, en passant successivement par le collecteur des gaz d'échappement, le turbocompresseur pour les moteurs suralimentés, le catalyseur muni de sondes (sondes à oxygène par exemple), et en terminant par le silencieux. Les composants peuvent être plus ou moins chauds selon les conditions de fonctionnement du moteur. Si la température des gaz d'échappement est trop élevée, la température d'un composant peut éventuellement dépasser une température critique à partir de laquelle le composant peut être endommagé. Il est donc important de bien maîtriser la température dans la ligne d'échappement afin d'éviter d'endommager un composant et donc de ne pas dépasser la température critique.  The components of the exhaust line of a heat engine are constituted by the elements in the exhaust gas evacuation circuit, starting, in the direction of evacuation of gases, by the valves of exhaust, passing successively through the exhaust manifold, the turbocharger for supercharged engines, the catalyst equipped with probes (oxygen probes for example), and ending with the silencer. The components can be more or less hot depending on the operating conditions of the engine. If the temperature of the exhaust gas is too high, the temperature of a component may possibly exceed a critical temperature from which the component may be damaged. It is therefore important to control the temperature in the exhaust line to avoid damaging a component and therefore not exceeding the critical temperature.
[0003] Le contrôle de la température d'un catalyseur placé dans la ligne d'échappement est par exemple décrit dans plusieurs documents. Plus particulièrement, le document JP4060106(A) concerne un dispositif permettant de comparer la mesure de l'exotherme d'un catalyseur, par un capteur de température, avec l'estimation de cet exotherme afin de déterminer l'état de vieillissement du catalyseur. Si l'exotherme ne correspond pas à celui estimé, on peut en déduire que le catalyseur est détérioré. Ce dispositif ne concerne pas la protection d'un composant d'une ligne d'échappement par limitation thermique. [0004] Le document JP5312074(A) concerne un procédé de compensation d'un capteur d'oxygène à l'échappement, en aval du catalyseur, en fonction de la température du catalyseur et de l'oxygène stocké dans le catalyseur. Cependant ce document ne concerne pas la protection thermique de la ligne d'échappement par enrichissement de la combustion. The temperature control of a catalyst placed in the exhaust line is for example described in several documents. More particularly, JP4060106 (A) relates to a device for comparing the measurement of the exotherm of a catalyst, by a temperature sensor, with the estimation of this exotherm to determine the aging state of the catalyst. If the exotherm does not correspond to that estimated, it can be deduced that the catalyst is deteriorated. This device does not concern the protection of a component of an exhaust line by thermal limitation. JP5312074 (A) relates to a method of compensating an oxygen sensor exhaust, downstream of the catalyst, depending on the catalyst temperature and the oxygen stored in the catalyst. However, this document does not concern the thermal protection of the exhaust line by enriching the combustion.
[0005] Le brevet US6691507(B1 ) décrit un dispositif de mise en température et de maintien en température d'un élément de post traitement des oxydes d'azote, ainsi que la régénération de ce dispositif par fonctionnement alterné riche/pauvre du contrôle de la richesse du mélange de combustion carburant/air. Ce brevet ne concerne pas la protection thermique d'un composant en jouant sur la richesse.  US6691507 (B1) describes a device for heating and maintaining temperature of a post-treatment element of nitrogen oxides, and the regeneration of this device by alternating rich / poor operation of the control of the richness of the fuel / air combustion mixture. This patent does not concern the thermal protection of a component by playing on wealth.
[0006] Le brevet FR2141049(A5) concerne la détermination de la richesse en entrée d'un catalyseur afin d'optimiser le post traitement des gaz d'échappement.  Patent FR2141049 (A5) relates to the determination of the input richness of a catalyst to optimize the aftertreatment of the exhaust gas.
[0007] Cependant, aucun des documents précités ne concerne la protection thermique des composants d'une ligne d'échappement par enrichissement du mélange de combustion carburant/air permettant de refroidir les gaz d'échappement.  However, none of the aforementioned documents relates to the thermal protection of the components of an exhaust line by enriching the fuel / air combustion mixture for cooling the exhaust gas.
[0008] La présente invention propose un procédé permettant de protéger thermiquement les composants d'une ligne d'échappement en contrôlant la richesse. The present invention provides a method for thermally protecting the components of an exhaust line by controlling the wealth.
[0009] De façon plus précise, l'invention concerne un procédé de protection thermique des composants de la ligne d'échappement d'un moteur thermique selon lequel les températures des gaz d'échappement et des parois de la ligne d'échappement sont déterminées (estimées ou mesurées) et selon lequel le composant de la ligne d'échappement ayant atteint sa limite maximale de température est détectée. Selon ledit procédé,  More specifically, the invention relates to a method of thermal protection of the components of the exhaust line of a heat engine according to which the temperatures of the exhaust gas and the walls of the exhaust line are determined. (estimated or measured) and that the component of the exhaust line having reached its maximum temperature limit is detected. According to said method,
- on détermine une température de consigne T3consigne des gaz d'échappement en sortie dudit moteur, et - on élabore une consigne de richesse (Consigne permettant d'assurer ladite température de consigne des gaz d'échappement. a target temperature T 3 is determined with respect to exhaust gases at the output of said engine, and a setpoint of richness is developed (Setpoint for ensuring the said setpoint temperature of the exhaust gases.
