EP0264332B1 - Method for correcting the strength of an air-fuel mixture of an electronically injected internal-combustion engine - Google Patents

Method for correcting the strength of an air-fuel mixture of an electronically injected internal-combustion engine Download PDF

Info

Publication number
EP0264332B1
EP0264332B1 EP87402272A EP87402272A EP0264332B1 EP 0264332 B1 EP0264332 B1 EP 0264332B1 EP 87402272 A EP87402272 A EP 87402272A EP 87402272 A EP87402272 A EP 87402272A EP 0264332 B1 EP0264332 B1 EP 0264332B1
Authority
EP
European Patent Office
Prior art keywords
air
engine
temperature
richness
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87402272A
Other languages
German (de)
French (fr)
Other versions
EP0264332A1 (en
Inventor
Rémi Lefèvre
Jean-Pierre Lagrue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Regie Nationale des Usines Renault
Original Assignee
Regie Nationale des Usines Renault
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Regie Nationale des Usines Renault filed Critical Regie Nationale des Usines Renault
Publication of EP0264332A1 publication Critical patent/EP0264332A1/en
Application granted granted Critical
Publication of EP0264332B1 publication Critical patent/EP0264332B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature

Definitions

  • the invention relates to a method for correcting the richness of an air-fuel mixture admitted into an internal combustion engine, with electronic injection of the pressure-speed type, in order to keep the richness constant as a function of the air temperature. entering the cylinders and whatever the speed and pressure in the intake manifold.
  • the object of the invention is to correct the richness of the air-fuel mixture at the intake so that it is constant as a function of the actual temperature of the air entering the cylinders.
  • the correction of the richness of the air-petrol mixture uses the measurement of this temperature by a probe placed upstream of the throttle body.
  • this correction was unsuitable for certain engine operating points, especially when the air underwent heating between the butterfly and the valves.
  • the technical problem comes from the fact that the air temperature measuring probe does not deliver the actual temperature of the air entering the cylinders.
  • the air is heated by the walls of the intake manifold.
  • a tehrmic exchange takes place between the air circulating in the tubing and the walls and, theoretically, it can be said that the temperature of the air entering the intake manifold undergoes an increase as a function of the temperature of the walls. , the air pressure in the manifold and the engine speed according to which the quantity of air admitted depends.
  • thermocouples placed on the engine intake circuit placed as close to the valves to check the accuracy of the temperature formula thus calculated.
  • the outside air temperature T is given by a probe 1 upstream of the butterfly valve 2.
  • a thermocouple 5 makes it possible to verify that the temperature of the wall of the intake circuit is very close to that of the water T water given by a water temperature probe. It is verified in particular that for high speeds and pressures, the temperature of the air actually entering the cylinders is very close to that of the air outside the vehicle. This is explained by the fact that the admitted air does not have time to warm up along the walls, its flow being large. On the other hand, for engine idling, the actual temperature of the air entering through the valves is close to the temperature of the engine cooling water.
  • This richness correction method has the advantage of being easily applied by the injection computer, since it is a linear calculation from information present in the injection computer (temperatures of air and water, engine speed, pressure).
  • loop coefficient a ci remains constant when the outside air temperature varies, which justifies the use of an air temperature constant at idle on certain engines, and that this coefficient a ci however changes with the engine water temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

L'invention concerne un procédé pour corriger la richesse d'un mélange air-carburant admis dans un moteur à combustion interne, à injection électronique du type pression-vitesse, dans le but de maintenir constante la richesse en fonction de la température d'air entrant dans les cylindres et quels que soient le régime et la pression dans le collecteur d'admission.The invention relates to a method for correcting the richness of an air-fuel mixture admitted into an internal combustion engine, with electronic injection of the pressure-speed type, in order to keep the richness constant as a function of the air temperature. entering the cylinders and whatever the speed and pressure in the intake manifold.

