WO2013108587A1 - Medical fluid transfusion method and medical fluid transfusion device - Google Patents

Medical fluid transfusion method and medical fluid transfusion device Download PDF

Info

Publication number
WO2013108587A1
WO2013108587A1 PCT/JP2013/000016 JP2013000016W WO2013108587A1 WO 2013108587 A1 WO2013108587 A1 WO 2013108587A1 JP 2013000016 W JP2013000016 W JP 2013000016W WO 2013108587 A1 WO2013108587 A1 WO 2013108587A1
Authority
WO
WIPO (PCT)
Prior art keywords
syringe
container
drug solution
needle
plunger
Prior art date
Application number
PCT/JP2013/000016
Other languages
French (fr)
Japanese (ja)
Inventor
結輝 竹中
中村 徹
晃庸 奥田
東條 剛史
章博 太田
朗 ▲樋▼口
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013523402A priority Critical patent/JP5444509B2/en
Publication of WO2013108587A1 publication Critical patent/WO2013108587A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/1782Devices aiding filling of syringes in situ
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2006Piercing means
    • A61J1/201Piercing means having one piercing end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2068Venting means
    • A61J1/2075Venting means for external venting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2079Filtering means
    • A61J1/2082Filtering means for gas filtration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2096Combination of a vial and a syringe for transferring or mixing their contents