Ladite consigne de richesse (Consigne est déterminée dans la limite de la richesse maximale acceptable par le moteur.  Said setpoint of wealth (Setpoint is determined within the limit of the maximum wealth acceptable by the engine.
[00010] Selon un mode de mise en œuvre préféré, ladite température de consigne T3consigne des gaz d'échappement en sortie moteur est déterminée par prépositionnement de la température de consigne et par régulation, ledit prépositionnement délivrant une température de consigne de base T3(x)base déterminée à l'aide de cartographies en fonction du point de fonctionnement moteur et du composant x à protéger. Lesdites cartographies peuvent être des cartographies charge-régime moteur avec pour paramètre la température en sortie moteur T3. Ladite régulation est de préférence du type proportionnel et intégral qui délivre un terme correctif. Ledit terme correctif est additionné à la valeur de prépositionnement T3(x)base pour fournir ladite température T3COnsigne-[00010] According to one mode of implementation preferred, said set temperature T3 con sign of engine output in the exhaust gas is determined by presetting the reference temperature and by controlling, said prepositioning delivering a basic set temperature T3 (x) base determined using mappings based on engine operating point and x component to be protected. Said maps can be load-engine speed mappings with parameter T3 motor output temperature. Said regulation is preferably of the proportional and integral type which delivers a corrective term. Said corrective term is added to the prepositioning value T3 (x) base to provide said temperature T3 CO nsign-
[0001 1 ] Au lieu d'actionner ledit prépositionnement et ladite régulation, il est possible de choisir une valeur par défaut pour ladite température de consigne T3COnsigne des gaz d'échappement en sortie moteur. [0001 1] Instead of actuating said prepositioning and said regulation, it is possible to choose a default value for said setpoint temperature T3 CO nsigne exhaust gas engine output.
[00012] Selon un autre mode de mise en œuvre, ladite température de consigne T3COnsigne des gaz d'échappement en sortie moteur peut être déterminée par inversion des modèles de la ligne d'échappement. According to another embodiment, said setpoint temperature T3 CO nsigne exhaust gas engine output can be determined by inversion of the models of the exhaust line.
[00013] Afin d'élaborer ladite consigne de richesse (Consigne, on détermine une température des gaz d'échappement en sortie moteur T3estim pour une richesse φ. Ladite température T3estim est déterminée à partir d'une température T3estim<|>=i en fonction des différents paramètres moteur et pour une richesse φ=1 , ladite température T3estim<|>=i étant corrigé à l'aide d'une fonction de correction f(QeCh> Φ ) déterminé par cartographie (débit QeCh des gaz d'échappement - richesse de consigne φ). [00014] Avantageusement, ladite température T3estim est déterminée à partir de la relation:
Figure imgf000006_0001
In order to produce said setpoint of richness (Setpoint, a temperature of the exhaust gas at engine output T3 is determined for a richness φ .T3 said temperature T3 is tim is determined from a temperature T3 es tim <|> = i as a function of the different engine parameters and for a richness φ = 1, said temperature T3 is tim <|> = i being corrected by means of a correction function f (Q eC h > Φ) determined by mapping (flow rate Q eC h of the exhaust gases - setpoint richness φ). [00014] Advantageously, said temperature T3 is tim is determined from the relation:
Figure imgf000006_0001
et ladite richesse de consigne de protection du composant x est déterminée à partir de la relation:
Figure imgf000006_0002
and said protection setpoint richness of the component x is determined from the relation:
Figure imgf000006_0002
[00015] D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui suit de modes de mise en œuvre de l'invention, donnés à titre d'exemples non limitatifs et en référence aux dessins annexés qui montrent:  Other features and advantages of the invention will become apparent from the following description of embodiments of the invention, given by way of non-limiting examples and with reference to the accompanying drawings which show:
- la figure 1 , le schéma d'une ligne d'échappement avec les points protégés thermiquement par une adaptation du pilotage moteur;  - Figure 1, the diagram of an exhaust line with thermally protected points by an adaptation of the engine control;
- la figure 2, l'architecture de la fonction de protection thermique; - Figure 2, the architecture of the thermal protection function;
- le figure 3, l'illustration du calcul de la consigne de température échappement; - Figure 3, the illustration of the calculation of the exhaust temperature setpoint;
- la figure 4, la représentation d'un modèle direct de température des gaz d'échappement et la dépendance en richesse; et - Figure 4, the representation of a direct model of exhaust gas temperature and wealth dependence; and
- la figure 5, la représentation du modèle inverse pour la détermination de la richesse de protection d'un composant de la ligne d'échappement. - Figure 5, the representation of the inverse model for determining the protection of a component of the exhaust line.