Pour un moteur à injection du type pression-vitesse qui comporte un calculateur électronique de commande d'ouverture des injecteurs mais dépourvu d'une sonde de mesure de la richesse des gaz d'échappement permettant d'asservir la richesse du mélange à l'admission de celle-ci, des difficultés apparaissent lors de la mise au point de la correction de richesse en fonction de la température d'air. On constate notamment une évolution de la richesse lors de régimes ralentis prolongés.For an injection engine of the pressure-speed type which includes an electronic computer for controlling the opening of the injectors but lacking a probe for measuring the richness of the exhaust gases making it possible to control the richness of the mixture at the intake difficulties arise during the development of the richness correction as a function of the air temperature. In particular, there is an evolution of wealth during prolonged slow regimes.

Une étude du type suggérée par le document FISITA XXI, 2-6 June 86, 865016 et portant sur l'influence de certains paramètres tels que la température d'eau du moteur, la pression dans le collecteur d'admission ou le régime moteur, sur le réchauffement d'air à l'admission entre l'endroit de sa mesure de température par une sonde placée en amont du papillon et les soupapes a permis d'obtenir une loi de réchauffement de l'air éliminant les inconvénients précités.A study of the type suggested by the document FISITA XXI, 2-6 June 86, 865016 and relating to the influence of certain parameters such as the engine water temperature, the pressure in the intake manifold or the engine speed, on the air heating at the intake between the place of its temperature measurement by a probe placed upstream of the butterfly valve and allowed to obtain a law of air heating eliminating the aforementioned drawbacks.

Le but de l'invention est de corriger la richesse du mélange air-carburant à l'admission pour qu'elle soit constante en fonction de la température réelle de l'air entrant dans les cylindres.The object of the invention is to correct the richness of the air-fuel mixture at the intake so that it is constant as a function of the actual temperature of the air entering the cylinders.

Pour cela, l'objet de l'invention est un procédé de correction de la richesse d'un mélange air-carburant admis dans un moteur à combustion interne à injection électronique du type pression-vitesse, pour obtenir une richesse constante en fonction de la température d'air entrant dans les cylindres, quels que soient la vitesse du moteur et la pression collecteur, le moteur étant doté d'un calculateur électronique commandant le temps d'ouverture T i des injecteurs, une sonde de température placée en amont du papillon des gaz et une sonde de température d'eau du moteur, caractérisé en ce que la correction est du type multiplicative, de la forme :

Figure imgb0001
avec:
Figure imgb0002
Figure imgb0003
Figure imgb0004
où :

  • - T' = température de l'air entrant réellement dans les cylindres ;
  • - T = température de l'air mesurée par le calculateur ;
  • - T eau = température d'eau du moteur ;
  • - ki est un coefficient fonction du régime moteur, obtenu par interpolation dans une table de x points ;
  • - k2 est un coefficient représentant l'influence de la pression collecteur, obtenu par interpolation linéaire dans une table à x points ;
  • - k3 est un coefficient constant caractéristique de l'admission moteur ;
  • - a air est le terme de correction de la richesse en fonction de la température de l'air.
For this, the object of the invention is a method for correcting the richness of an air-fuel mixture admitted into an internal combustion engine with electronic injection of the pressure-speed type, in order to obtain a constant richness as a function of the temperature of air entering the cylinders, whatever the engine speed and the manifold pressure, the engine being equipped with an electronic computer controlling the opening time T i of the injectors, a temperature sensor placed upstream of the butterfly valve gas and an engine water temperature sensor, characterized in that the correction is of the multiplicative type, of the form:
Figure imgb0001
with:
Figure imgb0002
Figure imgb0003
Figure imgb0004
or :
  • - T '= temperature of the air actually entering the cylinders;
  • - T = air temperature measured by the computer;
  • - T water = engine water temperature;
  • - ki is a coefficient depending on the engine speed, obtained by interpolation in a table of x points;
  • - k 2 is a coefficient representing the influence of the manifold pressure, obtained by linear interpolation in a table with x points;
  • - k 3 is a constant coefficient characteristic of the engine intake;
  • - air is the richness correction term as a function of the air temperature.

