WO2013108550A1 - 微細気泡発生装置および旋回流発生装置 - Google Patents

微細気泡発生装置および旋回流発生装置 Download PDF

Info

Publication number
WO2013108550A1
WO2013108550A1 PCT/JP2012/083325 JP2012083325W WO2013108550A1 WO 2013108550 A1 WO2013108550 A1 WO 2013108550A1 JP 2012083325 W JP2012083325 W JP 2012083325W WO 2013108550 A1 WO2013108550 A1 WO 2013108550A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
forming body
outer peripheral
liquid
swirl flow
Prior art date
Application number
PCT/JP2012/083325
Other languages
English (en)
French (fr)
Inventor
秀一 嵯峨
浅里 信之
Original Assignee
ニッタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ株式会社 filed Critical ニッタ株式会社
Priority to KR1020147007190A priority Critical patent/KR102132319B1/ko
Priority to CN201280065912.6A priority patent/CN104023833B/zh
Publication of WO2013108550A1 publication Critical patent/WO2013108550A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31241Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the circumferential area of the venturi, creating an aspiration in the central part of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3125Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characteristics of the Venturi parts
    • B01F25/31251Throats
    • B01F25/312512Profiled, grooved, ribbed throat, or being provided with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/913Vortex flow, i.e. flow spiraling in a tangential direction and moving in an axial direction