[00016] La figure 1 représente schématiquement une ligne d'échappement 10 d'un moteur thermique 12 avec sa culasse 14. Les gaz d'échappement sortent des cylindres 16 par les soupapes d'échappement 18 pour entrer dans le collecteur d'échappement 20. Les gaz passent ensuite successivement par un turbocompresseur 22 (pour un moteur suralimenté) muni d'une turbine 24 et d'un by-pass 26 ("waste gâte"), un catalyseur 28 avec une sonde à oxygène en amont 30 et une sonde en aval 32, et des silencieux 34 et 36. Les points à surveiller thermiquement, et les composants que l'on souhaite protéger thermiquement, sont principalement l'amont 40 du turbocompresseur 22, l'amont 42 et l'aval 44 du catalyseur 28 avec les sondes 30 et 32, ainsi que l'intérieur 46 du catalyseur 28 et le collecteur 20 (le point surveillé du collecteur est désigné par 48 sur la figure 1 ). Selon l'invention les composants sont protégés thermiquement par une adaptation du pilotage du moteur thermique. Le but poursuivi est que les températures aux points surveillés ne dépassent pas une valeur critique pour laquelle et au-delà de laquelle les composants (ici le turbocompresseur et le catalyseur avec ses sondes) pourraient être endommagés. [00016] FIG. 1 schematically represents an exhaust line 10 of a heat engine 12 with its cylinder head 14. The exhaust gases leave the cylinders 16 via the exhaust valves 18 to enter the exhaust manifold 20 The gases then pass successively by a turbocharger 22 (for a supercharged engine) provided with a turbine 24 and a bypass 26 ("waste gate"), a catalyst 28 with an upstream oxygen sensor 30 and a downstream probe 32, and The points to be thermally monitored, and the components that it is desired to thermally protect, are mainly the upstream 40 of the turbocharger 22, the upstream 42 and the downstream 44 of the catalyst 28 with the probes 30 and 32. as well as the interior 46 of the catalyst 28 and the collector 20 (the monitored point of the collector is designated 48 in FIG. 1). According to the invention the components are thermally protected by an adaptation of the control of the engine. The aim is that the temperatures at the monitored points do not exceed a critical value for which and beyond which the components (here the turbocharger and the catalyst with its probes) could be damaged.
[00017] De façon succincte, l'invention consiste en une limitation de la température des gaz d'échappement à la sortie du moteur, en déterminant l'enrichissement nécessaire pour ne pas dépasser la température critique du composant ayant atteint cette température critique, par inversion des modèles de thermique de la ligne d'échappement.  Briefly, the invention consists in limiting the temperature of the exhaust gas at the engine outlet, by determining the enrichment necessary to not exceed the critical temperature of the component having reached this critical temperature, by reversal of the thermal models of the exhaust line.
[00018] Selon le procédé de l'invention, on détermine une température de consigne en sortie moteur T3consigne et la richesse (Consigne permettant d'assurer ladite température de consigne. According to the method of the invention, a target temperature is determined at the engine output T3 con sign and wealth (Setpoint to ensure said setpoint temperature.
[00019] La figure 2 illustre schématiquement les étapes principales du procédé. Les deux premières étapes, correspondant aux modules 50 et 52, sont généralement connues, le périmètre de l'invention concernant les deux modules suivants 54 et 56 entourés du rectangle 55.  [00019] Figure 2 schematically illustrates the main steps of the method. The first two steps, corresponding to the modules 50 and 52, are generally known, the scope of the invention concerning the following two modules 54 and 56 surrounded by the rectangle 55.
[00020] Le module 50 permet d'estimer, à l'aide d'un ou plusieurs modèle(s), les températures dans la ligne d'échappement en fonction de divers paramètres tels que le régime moteur, la charge, l'avance à l'allumage et la température extérieure au véhicule. Le module 50 fournit les températures Techestim des gaz et des parois de la ligne d'échappement, qui sont modélisés séparément ou qui peuvent être mesurées par des capteurs. The module 50 can estimate, using one or more model (s), the temperatures in the exhaust line according to various parameters such as the engine speed, the load, the advance on ignition and the temperature outside the vehicle. The module 50 provides Tech tim es temperatures of the gas and the walls of the exhaust line, which are modeled separately or may be measured by sensors.
[00021 ] Le module 52 permet de détecter, autrement dit d'identifier parmi les composants de la ligne d'échappement que l'on souhaite protéger thermiquement, à partir de l'information Techestim fournie par le module 50, le composant ayant atteint sa température critique (température à partir de laquelle le composant peut être endommagé). Pour cela, on peut utiliser un moniteur connu qui scrute toutes les températures surveillées et qui indique l'élément à protéger. Le module 52 fournit trois informations: The module 52 makes it possible to detect, in other words to identify among the components of the exhaust line that it is desired to protect thermally, from the Tech es tim information provided by the module 50, the component having reached its critical temperature (temperature from which the component may be damaged). For this purpose, it is possible to use a known monitor that scans all the monitored temperatures and indicates the element to be protected. Module 52 provides three pieces of information:
- x qui est l'indice de l'élément détecté comme celui ayant atteint sa température critique (la détection est faite à l'aide de modèles); - x which is the index of the element detected as having reached its critical temperature (detection is done using models);
- Tech(x)max qui est la température maximale admissible par le composant x qui a été détecté comme celui ayant atteint sa limite en température, et- Tech (x) max which is the maximum temperature allowed by component x which has been detected as having reached its temperature limit, and
- Tech(x)estim qui est la température courante (à l'instant considéré) du composant x. - Tech (x) estimate which is the current temperature (at the moment considered) of the component x.
[00022] Ces trois informations sont alors fournies à un module 54 qui élabore une température de consigne T3COnsigne (indiquée également sur la figure 1 ) qui est la température de consigne des gaz d'échappement en sortie du moteur thermique et donc en sortie du collecteur d'échappement 20. La description détaillée du module 54 sera faite ci-après à l'aide de la figure 3. These three pieces of information are then supplied to a module 54 which generates a target temperature T3 CO nsign (also indicated in FIG. 1) which is the target temperature of the exhaust gases at the output of the heat engine and therefore at the output exhaust manifold 20. The detailed description of the module 54 will be made hereinafter with reference to FIG.