D'autres avantages de l'invention apparaîtront à la lumière de la description qui suit, illustrée par les figures suivantes représentant :

  • - la ficiure 1 : l'implantation des thermocouples sur le moteur, pour la vérification de la loi de réchauffement de la température d'air ;
  • - la figure 2 : les variations du coefficient k en fonction de la pression collecteur ;
  • - les noures 3a et 3b : évolution de certains paramètres du moteur équipé d'une sonde 1 pour un bouclage à richesse 1 respectivement sans et avec la nouvelle loi de réchauffement.
Other advantages of the invention will appear in the light of the following description, illustrated by the following figures representing:
  • - ficiure 1: the installation of thermocouples on the engine, for the verification of the law of heating of the air temperature;
  • - Figure 2: variations of the coefficient k as a function of the manifold pressure;
  • - the feeds 3a and 3b: evolution of certain parameters of the engine equipped with a probe 1 for a loopback at richness 1 respectively without and with the new heating law.

Comme cela a été dit auparavant, la correction de la richesse du mélange air-essence, réalisée actuellement dans un système d'injection de type pression-vitesse, en fonction de la température d'air utilise la mesure de cette température par une sonde placée en amont du boîtier papillon. Or, on a constaté que cette correction était inadaptée pour certains points de fonctionnement du moteur, notamment lorsque l'air subissait un réchauffement entre le papillon et les soupapes. Le problème technique vient du fait que la sonde de mesure de la température d'air ne délivre pas la température réelle de l'air entrant dans les cylindres.As has been said before, the correction of the richness of the air-petrol mixture, currently carried out in an injection system of pressure-speed type, as a function of the air temperature, uses the measurement of this temperature by a probe placed upstream of the throttle body. However, it was found that this correction was unsuitable for certain engine operating points, especially when the air underwent heating between the butterfly and the valves. The technical problem comes from the fact that the air temperature measuring probe does not deliver the actual temperature of the air entering the cylinders.

Entre le papillon et les soupapes d'admission, l'air se trouve réchauffé par les parois de la tubulure d'admission. Un échange tehrmique s'effectue entre l'air circulant dans la tubulure et les parois et, de façon théorique, on peut dire que la température de l'air en entrée du collecteur d'admission subit une élévation en fonction de la température des parois, de la pression de l'air dans le collecteur et du régime moteur selon lesquels dépend la quantité d'air admise.Between the throttle valve and the intake valves, the air is heated by the walls of the intake manifold. A tehrmic exchange takes place between the air circulating in the tubing and the walls and, theoretically, it can be said that the temperature of the air entering the intake manifold undergoes an increase as a function of the temperature of the walls. , the air pressure in the manifold and the engine speed according to which the quantity of air admitted depends.

Selon l'invention, la température T de l'air admis dans les cylindres du moteur est de la forme :

Figure imgb0005
avec :
Figure imgb0006

  • T étant la température mesurée par la sonde placée en amont du papillon,
  • T eau étant la température de l'eau du moteur,
  • k1 étant un coefficient fonction du régime moteur,
  • k2 étant un coefficient représentant l'influence de la pression collecteur,
  • k3 étant un coefficient caractéristique de l'admission moteur.
According to the invention, the temperature T of the air admitted into the engine cylinders is of the form:
Figure imgb0005
with:
Figure imgb0006
  • T being the temperature measured by the probe placed upstream of the butterfly,
  • T water being the engine water temperature,
  • k 1 being a coefficient depending on the engine speed,
  • k 2 being a coefficient representing the influence of the manifold pressure,
  • k 3 being a characteristic coefficient of the engine intake.

