WO2013108437A1 - Laser processing device - Google Patents

Laser processing device Download PDF

Info

Publication number
WO2013108437A1
WO2013108437A1 PCT/JP2012/073932 JP2012073932W WO2013108437A1 WO 2013108437 A1 WO2013108437 A1 WO 2013108437A1 JP 2012073932 W JP2012073932 W JP 2012073932W WO 2013108437 A1 WO2013108437 A1 WO 2013108437A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
work distance
range
scanning
workpiece
Prior art date
Application number
PCT/JP2012/073932
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 山崎
明久 松本
杉山 徹
正則 熊澤
康一 若子
井上 浩輔
Original Assignee
パナソニック デバイスSunx 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック デバイスSunx 株式会社 filed Critical パナソニック デバイスSunx 株式会社
Publication of WO2013108437A1 publication Critical patent/WO2013108437A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head

Definitions

  • the present invention relates to a laser processing apparatus that scans a laser beam using a galvanometer mirror and irradiates the workpiece with the laser beam.
  • the laser processing apparatus scans the laser beam with a pair of galvanometer mirrors.
  • the scanned laser light is irradiated on the workpiece so as to have a predetermined spot diameter through a converging lens such as an f ⁇ lens.
  • the distance (work distance) between the converging lens and the workpiece may vary depending on the manufacturing variation of the workpiece and the type of the workpiece.
  • the processing range defined by the range of the deflection angle of the scanning mirror changes depending on the work distance. For this reason, a laser beam will be irradiated to a different position.
  • the range (scanning angle) of the deflection angle of the galvanometer mirror is changed so that the workpiece is processed at the same position and the same size regardless of the workpiece distance.
  • the machining range can be made the same even if the work distance is different.
  • An object of the present invention is to provide a laser processing apparatus capable of maintaining the processing quality while maintaining the same processing range even when the work distance is different.
  • a laser emitting unit that emits laser light
  • a scanning mirror that scans laser light from the laser emitting unit
  • a control unit that controls the scanning mirror
  • the control unit narrows the scanning angle of the scanning mirror and increases the scanning angle of the scanning mirror so that the workpiece is processed at the same position and size on the processing surface of the workpiece irrespective of the workpiece distance between the laser emission port and the workpiece. Control is performed so as to reduce the speed, and the smaller the work distance, the wider the scanning angle of the scanning mirror and the higher the scanning speed of the scanning mirror.
  • the same position and size of the work surface of the work that is, the work range can be made the same regardless of the work distance.
  • the moving speed of the laser beam on the work can be made constant regardless of the change in the scanning angle due to the difference in the work distance.
  • the laser processing apparatus includes a work distance setting unit for setting a work distance, and the control unit can change the scanning angle and the scanning speed of the scanning mirror according to the work distance set by the work distance setting unit. preferable.
  • control unit can change the scanning angle and scanning speed of the scanning mirror according to the work distance set by the setting unit. Therefore, the machining range can be made the same regardless of the work distance set in the setting unit.
  • the work distance setting unit sets the work distance according to the measurement result from the measuring means for measuring the work distance.
  • the setting unit sets the work distance according to the measurement result from the measurement means for measuring the work distance. Therefore, it is possible to save the user from setting the work distance and to set the work distance accurately. Furthermore, the work distance is automatically changed, and the processing range can be made the same more accurately.
  • the laser machining apparatus further includes an informing means for informing that the work distance set in the work distance setting unit is out of the reference range when the work distance is out of the preset reference range.
  • the notification means can notify the user that the work distance set in the work distance setting unit is outside the preset reference range. Therefore, the set work distance is not set outside the reference range.
  • an invalid means for invalidating the setting of the work distance setting unit is provided when the work distance set in the work distance setting unit is outside a preset reference range.
  • the setting of the work distance setting unit can be invalidated by the invalidating means. Therefore, even if the set work distance is set outside the reference range, machining based on the setting is not started.
  • the laser processing apparatus includes a processing range setting unit that allows a user to set a processing range, and the control unit controls the processing range set by the processing range setting unit to be the same regardless of the work distance. It is preferable.
  • the control unit controls the machining range set by the machining range setting unit to be the same regardless of the work distance. For this reason, even if the machining range is changed, the workpiece can be machined regardless of the work distance so that the changed machining range is obtained.
  • the perspective view which shows schematic structure of the laser processing apparatus which concerns on one Embodiment of this invention.
  • the block diagram which shows the outline
  • the perspective view of a connector Sectional drawing of the protrusion part of a connector.
  • the side view which shows the connection structure of a connector.
  • (A) and (b) are schematic diagrams for explaining laser light converged by an f ⁇ lens.
  • (A) (b) is a schematic diagram for demonstrating the guide display by the 1st and 2nd visible light.
  • (A) is a schematic diagram for demonstrating the scanning of the laser beam by the laser processing apparatus of this invention
  • (b) is a schematic diagram for demonstrating the scanning of the laser beam by the conventional laser processing apparatus.
  • the schematic diagram which shows the guide mark of another example is a schematic diagram which shows the guide mark of another example.
  • (A) (b) is a schematic diagram which shows the guide mark of another example.
  • (A) (b) is a schematic diagram which shows the guide mark of another example.
  • (A) (b) is a schematic diagram which shows the guide mark of another example.
  • the schematic diagram for demonstrating the scanning of the laser beam by the laser processing apparatus of another example The schematic diagram for demonstrating the scanning of the laser beam by the laser processing apparatus of another example.
  • (A) is a schematic diagram for explaining scanning of laser light by a laser processing apparatus according to another example, and (b) explains the contents of different processing depending on the number of repetitions of scanning of laser light by the laser processing apparatus.
  • Schematic diagram for (A)-(d) is a schematic diagram for demonstrating the scanning of the laser beam by the laser processing apparatus of another example.
  • a laser marking device (laser processing device) 10 includes a main body portion 11, a head portion 14 connected to the main body portion 11 via a fiber cable 12 and an electric cable 13, and an electric power to the main body portion 11. And a console 16 connected via a cable 15.
  • a control unit 17 that controls the operating state of the entire apparatus and a laser oscillation unit (laser oscillator) 18 that oscillates laser light L are accommodated in the main body unit 11.
  • the control unit 17 is electrically connected to the laser oscillation unit 18 and controls driving of the laser oscillation unit 18.
  • the laser light L emitted from the laser oscillation unit 18 is sent to the head unit 14 through the fiber cable 12.
  • One end of the fiber cable 12 is fixed to the head unit 14 via the connector 20.
  • the connector 20 holds the end portion of the fiber cable 12 and is fixed to the rear surface of the housing 30 of the head portion 14.
  • the connector 20 has a substantially cylindrical holding portion 21.
  • the fiber cable 12 is inserted and held inside the holding portion 21.
  • An extrapolation member 22 is sheathed on the fiber cable 12.
  • the extrapolation member 22 is fixed to the rear end of the holding portion 21.
  • a plate-like flange portion 23 is formed at the end of the holding portion 21.
  • a projecting portion 24 having a cylindrical shape is formed on the front surface of the flange portion 23.
  • the protruding portion 24 is provided coaxially with the holding portion 21 and has a smaller diameter than the holding portion 21.
  • the fiber cable 12 is inserted from the holding portion 21 to the protruding portion 24.
  • the end surface 12a (laser emission surface) of the fiber cable 12 and the end surface 24a of the protrusion 24 are substantially flush.
  • the connector 20 holds the flexible fiber cable 12 straight by a portion extending from the holding portion 21 to the protruding portion 24.
  • a positioning pin 23 a is provided on the surface of the flange portion 23 that faces the head portion 14.
  • a concave portion 25 is provided on the lower surface of the holding portion 21.
  • the projecting portion 24 has three screw holes 24b formed at equal intervals along the circumferential direction. Each screw hole 24b penetrates from the outer peripheral surface of the protrusion 24 to the inner peripheral surface. A locking screw 26 is screwed into each screw hole 24b. The distal end of each rotation-preventing screw 26 slightly protrudes from the inner peripheral surface of the protruding portion 24 and is in contact with the outer peripheral surface of the fiber cable 12 in the protruding portion 24. Thereby, the fiber cable 12 is fixed in the protruding portion 24. For this reason, the rotation of the fiber cable 12 is suppressed in the protrusion 24, and the twist of the fiber cable 12 is suppressed. Further, the locking screw 26 is in contact with the fiber cable 12 at equal intervals along the circumferential direction. For this reason, the fiber cable 12 is fixed with good balance and stability.
  • a contact surface 31 that contacts the flange portion 23 is provided on the rear surface of the housing 30.
  • the connector 20 is fixed to the contact surface 31 with a plurality of screws 20a.
  • the contact surface 31 has an annular shape extending along the outer edge of the flange portion 23.
  • an accommodation recess 32 into which the protrusion 24 is inserted is provided on the inner side of the contact surface 31, on the inner side of the contact surface 31, an accommodation recess 32 into which the protrusion 24 is inserted is provided on the inner side of the contact surface 31, an accommodation recess 32 into which the protrusion 24 is inserted is provided.
  • a gap is provided in the axial direction (optical axis direction) and the radial direction between the wall constituting the housing recess 32 and the protruding portion 24.
  • a disc-shaped protective glass 33 is provided in the inner portion 32 a of the housing recess 32. The housing recess 32 and the interior of the housing 30 are partitioned by the protective glass 33.
  • the protective glass 33 and the end surface 24a of the protrusion 24 are opposed to each other while being close to each other.
  • a gap is provided between the wall of the housing recess 32 and the rotation-preventing screw 26 so that they do not interfere with each other.
  • Two positioning holes 34 into which the positioning pins 23 a of the connector 20 are inserted are formed in the contact surface 31 of the housing 30.
  • the positioning hole 34 shown on the left side of FIG. 3 is a long hole. For this reason, movement of the positioning pin 23 a is allowed in the positioning hole 34.
  • Each positioning pin 23a and each positioning hole 34 constitute positioning means for positioning the connector 20 and the head portion 14 in a direction orthogonal to the optical axis of the laser light L.
  • a sealing member (not shown) is interposed between the flange portion 23 and the contact surface 31. Thereby, the gap between the flange portion 23 and the contact surface 31 is sealed, and entry of water or the like into the housing recess 32 is suppressed.
  • the place where the rotation-preventing screw 26 and the screw hole 24b are provided is a place where it is desired to avoid adhesion of water or the like. Therefore, according to this embodiment, the protrusion 24 is disposed in the housing recess 32 in which the watertightness is maintained, and the rotation screw 26 and the screw hole 24 b are provided in the protrusion 24.
  • a connection terminal portion 35 to which the electric cable 13 is attached and detached is provided above the contact surface 31.
  • a rectangular parallelepiped convex portion 36 protruding toward the connector 20 is provided below the contact surface 31.
  • the convex portion 36 is fitted into the concave portion 25 of the connector 20.
  • the convex portion 36 and the concave portion 25 function as positioning and a guide when the connector 20 is assembled to the housing 30.
  • a half mirror 41 as a light merging means is provided at the subsequent stage of the protective glass 33.
  • the half mirror 41 is disposed on the optical axis of the laser light L emitted from the fiber cable 12 and incident from the protective glass 33.
  • the half mirror 41 transmits a predetermined ratio of the laser light L.
  • a pair of galvanometer mirrors 42 is disposed behind the half mirror 41 on the optical axis of the laser beam L.
  • the pair of galvanometer mirrors 42 are scanning mirrors that reflect the laser beam L toward the workpiece W and scan the laser beam L.
  • Each galvanometer mirror 42 is rotated by a galvano motor 43. As each galvanometer mirror 42 rotates, the laser light L irradiated onto the workpiece W is scanned in the XY direction (two-dimensional direction). Further, when the galvano motor 43 is driven by the control unit 17, the angle of each galvano mirror 42 is controlled.
  • an f ⁇ lens (convergence lens) 44 is arranged below the galvanometer mirror 42.
  • the f ⁇ lens 44 converges the laser beam L reflected by the galvanometer mirror 42 until a predetermined spot diameter is obtained on the print surface Wa of the workpiece W.
  • the energy density of the laser light L is increased to an energy density suitable for marking.
  • a laser emission port 46 partitioned by a protective glass 45 is formed below the f ⁇ lens 44.
  • the laser beam L converged by the f ⁇ lens 44 is irradiated on the print surface Wa of the workpiece W through the protective glass 45.
  • the laser beam L is scanned in a two-dimensional direction on the printing surface Wa. With such an operation, characters, figures, and the like are marked on the print surface Wa of the workpiece W.
  • each galvanometer mirror 42 and the f ⁇ lens 44 constitute an irradiation optical system that irradiates the workpiece W with the laser light L emitted from the end surface 12a of the fiber cable 12.
  • a first visible light source 51 disposed in the vicinity of the half mirror 41 and a second visible light source 52 disposed in the vicinity of the lower portion of the housing 30 are provided.
  • the visible light VL1 emitted from the first visible light source 51 is reflected by the half mirror 41 toward the galvanometer mirror 42.
  • the visible light VL ⁇ b> 1 reflected by the galvanometer mirror 42 is irradiated onto the print surface Wa of the workpiece W through the f ⁇ lens 44.
  • the galvanometer mirror 42 scans the visible light VL1 in the two-dimensional direction in the same manner as when scanning the laser light L.
  • a guide mark Ga as shown in FIG. 8B is displayed by the visible light VL1 scanned by the galvanometer mirror 42 in this way.
  • the guide mark Ga is displayed as a circle figure centered on the cross and the intersection of the cross.
  • the cross point of the guide mark Ga indicates the origin (center) of the XY coordinates in the scanning of the galvano mirror 42 and is located on the axis of the f ⁇ lens 44.
  • the second visible light source 52 is disposed between the f ⁇ lens 44 and the connector 20.
  • the second visible light source 52 emits the second visible light VL2 toward the print surface Wa of the workpiece W.
  • the second visible light VL2 is emitted obliquely with respect to the first visible light VL1.
  • the optical axis of the second visible light VL2 intersects with the axis of the f ⁇ lens 44.
  • FIG. 8B shows guide points Gb0, Gb1, and Gb2 as examples of guide points.
  • the second visible light VL2 is green, and the first visible light VL1 is red.
  • connection terminal portion 35 is electrically connected to the galvano motor 43, the first visible light source 51, and the second visible light source 52. Accordingly, the control unit 17 is electrically connected to the galvano motor 43, the first visible light source 51, and the second visible light source 52 via the electric cable 13 and the connection terminal unit 35.
  • a console 16 having a display unit 16a and an operation unit 16b is connected to the main body unit 11.
  • the user operates the operation unit 16b to set desired print data.
  • the print data set by the operation unit 16 b is output to the control unit 17 of the main body unit 11 through the electric cable 15.
  • the control unit 17 controls the laser oscillation unit 18, the galvano motor 43, the first visible light source 51, and the second visible light source 52 based on the print data.
  • the control unit 17 drives the laser oscillation unit 18 and the galvano motor 43 based on the print data.
  • the laser oscillating unit 18 emits laser light L to the fiber cable 12, and the laser light L is transmitted to the head unit 14 via the fiber cable 12.
  • the laser light L emitted from the end surface 12 a of the fiber cable 12 passes through the half mirror 41 and is then irradiated onto the print surface Wa of the workpiece W through the f ⁇ lens 44 and the protective glass 45.
  • the laser beam L is scanned in a two-dimensional direction on the print surface Wa by the galvanometer mirror 42.
  • the laser light L emitted from the fiber cable 12 is emitted as parallel light (that is, the divergence angle is approximately 0 degrees), and specifically, is made into parallel light by a collimator lens or the like.
  • the laser beam L that is parallel light is incident on the f ⁇ lens 44.
  • Incident light that is laser light L incident on the f ⁇ lens 44 is converged with a predetermined refractive index based on the performance of the f ⁇ lens 44.
  • FIG. 7B shows the diameter (spot diameter Sr) of the laser light L at the focal position P0 of the f ⁇ lens 44, and the spot diameter Sr is obtained by the following equation.
  • the focal depth df shown in FIG. 7A becomes deeper as the spot diameter Sr is larger. That is, the smaller the diameter Lw of the incident light, the deeper the focal depth df of the laser light L.
  • the diameter of the incident light is determined so as to obtain a spot diameter designed at the focal point (aperture position).
  • the diameter Lw of the incident light is made smaller than the designed diameter of the incident light in order to make the spot diameter of the laser light L larger than its design value and deepen the focal depth df. .
  • work W can be irradiated with the laser beam L with the deep focal depth df.
  • the energy of the laser light L is substantially uniform and large enough to ensure the desired marking quality, and the diameter (spot diameter Sr) of the laser light L is also substantially uniform. .
  • the desired marking on the printing surface Wa becomes possible by matching the printing surface Wa of the workpiece W within the range of the focal depth df. Further, as long as the position of the print surface Wa of the workpiece W is within the range of the focal depth df, the quality of the marking becomes substantially uniform.
  • FIGS. 7A and 7B show an example of the laser beam La in a conventional laser marking apparatus by a two-dot chain line.
  • the diameter of incident light is large, the spot diameter at the focal point is small and the focal depth is shallow. For this reason, although high energy can be obtained at the focal point, the depth of focus is shallow, so that it is necessary to closely adjust the work distance corresponding to the distance from the laser emission port 46 to the print surface Wa of the work W and the focus of the laser light. .
  • the aperture position in the Z-axis direction corresponding to the axial direction of the f ⁇ lens 44 is adjusted by changing the divergence angle of incident light using a variable lens distance beam expander, a 3D scanner, or the like. In this way, it was possible to cope with marking on the printing surface of various types of workpieces having different work distances or workpieces having inclined surfaces, steps, or irregularities.
  • the laser marking device 10 of the present embodiment does not include an inter-lens distance variable beam expander or a 3D scanner that changes the spread angle of the laser light L, and the laser light L emitted from the fiber cable 12 is The light enters the f ⁇ lens 44 with the diameter Lw kept small. Thereby, the focal depth df becomes deep. As the focal depth df increases, the range that can be regarded as a focal point (distance in the Z-axis direction) increases.
  • the laser beam L is applied to perform oxidation printing (black marking) on the workpiece W mainly made of a metal material such as a bearing or a carbide drill.
  • the spot diameter of the laser beam L on the printing surface Wa needs to satisfy certain conditions.
  • the oscillation method of the laser oscillation part 18 is continuous (CW: Continuous wave) oscillation. This is because, in thermal processing, the physical properties of the workpiece W are more likely to change when the laser beam L is oscillated on the average than when the laser beam L is oscillated instantaneously with high energy (pulse oscillation). It is.
  • the diameter Lw of the f ⁇ lens 44 is set so as to satisfy the above-described certain condition in order to oxidize and print on the workpiece W.
  • the print surface Wa of the workpiece W is set at a position offset from the actual focus position by adjusting the focus position so as to satisfy the above-described certain condition. Then, the position of the focal length needs to be offset by using a variable inter-lens distance beam expander or a 3D scanner following the change of the position of the printing surface Wa, that is, the work distance.
  • the divergence angle is changed by an inter-lens distance variable beam expander, a 3D scanner, or the like. For this reason, since the condition of the spread angle is different at the offset position as described above, the print quality may be affected if the work distance changes.
  • the diameter of the incident light incident on the f ⁇ lens 44 is reduced and the range of the focal depth df is increased, so that printing is performed within the focal depth df. Quality can be the same.
  • the guide mark Ga is displayed by the first visible light VL1 scanned by the galvano mirror 42. For this reason, the size of the guide mark Ga slightly changes depending on the position of the print surface Wa in the Z-axis direction (Z-axis position). However, since the change in the size of the guide mark Ga is so small that it can be ignored, the size of the guide mark Ga will not be changed depending on the Z-axis position of the printing surface Wa.
  • FIGS. 8A and 8B the display position of the guide point by the second visible light VL2 changes with respect to the guide mark Ga depending on the position of the print surface Wa in the Z-axis direction.
  • FIG. 8B shows the locus T of the guide point with a broken line when the Z-axis position of the printing surface Wa is changed.
  • the trajectory T is a straight line.
  • the guide point Gb0 displayed on the print surface Wa overlaps the center (cross point of the cross) of the guide mark Ga.
  • the focal position P0 coincides with the center position of the focal depth df in the Z-axis direction. That is, when the guide point displayed on the print surface Wa overlaps the cross point of the guide mark Ga, the print surface Wa is positioned at the center of the focal depth df (see FIG. 7A).
  • the diameter of the guide mark Ga circle is set to correspond to the range of the focal depth df. That is, when the printing surface Wa is at the lower limit position P1 of the focal depth df, the guide point Gb1 is displayed on the circle line of the guide mark Ga, and when the printing surface Wa is at the upper limit position P2 of the focal depth df, the guide mark Ga. A guide point Gb2 is displayed on the circle line. The display positions of the guide point Gb1 and the guide point Gb2 are symmetric with respect to the center of the guide mark Ga.
  • the focal depth df In the range of the focal depth df (range from the lower limit position P1 to the upper limit position P2), it is possible to mark the printing surface Wa of the workpiece W with substantially uniform quality. For this reason, when the guide point is displayed inside the circle of the guide mark Ga, the Z-axis position of the printing surface Wa is within the range of the focal depth df, and marking on the printing surface Wa is possible. On the other hand, when the guide point is displayed outside the circle of the guide mark Ga, the Z-axis position of the printing surface Wa is outside the range of the focal depth df, and the Z-axis position of the printing surface Wa needs to be adjusted. Thereby, the user can confirm before marking whether the printing surface Wa is in the Z-axis position where marking can be performed by viewing the positional relationship between the guide mark Ga and the guide point displayed on the printing surface Wa. .
  • the control unit 17 controls the galvanometer mirror 42 so that the printing range (marking range) does not change according to the work distance.
  • the user can input and change the work distance via the operation unit 16b as a setting unit.
  • the work distance reference position is set in advance by the manufacturer.
  • the reference position is a position Wd0. Further, the speed of the laser beam L at the reference position Wd0 is set by the operation unit 16b.
  • the range of the deflection angle which is the scanning angle of the galvanometer mirror 42 necessary for scanning the printing range Ar0
  • the range is defined as the range.
  • the control unit 17 controls the galvano motor 43 so as to slow down the drive range (scanning speed) of the galvano mirror 42 per unit distance in the deflection angle range ⁇ 1. Thereby, the moving speed of the laser beam L on the workpiece W becomes constant.
  • the range of the swing angle of the galvanometer mirror 42 is set to a range of the swing angle ⁇ 2 that is wider than the range of the swing angle ⁇ 0.
  • the swing angle range ⁇ 2 of the galvanometer mirror 42 that is, the drive range of the galvanometer mirror 42 is expanded.
  • the control unit 17 controls the galvano motor 43 so as to increase the scanning speed of the galvano mirror 42 in the deflection angle range ⁇ 1.
  • the control unit 17 changes the scanning angle and scanning speed of the galvanometer mirror 42 according to the work distance. As a result, regardless of the distance of the workpiece distance between the laser emission port 46 and the workpiece W, the printing surface Wa (processing surface) of the workpiece W is processed at the same position and size. That is, as the work distance increases, the control unit 17 narrows the range of the swing angle as the scanning angle of the galvanometer mirror 42 and decreases the scanning speed of the galvanometer mirror 42. Further, as the work distance is smaller, the control unit 17 widens the range of the deflection angle as the scanning angle of the galvanometer mirror 42 and increases the scanning speed of the galvanometer mirror 42.
  • control unit 17 changes the deflection angles ⁇ 0 to ⁇ 2 as the scanning angles of the galvanometer mirror 42 according to the work distance.
  • the printing surface Wa of the workpiece W can be processed in the same position and size, that is, in the same printing range as the processing range Ar0.
  • the moving speed of the laser light L on the work W can be made constant regardless of the change in the scanning angle due to the difference in the work distance. Thereby, even if the workpiece distance is changed, the machining quality of the workpiece W can be maintained while keeping the machining range Ar0 the same.
  • the control unit 17 changes the scanning angle (deflection angle) and scanning speed of the galvano mirror 42 according to the work distance set by the operation unit 16b.
  • the scanning angle and scanning speed of the galvanometer mirror 42 can be changed without using a sensor or the like that detects the work distance.
  • the machining range can be made the same regardless of the set work distance.
  • the laser marking device 10 includes teaching means including a first visible light source 51 and a second visible light source 52.
  • the first visible light source 51 irradiates the printing surface Wa with the first visible light VL1.
  • the second visible light source 52 emits the second visible light VL2 obliquely with respect to the axis of the f ⁇ lens 44 so that the second visible light VL2 intersects the first visible light VL1.
  • a guide mark Ga indicating a range corresponding to the focal depth df of the laser light L is displayed on the printing surface Wa.
  • the irradiation position (guide point display position) of the second visible light VL2 changes in a direction (XY axis direction) orthogonal to the Z axis direction according to the position of the print surface Wa in the Z axis direction. Then, the display position of the guide point with respect to the guide mark Ga teaches whether or not the print surface Wa is at a position that can be processed. For this reason, the user simply irradiates the print surface Wa with the first and second visible lights VL1 and VL2 before laser marking, and confirms whether there is a guide point within the range of the guide mark Ga. It is possible to easily grasp whether or not laser marking is possible on the printing surface Wa.
  • the guide point When the printing surface Wa is within the range of the focal depth df, the guide point is within the range of the guide mark Ga, and when the printing surface Wa is outside the range of the focal depth df, the guide point is at the guide mark Ga. It is out of range. That is, whether or not the print surface Wa of the workpiece W is at a position that can be processed can be taught by whether or not the guide point is within the range of the guide mark Ga.
  • the guide mark Ga is shown as an annular frame (circle) indicating a range corresponding to the focal depth df. That is, whether or not the print surface Wa of the workpiece W is at a position where it can be processed is taught by whether or not the guide point display position is within the frame (circle) of the guide mark Ga. For this reason, the user can intuitively grasp whether or not laser marking is possible on the printing surface Wa.
  • the guide mark Ga includes a cross-shaped figure (focus position teaching mark).
  • the display position of the guide point overlaps with the cross point of the guide mark Ga. That is, the user can grasp whether or not the print surface Wa is at the focal position P0 of the f ⁇ lens 44 based on whether or not the guide point overlaps the intersection of the guide marks Ga.
  • the second visible light VL2 is green visible light
  • the first visible light VL1 is red visible light. That is, since the color of the first visible light VL1 and the color of the second visible light VL2 are different, the visibility of the guide mark Ga and the guide point is improved. As a result, the user can more easily grasp whether or not laser processing on the printing surface Wa is possible.
  • the connector 20 is provided with a cylindrical protrusion 24 through which the fiber cable 12 is inserted.
  • the protrusion 24 is inserted into the housing recess 32 of the housing 30.
  • the protruding portion 24 is formed with a screw hole 24b penetrating from the outer peripheral surface to the inner peripheral surface.
  • a locking screw 26 that contacts the fiber cable 12 inserted through the protruding portion 24 is screwed into the screw hole 24b. According to this configuration, the twisting of the fiber cable 12 can be suppressed by the anti-rotation screw 26.
  • the detent screws 26 are provided at equal intervals along the circumferential direction of the fiber cable 12. For this reason, since the fiber cable 12 can be fixed with good balance, the fiber cable 12 can be fixed stably.
  • the user directly inputs the work distance by operating the operation unit 16b.
  • the user inputs the distance between the f ⁇ lens 44 and the mounting surface of the work W and the height of the work W, and the work distance. May be calculated by the control unit 17.
  • the laser marking device 10 may be provided with a sensor as a measuring means for measuring the work distance. In this case, the scanning angle and scanning speed of the galvanometer mirror 42 can be accurately changed based on the measurement result from the sensor. Furthermore, the work distance is automatically changed, so that the machining range can be made more accurate.
  • a notification unit for notifying that effect may be used.
  • control unit 17 may control the setting of the work distance setting unit to be invalidated when the work distance set in the work distance setting unit is outside the preset reference range. Good.
  • the control unit 17 controls the print range to be the print range Ar0 regardless of the work distance, but the print range Ar0 can be arbitrarily changed using the operation unit 16b as the processing range setting unit. Also good.
  • the control unit 17 controls the scanning angle and the scanning speed based on the work distance so that the printing range set by the operation unit 16b is the same regardless of the work distance. In this case, the user can set and change the processing range. Even if the machining range is changed, the workpiece can be machined regardless of the work distance so that the changed machining range is obtained.
  • the size of the range indicated by the guide mark Ga may be adjustable.
  • the range (depth of focus) that can be regarded as the focal point of the laser light L becomes narrower.
  • high marking quality that is, when the accuracy of the laser power is not so high, the range that can be regarded as the focal point of the laser light L is widened. That is, the convenience of the guide mark Ga is improved by making the size of the guide mark Ga adjustable according to the marking mode. The user operates the operation unit 16b to input a necessary laser power value and material of the workpiece W.
  • the control unit 17 controls the size of the guide mark Ga by drive control of the galvanometer mirror 42 based on the user input. Further, the user may be able to directly set the size of the guide mark Ga by operating the operation unit 16b. According to this configuration, it is possible to easily grasp whether or not highly accurate laser marking is possible when the range of the guide mark Ga is adjusted to be small.
  • the first visible light VL1 is red visible light and the second visible light VL2 is green visible light.
  • the colors of the first visible light VL1 and the second visible light VL2 may be changeable.
  • the operation unit 16b may be operated to set the colors of the first visible light VL1 and the second visible light VL2. Further, the operation unit 16b is operated to input the color of the workpiece W, and the first and second visible lights VL1 and VL2 having colors (for example, complementary colors) having good visibility with respect to the color of the workpiece W are emitted. Also good. According to this configuration, since the colors of the first and second visible lights VL1 and VL2 can be set according to the color of the workpiece W, the visibility of the guide mark Ga and the guide point is further improved.
  • the second visible light source 52 is disposed between the f ⁇ lens 44 and the connector 20, but the second visible light VL2 from the second visible light source 52 intersects the axis of the f ⁇ lens 44. And as long as it irradiates the printing surface Wa, you may arrange
  • the guide mark Ga has a shape made up of a cross and a circle centered on the intersection of the cross, but the cross may be omitted and only the circle may be used.
  • the figure may include a lower limit position teaching line Gd and an upper limit position teaching line Gu as shown in FIG.
  • the lower limit position teaching line Gd and the upper limit position teaching line Gu are dividing lines positioned on the guide point trajectory T, and correspond to the lower limit position P1 and the upper limit position P2 of the focal depth df, respectively. That is, when the print surface Wa is at the lower limit position P1 of the focal depth df, the guide point Gb1 is displayed on the lower limit position teaching line Gd.
  • the guide point Gb2 is displayed on the upper limit position teaching line Gu.
  • the printing surface Wa is at the Z-axis position where marking can be performed is taught depending on whether or not the guide point is located between the lower limit position teaching line Gd and the upper limit position teaching line Gu.
  • the user can intuitively grasp whether or not laser marking is possible on the printing surface Wa.
  • a cross similar to the guide mark Ga may be provided between the lower limit position teaching line Gd and the upper limit position teaching line Gu.
  • the change in the size of the guide mark Ga with respect to the Z-axis position of the printing surface Wa is negligibly small.
  • the guide mark in other cases is shown in FIGS. 11 (a) to 13 (b). It explains according to. As the work distance increases, the size of the guide mark increases.
  • the guide mark Ga1 shown in FIGS. 11A and 11B includes a first arc K1 (lower limit position teaching line) and a second arc K2 (upper limit position teaching line).
  • the diameter of the first arc K1 is smaller than the diameter of the second arc K2.
  • the first arc K1 and the second arc K2 correspond to the lower limit position P1 and the upper limit position P2 of the focal depth df, respectively.
  • the print surface Wa is at the lower limit position P1 of the focal depth df, the work distance is larger than that of the upper limit position P2, so that the size of the guide mark Ga1 is increased as shown in FIG.
  • the guide point Gb1 is displayed on the first arc K1. That is, whether or not the printing surface Wa is at the Z-axis position where marking can be performed is taught by whether or not the guide point is located between the first arc K1 and the second arc K2. In this way, by making the diameters of the first arc K1 and the second arc K2 different, it is possible to cope with the case where the size of the guide mark Ga1 changes depending on the Z-axis position of the printing surface Wa.
  • the guide mark Ga2 shown in FIGS. 12A and 12B is composed of an ellipse and a cross-shaped figure within the ellipse.
  • the major axis of the ellipse of the guide mark Ga2 extends along the trajectory T direction of the guide point, and both ends of the ellipse in the major axis direction correspond to the upper limit position P2 and the lower limit position P1 of the focal depth df of the laser beam L, respectively. is doing.
  • the guide point Gb2 is displayed on the first end portion in the major axis direction of the ellipse.
  • the print surface Wa is at the lower limit position P1 of the focal depth df, the work distance is larger than that of the upper limit position P2, so that the size of the guide mark Ga1 is increased as shown in FIG.
  • the guide point Gb1 is displayed on the second end portion in the major axis direction of the ellipse. That is, whether or not the printing surface Wa is at the Z-axis position where marking can be performed is taught by whether or not the guide point is located within the ellipse of the guide mark Ga2.
  • the guide point is displayed on the intersection of the guide marks Ga2.
  • the cross point position of the cross is shifted in the locus T direction from the center of the ellipse of the guide mark Ga2. In this way, it is possible to cope with a case where the size of the guide mark Ga2 changes at the Z-axis position of the printing surface Wa.
  • the guide mark Ga2 shown in FIGS. 12A and 12B may be an ellipse without a cross.
  • the guide mark Ga3 shown in FIGS. 13A and 13B includes two circles C1 and C2 having different diameters.
  • the large-diameter circle C1 and the small-diameter circle C2 correspond to the upper limit position P2 and the lower limit position P1 of the focal depth df, respectively.
  • the guide point Gb2 is displayed on the large-diameter circle C1.
  • the work distance is larger than that of the upper limit position P2, so that the size of the guide mark Ga3 is increased as shown in FIG.
  • the guide point Gb1 is displayed on the small-diameter circle C2. That is, whether or not the printing surface Wa is at the Z-axis position where marking can be performed is taught by whether or not the guide point is located in the small-diameter circle C2.
  • Such two circles C1 and C2 can cope with a case where the size of the guide mark Ga2 changes at the Z-axis position of the printing surface Wa.
  • the control unit 17 performs drive control of the galvano motor 43 after being emitted for a predetermined time at the emission start point of the laser light L, and scans the laser light L based on the print data (processing data).
  • the control unit 17 When laser processing is performed by scanning the laser beam L based on the coordinate data from the start point SP0 to the end point EP0, the control unit 17 is positioned between the start point SP0 and the end point EP0 or in the direction opposite to the end point EP0 with respect to the start point SP0. Then, a correction point CP is generated. Then, the control unit 17 reciprocates the laser beam L between the correction point CP and the start point SP0, and secures a time from when the laser beam L is emitted until it can be processed.
  • the control unit 17 emits the laser beam L from the correction point CP and scans the laser beam L toward the start point SP0 (scanning Sc1). Thereafter, the control unit 17 scans the laser beam L from the start point SP0 through the correction point CP to the end point EP0 side (scanning Sc2).
  • the method for generating the correction point CP between the start point SP0 and the end point EP0 may be changed as follows. That is, as shown in FIG. 15, the laser beam L is emitted from the start point SP0, and the laser beam L is scanned on the correction point CP side (scanning Sc1). Next, the control unit 17 scans the laser beam L from the correction point CP to the start point SP0 side (scanning Sc2). Thereafter, the controller 17 scans the laser beam L from the start point SP0 to the end point EP0 side through the correction point CP (scanning Sc3).
  • the control unit 17 emits the laser light L from the correction point CP and scans the laser light L toward the start point SP0 (scanning Sc1).
  • the controller 17 scans the laser beam L from the start point SP0 to the correction point CP side in the direction opposite to the end point EP0 (scanning Sc2).
  • the controller 17 scans the laser beam L from the correction point CP to the end point EP0 through the start point SP0 (scanning Sc3).
  • the same character may be repeatedly marked in the same range, and the thickness of the line constituting the character or symbol may be changed.
  • the specific marking method of the another example is shown below.
  • FIGS. 17 (a) and 17 (b) show the case where the letter “A” is marked on the workpiece W by the laser marking device.
  • the operation shown below by the control unit 17 is executed through control of the galvano motor 43.
  • the controller 17 scans the laser light L from the start point SP1 to the end point EP1 of the first unit marking. Thereafter, the control unit 17 moves the irradiation position of the laser light L from the end point EP1 of the first unit marking to the start point SP2 of the second unit marking without emitting the laser light L.
  • the control unit 17 scans the laser light L from the start point SP2 to the end point EP2 of the second unit marking.
  • control unit 17 moves the irradiation position of the laser light L from the end point EP2 of the second unit marking to the start point SP1 of the first unit marking without emitting the laser light L.
  • the controller 17 can increase the thickness of the line as shown in FIG. 17B by repeating the series of steps described above.
  • the print data may be disassembled for each unit marking, marked for the required number of times for each unit marking, and then transferred to the next unit marking.
  • two reciprocal markings are performed for each unit marking as many times as necessary, that is, four times are marked for each unit marking.
  • control unit 17 when marking the character “A” on the workpiece W, the control unit 17 performs one reciprocating scan between the start point SP1 and the end point EP1 of the first unit marking, as shown in FIG. More specifically, the controller 17 scans the laser beam L from the first unit marking start point SP1 to the end point EP1, and then scans the laser beam L from the first unit marking end point EP1 to the first unit marking start point SP1. Scan.
  • control unit 17 further performs one reciprocating scan between the start point SP1 and the end point EP1 of the first unit marking. Thereafter, the control unit 17 does not emit the laser light L, and from the first unit marking start point SP1 to the second unit marking end point EP2 as the next marking start point, as shown in FIG. 18B.
  • the irradiation position of the laser beam L is moved.
  • control unit 17 performs one reciprocating scan between the start point SP2 and the end point EP2 of the second unit marking. More specifically, the controller 17 scans the laser beam L from the end point EP2 of the second unit marking to the start point SP2 of the second unit marking, and then the laser beam L from the start point SP2 of the second unit marking to the end point EP2. Scan.
  • control unit 17 further performs one reciprocating scan between the start point SP2 start point and the end point EP2 of the second unit marking. In this way, it is possible to perform marking with the same character quality as when the character “A” is marked four times. Further, it is possible to reduce the number of times of moving the irradiation position of the laser light L to the next marking start point without emitting the laser light L.
  • the number of locking screws 26 provided on the connector 20 is three. However, if the fixing and twisting of the fiber cable 12 can be suppressed, the number of locking screws 26 is set to one or two. Also good. Further, when the number of the locking screws 26 is four or more, by providing the locking screws 26 at equal intervals in the circumferential direction of the fiber cable 12, the fiber cable 12 can be fixed in a balanced manner or stably. Can be. Further, the rotation-preventing screw 26 may be used, for example, for aligning the optical axis of the fiber cable 12 in addition to suppressing twisting of the fiber cable 12.
  • the galvanometer mirrors 42 may not be a pair (two).
  • a beam splitter, a dichroic mirror, or the like may be used instead of the half mirror 41 as the light merging means.
  • the present invention is applied to the laser marking device 10 in which the main body portion 11 having the laser oscillation portion 18 and the head portion 14 are separated, but may be applied to a laser marking device in which the main body portion and the head portion are integrated. Further, the present invention is applied to the laser marking apparatus 10 for marking patterns such as characters, symbols, and figures, but may be applied to a laser processing apparatus that performs processing such as cutting on the workpiece W.

