WO2013108344A1 - Resin composition, and composition containing polyamide resin and glass fibers - Google Patents

Resin composition, and composition containing polyamide resin and glass fibers Download PDF

Info

Publication number
WO2013108344A1
WO2013108344A1 PCT/JP2012/008164 JP2012008164W WO2013108344A1 WO 2013108344 A1 WO2013108344 A1 WO 2013108344A1 JP 2012008164 W JP2012008164 W JP 2012008164W WO 2013108344 A1 WO2013108344 A1 WO 2013108344A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polyamide
acid
polyamide resin
oxalic acid
Prior art date
Application number
PCT/JP2012/008164
Other languages
French (fr)
Japanese (ja)
Inventor
佳史 赤川
直靖 藪
亮輔 佐々木
斉 児玉
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012118496A external-priority patent/JP2013245258A/en
Priority claimed from JP2012268975A external-priority patent/JP2013166916A/en
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2013108344A1 publication Critical patent/WO2013108344A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides

Definitions

  • the present invention relates to a resin composition containing a polyamide resin and a polyphenylene ether resin.
  • the present invention relates to a composition comprising a polyamide resin and glass fibers.
  • polyamide resins typified by nylon 6 and nylon 66 have been widely used as textiles for clothing or industrial materials or general-purpose engineering plastics because of their excellent properties and ease of melt molding.
  • a polyamide resin using oxalic acid as a dicarboxylic acid component is called a polyoxamide resin, and is known to have a higher melting point and lower water absorption than other polyamide resins having the same amino group concentration (Patent Document 1).
  • polyphenylene ether is used in a wide range of applications because of its excellent mechanical properties and heat resistance and excellent dimensional stability.
  • polyamide resins are widely used in automobile parts, machine parts, and electric / electronic parts because they exhibit excellent properties as engineering plastics.
  • Polyamide resins are particularly useful as molding materials for sliding parts such as gears, cams, and bearings because they are particularly excellent in mechanical properties and frictional wear resistance.
  • polyamide 66 reinforced with glass fiber is excellent in mechanical properties and frictional wear resistance properties as disclosed in Patent Document 2, so that it can form sliding parts such as gears, cams, and bearings.
  • a polyamide 66 containing 25 to 35% by mass of glass fiber is generally used.
  • polyphenylene ether Since polyphenylene ether has a high softening point, melt molding is difficult, and there are problems such as decomposition of the resin when the molding temperature is raised. For this reason, it has been attempted to improve melt molding by blending a styrene resin, but the heat resistance and chemical resistance of the resulting molded product are lowered, and the original properties of the polyphenylene ether resin itself are impaired. There is a drawback that it is easy.
  • the first problem to be solved by the present invention is to provide a resin composition having low water absorption and excellent heat resistance and electrical characteristics.
  • polyamide 66 including glass fiber has a large dimensional change, friction coefficient, and wear amount in actual use, and may not be sufficient for use in sliding parts.
  • gears used in electric power steering require a device for adjusting the backlash (gap) when the dimensional change during actual use is large.
  • the equipment is usually required.
  • the actual use refers to a state of being placed in an atmosphere of a temperature of 23 ° C. ⁇ 2 ° C. and a relative humidity of 50% ⁇ 10% for 500 hours or more.
  • the second problem to be solved by the present invention is a composition having smaller dimensional change, coefficient of friction and wear amount in actual use than polyamide 66 containing 25 to 35% by mass of commonly used glass fiber. Is to provide.
  • the present invention is a resin composition comprising a polyamide resin (A) and a polyphenylene ether resin
  • the polyamide resin (A) includes a unit derived from a dicarboxylic acid (a) and a unit derived from a diamine (b),
  • the dicarboxylic acid (a) contains an oxalic acid compound
  • the diamine (b) includes two or more diamines selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine; It is a resin composition whose content of the said polyphenylene ether resin is less than 60 mass% with respect to the total amount of the said polyamide resin (A) and the said polyphenylene ether resin.
  • the present invention is a composition comprising a polyamide resin and glass,
  • the said polyamide resin is a composition for sliding components characterized by including the polyamide resin which uses an oxalic acid compound as a raw material.
  • the resin composition of the first invention has low water absorption and is excellent in electrical characteristics and heat resistance.
  • a test piece for obtaining dimensional stability is shown.
  • the present invention is a resin composition comprising a polyamide resin (A) and a polyphenylene ether resin
  • the polyamide resin (A) includes a unit derived from a dicarboxylic acid (a) and a unit derived from a diamine (b),
  • the dicarboxylic acid (a) contains an oxalic acid compound
  • the diamine (b) includes two or more diamines selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine; It is a resin composition whose content of the said polyphenylene ether resin is less than 60 mass% with respect to the total amount of the said polyamide resin (A) and the said polyphenylene ether resin.
  • the polyamide resin (A) used in the present invention contains a unit derived from a dicarboxylic acid (a) and a unit derived from a diamine (b), the dicarboxylic acid (a) contains an oxalic acid compound, and the diamine (b) Two or more diamines selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine are included.
  • the dicarboxylic acid (a) used in the present invention is a dicarboxylic acid compound having reactivity with an amino group and providing a unit derived from a dicarboxylic acid as a constituent unit of the polyamide resin of the present invention.
  • a oxalic acid compound that provides a unit derived from oxalic acid, which is one type, is included.
  • the dicarboxylic acid compound include compounds derived from dicarboxylic acid, and examples of the compound derived from dicarboxylic acid include esters derived from dicarboxylic acid.
  • the oxalic acid compound used in the present invention is a compound that provides a unit derived from oxalic acid, and is a compound derived from oxalic acid such as oxalic acid and / or oxalic acid diester.
  • the oxalic acid compound only needs to have reactivity with an amino group.
  • succinic acid may be thermally decomposed when oxalic acid itself is used as a raw material. Therefore, the oxalic acid compound produced at a high polymerization temperature was derived from oxalic acid. Compounds are preferred.
  • oxalic acid diester is preferable from the viewpoint of suppressing side reactions in the polycondensation reaction.
  • oxalic acid diesters examples include oxalic acid diesters of aliphatic monohydric alcohols, oxalic acid diesters of alicyclic alcohols, and oxalic acid diesters of aromatic alcohols.
  • oxalic acid diesters of aliphatic monohydric alcohols include dimethyl oxalate, diethyl oxalate, di-n- (or i-) propyl oxalate, di-n- (or i-, or t-) butyl oxalate, and the number of carbon atoms is More than 3 oxalic acid diesters of aliphatic monohydric alcohols are preferred, di-n-butyl oxalate, di-butyl oxalate and / or di-t-butyl oxalate are more preferred, and di-n-butyl oxalate is more preferred.
  • oxalic acid diesters of alicyclic alcohols examples include dicyclohexyl oxalate.
  • oxalic acid diesters of aromatic alcohols examples include diphenyl oxalate.
  • the oxalic acid diester is preferably at least one selected from the group consisting of an oxalic acid diester of an aliphatic monohydric alcohol having more than 3 carbon atoms, an oxalic acid diester of an alicyclic alcohol, and an oxalic acid diester of an aromatic alcohol.
  • N-butyl, di-butyl oxalate and / or di-t-butyl oxalate are more preferred, and di-n-butyl oxalate is more preferred.
  • oxalic acid compounds can be added alone or in combination of two or more when the polyamide resin (A) is produced.
  • dicarboxylic acid compounds other than oxalic acid compounds include aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, aromatic dicarboxylic acids, and compounds derived therefrom.
  • Aliphatic dicarboxylic acids include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid.
  • Examples include acids, azelaic acid, sebacic acid, and suberic acid.
  • Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3 -Phenylenedioxydiacetic acid, dibenzoic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, 4,4'-biphenyldicarboxylic acid Can be mentioned.
  • dicarboxylic acid compounds other than these oxalic acid compounds can be added singly or in combination of two or more when the polyamide resin (A) is produced.
  • polycarboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid can be used within the range where melt molding is possible regardless of the presence or absence of dicarboxylic acids other than oxalic acid compounds.