Sur la figure 1 est représentée l'implantation de thermocouples sur le circuit d'admission du moteur placés au plus près des soupapes pour vérifier la justesse de la formule de la température ainsi calculée. La température T de l'air extérieur est donnée par une sonde 1 en amont du papillon 2. Un thermocouple 3 placé au centre du conduit d'admission, en aval du papillon et près de la culasse 4, permet de comparer la température d'air T mesurée par le calculateur avec celle qu'il délivre et qui est très proche de celle de l'air entrant dans la culasse. Un thermocouple 5 permet de vérifier que la température de la paroi du circuit d'admission est très proche de celle de l'eau T eau donnée par une sonde de température d'eau. On vérifie notamment que pour des régimes et des pressions élevés, la température de l'air entrant réellement dans les cylindres est très proche de celle de l'air extérieur au véhicule. Cela s'explique par le fait que l'air admis n'a pas le temps de se réchauffer le long des parois, son débit étant grand. Par contre, pour le ralenti du moteur, la température réelle de l'air entrant par les soupapes est voisine de la température de l'eau de refroidissement du moteur.In Figure 1 is shown the installation of thermocouples on the engine intake circuit placed as close to the valves to check the accuracy of the temperature formula thus calculated. The outside air temperature T is given by a probe 1 upstream of the butterfly valve 2. A thermocouple 3 placed in the center of the intake duct, downstream of the butterfly valve and near the cylinder head 4, makes it possible to compare the temperature of air T measured by the computer with that which it delivers and which is very close to that of the air entering the cylinder head. A thermocouple 5 makes it possible to verify that the temperature of the wall of the intake circuit is very close to that of the water T water given by a water temperature probe. It is verified in particular that for high speeds and pressures, the temperature of the air actually entering the cylinders is very close to that of the air outside the vehicle. This is explained by the fact that the admitted air does not have time to warm up along the walls, its flow being large. On the other hand, for engine idling, the actual temperature of the air entering through the valves is close to the temperature of the engine cooling water.

Grâce aux sondes et thermocouples placés sur le circuit d'admission d'air du moteur, on a déduit les valeurs du coefficient k. On peut remarquer que, pour un régime N donné, k est une fonction linéaire de la pression.Thanks to the probes and thermocouples placed on the air intake circuit of the engine, the values of the coefficient k have been deduced. It can be noted that, for a given regime N, k is a linear function of the pressure.

Grâce à ce nouveau calcul de la température de l'air réellement admis, il est possible de réaliser une régulation de richesse du mélange air-carburant qui ne présente pas de dérive à certains points de fonctionnement du moteur. En introduisant cette loi de réchauffement de l'air entre le boîtier papillon et les soupapes, dans le calculateur électronique d'injection, on corrige la richesse de façon à la maintenir constante en fonction de la température d'air. Pour cela, le calculateur commande un temps d'ouverture T des injecteurs de la forme :

Figure imgb0007
avec:
Figure imgb0008
Figure imgb0009
Figure imgb0010
où :

  • - T in est le temps nominal d'ouverture calculé classiquement en fonction des paramètres principaux et auxiliaires de fonctionnement du moteur ;
  • - a air est le terme de correction de la richesse en fonction de la température d'air.
Thanks to this new calculation of the temperature of the air actually admitted, it is possible to carry out a richness regulation of the air-fuel mixture which does not exhibit drift at certain operating points of the engine. By introducing this law of air heating between the throttle body and the valves, in the electronic injection computer, the richness is corrected so as to keep it constant as a function of the air temperature. For this, the computer controls an opening time T of the injectors of the form:
Figure imgb0007
with:
Figure imgb0008
Figure imgb0009
Figure imgb0010
or :
  • - T i n is the nominal opening time conventionally calculated as a function of the main and auxiliary operating parameters of the engine;
  • - air is the richness correction term as a function of the air temperature.

Ce procédé de correction de la richesse a l'avantage d'être aisément appliqué par le calculateur d'injection, puisqu'il s'agit d'un calcul linéaire à partir d'informations présentes dans le calculateur d'injection (températures d'air et d'eau, régime moteur, pression).This richness correction method has the advantage of being easily applied by the injection computer, since it is a linear calculation from information present in the injection computer (temperatures of air and water, engine speed, pressure).

L'invention peut également s'appliquer à un moteur à injection électronique à régulation par sonde Lambda. Cette régulation en boucle fermée de l'injection permet d'asservir la richesse du mélange air-carburant admis dans le moteur autour du rapport stoechiométrique (1 = 1), qui est une condition indispensable à la combustion satisfaisante des polluants par un catalyseur. Le bon fonctionnement de celui-ci nécessite une régulation précise et rapide du mélange. Le procédé de correction de la richesse selon l'invention permet d'obtenir cette précision et cette rapidité. Expérimentalement, le moteur étant équipé d'une sonde Lambda et un bouclage à la richesse 1 étant effectué au ralenti, sans autre correction de richesse, on peut observer l'évolution du coefficient de bouclage a ci :