Definitions

  • the present invention relates to a drug solution transfer method and a drug solution transfer apparatus for transferring a drug solution such as an injection drug filled in a container between a container and a syringe in the field of medicine and the like.
  • a transfusion needle has been proposed in which a groove is provided in a part of the needle to eliminate the need for a pumping operation (see, for example, Patent Document 1).
  • the inside of the drug solution container can be made substantially equal to the atmospheric pressure by removing air from the groove.
  • FIG. 9 is a partial cross-sectional view of the transfusion needle 1 used in the conventional chemical liquid mixing apparatus.
  • FIG. 9 is a partial cross-sectional view of the transfer needle 1 as viewed from a plane perpendicular to the thickness direction of the rubber plug 8c when the conventional transfer needle 1 is pulled out of the rubber plug 8c.
  • the needle 2 and the needle base 3 are integrated.
  • the outer cylinder 4 is fitted to the outside of the needle 2 to form a groove 4 a between the needle 2 and the outer cylinder 4.
  • a filter 6 formed of a hydrophobic synthetic resin is attached.
  • Patent Document 2 after the clean air of an amount corresponding to the transfer amount is sucked into the syringe before the transfer of the drug solution, the suctioned clean air is injected into the drug solution container to Is disclosed to facilitate the transfer of the drug solution from inside the drug solution container into the syringe.
  • the present invention solves this problem, and provides a drug solution transfer method and a drug solution transfer apparatus capable of performing transfer of drug solution with high accuracy without occurrence of large variation in transfer amount of drug solution.
  • the purpose is to
  • a drug solution transfer method uses a syringe disposed below the vertical direction of a container having a drug solution inside, a gasket of a plunger of the syringe and the syringe
  • the needle of the syringe is punctured into the container in a state where there is an air reservoir with the inner wall surface of the container, and then the plunger is moved to transfer the drug solution from the container to the syringe through the needle
  • a drug solution transfer apparatus is disposed at a first holding portion for holding a container having a drug solution inside, and vertically below the container, A second holding unit for holding a syringe with a needle, a first moving unit for moving the first holding unit up and down in the vertical direction, and a plunger of the syringe held by the second holding unit in the vertical direction A second moving unit that moves up and down, and a control unit that controls the first moving unit and the second moving unit, the control unit is between the gasket of the plunger and the inner wall surface of the syringe.
  • each aspect of the present invention it is possible to provide a drug solution transfer method and a drug solution transfer apparatus capable of performing transfer of the drug solution with high accuracy without causing large variations in the transfer amount of the drug solution.
  • FIG. 1A is a schematic block diagram of a drug solution transfer apparatus according to a first embodiment of the present invention
  • FIG. 1B is a schematic block diagram of an example of a control unit or the like of the drug solution transfer apparatus according to the first embodiment of the present invention
  • FIG. 2 is a flowchart of the drug solution transfer method according to the first embodiment
  • FIG. 3A is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3B is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3A is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3B is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3C is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3D is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3E is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3F is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3G is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3H is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3I is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3C is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3D is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 3E is a partial cross-section
  • FIG. 3J is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 4 is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment
  • FIG. 5 is a side view showing the chemical liquid mixing apparatus according to the first embodiment
  • FIG. 6A is a partial cross-sectional view of a conventional drug solution transfer device
  • FIG. 6B is a partial cross-sectional view of a conventional drug solution transfer device
  • FIG. 6C is a partial cross-sectional view of a conventional drug solution transfer device
  • FIG. 7 is a cross-sectional view schematically showing the state in which air bubbles are generated inside the syringe in the conventional drug solution transfer apparatus
  • FIG. 8 is a partial cross-sectional view of the drug solution transfer needle of the drug solution transfer device according to the second embodiment of the present invention
  • FIG. 9 is a partial sectional view of a conventional transfusion needle
  • FIG. 10 is a partial cross-sectional view for explaining the problem in the conventional transfusion needle.
  • FIG. 10 is a partial cross-sectional view for explaining the problem of the conventional drug solution transfer needle.
  • the same components as those in FIG. 9 are denoted by the same reference numerals, and the description thereof is omitted.
  • the present invention solves the problems in this conventional transfusion needle by the embodiment described below.
  • FIG. 1A is a schematic configuration view of a part of a drug solution transfer apparatus 20 according to a first embodiment of the present invention.
  • FIG. 1B is a schematic block diagram of an example of a control unit or the like of the drug solution transfusion apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart of a drug solution transfer method by the drug solution transfer apparatus according to the first embodiment of the present invention.
  • FIGS. 3A to 3J are diagrams for explaining the drug solution transfer method in the first embodiment, using side views of a part of the container and the syringe.
  • the drug solution transfer apparatus 20 includes a first holding unit 21, a second holding unit 22, a first moving unit 23, and a second moving unit 19. And a control unit 40.
  • the drug solution transfer apparatus 20 functions as an example of a drug solution mixing apparatus.
  • the liquid medicine mixing apparatus is an apparatus for injecting a liquid medicine transferred to a syringe 26 and injecting the liquid medicine transferred from the syringe 26 into an infusion vial or the like to mix the medicine.
  • the first holding unit 21 is an example of a container holding unit
  • the second holding unit 22 is an example of a syringe holding unit.
  • the first moving unit 23 is an example of a container moving unit that moves the container 24, and the second moving unit 19 is an example of a plunger moving unit that moves the plunger 26 b of the syringe 26.
  • the container 24 is an example of a drug solution container such as a vial or an infusion bag, for example.
  • the first holding unit 21 holds the container 24.
  • the second holding unit 22 is disposed vertically below the first holding unit 21 and holds the syringe 26 with the needle 25 attached thereto.
  • the first moving unit 23 is controlled by the control unit 40 and moves the first holding unit 21 vertically and vertically.
  • the second moving unit 19 is controlled by the control unit 40 to move the plunger 26 b of the syringe 26 in the vertical vertical direction.
  • a movable plate 19k for fixing the plunger 26b is movably attached to the syringe base 22a. Further, the second holding portion 22 and the second moving portion 19 of the plunger 26b are fixed to the syringe base 22a.
  • the control unit 40 controls various operations of the drug solution transfer apparatus 20.
  • the control unit 40 includes an arithmetic unit 40a, a storage unit 40b, and a determination unit 40c, and controls driving devices such as the motors 23a and 19m, the first moving unit 23, and the second moving unit 19, respectively.
  • the identification data of the container 24, the data of the empty amount for each container 24, the data of the position of the rubber plug 30, the data of the thickness of the rubber plug 30, and the sampling of the tip of the needle 25 Data on the position of the tip of the mouth 25a is stored in advance as a database. These data are stored for each rubber plug 30 or each needle 25 or each container 24.
  • the data of the emptying amount for each container 24 is the data of the lowering amount of the plunger 26b at the time of the emptying operation.
  • the camera 100 or the encoder 101 may be used to acquire necessary data and store the data in the storage unit 40 b without storing a part of the data in the storage unit 40 b in advance.
  • the storage unit 40b may be connected to a database storing a prescription or the like by communication or the like to acquire a predetermined amount of the drug solution recorded in the prescription of the database and store the predetermined amount in the storage unit 40b.
  • the operation unit 40a acquires necessary data from the storage unit 40b, and based on the position information of the rubber plug 30 of the container 24 and the position information of the tip of the liquid collection port 25a at the tip of the needle 25 and the position information of the plunger 26b. An arithmetic operation is performed in each step to be described later to obtain the relative position of the liquid collection port 25a with respect to the rubber plug 30, and also obtain the movement amounts of the container 24 and the plunger 26b.
  • the determination unit 40c confirms and determines the end (completion) of the operation in each step described later based on the calculation result in the calculation unit 40a, and outputs a drive stop signal to the drive device such as the motors 23a and 19m. Output
  • a vial or an infusion bag is used as the container 24 for example.
  • the container 24 has a drug solution stored in advance in its inside 24a.
  • a vial is used as an example of the container 24 as shown in FIG. 1A.
  • the vial which is an example of the container 24, is held by the first holding unit 21 in a state where the rubber plug 30 is disposed on the lower side in the vertical direction.
  • the state in which the rubber stopper 30 of the vial is disposed on the lower side in the vertical direction is the inverted state of the container 24 (vial).
  • a material of the rubber plug 30 butyl, chlorinated butyl, butadiene or isoprene is used.
  • the first holding unit 21 is fixed to the first moving unit 23.
  • the first moving unit 23 has a motor 23a whose rotation axis rotates forward and reverse, a ball screw shaft 23b rotated forward and reverse by the rotation of the rotation axis of the motor 23a, and a movable plate engaged with the ball screw shaft 23b. And 23c.
  • the movable plate 23 c is connected to the first holding unit 21 and vertically moves together with the first holding unit 21.
  • the motor 23a is driven and controlled by the control unit 40 to rotate the rotation shaft in the forward and reverse directions, and functions as an example of a first moving unit driving device.
  • a gasket 31 is fixed to the tip of the plunger 26b.
  • the drug solution transferred into the syringe 26 or the gas (for example, air) sucked into the syringe 26 contacts the gasket 31.
  • the gasket 31 is not referred to and is simply described as the plunger 26 b.
  • the surface of the gasket 31 is the upper end surface of the plunger 26b.
  • the drug solution transfer method of the first embodiment is a method for transferring a drug solution between the container 24 and the syringe 26 by controlling the drug solution transfer apparatus 20 including the above-described components.
  • the drug solution transfer method includes step S01, which is an example of a data acquisition step, step S02, which is an example of a blanking step, and step S03, which is an example of a needle insertion step.
  • step S04 which is an example of the first push and pull step
  • step S05 which is an example of the drug solution transfer step
  • step S06 which is an example of the negative pressure adjustment step
  • step S07 which is an example of the withdrawal step.
  • steps S01 to S03 are performed before the predetermined amount of the drug solution 27 is transferred (moved) from the inside 24a of the container 24 to the inside 26a of the syringe 26.
  • step S01 the control unit 40 performs various types of data on the position of the rubber plug 30 of the container 24, data on the thickness of the rubber plug 30, data on the position of the tip of the liquid collection port 25a at the tip of the needle 25, etc. Acquired from the sensor and storage unit 40b.
  • the various sensors are, for example, the camera 100 attached to the front or side of the syringe 26, the encoder 101 for measuring the movement amount of the first moving unit 23 of the first holding unit 21, or the second movement of the second holding unit 22.
  • the encoder 102 measures the amount of movement of the unit 19.
  • the encoders 101 and 102 are an example of a position sensor as a movement amount detection device.
  • Step S01 is, specifically, based on the information acquired by the camera 100 or the encoder 101 and the information stored in the storage unit 40b, the collection of the needle 25 with respect to the position and thickness of the rubber plug 30 of the container 24. The relative position of the mouth 25a is detected.
  • Step S02 is a step of emptying a predetermined amount of gas into the interior 26a of the syringe 26 before puncturing the needle 25 into the container 24.
  • the plunger 26 b of the syringe 26 is lowered by driving the motor 19 m of the second moving unit 19 in a state where the needle 25 is not inserted into the container 24.
  • this suction forms an air reservoir between the surface 31a (see FIG. 4) of the gasket 31 of the plunger 26b in the syringe 26 and the inner wall surface 26h (see FIG. 4) of the tip 26j of the syringe 26.
  • a constituent gas 28 is present.
  • Step S03 is a step of inserting the needle 25 into the container 24 by causing the needle 25 to puncture the rubber plug 30.
  • the container 24 is lowered by driving the motor 23a of the first moving unit 23, and the liquid collection port 25a of the needle 25 is inserted into the container 24. It is a step.
  • the container 24 is lowered to puncture the needle 25 of the syringe 26 into the rubber plug 30 of the container 24.
  • the syringe 26 is raised and the needle 25 is inserted into the rubber plug 30 of the container 24 Also good. That is, the container 24 and the needle 25 may be moved relative to each other to puncture the needle 25 in the rubber plug 30 of the container 24.
  • Step S04 is a step of transferring the drug solution 27 or the gas 28 between the container 24 and the syringe 26 by pushing and pulling the plunger 26b of the syringe 26.
  • the discharge of a predetermined amount of gas 28 from the syringe 26 to the container 24 or the suction of the chemical solution 27 from the container 24 to the syringe 26 is the same operation as in the prior art, and thus the detailed description is omitted.
  • the step of discharging the gas 28 of a predetermined amount or suctioning the chemical solution 27 is performed by driving the motor 19 m of the second moving unit 19 forward and reverse to move the plunger 26 b of the syringe 26 up and down.
  • step S04 the speed at which the plunger 26b is pulled is made lower than the speed at which the plunger 26b is pushed, thereby reducing the occurrence probability of air bubbles in the push and pull operation in step S04, and the accuracy of the transfusion operation. Can be raised.
  • the transfer speed is set to 1 m / s or less for the pulling speed of the plunger 26b (the suction speed for the drug solution) and 5 m / s or more for the pressing speed (the drug discharge speed) to the plunger 26b. I was able to improve the accuracy of the operation.
  • Step S05 is a step of transferring a predetermined amount of the drug solution 27 from the container 24 to the inside 26a of the syringe 26.
  • the step of transferring the chemical solution 27 of a predetermined amount is performed by driving the motor 19 m of the second moving unit 19 to lower the plunger 26 b of the syringe 26.
  • Step S06 is a step of adjusting the pressure of the gas 28 in the container 24 to a negative pressure by returning a part of the drug solution 27 in the syringe 26 to the container 24.
  • the motor 19 m of the second moving unit 19 is driven to raise the plunger 26 b of the syringe 26 to discharge a part of the drug solution 27 in the syringe 26 into the container 24. It does by doing.
  • Step S07 is a step of pulling out the needle 25 of the syringe 26 from the rubber plug 30 of the container 24.
  • the operation of pulling out the needle 25 is to move the needle 25 relatively in the direction away from the container 24 by raising the container 24 in the direction of the arrow 24 c by driving the motor 23 a of the first moving unit 23. To do.
  • the air (not shown) previously existing in the inside of the needle 25 is drawn to the inside 26 a of the syringe 26 so that the needle 25 can be operated. It is possible to treat the gas in the inside of the needle 25 and the evacuated gas as one mass of gas in the vicinity of the inside of the nozzle 26 and the mouth 26 x of the syringe 26.
  • the opening 26 x of the syringe 26 is in the vicinity of the tip 26 j of the syringe 26 and is a portion connecting the needle 25 and the inside 26 a of the syringe 26.
  • the gas in the needle 25 and the gas outside the syringe 26 are integrally suctioned by performing the empty pulling operation in step S02.
  • the possibility of irregular mixing of air and the drug solution 27 in the syringe 26 is reduced, and the generation of small air bubbles in the drug solution 27 transferred into the syringe 26 can be suppressed.
  • transfusion of the drug solution 27 becomes possible in a state where generation of small air bubbles is suppressed, the possibility of deterioration of transfusion accuracy due to air bubbles is reduced, and transfusion of the drug solution 27 with high accuracy becomes possible.
  • the transfer of the drug solution is described as an example, but it goes without saying that the mixing of the drug solution by the transfer of the drug solution is an example of the transfer of the drug solution.
  • the generation of air bubbles can be suppressed by performing the empty pulling in this manner. Specifically, the gas 28 and the drug solution 27 remaining inside the needle 25 are rapidly dropped in a narrow space surrounded by the inner wall surface 26 h of the syringe 26 and the gasket 31 of the plunger 26 by performing the emptying. It is possible to suppress the generation of air bubbles due to being mixed in the If generation of air bubbles can be suppressed in this manner, almost no air bubbles will be present inside the syringe 26, and transfusion of the drug solution 27 can be performed with high accuracy.
  • the variation in transfusion amount was 0.107 ml when the blanking process in step S02 in FIG. 2 was not performed, the blanking process in step S02 in FIG. 2 was performed
  • the variation of the transfusion amount in the case (in the case of the first embodiment) was 0.025 ml.
  • air bubbles that affect the accuracy of transfusion have a diameter of 50 ⁇ m or more and 3 mm or less, and in particular, air bubbles with a small diameter adhere to the wall surface of the syringe 26 and are difficult to peel off from the wall surface I know.
  • the first embodiment is considered to be particularly effective in suppressing the generation of air bubbles of this size.
  • the chemical solution transfer apparatus 20 in which the container 24 is disposed in the upper part in the vertical direction and the syringe 26 is disposed in the lower part along the axial center of the container 24 will be described as an example. .
  • the syringe 26 is held by the second holding portion 22 in a state where the needle tip of the needle 25 is directed substantially upward in the vertical direction.
  • the plunger 26 b of the syringe 26 is freely moved up and down by the second moving unit 19 along the direction (vertical direction) of the arrow 26 d.
  • the second moving unit 19 vertically moves together with the motor 19m whose rotation axis rotates forward and reverse, the ball screw shaft 19p rotated forward and reverse by the rotation of the rotation axis of the motor 19m, and the plunger 26b.
  • a movable plate 19k As an example, the second moving unit 19 vertically moves together with the motor 19m whose rotation axis rotates forward and reverse, the ball screw shaft 19p rotated forward and reverse by the rotation of the rotation axis of the motor 19m, and the plunger 26b. And a movable plate 19k.
  • the motor 19m functions as an example of a drive unit for the second moving unit, and is drive-controlled by the control unit
  • the movable plate 19k is coupled to the plunger 26b and engaged with the ball screw shaft 19p.
  • the plunger 26b moves up and down in the direction of the arrow 26d to transfer the chemical solution 27 or gas between the inside 26a of the syringe 26 and the inside of the container 24. It can be carried out.
  • the first holding unit 21 is disposed in the upper part in the vertical direction and the second holding unit 22 is disposed in the lower part in the vertical direction, when the container 24 is held in an inverted state, The drug solution 27 moves to a region adjacent to the rubber plug 30 in the container 24. Therefore, the drug solution 27 can be easily sucked from the needle 25 of the syringe 26.
  • the confirmation as to whether or not the needle 25 has been punctured by the rubber plug 30 and completely penetrated is specifically performed as follows.
  • the state in which the needle 25 completely penetrates the rubber plug 30 is the state in which the liquid collection port 25 a of the needle 25 is inserted into the container 24.
  • the calculation unit 40a calculates the relative position of the liquid collection port 25a before the movement with respect to the position of the container 24 and the position and thickness of the rubber plug 30,
  • the relative position of the liquid collection port 25a after movement with respect to the positions of the container 24 and the rubber plug 30 is calculated by calculating the amount of movement of the container 24 by the detection operation of the encoder 101 of the first moving unit 23.
  • the determination unit 40c of the control unit 40 determines whether the needle 25 completely penetrates the rubber plug 30 Confirm and judge.
  • the drive stop signal is output from the determination unit 40c to the motor 23a of the first moving unit 23 to drive the motor 23a.
  • the operation is stopped, and the liquid collection port 25 a at the tip of the needle 25 is held in the state of being inserted into the container 24.
  • the judgment unit 40c judges that the needle 25 does not completely penetrate the rubber plug 30, the motor 23a is kept driven until the needle 25 completely penetrates the rubber plug 30.
  • the position of the liquid surface of the chemical solution 27 in the syringe 26 is detected by the imaging operation of the camera 100, and the amount of movement of the encoder 102 is calculated.
  • the transfusion amount is calculated by calculating the increase or decrease of the amount of. For example, when the movement of the gas 28 in the syringe 26 into the container 24 is confirmed, a predetermined amount of gas (the gas 28 forming the air pool) based on the change in the position of the liquid surface of the drug solution 27 in the syringe 26
  • the determination unit 40c confirms and determines whether all the ink has been discharged into the container 24 or not.
  • the drive stop signal is output to the motor 19m of the second moving unit 19 to stop the drive of the motor 19m.
  • the motor 19m is kept driven until the plunger 26b is raised by the amount of movement.
  • FIGS. 3A to 3J are partial cross-sectional views of the drug solution transfer device 20 according to the first embodiment of the present invention, showing the positional relationship between the container 24 and the syringe 26.
  • FIGS. 3A to 3J and FIG. 4 in order to make it easy to understand the position of the needle 25 in the inside 24 a of the container 24, the amount of the drug solution 27, the position and size of the air bubbles, etc. , In a cross-sectional view.
  • FIG. 3A to 3J and FIG. 4 in order to make it easy to understand the position of the needle 25 in the inside 24 a of the container 24, the amount of the drug solution 27, the position and size of the air bubbles, etc.
  • FIG. 4 is a view for explaining a state in which the inner wall surface 26h at the tip of the syringe 26 does not get wet with the drug solution 27 at the time of transfer of the drug solution 27, and as a result, adhesion of air bubbles is prevented. Since the wetted surface is likely to adhere and be difficult to remove air bubbles, the first embodiment capable of transfusion of the drug solution without wetting the inner wall surface 26h of the syringe 26 can maintain high accuracy.
  • (A) of FIG. 4 shows the state immediately after the start of drug solution transfer operation (the state immediately before the state of FIG. 3D),
  • (b) of FIG. 4 shows the state of FIG. 3D,
  • FIG. 3E The state of FIG. 3E is shown,
  • (d) of FIG. 4 shows the state immediately before FIG. 3F, and (e) of FIG. 4 shows the state of FIG. 3F.
  • FIG. 3A shows an initial state, for example, immediately after taking out the syringe 26 from the sterilization pack of the syringe 26 before moving a predetermined amount of the drug solution 27 from the container 24 to the inside 26 a of the syringe 26.
  • the plunger 26 b is located near the tip 26 j of the syringe 26.
  • the inner wall surface 26h of the tip 26j of the syringe 26 and the gasket 31 at the tip of the plunger 26b are not in direct contact, but the gasket 31 of the inner wall surface 26h of the tip of the syringe 26 and the tip of the plunger 26b is The gap with is as small as possible.
  • the gas 28 in the syringe 26 is approximately zero on the scale of the syringe 26.
  • step S02 in FIG. 2 blanking is performed (see step S02 in FIG. 2).
  • air having a volume of 0.1 ml or more and less than 0.5 ml is evacuated.
  • air of 0.5 ml or more and less than 2.0 ml is evacuated.
  • the amount of emptying does not depend on the diameter and length of the needle 25.
  • the reason for setting the maximum amount of emptying is that if the amount of emptying is large, the generation of air bubbles can be suppressed, but transfer takes time and work efficiency is deteriorated.
  • the minimum amount of emptying is set because, if the amount of emptying is too small, the inner wall surface 26h of the tip 26j of the syringe 26 gets wet with the transferred chemical solution 27.
  • movement it is 5 mm or more.
  • the container 24 is moved down via the rubber plug 30 while keeping the evacuated gas in the interior 26a of the syringe 26 (ie, maintaining the gas 28 as an air reservoir in the syringe 26).
  • a state in which the needle 25 is punctured in the container 24 is shown (see step S03 in FIG. 2).
  • FIGS. 3D and 4B show a state where the liquid medicine 27 in the container 24 is sucked into the syringe 26 by pushing down the plunger 26b of the syringe 26 in the direction of the arrow 26e from the state of FIG. 3C. .
  • the gas 28 is preliminarily contained in the syringe 26 to form a lump of air pool. By doing so, the air (not shown) present inside the needle 25 is prevented from becoming a small air bubble.
  • FIGS. 3F to 3G and (d) to (e) in FIG. 28) are discharged into the container 24 as a mass of air 26y.
  • the operation shown in FIGS. 3D to 3G is step S04 shown in FIG.
  • step S05 After the gas 28 in the syringe 26 is pushed out into the container 24 as a mass of air 26y in step S04, as shown in FIG. 3H, the plunger 26b is pulled in the direction of the arrow 26e, It is moved into the syringe 26 (see step S05 in FIG. 2).
  • step S05 the volume of the gas 36 in the container 24 is increased by the volume of the drug solution 27 transferred (moved) into the syringe 26.
  • the pressure of the gas 36 in the container 24 with the increased volume is reduced from atmospheric pressure to negative pressure.
  • the pressure in the container 24 maintains a negative pressure to such an extent that the liquid medicine 27 does not leak from the tip of the needle 25 (hereinafter referred to as spill). I'm adjusting. Specifically, in the first embodiment, part of the drug solution 27 in the inside 26a of the syringe 26 is returned to the container 24 by raising the plunger 26b of the syringe 26 (see step S06 in FIG. 2). Thereby, the pressure of the gas 36 in the container 24 is adjusted to the optimal negative pressure.
  • the container 24 is relatively raised, and the needle 25 attached to the tip of the syringe 26 is pulled out of the rubber plug 30 of the container 24 (see step S07 in FIG. 2).
  • FIG. 5 is a side view which shows the chemical
  • the chemical solution mixing device 32 has a cylindrical third holding portion 33 in a chemical solution mixing area 32b surrounded by a cylindrical outer wall 32a.
  • the chemical solution mixing area 32b is an area for forming a working space for reliably preventing the leakage of the chemical solution 27 to the outside of the apparatus.
  • the cylindrical third holding portion 33 is configured by the second holding portion 22 and the first holding portion 21 which are divided in the vertical direction along the central axis 32 c.
  • the chemical liquid mixing apparatus 32 includes the first moving unit 23, the second moving unit 19, and the control unit 40 in addition to the third holding unit 33.
  • the control unit 40 controls the position of the combination of the syringe 26 and the container 24 (hereinafter referred to as the mixing set) around the axis of the cylindrical support 35 at a plurality of positions.
  • the plurality of positions include at least an installation position and a chemical solution transfer position.
  • the installation position is a position for installing the syringe 26 and the container 24 in the drug solution mixing device 32
  • the drug solution transfer position is a position for performing the drug solution transfer method of steps S01 to S07 described above. is there.
  • the second holding unit 22 and the first holding unit 21 are configured to include a plurality of holders 34a and 34b, respectively.
  • the second holding unit 22 and the first holding unit 21 are independently rotatable around the central axis 32c of the support unit 35 under the control of the control unit 40, and are relatively rotated.
  • the selected syringe 26 and the selected container 24 can be switched to be aligned in the vertical direction.
  • medical solution mixing apparatus 32 shown in FIG. 5 can hold
  • the syringe 26 may have different shapes, such as “volume 2.5 ml”, “volume 20 ml”, “volume 50 ml”, etc., depending on the type of the drug solution 27 to be aspirated.
  • a dedicated jig corresponding to the syringes 26 of a plurality of types of shapes is prepared, and the outer cylinder of the syringes 26 of a plurality of types of shapes can be securely fixed and held.
  • a dedicated jig corresponding to the plungers 26b having different shapes is prepared.
  • medical solution mixing apparatus 32 you may make it perform each step not only what implements a chemical
  • an empty pulling position for performing step S02, a needle insertion position for performing step S03, a primary push / pulling position for performing step S04, a drug solution transfer position for performing step S05, and step S06 The negative pressure adjustment position and the extraction position at which step S07 is performed may be performed at different positions.
  • the first moving unit 23 or the second moving unit 19 or the like is required at each position.
  • the present invention is not limited to this, and it goes without saying that two or three steps may be performed at one position.
  • the chemical solution mixing device 32 can efficiently and safely mix the chemical solution 27 even when mixing the plurality of types of chemical solution 27 using the plurality of types of containers 24 and the plurality of types of syringes 26.
  • FIGS. 6A to 8B are diagrams for explaining a conventional drug solution transfer method.
  • FIG. 7 is a view for explaining a state in which the inner wall surface 26h at the tip of the syringe 26 is partially wetted by the chemical solution 27, and air bubbles adhere to the wetted surface.
  • 7 (a) shows the state of FIG. 6A
  • FIG. 7 (b) shows the state of FIG. 6B
  • FIG. 7 (e) shows the state of FIG. 6C.
  • the conventional drug solution transfer method is performed using the syringe 26 and the container 24 of the drug solution transfer apparatus according to the first embodiment will be described.
  • step S02 in FIG. 2 the emptying (step S02 in FIG. 2) is not performed as in the first embodiment.
  • the needle 25 is inserted into the container 24 (step S03) as shown in FIG. 6B from the initial state shown in FIG. 6A without emptying (ie, without step S02), FIG. 6C and FIG.
  • the plunger 26b is pushed down in the direction of the arrow 26e to aspirate the drug solution 27 from the container 24 into the syringe 26 (step S04).
  • air bubbles 29 shown in FIG. 6C may be generated.
  • the first embodiment generation of small air bubbles (conventional small air bubbles 29) in the chemical solution 27 is suppressed, and variations in transfusion amount are reduced. Transfusion and mixing can be performed precisely.
  • the variation reduction of the transfusion amount in the case where the first embodiment is not applied, there is an error of 0.107 ml at 3 ⁇ in the case of applying the first embodiment in a syringe having a volume of 20 ml. Is an error of 0.025 ml at 3 ⁇ , and the variation can be reduced by 77%.
  • FIG. 8 is a cross-sectional view of a transfer needle 51 used in the drug solution transfer method according to the second embodiment of the present invention.
  • the drug solution transfer method of the second embodiment differs from the first embodiment in that a transfer needle 51 shown in FIG. 8 is used instead of the needle 25 of the first embodiment described above, and the other embodiment is the first embodiment. And the description of the same parts will be omitted.
  • the needle used in the second embodiment is a transfusion needle 51 including a cylindrical needle base 52, a first needle 53, and a second needle 54, as shown in FIG.
  • the needle base 52 is attached to the end of the syringe 26.
  • the first needle 53 has an air passage 55 inside.
  • the second needle 54 is longer than the first needle 53 and disposed parallel to the first needle 53.
  • the first needle 53 is provided with a first air vent 56 which is one end of the air passage 55 at the tip end side of the second needle 54 than the second air vent 57 which is the other end.
  • the second needle 54 connects one end of the liquid passage 58 to the inside of the needle base 52, and the other end is a liquid passage port 59 of the second needle 54.
  • the second needle 54 also has a tip 54 a having a liquid passage 59 and a base 54 b connected to the needle base 52.
  • the drug solution 27 is aspirated from the liquid passage port 59 of the second needle 54 and transferred to the inside 26 a of the syringe 26 through the inside of the second needle 54 and the needle base 52.
  • the chemical solution 27 inside the container 24 decreases and the volume of the gas 36 inside the container 24 increases
  • the pressure of the gas 36 inside the container 24 decreases and the pressure of the gas 36 becomes lower than atmospheric pressure.
  • the transfer needle 51 since the transfer needle 51 is used, when the pressure of the gas 36 is lower than the atmospheric pressure, the atmosphere outside the container 24 is the second vent 57 of the first needle 53.
  • the pressure difference between the inside 24a of the container 24 and the atmospheric pressure is reduced.
  • the drug solution transfer method according to the second embodiment uses this transfer needle 51, so a large force is not necessary between suction of the drug solution 27 and completion of suction of a predetermined amount, and the pumping operation is also performed. It is not necessary.
  • the empty pulling operation of step S02 of FIG. 2 is performed before transferring the drug solution 27 from the container 24 to the syringe 26.
  • the generation of the air bubbles 29 can be suppressed, and transfusion and mixing of the chemical solution can be performed accurately and efficiently.
  • the second embodiment regardless of the transfusion amount, it is possible to set the emptying amount at step S02 which is the emptying operation constant.
  • the second embodiment in the case of moving the chemical solution 27 using the pumping operation, it is necessary to change the emptying amount in step S02 according to the transfusion amount.
  • the second embodiment is the same as the second embodiment for a small amount of transfusion that does not require a pumping operation.
  • the small amount of transfusion referred to here means, for example, transfusion of 2 ml or less.
  • the case where the first holding unit 21 is moved by the first moving unit 23 has been described, but the second holding unit 22 is moved first while the first holding unit 21 is fixed. Even if it moves by the part 23, it can be set as the same movement relatively.
  • the drug solution transfer method and the drug solution transfer apparatus since the drug solution can be transferred with high accuracy, it is useful, for example, for drug solution transfer in a hospital or the like.