[00023] Cette température de consigne T3consigne est fournie à un module 56 qui élabore une consigne de richesse (Consigne à appliquer au contrôleur moteur. La description détaillée du module 56 sera faite ci-après à l'aide des figures 4 et 5. This setpoint temperature T3 with a sign is supplied to a module 56 which generates a setpoint of richness (reference to be applied to the motor controller.) The detailed description of the module 56 will be made hereinafter with reference to FIGS. .
[00024] Le procédé, objet de la présente invention, peut être résumé de la façon suivante: The method, object of the present invention, can be summarized as follows:
- les températures des gaz d'échappement et des parois dans la ligne échappement sont estimées (module 50) ou mesurées; - exhaust and wall temperatures in the exhaust line are estimated (module 50) or measured;
- le composant de la ligne échappement ayant atteint sa limite maximale de température est détecté (module 52);  the component of the exhaust line having reached its maximum temperature limit is detected (module 52);
- une température de consigne des gaz d'échappement au niveau de la sortie du moteur (sortie culasse) est déterminée (module 54); et  a target temperature of the exhaust gases at the output of the engine (cylinder head outlet) is determined (module 54); and
- dans la limite de la richesse maximale acceptable sur le moteur, une richesse est déterminée afin de respecter la consigne de température des gaz d'échappement en sortie du moteur précédemment définie (module 56). La richesse maximale admissible par le moteur correspond à la limite en dessous de laquelle la qualité de la combustion est acceptable (stabilité de la combustion). - within the limit of the maximum acceptable wealth on the engine, a wealth is determined in order to respect the temperature setpoint exhaust gas at the output of the previously defined engine (module 56). The maximum allowable wealth of the engine is the limit below which the quality of combustion is acceptable (stability of combustion).
[00025] La consigne de température des gaz d'échappement en sortie du moteur, T3COnsigne représente ainsi la température des gaz d'échappement à respecter en sortie du moteur pour ne pas dépasser la limite maximale de température critique Tech[x]max de l'élément x identifié. L'écart entre les deux températures, T3COnsigne et Tech[x]max peut être défini par une fonction de transfert qui prend en compte les échanges thermiques dans la ligne d'échappement entre la sortie moteur et l'élément x. Cependant une telle fonction de transfert est complexe à modéliser, La figure 3 représente en détails un mode de mise en œuvre avantageux du procédé concernant l'élaboration de la consigne de température des gaz d'échappement en sortie du moteur, T3consigne (module 54), permettant d'éviter la modélisation d'une telle fonction de transfert. On distingue ici deux étapes: d'une part, le prépositionnement de la température de consigne (illustré par le rectangle 58) qui fournit, pour l'élément x, une température de base T3(x)base (la température T3 est la température des gaz d'échappement à la sortie du moteur, plus précisément à la sortie du collecteur échappement) et, d'autre part, une régulation de la température (rectangle 60) qui fournit un terme de correction de la température T3(x)base■ The temperature setpoint of the exhaust gas at the engine outlet, T3 CO nsigne represents the temperature of the exhaust gas to be met at the output of the engine not to exceed the maximum limit of critical temperature Tech [x] max of the identified element x. The difference between the two temperatures, T3 CO nsign and Tech [x] max can be defined by a transfer function that takes into account the heat exchange in the exhaust line between the motor output and the element x. However, such a transfer function is complex to model. FIG. 3 shows in detail an advantageous mode of implementation of the process concerning the elaboration of the temperature setpoint of the exhaust gas at the outlet of the engine, T3 con sign (module 54), making it possible to avoid modeling such a transfer function. There are two steps here: on the one hand, the prepositioning of the target temperature (illustrated by the rectangle 58) which provides, for the element x, a base temperature T3 (x) base (the temperature T3 is the temperature exhaust gas at the engine outlet, more precisely at the outlet of the exhaust manifold) and, on the other hand, a temperature regulation (rectangle 60) which provides a temperature correction term T3 (x) base ■
[00026] Le prépositionnement permet d'initier la régulation à partir d'une température de base T3(x)base proche de la consigne de température des gaz d'échappement en sortie du moteur recherchée, ce qui permet une régulation plus rapide. Pour le prépositionnement, on peut utiliser des cartographies 62, une cartographie par élément x (on ne surveille qu'un seul élément à la fois, l'élément x). L'indice x de l'élément à surveiller est introduit par l'entrée 64 d'un sélecteur 66 qui sélectionne la cartographie de l'élément x. Les cartographies représentent avantageusement la charge en air du moteur 76 en ordonnée en fonction du régime moteur 74 en abscisse, avec comme paramètre la température T3. La cartographie concernant l'élément x donne la température T3(x)base en boucle ouverte que l'on affine à l'aide du régulateur 60. [00027] Le régulateur 60 est de préférence du type proportionnel et intégrale, bien qu'un autre type pourrait être utilisé (par exemple du type proportionnel, intégral et dérivée ou proportionnel et dérivée ou encore d'un type plus complexe). Il fournit un terme correctif à la température T3(x) base- Le régulateur se compose d'une commande proportionnelle 68 et d'une commande intégrale 70. Ces deux commandes reçoivent une information 72 qui représente l'erreur de