  • - durant la montée en température de l'eau de refroidissement du moteur T eau de 0°C à 90°C ;
  • - à température d'eau T eau constante, température d'air extérieur T variable de 0°C à 20°C ;
  • - à température d'air T constante, température d'eau T eau variable.
The invention can also be applied to an electronic injection engine regulated by a Lambda probe. This closed loop regulation of the injection makes it possible to control the richness of the air-fuel mixture admitted into the engine around the stoichiometric ratio (1 = 1), which is an essential condition for the satisfactory combustion of pollutants by a catalyst. The proper functioning of this requires precise and rapid regulation of the mixture. The richness correction method according to the invention makes it possible to obtain this precision and this speed. Experimentally, the engine being equipped with a Lambda probe and a richness looping 1 being carried out at idle, without any other richness correction, we can observe the evolution of the looping coefficient a ci:
  • - during the temperature rise of the engine cooling water T water from 0 ° C to 90 ° C;
  • - at constant water temperature T water, outside air temperature T variable from 0 ° C to 20 ° C;
  • - at constant air temperature T, variable water temperature T water.

On remarque que le coefficient de bouclage a ci reste constant lorsque la température d'air extérieur varie, ce qui justifie l'utilisation d'une constante de température d'air au ralenti sur certains moteurs, et que ce coefficient a ci évolue par contre avec la température d'eau du moteur.It is noted that the loop coefficient a ci remains constant when the outside air temperature varies, which justifies the use of an air temperature constant at idle on certain engines, and that this coefficient a ci however changes with the engine water temperature.

On en conclut alors premièrement que la température de l'air entrant dans le moteur au ralenti est voisine de la température d'eau du moteur et ne dépend donc pas de la température de l'air extérieur - on peut donc choisir k = 1 au ralenti - et deuxièmement que l'évolution du coefficient de bouclage a ci durant la montée en température de l'eau du moteur correspond à la correction de richesse en fonction de la température de l'air.We therefore conclude firstly that the temperature of the air entering the engine at idle is close to the engine water temperature and therefore does not depend on the outside air temperature - we can therefore choose k = 1 at idle - and secondly that the change in the loop coefficient a ci during the rise in engine water temperature corresponds to the richness correction as a function of the air temperature.

Sur la figure 3a, sont représentés en fonction du temps t, la température d'eau T eau de refroidissement du moteur (courbe A), la température d'air T extérieur (courbe B), le coefficient de bouclage a ci (courbe C) et le coefficient de correction de richesse a air en fonction de la température de l'air (courbe D), sans application du procédé de correction selon l'invention. En ayant choisi k = 1 puisque le moteur est au ralenti et avec une richesse égale à 1 en raison de la sonde 1, on voit que le coefficient a ci est fonction de la température d'eau T eau et qu'il décroît quand cette dernière augmente. En introduisant cette loi de correction sans bouclage par sonde 1, c'est-à-dire en faisant varier le coefficient a air en fonction de la température d'air comme variait a ci en fonction de T eau sur la figure 3a, et en restant dans les conditions du ralenti, on observe que le coefficient de bouclage a ci reste constant au ralenti depuis le démarrage du moteur et cela quelle que soit la durée du ralenti. Ceci est représenté sur la figure 3b référencée comme la figure 3a.In Figure 3a, are represented as a function of time t, the water temperature T engine cooling water (curve A), the outside air temperature T (curve B), the loop coefficient a ci (curve C ) and the air richness correction coefficient as a function of the air temperature (curve D), without application of the correction method according to the invention. Having chosen k = 1 since the engine is idling and with a richness equal to 1 due to the probe 1, we see that the coefficient a ci is a function of the water temperature T water and that it decreases when this last increases. By introducing this law of correction without looping by probe 1, that is to say by varying the air coefficient as a function of the air temperature as varied a ci as a function of T water in FIG. 3a, and by remaining in the idling conditions, it is observed that the loop coefficient a ci remains constant at idling since the engine started and this whatever the duration of the idling. This is shown in Figure 3b referenced as Figure 3a.