Abstract

In the present invention a control unit changes the scanning speed and changes, as the scanning angle, the range θ0-θ2 of the deflection angle of a Galvano mirror, in accordance with the work distance, so as to enable the printing surface (the processing surface) of a work piece to be processed at the same position and with the same size, regardless of the work distance between a laser emission port (46) and the work piece. In other words, the control unit performs a control such that the range of the deflection angle of the Galvano mirror decreases and the scanning speed decreases as the work distance increases, and the control unit performs a control such that the range of the deflection angle of the Galvano mirror increases and the scanning speed increases as the work distance decreases.

Description

レーザ加工装置Laser processing equipment
 本発明は、ガルバノミラーを用いてレーザ光を走査してワークにレーザ光を照射するレーザ加工装置に関する。 The present invention relates to a laser processing apparatus that scans a laser beam using a galvanometer mirror and irradiates the workpiece with the laser beam.
 レーザ加工装置は、一対のガルバノミラーによってレーザ光を走査する。走査されたレーザ光は、fθレンズ等の収束レンズを介して、ワーク上にて所定のスポット径となるように照射される。 The laser processing apparatus scans the laser beam with a pair of galvanometer mirrors. The scanned laser light is irradiated on the workpiece so as to have a predetermined spot diameter through a converging lens such as an fθ lens.
 ところで、収束レンズとワークとの間の距離(ワークディスタンス)が、ワークの製造ばらつきや、ワークの種類によって異なることがある。この場合、ガルバノミラーでレーザ光を走査しても、ワークディスタンスにより、走査ミラーの振れ角の範囲で規定される加工範囲が変わる。このため、レーザ光が異なる位置に照射されてしまう。 By the way, the distance (work distance) between the converging lens and the workpiece may vary depending on the manufacturing variation of the workpiece and the type of the workpiece. In this case, even if the galvano mirror scans the laser beam, the processing range defined by the range of the deflection angle of the scanning mirror changes depending on the work distance. For this reason, a laser beam will be irradiated to a different position.
 例えば、特許文献1のレーザ加工装置では、ワークディスタンスにかかわらず、ワークに対して同じ位置及び同じ大きさで加工されるように、ガルバノミラーの振れ角の範囲(走査角度)を変化させている。この構成によれば、ワークディスタンスが異なっても加工範囲を同一にすることはできる。しかしながら、ガルバノミラーの振れ角を変化させるだけで加工品質を一定に保つことは難しい。 For example, in the laser processing apparatus of Patent Document 1, the range (scanning angle) of the deflection angle of the galvanometer mirror is changed so that the workpiece is processed at the same position and the same size regardless of the workpiece distance. . According to this configuration, the machining range can be made the same even if the work distance is different. However, it is difficult to keep the processing quality constant only by changing the deflection angle of the galvanometer mirror.
特開2004-122132号公報JP 2004-122132 A
 本発明の目的は、ワークディスタンスが異なる場合であっても、加工範囲を同一にしつつ加工品質を維持することのできるレーザ加工装置を提供することにある。 An object of the present invention is to provide a laser processing apparatus capable of maintaining the processing quality while maintaining the same processing range even when the work distance is different.
 上記課題を解決するため、本発明の第一の態様によれば、レーザ光を出射するレーザ出射部と、レーザ出射部からのレーザ光を走査する走査ミラーと、走査ミラーを制御する制御部とを備え、レーザ出射部からのレーザ光を、走査ミラーを介して、レーザ出射口からワークに照射するレーザ加工装置が提供される。制御部は、レーザ出射口及びワーク間のワークディスタンスにかかわらずワークの加工面の同じ位置及び大きさで加工されるように、ワークディスタンスが大きいほど走査ミラーの走査角度を狭く且つ走査ミラーの走査速度を遅くするように制御し、ワークディスタンスが小さいほど走査ミラーの走査角度を広く且つ走査ミラーの走査速度を速くするように制御する。 In order to solve the above problems, according to a first aspect of the present invention, a laser emitting unit that emits laser light, a scanning mirror that scans laser light from the laser emitting unit, and a control unit that controls the scanning mirror, There is provided a laser processing apparatus for irradiating a workpiece from a laser emission port with a laser beam from a laser emission unit via a scanning mirror. The control unit narrows the scanning angle of the scanning mirror and increases the scanning angle of the scanning mirror so that the workpiece is processed at the same position and size on the processing surface of the workpiece irrespective of the workpiece distance between the laser emission port and the workpiece. Control is performed so as to reduce the speed, and the smaller the work distance, the wider the scanning angle of the scanning mirror and the higher the scanning speed of the scanning mirror.
 この構成によれば、ガルバノミラーの走査角度をワークディスタンスに応じて変更することで、ワークディスタンスにかかわらずワークの加工面の同じ位置及び大きさ、即ち加工範囲を同一にして加工することができる。更に走査速度をワークディスタンスに応じて変更することで、ワークディスタンスの違いによる走査角度の変更にかかわらずワーク上でのレーザ光の移動速度を一定とすることもできる。これにより、ワークディスタンスが変更しても加工範囲を同一にしつつワークの加工品質を維持することができる。 According to this configuration, by changing the scanning angle of the galvanometer mirror according to the work distance, the same position and size of the work surface of the work, that is, the work range can be made the same regardless of the work distance. . Furthermore, by changing the scanning speed according to the work distance, the moving speed of the laser beam on the work can be made constant regardless of the change in the scanning angle due to the difference in the work distance. Thereby, even if a work distance changes, the processing quality of a workpiece | work can be maintained, making the processing range the same.
 上記のレーザ加工装置において、ワークディスタンスを設定するワークディスタンス設定部を備え、制御部は、ワークディスタンス設定部で設定されたワークディスタンスに応じて、走査ミラーの走査角度及び走査速度を変更することが好ましい。 The laser processing apparatus includes a work distance setting unit for setting a work distance, and the control unit can change the scanning angle and the scanning speed of the scanning mirror according to the work distance set by the work distance setting unit. preferable.
 この構成によれば、制御部は、設定部で設定したワークディスタンスに応じて、走査ミラーの走査角度及び走査速度を変更することができる。よって、設定部に設定されるワークディスタンスにかかわらず加工範囲を同一とすることができる。 According to this configuration, the control unit can change the scanning angle and scanning speed of the scanning mirror according to the work distance set by the setting unit. Therefore, the machining range can be made the same regardless of the work distance set in the setting unit.
 上記のレーザ加工装置において、ワークディスタンス設定部は、ワークディスタンスを測定する測定手段からの測定結果に応じて、ワークディスタンスを設定することが好ましい。 In the above laser processing apparatus, it is preferable that the work distance setting unit sets the work distance according to the measurement result from the measuring means for measuring the work distance.
 この構成によれば、設定部は、ワークディスタンスを測定する測定手段からの測定結果に応じてワークディスタンスを設定する。このため、使用者がワークディスタンスを設定する手間を省くと共に、ワークディスタンスを正確に設定することができる。更に、ワークディスタンスが自動的に変更され、より正確に加工範囲を同一とすることもできる。 According to this configuration, the setting unit sets the work distance according to the measurement result from the measurement means for measuring the work distance. Therefore, it is possible to save the user from setting the work distance and to set the work distance accurately. Furthermore, the work distance is automatically changed, and the processing range can be made the same more accurately.
 上記のレーザ加工装置において、ワークディスタンス設定部に設定されるワークディスタンスが予め設定される基準範囲外である場合、基準範囲外である旨を報知する報知手段を備えたことが好ましい。 In the above laser processing apparatus, it is preferable that the laser machining apparatus further includes an informing means for informing that the work distance set in the work distance setting unit is out of the reference range when the work distance is out of the preset reference range.
 この構成によれば、ワークディスタンス設定部に設定されるワークディスタンスが予め設定される基準範囲外であることを、報知手段によって、使用者に報知することができる。よって、設定されるワークディスタンスが基準範囲外に設定されなくなる。 According to this configuration, the notification means can notify the user that the work distance set in the work distance setting unit is outside the preset reference range. Therefore, the set work distance is not set outside the reference range.
 上記のレーザ加工装置において、ワークディスタンス設定部に設定されるワークディスタンスが予め設定される基準範囲外である場合、ワークディスタンス設定部の設定を無効にする無効手段を備えたことが好ましい。 In the above laser processing apparatus, it is preferable that an invalid means for invalidating the setting of the work distance setting unit is provided when the work distance set in the work distance setting unit is outside a preset reference range.
 この構成によれば、ワークディスタンス設定部に設定されるワークディスタンスが予め設定される基準範囲外である場合、無効手段によって、ワークディスタンス設定部の設定を無効にすることができる。よって、設定されるワークディスタンスが基準範囲外に設定されても、その設定に基づく加工が開始されることはない。 According to this configuration, when the work distance set in the work distance setting unit is outside the preset reference range, the setting of the work distance setting unit can be invalidated by the invalidating means. Therefore, even if the set work distance is set outside the reference range, machining based on the setting is not started.
 上記のレーザ加工装置において、使用者が加工範囲を設定可能な加工範囲設定部を備え、制御部は、加工範囲設定部で設定された加工範囲をワークディスタンスにかかわらず同一とするように制御することが好ましい。 The laser processing apparatus includes a processing range setting unit that allows a user to set a processing range, and the control unit controls the processing range set by the processing range setting unit to be the same regardless of the work distance. It is preferable.
 この構成によれば、使用者は、加工範囲設定部を通じて加工範囲を設定することができる。これにより、制御部は、加工範囲設定部で設定された加工範囲をワークディスタンスにかかわらず同一とするように制御する。このため、加工範囲が変更されても、変更後の加工範囲となるように、ワークディスタンスにかかわらずワークを加工することができる。 According to this configuration, the user can set the processing range through the processing range setting unit. Thus, the control unit controls the machining range set by the machining range setting unit to be the same regardless of the work distance. For this reason, even if the machining range is changed, the workpiece can be machined regardless of the work distance so that the changed machining range is obtained.
本発明の一実施形態に係るレーザ加工装置の概略構成を示す斜視図。The perspective view which shows schematic structure of the laser processing apparatus which concerns on one Embodiment of this invention. レーザ加工装置の概要を示すブロック図。The block diagram which shows the outline | summary of a laser processing apparatus. ヘッド部の分解斜視図。The exploded perspective view of a head part. コネクタの斜視図。The perspective view of a connector. コネクタの突出部の断面図。Sectional drawing of the protrusion part of a connector. コネクタの接続構造を示す側面図。The side view which shows the connection structure of a connector. (a)(b)は、fθレンズにて収束されるレーザ光を説明するための模式図。(A) and (b) are schematic diagrams for explaining laser light converged by an fθ lens. (a)(b)は、第1及び第2の可視光によるガイド表示を説明するための模式図。(A) (b) is a schematic diagram for demonstrating the guide display by the 1st and 2nd visible light. (a)は、本発明のレーザ加工装置によるレーザ光の走査を説明するための模式図、(b)は、従来のレーザ加工装置によるレーザ光の走査を説明するための模式図。(A) is a schematic diagram for demonstrating the scanning of the laser beam by the laser processing apparatus of this invention, (b) is a schematic diagram for demonstrating the scanning of the laser beam by the conventional laser processing apparatus. 別例のガイドマークを示す模式図。The schematic diagram which shows the guide mark of another example. (a)(b)は、別例のガイドマークを示す模式図。(A) (b) is a schematic diagram which shows the guide mark of another example. (a)(b)は、別例のガイドマークを示す模式図。(A) (b) is a schematic diagram which shows the guide mark of another example. (a)(b)は、別例のガイドマークを示す模式図。(A) (b) is a schematic diagram which shows the guide mark of another example. 別例のレーザ加工装置によるレーザ光の走査を説明するための模式図。The schematic diagram for demonstrating the scanning of the laser beam by the laser processing apparatus of another example. 別例のレーザ加工装置によるレーザ光の走査を説明するための模式図。The schematic diagram for demonstrating the scanning of the laser beam by the laser processing apparatus of another example. 別例のレーザ加工装置によるレーザ光の走査を説明するための模式図。The schematic diagram for demonstrating the scanning of the laser beam by the laser processing apparatus of another example. (a)は、別例のレーザ加工装置によるレーザ光の走査を説明するための模式図、(b)は、レーザ加工装置によるレーザ光の走査の繰り返し回数に応じて異なる加工の内容を説明するための模式図。(A) is a schematic diagram for explaining scanning of laser light by a laser processing apparatus according to another example, and (b) explains the contents of different processing depending on the number of repetitions of scanning of laser light by the laser processing apparatus. Schematic diagram for (a)~(d)は、別例のレーザ加工装置によるレーザ光の走査を説明するための模式図。(A)-(d) is a schematic diagram for demonstrating the scanning of the laser beam by the laser processing apparatus of another example.
 以下、本発明のレーザ加工装置を具体化した一実施形態について図1~図9(a)を参照して説明する。 Hereinafter, an embodiment embodying the laser processing apparatus of the present invention will be described with reference to FIGS. 1 to 9A.
 図1に示すように、レーザマーキング装置(レーザ加工装置)10は、本体部11と、本体部11にファイバケーブル12及び電気ケーブル13を介して接続されたヘッド部14と、本体部11に電気ケーブル15を介して接続されたコンソール16とを備えている。 As shown in FIG. 1, a laser marking device (laser processing device) 10 includes a main body portion 11, a head portion 14 connected to the main body portion 11 via a fiber cable 12 and an electric cable 13, and an electric power to the main body portion 11. And a console 16 connected via a cable 15.
 図2に示すように、本体部11内には、装置全体の稼働状態を制御する制御部17とレーザ光Lを発振するレーザ発振部(レーザ発振器)18とが収容されている。制御部17は、レーザ発振部18と電気的に接続され、レーザ発振部18の駆動を制御する。レーザ発振部18から出射されたレーザ光Lは、ファイバケーブル12を通じてヘッド部14に送られる。ファイバケーブル12の一端は、コネクタ20を介してヘッド部14に固定されている。コネクタ20は、ファイバケーブル12の端部を保持するとともに、ヘッド部14のハウジング30の後面に固定されている。 As shown in FIG. 2, a control unit 17 that controls the operating state of the entire apparatus and a laser oscillation unit (laser oscillator) 18 that oscillates laser light L are accommodated in the main body unit 11. The control unit 17 is electrically connected to the laser oscillation unit 18 and controls driving of the laser oscillation unit 18. The laser light L emitted from the laser oscillation unit 18 is sent to the head unit 14 through the fiber cable 12. One end of the fiber cable 12 is fixed to the head unit 14 via the connector 20. The connector 20 holds the end portion of the fiber cable 12 and is fixed to the rear surface of the housing 30 of the head portion 14.
 [コネクタ]
 図3、図4及び図6に示すように、コネクタ20は、略円筒形状の保持部21を有している。保持部21の内部には、ファイバケーブル12が挿通及び保持されている。ファイバケーブル12には、外挿部材22が外装されている。外挿部材22は、保持部21の後端に固定されている。保持部21の端部には、板状のフランジ部23が形成されている。フランジ部23の前面には、円筒形状をなす突出部24が形成されている。突出部24は、保持部21と同軸上に設けられ、保持部21よりも小さい直径を有している。ファイバケーブル12は、保持部21から突出部24にかけて挿通されている。ファイバケーブル12の端面12a(レーザ出射面)と突出部24の端面24aとは略面一である。コネクタ20は、保持部21から突出部24に亘る部位によって、可撓性を有するファイバケーブル12を真っ直ぐに保持する。フランジ部23のヘッド部14に対向する面には、位置決めピン23aが設けられている。保持部21の下面には、凹部25が設けられている。
[connector]
As shown in FIGS. 3, 4, and 6, the connector 20 has a substantially cylindrical holding portion 21. The fiber cable 12 is inserted and held inside the holding portion 21. An extrapolation member 22 is sheathed on the fiber cable 12. The extrapolation member 22 is fixed to the rear end of the holding portion 21. A plate-like flange portion 23 is formed at the end of the holding portion 21. A projecting portion 24 having a cylindrical shape is formed on the front surface of the flange portion 23. The protruding portion 24 is provided coaxially with the holding portion 21 and has a smaller diameter than the holding portion 21. The fiber cable 12 is inserted from the holding portion 21 to the protruding portion 24. The end surface 12a (laser emission surface) of the fiber cable 12 and the end surface 24a of the protrusion 24 are substantially flush. The connector 20 holds the flexible fiber cable 12 straight by a portion extending from the holding portion 21 to the protruding portion 24. A positioning pin 23 a is provided on the surface of the flange portion 23 that faces the head portion 14. A concave portion 25 is provided on the lower surface of the holding portion 21.
 図5に示すように、突出部24には、3つのねじ孔24bが、周方向に沿って等間隔に形成されている。各ねじ孔24bは、突出部24の外周面から内周面にかけて貫通している。各ねじ孔24bには、回り止めねじ26が螺着されている。各回り止めねじ26の先端は、突出部24の内周面から若干突出するとともに、突出部24内のファイバケーブル12の外周面に当接されている。これにより、ファイバケーブル12が突出部24内で固定されている。このため、突出部24内でファイバケーブル12の回転が抑制されて、ファイバケーブル12の捻れが抑制されている。また、回り止めねじ26は、周方向に沿って等間隔にファイバケーブル12に当接されている。このため、ファイバケーブル12は、バランス良くかつ安定的に固定されている。 As shown in FIG. 5, the projecting portion 24 has three screw holes 24b formed at equal intervals along the circumferential direction. Each screw hole 24b penetrates from the outer peripheral surface of the protrusion 24 to the inner peripheral surface. A locking screw 26 is screwed into each screw hole 24b. The distal end of each rotation-preventing screw 26 slightly protrudes from the inner peripheral surface of the protruding portion 24 and is in contact with the outer peripheral surface of the fiber cable 12 in the protruding portion 24. Thereby, the fiber cable 12 is fixed in the protruding portion 24. For this reason, the rotation of the fiber cable 12 is suppressed in the protrusion 24, and the twist of the fiber cable 12 is suppressed. Further, the locking screw 26 is in contact with the fiber cable 12 at equal intervals along the circumferential direction. For this reason, the fiber cable 12 is fixed with good balance and stability.