Definitions

  • the present invention relates to a fine bubble generating device for generating fine bubbles in a liquid by performing gas-liquid mixing using a swirling flow.
  • a gas-liquid two-phase high-speed swirling method is known as a method for generating microbubbles such as microbubbles in the liquid.
  • the liquid is swung at high speed along the cylindrical surface in the nozzle to generate a negative pressure at the center of the nozzle (along the axis).
  • gas is introduced into the nozzle by this negative pressure to form a gas-liquid two-phase swirl flow that swirls at high speed.
  • the swirling flow is contracted along the axis and released from the nozzle outlet to shear the gas-liquid two-phase fluid to generate fine bubbles (see, for example, Patent Document 1).
  • high-pressure liquid is guided to a gas-liquid mixing space in a nozzle through a spiral liquid introduction path, whereby a spiral high-speed swirling flow along a cylindrical inner peripheral surface of the gas-liquid mixing space.
  • the spiral liquid introduction path is formed by fitting a cylindrical central solid portion having a spiral blade provided on the outer periphery thereof to the cylindrical portion of the nozzle body.
  • the liquid is guided to the spiral liquid introduction path through the liquid introduction path provided above the central solid part.
  • the gas is supplied through a pipe connected to a vent hole formed along the central axis of the central solid portion, the pipe is disposed in the liquid introduction path.
  • the liquid introduction path and the gas introduction path need to be separated, but this is achieved by bending the liquid introduction path at a substantially right angle by moving the pipe straight because of problems such as assembly of the pipe.
  • Patent Document 1 since the liquid introduction path is bent at a substantially right angle, pressure loss occurs in this portion, which is disadvantageous for liquid supply at high pressure. In addition, it is necessary to provide a seal structure for preventing leakage of high-pressure liquid in a portion where the straight pipe passes through the wall surface of the liquid introduction path, and processing and parts for that are required. Furthermore, since the central solid part cannot be assembled through the liquid introduction path if the liquid introduction path is bent, the nozzle body has a distal end part where the central solid part is fitted and a base end part where the bent liquid introduction path is formed. Need to be separated.
  • An object of the present invention is to provide a fine bubble generator using a gas-liquid two-phase high-speed swirling method with reduced liquid pressure loss and a small number of parts.
  • the swirling passage forming body of the present invention supplies a liquid pressurized through a spiral passage to the gas-liquid mixing space in the nozzle to generate a swirling flow, and uses the negative pressure generated by the swirling flow to supply gas to the gas-liquid mixing space.
  • the gas-liquid two-phase swirl flow is formed by introducing the gas-liquid two-phase swirl flow from the nozzle, and the gas-liquid two-phase fluid is sheared to generate fine bubbles.
  • a passage forming body a main body having a cylindrical portion, an outer peripheral portion having a cylindrical inner peripheral surface coaxial with the cylindrical portion, a spiral slope formed between the main body and the outer peripheral portion, and a starting end portion of the spiral slope
  • a thick part communicating between the cylindrical part and the outer peripheral part, a first gas passage formed along the central axis of the cylindrical part, and the first gas passage passing through the thick part to the outside of the outer peripheral part And a second gas passage.
  • the outer peripheral portion preferably has a cylindrical outer peripheral surface, a pair of annular protrusions are formed along the circumferential direction of the outer peripheral surface, and an opening of the second gas passage is formed between the pair of annular protrusions. It is preferred that In order to form a stable swirl flow, it is preferable to provide a plurality of spiral slopes. From the viewpoint of injection molding, it is preferable that the plurality of spiral slopes do not overlap in the central axis direction. Also, the starting end of the spiral slope on the outer peripheral cylindrical inner surface is raised up to the axial direction, and a beam portion for positioning the tube extending along the cylindrical axis, for example, is formed at a position corresponding to the starting end. Is done.
  • the fine bubble generating device of the present invention is a fine bubble generating device to which the swirl flow forming body is mounted, wherein a lateral hole is provided in a swirl flow forming body accommodating space into which the swirl flow forming body is inserted, and the swirl flow forming body is provided. At the time of mounting, the lateral hole is connected to the second gas passage.
  • the outer peripheral portion of the swirl flow forming body preferably has a cylindrical outer peripheral surface, a pair of annular projections are formed along the circumferential direction of the outer peripheral surface, and the opening of the second gas passage is a pair of annular projections
  • the horizontal hole is formed between the pair of annular projections.
  • O-rings are respectively disposed adjacent to the annular projections outside the annular space formed by being sandwiched between the pair of annular projections.
  • FIG. 4 is a cross-sectional view of a swirl flow forming body taken along line IV-IV in FIG. 3.
  • FIG. 5 is a partial step view of the swirl flow forming body taken along line VV in FIG. 3.
  • FIG. 4 is a cross-sectional view of a swirl flow forming body taken along line VI-VI in FIG. 3.