température du composant x à protéger, cette erreur étant égale à (Tech(x)max - Tech(x)estim)- Les deux commandes 68 et 70 reçoivent aussi le régime moteur 74 et la charge en air 76. La commande proportionnelle 68 délivre un terme correctif 78 qui est proportionnel à l'erreur 72 et la commande intégrale 70 fournit un terme correctif 80 qui représente l'intégration de l'erreur en fonction du temps de façon à faire converger le signal d'erreur. Les termes correctifs 78 et 80 sont additionnés dans un additionneur 82 qui fournit le terme correctif 84. Ce dernier est additionné avec la température T3(x)base fourni par le prépositionnement 58, dans un additionneur 86. La température régulée (T3(x)baSe + le terme correctif) est fournit à une entrée 88 d'un sélecteur 90. Ce dernier permet de choisir, soit la température régulée, soit une valeur de température par défaut Tfaut (fourni par un module 92 de valeurs de températures sans protection) lorsque la protection n'est pas active. Le choix entre ces deux entrées est effectué à l'aide d'un signal "activation protection composant" appliqué sur l'entrée 94 du module 90. Ce dernier délivre la température des gaz d'échappement de consigne T3COnsigne- The prepositioning allows to initiate the regulation from a base temperature T3 (x) base close to the temperature setpoint of the exhaust gas output of the desired engine, which allows a faster regulation. For the prepositioning, it is possible to use maps 62, mapping by element x (only one element is monitored at a time, the element x). The index x of the element to be monitored is introduced by the input 64 of a selector 66 which selects the mapping of the element x. The maps advantageously represent the air load of the motor 76 on the ordinate according to the engine speed 74 on the abscissa, with parameter temperature T3. The mapping relating to the element x gives the temperature T3 (x) base in open loop that is refined using the regulator 60. The regulator 60 is preferably of the proportional and integral type, although another type could be used (eg proportional, integral and derivative or proportional and derivative type or more complex type). It provides a corrective term for the temperature T3 (x) base. The controller consists of a proportional control 68 and an integral control 70. These two commands receive information 72 which represents the temperature error of the component x to to protect, this error being equal to (Tech (x) max - Tech (x) es tim) - The two commands 68 and 70 also receive the engine speed 74 and the air load 76. The proportional command 68 delivers a corrective term 78 which is proportional to the error 72 and the integral control 70 provides a correction term 80 which represents the integration of the error as a function of time so as to converge the error signal. The correction terms 78 and 80 are added in an adder 82 which provides the corrective term 84. The latter is added with the temperature T3 (x) base provided by the prepositioning 58, in an adder 86. The regulated temperature (T3 (x) aS + b e the corrective term) is provided to an input 88 of a selector 90. This allows to choose either the regulated temperature, a T default temperature value is necessary (supplied by a module 92 values temperatures without protection) when the protection is not active. The choice between these two inputs is made by means of a signal "activation protection component" applied to the input 94 of the module 90. The latter delivers the temperature of the desired exhaust gas T3 CO nsign-
[00028] En résumé, le calcul de la consigne de température échappement T3COnsigne permettant de réaliser la protection des composants de la ligne échappement peut être composé par : - un prépositionnement (ou boucle ouverte) cartographié en fonction du point de fonctionnement moteur et de l'élément à protéger (rectangle 58); In summary, the calculation of the exhaust temperature setpoint T3 CO nsigne to achieve the protection of the components of the exhaust line can be composed by: a prepositioning (or open loop) mapped according to the engine operating point and the element to be protected (rectangle 58);
- un régulateur de type proportionnel-intégral dont les gains dépendent du point de fonctionnement et de l'élément à protéger (rectangle 60); et - un arbitrage (rectangle 90) permettant de choisir entre : a proportional-integral type regulator whose gains depend on the operating point and the element to be protected (rectangle 60); and an arbitration (rectangle 90) making it possible to choose between:
* une valeur par défaut (valeur élevée) lorsque la protection n'est pas active, et * a default value (high value) when the protection is not active, and
* la somme du pré positionnement et du terme correctif issue du régulateur. [00029] Selon une variante de réalisation de l'invention, le mode de mise en œuvre représenté schématiquement sur la figure 3 (prépositionnement et régulateur) peut être remplacé par une inversion des modèles de la ligne d'échappement. Cette variante permet de réduire le temps de calibration ainsi que le nombre de calibrations. Cependant, elle présente les inconvénients d'être complexe à mettre en œuvre et de ne pas offrir de degré de liberté dans la calibration pour la maîtrise du comportement du système. Le mode de mise en œuvre illustré par la figure 3 est alors préféré. * the sum of the prepositioning and the corrective term coming from the regulator. According to an alternative embodiment of the invention, the embodiment shown schematically in Figure 3 (prepositioning and regulator) can be replaced by an inversion of the models of the exhaust line. This variant makes it possible to reduce the calibration time as well as the number of calibrations. However, it has the disadvantages of being complex to implement and not to offer a degree of freedom in the calibration for controlling the behavior of the system. The mode of implementation illustrated in FIG. 3 is then preferred.