 図3に示すように、ハウジング30の後面には、フランジ部23に当接される当接面31が設けられている。コネクタ20は、複数のねじ20aにより当接面31に固定されている。当接面31は、フランジ部23の外縁に沿って延びる環状を有している。当接面31の内側には、突出部24が挿入される収容凹部32が設けられている。収容凹部32を構成する壁と突出部24との間には、軸方向(光軸方向)及び径方向に間隙が設けられている。収容凹部32の奥部32aに、円板状の保護ガラス33が設けられている。保護ガラス33によって、収容凹部32とハウジング30の内部とが仕切られている。収容凹部32内では、保護ガラス33と突出部24の端面24aとが近接しつつ対向している。収容凹部32の構成する壁と回り止めねじ26との間には、両者を干渉させないようにするための間隙が設けられている。 As shown in FIG. 3, a contact surface 31 that contacts the flange portion 23 is provided on the rear surface of the housing 30. The connector 20 is fixed to the contact surface 31 with a plurality of screws 20a. The contact surface 31 has an annular shape extending along the outer edge of the flange portion 23. On the inner side of the contact surface 31, an accommodation recess 32 into which the protrusion 24 is inserted is provided. A gap is provided in the axial direction (optical axis direction) and the radial direction between the wall constituting the housing recess 32 and the protruding portion 24. A disc-shaped protective glass 33 is provided in the inner portion 32 a of the housing recess 32. The housing recess 32 and the interior of the housing 30 are partitioned by the protective glass 33. In the housing recess 32, the protective glass 33 and the end surface 24a of the protrusion 24 are opposed to each other while being close to each other. A gap is provided between the wall of the housing recess 32 and the rotation-preventing screw 26 so that they do not interfere with each other.
 ハウジング30の当接面31には、コネクタ20の位置決めピン23aが嵌入される2つの位置決め孔34が形成されている。図3の左側に示す位置決め孔34は、長孔である。このため、位置決め孔34内では、位置決めピン23aの移動が許容されている。各位置決めピン23a及び各位置決め孔34により、コネクタ20とヘッド部14とをレーザ光Lの光軸と直交する方向に位置決めする位置決め手段が構成されている。 Two positioning holes 34 into which the positioning pins 23 a of the connector 20 are inserted are formed in the contact surface 31 of the housing 30. The positioning hole 34 shown on the left side of FIG. 3 is a long hole. For this reason, movement of the positioning pin 23 a is allowed in the positioning hole 34. Each positioning pin 23a and each positioning hole 34 constitute positioning means for positioning the connector 20 and the head portion 14 in a direction orthogonal to the optical axis of the laser light L.
 フランジ部23と当接面31との間には、図示しないシール部材が介在されている。これにより、フランジ部23と当接面31との間が封止され、収容凹部32への水等の浸入が抑制されている。コネクタ20において回り止めねじ26及びねじ孔24bを設けた箇所は、水等の付着を避けたい箇所である。そのため、本実施形態によれば、水密性が保たれた収容凹部32内に突出部24が配置されると共にその突出部24に回り止めねじ26及びねじ孔24bが設けられている。これにより、回り止めねじ26及びねじ孔24bへの水等の付着を避けるためのシール構造を、コネクタ20とハウジング30との間のシール構造とは別に設ける必要がなくなる。このため、装置全体の構成が簡素化される。更に、突出部24が収容凹部32に入り込んでいるため、ファイバケーブル12を真っ直ぐに保つのに必要なコネクタ20の長さを確保しつつ、ハウジング30から突出するコネクタ20の長さが抑えられている。 A sealing member (not shown) is interposed between the flange portion 23 and the contact surface 31. Thereby, the gap between the flange portion 23 and the contact surface 31 is sealed, and entry of water or the like into the housing recess 32 is suppressed. In the connector 20, the place where the rotation-preventing screw 26 and the screw hole 24b are provided is a place where it is desired to avoid adhesion of water or the like. Therefore, according to this embodiment, the protrusion 24 is disposed in the housing recess 32 in which the watertightness is maintained, and the rotation screw 26 and the screw hole 24 b are provided in the protrusion 24. This eliminates the need to provide a seal structure for avoiding adhesion of water or the like to the rotation stop screw 26 and the screw hole 24 b separately from the seal structure between the connector 20 and the housing 30. For this reason, the structure of the whole apparatus is simplified. Further, since the protruding portion 24 enters the receiving recess 32, the length of the connector 20 protruding from the housing 30 is suppressed while securing the length of the connector 20 necessary to keep the fiber cable 12 straight. Yes.
 ハウジング30において、当接面31の上方には、電気ケーブル13が着脱される接続端子部35が設けられている。また、当接面31の下方には、コネクタ20側に突出した直方体状の凸部36が設けられている。凸部36は、コネクタ20の凹部25に嵌合される。凸部36及び凹部25は、コネクタ20をハウジング30に組み付ける際の位置決め及びガイドとして機能する。 In the housing 30, a connection terminal portion 35 to which the electric cable 13 is attached and detached is provided above the contact surface 31. A rectangular parallelepiped convex portion 36 protruding toward the connector 20 is provided below the contact surface 31. The convex portion 36 is fitted into the concave portion 25 of the connector 20. The convex portion 36 and the concave portion 25 function as positioning and a guide when the connector 20 is assembled to the housing 30.
 [ヘッド部]
 図2に示すように、ハウジング30内において、保護ガラス33の後段には、光合流手段としてのハーフミラー41が設けられている。ハーフミラー41は、ファイバケーブル12から出射されて保護ガラス33から入射するレーザ光Lの光軸上に配置されている。ハーフミラー41は、所定の割合のレーザ光Lを透過する。
[Head]
As shown in FIG. 2, in the housing 30, a half mirror 41 as a light merging means is provided at the subsequent stage of the protective glass 33. The half mirror 41 is disposed on the optical axis of the laser light L emitted from the fiber cable 12 and incident from the protective glass 33. The half mirror 41 transmits a predetermined ratio of the laser light L.
 レーザ光Lの光軸上においてハーフミラー41の後方には、一対のガルバノミラー42が配置されている。一対のガルバノミラー42は、レーザ光LをワークWに向けて反射させてレーザ光Lを走査させる走査ミラーである。各ガルバノミラー42は、ガルバノモータ43によってそれぞれ回動される。各ガルバノミラー42の回動により、ワークWに照射されるレーザ光Lが、X-Y方向(2次元方向)に走査される。また、制御部17によりガルバノモータ43が駆動されることで、各ガルバノミラー42の角度が制御される。 A pair of galvanometer mirrors 42 is disposed behind the half mirror 41 on the optical axis of the laser beam L. The pair of galvanometer mirrors 42 are scanning mirrors that reflect the laser beam L toward the workpiece W and scan the laser beam L. Each galvanometer mirror 42 is rotated by a galvano motor 43. As each galvanometer mirror 42 rotates, the laser light L irradiated onto the workpiece W is scanned in the XY direction (two-dimensional direction). Further, when the galvano motor 43 is driven by the control unit 17, the angle of each galvano mirror 42 is controlled.
 ガルバノミラー42の下方には、fθレンズ(収束レンズ)44が配置されている。fθレンズ44は、ガルバノミラー42によって反射されたレーザ光Lを、ワークWの印字面Waにおいて所定のスポット径となるまで収束させる。こうして、レーザ光Lのエネルギー密度は、マーキングに適したエネルギー密度にまで高められる。 Below the galvanometer mirror 42, an fθ lens (convergence lens) 44 is arranged. The fθ lens 44 converges the laser beam L reflected by the galvanometer mirror 42 until a predetermined spot diameter is obtained on the print surface Wa of the workpiece W. Thus, the energy density of the laser light L is increased to an energy density suitable for marking.
 fθレンズ44の下方には、保護ガラス45で仕切られたレーザ出射口46が形成されている。fθレンズ44で収束されたレーザ光Lは、保護ガラス45を経てワークWの印字面Wa上に照射される。そして、レーザ光Lは、印字面Wa上を2次元方向に走査される。このような動作により、ワークWの印字面Waには、文字や図形などがマーキングされる。本実施形態では、各ガルバノミラー42及びfθレンズ44によって、ファイバケーブル12の端面12aから出射されるレーザ光LをワークWに照射する照射光学系が構成されている。 A laser emission port 46 partitioned by a protective glass 45 is formed below the fθ lens 44. The laser beam L converged by the fθ lens 44 is irradiated on the print surface Wa of the workpiece W through the protective glass 45. The laser beam L is scanned in a two-dimensional direction on the printing surface Wa. With such an operation, characters, figures, and the like are marked on the print surface Wa of the workpiece W. In this embodiment, each galvanometer mirror 42 and the fθ lens 44 constitute an irradiation optical system that irradiates the workpiece W with the laser light L emitted from the end surface 12a of the fiber cable 12.
 また、ハウジング30内には、ハーフミラー41の近傍に配置された第1の可視光源51と、ハウジング30の下部付近に配置された第2の可視光源52とが設けられている。第1の可視光源51から出射された可視光VL1は、ハーフミラー41にてガルバノミラー42に向けて反射される。そして、ガルバノミラー42にて反射された可視光VL1は、fθレンズ44を介してワークWの印字面Waに照射される。ここで、ガルバノミラー42は、レーザ光Lを走査する場合と同じ要領で可視光VL1を2次元方向に走査する。このようにガルバノミラー42で走査された可視光VL1によって、図8(b)に示すようなガイドマークGaが表示される。ガイドマークGaは、十字とその十字の交点を中心とする円の図形として表示される。ガイドマークGaの十字の交点は、ガルバノミラー42の走査におけるX-Y座標の原点(中心)を示し、fθレンズ44の軸線上に位置している。 In the housing 30, a first visible light source 51 disposed in the vicinity of the half mirror 41 and a second visible light source 52 disposed in the vicinity of the lower portion of the housing 30 are provided. The visible light VL1 emitted from the first visible light source 51 is reflected by the half mirror 41 toward the galvanometer mirror 42. Then, the visible light VL <b> 1 reflected by the galvanometer mirror 42 is irradiated onto the print surface Wa of the workpiece W through the fθ lens 44. Here, the galvanometer mirror 42 scans the visible light VL1 in the two-dimensional direction in the same manner as when scanning the laser light L. A guide mark Ga as shown in FIG. 8B is displayed by the visible light VL1 scanned by the galvanometer mirror 42 in this way. The guide mark Ga is displayed as a circle figure centered on the cross and the intersection of the cross. The cross point of the guide mark Ga indicates the origin (center) of the XY coordinates in the scanning of the galvano mirror 42 and is located on the axis of the fθ lens 44.
 第2の可視光源52は、fθレンズ44とコネクタ20との間に配置されている。第2の可視光源52は、ワークWの印字面Waに向けて第2の可視光VL2を出射する。第2の可視光VL2は、第1の可視光VL1に対して斜めに出射される。第2の可視光VL2の光軸は、fθレンズ44の軸線と交差する。ワークWの印字面Wa上には、第2の可視光VL2によって1つのガイド点が表示される。図8(b)は、ガイド点の例としてガイド点Gb0,Gb1,Gb2を示す。第2の可視光VL2は緑色であり、第1の可視光VL1は赤色である。 The second visible light source 52 is disposed between the fθ lens 44 and the connector 20. The second visible light source 52 emits the second visible light VL2 toward the print surface Wa of the workpiece W. The second visible light VL2 is emitted obliquely with respect to the first visible light VL1. The optical axis of the second visible light VL2 intersects with the axis of the fθ lens 44. On the printing surface Wa of the workpiece W, one guide point is displayed by the second visible light VL2. FIG. 8B shows guide points Gb0, Gb1, and Gb2 as examples of guide points. The second visible light VL2 is green, and the first visible light VL1 is red.
 接続端子部35は、ガルバノモータ43、第1の可視光源51及び第2の可視光源52と電気的に接続されている。これにより、制御部17は、電気ケーブル13及び接続端子部35を介して、ガルバノモータ43、第1の可視光源51及び第2の可視光源52と電気的に接続されている。 The connection terminal portion 35 is electrically connected to the galvano motor 43, the first visible light source 51, and the second visible light source 52. Accordingly, the control unit 17 is electrically connected to the galvano motor 43, the first visible light source 51, and the second visible light source 52 via the electric cable 13 and the connection terminal unit 35.
 本体部11には、表示部16aと操作部16bを備えたコンソール16が接続されている。ユーザは、操作部16bを操作して、所望の印字データを設定する。操作部16bにより設定された印字データは、電気ケーブル15を介して本体部11の制御部17に出力される。制御部17は、印字データに基づいて、レーザ発振部18、ガルバノモータ43、第1の可視光源51及び第2の可視光源52を制御する。 A console 16 having a display unit 16a and an operation unit 16b is connected to the main body unit 11. The user operates the operation unit 16b to set desired print data. The print data set by the operation unit 16 b is output to the control unit 17 of the main body unit 11 through the electric cable 15. The control unit 17 controls the laser oscillation unit 18, the galvano motor 43, the first visible light source 51, and the second visible light source 52 based on the print data.
 [レーザマーキング]
 次に、レーザマーキング装置10によるワークWへのマーキングについて説明する。
[Laser marking]
Next, marking on the workpiece W by the laser marking device 10 will be described.
 制御部17は、印字データに基づいて、レーザ発振部18及びガルバノモータ43を駆動する。レーザ発振部18は、ファイバケーブル12にレーザ光Lを出射し、レーザ光Lは、ファイバケーブル12に介してヘッド部14に伝送される。ファイバケーブル12の端面12aから出射されたレーザ光Lは、ハーフミラー41を通過した後、fθレンズ44及び保護ガラス45を介してワークWの印字面Wa上に照射される。レーザ光Lは、ガルバノミラー42によって、印字面Wa上を2次元方向に走査される。 The control unit 17 drives the laser oscillation unit 18 and the galvano motor 43 based on the print data. The laser oscillating unit 18 emits laser light L to the fiber cable 12, and the laser light L is transmitted to the head unit 14 via the fiber cable 12. The laser light L emitted from the end surface 12 a of the fiber cable 12 passes through the half mirror 41 and is then irradiated onto the print surface Wa of the workpiece W through the fθ lens 44 and the protective glass 45. The laser beam L is scanned in a two-dimensional direction on the print surface Wa by the galvanometer mirror 42.
 ファイバケーブル12から出射されるレーザ光Lは、平行光(即ち、広がり角が略0度)で出射され、具体的には、コリメータレンズ等により平行光にされる。図7(a)に示すように、fθレンズ44には、平行光であるレーザ光Lが入射される。fθレンズ44に入射されたレーザ光Lである入射光は、fθレンズ44の性能に基づく所定の屈折率で収束される。図7(b)は、fθレンズ44の焦点位置P0でのレーザ光Lの直径(スポット径Sr)を示し、スポット径Srは、次式で求められる。 The laser light L emitted from the fiber cable 12 is emitted as parallel light (that is, the divergence angle is approximately 0 degrees), and specifically, is made into parallel light by a collimator lens or the like. As shown in FIG. 7A, the laser beam L that is parallel light is incident on the fθ lens 44. Incident light that is laser light L incident on the fθ lens 44 is converged with a predetermined refractive index based on the performance of the fθ lens 44. FIG. 7B shows the diameter (spot diameter Sr) of the laser light L at the focal position P0 of the fθ lens 44, and the spot diameter Sr is obtained by the following equation.
Figure JPOXMLDOC01-appb-M000001
 この式から分かるように、入射光の直径Lwが小さい程、レーザ光Lのスポット径Srが大きくなる。また、入射光の広がり角が一定値の場合、スポット径Srが大きい程、図7(a)に示す焦点深度dfが深くなる。つまり、入射光の直径Lwが小さい程、レーザ光Lの焦点深度dfは深くなる。
Figure JPOXMLDOC01-appb-M000001
As can be seen from this equation, the smaller the incident light diameter Lw, the larger the spot diameter Sr of the laser light L. When the spread angle of incident light is a constant value, the focal depth df shown in FIG. 7A becomes deeper as the spot diameter Sr is larger. That is, the smaller the diameter Lw of the incident light, the deeper the focal depth df of the laser light L.
 通常、入射光の直径は、焦点で(絞り位置)設計されたスポット径を得るように定められている。しかしながら、本実施形態では、レーザ光Lのスポット径をその設計値よりも大きくして焦点深度dfを深くするため、入射光の直径Lwを、設計された入射光の直径よりも小さくしている。このようにすることで、焦点深度dfが深いレーザ光LをワークWに照射することができる。こうして得られた焦点深度dfの範囲では、レーザ光Lのエネルギーは、所望のマーキング品質を確保できる大きさでかつ略均一となり、また、レーザ光Lの直径(スポット径Sr)も略均一となる。このため、焦点深度dfの範囲内にワークWの印字面Waを合わせることで、印字面Waへの所望のマーキングが可能となる。また、ワークWの印字面Waの位置が焦点深度dfの範囲内である限り、マーキングの品質が略均一となる。 Usually, the diameter of the incident light is determined so as to obtain a spot diameter designed at the focal point (aperture position). However, in the present embodiment, the diameter Lw of the incident light is made smaller than the designed diameter of the incident light in order to make the spot diameter of the laser light L larger than its design value and deepen the focal depth df. . By doing in this way, the workpiece | work W can be irradiated with the laser beam L with the deep focal depth df. In the range of the focal depth df thus obtained, the energy of the laser light L is substantially uniform and large enough to ensure the desired marking quality, and the diameter (spot diameter Sr) of the laser light L is also substantially uniform. . For this reason, the desired marking on the printing surface Wa becomes possible by matching the printing surface Wa of the workpiece W within the range of the focal depth df. Further, as long as the position of the print surface Wa of the workpiece W is within the range of the focal depth df, the quality of the marking becomes substantially uniform.
 従来のレーザマーキング装置では、焦点で所望のエネルギーを確保するために、fθレンズ44に入射される入射光の直径が本実施形態のそれよりも大きかった。図7(a)(b)は、従来のレーザマーキング装置におけるレーザ光Laの一例を2点鎖線で示す。従来のレーザマーキング装置では、入射光の直径が大きいため、焦点でのスポット径が小さく、かつ焦点深度が浅かった。このため、焦点で高いエネルギーが得られるものの焦点深度が浅いため、レーザ出射口46からワークWの印字面Waまでの距離に相当するワークディスタンスとレーザ光の焦点とをシビアに合わせる必要があった。このため、レンズ間距離可変ビームエキスパンダや3Dスキャナ等によって入射光の広がり角を変化させることで、fθレンズ44の軸線方向に相当するZ軸方向の絞り位置を調節していた。こうして、ワークディスタンスの異なる多種のワークや斜面や段や凹凸があるワークの印字面へのマーキングに対応していた。 In the conventional laser marking device, the diameter of the incident light incident on the fθ lens 44 is larger than that of the present embodiment in order to secure desired energy at the focal point. FIGS. 7A and 7B show an example of the laser beam La in a conventional laser marking apparatus by a two-dot chain line. In the conventional laser marking apparatus, since the diameter of incident light is large, the spot diameter at the focal point is small and the focal depth is shallow. For this reason, although high energy can be obtained at the focal point, the depth of focus is shallow, so that it is necessary to closely adjust the work distance corresponding to the distance from the laser emission port 46 to the print surface Wa of the work W and the focus of the laser light. . For this reason, the aperture position in the Z-axis direction corresponding to the axial direction of the fθ lens 44 is adjusted by changing the divergence angle of incident light using a variable lens distance beam expander, a 3D scanner, or the like. In this way, it was possible to cope with marking on the printing surface of various types of workpieces having different work distances or workpieces having inclined surfaces, steps, or irregularities.