Ainsi, lorsque k = 1 au ralenti, il est possible de connaître la loi a air = f(T') de correction de richesse, loi unique si on considère que T' est la température d'air réelle entrant dans les cylindres. La connaissance de cette loi de correction de richesse permet d'identifier le coefficient k pour chaque point de fonctionnement du moteur, sans nécessité de thermocouples à disposer en certains points du moteur, et donc les coefficients ki, k2 et ks.Thus, when k = 1 at idle, it is possible to know the law a air = f (T ') of richness correction, a unique law if we consider that T' is the real air temperature entering the cylinders. Knowledge of this richness correction law makes it possible to identify the coefficient k for each engine operating point, without the need for thermocouples to be available at certain points on the engine, and therefore the coefficients ki, k 2 and ks.

Claims (2)

1. A process for correcting the richness of an air-fuel mixture introduced into an internal combustion engine with electronic injection of pressure-speed type to obtain a constant level of richness in dependence on the temperature of air passing into the cylinders, irrespective of the speed of the engine and the manifold pressure, the engine being equipped with an electronic computer for controlling the time T; of opening of the injectors, a temperature probe disposed upstream of the throttle butterfly valve and a probe for the water temperature of the engine, Ti being dependent on the water temperature of the engine, the air temperature, the speed of rotation of the engine and the manifold pressure, characterised in that the correction is of multiplicative type of the following form :
Figure imgb0019
with :
Figure imgb0020
Figure imgb0021
Figure imgb0022
in which :
- Tin is the nominal opening time calculated in dependence on the principal and auxiliary operating parameters of the engine;
- T is the temperature of the air which actually passes into the cylinders;
- T is the temperature of the air measured by the computer;
- Twater is the water temperature of the engine;
- k1 is a coefficient dependent on the speed of the engine, obtained by interpolation in a table of x points;
- k2 is a coefficient representing the influence of the manifold pressure, obtained by linear interpolation in a table having x points;
- k3 is a constant coefficient which is characteristic of the engine intake; and
- ∝air is the term for correction of the degree of richness in dependence on the temperature of the air.
2. A correction process according to claim 1 characterised in that it is applied to an engine equipped with regulation by means of an oxygen probe.
EP87402272A 1986-10-14 1987-10-13 Method for correcting the strength of an air-fuel mixture of an electronically injected internal-combustion engine Expired - Lifetime EP0264332B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8614252A FR2605050B1 (en) 1986-10-14 1986-10-14 METHOD FOR CORRECTING THE RICHNESS OF AN AIR-FUEL MIXTURE ALLOWED IN AN INTERNAL COMBUSTION ENGINE WITH ELECTRONIC INJECTION.
FR8614252 1986-10-14

Publications (2)

Publication Number Publication Date
EP0264332A1 EP0264332A1 (en) 1988-04-20
EP0264332B1 true EP0264332B1 (en) 1990-12-19

Family

ID=9339824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87402272A Expired - Lifetime EP0264332B1 (en) 1986-10-14 1987-10-13 Method for correcting the strength of an air-fuel mixture of an electronically injected internal-combustion engine

Country Status (6)