  • the content of units derived from dicarboxylic acids and / or polycarboxylic acids other than oxalic acid compounds contained in the polyamide resin (A) is the same as the units derived from all dicarboxylic acids and all polyvalent carboxylic acids contained in the polyamide resin (A).
  • the total amount is preferably less than 50 mol%, more preferably 20 mol% or less, further preferably 10 mol% or less, further preferably 5 mol% or less, and further preferably 1 mol% or less.
  • the diamine (b) used in the present invention contains two or more diamines selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine.
  • the diamine (b) includes 1,9-nonanediamine and 2-methyl-1,8-octanediamine (also referred to as C9 diamine), which are diamines having 9 carbon atoms. It is preferable to contain.
  • the content of units derived from 1,9-nonanediamine and 2-methyl-1,8-octanediamine contained in the polyamide resin (A), that is, the content of units derived from C9 diamine is contained in the polyamide resin (A).
  • it is preferably 1 mol% or more, more preferably 20 mol% or more, further preferably 40 mol% or more, and 60 mol% or more. Is more preferably 80 mol% or more, and more preferably 90 mol% or more.
  • the diamine (b) preferably contains 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine, and the melting point and thermal decomposition temperature (in nitrogen) of the polyamide resin (A). From the viewpoint of the balance between the 1% weight loss temperature of the polymer and other properties), 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8- contained in the polyamide resin (A)
  • the total content of octanediamine-derived units is preferably 10 mol% or more, more preferably 20 mol% or more, in the total amount of all diamine-derived units contained in the polyamide resin (A). , 40 mol% or more, more preferably 60 mol% or more, further preferably 80 mol% or more, 90 mol% More preferably a top.
  • the molar ratio of the sum of 1,9-nonanediamine and 2-methyl-1,8-octanediamine to 1,6-hexanediamine ie, the molar ratio of C9 diamine to 1,6-hexanediamine is 1,9 -Maintaining the excellent properties of polyamide (hereinafter, sometimes referred to as polyamide 92) formed by polymerizing nonanediamine, 2-methyl-1,8-octanediamine and oxalic acid compound, and in particular, melt moldability and low water absorption. From the viewpoint of increasing the melting point of the polyamide resin (A) without impairing it, and particularly improving the mechanical properties, it is preferably 1:99 to 99: 1.
  • the molar ratio of C9 diamine to 1,6-hexanediamine is more preferably 5.1: 94.9 to 99: 1, still more preferably 10:90 to 99: 1, and the melting point of the polyamide resin (A) From the viewpoint of facilitating polymerization and molding process (melt moldability), more preferably 20:80 to 99: 1, still more preferably 30:70 to 98: 2, and polyamide resin ( From the viewpoint of making the melting point of A) 280 ° C. or less and facilitating melt moldability, it is more preferably 30:70 to 90:10, further preferably 30:70 to 70:30.
  • the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine of C9 diamine, which is a diamine having 9 carbon atoms, is 1:99 to from the viewpoint of increasing the molecular weight of the polyamide resin (A).
  • 99: 1 is preferable, 5:95 to 95: 5 is more preferable, 5:95 to 40:60 or 60:40 to 95: 5 is further preferable, and 5:95 to 30 is preferable.
  • 70 or 70:30 to 90:10 is more preferable.
  • diamines can be contained as long as the effects of the present invention are not impaired. Specifically, as other diamines other than 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine, ethylenediamine, propylenediamine, 1,4-butanediamine, 1, 8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4 -Aliphatic diamines such as trimethyl-1,6-hexanediamine and 5-methyl-1,9-nonanediamine, cycloaliphatic diamines such as cyclohexanediamine, methylcyclohexanediamine and isophoronediamine, p-phenylenediamine and m-phenylenediamine , P-xylenediamine, m-xylenediamine, 4,4
  • the content of other diamine-derived units is not particularly limited as long as it does not impair the effects of the present invention, but is preferably less than 50 mol% in all diamine-derived units of the polyamide resin (A). More preferably, it is 20 mol% or less, More preferably, it is 10 mol% or less, More preferably, it is 5 mol% or less, More preferably, it is 1 mol% or less.
  • the polyamide resin (A) used in the present invention can be produced using any method known as a method for producing polyamide.
  • the diamine (b) and the dicarboxylic acid (a) are produced by polycondensation reaction batchwise or continuously, and more preferably, the diamine (b) and the dicarboxylic acid (a ) Is produced by a two-stage polymerization method comprising a pre-polycondensation step and a post-polycondensation step, or a pressure polymerization method described in WO2008-072754.
  • Two-stage polymerization method (i) Pre-polycondensation step: First, the inside of the reactor is purged with nitrogen, and then the diamine (b) and the dicarboxylic acid (a) are mixed.
  • a solvent in which both the diamine (b) and the dicarboxylic acid (a) are soluble may be used.
  • a solvent in which both the diamine and the oxalic acid compound are soluble toluene, xylene, trichlorobenzene, phenol, trifluoroethanol and the like can be used, and particularly, toluene can be preferably used.
  • oxalic acid diester is added with respect to this.
  • the charging ratio of the diamine (b) and the dicarboxylic acid (a) is 0.8 to 1.5 (molar ratio) in terms of high molecular weight in terms of the molar amount of the dicarboxylic acid (a) / the molar amount of the diamine (b). ), Preferably 0.91 to 1.1 (molar ratio), more preferably 0.99 to 1.01 (molar ratio).
  • the temperature inside the reactor charged in this way is increased under normal pressure while stirring and / or nitrogen bubbling.
  • the reaction temperature is preferably controlled so that the final temperature reaches 80 to 150 ° C., preferably 100 to 140 ° C.
  • the reaction time at the final temperature is preferably 3 to 6 hours.
  • (Ii) Post-polycondensation step In order to further increase the molecular weight, the polymer produced in the pre-polycondensation step is gradually heated in the reactor under normal pressure. In the temperature raising process, the final reached temperature of the pre-polycondensation step, that is, preferably 80 to 150 ° C., is finally preferably 295 to 350 ° C., more preferably 298 to 345 ° C., and more preferably 298 ° C. A temperature range of 340 ° C. or lower is reached.
  • polymerization can be performed under reduced pressure as necessary.
  • the preferable final pressure in the case of carrying out the vacuum polymerization is 13.3 Pa or more and less than 0.1 MPa.
  • (3-2) Pressurized polymerization method First, the diamine (b) is placed in a pressure-resistant vessel and purged with nitrogen, and then heated to the reaction temperature under a sealing pressure. Thereafter, while maintaining the sealed pressure state at the reaction temperature, the dicarboxylic acid (a) is injected into the pressure resistant vessel to start the polycondensation reaction.
  • the reaction temperature is not particularly limited as long as the polyamide produced by the reaction of diamine (b) and dicarboxylic acid (a) can maintain a slurry or solution state and does not thermally decompose.
  • the charge ratio of the diamine (b) and the dicarboxylic acid (a) is 0.8 to 1.5 (molar ratio), preferably 0.91 in terms of the molar amount of the dicarboxylic acid (a) / the molar amount of the diamine (b). To 1.1 (molar ratio), more preferably 0.99 to 1.01 (molar ratio).
  • the temperature is raised to a temperature not lower than the melting point of the polyamide resin (A) and not thermally decomposing while keeping the inside of the pressure vessel in a sealed pressure state.
  • a temperature is raised to 250 to 350 ° C., preferably 255 to 340 ° C., more preferably 260 to 335 ° C.
  • the pressure in the pressure-resistant container until reaching the predetermined temperature is adjusted to approximately 0.1 MPaG, preferably 1 MPaG to 0.2 MPaG, from the saturated vapor pressure of the alcohol to be generated.
  • the preferable final pressure in the case of carrying out the vacuum polymerization is 13.3 Pa or more and less than 0.1 MPa.
  • Polyphenylene ether resin Specific examples of the polyphenylene ether resin used in the present invention include poly-1,4-phenylene ether, poly-2,6-dimethyl-1,4-phenylene ether, poly-2,6-diethyl-1,4-phenylene.