 これに対し、本実施形態のレーザマーキング装置10では、レーザ光Lの広がり角を変化させるレンズ間距離可変ビームエキスパンダや3Dスキャナ等を備えず、ファイバケーブル12から出射されたレーザ光Lがその直径Lwを小さくしたままfθレンズ44に入射される。これにより、焦点深度dfは深くなる。焦点深度dfが深くなると、焦点と見なせる範囲(Z軸方向の距離)が広くなる。このため、レーザ光Lの焦点を固定した構成、つまり、レンズ間距離可変ビームエキスパンダや3Dスキャナ等を省略した構成であっても、ワークディスタンスの異なる多種のワークや斜面や段や凹凸があるワークの印字面へのマーキングが可能となる。 On the other hand, the laser marking device 10 of the present embodiment does not include an inter-lens distance variable beam expander or a 3D scanner that changes the spread angle of the laser light L, and the laser light L emitted from the fiber cable 12 is The light enters the fθ lens 44 with the diameter Lw kept small. Thereby, the focal depth df becomes deep. As the focal depth df increases, the range that can be regarded as a focal point (distance in the Z-axis direction) increases. For this reason, even in a configuration in which the focal point of the laser beam L is fixed, that is, a configuration in which the inter-lens distance variable beam expander, the 3D scanner, and the like are omitted, there are various workpieces, slopes, steps, and irregularities with different work distances. Marking on the printing surface of the workpiece is possible.
 また、レーザ光Lを照射して、ベアリングや超硬ドリル等の主に金属材料からなるワークWに酸化印字(ブラックマーキング)を実施することがある。この場合、印字面Waでのレーザ光Lのスポット径は或る条件を満たす必要がある。また、レーザ発振部18の発振方法は、連続(CW:Continuous wave)発振であることが好ましい。これは、熱加工においては、レーザ光Lを瞬間的に高いエネルギーで発振(パルス発振)させるよりも、平均的にレーザ光Lを発振させた方が、ワークWの物性が変化し易くなるためである。本実施形態のように焦点深度dfの範囲を深くした場合、ワークWに酸化印字すべく、前述の或る条件を満たすようにfθレンズ44の直径Lwが設定されている。 Also, there is a case where the laser beam L is applied to perform oxidation printing (black marking) on the workpiece W mainly made of a metal material such as a bearing or a carbide drill. In this case, the spot diameter of the laser beam L on the printing surface Wa needs to satisfy certain conditions. Moreover, it is preferable that the oscillation method of the laser oscillation part 18 is continuous (CW: Continuous wave) oscillation. This is because, in thermal processing, the physical properties of the workpiece W are more likely to change when the laser beam L is oscillated on the average than when the laser beam L is oscillated instantaneously with high energy (pulse oscillation). It is. When the range of the focal depth df is increased as in the present embodiment, the diameter Lw of the fθ lens 44 is set so as to satisfy the above-described certain condition in order to oxidize and print on the workpiece W.
 従来のマーキング装置では、前述の或る条件を満たすように焦点位置を調整することで、実際の焦点位置よりもオフセットした位置にワークWの印字面Waを設定していた。そして、印字面Waの位置、即ちワークディスタンスの変化に追従して、焦点距離の位置を、レンズ間距離可変ビームエキスパンダや3Dスキャナを用いてオフセットする必要があった。しかしながら、従来構成によれば、ワークディスタンスが変化すると、レンズ間距離可変ビームエキスパンダや3Dスキャナ等により広がり角が変更される。このために、前述と同様のオフセットした位置では広がり角の条件が異なるため、ワークディスタンスが変化すると印字品質に影響を及ぼす虞がある。その点、本実施形態のレーザマーキング装置10によれば、fθレンズ44に入射させる入射光の直径を小さくし焦点深度dfの範囲を深くすることで、焦点深度dfの範囲内であれば印字の品質を同一とすることができる。 In the conventional marking device, the print surface Wa of the workpiece W is set at a position offset from the actual focus position by adjusting the focus position so as to satisfy the above-described certain condition. Then, the position of the focal length needs to be offset by using a variable inter-lens distance beam expander or a 3D scanner following the change of the position of the printing surface Wa, that is, the work distance. However, according to the conventional configuration, when the work distance changes, the divergence angle is changed by an inter-lens distance variable beam expander, a 3D scanner, or the like. For this reason, since the condition of the spread angle is different at the offset position as described above, the print quality may be affected if the work distance changes. In that respect, according to the laser marking device 10 of the present embodiment, the diameter of the incident light incident on the fθ lens 44 is reduced and the range of the focal depth df is increased, so that printing is performed within the focal depth df. Quality can be the same.
 [ガイド表示]
 本実施形態では、レーザ光Lによるレーザマーキングの前に、第1及び第2の可視光VL1,VL2による印字面Waへのガイド表示が可能である。例えば、操作部16bでの所定のガイド表示操作に基づき、制御部17は、第1及び第2の可視光源51,52からそれぞれ第1及び第2の可視光VL1,VL2を出射させる。すると、ワークWの印字面Waには、第1の可視光VL1によってガイドマークGaが表示されるとともに、第2の可視光VL2によってガイド点が表示される。
[Guide Display]
In the present embodiment, before laser marking with the laser beam L, guide display on the print surface Wa by the first and second visible lights VL1 and VL2 is possible. For example, based on a predetermined guide display operation at the operation unit 16b, the control unit 17 causes the first and second visible light sources VL1 and VL2 to be emitted from the first and second visible light sources 51 and 52, respectively. Then, on the printing surface Wa of the workpiece W, the guide mark Ga is displayed by the first visible light VL1, and the guide point is displayed by the second visible light VL2.
 ガイドマークGaは、ガルバノミラー42にて走査された第1の可視光VL1によって表示される。このため、ガイドマークGaの大きさは、印字面WaのZ軸方向の位置(Z軸位置)によって若干変化する。しかしながら、ガイドマークGaの大きさの変化は無視できるほど小さいため、ガイドマークGaの大きさが印字面WaのZ軸位置によっては変化しないとして、以下に説明する。 The guide mark Ga is displayed by the first visible light VL1 scanned by the galvano mirror 42. For this reason, the size of the guide mark Ga slightly changes depending on the position of the print surface Wa in the Z-axis direction (Z-axis position). However, since the change in the size of the guide mark Ga is so small that it can be ignored, the size of the guide mark Ga will not be changed depending on the Z-axis position of the printing surface Wa.
 一方、図8(a)(b)に示すように、第2の可視光VL2によるガイド点の表示位置は、印字面WaのZ軸方向の位置によってガイドマークGaに対して変化する。図8(b)は、印字面WaのZ軸位置を変化させたときのガイド点の軌跡Tを破線で示す。軌跡Tは、直線である。 On the other hand, as shown in FIGS. 8A and 8B, the display position of the guide point by the second visible light VL2 changes with respect to the guide mark Ga depending on the position of the print surface Wa in the Z-axis direction. FIG. 8B shows the locus T of the guide point with a broken line when the Z-axis position of the printing surface Wa is changed. The trajectory T is a straight line.
 印字面Waがfθレンズ44の焦点位置P0(基準位置)にある場合、印字面Waに表示されるガイド点Gb0がガイドマークGaの中心(十字の交点)と重なる。焦点位置P0は、Z軸方向における焦点深度dfの中心位置と一致する。つまり、印字面Waに表示されたガイド点がガイドマークGaの十字の交点と重なる場合、印字面Waは、焦点深度df(図7(a)参照)の中心に位置している。 When the print surface Wa is at the focal position P0 (reference position) of the fθ lens 44, the guide point Gb0 displayed on the print surface Wa overlaps the center (cross point of the cross) of the guide mark Ga. The focal position P0 coincides with the center position of the focal depth df in the Z-axis direction. That is, when the guide point displayed on the print surface Wa overlaps the cross point of the guide mark Ga, the print surface Wa is positioned at the center of the focal depth df (see FIG. 7A).
 ガイドマークGaの円の径は、焦点深度dfの範囲と対応するように設定されている。すなわち、焦点深度dfの下限位置P1に印字面Waがある場合、ガイドマークGaの円の線上にガイド点Gb1が表示され、焦点深度dfの上限位置P2に印字面Waがある場合、ガイドマークGaの円の線上にガイド点Gb2が表示される。ガイド点Gb1及びガイド点Gb2の各表示位置は、ガイドマークGaの中心に対して対称である。 The diameter of the guide mark Ga circle is set to correspond to the range of the focal depth df. That is, when the printing surface Wa is at the lower limit position P1 of the focal depth df, the guide point Gb1 is displayed on the circle line of the guide mark Ga, and when the printing surface Wa is at the upper limit position P2 of the focal depth df, the guide mark Ga. A guide point Gb2 is displayed on the circle line. The display positions of the guide point Gb1 and the guide point Gb2 are symmetric with respect to the center of the guide mark Ga.
 焦点深度dfの範囲(下限位置P1から上限位置P2までの範囲)では、ワークWの印字面Waに対して略均一の品質でマーキングすることが可能である。このため、ガイド点がガイドマークGaの円の内側に表示された場合、印字面WaのZ軸位置が焦点深度dfの範囲内にあり、印字面Waへのマーキングが可能である。一方、ガイド点がガイドマークGaの円の外側に表示された場合、印字面WaのZ軸位置が焦点深度dfの範囲外にあり、印字面WaのZ軸位置の調整が必要である。これにより、ユーザは、印字面Waに表示されたガイドマークGaとガイド点の位置関係を見ることで、印字面Waがマーキング可能なZ軸位置にあるかどうかをマーキング前に確認することができる。 In the range of the focal depth df (range from the lower limit position P1 to the upper limit position P2), it is possible to mark the printing surface Wa of the workpiece W with substantially uniform quality. For this reason, when the guide point is displayed inside the circle of the guide mark Ga, the Z-axis position of the printing surface Wa is within the range of the focal depth df, and marking on the printing surface Wa is possible. On the other hand, when the guide point is displayed outside the circle of the guide mark Ga, the Z-axis position of the printing surface Wa is outside the range of the focal depth df, and the Z-axis position of the printing surface Wa needs to be adjusted. Thereby, the user can confirm before marking whether the printing surface Wa is in the Z-axis position where marking can be performed by viewing the positional relationship between the guide mark Ga and the guide point displayed on the printing surface Wa. .
 [印字範囲調整]
 制御部17は、ワークディスタンスに応じて印字範囲(マーキング範囲)が変わらないようにガルバノミラー42を制御する。使用者は、設定部としての操作部16bを介して、ワークディスタンスを入力及び変更することができる。レーザマーキング装置10では、ワークディスタンスの基準位置がメーカー側で予め設定されている。本実施形態では、図9(a)に示すように、基準位置は位置Wd0である。また、操作部16bにより、基準位置Wd0におけるレーザ光Lの速度が設定される。
[Print range adjustment]
The control unit 17 controls the galvanometer mirror 42 so that the printing range (marking range) does not change according to the work distance. The user can input and change the work distance via the operation unit 16b as a setting unit. In the laser marking device 10, the work distance reference position is set in advance by the manufacturer. In the present embodiment, as shown in FIG. 9A, the reference position is a position Wd0. Further, the speed of the laser beam L at the reference position Wd0 is set by the operation unit 16b.
 ここで、図9(a)(b)に示すように、印字面Waが基準位置Wd0にある場合、印字範囲Ar0の走査に必要なガルバノミラー42の走査角度である振れ角の範囲を、範囲θ0とする。そして、ワークディスタンスが大きく印字面Waが基準位置Wd0より遠い位置Wd1にある場合、図9(b)のAr1に示すように、ガルバノミラー42の振れ角の範囲θ0のままでは、印字範囲が広くなる。そこで、図9(a)に示すように、ガルバノミラー42の振れ角の範囲を、振れ角の範囲θ0よりも振れ角の範囲が狭い振れ角の範囲θ1に設定する。これにより、印字範囲Ar0と略同等の印字範囲を走査することができる。このとき、ガルバノミラー42の振れ角の範囲θ1、即ち、ガルバノミラー42の駆動範囲が狭まる。このため、制御部17は、振れ角の範囲θ1における単位距離当たりのガルバノミラー42の駆動範囲(走査速度)を遅くするようにガルバノモータ43を制御する。これにより、ワークW上でのレーザ光Lの移動速度が一定となる。 Here, as shown in FIGS. 9A and 9B, when the printing surface Wa is at the reference position Wd0, the range of the deflection angle, which is the scanning angle of the galvanometer mirror 42 necessary for scanning the printing range Ar0, is defined as the range. Let θ0. When the work distance is large and the printing surface Wa is at a position Wd1 far from the reference position Wd0, the printing range is wide if the sway angle range θ0 of the galvanometer mirror 42 remains as indicated by Ar1 in FIG. 9B. Become. Therefore, as shown in FIG. 9A, the range of the swing angle of the galvanometer mirror 42 is set to the range of the swing angle θ1 that is narrower than the range of the swing angle θ0. Thereby, it is possible to scan a printing range substantially equivalent to the printing range Ar0. At this time, the swing angle range θ1 of the galvanometer mirror 42, that is, the drive range of the galvanometer mirror 42 is narrowed. For this reason, the control unit 17 controls the galvano motor 43 so as to slow down the drive range (scanning speed) of the galvano mirror 42 per unit distance in the deflection angle range θ1. Thereby, the moving speed of the laser beam L on the workpiece W becomes constant.
 一方、ワークディスタンスが小さくワークWの印字面Waが基準位置Wd0より近い位置Wd2にある場合、図9(b)のAr2に示すように、ガルバノミラー42の振れ角の範囲θ0のままでは、印字範囲が狭くなる。そこで、図9(a)に示すように、ガルバノミラー42の振れ角の範囲を、振れ角の範囲θ0よりも振れ角の範囲が広い振れ角の範囲θ2に設定する。これにより、印字範囲Ar0と略同等の印字範囲を走査することができる。このとき、ガルバノミラー42の振れ角の範囲θ2、即ち、ガルバノミラー42の駆動範囲が広がる。このため、制御部17は、振れ角の範囲θ1におけるガルバノミラー42の走査速度を速くするようにガルバノモータ43を制御する。これにより、ワークW上でのレーザ光Lの移動速度が一定となる。 On the other hand, when the work distance is small and the print surface Wa of the work W is at a position Wd2 that is closer to the reference position Wd0, as shown by Ar2 in FIG. The range becomes narrower. Therefore, as shown in FIG. 9A, the range of the swing angle of the galvanometer mirror 42 is set to a range of the swing angle θ2 that is wider than the range of the swing angle θ0. Thereby, it is possible to scan a printing range substantially equivalent to the printing range Ar0. At this time, the swing angle range θ2 of the galvanometer mirror 42, that is, the drive range of the galvanometer mirror 42 is expanded. For this reason, the control unit 17 controls the galvano motor 43 so as to increase the scanning speed of the galvano mirror 42 in the deflection angle range θ1. Thereby, the moving speed of the laser beam L on the workpiece W becomes constant.
 次に、本実施形態の特徴的な効果を記載する。 Next, the characteristic effects of this embodiment will be described.
 (1)制御部17は、ワークディスタンスに応じて、ガルバノミラー42の走査角度及び走査速度を変更する。これにより、レーザ出射口46及びワークW間のワークディスタンスの距離にかかわらず、ワークWの印字面Wa(加工面)に同じ位置及び大きさで加工される。即ち、ワークディスタンスが大きいほど、制御部17は、ガルバノミラー42の走査角度としての振れ角の範囲を狭く且つガルバノミラー42の走査速度を遅くする。更に、ワークディスタンスが小さいほど、制御部17は、ガルバノミラー42の走査角度としての振れ角の範囲を広く且つガルバノミラー42の走査速度を速くする。また、制御部17は、ガルバノミラー42の走査角度としての振れ角θ0~θ2を、ワークディスタンスに応じて変更する。これにより、ワークディスタンスにかかわらず、ワークWの印字面Waに同じ位置及び大きさ、即ち、加工範囲Ar0と同一の印字範囲で加工することができる。更に、走査速度をワークディスタンスに応じて変更することで、ワークディスタンスの違いによる走査角度の変更にかかわらず、ワークW上でのレーザ光Lの移動速度を一定とすることもできる。これにより、ワークディスタンスが変更されても、加工範囲Ar0を同一としつつワークWの加工品質を維持することもできる。 (1) The control unit 17 changes the scanning angle and scanning speed of the galvanometer mirror 42 according to the work distance. As a result, regardless of the distance of the workpiece distance between the laser emission port 46 and the workpiece W, the printing surface Wa (processing surface) of the workpiece W is processed at the same position and size. That is, as the work distance increases, the control unit 17 narrows the range of the swing angle as the scanning angle of the galvanometer mirror 42 and decreases the scanning speed of the galvanometer mirror 42. Further, as the work distance is smaller, the control unit 17 widens the range of the deflection angle as the scanning angle of the galvanometer mirror 42 and increases the scanning speed of the galvanometer mirror 42. Further, the control unit 17 changes the deflection angles θ0 to θ2 as the scanning angles of the galvanometer mirror 42 according to the work distance. As a result, regardless of the work distance, the printing surface Wa of the workpiece W can be processed in the same position and size, that is, in the same printing range as the processing range Ar0. Furthermore, by changing the scanning speed according to the work distance, the moving speed of the laser light L on the work W can be made constant regardless of the change in the scanning angle due to the difference in the work distance. Thereby, even if the workpiece distance is changed, the machining quality of the workpiece W can be maintained while keeping the machining range Ar0 the same.
 また、レーザ光Lの焦点深度dfの範囲を深くすることで、焦点深度dfの範囲内であれば、ワークディスタンスが変化しても、同一の品質で印字面Wa上に印字することができる。また、レンズ間距離可変ビームエキスパンダや3Dスキャナ等のように広がり角を調整する必要もない。このため、レンズ間距離可変ビームエキスパンダや3Dスキャナ等が不要となり、装置全体の部品点数を抑えることができるため、コスト低減に寄与することができる。 Further, by increasing the range of the focal depth df of the laser light L, printing can be performed on the printing surface Wa with the same quality even if the work distance changes within the range of the focal depth df. Further, it is not necessary to adjust the divergence angle as in the case of the inter-lens distance variable beam expander or 3D scanner. For this reason, an inter-lens distance variable beam expander, a 3D scanner, or the like is not necessary, and the number of parts in the entire apparatus can be suppressed, which can contribute to cost reduction.
 (2)制御部17は、操作部16bで設定されたワークディスタンスに応じて、ガルバノミラー42の走査角度(振れ角)及び走査速度を変更する。この場合、ワークディスタンスを検出するセンサ等を用いることなく、ガルバノミラー42の走査角度及び走査速度を変更することができる。また、設定されるワークディスタンスにかかわらず、加工範囲を同一とすることができる。 (2) The control unit 17 changes the scanning angle (deflection angle) and scanning speed of the galvano mirror 42 according to the work distance set by the operation unit 16b. In this case, the scanning angle and scanning speed of the galvanometer mirror 42 can be changed without using a sensor or the like that detects the work distance. In addition, the machining range can be made the same regardless of the set work distance.
 (3)レーザマーキング装置10は、第1の可視光源51と第2の可視光源52とからなる教示手段を備える。第1の可視光源51は、第1の可視光VL1を印字面Waに照射する。第2の可視光源52は、第2の可視光VL2を第1の可視光VL1と交差させるべく、第2の可視光VL2をfθレンズ44の軸線に対して斜めに出射する。第1の可視光VL1が印字面Waに照射されることで、印字面Waには、レーザ光Lの焦点深度dfに対応する範囲を示すガイドマークGaが表示される。第2の可視光VL2の照射位置(ガイド点の表示位置)は、印字面WaのZ軸方向の位置に応じて、Z軸方向と直交する方向(X-Y軸方向)に変化する。そして、ガイドマークGaに対するガイド点の表示位置によって、印字面Waが加工可能な位置にあるか否かが教示される。このため、ユーザは、レーザマーキングの前に第1及び第2の可視光VL1,VL2を印字面Waに照射させ、ガイドマークGaの範囲内にガイド点があるか否かを確認するだけで、印字面Waへのレーザマーキングが可能かどうかを容易に把握することができる。 (3) The laser marking device 10 includes teaching means including a first visible light source 51 and a second visible light source 52. The first visible light source 51 irradiates the printing surface Wa with the first visible light VL1. The second visible light source 52 emits the second visible light VL2 obliquely with respect to the axis of the fθ lens 44 so that the second visible light VL2 intersects the first visible light VL1. By irradiating the printing surface Wa with the first visible light VL1, a guide mark Ga indicating a range corresponding to the focal depth df of the laser light L is displayed on the printing surface Wa. The irradiation position (guide point display position) of the second visible light VL2 changes in a direction (XY axis direction) orthogonal to the Z axis direction according to the position of the print surface Wa in the Z axis direction. Then, the display position of the guide point with respect to the guide mark Ga teaches whether or not the print surface Wa is at a position that can be processed. For this reason, the user simply irradiates the print surface Wa with the first and second visible lights VL1 and VL2 before laser marking, and confirms whether there is a guide point within the range of the guide mark Ga. It is possible to easily grasp whether or not laser marking is possible on the printing surface Wa.