[00030] Les figures 4 et 5 représentent schématiquement un mode de mise en œuvre de l'élaboration d'une consigne de richesse (module 56 de la figure 2), la figure 4 représentant schématiquement un modèle direct de température des gaz d'échappement et la dépendance en richesse et la figure 5 illustrant un modèle inverse pour la détermination de la richesse permettant la protection des composants. [00031 ] Sur la figure 4, la température T3estim<|>=i des gaz d'échappement, estimée pour une richesse de combustion de consigne φ égale à 1 et pour un point de fonctionnement considéré, est délivrée par le module 100 en fonction des différents paramètres du moteur (point de fonctionnement, température d'eau, dégradation d'avance à l'allumage, position des arbres à cames, etc....)- Des cartographies 102, obtenues au banc d'essais et représentant en ordonnée le débit QeCh des gaz d'échappement et en abscisse la richesse φ, permettent d'obtenir une fonction de correction f( ) de la température échappement en fonction du débit Qech des gaz d'échappement et de la richesse φ. La fonction de correction f( ) est délivré à un multiplicateur 104. Ce dernier délivre à sa sortie la température T3estim qui est la température estimée des gaz d'échappement en sortie moteur (sortie du collecteur échappement) pour une richesse φ, ce qui s'exprime par:
Figure imgf000012_0001
[00030] FIGS. 4 and 5 schematically represent an embodiment of the development of a setpoint of richness (module 56 of FIG. 2), FIG. 4 schematically showing a direct model of the temperature of the exhaust gases. and wealth dependence and Figure 5 illustrating an inverse model for the determination of wealth for the protection of components. [00031] In FIG. 4, the temperature T3 is tim <|> = i of the exhaust gas, estimated for a setpoint combustion richness φ equal to 1 and for a considered operating point, is delivered by the module 100 depending on the different engine parameters (operating point, water temperature, ignition advance degradation, position of the camshafts, etc ....) - Mapping 102, obtained at the test bench and representing ordinate flow Q eC h exhaust gas and abscissa wealth φ, provide a function correction f () of the exhaust temperature as a function of the flow Qech exhaust gas and wealth φ. The correction function f () is delivered to a multiplier 104. The latter delivers at its output the temperature T3 es tim which is the estimated temperature of the exhaust gas at the engine output (output of the exhaust manifold) for a richness φ, which which is expressed by:
Figure imgf000012_0001
La fonction f( ) étant bijective sur l'intervalle de richesse [1 ^max], φ 3χ étant la limite maximale de richesse en dessous de laquelle la qualité de la combustion est acceptable (stabilité de la combustion), il est possible de déterminer la richesse permettant de respecter une température des gaz d'échappement pour un point de fonctionnement donné. En effet: Since the function f () is bijective over the richness interval [1 ^ m ax], where φ 3 χ is the maximum limit of richness below which the quality of the combustion is acceptable (stability of the combustion), it is possible determine the richness to respect an exhaust temperature for a given operating point. Indeed:
ΛΛ
Figure imgf000012_0002
J
Figure imgf000012_0002
J
Avec: With:
T3COnsigne : la température de consigne des gaz d'échappement en sortie moteur, et T3 CO nsigne: the set temperature of the exhaust gas at the engine output, and
f1 ( ): la fonction inverse de f( ) par rapport à la richesse. Cette fonction f1 ( ) est fournie par une cartographie issue de l'inversion de la cartographie de f(). f 1 (): the inverse function of f () with respect to wealth. This function f 1 () is provided by a mapping resulting from the inversion of the map of f ().
[00032] Ce modèle inverse est illustré sur la figure 5. Un diviseur 106 (c'est en effet un diviseur puisque le multiplicateur 104 de la figure 4 est inversé) reçoit sur l'une de ses entrées la température T3COnsigne (donnée par le module 54 de la figure 2) et sur une autre entrée la température estimée T3estim<|>=i estimée en sortie du moteur pour la richesse φ=1 . Le module 50 de la figure 2 (estimation des températures dans la ligne échappement) fournit directement cette température T3estim<|>=i - This inverse model is illustrated in FIG. 5. A divider 106 (it is indeed a divider since the multiplier 104 of FIG. 4 is inverted) receives on one of its inputs the temperature T3 CO nsign (given by the module 54 of FIG. 2) and on another input the estimated temperature T3 is tim <|> = i estimated at the output of the engine for the richness φ = 1. Module 50 of Figure 2 (estimation of temperatures in the exhaust line) provides this temperature directly T3 es tim <|> = i -
[00033] En comparaison avec les solutions existantes, la présente invention permet une réduction des émissions de C02 puisqu'on définit un enrichissement juste nécessaire. De plus, elle permet une bonne performance de limitation de la température des composants de la ligne échappement se traduisant, soit par une possibilité de réduction du cout des composants en permettant un fonctionnement à des températures plus proches des limites des matériaux (dimensionnement au plus juste), soit par une réduction des émissions de C02 en n'anticipant pas l'activation de la fonction. L'invention permet aussi un gain en cout de calibration: en effet, les modèles directs étant déjà calibrés, aucun essai supplémentaire n'est nécessaire puisqu'il suffit d'inverser numériquement les cartographies des modèles directs. In comparison with existing solutions, the present invention allows a reduction of C0 2 emissions since it defines a just needed enrichment. In addition, it allows a good performance of limiting the temperature of the components of the exhaust line resulting in either a possibility of reducing the cost of the components by allowing operation at temperatures closer to the limits of the materials (dimensioning at most fair ), or by reducing C0 2 emissions by not anticipating activation of the function. The invention also allows a gain calibration cost: in fact, the direct models are already calibrated, no additional testing is necessary since it is sufficient to digitally invert the maps of direct models.