Country Link
US (1) US4815435A (en)
EP (1) EP0264332B1 (en)
CA (1) CA1290838C (en)
DE (1) DE3766790D1 (en)
ES (1) ES2019396B3 (en)
FR (1) FR2605050B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817788C2 (en) * 1997-04-22 2003-02-20 Unisia Jecs Corp Device and method for controlling fuel injection in an internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974563A (en) * 1988-05-23 1990-12-04 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating intake air amount
JP2707674B2 (en) * 1989-01-20 1998-02-04 株式会社デンソー Air-fuel ratio control method
JPH04506692A (en) * 1989-07-14 1992-11-19 シーメンス アクチェンゲゼルシャフト Internal combustion engine control method
US5113832A (en) * 1991-05-23 1992-05-19 Pacer Industries, Inc. Method for air density compensation of internal combustion engines
DE19636451B4 (en) * 1996-09-07 2010-06-10 Robert Bosch Gmbh Device for controlling the amount of fuel to be supplied to an internal combustion engine
DE19739901B4 (en) 1997-09-11 2008-04-17 Robert Bosch Gmbh Method and device for controlling an internal combustion engine depending on operating parameters
CN111650171B (en) * 2020-07-03 2023-08-18 中国科学院工程热物理研究所 Quantitative measurement and correction method for high-temperature high-pressure fuel concentration field of fuel nozzle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE567344A (en) * 1957-05-04
US3824967A (en) * 1972-10-30 1974-07-23 Gen Motors Corp Electronic fuel injection system
JPS5888436A (en) * 1981-11-19 1983-05-26 Honda Motor Co Ltd Air fuel ratio corrector of internal-combustion engine having correcting function by intake temperature
JPS5888435A (en) * 1981-11-19 1983-05-26 Honda Motor Co Ltd Air fuel ratio corrector of internal combustion engine having correcting function by intake temperature
US4499879A (en) * 1983-04-28 1985-02-19 General Motors Corporation Fuel supply system for an internal combustion engine
US4594986A (en) * 1984-01-20 1986-06-17 Mazda Motor Corporation Fuel supply arrangement for internal combustion engine
JPH0670394B2 (en) * 1985-08-20 1994-09-07 三菱電機株式会社 Engine fuel controller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XXI FISITA Congress, Belgrade, 2.-6. June, 1986, page 1.111-1.112 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817788C2 (en) * 1997-04-22 2003-02-20 Unisia Jecs Corp Device and method for controlling fuel injection in an internal combustion engine

Also Published As

Publication number Publication date
US4815435A (en) 1989-03-28
FR2605050A1 (en) 1988-04-15
DE3766790D1 (en) 1991-01-31
ES2019396B3 (en) 1991-06-16
CA1290838C (en) 1991-10-15
EP0264332A1 (en) 1988-04-20
FR2605050B1 (en) 1991-01-11

Similar Documents

Publication Publication Date Title
EP0478120A2 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
EP0476811A2 (en) Method and apparatus for controlling an internal combustion engine
EP0264332B1 (en) Method for correcting the strength of an air-fuel mixture of an electronically injected internal-combustion engine
JPH09170471A (en) Method for controlling air-fuel ratio of multi-cylinder engine
US5631412A (en) Apparatus and method for estimating atmospheric pressure in an internal combustion engine
US6644104B2 (en) Intake air-flow rate detecting apparatus and detecting method of internal combustion engine
FR2553829A1 (en) METHOD FOR ADJUSTING A QUANTITY INVOLVED IN THE OPERATION OF AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR THE FUEL QUANTITY
JP2004218638A (en) Operating method for internal-combustion engine
JP3964347B2 (en) Intake device for internal combustion engine
WO2021078998A1 (en) Method for regulating a pressure in a water injection system for an internal combustion engine
JPS58214632A (en) Electronically controlled fuel injection method for internal-combustion engine
FR2724417A1 (en) METHOD FOR CONTROLLING A DIRECT INJECTION INTERNAL COMBUSTION ENGINE
JP2019183694A (en) Cetane number estimation device
FR2857055A1 (en) METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE
FR2945319A1 (en) SYSTEM AND METHOD FOR CONTROLLING COMBUSTION IN AN INTERNAL COMBUSTION ENGINE.
EP2807353B1 (en) Method for thermal protection of the exhaust line of an internal combustion engine
FR2878905A1 (en) METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE
JPS55104521A (en) Turbocharger for use in spark-ignition type internal combustion engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6217323A (en) Fuel injection controller of internal-combustion engine
JPH0368221B2 (en)
JP2591072B2 (en) Control device for internal combustion engine
FR2829185A1 (en) Exhaust gas recirculation method for motor vehicle internal combustion engine, has exhaust recirculation flow control dependent on mass airflow to inlet of engine
JPS63147951A (en) Method of controlling supply of fuel for internal combustion engine
JPH03275956A (en) Control device for air-fuel ratio of internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL SE

17Q First examination report despatched

Effective date: 19890118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19901219

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3766790

Country of ref document: DE

Date of ref document: 19910131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19911014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920501

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920701

EUG Se: european patent has lapsed

Ref document number: 87402272.6

Effective date: 19920510

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051013