 (4)印字面Waが焦点深度dfの範囲内にある場合はガイド点がガイドマークGaの範囲内にあり、印字面Waが焦点深度dfの範囲外にある場合はガイド点がガイドマークGaの範囲外にある。つまり、ガイドマークGaの範囲内にガイド点があるか否かによって、ワークWの印字面Waが加工可能な位置にあるか否かを教示することができる。 (4) When the printing surface Wa is within the range of the focal depth df, the guide point is within the range of the guide mark Ga, and when the printing surface Wa is outside the range of the focal depth df, the guide point is at the guide mark Ga. It is out of range. That is, whether or not the print surface Wa of the workpiece W is at a position that can be processed can be taught by whether or not the guide point is within the range of the guide mark Ga.
 (5)ガイドマークGaは、焦点深度dfに対応する範囲を示す環状の枠(円)として示されている。つまり、ガイドマークGaの枠内(円内)にガイド点の表示位置があるか否かによって、ワークWの印字面Waが加工可能な位置にあるか否かが教示される。このため、ユーザは、印字面Waへのレーザマーキングが可能かどうかを直感的に把握することができる。 (5) The guide mark Ga is shown as an annular frame (circle) indicating a range corresponding to the focal depth df. That is, whether or not the print surface Wa of the workpiece W is at a position where it can be processed is taught by whether or not the guide point display position is within the frame (circle) of the guide mark Ga. For this reason, the user can intuitively grasp whether or not laser marking is possible on the printing surface Wa.
 (6)ガイドマークGaは、十字の図形(焦点位置教示マーク)を含む。印字面Waがfθレンズ44の焦点位置P0(焦点深度dfの中心)にある状態で、ガイド点の表示位置がガイドマークGaの十字の交点と重なる。つまり、ガイド点がガイドマークGaの十字の交点と重なっているか否かによって、ユーザは、印字面Waがfθレンズ44の焦点位置P0にあるかどうかを把握することができる。 (6) The guide mark Ga includes a cross-shaped figure (focus position teaching mark). In a state where the printing surface Wa is at the focal position P0 (center of the focal depth df) of the fθ lens 44, the display position of the guide point overlaps with the cross point of the guide mark Ga. That is, the user can grasp whether or not the print surface Wa is at the focal position P0 of the fθ lens 44 based on whether or not the guide point overlaps the intersection of the guide marks Ga.
 (7)第2の可視光VL2は緑色の可視光であり、第1の可視光VL1は赤色の可視光である。すなわち、第1の可視光VL1の色と第2の可視光VL2の色とが異なるため、ガイドマークGaとガイド点の視認性が向上する。その結果、ユーザは、印字面Waへのレーザ加工が可能かどうかをより容易に把握することができる。 (7) The second visible light VL2 is green visible light, and the first visible light VL1 is red visible light. That is, since the color of the first visible light VL1 and the color of the second visible light VL2 are different, the visibility of the guide mark Ga and the guide point is improved. As a result, the user can more easily grasp whether or not laser processing on the printing surface Wa is possible.
 (8)コネクタ20には、ファイバケーブル12が挿通された筒状の突出部24が設けられている。突出部24は、ハウジング30の収容凹部32に挿入される。コネクタ20とハウジング30との間の隙間がシールされることで、収容凹部32内の水密性が確保されている。また、突出部24には、その外周面から内周面にかけて貫通するねじ孔24bが形成されている。ねじ孔24bには、突出部24に挿通されたファイバケーブル12と当接する回り止めねじ26が螺着されている。この構成によれば、回り止めねじ26によって、ファイバケーブル12の捻れを抑えることができる。また、回り止めねじ26及びねじ孔24bへの水等の付着を避けるためのシール構造を、コネクタ20とハウジング30との間のシール構造とは別に設ける必要がなくなる。このため、装置全体の構成が簡素化される。更には、突出部24が収容凹部32に入り込んでいるため、ファイバケーブル12を真っ直ぐに保つのに必要なコネクタ20の全体長を確保することができる。また、ハウジング30から突出するコネクタ20の長さを抑えることもできる。よって、コネクタ20を含むヘッド部14の全長、即ちコネクタ20の組付方向における全長を小さく抑えることができる。 (8) The connector 20 is provided with a cylindrical protrusion 24 through which the fiber cable 12 is inserted. The protrusion 24 is inserted into the housing recess 32 of the housing 30. By sealing the gap between the connector 20 and the housing 30, the water tightness in the housing recess 32 is ensured. Further, the protruding portion 24 is formed with a screw hole 24b penetrating from the outer peripheral surface to the inner peripheral surface. A locking screw 26 that contacts the fiber cable 12 inserted through the protruding portion 24 is screwed into the screw hole 24b. According to this configuration, the twisting of the fiber cable 12 can be suppressed by the anti-rotation screw 26. Further, it is not necessary to provide a seal structure for avoiding adhesion of water or the like to the rotation-preventing screw 26 and the screw hole 24 b separately from the seal structure between the connector 20 and the housing 30. For this reason, the structure of the whole apparatus is simplified. Furthermore, since the protruding portion 24 enters the receiving recess 32, the entire length of the connector 20 necessary to keep the fiber cable 12 straight can be secured. Further, the length of the connector 20 protruding from the housing 30 can be suppressed. Therefore, the total length of the head portion 14 including the connector 20, that is, the total length in the assembly direction of the connector 20 can be kept small.
 (9)回り止めねじ26は、ファイバケーブル12の周方向に沿って等間隔で設けられている。このため、ファイバケーブル12をバランス良く固定できるため、ファイバケーブル12を安定的に固定することができる。 (9) The detent screws 26 are provided at equal intervals along the circumferential direction of the fiber cable 12. For this reason, since the fiber cable 12 can be fixed with good balance, the fiber cable 12 can be fixed stably.
 尚、本発明の実施形態は、以下のように変更してもよい。 In addition, you may change the embodiment of this invention as follows.
 ・上記実施形態では、使用者が、操作部16bを操作してワークディスタンスを直接入力したが、fθレンズ44及びワークWの載置面間の距離とワークWの高さとを入力し、ワークディスタンスを制御部17により算出してもよい。また、レーザマーキング装置10に、ワークディスタンスを測定する測定手段としてのセンサを設けてもよい。この場合、センサからの測定結果に基づいて、ガルバノミラー42の走査角度及び走査速度を正確に変更することができる。更に、ワークディスタンスが自動的に変更されて、より正確に加工範囲を同一とすることができる。 In the above embodiment, the user directly inputs the work distance by operating the operation unit 16b. However, the user inputs the distance between the fθ lens 44 and the mounting surface of the work W and the height of the work W, and the work distance. May be calculated by the control unit 17. Further, the laser marking device 10 may be provided with a sensor as a measuring means for measuring the work distance. In this case, the scanning angle and scanning speed of the galvanometer mirror 42 can be accurately changed based on the measurement result from the sensor. Furthermore, the work distance is automatically changed, so that the machining range can be made more accurate.
 ・上記実施形態では、操作部16bにより設定されるワークディスタンスが予め設定される基準範囲外である場合にその旨を報知するための報知手段を用いてもよい。 In the above embodiment, when the work distance set by the operation unit 16b is outside the preset reference range, a notification unit for notifying that effect may be used.
 ・上記実施形態では、制御部17は、ワークディスタンス設定部に設定されるワークディスタンスが予め設定される基準範囲外である場合に、ワークディスタンス設定部の設定を無効とするように制御してもよい。 In the above embodiment, the control unit 17 may control the setting of the work distance setting unit to be invalidated when the work distance set in the work distance setting unit is outside the preset reference range. Good.
 ・上記実施形態では、制御部17は、ワークディスタンスにかかわらず印字範囲を印字範囲Ar0とすべく制御するが、加工範囲設定部としての操作部16bを用いて印字範囲Ar0を任意に変更可能としてもよい。この場合、制御部17は、ワークディスタンスにかかわらず操作部16bで設定された印字範囲を同一とすべく、ワークディスタンスに基づいて走査角度や走査速度を制御する。この場合、使用者は、加工範囲を設定及び変更することができる。また、加工範囲が変更されても、変更後の加工範囲となるように、ワークディスタンスにかかわらずワークを加工することもできる。 In the above embodiment, the control unit 17 controls the print range to be the print range Ar0 regardless of the work distance, but the print range Ar0 can be arbitrarily changed using the operation unit 16b as the processing range setting unit. Also good. In this case, the control unit 17 controls the scanning angle and the scanning speed based on the work distance so that the printing range set by the operation unit 16b is the same regardless of the work distance. In this case, the user can set and change the processing range. Even if the machining range is changed, the workpiece can be machined regardless of the work distance so that the changed machining range is obtained.
 ・上記実施形態において、ガイドマークGaで示す範囲の大きさを調節可能としてもよい。例えば、より高いマーキング品質、つまり、レーザパワーの大きさにより高い精度が求められる場合、レーザ光Lの焦点とみなせる範囲(焦点深度)は狭くなる。反対に、高いマーキング品質を必要としない場合、つまり、レーザパワーの大きさにそれほど高い精度を必要としない場合、レーザ光Lの焦点とみなせる範囲は広くなる。つまり、マーキングの態様に応じてガイドマークGaの大きさを調節可能とすることで、ガイドマークGaの利便性が向上する。なお、ユーザは、操作部16bを操作して、必要なレーザパワーの値やワークWの材質を入力する。制御部17は、ユーザの入力に基づいて、ガルバノミラー42の駆動制御によって、ガイドマークGaの大きさを制御する。また、ユーザが操作部16bを操作して、ガイドマークGaの大きさを直接設定できるようにしてもよい。この構成によれば、ガイドマークGaの範囲を小さく調節した場合に高精度なレーザマーキングが可能かどうかを容易に把握することができる。 In the above embodiment, the size of the range indicated by the guide mark Ga may be adjustable. For example, when higher accuracy is required by higher marking quality, that is, by the magnitude of the laser power, the range (depth of focus) that can be regarded as the focal point of the laser light L becomes narrower. On the other hand, when high marking quality is not required, that is, when the accuracy of the laser power is not so high, the range that can be regarded as the focal point of the laser light L is widened. That is, the convenience of the guide mark Ga is improved by making the size of the guide mark Ga adjustable according to the marking mode. The user operates the operation unit 16b to input a necessary laser power value and material of the workpiece W. The control unit 17 controls the size of the guide mark Ga by drive control of the galvanometer mirror 42 based on the user input. Further, the user may be able to directly set the size of the guide mark Ga by operating the operation unit 16b. According to this configuration, it is possible to easily grasp whether or not highly accurate laser marking is possible when the range of the guide mark Ga is adjusted to be small.
 ・上記実施形態では、第1の可視光VL1を赤色の可視光とし、第2の可視光VL2を緑色の可視光としたが、これに限定されない。また、第1の可視光VL1と第2の可視光VL2の色を変更可能としてもよい。この場合、操作部16bを操作して、第1の可視光VL1と第2の可視光VL2の色を設定してもよい。また、操作部16bを操作してワークWの色を入力し、ワークWの色に対して視認性の良い色(例えば補色)の第1及び第2可視光VL1,VL2を出射するようにしてもよい。この構成によれば、第1及び第2可視光VL1,VL2の色をワークWの色に応じて設定できるため、ガイドマークGaとガイド点の視認性がより一層向上する。 In the above embodiment, the first visible light VL1 is red visible light and the second visible light VL2 is green visible light. However, the present invention is not limited to this. The colors of the first visible light VL1 and the second visible light VL2 may be changeable. In this case, the operation unit 16b may be operated to set the colors of the first visible light VL1 and the second visible light VL2. Further, the operation unit 16b is operated to input the color of the workpiece W, and the first and second visible lights VL1 and VL2 having colors (for example, complementary colors) having good visibility with respect to the color of the workpiece W are emitted. Also good. According to this configuration, since the colors of the first and second visible lights VL1 and VL2 can be set according to the color of the workpiece W, the visibility of the guide mark Ga and the guide point is further improved.
 ・上記実施形態では、第2の可視光源52をfθレンズ44とコネクタ20との間に配置したが、第2の可視光源52からの第2の可視光VL2がfθレンズ44の軸線と交差しかつ印字面Waに照射されるのであれば、任意の位置に配置してもよい。 In the above embodiment, the second visible light source 52 is disposed between the fθ lens 44 and the connector 20, but the second visible light VL2 from the second visible light source 52 intersects the axis of the fθ lens 44. And as long as it irradiates the printing surface Wa, you may arrange | position in arbitrary positions.
 ・上記実施形態では、ガイドマークGaは、十字とその十字の交点を中心とする円からなる形状であったが、十字を省略し、円のみであってもよい。例えば、図10に示すような下限位置教示線Gd及び上限位置教示線Guを含む図形であってもよい。下限位置教示線Gd及び上限位置教示線Guは、ガイド点の軌跡T上にそれぞれ位置する分断線であり、焦点深度dfの下限位置P1及び上限位置P2とそれぞれ対応している。即ち、焦点深度dfの下限位置P1に印字面Waがある場合、下限位置教示線Gd上にガイド点Gb1が表示される。一方、焦点深度dfの上限位置P2に印字面Waがある場合、上限位置教示線Gu上にガイド点Gb2が表示される。この構成によれば、下限位置教示線Gdと上限位置教示線Guとの間にガイド点が位置するか否かによって、印字面Waがマーキング可能なZ軸位置にあるか否かが教示される。このため、ユーザは、印字面Waへのレーザマーキングが可能かどうかを直感的に把握することができる。また、図10に示すガイドマーク以外に、例えば、下限位置教示線Gdと上限位置教示線Guの間に、ガイドマークGaと同様の十字を有してもよい。 In the above embodiment, the guide mark Ga has a shape made up of a cross and a circle centered on the intersection of the cross, but the cross may be omitted and only the circle may be used. For example, the figure may include a lower limit position teaching line Gd and an upper limit position teaching line Gu as shown in FIG. The lower limit position teaching line Gd and the upper limit position teaching line Gu are dividing lines positioned on the guide point trajectory T, and correspond to the lower limit position P1 and the upper limit position P2 of the focal depth df, respectively. That is, when the print surface Wa is at the lower limit position P1 of the focal depth df, the guide point Gb1 is displayed on the lower limit position teaching line Gd. On the other hand, when the print surface Wa is at the upper limit position P2 of the focal depth df, the guide point Gb2 is displayed on the upper limit position teaching line Gu. According to this configuration, whether or not the printing surface Wa is at the Z-axis position where marking can be performed is taught depending on whether or not the guide point is located between the lower limit position teaching line Gd and the upper limit position teaching line Gu. . For this reason, the user can intuitively grasp whether or not laser marking is possible on the printing surface Wa. In addition to the guide marks shown in FIG. 10, for example, a cross similar to the guide mark Ga may be provided between the lower limit position teaching line Gd and the upper limit position teaching line Gu.
 ・上記実施形態では、印字面WaのZ軸位置に対するガイドマークGaの大きさの変化は無視できるほど小さいとしたが、そうでない場合のガイドマークについて、図11(a)~図13(b)に従って説明する。なお、ワークディスタンスが大きくなるにつれて、ガイドマークのサイズは大きくなる。 In the above embodiment, the change in the size of the guide mark Ga with respect to the Z-axis position of the printing surface Wa is negligibly small. However, the guide mark in other cases is shown in FIGS. 11 (a) to 13 (b). It explains according to. As the work distance increases, the size of the guide mark increases.
 図11(a)(b)に示すガイドマークGa1は、第1の円弧K1(下限位置教示線)と第2の円弧K2(上限位置教示線)を含む。第1の円弧K1の径は、第2の円弧K2の径よりも小さい。第1の円弧K1及び第2の円弧K2は、焦点深度dfの下限位置P1及び上限位置P2とそれぞれ対応している。焦点深度dfの上限位置P2に印字面Waがある場合、図11(a)に示すように、第2の円弧K2上にガイド点Gb2が表示される。一方、焦点深度dfの下限位置P1に印字面Waがある場合、上限位置P2と比べてワークディスタンスが大きいため、図11(b)に示すように、ガイドマークGa1のサイズが大きくなる。このとき、ガイド点Gb1は第1の円弧K1上に表示される。つまり、第1の円弧K1と第2の円弧K2との間にガイド点が位置するか否かによって、印字面Waがマーキング可能なZ軸位置にあるか否かが教示される。このように、第1の円弧K1と第2の円弧K2の径を異ならせることで、印字面WaのZ軸位置によりガイドマークGa1の大きさが変化する場合にも対応可能となる。 The guide mark Ga1 shown in FIGS. 11A and 11B includes a first arc K1 (lower limit position teaching line) and a second arc K2 (upper limit position teaching line). The diameter of the first arc K1 is smaller than the diameter of the second arc K2. The first arc K1 and the second arc K2 correspond to the lower limit position P1 and the upper limit position P2 of the focal depth df, respectively. When the print surface Wa is at the upper limit position P2 of the focal depth df, the guide point Gb2 is displayed on the second arc K2, as shown in FIG. On the other hand, when the print surface Wa is at the lower limit position P1 of the focal depth df, the work distance is larger than that of the upper limit position P2, so that the size of the guide mark Ga1 is increased as shown in FIG. At this time, the guide point Gb1 is displayed on the first arc K1. That is, whether or not the printing surface Wa is at the Z-axis position where marking can be performed is taught by whether or not the guide point is located between the first arc K1 and the second arc K2. In this way, by making the diameters of the first arc K1 and the second arc K2 different, it is possible to cope with the case where the size of the guide mark Ga1 changes depending on the Z-axis position of the printing surface Wa.