  • Fine bubble generating apparatus 11 Fine bubble generating apparatus main body 12 Hole 13 Side hole 14 Hole 15 Nozzle 16 Gas-liquid mixing space 17 Liquid supply part 18 Swirling flow formation body 19 Swirling flow formation body accommodation space 20 Frustum trapezoid space 21 Step part 22 Ring shape Space 23 Flow rate adjusting mechanism 25, 26 O-ring 180 Swirling flow forming body main body 181 Outer peripheral portion 182 Cylindrical portion 183 Trapezoidal portion 184, 185 Protruding portion 186, 187 Spiral slope 188 First gas passage 189 Second gas passage 190, 191 Beam
  • FIG. 1 is a partial cross-sectional view showing a configuration of a fine bubble generating apparatus according to an embodiment of the present invention.
  • the main body 11 of the microbubble generator 10 is provided with a hole 12 that passes through, for example, the X1 axis of FIG.
  • the hole 12 is provided with a lateral hole 13 communicating with the outside of the main body 11 along the Y axis orthogonal to the X1 axis, for example.
  • the horizontal hole 13 is provided with a hole 14 that communicates with the outside of the main body 11 along the X2 axis orthogonal to the Y axis.
  • the X1 and X2 axes are arranged in parallel, but the present invention is not limited to this, and the X1 and X2 axes may be in a twisted relationship.
  • the gas-liquid mixing space 16 is configured as, for example, a cylindrical space, and the tip opening has a shape that is once reduced in diameter and then expanded in diameter.
  • a high-pressure liquid is jetted into the gas-liquid mixing space 16 along its inner peripheral surface, and the liquid moves toward the nozzle tip while swirling at a high speed.
  • a negative pressure along the X1 axis is generated by the high-speed swirling flow at the center of the gas-liquid mixing space 16, and a gas induced by the negative pressure is supplied to the gas-liquid mixing space 16, and the gas-liquid two-phase swirling flow Is formed.
  • the gas-liquid two-phase swirl flow is ejected from the tip of the nozzle 15, and the gas-liquid two-phase fluid is sheared and fine bubbles are generated.
  • a liquid supply unit 17 is provided at the other end of the hole 12 (on the side opposite to the nozzle 15).
  • the liquid supply part 17 is a part for supplying the liquid described above into the hole 12 from the outside.
  • the liquid is supplied using, for example, a flexible tube (not shown), and a tube joint such as a push-in joint is used for the liquid supply unit 17.
  • the liquid may be supplied through a pipe, and various well-known fluid couplings can be used for the coupling depending on the purpose and use conditions.
  • a cylindrical swirl flow forming body accommodation space 19 for housing the swirl flow forming body 18 is provided between the nozzle 15 and the liquid supply unit 17.
  • the inner diameter of the swirl flow forming body accommodating space 19 is larger than the inner diameter of the gas-liquid mixing space 16, and both spaces are connected by a truncated cone space 20 having a truncated cone shape.
  • the swirl flow forming body 18 is a member for ejecting the high-pressure liquid supplied from the liquid supply unit 17 along the inner periphery of the gas-liquid mixing space 16 and guiding the gas to the center of the gas-liquid mixing space 16.
  • a main body 180 disposed in the center, and an outer peripheral portion 181 having, for example, a substantially cylindrical shape surrounding the periphery.
  • the main body 180 is composed of a truncated cone-shaped trapezoidal part 183 that extends coaxially with the cylindrical part 182.
  • the trapezoidal portion 183 extends into the frustoconical space 20, and the outer peripheral surface of the trapezoidal portion 183 and the inner peripheral surface of the frustoconical space 20. A gap is formed between them.
  • the inner diameter of the swirl flow forming body accommodating space 19 is larger than the inner diameter of the trapezoidal bottom surface of the frustoconical space 20, and a stepped portion 21 is formed at the connecting portion of both the spaces 19 and 20. That is, when the swirling flow forming body 18 is inserted into the hole 12 from the liquid supply unit 17 side during assembly, the tip of the outer peripheral portion 181 comes into contact with the stepped portion 21 when the swirling flow forming body 18 reaches an appropriate position. The movement of the swirl flow forming body 18 in the X1 axis direction is restricted. Thereafter, when the fluid coupling is assembled to the liquid supply unit 17, a fluid coupling component (for example, a buckling) is brought into contact with the other end of the outer peripheral portion 181. That is, the swirl flow forming body 18 is sandwiched between the stepped portion 21 and the liquid supply portion 17, and the position in the X1-axis direction is fixed.
  • a fluid coupling component for example, a buckling
  • a pair of protrusions 184 and 185 extending along the circumferential direction are provided on the outer peripheral surface of the outer peripheral portion 181.
  • the outer diameters of the protrusions 184 and 185 are set substantially equal to the inner diameter of the swirl flow forming body accommodation space 19. That is, an annular space 22 sandwiched between the protrusions 184 and 185 is formed between the outer peripheral portion 181 and the inner peripheral surface of the swirl flow forming body accommodation space 19.
  • O-rings 25 and 26 are arranged in close contact with the respective protrusions, so that the annular space 22 is maintained airtight.
  • the outer peripheral surface at the position where the O-ring is disposed may be formed in a groove shape.
  • the lateral hole 13 is formed at a position corresponding to the annular space 22, and the annular space 22 constitutes a gas passage together with the lateral hole 13.