  • poly-2,6-dipropyl-1,4-phenylene ether poly-2-methyl-6-allyl-1,4-phenylene ether, poly-2,6-dimethoxy-1,4-phenylene ether, poly -2-Methyl-6-ethyl-1,4-phenylene ether, poly-2,6-dichloro-1,4-phenylene ether, poly-2,6-dichloromethyl-1,4-phenylene ether, poly-2 , 3,6-trimethyl-1,4-phenylene ether, poly-2,3,5,6-tetrafluoro-1,4 phenylene ether, poly-2,3 Diphenyl-1,4-phenylene ether, poly-2,3-ditolyl-1,4-phenylene ether, copolymer of 2,6-dimethylphenol and other phenols and the like. Of these, poly-2,6-dimethyl-1,4-phenylene ether is preferred.
  • the polyphenylene ether resin used in the present invention may be a modified polyphenylene ether or a mixture of an unmodified polyphenylene ether and a modified polyphenylene ether. From the viewpoint of affinity with the polyamide resin (A), a modified polyphenylene ether is preferable.
  • the production method of polyphenylene ether may be any known method and is not particularly limited.
  • the modified polyphenylene ether resin has a carboxylic acid group, a carboxylic acid anhydride group, a carboxylic acid ester group, a carboxylic acid metal base, a carboxylic acid imide group, and a carboxylic acid amide group from the viewpoint of affinity with the polyamide resin (A). And / or an epoxy group, and more preferably at least one functional group selected from the group consisting of a carboxyl group, an acid anhydride group, an amino group, and an epoxy group.
  • the intrinsic viscosity of the polyphenylene ether resin used in the present invention is not particularly limited, but the intrinsic viscosity measured in chloroform at 30 ° C. is preferably 0.01 to 5 dl / g, preferably 0.1 to 4.5 dl. / G is more preferable.
  • the content of the polyphenylene ether resin is less than 60% by mass, preferably 56% by mass, based on the total amount of the polyamide resin (A) and the polyphenylene ether resin, from the viewpoints of heat resistance and moldability. % Or less, and more preferably 51% by mass or less.
  • the total content of the polyamide resin (A) and the polyphenylene ether resin is preferably 50% by mass or more, and 70% by mass in the total amount of the resin composition from the viewpoint of maintaining the effects of the respective resins and the effects of the present invention. % Or more is more preferable, and 90 mass% or more is more preferable.
  • the resin composition of the present invention may contain other polymers as long as the effects of the present invention are not impaired.
  • other polymers include other polyamides such as polyoxamides other than polyamide resin (A), aromatic polyamides, aliphatic polyamides, alicyclic polyamides, and thermoplastic polymers other than polyamides and polyphenylene ethers.
  • the content of the other polymer is not particularly limited as long as it does not impair the effects of the present invention, but in the resin composition of the present invention, the total is preferably less than 50% by mass, more preferably 30% by mass or less. Preferably, 10 mass% or less is more preferable.
  • the resin composition of the present invention, the polyamide resin (A) and polyphenylene ether used in the present invention can contain other additives as long as the effects of the present invention are not impaired.
  • additives for example, pigments, dyes, colorants, heat-resistant agents, antioxidants, weathering agents, ultraviolet absorbers, light stabilizers, compatibilizers, lubricants, crystal nucleating materials, crystallization accelerators, mold release agents.
  • examples thereof include an antistatic agent, a plasticizer, an antistatic agent, a flame retardant, glass fiber, a lubricant, a filler, and a reinforcing fiber.
  • These additives can be contained alone or in combination of two or more.
  • the content is not particularly limited as long as it does not impair the effects of the present invention, but in the resin composition of the present invention, the total content is preferably 50% by mass or less, more preferably 30% by mass or less. A mass% or less is more preferable.
  • a copper-containing compound is preferable, and among them, copper halides such as copper iodide and copper bromide are preferable.
  • the content of the copper-containing compound is preferably 10 to 1000 ppm in the resin composition of the present invention.
  • an alkyl halogen compound is further added as a secondary antioxidant.
  • antioxidants examples include phenolic antioxidants, phosphorus antioxidants, and sulfur antioxidants, and one or more of them can be contained in the resin composition of the present invention.
  • phenolic antioxidants include triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol bis [3- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate], pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, N, N′-hexamethylenebis (3,5- Di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris (3,5-di-t- Til-4-hydroxybenzyl) benzene, 3,9-bis [2- ⁇ 3-
  • Examples of the phosphorus-based antioxidant include tris (2,4-di-t-butylphenyl) phosphite, 2-[[2,4,8,10-tetrakis (1,1-dimethylether) dibenzo [d, f] [1,3,2] dioxaphosphine 6-yl] oxy] -N, N-bis [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [ d, f] [1,3,2] dioxaphosphine 6-yl] oxy] -ethyl] ethanamine, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, etc.
  • Sulfur-based antioxidants include 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], tetrakis [methylene-3- (dodecylthio) propionate] methane 1 type, or 2 or more types can be contained in the resin composition of the present invention.
  • Compatibilizers include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, citric acid, fumaric acid, crotonic acid, methylmaleic acid, methyl fumaric acid, mesaconic acid, citraconic acid, glutaconic acid, cis- 4-cyclohexene-1,2-dicarboxylic acid, endobicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid and carboxylic acid metal salts thereof, monomethyl maleate, monomethyl itaconate, methyl acrylate, Ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, aminoethyl methacrylate, dimethyl maleate, dimethyl itaconate, maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- [2.2.1] -5-heptene-2,3-dicar
  • the method for adding the other polymer and the additive is not particularly limited as long as each of them can be dispersed in the polyamide-based resin, and at any point that does not impair the effect, the polyamide resin ( A) can be added.
  • other polymers and additives can be added to the prepolymerization step and / or postpolymerization step of the polyamide resin (A), and can be added to the polyphenylene ether (B). It can also be added before, during and after production of the resin composition of the invention.
  • the production method of the resin composition of the present invention is not particularly limited as long as it contains the polyamide resin (A) and the polyphenylene ether resin.
  • Examples thereof include a production method by melt kneading such as a single-screw extruder, a twin-screw extruder, a multi-screw extruder, and a kneader.
  • a production method by melt kneading is preferred, and among them, production using a twin screw extruder from the viewpoint of fluidity during kneading of the resin composition of the present invention. Is more preferable.
  • the resin composition of the present invention can be molded into various molded products by known molding methods such as injection molding, extrusion molding, blow molding, vacuum molding, and press molding. It is particularly useful in the fields of injection molding and blow molding.
  • the resin composition of the present invention has a wide moldable temperature range and has a low dielectric constant and dielectric loss tangent, it is suitably used for, for example, antennas, ETCs, wireless LANs and mobile phones used in high frequency ranges. it can.
  • the resin composition of the present invention has excellent properties inherently possessed by the polyamide resin and polyphenylene ether in a well-balanced manner and has excellent heat resistance, it can be used for automobile parts, industrial materials, industrial materials, machinery. It can be usefully used for parts, office equipment parts, household goods, sheets, films, fibers and the like.
  • composition of this invention is a composition containing the polyamide resin and glass fiber which used the specific raw material.
  • the polyamide resin used for this invention contains the polyamide resin which uses an oxalic acid compound as a raw material. From the viewpoint of dimensional change during actual use of the composition, the amount of wear, and the reduction of the friction coefficient, the polyamide resin made from oxalic acid compound is preferably 10% by mass or more, more preferably 50% by mass or more, based on the total amount of the polyamide resin. 99 mass% or more is more preferable.
  • the oxalic acid compound is a compound that provides a unit derived from oxalic acid, and is a compound derived from oxalic acid such as oxalic acid and / or oxalic acid diester.
  • the oxalic acid compound only needs to have reactivity with an amino group.
  • oxalic acid may be thermally decomposed. Derived compounds are preferred.
  • oxalic acid diester is preferable from the viewpoint of suppressing side reactions in the polycondensation reaction.
  • oxalic acid diesters examples include oxalic acid diesters of aliphatic monohydric alcohols, oxalic acid diesters of alicyclic alcohols, and oxalic acid diesters of aromatic alcohols.