 また、図12(a)(b)に示すガイドマークGa2は、楕円とその楕円内の十字の図形とからなる。ガイドマークGa2の楕円の長軸は、ガイド点の軌跡T方向に沿って延びており、楕円の長軸方向の両端は、レーザ光Lの焦点深度dfの上限位置P2及び下限位置P1とそれぞれ対応している。焦点深度dfの上限位置P2に印字面Waがある場合、図12(a)に示すように、楕円の長軸方向の第1端部上にガイド点Gb2が表示される。一方、焦点深度dfの下限位置P1に印字面Waがある場合、上限位置P2と比べてワークディスタンスが大きいため、図12(b)に示すように、ガイドマークGa1のサイズが大きくなる。このとき、ガイド点Gb1は、楕円の長軸方向の第2端部上に表示される。つまり、ガイドマークGa2の楕円内にガイド点が位置するか否かによって、印字面Waがマーキング可能なZ軸位置にあるか否かが教示される。なお、印字面Waが焦点位置P0にある場合、ガイド点はガイドマークGa2の十字の交点上に表示される。十字の交点位置は、ガイドマークGa2の楕円の中心から軌跡T方向にずれている。このようにすることで、印字面WaのZ軸位置でガイドマークGa2の大きさが変化する場合にも対応可能となる。なお、図12(a)(b)に示すガイドマークGa2は、十字を省略した楕円であってもよい。 Further, the guide mark Ga2 shown in FIGS. 12A and 12B is composed of an ellipse and a cross-shaped figure within the ellipse. The major axis of the ellipse of the guide mark Ga2 extends along the trajectory T direction of the guide point, and both ends of the ellipse in the major axis direction correspond to the upper limit position P2 and the lower limit position P1 of the focal depth df of the laser beam L, respectively. is doing. When the print surface Wa is at the upper limit position P2 of the focal depth df, as shown in FIG. 12A, the guide point Gb2 is displayed on the first end portion in the major axis direction of the ellipse. On the other hand, when the print surface Wa is at the lower limit position P1 of the focal depth df, the work distance is larger than that of the upper limit position P2, so that the size of the guide mark Ga1 is increased as shown in FIG. At this time, the guide point Gb1 is displayed on the second end portion in the major axis direction of the ellipse. That is, whether or not the printing surface Wa is at the Z-axis position where marking can be performed is taught by whether or not the guide point is located within the ellipse of the guide mark Ga2. When the print surface Wa is at the focal position P0, the guide point is displayed on the intersection of the guide marks Ga2. The cross point position of the cross is shifted in the locus T direction from the center of the ellipse of the guide mark Ga2. In this way, it is possible to cope with a case where the size of the guide mark Ga2 changes at the Z-axis position of the printing surface Wa. Note that the guide mark Ga2 shown in FIGS. 12A and 12B may be an ellipse without a cross.
 また、図13(a)(b)に示すガイドマークGa3は、径の異なる2つの円C1,C2を含む。大径の円C1及び小径の円C2は、焦点深度dfの上限位置P2及び下限位置P1とそれぞれ対応している。焦点深度dfの上限位置P2に印字面Waがある場合、図13(a)に示すように、大径の円C1上にガイド点Gb2が表示される。一方、焦点深度dfの下限位置P1に印字面Waがある場合、上限位置P2と比べてワークディスタンスが大きいため、図13(b)に示すように、ガイドマークGa3のサイズが大きくなる。このとき、ガイド点Gb1は、小径の円C2上に表示される。つまり、小径の円C2内にガイド点が位置するか否かによって、印字面Waがマーキング可能なZ軸位置にあるか否かが教示される。このような2つの円C1,C2によっても、印字面WaのZ軸位置でガイドマークGa2の大きさが変化する場合に対応可能となる。 Further, the guide mark Ga3 shown in FIGS. 13A and 13B includes two circles C1 and C2 having different diameters. The large-diameter circle C1 and the small-diameter circle C2 correspond to the upper limit position P2 and the lower limit position P1 of the focal depth df, respectively. When the print surface Wa is at the upper limit position P2 of the focal depth df, as shown in FIG. 13A, the guide point Gb2 is displayed on the large-diameter circle C1. On the other hand, when the print surface Wa is at the lower limit position P1 of the focal depth df, the work distance is larger than that of the upper limit position P2, so that the size of the guide mark Ga3 is increased as shown in FIG. At this time, the guide point Gb1 is displayed on the small-diameter circle C2. That is, whether or not the printing surface Wa is at the Z-axis position where marking can be performed is taught by whether or not the guide point is located in the small-diameter circle C2. Such two circles C1 and C2 can cope with a case where the size of the guide mark Ga2 changes at the Z-axis position of the printing surface Wa.
 ・上記実施形態では、金属材料やセラミック等を印字加工する場合、レーザ光Lを照射してから物性が変化し印字可能となるのに要するエネルギーは、材質等に応じて決まる。つまり、レーザ光Lの出射と同時に加工可能となるわけでなく、レーザ光Lを出射し所定時間経過してから加工可能となる。このため、制御部17は、レーザ光Lの出射開始点で所定時間出射した後、ガルバノモータ43の駆動制御を行い、印字データ(加工データ)に基づきレーザ光Lを走査する。しかしながら、加工開始点に停止したまま所定時間レーザ光Lを出射すると、設定条件次第では加工開始点又はその近傍で印字が太くなったり細くなったりするといった印字斑(加工斑)が生じる虞がある。また、レーザ光Lの加工開始点での照射時間、即ちレーザエネルギーが足りない場合、レーザ光Lを走査しても加工開始始点又はその近傍が印字(加工)されない虞もある。このような問題を踏まえ、以下に説明する構成を採用することが望ましい。 In the above embodiment, when printing a metal material, ceramic, or the like, the energy required to enable printing by changing the physical properties after irradiating the laser beam L depends on the material and the like. That is, processing is not possible at the same time as the emission of the laser light L, but processing is possible after the laser light L is emitted and a predetermined time elapses. Therefore, the control unit 17 performs drive control of the galvano motor 43 after being emitted for a predetermined time at the emission start point of the laser light L, and scans the laser light L based on the print data (processing data). However, if the laser beam L is emitted for a predetermined time while stopped at the processing start point, printing spots (processing spots) such as printing becoming thick or thin at or near the processing start point may occur depending on the setting conditions. . Further, when the irradiation time at the processing start point of the laser beam L, that is, the laser energy is insufficient, there is a possibility that even if the laser beam L is scanned, the processing start point or its vicinity is not printed (processed). In view of such problems, it is desirable to adopt the configuration described below.
 始点SP0から終点EP0までの座標データに基づきレーザ光Lを走査してレーザ加工する際、制御部17は、始点SP0及び終点EP0間、又は、始点SP0を基準として終点EP0とは反対方向の位置に、補正点CPを生成する。そして、制御部17は、補正点CP及び前記始点SP0間にてレーザ光Lを往復させ、レーザ光Lを出射してから加工可能となるまでの時間を確保する。 When laser processing is performed by scanning the laser beam L based on the coordinate data from the start point SP0 to the end point EP0, the control unit 17 is positioned between the start point SP0 and the end point EP0 or in the direction opposite to the end point EP0 with respect to the start point SP0. Then, a correction point CP is generated. Then, the control unit 17 reciprocates the laser beam L between the correction point CP and the start point SP0, and secures a time from when the laser beam L is emitted until it can be processed.
 次に、始点SP0及び終点EP0間で補正点CPを生成する場合のレーザ光Lの走査方法について図14を参照して説明する。図14に示すように、制御部17は、補正点CPからレーザ光Lを出射すると共に、始点SP0側にレーザ光Lを走査する(走査Sc1)。その後、制御部17は、始点SP0から補正点CPを通って終点EP0側にレーザ光Lを走査する(走査Sc2)。 Next, a scanning method of the laser beam L when generating the correction point CP between the start point SP0 and the end point EP0 will be described with reference to FIG. As shown in FIG. 14, the control unit 17 emits the laser beam L from the correction point CP and scans the laser beam L toward the start point SP0 (scanning Sc1). Thereafter, the control unit 17 scans the laser beam L from the start point SP0 through the correction point CP to the end point EP0 side (scanning Sc2).
 このようにすることで、走査Sc1において、レーザ光Lによる加工が可能となるまで時間を確保することができ、始点SP0及びその近傍における印字斑を抑えることができる。このため、印字品質が向上する。また、レーザ光Lにより加工される位置に補正点CPを生成したため、走査Sc1の途中位置でレーザ光Lの加工が開始されても、走査Sc2にて再加工されるため、印字斑が目立たなくなる。 By doing in this way, in scanning Sc1, time can be ensured until the process by the laser beam L becomes possible, and the printing spot in the start point SP0 and its vicinity can be suppressed. For this reason, the printing quality is improved. In addition, since the correction point CP is generated at the position processed by the laser beam L, even if the processing of the laser beam L is started at a midway position in the scanning Sc1, the printing spot is not noticeable because the processing is performed again by the scanning Sc2. .
 また、始点SP0及び終点EP0間で補正点CPを生成する場合の方法を、以下のように変更してもよい。つまり、図15に示すように、始点SP0からレーザ光Lを出射するとともに、補正点CP側にレーザ光Lを走査する(走査Sc1)。次に、制御部17は、補正点CPから始点SP0側にレーザ光Lを走査する(走査Sc2)。その後、制御部17は、始点SP0から補正点CPを通って終点EP0側にレーザ光Lを走査する(走査Sc3)。 Further, the method for generating the correction point CP between the start point SP0 and the end point EP0 may be changed as follows. That is, as shown in FIG. 15, the laser beam L is emitted from the start point SP0, and the laser beam L is scanned on the correction point CP side (scanning Sc1). Next, the control unit 17 scans the laser beam L from the correction point CP to the start point SP0 side (scanning Sc2). Thereafter, the controller 17 scans the laser beam L from the start point SP0 to the end point EP0 side through the correction point CP (scanning Sc3).
 このようにすることで、走査Sc1,Sc2において、レーザ光Lによる加工が可能となるまでの時間を確保することができ、始点SP0及びその近傍における印字斑を抑えることができる。また、レーザ光Lによる加工を行う位置に補正点CPを生成したため、走査Sc1の途中位置でレーザ光Lの加工が開始されても、走査Sc2にて再加工されるため、印字斑が目立たなくなる。 By doing in this way, in scanning Sc1, Sc2, time until processing by the laser beam L becomes possible can be ensured, and the printing spot in the start point SP0 and its vicinity can be suppressed. In addition, since the correction point CP is generated at the position where the processing with the laser beam L is performed, even if the processing of the laser beam L is started at the midway position of the scanning Sc1, since the processing is performed again with the scanning Sc2, the printed spots become inconspicuous. .
 次に、始点SP0を基準として終点EP0とは反対方向の位置に補正点CPを生成する場合のレーザ光Lの操作方法について、図16を参照して説明する。図16に示すように、制御部17は、補正点CPからレーザ光Lを出射すると共に、始点SP0側にレーザ光Lを走査する(走査Sc1)。次に、制御部17は、始点SP0から終点EP0とは反対方向の補正点CP側にレーザ光Lを走査する(走査Sc2)。その後、制御部17は、補正点CPから始点SP0を通って終点EP0側にレーザ光Lを走査する(走査Sc3)。 Next, an operation method of the laser light L in the case where the correction point CP is generated at a position opposite to the end point EP0 with the start point SP0 as a reference will be described with reference to FIG. As shown in FIG. 16, the control unit 17 emits the laser light L from the correction point CP and scans the laser light L toward the start point SP0 (scanning Sc1). Next, the controller 17 scans the laser beam L from the start point SP0 to the correction point CP side in the direction opposite to the end point EP0 (scanning Sc2). Thereafter, the controller 17 scans the laser beam L from the correction point CP to the end point EP0 through the start point SP0 (scanning Sc3).
 このようにすることで、走査Sc1,Sc2においてレーザ光Lによる加工が可能となるまでの時間を確保することができ、始点SP0及びその近傍における印字斑を抑えることができる。なお、補正点CPの生成方法として、レーザ光Lのエネルギー量、ワークWの印字面(加工面)の材質等を勘案して生成する方法が考えられる。また、使用者が補正CP点の位置を設定・変更可能な構成としてもよい。 By doing in this way, it is possible to secure a time until processing by the laser light L is possible in the scans Sc1 and Sc2, and it is possible to suppress print spots at the start point SP0 and its vicinity. As a method of generating the correction point CP, a method of generating the correction point CP in consideration of the energy amount of the laser light L, the material of the print surface (processed surface) of the workpiece W, etc. can be considered. Further, the configuration may be such that the user can set / change the position of the correction CP point.
 ・上記実施形態では、同一範囲に同一の文字を繰り返しマーキングして、文字や記号を構成する線の太さを変更してもよい。上記別例の具体的なマーキング方法を以下に示す。 In the above embodiment, the same character may be repeatedly marked in the same range, and the thickness of the line constituting the character or symbol may be changed. The specific marking method of the another example is shown below.
 図17(a)(b)は、レーザマーキング装置により「A」という文字をワークWにマーキングする場合を示す。尚、制御部17による下記に示す操作は、ガルバノモータ43の制御を通じて実行される。図17(a)に示すように、制御部17は、第1の単位マーキングの始点SP1から終点EP1までレーザ光Lを走査する。その後、制御部17は、レーザ光Lを出射させずに、第1の単位マーキングの終点EP1から第2の単位マーキングの始点SP2までレーザ光Lの照射位置を移動させる。次に、制御部17は、第2の単位マーキングの始点SP2から終点EP2までレーザ光Lを走査する。その後、制御部17は、レーザ光Lを出射させずに、第2の単位マーキングの終点EP2から第1の単位マーキングの始点SP1までレーザ光Lの照射位置を移動させる。制御部17は、上記一連の工程を繰り返すことで、図17(b)に示すように線の太さを太くすることができる。ここで、マーキングを繰り返す場合、例えば、印字データを単位マーキング毎に分解し、単位マーキング毎で必要回数だけマーキングしてから、次の単位マーキングに移行させてもよい。以下、単位マーキング毎で必要回数分だけ2往復マーキング、即ち、単位マーキング毎で4回マーキングした場合の具体例を説明する。 FIGS. 17 (a) and 17 (b) show the case where the letter “A” is marked on the workpiece W by the laser marking device. The operation shown below by the control unit 17 is executed through control of the galvano motor 43. As shown in FIG. 17A, the controller 17 scans the laser light L from the start point SP1 to the end point EP1 of the first unit marking. Thereafter, the control unit 17 moves the irradiation position of the laser light L from the end point EP1 of the first unit marking to the start point SP2 of the second unit marking without emitting the laser light L. Next, the control unit 17 scans the laser light L from the start point SP2 to the end point EP2 of the second unit marking. Thereafter, the control unit 17 moves the irradiation position of the laser light L from the end point EP2 of the second unit marking to the start point SP1 of the first unit marking without emitting the laser light L. The controller 17 can increase the thickness of the line as shown in FIG. 17B by repeating the series of steps described above. Here, when marking is repeated, for example, the print data may be disassembled for each unit marking, marked for the required number of times for each unit marking, and then transferred to the next unit marking. Hereinafter, a specific example will be described in which two reciprocal markings are performed for each unit marking as many times as necessary, that is, four times are marked for each unit marking.
 例えば「A」という文字をワークWにマーキングする場合、制御部17は、図18(a)に示すように、第1の単位マーキングの始点SP1及び終点EP1間を1往復走査する。詳述すると、制御部17は、第1の単位マーキングの始点SP1から終点EP1までレーザ光Lを走査した後に、第1の単位マーキングの終点EP1から第1の単位マーキングの始点SP1までレーザ光Lを走査する。 For example, when marking the character “A” on the workpiece W, the control unit 17 performs one reciprocating scan between the start point SP1 and the end point EP1 of the first unit marking, as shown in FIG. More specifically, the controller 17 scans the laser beam L from the first unit marking start point SP1 to the end point EP1, and then scans the laser beam L from the first unit marking end point EP1 to the first unit marking start point SP1. Scan.
 次に、制御部17は、図18(b)に示すように更に第1の単位マーキングの始点SP1及び終点EP1間を1往復走査する。その後、制御部17は、レーザ光Lを出射せずに、図18(b)に示すように第1の単位マーキングの始点SP1から次のマーキング開始点である第2の単位マーキングの終点EP2までレーザ光Lの照射位置を移動させる。 Next, as shown in FIG. 18B, the control unit 17 further performs one reciprocating scan between the start point SP1 and the end point EP1 of the first unit marking. Thereafter, the control unit 17 does not emit the laser light L, and from the first unit marking start point SP1 to the second unit marking end point EP2 as the next marking start point, as shown in FIG. 18B. The irradiation position of the laser beam L is moved.
 次に、制御部17は、図18(c)に示すように第2の単位マーキングの始点SP2及び終点EP2間を1往復走査する。詳述すると、制御部17は、第2の単位マーキングの終点EP2から第2の単位マーキングの始点SP2までレーザ光Lを走査した後に、第2の単位マーキングの始点SP2から終点EP2までレーザ光Lを走査する。 Next, as shown in FIG. 18C, the control unit 17 performs one reciprocating scan between the start point SP2 and the end point EP2 of the second unit marking. More specifically, the controller 17 scans the laser beam L from the end point EP2 of the second unit marking to the start point SP2 of the second unit marking, and then the laser beam L from the start point SP2 of the second unit marking to the end point EP2. Scan.
 次に、制御部17は、図18(d)に示すように更に第2の単位マーキングの始点SP2始点及び終点EP2間を1往復走査する。こうして、「A」という文字を4回マーキングした場合と同等の文字品質でマーキングすることができる。更に、レーザ光Lを出射させずにレーザ光Lの照射位置を次のマーキング開始点まで移動する移動回数を減らすこともできる。 Next, as shown in FIG. 18 (d), the control unit 17 further performs one reciprocating scan between the start point SP2 start point and the end point EP2 of the second unit marking. In this way, it is possible to perform marking with the same character quality as when the character “A” is marked four times. Further, it is possible to reduce the number of times of moving the irradiation position of the laser light L to the next marking start point without emitting the laser light L.
 ・上記実施形態では、コネクタ20に設けられた回り止めねじ26の個数を3つとしたが、ファイバケーブル12の固定や捻れを抑制できるのであれば、回り止めねじ26の個数を1つや2つとしてもよい。また、回り止めねじ26の個数を4つ以上とした場合、回り止めねじ26をファイバケーブル12の周方向に等間隔に設けることで、ファイバケーブル12をバランス良く固定したり、安定的に固定したりすることができる。また、回り止めねじ26を、ファイバケーブル12の捻れを抑えること以外に、例えば、ファイバケーブル12の光軸合わせのために用いてもよい。 In the above embodiment, the number of locking screws 26 provided on the connector 20 is three. However, if the fixing and twisting of the fiber cable 12 can be suppressed, the number of locking screws 26 is set to one or two. Also good. Further, when the number of the locking screws 26 is four or more, by providing the locking screws 26 at equal intervals in the circumferential direction of the fiber cable 12, the fiber cable 12 can be fixed in a balanced manner or stably. Can be. Further, the rotation-preventing screw 26 may be used, for example, for aligning the optical axis of the fiber cable 12 in addition to suppressing twisting of the fiber cable 12.
 ・上記実施形態では、ガルバノミラー42は、一対(2つ)でなくてもよい。 In the above embodiment, the galvanometer mirrors 42 may not be a pair (two).
 ・上記実施形態では、光合流手段として、ハーフミラー41に代えて、ビームスプリッタやダイクロイックミラー等を用いてもよい。 In the above embodiment, a beam splitter, a dichroic mirror, or the like may be used instead of the half mirror 41 as the light merging means.
 ・本発明を、レーザ発振部18を有する本体部11とヘッド部14とが分離したレーザマーキング装置10に適用したが、本体部とヘッド部とが一体化したレーザマーキング装置に適用してもよい。また、本発明を、文字・記号・図形等のパターンをマーキングするレーザマーキング装置10に適用したが、ワークWに対して切断等の加工を行うレーザ加工装置に適用してもよい。 The present invention is applied to the laser marking device 10 in which the main body portion 11 having the laser oscillation portion 18 and the head portion 14 are separated, but may be applied to a laser marking device in which the main body portion and the head portion are integrated. . Further, the present invention is applied to the laser marking apparatus 10 for marking patterns such as characters, symbols, and figures, but may be applied to a laser processing apparatus that performs processing such as cutting on the workpiece W.