  • the horizontal hole 13 is provided with a flow rate adjusting mechanism 23 using, for example, a needle screw 27 in order to control the flow rate of the supplied gas.
  • the gas supply part 24 is provided in the hole 14 along the X2 axis.
  • the gas supply unit 24 is also provided with a fluid coupling such as a push-in coupling, for example, and a flexible tube (not shown) is connected to supply gas to the fine bubble generating device 10. That is, gas can be supplied to the annular space 22 through the hole 14 and the horizontal hole 13, and the flow area is controlled by adjusting the position of the needle screw to adjust the gas flow rate.
  • the swirl flow forming body 18 is provided with a gas passage that communicates from the outer peripheral surface between the protrusions 184 and 185 to the center of the top surface of the trapezoidal portion 183 as will be described in detail later. That is, the gas-liquid mixing space 16 communicates with the annular space 22 through a gas passage provided in the center of the top surface of the trapezoidal portion 183, and the annular space 22 is connected to the gas supply portion 24 through the lateral hole 13 and the hole 14. Communicated to
  • FIG. 2 is a plan view of the swirl flow forming body 18, and FIG. 3 is a plan view from the III direction of FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, and FIGS. 5 and 6 are arrow views of the main body 180 from the V direction and the VI direction in FIG. 5 and 6, the outer peripheral portion 181 is shown in a sectional view.
  • a plurality of spiral slopes are provided between the cylindrical portion 182 and the outer peripheral portion 181 of the swirling flow forming body 18, and the cylindrical portion 182 and the outer peripheral portion 181 are connected by the spiral slope.
  • a pair of spiral slopes 186 and 187 are provided, and the spiral slopes 186 and 187 are provided at an inclination angle of 5 ° to 45 °, for example, approximately 180 ° around the cylindrical portion 182.
  • the high-pressure liquid supplied from the liquid supply unit 17 passes through the inside of the outer peripheral portion 181, reaches the spiral slopes 186 and 187, and is ejected along the spiral slopes 186 and 187 into the frustoconical space 20.
  • the start ends (upstream sides) 186A and 187A of the spiral slopes 186 and 187 are raised substantially in the axial direction.
  • the gas passage is communicated from the main body 180 to the outer peripheral portion 181 side using at least one start end portion of the plurality of spiral slopes.
  • the starting end portion 186A is formed as a thick portion, and a gas passage is formed therein.
  • the gas passage includes, for example, a first gas passage 188 along the central axis of the main body 180 (cylindrical portion 182 and trapezoidal portion 183) of the swirl flow forming body 18, and a thick portion (starting end).
  • 186A) and the second gas passage 189 communicating with the first gas passage 188 to the outer peripheral surface of the outer peripheral portion 181.
  • beams 190 and 191 extending from the start end portions 186A and 187A along the cylindrical axis direction are formed.
  • the beams 190 and 191 extend to a predetermined height along the inner peripheral surface of the outer peripheral portion 181, and the tip of the beams 190 abuts on the tip of a flexible tube (not shown) attached to the liquid supply portion 17 to position the tube.
  • a chamfered portion (192) is provided on a part of the outer peripheral surface of the outer peripheral portion 181, and positioning in the rotational direction when the swirling flow forming body 18 is mounted in the swirling flow forming body accommodation space 19. It can also be used.
  • the present embodiment since a high-pressure liquid can be supplied straight from the liquid supply unit to the swirl flow forming body, the pressure loss of the liquid can be reduced. Moreover, since the gas supply path and the liquid supply path can be branched at the position of the swirl flow forming body by supplying the gas from the side hole provided in the swirl flow forming body accommodating space, the configuration is extremely simplified and the number of parts is reduced. It can be greatly reduced.
  • the swirl flow forming body when the swirl flow forming body is assembled into the fine bubble generator, the swirl flow forming body can be inserted from the liquid supply unit side, so that the swirl flow forming body is separated from the nozzle side with the nozzle tip as a separate body as in the prior art. There is no need to wear the structure, and the structure can be further simplified.
  • a pair of annular protrusions are provided on the outer periphery of the swirl flow forming body, and an opening of the gas passage (second gas passage) of the swirl flow forming body is provided between these protrusions.
  • the airtightness is extremely simple. It becomes possible to maintain sex.
  • the lateral hole that continues from the gas supply unit only needs to be provided at a position corresponding to the annular space formed between the projections, so that the processing tolerance is increased and swirl flow formation during assembly is achieved. Positioning in the rotational direction of the body is also facilitated.
  • the spiral slope is a pair
  • the slope range is approximately 180 ° (actually narrow due to the thick portion and the beam). However, this does not overlap the spiral slope in the axial direction.
  • the spiral slope range may be narrower than 360 ° / n.
  • the main body (cylindrical part, trapezoid part), spiral slope, thick part, beam, outer peripheral part, projection part, first gas passage, and second gas passage of the swirl flow forming body are formed by injection molding. It is formed integrally.