  • oxalic acid diesters of aliphatic monohydric alcohols include dimethyl oxalate, diethyl oxalate, di-n- (or i-) propyl oxalate, di-n- (or i-, or t-) butyl oxalate, and the number of carbon atoms is More than 3 oxalic acid diesters of aliphatic monohydric alcohols are preferred, di-n-butyl oxalate, di-butyl oxalate and / or di-t-butyl oxalate are more preferred, and di-n-butyl oxalate is more preferred.
  • oxalic acid diesters of alicyclic alcohols examples include dicyclohexyl oxalate.
  • oxalic acid diesters of aromatic alcohols examples include diphenyl oxalate.
  • the oxalic acid diester is preferably at least one selected from the group consisting of an oxalic acid diester of an aliphatic monohydric alcohol having more than 3 carbon atoms, an oxalic acid diester of an alicyclic alcohol, and an oxalic acid diester of an aromatic alcohol.
  • N-butyl, di-butyl oxalate and / or di-t-butyl oxalate are more preferred, and di-n-butyl oxalate is more preferred.
  • oxalic acid compounds can be added alone or in combination of two or more during the production of a polyamide resin using the oxalic acid compound as a raw material.
  • dicarboxylic acid compounds other than oxalic acid compounds can be used as raw materials for the polyamide resin using oxalic acid compounds as raw materials.
  • dicarboxylic acid compounds other than oxalic acid compounds include aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, aromatic dicarboxylic acids, and compounds derived therefrom.
  • Aliphatic dicarboxylic acids include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid.
  • Examples include acids, azelaic acid, sebacic acid, and suberic acid.
  • Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3 -Phenylenedioxydiacetic acid, dibenzoic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, 4,4'-biphenyldicarboxylic acid Can be mentioned.
  • dicarboxylic acid compounds other than these oxalic acid compounds can be added singly or in combination of two or more when the polyamide resin is produced.
  • polycarboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid can be used within the range where melt molding is possible regardless of the presence or absence of dicarboxylic acids other than oxalic acid compounds.
  • the content of units derived from dicarboxylic acid and / or polyvalent carboxylic acid other than oxalic acid compound contained in polyamide resin using oxalic acid compound as raw material is the total dicarboxylic acid and total polyvalent content contained in polyamide resin using oxalic acid compound as raw material.
  • the total amount of carboxylic acid-derived units is preferably less than 50 mol%, more preferably 20 mol% or less, further preferably 10 mol% or less, further preferably 5 mol% or less, and further preferably 1 mol% or less. preferable.
  • the diamine used in the polyamide resin made from the oxalic acid compound is not particularly limited, but ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 2-methyl-1,5-pentane.
  • Diamine 3-methyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine, 1,10-decanediamine, 5-methyl-1, Aliphatic diamines such as 9-nonanediamine, 1,12-dodecanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, cyclohexanediamine, methyl Cycloaliphatic diamine, isophorone diamine and other alicyclic diamines, p-phenylene diamine, m And aromatic diamines such as phenylenediamine, p-xylenediamine, m-xylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 4,4′-diaminodiphenylether.
  • the melting point and thermal decomposition temperature of the obtained polyamide resin is composed of 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine and 1,10-decanediamine. At least one selected from the group is preferred, and 1,9-nonanediamine and 2-methyl-1,8-octanediamine are more preferred.
  • the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is preferably 1:99 to 99: 1 from the viewpoint of increasing the molecular weight of the polyamide resin using a oxalic acid compound as a raw material, More preferably, it is 5:95 to 95: 5. Furthermore, from the viewpoint of the melting point of the obtained polyamide resin, the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 5:95 to 40:60 or 60:40 to 95: 5. It is preferably 5:95 to 30:70 or more preferably 70:30 to 90:10.
  • the content of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is preferably 50 mol% or more, more preferably in the units derived from all diamines of the polyamide resin starting from the oxalic acid compound. Is 80 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more, and more preferably 99 mol% or more.
  • polyamide resins made from oxalic acid compounds include homopolymers such as polyamide 92, polyamide 102, polyamide 122, and polyamide 62, and polyamide 92/62, polyamide 102/62, and polyamide 122/62.
  • a copolymer is mentioned. These can use 1 type (s) or 2 or more types. Among these, at least one selected from the group consisting of polyamide 92, polyamide 102, polyamide 92/62, and polyamide 102/62 is preferable.
  • Polyamide resin using oxalic acid compound as a raw material has a relative viscosity of 2.3 or more and 6.0 in 96 mass% sulfuric acid in 1 mass% of polyamide resin at a temperature of 25 ° C. according to JIS K-6920.
  • the following is preferable from the viewpoint of fluidity during molding and toughness of the molded product, more preferably 2.5 or more and 5.0 or less, and further preferably 2.7 or more and 4.0 or less.
  • the polyamide resin using oxalic acid compound used as a raw material for the present invention can be manufactured using any method known as a method for manufacturing polyamide resin. However, from the viewpoint of increasing the molecular weight and productivity, it is preferable to carry out a batch-wise or continuous polycondensation reaction of a dicarboxylic compound containing a diamine and an oxalic acid compound, more preferably a diamine and an oxalic acid compound. Is produced by a two-stage polymerization method comprising a pre-polycondensation step and a post-polycondensation step, or a pressure polymerization method described in WO2008-072754.
  • the charging ratio of the dicarboxylic compound containing the diamine and the oxalic acid compound is 0.8 to 1.5 (molar ratio) in terms of the high molecular weight in terms of the molar amount of the dicarboxylic acid (a) / the molar amount of the diamine (b).
  • the ratio is preferably 0.91 to 1.1 (molar ratio), more preferably 0.99 to 1.01 (molar ratio).
  • the temperature inside the reactor charged in this way is increased under normal pressure while stirring and / or nitrogen bubbling.
  • the reaction temperature is preferably controlled so that the final temperature reaches 80 to 150 ° C., preferably 100 to 140 ° C.
  • the reaction time at the final temperature reached is 3-6 hours.
  • (Ii) Post-polycondensation step In order to further increase the molecular weight, the polymer produced in the pre-polycondensation step is gradually heated in the reactor under normal pressure. In the temperature raising process, the final ultimate temperature of the pre-polycondensation step, that is, preferably 80 to 150 ° C., is finally preferably 150 to 350 ° C., more preferably 180 to 330 ° C., and further preferably 200 ° C. A temperature range of 320 ° C. or lower is reached.
  • polymerization can be performed under reduced pressure as necessary.
  • the preferable final pressure in the case of carrying out the vacuum polymerization is 13.3 Pa or more and less than 0.1 MPa.
  • (2-2) Pressurized polymerization method First, diamine is placed in a pressure-resistant vessel and purged with nitrogen, and then heated to the reaction temperature under a sealing pressure. Thereafter, the dicarboxylic compound containing the oxalic acid compound is injected into the pressure vessel while maintaining the sealed pressure state at the reaction temperature, and the polycondensation reaction is started.
  • the reaction temperature is not particularly limited as long as the polyamide resin produced by the reaction of the dicarboxylic compound containing diamine and oxalic acid compound can maintain a slurry or solution state and does not thermally decompose.
  • the charging ratio of the dicarboxylic compound containing the diamine and the oxalic acid compound is 0.8 to 1.5 (molar ratio), preferably 0.91 to 1.1, in terms of the molar amount of the dicarboxylic compound containing the oxalic acid compound / the molar amount of the diamine. (Molar ratio), more preferably 0.99 to 1.01 (molar ratio).
  • the temperature is raised to a temperature not lower than the melting point of the polyamide resin and not pyrolyzed.
  • a temperature not lower than the melting point of the polyamide resin since the melting point is 245 to 300 ° C., the temperature is raised to 250 to 350 ° C., preferably 255 to 340 ° C., more preferably 260 to 335 ° C.
  • the pressure in the pressure-resistant container until reaching the predetermined temperature is adjusted to approximately 0.1 MPaG, preferably 1 MPaG to 0.2 MPaG, from the saturated vapor pressure of the alcohol to be generated.
  • the preferable final pressure in the case of carrying out the vacuum polymerization is 13.3 Pa or more and less than 0.1 MPa.
  • Polyamide resin other than polyamide resin using oxalic acid compound as raw material includes, for example, polycaprolactam (polyamide 6), polyundecanoic acid lactam (polyamide 11), and polylauryl.