Abstract

Provided is a medical fluid transfusion device or method, comprising: a first retaining part (21) which retains a container (24); a second retaining part (22) which retains a syringe (26) to which a needle (25) is attached; a first moving part (23) which moves the first retaining part (21) up and down in the plumb direction; and a control part (40) which controls the first moving part (23). After drawing external air and air within the needle (25) as a dead air space into the syringe (26) by drawing out a plunger (26b) of the syringe (26) prior to the needle (25) of the syringe (26) puncturing the container (24), the control part (40) carries out a process of transfusing a medical fluid (27) from the medical fluid container (24) to the syringe (26) via the needle (25) by puncturing the container (24) with the needle (25) and moving the plunger (26b).

Description

薬液移注方法及び薬液移注装置Chemical solution transfer method and chemical solution transfer apparatus
 本発明は、医療などの分野において、容器に充填されている注射薬などの薬液を、容器とシリンジとの間で移注する薬液移注方法及び薬液移注装置に関する。 The present invention relates to a drug solution transfer method and a drug solution transfer apparatus for transferring a drug solution such as an injection drug filled in a container between a container and a syringe in the field of medicine and the like.
 病院などにおいて、注射薬などの薬液を入院患者などに処方するとき、数種類の薬液を異なった薬液容器から取り出して混合する場合がある。密閉された薬液容器からシリンジへ薬液を吸引するときには、強い力が必要となるため、ポンピング動作が行なわれることが多い。ポンピング動作とは、吸引する薬液の体積よりも少ない体積の空気層を予めシリンジ内に生じさせ、この状態から薬液の吸引を始めてシリンジのプランジャを複数回押し引きして、薬液容器内の薬液と空気とを徐々に置換する動作である。 When a medical solution such as an injection drug is prescribed to a hospitalized patient or the like in a hospital or the like, several kinds of medical solutions may be taken out from different medical solution containers and mixed. When suctioning a drug solution from a sealed drug solution container into a syringe, a pumping operation is often performed because a strong force is required. In the pumping operation, an air layer with a volume smaller than the volume of the drug solution to be suctioned is created in advance in the syringe, and suction of the drug solution is started from this state, and the plunger of the syringe is pushed and pulled multiple times to It is an operation of gradually replacing air.
 このポンピング作業の負担を軽減するために、針の一部に溝を設けて、ポンピング動作を不要とする移注針が提案されている(例えば、特許文献1参照)。特許文献1の移注針では、この溝で空気を抜くことにより、薬液容器内を大気圧とほぼ等しくすることができる、としている。 In order to reduce the burden of the pumping operation, a transfusion needle has been proposed in which a groove is provided in a part of the needle to eliminate the need for a pumping operation (see, for example, Patent Document 1). According to the transfer needle of Patent Document 1, the inside of the drug solution container can be made substantially equal to the atmospheric pressure by removing air from the groove.
 図9は、従来の薬液混合装置に用いられる移注針1における一部断面図である。図9は、従来の移注針1をゴム栓8cから引き抜くときの、ゴム栓8cの厚さ方向に垂直な面から見た移注針1の一部断面図である。図9に示すように、従来の移注針1は、針2と針基部3とが一体となっている。そして、移注針1では、針2の外側に外筒4を嵌着させることで、針2と外筒4との間に溝4aを構成している。溝4aの一端の空気口5の近傍には、疎水性の合成樹脂により形成したフィルター6が取り付けられている。 FIG. 9 is a partial cross-sectional view of the transfusion needle 1 used in the conventional chemical liquid mixing apparatus. FIG. 9 is a partial cross-sectional view of the transfer needle 1 as viewed from a plane perpendicular to the thickness direction of the rubber plug 8c when the conventional transfer needle 1 is pulled out of the rubber plug 8c. As shown in FIG. 9, in the conventional transfusion needle 1, the needle 2 and the needle base 3 are integrated. Then, in the transfusion needle 1, the outer cylinder 4 is fitted to the outside of the needle 2 to form a groove 4 a between the needle 2 and the outer cylinder 4. In the vicinity of the air port 5 at one end of the groove 4a, a filter 6 formed of a hydrophobic synthetic resin is attached.
 このように構成された移注針1をシリンジ7に取り付け、薬液容器8より薬液9をシリンジ7内に吸引すると、薬液容器8内の薬液9が減った容積だけ、薬液容器8内の気体10が膨張して、薬液容器8内の気体10の圧力が下がる。その結果生じた薬液容器8内の気体10の圧力と大気圧との間の圧力差を無くすために、フィルター6と溝4aとを介して、外部の空気が、薬液容器8へ引き込まれる。その結果、移注針1の溝4aより泡状となった空気5aが薬液容器8内へ入り、薬液容器8内の気体10の圧力は大気圧とほぼ同じになる。特許文献1では、これにより、シリンジ7のポンピンク動作を不要とすることができ、薬液容器8内より薬液をシリンジ7内に吸引する際の作業の負担が、軽減されるとしている。 When the transfer needle 1 configured in this way is attached to the syringe 7 and the drug solution 9 is sucked into the syringe 7 from the drug solution container 8, the gas 10 in the drug solution container 8 is reduced by the volume of the drug solution 9 in the drug solution container 8. Expands, and the pressure of the gas 10 in the drug solution container 8 decreases. As a result, external air is drawn into the chemical solution container 8 through the filter 6 and the groove 4 a in order to eliminate the pressure difference between the pressure of the gas 10 in the chemical solution container 8 and the atmospheric pressure. As a result, the air 5a in the form of foam enters from the groove 4a of the transfer needle 1 into the drug solution container 8, and the pressure of the gas 10 in the drug solution container 8 becomes substantially the same as the atmospheric pressure. In Patent Document 1, this makes it possible to eliminate the need for the pump-pink operation of the syringe 7 and to reduce the burden of work when suctioning the drug solution from the drug solution container 8 into the syringe 7.
 また、特許文献2には、薬液の移注前に、移注量に相当する量の清浄な空気をシリンジ内に吸引した後、吸引した清浄な空気を薬液容器内に注入して薬液容器内を陽圧にし、薬液容器内からシリンジ内への薬液の移注を容易にするものが開示されている。 Further, according to Patent Document 2, after the clean air of an amount corresponding to the transfer amount is sucked into the syringe before the transfer of the drug solution, the suctioned clean air is injected into the drug solution container to Is disclosed to facilitate the transfer of the drug solution from inside the drug solution container into the syringe.
実開平4-77946号公報Japanese Utility Model Laid-Open No. 4-77946 特表平04-505403号公報Japanese Patent Publication No. 04-505403
 しかしながら、発明者らは、このような移注針を用いた吸引及び吐出作業を多数回繰り返し実験する中で、薬液の移注量にバラツキが発生するという課題を見出した。 However, the inventors found out the problem that variation occurs in the transfusion amount of the drug solution while conducting repeated experiments of suction and discharge operations using such a transfusion needle many times.
 本発明は、この課題を解決するものであり、薬液の移注量に大きなバラツキが発生せず、薬液の移注を高精度に行なうことが可能な薬液移注方法及び薬液移注装置を提供することを目的とする。 The present invention solves this problem, and provides a drug solution transfer method and a drug solution transfer apparatus capable of performing transfer of drug solution with high accuracy without occurrence of large variation in transfer amount of drug solution. The purpose is to
 上記目的を達成するために、本発明の1つの態様に係る薬液移注方法は、薬液を内部に有する容器の鉛直方向の下方に配置されたシリンジを用い、前記シリンジのプランジャのガスケットと前記シリンジの内壁面との間に空気溜まりが存在する状態で前記シリンジの針を前記容器に穿刺した後、前記プランジャを移動させることで、前記針を介して前記容器から前記シリンジに前記薬液を移注させる。 In order to achieve the above object, a drug solution transfer method according to one aspect of the present invention uses a syringe disposed below the vertical direction of a container having a drug solution inside, a gasket of a plunger of the syringe and the syringe The needle of the syringe is punctured into the container in a state where there is an air reservoir with the inner wall surface of the container, and then the plunger is moved to transfer the drug solution from the container to the syringe through the needle Let
 また、上記目的を達成するために、本発明の別の態様に係る薬液移注装置は、薬液を内部に有する容器を保持する第1保持部と、前記容器の鉛直方向の下方に配置され、針の付いたシリンジを保持する第2保持部と、前記第1保持部を鉛直方向の上下に移動させる第1移動部と、前記第2保持部で保持された前記シリンジのプランジャを鉛直方向の上下に移動させる第2移動部と、前記第1移動部及び前記第2移動部を制御する制御部と、を備え、前記制御部は、前記プランジャのガスケットと前記シリンジの内壁面との間に空気溜まりが存在する状態で、前記第1保持部を鉛直方向の下向きに相対的に移動させることで前記針を前記容器に穿刺した後、前記プランジャを移動させて前記容器から前記シリンジに前記薬液を移注させる処理を行う。 Further, in order to achieve the above object, a drug solution transfer apparatus according to another aspect of the present invention is disposed at a first holding portion for holding a container having a drug solution inside, and vertically below the container, A second holding unit for holding a syringe with a needle, a first moving unit for moving the first holding unit up and down in the vertical direction, and a plunger of the syringe held by the second holding unit in the vertical direction A second moving unit that moves up and down, and a control unit that controls the first moving unit and the second moving unit, the control unit is between the gasket of the plunger and the inner wall surface of the syringe. After the needle is punctured into the container by relatively moving the first holding portion downward in the vertical direction in the presence of an air reservoir, the plunger is moved to move the plunger from the container to the syringe Processing to transpose Do.
 本発明の各態様により、薬液の移注量に大きなバラツキが発生せず、薬液の移注を高精度に行なうことが可能な薬液移注方法及び薬液移注装置を提供することができる。 According to each aspect of the present invention, it is possible to provide a drug solution transfer method and a drug solution transfer apparatus capable of performing transfer of the drug solution with high accuracy without causing large variations in the transfer amount of the drug solution.
 本発明の特徴は、添付された図面についての実施形態に関連した次の記述から明らかになる。この図面においては、
図1Aは、本発明の第1実施形態に係る薬液移注装置の概略構成図であり、 図1Bは、本発明の第1実施形態に係る薬液移注装置の制御部などの一例の概略ブロック図であり、 図2は、第1実施形態に係る薬液移注方法のフローチャートであり、 図3Aは、第1実施形態に係る薬液移注装置の一部断面図であり、 図3Bは、第1実施形態に係る薬液移注装置の一部断面図であり、 図3Cは、第1実施形態に係る薬液移注装置の一部断面図であり、 図3Dは、第1実施形態に係る薬液移注装置の一部断面図であり、 図3Eは、第1実施形態に係る薬液移注装置の一部断面図であり、 図3Fは、第1実施形態に係る薬液移注装置の一部断面図であり、 図3Gは、第1実施形態に係る薬液移注装置の一部断面図であり、 図3Hは、第1実施形態に係る薬液移注装置の一部断面図であり、 図3Iは、第1実施形態に係る薬液移注装置の一部断面図であり、 図3Jは、第1実施形態に係る薬液移注装置の一部断面図であり、 図4は、第1実施形態に係る薬液移注装置の一部断面図であり、 図5は、第1実施形態に係る薬液混合装置を示す側面図であり、 図6Aは、従来の薬液移注装置の一部断面図であり、 図6Bは、従来の薬液移注装置の一部断面図であり、 図6Cは、従来の薬液移注装置の一部断面図であり、 図7は、従来の薬液移注装置においてシリンジの内部で気泡が発生する状態を順に模式的に示す断面図であり、 図8は、本発明の第2実施形態に係る薬液移注装置の薬液移注針の一部断面図であり、 図9は、従来の移注針の一部断面図であり、 図10は、従来の移注針における課題を説明するための一部断面図である。
The features of the present invention will be apparent from the following description related to the embodiments of the attached drawings. In this figure,
FIG. 1A is a schematic block diagram of a drug solution transfer apparatus according to a first embodiment of the present invention, FIG. 1B is a schematic block diagram of an example of a control unit or the like of the drug solution transfer apparatus according to the first embodiment of the present invention, FIG. 2 is a flowchart of the drug solution transfer method according to the first embodiment, FIG. 3A is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 3B is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 3C is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 3D is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 3E is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 3F is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 3G is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 3H is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 3I is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 3J is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 4 is a partial cross-sectional view of the drug solution transfusion apparatus according to the first embodiment, FIG. 5 is a side view showing the chemical liquid mixing apparatus according to the first embodiment, FIG. 6A is a partial cross-sectional view of a conventional drug solution transfer device, FIG. 6B is a partial cross-sectional view of a conventional drug solution transfer device, FIG. 6C is a partial cross-sectional view of a conventional drug solution transfer device, FIG. 7 is a cross-sectional view schematically showing the state in which air bubbles are generated inside the syringe in the conventional drug solution transfer apparatus, FIG. 8 is a partial cross-sectional view of the drug solution transfer needle of the drug solution transfer device according to the second embodiment of the present invention; FIG. 9 is a partial sectional view of a conventional transfusion needle, FIG. 10 is a partial cross-sectional view for explaining the problem in the conventional transfusion needle.
 本発明の実施形態について説明する前に、発明者らが見出した従来の移注針の課題を説明する。図10は、従来の薬液移注針の課題を説明するための一部断面図である。なお、図10において、図9と同じ構成には同じ符号を付しており、説明を省略している。 Before describing the embodiments of the present invention, the problems of the conventional transfusion needle found by the inventors will be described. FIG. 10 is a partial cross-sectional view for explaining the problem of the conventional drug solution transfer needle. In FIG. 10, the same components as those in FIG. 9 are denoted by the same reference numerals, and the description thereof is omitted.
 発明者らは、移注針を用いて多数回繰り返し実験する中で、シリンジ7内に初めて薬液9を吸引する場合に、図10に示すように、薬液容器8内の薬液9と針2内の空気が、シリンジ7の先端の導入部7aで急激にぶつかり合っていることを見出した。薬液9と針2内の空気とが、このようにぶつかり合うと、気泡8fがシリンジ7内の底部付近に発生する場合がある。生じた気泡8fは、シリンジ7の内部の先端付近の壁面7bに付着して、シリンジ7における薬液9の計量の精度を低下させる場合がある。図11に示すような状態になると、液状の薬液9の内部に多数の気泡8fが含まれるため、シリンジ7の内部の薬液9の正確な体積が分からなくなる。したがって、従来の移注針では、気泡8fが大量に発生した場合、薬液9を精度良く移注できないという課題がある。 In the case where the drug solution 9 is aspirated for the first time in the syringe 7 during repeated experiments using the transfer needle a number of times, as shown in FIG. It has been found that the air of the air suddenly collides with the introduction portion 7a at the tip of the syringe 7. When the drug solution 9 and the air in the needle 2 collide with each other in this manner, air bubbles 8 f may be generated in the vicinity of the bottom in the syringe 7. The generated air bubbles 8 f may be attached to the wall surface 7 b in the vicinity of the tip of the inside of the syringe 7 to reduce the measurement accuracy of the drug solution 9 in the syringe 7. When the state shown in FIG. 11 is reached, a large number of air bubbles 8 f are contained in the liquid drug solution 9, so the exact volume of the drug solution 9 in the syringe 7 can not be determined. Therefore, in the conventional transfer needle, there is a problem that the drug solution 9 can not be transferred with high accuracy when a large amount of bubbles 8f are generated.
 本発明は、以下に説明する実施形態により、この従来の移注針における課題を解決するものである。 The present invention solves the problems in this conventional transfusion needle by the embodiment described below.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、同じ構成要素には同じ符号を付しており、説明を省略する場合もある。また、図面は理解し易くするために、それぞれの構成要素を主体に模式的に示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same component and description may be abbreviate | omitted. Also, in order to make the drawings easy to understand, each component is schematically shown mainly.
 (第1実施形態)
 図1Aは、本発明の第1実施形態に係る薬液移注装置20の一部の概略構成図である。図1Bは、本発明の第1実施形態に係る薬液移注装置の制御部などの一例の概略ブロック図である。図2は、本発明の第1実施形態に係る薬液移注装置による薬液移注方法のフローチャートである。図3Aから図3Jは、容器及びシリンジの一部の側面図を用いて、第1実施形態における薬液移注方法を説明するための図である。
First Embodiment
FIG. 1A is a schematic configuration view of a part of a drug solution transfer apparatus 20 according to a first embodiment of the present invention. FIG. 1B is a schematic block diagram of an example of a control unit or the like of the drug solution transfusion apparatus according to the first embodiment of the present invention. FIG. 2 is a flowchart of a drug solution transfer method by the drug solution transfer apparatus according to the first embodiment of the present invention. FIGS. 3A to 3J are diagrams for explaining the drug solution transfer method in the first embodiment, using side views of a part of the container and the syringe.
 図1A及び図1Bに示すように、第1実施形態の薬液移注装置20は、第1保持部21と、第2保持部22と、第1移動部23と、第2移動部19と、制御部40とを備えている。薬液移注装置20は、薬液混合装置の一例として機能する。薬液混合装置とは、シリンジ26に対して薬液を移注した後に、移注した薬液をシリンジ26から輸液バイアルなどに注射して、薬液を混合する装置である。 As shown in FIGS. 1A and 1B, the drug solution transfer apparatus 20 according to the first embodiment includes a first holding unit 21, a second holding unit 22, a first moving unit 23, and a second moving unit 19. And a control unit 40. The drug solution transfer apparatus 20 functions as an example of a drug solution mixing apparatus. The liquid medicine mixing apparatus is an apparatus for injecting a liquid medicine transferred to a syringe 26 and injecting the liquid medicine transferred from the syringe 26 into an infusion vial or the like to mix the medicine.
 第1保持部21は容器保持部の一例であり、第2保持部22はシリンジ保持部の一例である。第1移動部23は容器24を移動させる容器移動部の一例であり、第2移動部19はシリンジ26のプランジャ26bを移動させるプランジャ移動部の一例である。容器24は、例えばバイアル瓶や輸液バッグなどの薬液容器の一例である。ここで、第1保持部21は、容器24を保持する。第2保持部22は、第1保持部21の鉛直下部に配置され、針25の付いたシリンジ26を保持する。第1移動部23は、制御部40により制御され、第1保持部21を鉛直上下方向に移動させる。第2移動部19は、制御部40により制御され、シリンジ26のプランジャ26bを鉛直上下方向に移動させる。プランジャ26bを固定する可動板19kは、シリンジベース22aに移動可能な状態で取り付けられている。また、第2保持部22及びプランジャ26bの第2移動部19は、シリンジベース22aに固定されている。 The first holding unit 21 is an example of a container holding unit, and the second holding unit 22 is an example of a syringe holding unit. The first moving unit 23 is an example of a container moving unit that moves the container 24, and the second moving unit 19 is an example of a plunger moving unit that moves the plunger 26 b of the syringe 26. The container 24 is an example of a drug solution container such as a vial or an infusion bag, for example. Here, the first holding unit 21 holds the container 24. The second holding unit 22 is disposed vertically below the first holding unit 21 and holds the syringe 26 with the needle 25 attached thereto. The first moving unit 23 is controlled by the control unit 40 and moves the first holding unit 21 vertically and vertically. The second moving unit 19 is controlled by the control unit 40 to move the plunger 26 b of the syringe 26 in the vertical vertical direction. A movable plate 19k for fixing the plunger 26b is movably attached to the syringe base 22a. Further, the second holding portion 22 and the second moving portion 19 of the plunger 26b are fixed to the syringe base 22a.