Abstract

微細気泡発生装置10に、その本体11を縦通する穴12を形成する。穴12の一方をノズル15として気液混合空間16を配置し、他端に液体供給部17を設ける。気液混合空間16と液体供給部17の間に旋回流形成体18を収容する旋回流形成体収容空間19を設ける。旋回流形成体18の外周部181の外周面に一対の環状突起部184、185を設け、その両側をOリング25、26で気密する。本体11において、突起部184、185で気密的に区画される環状空間22に対応する位置に横穴13を設けるとともに旋回流形成体18の本体180に気液混合空間16に通ずる気体通路を設ける。旋回流形成体18に設けた螺旋スロープ186(187)から気液混合空間16内に高圧液体を噴出する。

Description

微細気泡発生装置および旋回流発生装置
 本発明は、旋回流を利用して気液混合を行い液中に微細気泡を発生させる微細気泡発生装置に関する。
 マイクロバブルなどの微細気泡を液中に発生させる方式として気液二相高速旋回方式が知られている。気液二相高速旋回方式では、ノズル内の円筒面に沿って液体を高速旋回させてノズル中心(軸心に沿って)に負圧を発生させる。そして、この負圧によりノズル内に気体を導入し高速旋回する気液二相旋回流を形成する。この旋回流を軸心に沿って縮流し、ノズル出口から開放することにより気液二相流体をせん断し微細気泡を発生させる(例えば特許文献1参照)。
 特許文献1の微細気泡発生装置では、高圧の液体を、螺旋状液体導入路を通してノズル内の気液混合空間に導き、これにより気液混合空間の円筒内周面に沿う螺旋状の高速旋回流を形成する。螺旋状液体導入路は、外周に螺旋状羽根が設けられた円柱状の中央固体部をノズル本体の円筒部に嵌め合わせることで形成される。
 液体は中央固体部上方に設けられる液体導入路を通して螺旋状液体導入路へと導かれる。一方、気体は中央固体部の中心軸に沿って形成された通気孔に接続されたパイプを通して供給されるためパイプは液体導入路内に配置される。液体導入路と気体導入路は分離される必要があるが、これはパイプの組み付け等の問題から、パイプを直進させて液体導入路を略直角に曲げることで達成される。
特開2008-114205号公報
 しかし、特許文献1の構成では、液体導入路が略直角に曲がっているため、この部分で圧力損失が発生し高圧での液体供給に不利である。また、直進するパイプが液体導入路の壁面を通り抜ける部分に高圧液体の液漏れを防止するシール構造を設ける必要があり、そのための加工や部品が必要となる。更に、液体導入路が屈曲していると液体導入路を通して中央固体部を組み付けできないので、ノズル本体を中央固体部が嵌装される先端部と、屈曲した液体導入路が形成される基端部に分離する必要がある。
 本発明は、液体の圧力損失が低減されるとともに部品点数が少ない気液二相高速旋回方式を用いた微細気泡発生装置を提供することを課題としている。
 本発明の旋回通路形成体は、螺旋通路を通して加圧された液体をノズル内の気液混合空間に供給し旋回流を発生させ、旋回流により発生する負圧を用いて気体を気液混合空間に導き入れることで気液二相旋回流を形成し、気液二相旋回流をノズルから噴出することにより気液二相流体をせん断し微細気泡を発生する微細気泡発生装置に装着される旋回通路形成体であって、円筒部を有する本体と、円筒部と同軸的な円筒内周面を有する外周部と、本体と外周部の間に形成される螺旋スロープと、螺旋スロープの始端部において円筒部と外周部の間を連絡する肉厚部と、円筒部の中心軸に沿って形成される第1気体通路と、肉厚部内を通って第1気体通路を外周部の外側へと連絡する第2気体通路とを備えたことを特徴としている。
 外周部は円筒状の外周面を有することが好ましく、外周面の周方向に沿って一対の円環状突起部が形成され、第2気体通路の開口部が一対の円環状突起部の間に形成されることが好ましい。安定した旋回流を形成するには螺旋スロープは複数設けられることが好ましく、射出成形上の観点からは、複数の螺旋スロープ同士が中心軸方向に重ならないことが好ましい。また外周部の円筒内周面における螺旋スロープの始端部が軸方向にまで立ち上げられ、この始端部に対応する位置に、例えば円筒軸に沿って延在するチューブ位置決めのための梁部が形成される。
 本発明の微細気泡発生装置は、上記旋回流形成体が装着される微細気泡発生装置であって、旋回流形成体が嵌挿される旋回流形成体収容空間に横穴が設けられ、旋回流形成体装着時、横穴が第2気体通路へと接続されることを特徴としている。
 旋回流形成体の外周部は円筒状の外周面を有することが好ましく、外周面の周方向に沿って一対の円環状突起部が形成され、第2気体通路の開口部が一対の円環状突起部の間に形成され、横穴が一対の円環状突起部の間に配置されることが好ましい。これにより、環状突起部の間に気体通路を形成し、旋回流形成体の回転方向の位置と横穴の位置を任意に設定することが可能となる。また、一対の円環状突起部に挟まれて形成される環状空間の外側に円環状突起部に隣接してOリングがそれぞれ配置される。
 本発明によれば、液体の圧力損失が低減されるとともに部品点数が少ない気液二相高速旋回方式を用いた微細気泡発生装置を提供することができる。
本実施形態の微細気泡発生装置の部分断面図である。 本実施形態の旋回流形成体の側面図である。 旋回流形成体の平面図である。 図3のIV-IV線に沿った旋回流形成体の断面図である。 図3のV-V線に沿った旋回流形成体の部分段面図である。 図3のVI-VI線に沿った旋回流形成体の断面図である。
 10 微細気泡発生装置
 11 微細気泡発生装置本体
 12 穴
 13 横穴
 14 穴
 15 ノズル
 16 気液混合空間
 17 液体供給部
 18 旋回流形成体
 19 旋回流形成体収容空間
 20 円錐台形空間
 21 段部
 22 円環状空間
 23 流量調整機構
 25、26 Oリング
 180 旋回流形成体本体
 181 外周部
 182 円筒部
 183 台形部
 184、185 突起部
 186、187 螺旋スロープ
 188 第1気体通路
 189 第2気体通路
 190、191 梁
 以下、本発明の実施の形態を、図面を参照して説明する。図1は、本発明の一実施形態である微細気泡発生装置の構成を示す部分断面図である。
 微細気泡発生装置10の本体11には、例えば図1のX1軸に沿って縦通する穴12が設けられる。穴12には例えばX1軸に直交するY軸に沿って本体11の外部へと連通する横穴13が設けられる。また、横穴13には例えばY軸に直交するX2軸に沿って本体11の外部へと連通する穴14が設けられる。なお、本実施形態においてX1、X2軸は平行に配置されるがこれに限定されるものではなく、X1、X2軸は捩れの関係にあってもよい。
 穴12の一方の端部(図1の左側)は、微細気泡発生装置10のノズル15の気液混合空間16を構成する。気液混合空間16は例えば円筒空間として構成され、その先端開口部は一度縮径された後、拡径される形状を呈する。気液混合空間16内には、後述するようにその内周面に沿って高圧の液体が噴出され、液体は高速で旋回しながらノズル先端へと向かう。気液混合空間16の中心には、この高速旋回流によってX1軸に沿った負圧が発生し、この負圧により誘導される気体が気液混合空間16に供給され、気液二相旋回流が形成される。気液二相旋回流はノズル15の先端から噴出され、その際気液二相流体がせん断されて微細気泡が発生する。