  • Glass fiber Although the glass fiber used for this invention is not specifically limited, From a viewpoint of improving the adhesiveness of glass fiber and resin, it is preferable that it is converged with the convergence material.
  • the converging material is not particularly limited, but is preferably a urethane resin and / or an acrylic resin from the viewpoint of compatibility with the polyamide resin. In the case of other convergent materials, the compatibility with the polyamide resin is not sufficient, and the physical properties and the like may decrease.
  • the glass fiber used in the present invention is not particularly limited, but when the average fiber diameter is 3 ⁇ m or more and 13 ⁇ m or less and outside the range of 3 ⁇ m or more and 13 ⁇ m or less, the dimensional stability and mechanical properties of the molded article of the present invention are deteriorated. . From the viewpoint of further improving the dimensional stability, mechanical properties, and sliding properties of the molded article of the present invention, 5 ⁇ m or more and 12 ⁇ m or less is preferable, and 6 ⁇ m or more and 11 ⁇ m or less is more preferable.
  • the average fiber diameter of the glass fiber can be measured according to JIS R3420.
  • the glass fiber is preferably surface-treated with a surface treatment agent from the viewpoint of adhesiveness with the polyamide resin.
  • a surface treatment agent examples include silane compounds, chromium compounds, titanium compounds, and the like, and surface treatment agents of silane compounds and / or titanium compounds are preferable.
  • an aminosilane coupling agent excellent in adhesion to the sizing agent is preferable.
  • Surface treatment agents for titanium compounds include isopropyl triisostearoyl titanate, isopropyl tri (N-aminoethyl) titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraisopropyl titanate, tetraisopropyl titanate, butyl titanate, tetraoctyl bis (ditridecyl phosphite) titanate, isopropyl trioctanoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl tri (dioctyl phosphate) titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl dimethacrylisostearoyl titanate Tetra (2
  • composition of this invention contains the polyamide resin which uses an oxalic acid compound as a raw material, and a specific glass fiber.
  • the composition of the present invention includes 10% by mass or more and 80% by mass or less of glass fiber, and from the viewpoint of further improving physical properties and slidability,
  • the glass fiber is preferably contained in an amount of 15% by mass or more and 60% by mass or less, and more preferably 20% by mass or more and 50% by mass or less.
  • the composition of the present invention preferably contains 20% by mass to 90% by mass of the polyamide resin with respect to the total amount of the composition.
  • the polyamide resin is 40% by mass to 85% by mass. % Or less, more preferably 50% by mass or more and 80% by mass or less.
  • the composition of the present invention preferably contains cuprous iodide, potassium iodide and melamine, and the total amount of cuprous iodide, potassium iodide and melamine is 0.1% by mass or more.
  • the content is preferably 2.0% by mass or less, more preferably 0.2% by mass or more and 1.0% by mass or less, and further preferably 0.25% by mass or more and 0.38% by mass or less.
  • the mass ratio of cuprous iodide, potassium iodide and melamine is preferably 2 to 4:40 to 60: 1 to 3. It is more preferably 5 to 3.5: 45 to 55: 1.5 to 2.5.
  • the composition of the present invention preferably contains a fatty acid metal from the viewpoint of moldability, and preferably contains 100 ppm or more and 300 ppm or less of the fatty acid metal with respect to the total amount of the composition.
  • Examples of the fatty acid metal include zinc stearate, calcium stearate, barium stearate, aluminum stearate, magnesium stearate, lithium stearate, calcium laurate, zinc linoleate, calcium ricinoleate, and zinc 2-ethylhexoate. From the viewpoint of properties, at least one selected from the group consisting of lithium stearate, calcium stearate and sodium stearate is preferred.
  • composition of the present invention various additives, modifiers, reinforcing materials such as heat stabilizers, antioxidants, UV absorption, etc., which are usually blended within the range that does not impair the properties of the composition of the present invention.
  • the composition of the present invention can contain a thermoplastic resin other than the polyamide resin within a range not impairing the properties of the composition of the present invention.
  • a thermoplastic resin other than the polyamide resin a high-density polyethylene (HDPE) can be used.
  • HDPE high-density polyethylene
  • MDPE Medium density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • UHMWPE ultra high molecular weight polyethylene
  • PP polypropylene
  • EPR ethylene / propylene copolymer
  • EBR butene copolymer
  • acrylic acid methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, mesaconic acid, citraconic acid, glutaconic acid, cis-4-cyclohexene-1 , 2-dicarboxylic acid, endobicyclo- [2.2.1] -5-heptene
  • Carboxyl groups such as 2,3-dicarboxylic acid and metal salts thereof (Na, Zn, K, Ca, Mg), maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- [2.2.1] -5 -Compounds containing functional groups such as epoxy groups such
  • the production method of the composition of the present invention is not particularly limited, and usually the following production methods can be mentioned.
  • a method using a mixer such as a cylindrical mixer, a method using a twin screw extruder, a single screw extruder, a multi screw extruder, a Banbury mixer, a roll mixer, a kneader or the like, a combination of a mixer and an extruder
  • the manufacturing method etc. can be mention
  • composition of the present invention is preferably used for slidable parts because it has low dimensional stability, coefficient of friction, and wear during actual use.
  • Examples of the method for forming the composition of the present invention into a molded product include injection molding and extrusion molding. Among these, the method by injection molding is preferable.
  • an injection molded product is preferable.
  • sliding parts are preferable, and among the sliding parts, one type selected from the group consisting of gears, pulleys, cams and bearings is preferable.
  • Molding and measurement were performed by the following methods.
  • Relative viscosity ( ⁇ r) The relative viscosity was measured at 25 ° C. with an Oswald viscometer using a solution in which the solvent was 96% by mass sulfuric acid and the polyamide resin concentration was 1.0 g / dl.
  • test piece The obtained resin composition was put into an injection molding machine, and a test piece was prepared at a resin temperature of 300 ° C and a mold temperature of 95 ° C.
  • the dimensions of the test piece were 128 mm ⁇ 12.7 mm ⁇ 6.2 mm for the test specimen for measuring the deflection temperature under load, 100 mm ⁇ 30 mm ⁇ 1 mm for the test piece for measuring water absorption, and 80 mm ⁇ 80 mm ⁇ for the test piece for electrical characteristics. 3 mm.
  • the string-like PA92 was immediately cooled with water and pelletized by a pelletizer.
  • the relative viscosity was 3.13.
  • the content of units derived from the succinic acid compound is 100 mol% in the total amount of units derived from all dicarboxylic acids contained in PA92, and 1 in the total amount of units derived from all diamine (b),
  • the total content of units derived from 9-nonanediamine and 2-methyl-1,8-octanediamine is 100 mol%
  • the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 83:17 to 86:14.
  • the temperature inside the system was increased. After the internal temperature was raised to 170 ° C. over about 1 hour, 30.2 kg (149 mol) of dibutyl oxalate of dicarboxylic acid (a) was supplied into the reaction vessel at a flow rate of 1.49 L / min with a pump, and the temperature was raised at the same time.
  • the internal pressure in the pressure vessel immediately after the supply increased to 0.35 MPaG by butanol generated by the polycondensation reaction, and the temperature of the polycondensate increased to about 190 ° C. Thereafter, the temperature was raised to 250 ° C. Meanwhile, the internal pressure was adjusted to 0.5 MPaG while the generated butanol was extracted from the pressure release port.
  • the string-like PA92 / 62 was immediately cooled with water and pelletized by a pelletizer.
  • the relative viscosity was 2.78.
  • the content of the unit derived from oxalic acid compound is 100 mol%, and in the total amount of units derived from all diamine (b)
  • the total content of units derived from 1,9-nonanediamine, 2-methyl-1,8-octanediamine, and 1,6-hexamethylenediamine is 100 mol%, and 1,9-nonanediamine,
  • the weight ratio of -methyl-1,8-octanediamine and 1,6-hexamethylenediamine is 50: 8.8: 41.2 to 52: 9.2: 38.8.
  • the polyphenylene ether resin is a polyphenylene ether modified with fumaric acid, Zarek (registered trademark) CX-1 (hereinafter also referred to as fumaric acid-modified PPE) manufactured by Idemitsu Kosan Co., Ltd. Was used.