Claims (6)

  1. レーザ光を出射するレーザ出射部と、前記レーザ出射部からのレーザ光を走査する走査ミラーと、前記走査ミラーを制御する制御部とを備え、前記レーザ出射部からのレーザ光を、前記走査ミラーを介して、レーザ出射口からワークに照射するレーザ加工装置であって、
     前記制御部は、前記レーザ出射口及び前記ワーク間のワークディスタンスにかかわらず前記ワークの加工面の同じ位置及び大きさで加工されるように、前記ワークディスタンスが大きいほど前記走査ミラーの走査角度を狭く且つ前記走査ミラーの走査速度を遅くするように制御し、前記ワークディスタンスが小さいほど前記走査ミラーの走査角度を広く且つ前記走査ミラーの走査速度を速くするように制御することを特徴とするレーザ加工装置。
    A laser emitting unit that emits laser light; a scanning mirror that scans the laser light from the laser emitting unit; and a control unit that controls the scanning mirror, wherein the laser light from the laser emitting unit is transmitted to the scanning mirror. A laser processing apparatus for irradiating a work from a laser emission port,
    The control unit increases the scanning angle of the scanning mirror as the workpiece distance increases so that the workpiece is processed at the same position and size on the processing surface of the workpiece regardless of the workpiece distance between the laser emission port and the workpiece. The laser is controlled to be narrow and the scanning speed of the scanning mirror is slow, and the scanning angle of the scanning mirror is widened and the scanning speed of the scanning mirror is fastened as the work distance is small Processing equipment.
  2. 請求項1に記載のレーザ加工装置において、
     前記ワークディスタンスを設定するワークディスタンス設定部を備え、
     前記制御部は、前記ワークディスタンス設定部で設定された前記ワークディスタンスに応じて、前記走査ミラーの走査角度及び走査速度を変更することを特徴とするレーザ加工装置。
    In the laser processing apparatus of Claim 1,
    A work distance setting unit for setting the work distance;
    The laser processing apparatus, wherein the control unit changes a scanning angle and a scanning speed of the scanning mirror according to the work distance set by the work distance setting unit.
  3. 請求項2に記載のレーザ加工装置において、
     前記ワークディスタンス設定部は、前記ワークディスタンスを測定する測定手段からの測定結果に応じて、前記ワークディスタンスを設定することを特徴とするレーザ加工装置。
    In the laser processing apparatus of Claim 2,
    The laser machining apparatus, wherein the work distance setting unit sets the work distance according to a measurement result from a measurement unit that measures the work distance.
  4. 請求項2又は3に記載のレーザ加工装置において、
     前記ワークディスタンス設定部に設定されるワークディスタンスが予め設定される基準範囲外である場合、基準範囲外である旨を報知する報知手段を備えたことを特徴とするレーザ加工装置。
    In the laser processing apparatus according to claim 2 or 3,
    A laser processing apparatus comprising: an informing means for informing that a work distance set in the work distance setting unit is outside a reference range when the work distance is outside a preset reference range.
  5. 請求項2~4のいずれか一項に記載のレーザ加工装置において、
     前記ワークディスタンス設定部に設定されるワークディスタンスが予め設定される基準範囲外である場合、前記ワークディスタンス設定部の設定を無効にする無効手段を備えたことを特徴とするレーザ加工装置。
    In the laser processing apparatus according to any one of claims 2 to 4,
    A laser processing apparatus comprising invalid means for invalidating the setting of the work distance setting unit when the work distance set in the work distance setting unit is outside a preset reference range.
  6. 請求項2~5のいずれか一項に記載のレーザ加工装置において、
     使用者が加工範囲を設定可能な加工範囲設定部を備え、
     前記制御部は、前記加工範囲設定部で設定された加工範囲を前記ワークディスタンスにかかわらず同一とするように制御することを特徴とするレーザ加工装置。
    In the laser processing apparatus according to any one of claims 2 to 5,
    With a machining range setting section that allows the user to set the machining range,
    The control unit controls the processing range set by the processing range setting unit to be the same regardless of the work distance.
PCT/JP2012/073932 2012-01-20 2012-09-19 Laser processing device WO2013108437A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012010537A JP6002392B2 (en) 2012-01-20 2012-01-20 Laser processing equipment
JP2012-010537 2012-01-20