 制御部40は、薬液移注装置20の種々の動作を制御する。具体的には、制御部40は、演算部40aと記憶部40bと判断部40cとを備えて、モータ23a,19m、第1移動部23と第2移動部19などの駆動装置をそれぞれ駆動制御する。記憶部40bには、容器24の識別データと、容器24毎の空引き量のデータと、ゴム栓30の位置のデータと、ゴム栓30の厚さのデータと、針25の先端の採液口25aの先端の位置のデータとが、データベースとして予め記憶されている。これらのデータは、ゴム栓30毎、又は針25毎、又は容器24毎に記憶されている。ここで、容器24毎の空引き量のデータとは、空引き動作時のプランジャ26bの下降量のデータである。なお、これらのデータの一部を記憶部40bに予め記憶せずに、カメラ100又はエンコーダ101などを使用して必要なデータを取得して、記憶部40bに記憶してもよい。また、記憶部40bを、処方箋などを記憶したデータベースと通信などにより接続することで、データベースの処方箋に記録された薬液の所定量を取得して記憶部40bに記憶させてもよい。演算部40aは、記憶部40bから必要なデータを取得すると共に、容器24のゴム栓30の位置情報及び針25の先端の採液口25aの先端の位置情報及びプランジャ26bの位置情報を基に、後述するそれぞれのステップにおいて演算を行い、ゴム栓30に対する採液口25aの相対的な位置を求めると共に、容器24及びプランジャ26bの移動量をそれぞれ求める。判断部40cは、演算部40aでの演算結果を基に、後述するそれぞれのステップでの動作の終了(完了)を確認及び判断して、モータ23a、19mなどの駆動装置に対して駆動停止信号を出力する。 The control unit 40 controls various operations of the drug solution transfer apparatus 20. Specifically, the control unit 40 includes an arithmetic unit 40a, a storage unit 40b, and a determination unit 40c, and controls driving devices such as the motors 23a and 19m, the first moving unit 23, and the second moving unit 19, respectively. Do. In the storage unit 40b, the identification data of the container 24, the data of the empty amount for each container 24, the data of the position of the rubber plug 30, the data of the thickness of the rubber plug 30, and the sampling of the tip of the needle 25 Data on the position of the tip of the mouth 25a is stored in advance as a database. These data are stored for each rubber plug 30 or each needle 25 or each container 24. Here, the data of the emptying amount for each container 24 is the data of the lowering amount of the plunger 26b at the time of the emptying operation. The camera 100 or the encoder 101 may be used to acquire necessary data and store the data in the storage unit 40 b without storing a part of the data in the storage unit 40 b in advance. Alternatively, the storage unit 40b may be connected to a database storing a prescription or the like by communication or the like to acquire a predetermined amount of the drug solution recorded in the prescription of the database and store the predetermined amount in the storage unit 40b. The operation unit 40a acquires necessary data from the storage unit 40b, and based on the position information of the rubber plug 30 of the container 24 and the position information of the tip of the liquid collection port 25a at the tip of the needle 25 and the position information of the plunger 26b. An arithmetic operation is performed in each step to be described later to obtain the relative position of the liquid collection port 25a with respect to the rubber plug 30, and also obtain the movement amounts of the container 24 and the plunger 26b. The determination unit 40c confirms and determines the end (completion) of the operation in each step described later based on the calculation result in the calculation unit 40a, and outputs a drive stop signal to the drive device such as the motors 23a and 19m. Output
 容器24としては、例えば、バイアル瓶又は輸液バッグが用いられる。容器24は、その内部24aに、予め薬液が収納されている。第1実施形態では、容器24の一例として、図1Aに示すように、バイアル瓶を用いている。容器24の一例であるバイアル瓶は、ゴム栓30を鉛直方向の下側に配置した状態で、第1保持部21に保持されている。第1実施形態では、バイアル瓶のゴム栓30が鉛直方向の下側に配置された状態を、容器24(バイアル瓶)の倒立状態としている。ゴム栓30の材料としては、ブチル、塩素化ブチル、ブタジエン、又は、イソプレンが用いられる。 As the container 24, for example, a vial or an infusion bag is used. The container 24 has a drug solution stored in advance in its inside 24a. In the first embodiment, a vial is used as an example of the container 24 as shown in FIG. 1A. The vial, which is an example of the container 24, is held by the first holding unit 21 in a state where the rubber plug 30 is disposed on the lower side in the vertical direction. In the first embodiment, the state in which the rubber stopper 30 of the vial is disposed on the lower side in the vertical direction is the inverted state of the container 24 (vial). As a material of the rubber plug 30, butyl, chlorinated butyl, butadiene or isoprene is used.
 第1保持部21は、第1移動部23に固定されている。第1移動部23は、一例として、回転軸が正逆回転するモータ23aと、モータ23aの回転軸の正逆回転により正逆回転するボールネジ軸23bと、ボールネジ軸23bに係合された可動板23cとで構成されている。可動板23cは、第1保持部21に連結されると共に、第1保持部21と一緒に鉛直方向に上下移動する。モータ23aは、制御部40により駆動制御されて回転軸が正逆回転するものであり、第1移動部用駆動装置の一例として機能する。 The first holding unit 21 is fixed to the first moving unit 23. As an example, the first moving unit 23 has a motor 23a whose rotation axis rotates forward and reverse, a ball screw shaft 23b rotated forward and reverse by the rotation of the rotation axis of the motor 23a, and a movable plate engaged with the ball screw shaft 23b. And 23c. The movable plate 23 c is connected to the first holding unit 21 and vertically moves together with the first holding unit 21. The motor 23a is driven and controlled by the control unit 40 to rotate the rotation shaft in the forward and reverse directions, and functions as an example of a first moving unit driving device.
 プランジャ26bの先端にはガスケット31が固定されている。シリンジ26内に移注された薬液又はシリンジ26内に吸引された気体(例えば、空気)は、ガスケット31と接触する。以下の説明では、説明を簡略化するため、ガスケット31に言及せず、単に、プランジャ26bとして説明する。また、第1実施形態では、ガスケット31の表面を、プランジャ26bの上端面とする。 A gasket 31 is fixed to the tip of the plunger 26b. The drug solution transferred into the syringe 26 or the gas (for example, air) sucked into the syringe 26 contacts the gasket 31. In the following description, in order to simplify the description, the gasket 31 is not referred to and is simply described as the plunger 26 b. In the first embodiment, the surface of the gasket 31 is the upper end surface of the plunger 26b.
 第1実施形態の薬液移注方法は、上述の構成要素を備えた薬液移注装置20を制御することで、容器24とシリンジ26との間で薬液を移注する方法である。 The drug solution transfer method of the first embodiment is a method for transferring a drug solution between the container 24 and the syringe 26 by controlling the drug solution transfer apparatus 20 including the above-described components.
 第1実施形態の薬液移注方法は、図2に示すように、データ取得ステップの一例であるステップS01と、空引きステップの一例であるステップS02と、針挿入ステップの一例であるステップS03と、一次押し引きステップの一例であるステップS04と、薬液移注ステップの一例であるステップS05と、陰圧調整ステップの一例であるステップS06と、引抜ステップの一例であるステップS07と、を行なうことで実施される。このうち、ステップS01~ステップS03は、所定量の薬液27が、容器24の内部24aからシリンジ26の内部26aに移注される(移動する)前に行われる。 As shown in FIG. 2, the drug solution transfer method according to the first embodiment includes step S01, which is an example of a data acquisition step, step S02, which is an example of a blanking step, and step S03, which is an example of a needle insertion step. Performing step S04, which is an example of the first push and pull step, step S05, which is an example of the drug solution transfer step, step S06, which is an example of the negative pressure adjustment step, and step S07, which is an example of the withdrawal step. Will be implemented in Among these, steps S01 to S03 are performed before the predetermined amount of the drug solution 27 is transferred (moved) from the inside 24a of the container 24 to the inside 26a of the syringe 26.
 ステップS01では、制御部40が、容器24のゴム栓30の位置のデータ、ゴム栓30の厚さのデータ、及び、針25の先端の採液口25aの先端の位置のデータなどを、各種センサ及び記憶部40bから取得する。各種センサは、例えば、シリンジ26の正面又は側面に取り付けられたカメラ100、第1保持部21の第1移動部23の移動量を計測するエンコーダ101、又は、第2保持部22の第2移動部19の移動量を計測するエンコーダ102である。エンコーダ101、102は、移動量検出装置としての位置センサの一例である。ステップS01は、具体的には、このカメラ100又はエンコーダ101により取得された情報と記憶部40bに記憶された情報に基づいて、容器24のゴム栓30の位置と厚さとに対する針25の採液口25aの相対的な位置を検出する。 In step S01, the control unit 40 performs various types of data on the position of the rubber plug 30 of the container 24, data on the thickness of the rubber plug 30, data on the position of the tip of the liquid collection port 25a at the tip of the needle 25, etc. Acquired from the sensor and storage unit 40b. The various sensors are, for example, the camera 100 attached to the front or side of the syringe 26, the encoder 101 for measuring the movement amount of the first moving unit 23 of the first holding unit 21, or the second movement of the second holding unit 22. The encoder 102 measures the amount of movement of the unit 19. The encoders 101 and 102 are an example of a position sensor as a movement amount detection device. Step S01 is, specifically, based on the information acquired by the camera 100 or the encoder 101 and the information stored in the storage unit 40b, the collection of the needle 25 with respect to the position and thickness of the rubber plug 30 of the container 24. The relative position of the mouth 25a is detected.
 ステップS02は、針25を容器24に穿刺する前に、所定量の気体をシリンジ26の内部26aに空引きするステップである。具体的には、ステップS02では、針25が容器24に挿入されていない状態で第2移動部19のモータ19mを駆動させることで、シリンジ26のプランジャ26bを下降させて、シリンジ26の外部及び針25内から、所定量の気体をシリンジ26に吸引することで空引きを行う。第1実施形態では、この吸引により、シリンジ26内のプランジャ26bのガスケット31の表面31a(図4参照)とシリンジ26の先端26jの内壁面26h(図4参照)との間に、空気溜まりを構成する気体28が存在している。 Step S02 is a step of emptying a predetermined amount of gas into the interior 26a of the syringe 26 before puncturing the needle 25 into the container 24. Specifically, in step S 02, the plunger 26 b of the syringe 26 is lowered by driving the motor 19 m of the second moving unit 19 in a state where the needle 25 is not inserted into the container 24. By drawing a predetermined amount of gas from the inside of the needle 25 into the syringe 26, it is evacuated. In the first embodiment, this suction forms an air reservoir between the surface 31a (see FIG. 4) of the gasket 31 of the plunger 26b in the syringe 26 and the inner wall surface 26h (see FIG. 4) of the tip 26j of the syringe 26. A constituent gas 28 is present.
 ステップS03は、ゴム栓30に対して針25を穿刺させることで、針25を容器24に挿入するステップである。ここで、針25がゴム栓30を穿刺する動作は、第1移動部23のモータ23aを駆動させることで容器24を下降させて、針25の採液口25aが容器24内に挿入されるステップである。なお、第1実施形態では、容器24を下降させてシリンジ26の針25を容器24のゴム栓30に穿刺したが、シリンジ26を上昇させて針25を容器24のゴム栓30に挿入しても良い。すなわち、容器24と針25とを相対的に動かして、針25を容器24のゴム栓30に穿刺すれば良い。 Step S03 is a step of inserting the needle 25 into the container 24 by causing the needle 25 to puncture the rubber plug 30. Here, in the operation in which the needle 25 punctures the rubber plug 30, the container 24 is lowered by driving the motor 23a of the first moving unit 23, and the liquid collection port 25a of the needle 25 is inserted into the container 24. It is a step. In the first embodiment, the container 24 is lowered to puncture the needle 25 of the syringe 26 into the rubber plug 30 of the container 24. However, the syringe 26 is raised and the needle 25 is inserted into the rubber plug 30 of the container 24 Also good. That is, the container 24 and the needle 25 may be moved relative to each other to puncture the needle 25 in the rubber plug 30 of the container 24.
 ステップS04は、シリンジ26のプランジャ26bを押し引きすることにより、容器24とシリンジ26との間で、薬液27又は気体28を移注させるステップである。シリンジ26から容器24への所定量の気体28の吐出、又は、容器24からシリンジ26への薬液27の吸引は、従来と同様の動作であるので、詳細な説明を省略する。ここで、所定量の気体28の吐出又は薬液27の吸引を行うステップは、第2移動部19のモータ19mを正逆駆動させて、シリンジ26のプランジャ26bを昇降させることにより行う。 Step S04 is a step of transferring the drug solution 27 or the gas 28 between the container 24 and the syringe 26 by pushing and pulling the plunger 26b of the syringe 26. The discharge of a predetermined amount of gas 28 from the syringe 26 to the container 24 or the suction of the chemical solution 27 from the container 24 to the syringe 26 is the same operation as in the prior art, and thus the detailed description is omitted. Here, the step of discharging the gas 28 of a predetermined amount or suctioning the chemical solution 27 is performed by driving the motor 19 m of the second moving unit 19 forward and reverse to move the plunger 26 b of the syringe 26 up and down.
 なお、ステップS04において、プランジャ26bを引くときの速度を、プランジャ26bを押すときの速度よりも低くすることで、ステップS04における押し引き動作における気泡の発生確率を低減させて、移注動作の精度を高くすることができる。発明者らの実験によれば、プランジャ26bを引く速度(薬液の吸込速度)を1m/s以下とし、プランジャ26bを押す速度(薬液の吐出速度)を5m/s以上とすることで、移注動作の精度を高くすることができた。 In step S04, the speed at which the plunger 26b is pulled is made lower than the speed at which the plunger 26b is pushed, thereby reducing the occurrence probability of air bubbles in the push and pull operation in step S04, and the accuracy of the transfusion operation. Can be raised. According to the experiments of the inventors, the transfer speed is set to 1 m / s or less for the pulling speed of the plunger 26b (the suction speed for the drug solution) and 5 m / s or more for the pressing speed (the drug discharge speed) to the plunger 26b. I was able to improve the accuracy of the operation.
 ステップS05は、所定量の薬液27を、容器24からシリンジ26の内部26aに移注するステップである。ここで、所定量の薬液27を移注するステップは、第2移動部19のモータ19mを駆動させて、シリンジ26のプランジャ26bを下降させることにより行う。 Step S05 is a step of transferring a predetermined amount of the drug solution 27 from the container 24 to the inside 26a of the syringe 26. Here, the step of transferring the chemical solution 27 of a predetermined amount is performed by driving the motor 19 m of the second moving unit 19 to lower the plunger 26 b of the syringe 26.
 ステップS06は、シリンジ26内の薬液27の一部を容器24に戻すことにより、容器24内の気体28の圧力を陰圧に調整するステップである。薬液27の一部を容器24に戻すステップは、第2移動部19のモータ19mを駆動させて、シリンジ26のプランジャ26bを上昇させて、シリンジ26内の薬液27の一部を容器24に吐出することにより行う。 Step S06 is a step of adjusting the pressure of the gas 28 in the container 24 to a negative pressure by returning a part of the drug solution 27 in the syringe 26 to the container 24. In the step of returning a part of the drug solution 27 to the container 24, the motor 19 m of the second moving unit 19 is driven to raise the plunger 26 b of the syringe 26 to discharge a part of the drug solution 27 in the syringe 26 into the container 24. It does by doing.
 ステップS07は、容器24のゴム栓30からシリンジ26の針25を引き抜くステップである。ここで、針25を引き抜く動作は、第1移動部23のモータ23aを駆動させることで容器24を矢印24cの方向に上昇させて、容器24から離れる方向に針25を相対的に移動させることにより行う。 Step S07 is a step of pulling out the needle 25 of the syringe 26 from the rubber plug 30 of the container 24. Here, the operation of pulling out the needle 25 is to move the needle 25 relatively in the direction away from the container 24 by raising the container 24 in the direction of the arrow 24 c by driving the motor 23 a of the first moving unit 23. To do.
 第1実施形態では、図2のステップS03の前にステップS02を行うことで、針25の内部に予め存在する空気(図示せず)をシリンジ26の内部26aに空引きすることで、針25の内部及びシリンジ26の口部26x近傍で、針25の内部の気体と空引きした気体とを一塊の気体として扱うことを可能とするものである。ここで、シリンジ26の口部26xは、シリンジ26の先端26j付近であり、針25とシリンジ26の内部26aとをつなぐ部分である。 In the first embodiment, by performing step S02 prior to step S03 of FIG. 2, the air (not shown) previously existing in the inside of the needle 25 is drawn to the inside 26 a of the syringe 26 so that the needle 25 can be operated. It is possible to treat the gas in the inside of the needle 25 and the evacuated gas as one mass of gas in the vicinity of the inside of the nozzle 26 and the mouth 26 x of the syringe 26. Here, the opening 26 x of the syringe 26 is in the vicinity of the tip 26 j of the syringe 26 and is a portion connecting the needle 25 and the inside 26 a of the syringe 26.
 すなわち、第1実施形態では、ステップS02の空引き動作を行うことで、針25内の気体とシリンジ26の外部の気体とを一体として吸引している。その結果、シリンジ26内において空気と薬液27とが不規則に混ざり合う可能性が低減し、シリンジ26内に移注された薬液27内における小さな気泡の発生を抑制できる。これにより、小さな気泡の発生を抑制した状態で薬液27の移注が可能となり、気泡による移注精度の劣化の可能性が低減し、高精度な薬液27の移注が可能となる。なお、第1実施形態では、薬液の移注を例に説明しているが、薬液の移注による薬液の混合が薬液の移注の一例であることは言うまでもない。 That is, in the first embodiment, the gas in the needle 25 and the gas outside the syringe 26 are integrally suctioned by performing the empty pulling operation in step S02. As a result, the possibility of irregular mixing of air and the drug solution 27 in the syringe 26 is reduced, and the generation of small air bubbles in the drug solution 27 transferred into the syringe 26 can be suppressed. As a result, transfusion of the drug solution 27 becomes possible in a state where generation of small air bubbles is suppressed, the possibility of deterioration of transfusion accuracy due to air bubbles is reduced, and transfusion of the drug solution 27 with high accuracy becomes possible. In the first embodiment, the transfer of the drug solution is described as an example, but it goes without saying that the mixing of the drug solution by the transfer of the drug solution is an example of the transfer of the drug solution.