 一方、穴12の他端(ノズル15とは反対側)には液体供給部17が設けられる。液体供給部17は上述した液体を外部から穴12内に供給する部分である。本実施形態で液体は例えば可撓チューブ(不図示)を用いて供給され、液体供給部17には例えばプッシュイン継手などのチューブ継手が採用される。なお、液体はパイプを通して供給されてもよく、継手には目的や使用条件に応じて従来周知の様々な流体継手を使用できる。
 穴12においてノズル15と液体供給部17の間には、旋回流形成体18を収容するための例えば円筒形の旋回流形成体収容空間19が設けられる。旋回流形成体収容空間19の内径は気液混合空間16の内径よりも大きく、両空間は円錐台形を呈する円錐台形空間20によって接続される。
 旋回流形成体18は、液体供給部17から供給される高圧液体を気液混合空間16の内周に沿って噴出にするとともに、気体を気液混合空間16の中心へと導くための部材であり、中央に配置される本体180と、その周囲を取り囲む例えば略円筒形の外周部181を備える。本体180は、円筒部182と同軸的に延出する切頭円錐台形状の台形部183とから構成される。すなわち旋回流形成体18が旋回流形成体収容空間19に配置されると、台形部183は、円錐台形空間20内に延出され、台形部183の外周面と円錐台形空間20の内周面の間には隙間が形成される。
 旋回流形成体収容空間19の内径は、円錐台形空間20の台形底面の内径よりも大きく、両空間19、20の接続部には段部21が形成される。すなわち組立ての際、旋回流形成体18が液体供給部17側から穴12内に嵌挿されるとき、旋回流形成体18が適正な位置に達すると外周部181の先端が段部21に当接し、旋回流形成体18のX1軸方向への移動が規制される。その後、液体供給部17に流体継手が組み付けられると、外周部181の他端に流体継手の部品(例えばバックリング)が当接される。すなわち、旋回流形成体18は、段部21と液体供給部17の間に挟まれ、そのX1軸方向の位置が固定される。
 外周部181の外周面には、周方向に沿って延在する突起部184、185が一対設けられる。突起部184、185における外径は、旋回流形成体収容空間19の内径に略等しく設定される。すなわち、外周部181と旋回流形成体収容空間19の内周面の間には、突起184、185によって挟まれる円環状の空間22が形成される。また、突起184、185の外側(円環状空間22の外側)には、それぞれの突起に密接してOリング25、26が配置され、円環状空間22が気密的に維持される。なお、Oリング25、26の位置ズレを防止するために、Oリングが配置される位置の外周面を溝状に形成してもよい。
 横穴13は、この円環状空間22に対応する位置に形成され、円環状空間22は横穴13とともに気体通路を構成する。横穴13には供給される気体の流量を制御するため、例えばニードルスクリュウ27などを用いた流量調整機構23が設けられる。また本実施形態では、X2軸に沿った穴14に気体供給部24が設けられる。気体供給部24にも例えばプッシュイン継手などの流体継手が設けられ、可撓チューブ(不図示)が接続されて気体が微細気泡発生装置10へ供給される。すなわち、穴14、横穴13を通して円環状空間22に気体の供給が可能であり、ニードルスクリュウの位置を調整することで流路面積が制御され気体の流量が調整される。
 旋回流形成体18には、後で詳述するように突起184、185の間の外周面から台形部183の頂面中央部までを連通する気体通路が設けられる。すなわち、気液混合空間16は、台形部183の頂面中央に設けられた気体通路を通して円環状空間22へと連通され、円環状空間22は、横穴13、穴14を介して気体供給部24へと連通される。
 次に、図2~図5を参照して本実施形態の旋回流形成体18のより詳細な構造について説明する。図2は、旋回流形成体18の測面図であり、図3は図2のIII方向からの平面図である。また、図4は図3のIV-IV線に沿った断面図であり、図5、図6は、図4のV方向、VI方向からの本体180の矢視図である。なお、図5、6において外周部181は断面図で示される。
 図3~図6に示されるように、旋回流形成体18の円筒部182と外周部181の間には、複数の螺旋スロープが設けられ、円筒部182と外周部181は螺旋スロープによって連絡される。本実施形態では一対の螺旋スロープ186、187が設けられ、螺旋スロープ186、187は、例えばそれぞれ円筒部182の周り略180°に亘り、5°~45°の傾斜角で設けられる。液体供給部17から供給される高圧液体は、外周部181の内側を通って、この螺旋スロープ186、187にまで達し、螺旋スロープ186、187に沿って円錐台形空間20へと噴出される。なお螺旋スロープ186、187の始端部(上流側)186A、187Aは略軸方向にまで立ち上げられている。
 本実施形態では、複数の螺旋スロープのうちの少なくとも1つの始端部を利用して気体通路を本体180から外周部181側へと連通する。例えば、本実施形態では始端部186Aが肉厚部として形成され、その内部に気体通路が形成される。図3~図5に示されるように、気体通路は例えば旋回流形成体18の本体180(円筒部182、台形部183)の中心軸に沿った第1気体通路188と、肉厚部(始端部186A)内を通って第1気体通路188を外周部181の外周面へまで連通する第2気体通路189とから構成される。
 また、外周部181の内周面には、始端部186A、187Aの各々から円筒軸方向に沿って延在する梁190、191が形成される。梁190、191は、外周部181の内周面に沿って所定高さまで延出し、その先端は液体供給部17に装着される可撓チューブ(不図示)の先端に当接してチューブの位置決めを行う。また、図3に示されるように、外周部181の外周面の一部に面取り部(192)を設け、旋回流形成体18を旋回流形成体収容空間19へ装着する際に回転方向の位置決めに用いることも可能である。
 以上のように、本実施形態によれば高圧の液体を液体供給部から真直ぐに旋回流形成体へ供給できるので液体の圧力損失を低減させることができる。また気体を旋回流形成体収容空間に設けた横穴から供給することで気体供給路と液体供給路を旋回流形成体の位置で分岐することができるため、その構成が極めて簡略になり部品点数が大幅に低減できる。
 また、微細気泡発生装置内への旋回流形成体の組み付けの際、旋回流形成体を液体供給部側から嵌挿できるので、従来のようにノズル先端を別体としてノズル側から旋回流形成体を装着する必要がなく、構造をより簡略にすることができる。
 更に、本実施形態では、旋回流形成体の外周部に一対の円環状の突起部を設け、旋回流形成体の気体通路(第2気体通路)の開口部をこれら突起部の間に設けるとともに、両突起部に沿ってOリングを配置し、旋回流形成体収容空間の内周面との圧接により突起部の間に形成される空間の気密性を維持するため、極めて簡略な構成で気密性の維持が可能となる。また、これにより気体供給部から続く横穴は、突起部の間に形成される円環状の空間内に対応した位置に設ければよいので加工上の許容誤差も拡大され、組み付け時における旋回流形成体の回転方向の位置決めも容易になる。
 なお、本実施形態では、螺旋スロープが一対であったためスロープ範囲が略180°(実際には肉厚部や梁の分狭い)とされたが、これは螺旋スロープを軸方向に重ならないようにするためのもので、螺旋スロープの数がnのときは、螺旋スロープの範囲は360°/nよりも狭くすればよい。
 また、本実施形態において、旋回流形成体の本体(円筒部、台形部)、螺旋スロープ、肉厚部、梁、外周部、突起部、第1気体通路、第2気体通路は、射出成形により一体的に形成される。