Claims

REVENDICATIONS
1. Procédé de protection thermique des composants de la ligne d'échappement d'un moteur thermique selon lequel les températures des gaz d'échappement et des parois de la ligne d'échappement sont déterminées et selon lequel le composant de la ligne d'échappement ayant atteint sa limite maximale de température est détecté, ledit procédé étant caractérisé en ce qu'il consiste à: 1. A method of thermal protection of the components of the exhaust line of a heat engine according to which the temperatures of the exhaust gas and the walls of the exhaust line are determined and according to which the component of the exhaust line having reached its maximum temperature limit is detected, said method being characterized in that it consists of:
- déterminer (54) une température de consigne T3nsigne des gaz d'échappement en sortie dudit moteur, et determining (54) a set temperature T3 denoting the exhaust gases at the output of said engine, and
- élaborer (56) une consigne de richesse (Consigne permettant d'assurer ladite température de consigne des gaz d'échappement.  - Develop (56) a richness setpoint (Setpoint for providing said exhaust gas setpoint temperature.
2. Procédé selon la revendication 1 , caractérisé en ce que ladite consigne de richesse (Consigne est déterminée dans la limite de la richesse maximale acceptable par le moteur.  2. Method according to claim 1, characterized in that said wealth instruction (Setpoint is determined within the limit of the maximum wealth acceptable by the engine.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que ladite température de consigne T3consigne des gaz d'échappement en sortie moteur est déterminée par prépositionnement (58) de la température de consigne et par régulation (60). 3. Method according to one of the preceding claims, characterized in that said con sign T3 setpoint engine output of the exhaust gas is determined by pre-positioning (58) of the set temperature and by regulating (60).
4. Procédé selon la revendication 3 caractérisé en ce que ledit prépositionnement (58) délivre une température de consigne de base 4. Method according to claim 3 characterized in that said prepositioning (58) delivers a basic setpoint temperature
T3(x)base déterminée à l'aide de cartographies (62) en fonction du point de fonctionnement moteur et du composant x à protéger. T3 (x) base determined using maps (62) according to the engine operating point and the component x to be protected.
5. Procédé selon la revendication 4 caractérisé en ce que lesdites cartographies sont des cartographies charge-régime moteur avec pour paramètre la température en sortie moteur T3.  5. Method according to claim 4 characterized in that said maps are load-engine speed maps with the engine output temperature parameter T3 as parameter.
6. Procédé selon l'une des revendications 3 à 5 caractérisé en ce que ladite régulation (60) est du type proportionnelle (68) et intégrale (70) qui délivre un terme correctif (84). 6. Method according to one of claims 3 to 5 characterized in that said regulation (60) is of the proportional type (68) and integral (70) which delivers a correction term (84).
7. Procédé selon l'une des revendications 3 à 6 caractérisé en ce que ledit terme correctif (84) est additionné (86) à la valeur de prépositionnement T3(x)base pour fournir ladite température T3nsigne-7. Method according to one of claims 3 to 6 characterized in that said corrective term (84) is added (86) to the prepositioning value T3 (x) base to provide said temperature T3 nsign-
8. Procédé selon l'une des revendications 1 et 2 caractérisé en ce que ladite température de consigne T3nsigne des gaz d'échappement en sortie moteur est déterminée par inversion des modèles de la ligne d'échappement. 8. Method according to one of claims 1 and 2 characterized in that said set temperature T3 nsigne exhaust gas engine output is determined by inversion of the models of the exhaust line.
9. Procédé selon l'une des revendications précédentes caractérisé en ce que, afin d'élaborer ladite consigne de richesse (Consigne , on détermine une température des gaz d'échappement en sortie moteur T3estim pour une richesse φ. 9. Method according to one of the preceding claims characterized in that, in order to develop said wealth guideline (Setpoint, it determines a temperature of the exhaust gas engine output T3 es tim for a richness φ.
10. Procédé selon la revendication 9 caractérisé en ce que ladite température T3estim est déterminée à partir d'une température T3estim<|>=i en fonction des différents paramètres moteur (100) et pour une richesse φ=1 , ladite température T3estim<|>=i étant corrigé à l'aide d'une fonction de correction f(QeCh> Φ ) déterminé par cartographie débit QeCh des gaz d'échappement - richesse de consigne φ. 10. Method according to claim 9 characterized in that said temperature T3 is tim is determined from a temperature T3 is tim <|> = i as a function of the different engine parameters (100) and for a richness φ = 1, said temperature T3 is tim <|> = i being corrected by means of a correction function f (Q eC h > Φ) determined by mapping flow rate Q eC h of the exhaust gases - setpoint φ.
11. Procédé selon la revendication 10 caractérisé en ce que ladite température T3estim est déterminée à partir de la relation:
Figure imgf000015_0001
stimai Xf(Qech> )
11. The method of claim 10 characterized in that said temperature T3 is tim is determined from the relation:
Figure imgf000015_0001
stimai X f (Qech>)
12. Procédé selon la revendication 10 ou 1 1 caractérisé en ce que lesdits paramètres moteur sont constitués d'au moins l'un des paramètres suivants: point de fonctionnement, température d'eau, dégradation de l'avance à l'allumage et positionnement du calage des arbres à cames.  12. The method of claim 10 or 1 1 characterized in that said engine parameters consist of at least one of the following parameters: operating point, water temperature, degradation of the ignition advance and positioning timing of camshafts.
13. Procédé selon la revendication 1 1 caractérisé en ce que ladite richesse de consigne de protection du composant x est déterminée à partir de la relation: f 13. The method of claim 1 1 characterized in that said protection setpoint of the component x is determined from the relation: f
V
Figure imgf000016_0001
J
V
Figure imgf000016_0001
J
T3COnsigne étant la température de consigne des gaz d'échappement en sortie moteur, et T3 CO NSIGN e being the setpoint temperature of the exhaust gas at the engine outlet, and
r-1 r-1
f" ( ) étant la fonction inverse de f( ) par rapport à la richesse. f " () being the inverse function of f () with respect to richness.
PCT/FR2013/050072 2012-01-26 2013-01-11 Method for the thermal protection of the components of the exhaust line of a heat engine WO2013110873A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112014017533-0A BR112014017533B1 (en) 2012-01-26 2013-01-11 method of thermal protection of exhaust line components of a heat engine
CN201380006875.6A CN104246160B (en) 2012-01-26 2013-01-11 Method for the thermal protection of the components of the exhaust line of a heat engine
EP13704153.9A EP2807353B1 (en) 2012-01-26 2013-01-11 Method for thermal protection of the exhaust line of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1250764A FR2986264B1 (en) 2012-01-26 2012-01-26 METHOD OF THERMALLY PROTECTING COMPONENTS OF THE EXHAUST LINE OF A HEAT ENGINE
FR1250764 2012-01-26

Publications (1)

Publication Number Publication Date
WO2013110873A1 true WO2013110873A1 (en) 2013-08-01

Family

ID=47714392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050072 WO2013110873A1 (en) 2012-01-26 2013-01-11 Method for the thermal protection of the components of the exhaust line of a heat engine

Country Status (5)

Country Link
EP (1) EP2807353B1 (en)
CN (1) CN104246160B (en)
BR (1) BR112014017533B1 (en)
FR (1) FR2986264B1 (en)
WO (1) WO2013110873A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2141049A5 (en) 1971-04-19 1973-01-19 Universal Oil Prod Co
JPH0460106A (en) 1990-06-29 1992-02-26 Mazda Motor Corp Control device of engine
JPH05312074A (en) 1992-04-30 1993-11-22 Suzuki Motor Corp Air-fuel ratio controller of internal combustion engine
US20030074889A1 (en) * 2000-09-04 2003-04-24 Jens Wagner Co-ordination of different requirements of the exhaust gas treatment and corresponding heating and cooling measures
US6691507B1 (en) 2000-10-16 2004-02-17 Ford Global Technologies, Llc Closed-loop temperature control for an emission control device
US20120014410A1 (en) * 2010-07-13 2012-01-19 Toyota Jidosha Kabushiki Kaisha Catalyst overheat prevention apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10147619A1 (en) * 2001-09-27 2003-07-10 Volkswagen Ag Process for protecting exhaust gas cleaning systems of internal combustion engines against thermal overload
DE10201465B4 (en) * 2002-01-16 2004-02-19 Bayerische Motoren Werke Ag Method and device for controlling a component protection function
US20040123588A1 (en) * 2002-12-30 2004-07-01 Stanglmaier Rudolf H. Method for controlling exhaust gas temperature and space velocity during regeneration to protect temperature sensitive diesel engine components and aftertreatment devices
US7441403B2 (en) * 2004-12-20 2008-10-28 Detroit Diesel Corporation Method and system for determining temperature set points in systems having particulate filters with regeneration capabilities
FR2880066B1 (en) * 2004-12-24 2007-03-16 Renault Sas METHOD AND SYSTEM FOR CONTROLLING A DIESEL ENGINE WITH WEEK ABOVE 1