 第1実施形態は、このように空引きを行なうことにより、薬液27をシリンジ26に吸引し始めるときに、気泡の発生を抑制することが可能なものである。具体的には、空引きを行うことにより、針25の内部に残っている気体28と薬液27とが、シリンジ26の内壁面26hとプランジャ26のガスケット31とに囲まれた狭い空間内において急激に混合されることによる気泡の発生を、抑制することができる。このようにして気泡の発生を抑制させることができれば、シリンジ26の内部には気泡がほとんど存在しないことになり、薬液27の移注を精度良く行うことができる。例えば、20mlシリンジにおいて、図2のステップS02の空引き処理を行わなかった場合の移注量のバラツキが0.107mlであったのに対して、図2のステップS02の空引き処理を行った場合(第1実施形態の場合)の移注量のバラツキは0.025mlであった。また、発明者らの実験により、移注の精度に影響する気泡としては、直径が50μm以上かつ3mm以下のもので、特に直径の小さい気泡がシリンジ26の壁面に付着し、壁面から剥がれにくいことが分かっている。第1実施形態では、特に、この大きさの気泡の発生の抑制に有効であると考えられる。 According to the first embodiment, when the chemical solution 27 starts to be sucked into the syringe 26, the generation of air bubbles can be suppressed by performing the empty pulling in this manner. Specifically, the gas 28 and the drug solution 27 remaining inside the needle 25 are rapidly dropped in a narrow space surrounded by the inner wall surface 26 h of the syringe 26 and the gasket 31 of the plunger 26 by performing the emptying. It is possible to suppress the generation of air bubbles due to being mixed in the If generation of air bubbles can be suppressed in this manner, almost no air bubbles will be present inside the syringe 26, and transfusion of the drug solution 27 can be performed with high accuracy. For example, in a 20 ml syringe, although the variation in transfusion amount was 0.107 ml when the blanking process in step S02 in FIG. 2 was not performed, the blanking process in step S02 in FIG. 2 was performed The variation of the transfusion amount in the case (in the case of the first embodiment) was 0.025 ml. Also, according to the experiments of the inventors, air bubbles that affect the accuracy of transfusion have a diameter of 50 μm or more and 3 mm or less, and in particular, air bubbles with a small diameter adhere to the wall surface of the syringe 26 and are difficult to peel off from the wall surface I know. The first embodiment is considered to be particularly effective in suppressing the generation of air bubbles of this size.
 次に、第1実施形態の薬液移注装置20の基本的な動作について説明する。ここでは、図1Aに示すように、鉛直方向の上部に容器24が配置され、容器24の軸芯沿いの鉛直方向の下部にシリンジ26が配置されている薬液移注装置20を一例として説明する。 Next, the basic operation of the drug solution transfusion apparatus 20 of the first embodiment will be described. Here, as shown in FIG. 1A, the chemical solution transfer apparatus 20 in which the container 24 is disposed in the upper part in the vertical direction and the syringe 26 is disposed in the lower part along the axial center of the container 24 will be described as an example. .
 シリンジ26は、針25の針先をほぼ鉛直方向の上方に向けた状態で、第2保持部22に保持されている。シリンジ26のプランジャ26bは、第2移動部19により、矢印26dの方向(鉛直方向)に沿って上下に自在に移動する。第2移動部19は、一例として、回転軸が正逆回転するモータ19mと、モータ19mの回転軸の正逆回転により正逆回転するボールネジ軸19pと、プランジャ26bと一緒に鉛直方向に上下移動する可動板19kとで構成されている。モータ19mは、第2移動部用駆動装置の一例として機能し、制御部40により駆動制御されて回転軸が正逆回転する。可動板19kは、プランジャ26bに連結されると共に、ボールネジ軸19pに係合されている。制御部40の制御によるモータ19mの駆動により、矢印26dの方向に沿ってプランジャ26bが上下移動して、シリンジ26の内部26aと容器24の内部との間で、薬液27又は気体の移注を行うことができる。 The syringe 26 is held by the second holding portion 22 in a state where the needle tip of the needle 25 is directed substantially upward in the vertical direction. The plunger 26 b of the syringe 26 is freely moved up and down by the second moving unit 19 along the direction (vertical direction) of the arrow 26 d. As an example, the second moving unit 19 vertically moves together with the motor 19m whose rotation axis rotates forward and reverse, the ball screw shaft 19p rotated forward and reverse by the rotation of the rotation axis of the motor 19m, and the plunger 26b. And a movable plate 19k. The motor 19m functions as an example of a drive unit for the second moving unit, and is drive-controlled by the control unit 40 to rotate the rotation shaft in the forward and reverse directions. The movable plate 19k is coupled to the plunger 26b and engaged with the ball screw shaft 19p. By driving the motor 19m under the control of the control unit 40, the plunger 26b moves up and down in the direction of the arrow 26d to transfer the chemical solution 27 or gas between the inside 26a of the syringe 26 and the inside of the container 24. It can be carried out.
 なお、第1実施形態では、第1保持部21を鉛直方向の上部に配置し、第2保持部22を鉛直方向の下部に配置しているため、容器24を倒立状態で保持したときに、容器24内においてゴム栓30に隣接した領域に薬液27が移動する。そのため、シリンジ26の針25から薬液27を容易に吸引できる。 In the first embodiment, since the first holding unit 21 is disposed in the upper part in the vertical direction and the second holding unit 22 is disposed in the lower part in the vertical direction, when the container 24 is held in an inverted state, The drug solution 27 moves to a region adjacent to the rubber plug 30 in the container 24. Therefore, the drug solution 27 can be easily sucked from the needle 25 of the syringe 26.
 ここで、ステップS03の針挿入動作において、針25がゴム栓30に穿刺されて完全に貫通したか否かの確認は、具体的には、以下のように行う。第1実施形態では、針25がゴム栓30を完全に貫通した状態とは、針25の採液口25aが容器24内に挿入された状態である。そのため、演算部40aにおいて、記憶部40bに記憶されたデータに基づいて容器24の位置及びゴム栓30の位置及び厚さに対する移動前の採液口25aの相対的な位置を算出すると共に、第1移動部23のエンコーダ101の検出動作による容器24の移動量を算出することで、容器24及びゴム栓30の位置に対する移動後の採液口25aの相対的な位置を求める。そして、演算部40aで求められた容器24及びゴム栓30の位置に対する採液口25aの位置を基に、制御部40の判断部40cで、針25がゴム栓30を完全に貫通したか否かを、確認及び判断する。ここで、針25がゴム栓30を完全に貫通していると判断部40cで判断する場合、判断部40cから駆動停止信号を第1移動部23のモータ23aに出力してモータ23aの駆動を停止させて、針25の先端の採液口25aが容器24内に挿入された状態に保持する。一方、針25がゴム栓30を完全に貫通していないと判断部40cで判断する場合、針25がゴム栓30を完全に貫通するまで、モータ23aを駆動させ続ける。 Here, in the needle insertion operation of step S03, the confirmation as to whether or not the needle 25 has been punctured by the rubber plug 30 and completely penetrated is specifically performed as follows. In the first embodiment, the state in which the needle 25 completely penetrates the rubber plug 30 is the state in which the liquid collection port 25 a of the needle 25 is inserted into the container 24. Therefore, based on the data stored in the storage unit 40b, the calculation unit 40a calculates the relative position of the liquid collection port 25a before the movement with respect to the position of the container 24 and the position and thickness of the rubber plug 30, The relative position of the liquid collection port 25a after movement with respect to the positions of the container 24 and the rubber plug 30 is calculated by calculating the amount of movement of the container 24 by the detection operation of the encoder 101 of the first moving unit 23. Then, based on the position of the liquid collection port 25a relative to the position of the container 24 and the rubber plug 30 determined by the calculation unit 40a, the determination unit 40c of the control unit 40 determines whether the needle 25 completely penetrates the rubber plug 30 Confirm and judge. Here, when the determination unit 40c determines that the needle 25 completely penetrates the rubber plug 30, the drive stop signal is output from the determination unit 40c to the motor 23a of the first moving unit 23 to drive the motor 23a. The operation is stopped, and the liquid collection port 25 a at the tip of the needle 25 is held in the state of being inserted into the container 24. On the other hand, when the judgment unit 40c judges that the needle 25 does not completely penetrate the rubber plug 30, the motor 23a is kept driven until the needle 25 completely penetrates the rubber plug 30.
 ステップS04の押し引き動作においては、カメラ100の撮像動作により、シリンジ26内の薬液27の液面の位置を検出すると共に、エンコーダ102の移動量を算出し、シリンジ26内の薬液の量と気体の量の増減を演算することで、移注量を求める。例えば、シリンジ26内の気体28の容器24内への移動を確認する場合、シリンジ26内の薬液27の液面の位置の変化に基づいて、所定量の気体(空気溜まりを構成する気体28)を全て容器24に吐出したか否かを、判断部40cで確認及び判断する。ここで、所定量の気体を全て容器24に吐出したと判断部40cで判断する場合、駆動停止信号を第2移動部19のモータ19mに出力してモータ19mの駆動を停止させる。一方、所定量の気体が容器24に吐出されていないと判断部40cで判断する場合、その移動量だけプランジャ26bが上昇するまで、モータ19mを駆動させ続ける。 In the push and pull operation in step S04, the position of the liquid surface of the chemical solution 27 in the syringe 26 is detected by the imaging operation of the camera 100, and the amount of movement of the encoder 102 is calculated. The transfusion amount is calculated by calculating the increase or decrease of the amount of. For example, when the movement of the gas 28 in the syringe 26 into the container 24 is confirmed, a predetermined amount of gas (the gas 28 forming the air pool) based on the change in the position of the liquid surface of the drug solution 27 in the syringe 26 The determination unit 40c confirms and determines whether all the ink has been discharged into the container 24 or not. Here, when the determination unit 40c determines that all the predetermined amount of gas has been discharged to the container 24, the drive stop signal is output to the motor 19m of the second moving unit 19 to stop the drive of the motor 19m. On the other hand, when the determination unit 40c determines that the predetermined amount of gas is not discharged into the container 24, the motor 19m is kept driven until the plunger 26b is raised by the amount of movement.
 次に、図3Aから図3J、図4を用いて、第1実施形態の薬液移注方法の一連の動作を説明する。図3Aから図3Jは、本発明の第1実施形態に係る薬液移注装置20の一部断面図であって、容器24及びシリンジ26の位置関係を示す図である。図3Aから図3J、図4において、容器24の内部24aの針25の位置、薬液27の量、及び、気泡の位置、及び、大きさ等を分かり易くするために、容器24の一部を、断面図で示している。図4は、薬液27の移注時において、シリンジ26の先端の内壁面26hが薬液27で濡れず、結果として、気泡の付着が防止できている状態を説明する図である。濡れた面は、気泡が付着しやすいと共に取れにくいため、シリンジ26の内壁面26hを濡らさずに薬液の移注が可能な第1実施形態は、高い精度を維持することができる。図4の(a)は薬液移注動作の開始直後の状態(図3Dの状態の直前の状態)を示し、図4の(b)は図3Dの状態を示し、図4の(c)は図3Eの状態を示し、図4の(d)は図3Fの直前の状態を示し、図4の(e)は図3Fの状態を示す。 Next, a series of operations of the drug solution transfer method of the first embodiment will be described using FIGS. 3A to 3J and FIG. 4. FIGS. 3A to 3J are partial cross-sectional views of the drug solution transfer device 20 according to the first embodiment of the present invention, showing the positional relationship between the container 24 and the syringe 26. In FIGS. 3A to 3J and FIG. 4, in order to make it easy to understand the position of the needle 25 in the inside 24 a of the container 24, the amount of the drug solution 27, the position and size of the air bubbles, etc. , In a cross-sectional view. FIG. 4 is a view for explaining a state in which the inner wall surface 26h at the tip of the syringe 26 does not get wet with the drug solution 27 at the time of transfer of the drug solution 27, and as a result, adhesion of air bubbles is prevented. Since the wetted surface is likely to adhere and be difficult to remove air bubbles, the first embodiment capable of transfusion of the drug solution without wetting the inner wall surface 26h of the syringe 26 can maintain high accuracy. (A) of FIG. 4 shows the state immediately after the start of drug solution transfer operation (the state immediately before the state of FIG. 3D), (b) of FIG. 4 shows the state of FIG. 3D, (c) of FIG. The state of FIG. 3E is shown, (d) of FIG. 4 shows the state immediately before FIG. 3F, and (e) of FIG. 4 shows the state of FIG. 3F.
 まず、図3Aは、所定量の薬液27を容器24からシリンジ26の内部26aに移動させる前で、かつ、例えば、シリンジ26をシリンジ26の滅菌パックから取り出した直後の初期状態を示している。この初期状態では、図3Aに示すように、プランジャ26bがシリンジ26の先端26j近くに位置している。この初期状態は、シリンジ26の先端26jの内壁面26hとプランジャ26bの先端のガスケット31とが直接接触していない状態であるが、シリンジ26の先端の内壁面26hとプランジャ26bの先端のガスケット31との隙間は、可能な限り小さくなっている。この初期状態では、シリンジ26内の気体28は、シリンジ26の目盛りでは、ほぼゼロである。 First, FIG. 3A shows an initial state, for example, immediately after taking out the syringe 26 from the sterilization pack of the syringe 26 before moving a predetermined amount of the drug solution 27 from the container 24 to the inside 26 a of the syringe 26. In this initial state, as shown in FIG. 3A, the plunger 26 b is located near the tip 26 j of the syringe 26. In this initial state, the inner wall surface 26h of the tip 26j of the syringe 26 and the gasket 31 at the tip of the plunger 26b are not in direct contact, but the gasket 31 of the inner wall surface 26h of the tip of the syringe 26 and the tip of the plunger 26b is The gap with is as small as possible. In this initial state, the gas 28 in the syringe 26 is approximately zero on the scale of the syringe 26.
 第1実施形態では、このような初期状態において、図3Bに示すように、空引きを行う(図2のステップS02参照)。空引きを行う量としては、具体的には、例えば、容量2.5mlのシリンジにおいては、0.1ml以上かつ0.5ml未満の量の空気を空引きする。また、容量20mlのシリンジ又は容量50mlのシリンジにおいては、0.5ml以上かつ2.0ml未満の量の空気を空引きする。ここでの空引き量は、針25の径及び長さには依存しない。ここで、空引きの最大量を設定している理由は、空引き量が多いと、気泡の発生は抑制できるが、移注に時間がかかって作業性が悪くなるためである。空引きの最小量を設定しているのは、空引き量が小さ過ぎると、シリンジ26の先端26jの内壁面26hが移注された薬液27で濡れてしまうためである。また、空引き動作のときのプランジャ26bの移動距離の一例としては、5mm以上である。これは、プランジャ26bの移動距離が5mmより小さいと、ガスケット31とシリンジ26の内壁面26hとの距離が小さ過ぎて、移注された薬液27がガスケット31に当たって飛び散って、内壁面26hに付着する可能性があるためである。プランジャ26bの移動距離が5mm以上の場合には、ガスケット31とシリンジ26の内壁面26hとの距離が十分に離れているため、移注された薬液27がプランジャ26bの先端に当たって飛び散って内壁面26hに付着する可能性が軽減される。 In the first embodiment, in such an initial state, as shown in FIG. 3B, blanking is performed (see step S02 in FIG. 2). Specifically, for example, in a syringe having a volume of 2.5 ml, air having a volume of 0.1 ml or more and less than 0.5 ml is evacuated. In a 20 ml syringe or 50 ml syringe, air of 0.5 ml or more and less than 2.0 ml is evacuated. The amount of emptying here does not depend on the diameter and length of the needle 25. Here, the reason for setting the maximum amount of emptying is that if the amount of emptying is large, the generation of air bubbles can be suppressed, but transfer takes time and work efficiency is deteriorated. The minimum amount of emptying is set because, if the amount of emptying is too small, the inner wall surface 26h of the tip 26j of the syringe 26 gets wet with the transferred chemical solution 27. Moreover, as an example of the movement distance of the plunger 26b at the time of a pull-down operation | movement, it is 5 mm or more. This is because if the moving distance of the plunger 26b is smaller than 5 mm, the distance between the gasket 31 and the inner wall surface 26h of the syringe 26 is too small, and the transferred chemical solution 27 strikes the gasket 31 and scatters and adheres to the inner wall surface 26h It is because there is a possibility. When the movement distance of the plunger 26b is 5 mm or more, the distance between the gasket 31 and the inner wall surface 26h of the syringe 26 is sufficiently large, the transferred chemical solution 27 strikes the tip of the plunger 26b and spatters off and the inner wall surface 26h The possibility of adhering to
 図3Cは、シリンジ26の内部26aに空引きした気体を入れたまま(すなわち、空気溜まりとしての気体28をシリンジ26内に維持したまま)、容器24を下降させて、ゴム栓30を介して容器24に針25を穿刺した状態を示している(図2のステップS03参照)。 In FIG. 3C, the container 24 is moved down via the rubber plug 30 while keeping the evacuated gas in the interior 26a of the syringe 26 (ie, maintaining the gas 28 as an air reservoir in the syringe 26). A state in which the needle 25 is punctured in the container 24 is shown (see step S03 in FIG. 2).
 図3D及び図4の(b)は、図3Cの状態からシリンジ26のプランジャ26bを矢印26eの方向に押し下げて、容器24の内部の薬液27をシリンジ26に吸引している状態を示している。ここで、第1実施形態では、吸引動作の開始直後において、図4の(a)~(b)及び図3Dに示すように、シリンジ26内に気体28を予め入れて一塊の空気溜まりを形成しておくことで、針25の内部に存在する空気(図示せず)が小さな気泡になることを抑制している。 FIGS. 3D and 4B show a state where the liquid medicine 27 in the container 24 is sucked into the syringe 26 by pushing down the plunger 26b of the syringe 26 in the direction of the arrow 26e from the state of FIG. 3C. . Here, in the first embodiment, immediately after the start of the suction operation, as shown in (a) to (b) of FIG. 4 and FIG. 3D, the gas 28 is preliminarily contained in the syringe 26 to form a lump of air pool. By doing so, the air (not shown) present inside the needle 25 is prevented from becoming a small air bubble.
 さらに、図3D及び図4の(b)に示すように、図4の(a)の状態からシリンジ26のプランジャ26bを矢印の鉛直方向の下向きに押し下げて、容器24の内部の薬液27をシリンジ26に吸引する。 Furthermore, as shown in FIG. 3D and FIG. 4B, the plunger 26b of the syringe 26 is pushed downward in the direction of the arrow from the state of FIG. Aspirate to 26
 図3E及び図4の(c)は、プランジャ26bの押し下げ動作を停止して、薬液27が、ガスケット31上に溜まると共に、溜まった薬液27の上に空気溜まりとしての気体28が残った状態を示している。 In FIG. 3E and (c) of FIG. 4, the depressing operation of the plunger 26 b is stopped, and the chemical solution 27 is accumulated on the gasket 31, and the gas 28 as an air accumulation remains on the accumulated chemical solution 27. It shows.
 その後、プランジャ26bを矢印26fの方向に押し上げて、図3F~図3G及び図4の(d)~(e)に示すように、シリンジ26内に残った所定量の気体(空気溜まりとしての気体28)を、容器24に空気の塊26yとして吐出する。図3D~図3Gに示す操作が、図2に示すステップS04である。 Thereafter, the plunger 26b is pushed up in the direction of the arrow 26f, and as shown in FIGS. 3F to 3G and (d) to (e) in FIG. 28) are discharged into the container 24 as a mass of air 26y. The operation shown in FIGS. 3D to 3G is step S04 shown in FIG.
 ステップS04によってシリンジ26内の気体28を容器24内に空気の塊26yとして押し出した後に、図3Hに示すように、プランジャ26bを矢印26eの方向に引いて、容器24の薬液27を所定量だけシリンジ26内に移動させる(図2のステップS05参照)。このステップS05を行うときに、容器24内の気体36の体積は、シリンジ26内に移注された(移動した)薬液27の体積分だけ増加する。これにより、体積が増加した容器24内の気体36の圧力は、大気圧より減少し、陰圧となる。 After the gas 28 in the syringe 26 is pushed out into the container 24 as a mass of air 26y in step S04, as shown in FIG. 3H, the plunger 26b is pulled in the direction of the arrow 26e, It is moved into the syringe 26 (see step S05 in FIG. 2). When this step S05 is performed, the volume of the gas 36 in the container 24 is increased by the volume of the drug solution 27 transferred (moved) into the syringe 26. As a result, the pressure of the gas 36 in the container 24 with the increased volume is reduced from atmospheric pressure to negative pressure.
 そこで、第1実施形態では、図3Iに示すように、容器24内の圧力が、針25の先端から薬液27が漏れる現象(以下、スピル)が起こらない程度の陰圧を保持するように、調整している。具体的には、第1実施形態では、シリンジ26のプランジャ26bを上昇させることにより、シリンジ26の内部26aの薬液27の一部を容器24に戻している(図2のステップS06参照)。これにより、容器24内の気体36の圧力は、最適な陰圧に調整される。 Therefore, in the first embodiment, as shown in FIG. 3I, the pressure in the container 24 maintains a negative pressure to such an extent that the liquid medicine 27 does not leak from the tip of the needle 25 (hereinafter referred to as spill). I'm adjusting. Specifically, in the first embodiment, part of the drug solution 27 in the inside 26a of the syringe 26 is returned to the container 24 by raising the plunger 26b of the syringe 26 (see step S06 in FIG. 2). Thereby, the pressure of the gas 36 in the container 24 is adjusted to the optimal negative pressure.