  • Example 1 70 mass% of PA92 and 30 mass% of fumaric acid-modified PPE are fed to a twin screw extruder, melt-kneaded under conditions of a cylinder temperature of 300 ° C., extruded as a strand, cooled and solidified, and then put into a pelletizer. To obtain a pellet-shaped resin composition. The pellet of the obtained resin composition was dried. Test pieces of dried pellets were prepared, and the deflection temperature under load, impact strength, saturated water absorption, dielectric constant, and dielectric loss tangent were measured. The results are shown in Table 1.
  • Example 2 The procedure was the same as Example 1 except that PA92 was changed to 50% by mass and fumaric acid-modified PPE was changed to 50% by mass. The results are shown in Table 1.
  • Example 3 Example 1 was repeated except that PA92 / 62 was used instead of PA92. The results are shown in Table 1.
  • Example 4 Example 2 was repeated except that PA92 / 62 was used instead of PA92. The results are shown in Table 1. The results are shown in Table 1.
  • Example 4 The same procedure as in Example 1 was carried out except that polyamide 66 manufactured by Ube Industries, Ltd. instead of PA92 and 2020B (hereinafter also referred to as PA66) was used and kneaded at a cylinder temperature of 290 ° C. The results are shown in Table 1.
  • the limit PV value of the specimen is a ring-on-plate method, the test speed is 500 mm / s, the test load is multiplied by 20 kgf (196 N) at the start of the test, and the load is increased by 20 kgf (196 N) every 10 minutes. And measured. The load immediately before the load at which the test piece was melted was defined as the limit PV value.
  • the internal pressure was adjusted to 1.0 MPaG while extracting the generated butanol from the pressure release port.
  • the temperature of the polycondensate reached 235 ° C.
  • butanol was extracted from the pressure relief port, and the internal pressure was brought to normal pressure.
  • the temperature was raised while flowing nitrogen gas at 1.5 L / min, the temperature of the polycondensate was adjusted to 260 ° C., and the reaction was continued at 260 ° C. until the torque value reached a constant value. Thereafter, the stirring is stopped and the inside of the system is pressurized to 1 MPaG with nitrogen and allowed to stand, and then released to an internal pressure of 0.5 MPaG.
  • Polyamide 92 (hereinafter sometimes referred to as PA92) is drawn from the lower outlet of the pressure vessel. Extracted into a shape. The string-like PA92 was immediately cooled with water and pelletized by a pelletizer. The relative viscosity was 3.13.
  • the content of units derived from the succinic acid compound is 100 mol% in the total amount of units derived from all dicarboxylic acids contained in PA92, and 1 in the total amount of units derived from all diamine (b),
  • the total content of units derived from 9-nonanediamine and 2-methyl-1,8-octanediamine is 100 mol%, and the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 83:17 to 86:14.
  • Polyamide resins other than polyamide resins made from oxalic acid compounds Polyamide 66
  • Polyamide 66 PA66-1) (hereinafter sometimes referred to as (PA66-1))
  • PA66-1 Polyamide 66 having a relative viscosity of 2.6 to 2.8 measured in 96 mass% sulfuric acid in a polyamide concentration of 1 mass% and a temperature of 25 ° C. according to JIS K-6920.
  • Polyamide 66 (PA66-2) (hereinafter sometimes referred to as (PA66-2))
  • Examples 1 and 2 Comparative Examples 1 and 2
  • the polyamide resin and glass fiber described in Table 2 were kneaded by a 44 mm ⁇ vented twin-screw extruder set at a barrel temperature of 260 ° C. at the ratio described in Table 2, pelletized by a pelletizer, and the composition pellets were Obtained.
  • the pellets of the obtained composition were dried at 110 ° C. and 10 Torr (1330 Pa) for 24 hours, and then injection molded at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. to obtain various test pieces.
  • the obtained test piece was evaluated by the above evaluation method. The results are shown in Table 2.
  • composition containing polyamide resin and glass fiber made from an oxalic acid compound is excellent in dimensional stability and wear resistance.
  • the resin composition containing the polyamide resin and the polyphenylene ether resin of the first invention has low water absorption, excellent heat resistance and molding processability, and low dielectric constant and dielectric loss tangent. .
  • the resin composition of the present invention can be used in a wide range of fields such as electric / electronic parts, OA parts, vehicle parts, and machine parts.
  • the composition of 2nd invention can be used conveniently as various sliding members, such as a motor vehicle, an electric / electronic, an industrial material, an industrial material, daily necessities, and household goods.

Abstract

A first invention is a resin composition that contains a polyamide resin (A) and a poly(phenylene ether) resin. The polyamide resin (A) contains a unit derived from a dicarboxylic acid (a) and a unit derived from a diamine (b), the dicarboxylic acid (a) contains an oxalic acid compound, the diamine (b) contains two or more diamines selected from among the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine, and the content of the poly(phenylene ether) resin is less than 60 mass % relative to the total quantity of the polyamide resin (A) and the poly(phenylene ether) resin. A second invention is a composition for a sliding component, and the composition contains a polyamide resin and glass fibers, and is characterized in that the polyamide resin contains a polyamide resin obtained by using an oxalic acid compound as a raw material.

Description

樹脂組成物及びポリアミド樹脂とガラス繊維とを含む組成物Resin composition and composition containing polyamide resin and glass fiber
 本発明は、ポリアミド樹脂及びポリフェニレンエーテル樹脂を含有する樹脂組成物に関する。本発明は、ポリアミド樹脂とガラス繊維とを含む組成物に関する。 The present invention relates to a resin composition containing a polyamide resin and a polyphenylene ether resin. The present invention relates to a composition comprising a polyamide resin and glass fibers.
 従来から、ナイロン6及びナイロン66等に代表されるポリアミド樹脂は、優れた特性と溶融成形の容易さから、衣料用若しくは産業資材用繊維、又は汎用のエンジニアリングプラスチックとして広く用いられている。 Conventionally, polyamide resins typified by nylon 6 and nylon 66 have been widely used as textiles for clothing or industrial materials or general-purpose engineering plastics because of their excellent properties and ease of melt molding.
 一方で、耐熱性不足や吸水による物性変化、酸、高温のアルコール又は熱水中での劣化などの問題点も指摘されており、より高い耐熱性、耐薬品性、耐熱水性を有し、かつ、より吸水性が低いポリアミド樹脂への要求が高まっている。 On the other hand, problems such as insufficient heat resistance, changes in physical properties due to water absorption, deterioration in acid, high-temperature alcohol or hot water, etc. have been pointed out, having higher heat resistance, chemical resistance, hot water resistance, and There is an increasing demand for polyamide resins with lower water absorption.
 ジカルボン酸成分に蓚酸を用いるポリアミド樹脂はポリオキサミド樹脂と呼ばれ、同じアミノ基濃度の他のポリアミド樹脂と比較して融点が高いこと、吸水率が低いことが知られている(特許文献1)。 A polyamide resin using oxalic acid as a dicarboxylic acid component is called a polyoxamide resin, and is known to have a higher melting point and lower water absorption than other polyamide resins having the same amino group concentration (Patent Document 1).
 また、ポリフェニレンエーテルは、機械的性質や耐熱性が優れ、寸法安定性にも優れるため、幅広い用途で使用されている。 In addition, polyphenylene ether is used in a wide range of applications because of its excellent mechanical properties and heat resistance and excellent dimensional stability.
 他方、ポリアミド樹脂はエンジニアリングプラスチックとして優れた特性を示すことから、自動車部品、機械部品、電気電子部品に広く利用されている。ポリアミド樹脂は特に機械的特性や耐摩擦磨耗特性に優れているため、ギヤ、カム、軸受などの摺動部品の成形材料としても広く利用されている。 On the other hand, polyamide resins are widely used in automobile parts, machine parts, and electric / electronic parts because they exhibit excellent properties as engineering plastics. Polyamide resins are particularly useful as molding materials for sliding parts such as gears, cams, and bearings because they are particularly excellent in mechanical properties and frictional wear resistance.