Claims (7)

  1.  螺旋通路を通して加圧された液体をノズル内の気液混合空間に供給し旋回流を発生させ、前記旋回流により発生する負圧を用いて気体を前記気液混合空間に導き入れることで気液二相旋回流を形成し、前記気液二相旋回流を前記ノズルから噴出することにより気液二相流体をせん断し微細気泡を発生する微細気泡発生装置に装着される旋回通路形成体であって、
     円筒部を有する本体と、
     前記円筒部と同軸的な円筒内周面を有する外周部と、
     前記本体と前記外周部の間に形成される螺旋スロープと、
     前記螺旋スロープの始端部において前記円筒部と前記外周部の間を連絡する肉厚部と、
     前記円筒部の中心軸に沿って形成される第1気体通路と、
     前記肉厚部内を通って前記第1気体通路を前記外周部の外側へと連絡する第2気体通路と
     を備えることを特徴とする旋回通路形成体。
  2.  前記外周部が円筒状の外周面を有し、前記外周面の周方向に沿って一対の円環状突起部が形成され、前記第2気体通路の開口部が前記一対の円環状突起部の間に形成されることを特徴とする請求項1に記載の旋回通路形成体。
  3.  前記螺旋スロープが複数設けられ、前記複数の螺旋スロープ同士が前記中心軸方向に重ならないことを特徴とする請求項1に記載の旋回通路形成体。
  4.  前記外周部の円筒内周面における前記螺旋スロープの始端部が軸方向にまで立ち上げられ、前記始端部に対応する位置に、円筒軸に沿って延在するチューブ位置決めのための梁部が形成されることを特徴とする請求項1に記載の旋回通路形成体。
  5.  請求項1に記載の旋回通路形成体が装着される微細気泡発生装置であって、前記旋回通路形成体が嵌挿される旋回流形成体収容空間に横穴が設けられ、前記旋回通路形成体装着時、前記横穴が前記第2気体通路へと接続されることを特徴とする微細気泡発生装置。
  6.  旋回通路形成体の前記外周部が円筒状の外周面を有し、前記外周面の周方向に沿って一対の円環状突起部が形成され、前記第2気体通路の開口部が前記一対の円環状突起部の間に形成され、前記横穴が前記一対の円環状突起部の間に配置されることを特徴とする請求項5に記載の微細気泡発生装置。
  7.  前記一対の円環状突起部に挟まれて形成される環状空間の外側に前記円環状突起部に隣接してOリングがそれぞれ配置されることを特徴とすることを特徴とする請求項6に記載の微細気泡発生装置。
PCT/JP2012/083325 2012-01-19 2012-12-21 微細気泡発生装置および旋回流発生装置 WO2013108550A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147007190A KR102132319B1 (ko) 2012-01-19 2012-12-21 미세 기포 발생 장치 및 선회류 발생 장치
CN201280065912.6A CN104023833B (zh) 2012-01-19 2012-12-21 微气泡发生装置及回旋流发生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-009344 2012-01-19
JP2012009344A JP5807783B2 (ja) 2012-01-19 2012-01-19 微細気泡発生装置および旋回流形成体

Publications (1)

Publication Number Publication Date
WO2013108550A1 true WO2013108550A1 (ja) 2013-07-25

Family

ID=48798986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083325 WO2013108550A1 (ja) 2012-01-19 2012-12-21 微細気泡発生装置および旋回流発生装置

Country Status (5)

Country Link
JP (1) JP5807783B2 (ja)
KR (1) KR102132319B1 (ja)
CN (1) CN104023833B (ja)
TW (1) TWI583440B (ja)
WO (1) WO2013108550A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521258B (en) * 2013-10-14 2018-02-07 Coldharbour Marine Ltd Apparatus and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101633234B1 (ko) * 2015-11-27 2016-06-23 동명대학교산학협력단 마이크로 버블 생성기
CN105498565A (zh) * 2016-01-26 2016-04-20 米兹普罗(深圳)科技有限公司 气泡发生装置
KR101835986B1 (ko) * 2016-07-25 2018-03-07 시오 컴퍼니 리미티드 유체 공급관
CN109890493B (zh) * 2016-11-29 2021-12-10 日东精工株式会社 微细气泡产生喷嘴