 その後、図3Jに示すように容器24を相対的に上昇させて、容器24のゴム栓30から、シリンジ26の先端に付いた針25を引き抜く(図2のステップS07参照)。 Thereafter, as shown in FIG. 3J, the container 24 is relatively raised, and the needle 25 attached to the tip of the syringe 26 is pulled out of the rubber plug 30 of the container 24 (see step S07 in FIG. 2).
 図5は、本発明の第1実施形態に係る薬液移注装置20の一例として、移注モジュールを複数個備えて構成された薬液混合装置32を示す側面図である。 FIG. 5: is a side view which shows the chemical | medical solution mixing apparatus 32 provided with multiple transfusion modules as an example of the chemical | medical solution transfusion apparatus 20 which concerns on 1st Embodiment of this invention.
 図5に示すように、薬液混合装置32は、円筒形の外壁32aに囲まれた薬液混合エリア32bの中に円筒形状の第3保持部33を有している。薬液混合エリア32bは、装置の外部への薬液27の漏れを確実に防止するための作業空間を形成する領域である。この円筒形状の第3保持部33は、中心軸32cに沿って上下方向に分割された第2保持部22と第1保持部21とで構成される。 As shown in FIG. 5, the chemical solution mixing device 32 has a cylindrical third holding portion 33 in a chemical solution mixing area 32b surrounded by a cylindrical outer wall 32a. The chemical solution mixing area 32b is an area for forming a working space for reliably preventing the leakage of the chemical solution 27 to the outside of the apparatus. The cylindrical third holding portion 33 is configured by the second holding portion 22 and the first holding portion 21 which are divided in the vertical direction along the central axis 32 c.
 薬液混合装置32は、第3保持部33以外に、第1移動部23と、第2移動部19と、制御部40を備えて構成される。 The chemical liquid mixing apparatus 32 includes the first moving unit 23, the second moving unit 19, and the control unit 40 in addition to the third holding unit 33.
 制御部40は、シリンジ26と容器24との組み合わせ(以下、混合セット)を、円柱状の支持部35の軸回りに、複数の位置に位置制御する。複数の位置としては、少なくとも、設置位置と薬液移注位置とがある。ここで、設置位置は、薬液混合装置32にシリンジ26及び容器24を設置するための位置であり、薬液移注位置は、前述のステップS01~S07の薬液移注方法を実施するための位置である。 The control unit 40 controls the position of the combination of the syringe 26 and the container 24 (hereinafter referred to as the mixing set) around the axis of the cylindrical support 35 at a plurality of positions. The plurality of positions include at least an installation position and a chemical solution transfer position. Here, the installation position is a position for installing the syringe 26 and the container 24 in the drug solution mixing device 32, and the drug solution transfer position is a position for performing the drug solution transfer method of steps S01 to S07 described above. is there.
 第2保持部22及び第1保持部21は、それぞれ複数のホルダー34a,34bを含んで構成されている。また、第2保持部22及び第1保持部21は、それぞれ独立に支持部35の中心軸32cの周りに制御部40の制御の下に回動自在に回転可能であり、相対的に回転させることで、選択されたシリンジ26と選択された容器24とを切替えて、上下方向に整列させることができる。 The second holding unit 22 and the first holding unit 21 are configured to include a plurality of holders 34a and 34b, respectively. In addition, the second holding unit 22 and the first holding unit 21 are independently rotatable around the central axis 32c of the support unit 35 under the control of the control unit 40, and are relatively rotated. Thus, the selected syringe 26 and the selected container 24 can be switched to be aligned in the vertical direction.
 また、図5に示す薬液混合装置32の第2保持部22は、複数のホルダー34a,34bそれぞれにおいて、形状に関わらず複数種類のシリンジ26を保持できる。シリンジ26は、吸引する薬液27の種類により、例えば、「容量2.5ml」、「容量20ml」、「容量50ml」などのように、形状が異なるものがある。第1実施形態32では、複数種類の形状のシリンジ26に対応した専用の治具を準備しており、複数種類の形状のシリンジ26の外筒を確実に固定して保持可能である。さらに、第1実施形態では、第2移動部10においても、異なる形状のプランジャ26bに対応した専用の治具を準備している。 Moreover, the 2nd holding part 22 of the chemical | medical solution mixing apparatus 32 shown in FIG. 5 can hold | maintain multiple types of syringes 26 irrespective of a shape in each of several holder 34a, 34b. The syringe 26 may have different shapes, such as “volume 2.5 ml”, “volume 20 ml”, “volume 50 ml”, etc., depending on the type of the drug solution 27 to be aspirated. In the first embodiment 32, a dedicated jig corresponding to the syringes 26 of a plurality of types of shapes is prepared, and the outer cylinder of the syringes 26 of a plurality of types of shapes can be securely fixed and held. Furthermore, in the first embodiment, also in the second moving unit 10, a dedicated jig corresponding to the plungers 26b having different shapes is prepared.
 なお、薬液混合装置32では、1つの位置(薬液移注位置)で薬液移注方法を実施するものに限らず、ステップ毎に異なる位置で、それぞれのステップを行うようにしてもよい。例えば、混合セットを設置位置に配置した後、ステップS02を行う空引き位置、ステップS03を行う針挿入位置、ステップS04を行う一次押し引き位置、ステップS05を行う薬液移注位置、ステップS06を行う陰圧調整位置、ステップS07を行う引抜位置を、それぞれ別の位置で行っても良い。この場合には、それぞれの位置に第1移動部23又は第2移動部19などが適宜必要となる。なお、これに限らず、1つの位置で2つ又は3つのステップを行うようにしてもよいことは言うまでも無い。 In addition, in the chemical | medical solution mixing apparatus 32, you may make it perform each step not only what implements a chemical | medical solution transfusion method in one position (chemical | medical solution transfusion position) but a different position for every step. For example, after disposing the mixing set at the installation position, an empty pulling position for performing step S02, a needle insertion position for performing step S03, a primary push / pulling position for performing step S04, a drug solution transfer position for performing step S05, and step S06 The negative pressure adjustment position and the extraction position at which step S07 is performed may be performed at different positions. In this case, the first moving unit 23 or the second moving unit 19 or the like is required at each position. The present invention is not limited to this, and it goes without saying that two or three steps may be performed at one position.
 このような構成により、薬液混合装置32は、複数種類の容器24及び複数種類のシリンジ26を用いて複数種類の薬液27を混合する場合でも、効率良く安全に薬液27を混合できる。 With such a configuration, the chemical solution mixing device 32 can efficiently and safely mix the chemical solution 27 even when mixing the plurality of types of chemical solution 27 using the plurality of types of containers 24 and the plurality of types of syringes 26.
 ここで、第1実施形態の薬液移注装置20及び薬液混合装置32の効果を確認するために、図6Aから図8Bを用いて、従来の薬液混合について説明する。図6Aから図8Bは、従来の薬液移注方法を説明するための図である。特に、図7は、シリンジ26の先端の内壁面26hが薬液27で部分的に濡れてしまい、濡れた面に気泡が付着してしまう状態を説明する図である。図7の(a)は図6Aの状態を示し、図7の(b)は図6Bの状態を示し、図7の(e)は図6Cの状態を示す。理解しやすくするため、ここでは、第1実施形態の薬液移注装置のシリンジ26と容器24とを使用して、従来の薬液移注方法を行う場合について説明する。 Here, in order to confirm the effect of the drug solution transfer apparatus 20 and the drug solution mixing apparatus 32 according to the first embodiment, conventional drug solution mixing will be described using FIGS. 6A to 8B. 6A to 8B are diagrams for explaining a conventional drug solution transfer method. In particular, FIG. 7 is a view for explaining a state in which the inner wall surface 26h at the tip of the syringe 26 is partially wetted by the chemical solution 27, and air bubbles adhere to the wetted surface. 7 (a) shows the state of FIG. 6A, FIG. 7 (b) shows the state of FIG. 6B, and FIG. 7 (e) shows the state of FIG. 6C. In order to make it easy to understand, here, the case where the conventional drug solution transfer method is performed using the syringe 26 and the container 24 of the drug solution transfer apparatus according to the first embodiment will be described.
 従来の薬液移注方法では、第1実施形態のように空引き(図2のステップS02)は行わない。空引きを行わないで(すなわち、ステップS02無しで)、図6Aに示す初期状態から図6Bに示すように、針25を容器24に挿入した後(ステップS03)、図6C及び図7の(a)~(e)に示すようにプランジャ26bを矢印26eの方向に押し下げて、薬液27を容器24からシリンジ26内に吸引する(ステップS04)。従来の薬液移注装置では、このときに、図6Cに示す気泡29が発生することがある。 In the conventional drug solution transfer method, the emptying (step S02 in FIG. 2) is not performed as in the first embodiment. After the needle 25 is inserted into the container 24 (step S03) as shown in FIG. 6B from the initial state shown in FIG. 6A without emptying (ie, without step S02), FIG. 6C and FIG. As shown in a) to (e), the plunger 26b is pushed down in the direction of the arrow 26e to aspirate the drug solution 27 from the container 24 into the syringe 26 (step S04). In the conventional drug solution transfer apparatus, at this time, air bubbles 29 shown in FIG. 6C may be generated.
 すなわち、図7の(a)において、プランジャ26bを鉛直方向の下向きに押し下げて、容器24から薬液27をシリンジ26の内部26aに吸引を開始する。すると、シリンジ26内に吸引された薬液27は、ガスケット31とシリンジ26の内壁面26hとの間には隙間がほとんど無いため、ガスケット31にぶつかった薬液27の逃げ道が存在せず、複雑な流れになってしまい、小さな気泡が発生しやすくなる。この状態で吸引を続けると、図7の(b)に示すように、薬液27がガスケット31にぶつかって飛び散った際に小さな気泡29が発生することになる。 That is, in (a) of FIG. 7, the plunger 26 b is pushed downward in the vertical direction, and suction of the drug solution 27 from the container 24 into the inside 26 a of the syringe 26 is started. Then, since there is almost no gap between the gasket 31 and the inner wall surface 26 h of the syringe 26, the chemical solution 27 sucked into the syringe 26 has no clearance for the drug solution 27 that collides with the gasket 31, and a complicated flow It becomes easy to generate small air bubbles. If suction is continued in this state, as shown in FIG. 7B, when the chemical solution 27 collides with the gasket 31 and spatters, a small air bubble 29 is generated.
 次いで、図7の(c)~(e)に示すように、プランジャ26bを鉛直方向の下向きにさらに押し下げると、シリンジ26内が薬液27で満たされるが、薬液27内には、図7の(a)及び(b)でシリンジ26の内壁面26hに付着した気泡29が残ってしまうことが多い。さらに、内壁面26hが濡れた状態で気泡29が付着すると、この気泡29は剥離しにくくなり、シリンジ26を振動させても剥離しないことがある。 Then, as shown in (c) to (e) of FIG. 7, when the plunger 26 b is further pressed downward in the vertical direction, the inside of the syringe 26 is filled with the drug solution 27. In many cases, the air bubbles 29 attached to the inner wall surface 26h of the syringe 26 in a) and b) remain. Furthermore, when the air bubble 29 adheres while the inner wall surface 26 h is wet, the air bubble 29 becomes difficult to peel off, and may not peel off even if the syringe 26 is vibrated.
 それに対し、前述のように、第1実施形態によれば、薬液27内に小さな気泡(従来の小さな気泡29)が発生することを抑制し、移注量のバラツキが軽減されて、薬液27の移注及び混合を精度良く行なうことができる。移注量のバラツキ軽減の一例としては、容量20mlのシリンジにおいて、第1実施形態を適用しない場合には3σで0.107mlの誤差があるのに対して、第1実施形態を適用する場合には3σで0.025mlの誤差となり、バラツキが77%も軽減させることができる。また、容量50mlのシリンジにおいて、第1実施形態を適用しない場合には3σで0.095mlの誤差があるのに対して、第1実施形態を適用する場合には3σで0.035mlの誤差となり、バラツキが63%も軽減させることができる。 On the other hand, as described above, according to the first embodiment, generation of small air bubbles (conventional small air bubbles 29) in the chemical solution 27 is suppressed, and variations in transfusion amount are reduced. Transfusion and mixing can be performed precisely. As an example of the variation reduction of the transfusion amount, in the case where the first embodiment is not applied, there is an error of 0.107 ml at 3σ in the case of applying the first embodiment in a syringe having a volume of 20 ml. Is an error of 0.025 ml at 3σ, and the variation can be reduced by 77%. Moreover, in a syringe with a volume of 50 ml, there is an error of 0.095 ml at 3σ when the first embodiment is not applied, but an error of 0.035 ml at 3σ when the first embodiment is applied. The variation can be reduced by 63%.
 (第2実施形態)
 図8は、本発明の第2実施形態に係る薬液移注方法に用いる移注針51の断面図である。第2実施形態の薬液移注方法は、前述の第1実施形態の針25の代わりに、図8に示す移注針51を用いる点で第1実施形態と異なり、それ以外は第1実施形態と同じであるため、同じ部分の説明は省略する。
Second Embodiment
FIG. 8 is a cross-sectional view of a transfer needle 51 used in the drug solution transfer method according to the second embodiment of the present invention. The drug solution transfer method of the second embodiment differs from the first embodiment in that a transfer needle 51 shown in FIG. 8 is used instead of the needle 25 of the first embodiment described above, and the other embodiment is the first embodiment. And the description of the same parts will be omitted.
 第2実施形態で用いる針は、図16に示すように、筒状の針基52と、第1針53と、第2針54と、を備えた移注針51である。ここで、針基52は、シリンジ26の筒先に装着される。第1針53は、内部に通気路55を有する。第2針54は、第1針53より長く第1針53と平行に配置されている。また、第1針53は、通気路55の一端である第1通気口56を、他端である第2通気口57よりも第2針54の先端側に設けている。第2針54は、通液路58の一端を針基52の内側に接続すると共に、他端を第2針54の通液口59としている。また、第2針54は、通液口59を有する先端部54aと、針基52に接続する基部54bと、を有している。 The needle used in the second embodiment is a transfusion needle 51 including a cylindrical needle base 52, a first needle 53, and a second needle 54, as shown in FIG. Here, the needle base 52 is attached to the end of the syringe 26. The first needle 53 has an air passage 55 inside. The second needle 54 is longer than the first needle 53 and disposed parallel to the first needle 53. Further, the first needle 53 is provided with a first air vent 56 which is one end of the air passage 55 at the tip end side of the second needle 54 than the second air vent 57 which is the other end. The second needle 54 connects one end of the liquid passage 58 to the inside of the needle base 52, and the other end is a liquid passage port 59 of the second needle 54. The second needle 54 also has a tip 54 a having a liquid passage 59 and a base 54 b connected to the needle base 52.
 このように構成される移注針51を用いて、第2針54の通液口59から、容器24内の薬液27を吸引する場合を考える。薬液27は、第2針54の通液口59から吸引されて、第2針54の内部と針基52とを通ってシリンジ26の内部26aに移注される。すると、容器24の内部の薬液27が減って容器24の内部24aの気体36の体積が増加するため、容器24内の気体36の圧力が減少し、気体36の圧力が大気圧よりも低くなる。ここで、第2実施形態では、移注針51を使用しているので、気体36の圧力が大気圧よりも低いと、容器24の外部の大気が、第1針53の第2通気口57から第1通気口56を介して容器24の中に入り、容器24の内部24aと大気圧との圧力差が少なくなる。第2実施形態の薬液移注方法は、この移注針51を用いるので、薬液27を吸引してから所定量を吸引し終わるまでの間に、大きな力が必要ではなく、かつ、ポンピング動作も必要ではない。また、第2実施形態の薬液移注方法では、前述の第1実施形態と同様に、容器24からシリンジ26に薬液27を移注する前に図2のステップS02の空引き動作を行うので、気泡29の発生を抑制でき、精度良く、かつ、効率良く薬液の移注及び混合を行うことができる。 A case will be considered where the drug solution 27 in the container 24 is aspirated from the passage opening 59 of the second needle 54 using the transfusion needle 51 configured as described above. The drug solution 27 is aspirated from the liquid passage port 59 of the second needle 54 and transferred to the inside 26 a of the syringe 26 through the inside of the second needle 54 and the needle base 52. Then, since the chemical solution 27 inside the container 24 decreases and the volume of the gas 36 inside the container 24 increases, the pressure of the gas 36 inside the container 24 decreases and the pressure of the gas 36 becomes lower than atmospheric pressure. . Here, in the second embodiment, since the transfer needle 51 is used, when the pressure of the gas 36 is lower than the atmospheric pressure, the atmosphere outside the container 24 is the second vent 57 of the first needle 53. The pressure difference between the inside 24a of the container 24 and the atmospheric pressure is reduced. The drug solution transfer method according to the second embodiment uses this transfer needle 51, so a large force is not necessary between suction of the drug solution 27 and completion of suction of a predetermined amount, and the pumping operation is also performed. It is not necessary. Further, in the drug solution transfer method of the second embodiment, as in the first embodiment described above, the empty pulling operation of step S02 of FIG. 2 is performed before transferring the drug solution 27 from the container 24 to the syringe 26. The generation of the air bubbles 29 can be suppressed, and transfusion and mixing of the chemical solution can be performed accurately and efficiently.
 なお、第2実施形態では、移注量に関わらず、空引き動作であるステップS02での空引き量を一定に設定することができる。一方、前述の第1実施形態では、ポンピング動作を用いて薬液27を移動させる場合、移注量に応じてステップS02での空引き量を変更させる必要がある。ただし、ポンピング動作を必要としない少量の移注に関しては、第2実施形態と同様である。ここで言う少量の移注とは、例えば、2ml以下の移注を指す。 In the second embodiment, regardless of the transfusion amount, it is possible to set the emptying amount at step S02 which is the emptying operation constant. On the other hand, in the first embodiment described above, in the case of moving the chemical solution 27 using the pumping operation, it is necessary to change the emptying amount in step S02 according to the transfusion amount. However, the second embodiment is the same as the second embodiment for a small amount of transfusion that does not require a pumping operation. The small amount of transfusion referred to here means, for example, transfusion of 2 ml or less.
 また、第1及び第2実施形態では、第1保持部21を第1移動部23で移動させる場合について説明したが、第1保持部21を固定した状態で第2保持部22を第1移動部23で移動させても、相対的に同じ動きとすることができる。 Further, in the first and second embodiments, the case where the first holding unit 21 is moved by the first moving unit 23 has been described, but the second holding unit 22 is moved first while the first holding unit 21 is fixed. Even if it moves by the part 23, it can be set as the same movement relatively.
 なお、上記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 In addition, the effect which each has can be show | played by combining suitably the arbitrary embodiment or modification of said various embodiment or modification.
 本発明に係る薬液移注方法及び薬液移注装置によれば、薬液を精度良く移注できるので、例えば、病院などにおける薬液移注に有用である。 According to the drug solution transfer method and the drug solution transfer apparatus according to the present invention, since the drug solution can be transferred with high accuracy, it is useful, for example, for drug solution transfer in a hospital or the like.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 While the present invention has been fully described in connection with the preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. Such variations or modifications are to be understood as being included therein without departing from the scope of the present invention as set forth in the appended claims.