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2141049A5 (en) 1971-04-19 1973-01-19 Universal Oil Prod Co
JPH0460106A (en) 1990-06-29 1992-02-26 Mazda Motor Corp Control device of engine
JPH05312074A (en) 1992-04-30 1993-11-22 Suzuki Motor Corp Air-fuel ratio controller of internal combustion engine
US20030074889A1 (en) * 2000-09-04 2003-04-24 Jens Wagner Co-ordination of different requirements of the exhaust gas treatment and corresponding heating and cooling measures
US6691507B1 (en) 2000-10-16 2004-02-17 Ford Global Technologies, Llc Closed-loop temperature control for an emission control device
US20120014410A1 (en) * 2010-07-13 2012-01-19 Toyota Jidosha Kabushiki Kaisha Catalyst overheat prevention apparatus

Also Published As

Publication number Publication date
FR2986264A1 (en) 2013-08-02
EP2807353A1 (en) 2014-12-03
CN104246160B (en) 2017-02-22
FR2986264B1 (en) 2014-01-10
BR112014017533B1 (en) 2021-05-04
BR112014017533A2 (en) 2017-06-13
CN104246160A (en) 2014-12-24
EP2807353B1 (en) 2017-03-08
BR112014017533A8 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
FR2852631A1 (en) Thermal engine controlling method, involves monitoring input variable/internal size of physical model based on deviation between calculated and measured values of physical size of model, to correct input variable/internal size
EP2007976A1 (en) Method and device for monitoring the regeneration of a pollution-removal system
WO2018202977A2 (en) Method for updating a dynamic for adjusting a richness value to a set value in an engine
WO2019110882A1 (en) System and method for controlling an internal combustion engine provided with an exhaust gas post-treatment system of the selective catalysis type
FR2915237A1 (en) Variable geometry supercharger controlling system i.e. electronic control unit, for internal combustion engine i.e. diesel engine, of motor vehicle, has calculating block deducing set point of geometry of compressor to regulate geometry
EP0954689B1 (en) Device for controlling an internal combustion engine with controlled ignition and direct injection
EP2430298B1 (en) Estimation of the nitrogen oxide (nox) concentration in an internal combustion engine
EP0264332B1 (en) Method for correcting the strength of an air-fuel mixture of an electronically injected internal-combustion engine
EP2807353B1 (en) Method for thermal protection of the exhaust line of an internal combustion engine
FR2911920A1 (en) METHOD AND SYSTEM FOR LIMITING THE EXHAUST TEMPERATURE OF A DIESEL ENGINE.
EP1760295B1 (en) Control system for a diesel engine equipped with exhaust recriculation means
EP1606501A1 (en) Method of measuring ambient pressure in a turbocharged engine
FR2871195A1 (en) Internal combustion engine monitoring process for motor vehicle, involves adjusting controlled variable on value from requests on engine`s output variable if request different from pedal actuation request exists, or on actuation based value
EP1693559B1 (en) Control system for operating a Diesel engine with exhaust gas recirculation means
EP1574694B1 (en) Apparatus and method controlling metering of injected fuel in a diesel engine
EP2761153B1 (en) Control of the injection of fuel upon combustion engine start-up
JP5241694B2 (en) Cylinder inflow air amount correction method at engine start, and fuel control device including the method
FR2907509A1 (en) Characteristic parameter e.g. mass of air, estimating method for e.g. diesel engine, involves controlling thermal flux applied to component e.g. piston, of engine in closed loop, from derived magnitude of estimated characteristic parameters
EP3194752B1 (en) Method for regulating the air consumption of an internal combustion engine in order to limit the temperature of the low-pressure recirculated exhaust gas
FR2858020A1 (en) Internal combustion engine controlling process for vehicle, involves regulating airflow in exchanger and bypass, such that temperature of air in collector approaches predetermined value
EP4234909A1 (en) Method for controlling richness in a carburized mixture of an internal combustion engine of a motor vehicle
FR2896543A1 (en) METHOD FOR MANAGING INTERNAL COMBUSTION ENGINE CONTROL.
FR2851615A1 (en) Diesel engine fuel injection capacity regulating device, has exhaust gas temperature sensor at inlet of compressor turbine, and temperature feedback system with regulator to supply corrected value of fuel injected capacity to engine
FR2906316A1 (en) AUTOMOTIVE VEHICLE INTERNAL COMBUSTION ENGINE CONTROL SYSTEM INCLUDING AN ENGINE EXHAUST GAS RECIRCULATION CIRCUIT EQUIPPED WITH A CONTROLLED RECIRCULATION VALVE
FR2919023A1 (en) INTERNAL COMBUSTION ENGINE CONTROL SYSTEM WITH PARTIAL EXHAUST GAS RECIRCULATION AND METHOD OF THERMALLY PROTECTING THE RECYCLED EXHAUST GAS FLOW CONTROL VALVE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13704153

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013704153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013704153

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014017533

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014017533

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140716