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0184728U (ja) * 1987-11-25 1989-06-06
WO2006075452A1 (ja) * 2005-01-13 2006-07-20 National University Corporation University Of Tsukuba マイクロバブル発生装置、マイクロバブル発生装置用渦崩壊用ノズル、マイクロバブル発生装置用旋回流発生用翼体、マイクロバブル発生方法およびマイクロバブル応用装置
JP2007021343A (ja) * 2005-07-14 2007-02-01 Kansai Automation Kiki Kk マイクロバブル発生装置
WO2007122731A1 (ja) * 2006-04-24 2007-11-01 Nitta Moore Company 微細気泡発生装置
WO2008056663A1 (fr) * 2006-11-08 2008-05-15 Nitta Moore Company Appareil de génération de fines bulles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398827A (en) * 1980-11-10 1983-08-16 Dietrich David E Swirl mixing device
JPS6260793U (ja) * 1985-10-04 1987-04-15
JPH04322731A (ja) * 1991-03-12 1992-11-12 Kimitoshi Mato 気体溶解方法及び装置
US6027241A (en) * 1999-04-30 2000-02-22 Komax Systems, Inc. Multi viscosity mixing apparatus
JP2010234242A (ja) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp 微細気泡発生装置
JP2010253396A (ja) * 2009-04-24 2010-11-11 Nitta Moore Co マイクロバブル発生装置及びマイクロバブル発生方法
JP5594680B2 (ja) * 2010-01-27 2014-09-24 国立大学法人 筑波大学 液体金属ターゲット用旋回流型マイクロバブル発生装置および流体装置
US8845178B2 (en) * 2010-02-23 2014-09-30 Asahi Organic Chemicals Industry Co., Ltd. In-line-type fluid mixer
JP4999996B2 (ja) * 2010-12-01 2012-08-15 株式会社田中金属製作所 バブル発生器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0184728U (ja) * 1987-11-25 1989-06-06
WO2006075452A1 (ja) * 2005-01-13 2006-07-20 National University Corporation University Of Tsukuba マイクロバブル発生装置、マイクロバブル発生装置用渦崩壊用ノズル、マイクロバブル発生装置用旋回流発生用翼体、マイクロバブル発生方法およびマイクロバブル応用装置
JP2007021343A (ja) * 2005-07-14 2007-02-01 Kansai Automation Kiki Kk マイクロバブル発生装置
WO2007122731A1 (ja) * 2006-04-24 2007-11-01 Nitta Moore Company 微細気泡発生装置
WO2008056663A1 (fr) * 2006-11-08 2008-05-15 Nitta Moore Company Appareil de génération de fines bulles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521258B (en) * 2013-10-14 2018-02-07 Coldharbour Marine Ltd Apparatus and method
US10765988B2 (en) 2013-10-14 2020-09-08 Coldharbour Marine Limited Apparatus and method for treating gas in a liquid medium with ultrasonic energy for chemical reaction

Also Published As

Publication number Publication date
JP5807783B2 (ja) 2015-11-10
CN104023833B (zh) 2016-03-02
TW201336582A (zh) 2013-09-16
JP2013146688A (ja) 2013-08-01
TWI583440B (zh) 2017-05-21
KR20140111640A (ko) 2014-09-19
CN104023833A (zh) 2014-09-03
KR102132319B1 (ko) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2013108550A1 (ja) 微細気泡発生装置および旋回流発生装置
ES2788743T3 (es) Boquilla de atomización
CN108348933B (zh) 喷嘴和混合流体流的方法
WO2006042796A3 (de) Brenner für gasturbine
WO2013108548A1 (ja) 微細気泡発生装置
MX2013005931A (es) Un aparato mejorado para generar nieblas y espumas.
JP2007083220A (ja) 二流体噴射ノズルおよびオイルバーナ
KR20160072457A (ko) 혼합유체 분사 노즐
JP2014033999A (ja) バブル発生ノズル、及び、ループ流式バブル発生ノズル
JP5021925B2 (ja) 粉体と液体の多様な混合微粒化が可能な渦流式微粒化ノズル
KR20100088473A (ko) 와류형 유체 분사를 위한 노즐과 이를 구비한 분사장치
JP6887757B2 (ja) ノズル及び微細気泡発生装置
JP2010115586A (ja) 微細気泡発生装置
JP6874965B2 (ja) スラグ流生成装置
KR101819613B1 (ko) 유체 분사장치
CN103372510A (zh) 一种适用于高粘度非牛顿流体的空心锥型气泡雾化喷嘴
JP2007237093A (ja) 噴射ノズル
CN103372509A (zh) 一种适用于高粘度非牛顿流体的实心锥型气泡雾化喷嘴
JP5685468B2 (ja) 流体微粒化装置
JP2012187505A (ja) 微細気泡発生機構および洗浄ガン
KR20170013798A (ko) 이류체 혼합 노즐
JP2006035081A (ja) 薬液散布用ノズル及び散布器
RU2597608C1 (ru) Распылитель жидкости
JP5344813B2 (ja) 気中キャビテーションジェットノズル
EP4091706A1 (en) Venturi nozzle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147007190

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865767

Country of ref document: EP

Kind code of ref document: A1