Publications (1)

Publication Number Publication Date
WO2013108437A1 true WO2013108437A1 (en) 2013-07-25

Family

ID=48798874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073932 WO2013108437A1 (en) 2012-01-20 2012-09-19 Laser processing device

Country Status (2)

Country Link
JP (1) JP6002392B2 (en)
WO (1) WO2013108437A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311125A (en) * 2016-07-13 2019-02-05 欧姆龙株式会社 Laser processing and laser processing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822385B2 (en) * 2017-11-30 2021-01-27 ブラザー工業株式会社 Laser processing equipment
JP7003903B2 (en) * 2018-12-20 2022-01-21 ブラザー工業株式会社 Laser marker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122132A (en) * 2002-09-30 2004-04-22 Sunx Ltd Laser beam marking apparatus and and its marking method
JP2004322106A (en) * 2003-04-21 2004-11-18 Sumitomo Heavy Ind Ltd Laser beam machining method, and laser beam machining apparatus
JP2008012538A (en) * 2006-06-30 2008-01-24 Keyence Corp Laser machining apparatus, device, method, and program for setting laser machining condition, computer-readable storage medium, and storage device
JP2009142866A (en) * 2007-12-14 2009-07-02 Keyence Corp Laser machining apparatus, laser machining method and method for setting laser machining apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274085A (en) * 2008-05-13 2009-11-26 Olympus Corp Gas cluster ion beam machining method, gas cluster ion beam machining device, and machining program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122132A (en) * 2002-09-30 2004-04-22 Sunx Ltd Laser beam marking apparatus and and its marking method
JP2004322106A (en) * 2003-04-21 2004-11-18 Sumitomo Heavy Ind Ltd Laser beam machining method, and laser beam machining apparatus
JP2008012538A (en) * 2006-06-30 2008-01-24 Keyence Corp Laser machining apparatus, device, method, and program for setting laser machining condition, computer-readable storage medium, and storage device
JP2009142866A (en) * 2007-12-14 2009-07-02 Keyence Corp Laser machining apparatus, laser machining method and method for setting laser machining apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311125A (en) * 2016-07-13 2019-02-05 欧姆龙株式会社 Laser processing and laser processing device
EP3486026A4 (en) * 2016-07-13 2020-01-22 Omron Corporation Laser processing method and laser processing apparatus

Also Published As

Publication number Publication date
JP2013146774A (en) 2013-08-01
JP6002392B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2013108476A1 (en) Laser processing device
US10502555B2 (en) Laser processing system having measurement function
JP5707079B2 (en) Laser processing equipment
US20190275609A1 (en) Laser Machining Systems and Methods
WO2013108437A1 (en) Laser processing device
US20120132629A1 (en) Method and apparatus for reducing taper of laser scribes
US10576579B2 (en) Laser machining apparatus that machines surface of workpiece by irradiating laser beam thereon
US10359624B2 (en) Galvanoscanner
JP2014188587A (en) Laser machining apparatus
JP2008062258A (en) Apparatus for adjusting parameters for laser beam machining, and computer program
WO2022185721A1 (en) Laser processing device
CN106853556A (en) Multi-shaft interlocked ultrafast laser machining system
JP4645319B2 (en) Remote welding teaching device
JP2002224865A (en) Laser beam marking device
CN113305423A (en) Three-dimensional galvanometer welding head device
EP3819068A1 (en) Cutting machine and cutting method
WO2019176786A1 (en) Laser light centering method and laser processing device
EP3744468A1 (en) Laser machining head and laser machining apparatus, and laser machining head adjustment method
US20210209317A1 (en) Laser marker
US20230158606A1 (en) Laser welding method and laser welding device
US20230219166A1 (en) Laser processing device and method for adjusting focal position of laser beam using same
WO2019176294A1 (en) Nozzle centering device and nozzle centering method for laser processing machine
JP4376221B2 (en) Scanning optical unit, control method therefor, and laser processing apparatus
JP2013094794A (en) Laser beam machining device
JP2016123981A (en) Setting device of laser processing apparatus, laser processing apparatus having setting device, and setting program of laser processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865683

Country of ref document: EP

Kind code of ref document: A1