Claims (13)

  1.  薬液を内部に有する容器の鉛直方向の下方に配置されたシリンジを用い、前記シリンジのプランジャのガスケットと前記シリンジの内壁面との間に空気溜まりが存在する状態で前記シリンジの針を前記容器に穿刺した後、
     前記プランジャを移動させることで、前記針を介して前記容器から前記シリンジに前記薬液を移注させる、
    薬液移注方法。
    Using the syringe disposed vertically below the container having the drug solution inside, the needle of the syringe is transferred to the container in a state where an air reservoir exists between the gasket of the plunger of the syringe and the inner wall surface of the syringe After puncture
    Moving the plunger to transfer the drug solution from the container to the syringe via the needle;
    Chemical solution transfer method.
  2.  前記ガスケットと前記シリンジの内壁面との間に前記空気溜まりが存在する状態では、前記ガスケットと前記シリンジの内壁面との間に5mm以上の隙間が形成されている、
    請求項1に記載の薬液移注方法。
    In the state where the air pool exists between the gasket and the inner wall surface of the syringe, a gap of 5 mm or more is formed between the gasket and the inner wall surface of the syringe.
    The drug solution transfer method according to claim 1.
  3.  前記空気溜まりの体積は、前記シリンジの容量が2.5mlの場合は0.1ml以上かつ0.5ml未満であり、前記シリンジの容量が20ml又は50mlの場合は0.5ml以上かつ2.0ml未満である、
    請求項1又は2に記載の薬液移注方法。
    The volume of the air reservoir is 0.1 ml or more and less than 0.5 ml when the volume of the syringe is 2.5 ml, and 0.5 ml or more and less than 2.0 ml when the volume of the syringe is 20 ml or 50 ml Is
    The drug solution transfer method according to claim 1 or 2.
  4.  前記容器から前記シリンジに前記薬液を移注させるとき、前記ガスケットにぶつかって飛び散った前記薬液が前記シリンジの先端の内壁面に飛散しないように、前記プランジャを移動させる、
    請求項1又は2に記載の薬液移注方法。
    When transferring the drug solution from the container to the syringe, the plunger is moved so that the drug solution hitting the gasket and splattering does not fly to the inner wall surface of the tip of the syringe.
    The drug solution transfer method according to claim 1 or 2.
  5.  前記針を前記容器に穿刺する前に、前記シリンジの前記プランジャを移動させることで、前記シリンジの外部の気体及び前記針の内部の気体を前記シリンジ内に吸引して前記空気溜まりを形成する、
    請求項1又は2に記載の薬液移注方法。
    Before puncturing the needle into the container, the plunger of the syringe is moved to suck the gas outside the syringe and the gas inside the needle into the syringe to form the air reservoir.
    The drug solution transfer method according to claim 1 or 2.
  6.  前記容器から前記シリンジに前記薬液を移注するときに、前記プランジャの移動速度を1m/s以下とする、
    請求項1又は2に記載の薬液移注方法。
    When transferring the drug solution from the container to the syringe, the moving speed of the plunger is 1 m / s or less.
    The drug solution transfer method according to claim 1 or 2.
  7.  前記薬液の移注が終わって前記容器から前記針を引き抜く前に、前記シリンジ内の前記空気溜まりを前記容器に移動させる、
    請求項1又は2に記載の薬液移注方法。
    Moving the air reservoir in the syringe to the container before the transfer of the drug solution is completed and before the needle is withdrawn from the container;
    The drug solution transfer method according to claim 1 or 2.
  8.  前記薬液の移注が終わって前記容器から前記針を引く抜く前に、前記シリンジから前記容器に薬液を移動させることで、前記容器内の陰圧を調整する、
    請求項1又は2に記載の薬液移注方法。
    The negative pressure in the container is adjusted by transferring the drug solution from the syringe to the container before the transfer of the drug solution is completed and the needle is pulled out of the container.
    The drug solution transfer method according to claim 1 or 2.
  9.  薬液を内部に有する容器を保持する第1保持部と、
     前記容器の鉛直方向の下方に配置され、針の付いたシリンジを保持する第2保持部と、
     前記第1保持部を鉛直方向の上下に移動させる第1移動部と、
     前記第2保持部で保持された前記シリンジのプランジャを鉛直方向の上下に移動させる第2移動部と、
     前記第1移動部及び前記第2移動部を制御する制御部と、を備え、
     前記制御部は、前記プランジャのガスケットと前記シリンジの内壁面との間に空気溜まりが存在する状態で、前記第1保持部を鉛直方向の下向きに相対的に移動させることで前記針を前記容器に穿刺した後、前記プランジャを移動させて前記容器から前記シリンジに前記薬液を移注させる処理を行う、
    薬液移注装置。
    A first holding unit that holds a container having a chemical solution therein;
    A second holding unit disposed below the container in the vertical direction and holding a syringe with a needle;
    A first moving unit that moves the first holding unit up and down in the vertical direction;
    A second moving unit configured to move the plunger of the syringe held by the second holding unit up and down in the vertical direction;
    A control unit that controls the first moving unit and the second moving unit;
    The control unit relatively moves the first holding unit downward in the vertical direction in a state in which an air reservoir exists between the gasket of the plunger and the inner wall surface of the syringe, and the container is the container. And puncturing, the plunger is moved to transfer the drug solution from the container to the syringe.
    Chemical solution transfer device.
  10.  前記制御部は、前記針を前記容器に穿刺するとき、前記ガスケットと前記シリンジの内壁面との間に5mm以上の隙間を形成する、
    請求項9に記載の薬液移注装置。
    The control unit forms a gap of 5 mm or more between the gasket and the inner wall surface of the syringe when puncturing the needle into the container.
    The drug solution transfer apparatus according to claim 9.
  11.  前記制御部により形成される前記空気溜まりの体積は、前記シリンジの容量が2.5mlシリンジの場合は0.1ml以上かつ0.5ml未満であり、前記シリンジの容量が20ml又は50mlの場合は0.5ml以上かつ2.0ml未満である、
    請求項9又は10に記載の薬液移注装置。
    The volume of the air reservoir formed by the control unit is 0.1 ml or more and less than 0.5 ml when the volume of the syringe is 2.5 ml, and 0 when the volume of the syringe is 20 ml or 50 ml. Not less than .5 ml and less than 2.0 ml,
    The drug solution transfusion apparatus according to claim 9 or 10.
  12.  前記第1保持部及び前記第2保持部はそれぞれ複数の前記容器及び前記シリンジを保持し、これら複数の前記容器及び前記シリンジを切替えて薬液を移注する、
    請求項9又は10に記載の薬液移注装置。
    The first holding unit and the second holding unit respectively hold a plurality of the containers and the syringes, and switch the plurality of containers and the syringes to transfer a chemical solution.
    The drug solution transfusion apparatus according to claim 9 or 10.
  13.  前記制御部は、前記針を前記容器に穿刺する前に、前記第2移動部を制御して前記プランジャを移動させることで前記シリンジの外部の気体及び前記針の内部の気体を前記シリンジ内に吸引して前記空気溜まりを形成する、
    請求項9又は10に記載の薬液移注装置。
    The control unit controls the second moving unit to move the plunger before puncturing the needle into the container, thereby moving the external gas of the syringe and the internal gas of the needle into the syringe. Suction to form the air pool,
    The drug solution transfusion apparatus according to claim 9 or 10.
PCT/JP2013/000016 2012-01-17 2013-01-08 Medical fluid transfusion method and medical fluid transfusion device WO2013108587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013523402A JP5444509B2 (en) 2012-01-17 2013-01-08 Chemical solution transfer method and chemical solution transfer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-006695 2012-01-17
JP2012006695 2012-01-17