 その中でもガラス繊維で強化されたポリアミド66は、特許文献2にも開示されているように、機械的特性や耐摩擦磨耗特性に優れているため、ギヤ、カム、軸受などの摺動部品の成形材料に使用され、一般的に、ガラス繊維25~35質量%を含むポリアミド66が使用されている。 Among them, polyamide 66 reinforced with glass fiber is excellent in mechanical properties and frictional wear resistance properties as disclosed in Patent Document 2, so that it can form sliding parts such as gears, cams, and bearings. A polyamide 66 containing 25 to 35% by mass of glass fiber is generally used.
日本国特許第4487687号Japanese Patent No. 4487687 WO/2006/054774WO / 2006/054774 WO/2008/072754WO / 2008/072754
 ポリフェニレンエーテルは軟化点が高いために、溶融成形が困難である上に、成形温度を高くすると樹脂の分解が生ずる等の問題がある。そのため、スチレン系樹脂を配合して溶融成形を改善することが行われているが、得られる成形品の耐熱性や耐薬品性が低下し、ポリフェニレンエーテル系樹脂自体が有する本来の特性が損なわれやすいといった欠点がある。 Since polyphenylene ether has a high softening point, melt molding is difficult, and there are problems such as decomposition of the resin when the molding temperature is raised. For this reason, it has been attempted to improve melt molding by blending a styrene resin, but the heat resistance and chemical resistance of the resulting molded product are lowered, and the original properties of the polyphenylene ether resin itself are impaired. There is a drawback that it is easy.
 また、電気・電子用途に使用される部品には、従来のポリアミド樹脂はもとより、低吸水であるポリオキサミド樹脂より低い吸水性の樹脂が求められ、加えて、優れた電気特性や耐熱性を有する樹脂が求められている。 In addition to conventional polyamide resins, parts used for electrical and electronic applications are required to have lower water absorption than polyoxamide resin, which has low water absorption. In addition, resins with excellent electrical properties and heat resistance Is required.
 本発明が解決しようとする第1の課題は、吸水性が低く、耐熱性や電気特性に優れた樹脂組成物を提供することである。 The first problem to be solved by the present invention is to provide a resin composition having low water absorption and excellent heat resistance and electrical characteristics.
 一般的に使用されているガラス繊維を含むポリアミド66では、実使用時の寸法変化、摩擦係数や磨耗量が大きく、摺動部品に用いるには、十分でない場合があった。特に、電動パワーステアリングに用いられるギアは、実使用時の寸法変化が大きいと、バックラッシ(隙間)を調整する為の装置が必要になってくる。一般的に使用されているガラス繊維25~35質量%を含むポリアミド66の場合、その装置が、通常、必要になる。
 尚、実使用時とは、温度23℃±2℃及び相対湿度50%±10%の雰囲気下に、500時間以上、置いた状態を指す。
Generally used polyamide 66 including glass fiber has a large dimensional change, friction coefficient, and wear amount in actual use, and may not be sufficient for use in sliding parts. In particular, gears used in electric power steering require a device for adjusting the backlash (gap) when the dimensional change during actual use is large. In the case of polyamide 66 containing 25-35% by weight of commonly used glass fibers, the equipment is usually required.
The actual use refers to a state of being placed in an atmosphere of a temperature of 23 ° C. ± 2 ° C. and a relative humidity of 50% ± 10% for 500 hours or more.
 本発明が解決しようとする第2の課題は、一般的に使用されているガラス繊維25~35質量%を含むポリアミド66よりも、実使用時の寸法変化、摩擦係数や磨耗量が小さい組成物を提供することである。 The second problem to be solved by the present invention is a composition having smaller dimensional change, coefficient of friction and wear amount in actual use than polyamide 66 containing 25 to 35% by mass of commonly used glass fiber. Is to provide.
(第1の発明)
 本発明者らは、特定のポリアミド樹脂及びポリフェニレンエーテル樹脂を含有する樹脂組成物が、低吸水性で、耐熱性や電気特性に優れていることを見出し、本発明を完成させた。すなわち、本発明は、ポリアミド樹脂(A)及びポリフェニレンエーテル樹脂を含む樹脂組成物であり、
 前記ポリアミド樹脂(A)が、ジカルボン酸(a)由来の単位及びジアミン(b)由来の単位を含み、
 前記ジカルボン酸(a)が、蓚酸化合物を含み、
 前記ジアミン(b)が、1,6-ヘキサンジアミン、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンからなる群より選択される2種以上のジアミンを含み、
 前記ポリフェニレンエーテル樹脂の含有量が、前記ポリアミド樹脂(A)及び前記ポリフェニレンエーテル樹脂の合計量に対し、60質量%未満である樹脂組成物である。
(First invention)
The present inventors have found that a resin composition containing a specific polyamide resin and a polyphenylene ether resin has low water absorption and is excellent in heat resistance and electrical characteristics, and has completed the present invention. That is, the present invention is a resin composition comprising a polyamide resin (A) and a polyphenylene ether resin,
The polyamide resin (A) includes a unit derived from a dicarboxylic acid (a) and a unit derived from a diamine (b),
The dicarboxylic acid (a) contains an oxalic acid compound,
The diamine (b) includes two or more diamines selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine;
It is a resin composition whose content of the said polyphenylene ether resin is less than 60 mass% with respect to the total amount of the said polyamide resin (A) and the said polyphenylene ether resin.
(第2の発明)
 本発明者らは、特定の原料を使用したポリアミド樹脂とガラス繊維を含む組成物が上記課題を達成しうることを見出した。
 即ち、本発明は、ポリアミド樹脂及びガラスを含む組成物であり、
前記ポリアミド樹脂は、蓚酸化合物を原料とするポリアミド樹脂を含むことを特徴とする摺動部品用の組成物である。
(Second invention)
The present inventors have found that a composition containing a polyamide resin and glass fiber using a specific raw material can achieve the above-mentioned problem.
That is, the present invention is a composition comprising a polyamide resin and glass,
The said polyamide resin is a composition for sliding components characterized by including the polyamide resin which uses an oxalic acid compound as a raw material.
 第1の発明の樹脂組成物は、吸水性が低く、電気特性や耐熱性に優れる。
 また、第2の発明により、ガラス繊維25~35質量%を含むポリアミド66よりも、実使用時の寸法変化、摩擦係数や磨耗量が小さい組成物を提供することが可能となる。
The resin composition of the first invention has low water absorption and is excellent in electrical characteristics and heat resistance.
In addition, according to the second invention, it is possible to provide a composition having a smaller dimensional change, coefficient of friction, and wear amount during actual use than polyamide 66 containing 25 to 35% by mass of glass fiber.
寸法安定性を求める為の試験片を示す。A test piece for obtaining dimensional stability is shown.
(第1の発明)
 本発明は、ポリアミド樹脂(A)及びポリフェニレンエーテル樹脂を含む樹脂組成物であり、
 前記ポリアミド樹脂(A)が、ジカルボン酸(a)由来の単位及びジアミン(b)由来の単位を含み、
 前記ジカルボン酸(a)が、蓚酸化合物を含み、
 前記ジアミン(b)が、1,6-ヘキサンジアミン、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンからなる群より選択される2種以上のジアミンを含み、
 前記ポリフェニレンエーテル樹脂の含有量が、前記ポリアミド樹脂(A)及び前記ポリフェニレンエーテル樹脂の合計量に対し、60質量%未満である樹脂組成物である。
(First invention)
The present invention is a resin composition comprising a polyamide resin (A) and a polyphenylene ether resin,
The polyamide resin (A) includes a unit derived from a dicarboxylic acid (a) and a unit derived from a diamine (b),
The dicarboxylic acid (a) contains an oxalic acid compound,
The diamine (b) includes two or more diamines selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine;
It is a resin composition whose content of the said polyphenylene ether resin is less than 60 mass% with respect to the total amount of the said polyamide resin (A) and the said polyphenylene ether resin.