Publications (1)

Publication Number Publication Date
WO2013108587A1 true WO2013108587A1 (en) 2013-07-25

Family

ID=48799021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000016 WO2013108587A1 (en) 2012-01-17 2013-01-08 Medical fluid transfusion method and medical fluid transfusion device

Country Status (2)

Country Link
JP (1) JP5444509B2 (en)
WO (1) WO2013108587A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035360A (en) * 2015-08-11 2017-02-16 株式会社安川電機 Liquid medicine preparation method and liquid medicine preparation system
WO2019096904A1 (en) * 2017-11-17 2019-05-23 Sanofi Mixing and/or reconstitution system
WO2022162966A1 (en) * 2021-01-27 2022-08-04 合同会社Teleimage Injector filling device
CN115362024A (en) * 2020-04-02 2022-11-18 吉田工业株式会社 Wet-type micronizing device and method
JP7448697B2 (en) 2015-11-25 2024-03-12 バイエル・ヘルスケア・エルエルシー syringe filling adapter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279409A (en) * 2009-06-02 2010-12-16 Panasonic Corp Medical fluid sucking composite needle, medical fluid container using the same, and medical fluid sucking method
WO2011010466A1 (en) * 2009-07-23 2011-01-27 パナソニック株式会社 Syringe drive device and medication dispensing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279409A (en) * 2009-06-02 2010-12-16 Panasonic Corp Medical fluid sucking composite needle, medical fluid container using the same, and medical fluid sucking method
WO2011010466A1 (en) * 2009-07-23 2011-01-27 パナソニック株式会社 Syringe drive device and medication dispensing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035360A (en) * 2015-08-11 2017-02-16 株式会社安川電機 Liquid medicine preparation method and liquid medicine preparation system
JP7448697B2 (en) 2015-11-25 2024-03-12 バイエル・ヘルスケア・エルエルシー syringe filling adapter
WO2019096904A1 (en) * 2017-11-17 2019-05-23 Sanofi Mixing and/or reconstitution system
CN111356490A (en) * 2017-11-17 2020-06-30 赛诺菲 Mixing and/or reconstitution system
US11752263B2 (en) 2017-11-17 2023-09-12 Sanofi Mixing and/or reconstitution system
JP7346402B2 (en) 2017-11-17 2023-09-19 サノフイ Mixing and/or reconstitution system
CN115362024A (en) * 2020-04-02 2022-11-18 吉田工业株式会社 Wet-type micronizing device and method
WO2022162966A1 (en) * 2021-01-27 2022-08-04 合同会社Teleimage Injector filling device

Also Published As

Publication number Publication date
JP5444509B2 (en) 2014-03-19
JPWO2013108587A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
WO2013108587A1 (en) Medical fluid transfusion method and medical fluid transfusion device
CA2668981C (en) Control of fluid transfer operations
WO2012132286A1 (en) Drug infusion needle and drug infusion method
JP5490840B2 (en) Chemical injection device and chemical injection system
JP4960180B2 (en) Chemical injection device and chemical injection system
JP5584368B2 (en) Chemical solution transfer method and chemical solution transfer device
JPH02299660A (en) Method for filling liquid medicine into syringe serving also as container
CN107019638B (en) Automatic solution suction control device and method
CN209900089U (en) Suction injector manipulator
CN110914161B (en) Device for vacuum and snorkel plugging of medical containers
JP6319224B2 (en) Chemical solution preparation method and chemical solution preparation system
US20180257051A1 (en) Method and device for making up a pharmaceutical preparation
CN113677843B (en) Device for collecting and controlled delivery of a liquid having a volumetric dose
JP2007159464A (en) Liquid sampling device
WO2016132936A1 (en) Liquid drug administration device
WO2017158398A1 (en) Automatic compounding system
JP4702030B2 (en) Syringe gasket position correction device
CN106473923B (en) Automatic ampoule bottle dispensing system and method
WO2023176244A1 (en) Chemical solution enclosing device and chemical solution enclosing method
JP2014117295A (en) Medication mixing method
US20080121306A1 (en) Vacuum filling of syringe liquids with outgassing compensation stroke
JP2019076632A (en) Liquid medicine transfer device
WO2023166865A1 (en) Liquid drug administration device, method for controlling same, and liquid drug administration system
JP2019076634A (en) Liquid medicine transfer device
JP2019076633A (en) Medical fluid transfusion device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013523402

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13739004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13739004

Country of ref document: EP

Kind code of ref document: A1