[ポリアミド樹脂(A)]
 本発明に用いられるポリアミド樹脂(A)は、ジカルボン酸(a)由来の単位とジアミン(b)由来の単位を含み、前記ジカルボン酸(a)が蓚酸化合物を含み、前記ジアミン(b)が、1,6-ヘキサンジアミン、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンからなる群より選択される2種以上のジアミンを含む。
[Polyamide resin (A)]
The polyamide resin (A) used in the present invention contains a unit derived from a dicarboxylic acid (a) and a unit derived from a diamine (b), the dicarboxylic acid (a) contains an oxalic acid compound, and the diamine (b) Two or more diamines selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine are included.
(1)ジカルボン酸(a)
 本発明に用いられるジカルボン酸(a)は、アミノ基との反応性を有し、本発明のポリアミド樹脂の構成単位に、ジカルボン酸由来の単位を提供するジカルボン酸化合物であり、ジカルボン酸化合物の1種である蓚酸由来の単位を提供する蓚酸化合物を含む。ジカルボン酸化合物は、ジカルボン酸に由来した化合物が挙げられ、ジカルボン酸に由来した化合物としては、ジカルボン酸由来のエステルなどが挙げられる。
(1) Dicarboxylic acid (a)
The dicarboxylic acid (a) used in the present invention is a dicarboxylic acid compound having reactivity with an amino group and providing a unit derived from a dicarboxylic acid as a constituent unit of the polyamide resin of the present invention. A oxalic acid compound that provides a unit derived from oxalic acid, which is one type, is included. Examples of the dicarboxylic acid compound include compounds derived from dicarboxylic acid, and examples of the compound derived from dicarboxylic acid include esters derived from dicarboxylic acid.
 本発明に用いられる蓚酸化合物は、蓚酸由来の単位を提供する化合物であり、蓚酸及び/又は蓚酸ジエステル等の蓚酸に由来した化合物である。蓚酸化合物はアミノ基との反応性を有するものであればよい。重合温度を高くして、ポリアミドを製造する場合、蓚酸そのものを原料として使用すると、蓚酸が熱分解することもあることから、重合温度を高くして製造する場合の蓚酸化合物は、蓚酸に由来した化合物が好ましい。 The oxalic acid compound used in the present invention is a compound that provides a unit derived from oxalic acid, and is a compound derived from oxalic acid such as oxalic acid and / or oxalic acid diester. The oxalic acid compound only needs to have reactivity with an amino group. When producing polyamides at a high polymerization temperature, succinic acid may be thermally decomposed when oxalic acid itself is used as a raw material. Therefore, the oxalic acid compound produced at a high polymerization temperature was derived from oxalic acid. Compounds are preferred.
 蓚酸に由来した化合物としては、重縮合反応における副反応を抑制する観点から、蓚酸ジエステルが好ましい。 As the compound derived from oxalic acid, oxalic acid diester is preferable from the viewpoint of suppressing side reactions in the polycondensation reaction.
 蓚酸ジエステルとしては、脂肪族1価アルコールの蓚酸ジエステル、脂環式アルコールの蓚酸ジエステル、及び芳香族アルコールの蓚酸ジエステルが挙げられる。 Examples of oxalic acid diesters include oxalic acid diesters of aliphatic monohydric alcohols, oxalic acid diesters of alicyclic alcohols, and oxalic acid diesters of aromatic alcohols.
 脂肪族1価アルコールの蓚酸ジエステルとしては、蓚酸ジメチル、蓚酸ジエチル、蓚酸ジn-(又はi-)プロピル、蓚酸ジn-(又はi-、又はt-)ブチルが挙げられ、炭素原子数が3を超える脂肪族1価アルコールの蓚酸ジエステルが好ましく、蓚酸ジn-ブチル、蓚酸ジi-ブチル及び/又は蓚酸ジt-ブチルがより好ましく、蓚酸ジn-ブチルがさらに好ましい。 Examples of oxalic acid diesters of aliphatic monohydric alcohols include dimethyl oxalate, diethyl oxalate, di-n- (or i-) propyl oxalate, di-n- (or i-, or t-) butyl oxalate, and the number of carbon atoms is More than 3 oxalic acid diesters of aliphatic monohydric alcohols are preferred, di-n-butyl oxalate, di-butyl oxalate and / or di-t-butyl oxalate are more preferred, and di-n-butyl oxalate is more preferred.
 脂環式アルコールの蓚酸ジエステルとしては、蓚酸ジシクロヘキシル等が挙げられる。 Examples of oxalic acid diesters of alicyclic alcohols include dicyclohexyl oxalate.
 芳香族アルコールの蓚酸ジエステルとしては、蓚酸ジフェニル等が挙げられる。 Examples of oxalic acid diesters of aromatic alcohols include diphenyl oxalate.
 蓚酸ジエステルとしては、炭素原子数が3を超える脂肪族1価アルコールの蓚酸ジエステル、脂環式アルコールの蓚酸ジエステル及び芳香族アルコールの蓚酸ジエステルよりなる群から選択される少なくとも1種が好ましく、蓚酸ジn-ブチル、蓚酸ジi-ブチル及び/又は蓚酸ジt-ブチルがより好ましく、蓚酸ジn-ブチルがさらに好ましい。 The oxalic acid diester is preferably at least one selected from the group consisting of an oxalic acid diester of an aliphatic monohydric alcohol having more than 3 carbon atoms, an oxalic acid diester of an alicyclic alcohol, and an oxalic acid diester of an aromatic alcohol. N-butyl, di-butyl oxalate and / or di-t-butyl oxalate are more preferred, and di-n-butyl oxalate is more preferred.
 これらの蓚酸化合物は、単独で、あるいは2種以上で、ポリアミド樹脂(A)の製造時に添加することができる。 These oxalic acid compounds can be added alone or in combination of two or more when the polyamide resin (A) is produced.
 蓚酸化合物以外のジカルボン酸化合物としては、脂肪族ジカルボン酸、脂環式ジカルボン、芳香族ジカルボン酸およびそれに由来した化合物が挙げられる。 Examples of dicarboxylic acid compounds other than oxalic acid compounds include aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, aromatic dicarboxylic acids, and compounds derived therefrom.
 脂肪族ジカルボン酸としては、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸が挙げられる。 Aliphatic dicarboxylic acids include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid. Examples include acids, azelaic acid, sebacic acid, and suberic acid.
 脂環式ジカルボン酸としては、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸が挙げられる。 Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,4-フェニレンジオキシジ酢酸、1,3-フェニレンジオキシジ酢酸、ジ安息香酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸が挙げられる。 Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3 -Phenylenedioxydiacetic acid, dibenzoic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, 4,4'-biphenyldicarboxylic acid Can be mentioned.
 これらの蓚酸化合物以外のジカルボン酸化合物は、単独で、あるいは2種以上で、ポリアミド樹脂(A)の製造時に添加することができる。 These dicarboxylic acid compounds other than these oxalic acid compounds can be added singly or in combination of two or more when the polyamide resin (A) is produced.
 さらに、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カルボン酸を蓚酸化合物以外のジカルボン酸の有無に関わらず、溶融成形が可能な範囲内で用いることもできる。 Furthermore, polycarboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid can be used within the range where melt molding is possible regardless of the presence or absence of dicarboxylic acids other than oxalic acid compounds.
 ポリアミド樹脂(A)に含まれる蓚酸化合物以外のジカルボン酸及び/又は多価カルボン酸由来の単位の含有量は、ポリアミド樹脂(A)に含まれる全ジカルボン酸及び全多価カルボン酸由来の単位の総量中に、50モル%未満が好ましく、20モル%以下であることがより好ましく、10モル%以下がさらに好ましく、5モル%以下がさらに好ましく、1モル%以下がさらに好ましい。 The content of units derived from dicarboxylic acids and / or polycarboxylic acids other than oxalic acid compounds contained in the polyamide resin (A) is the same as the units derived from all dicarboxylic acids and all polyvalent carboxylic acids contained in the polyamide resin (A). The total amount is preferably less than 50 mol%, more preferably 20 mol% or less, further preferably 10 mol% or less, further preferably 5 mol% or less, and further preferably 1 mol% or less.
(2)ジアミン(b)
 本発明に用いるジアミン(b)は、1,6-ヘキサンジアミン、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンからなる群より選択される2種以上のジアミンを含む。
(2) Diamine (b)
The diamine (b) used in the present invention contains two or more diamines selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine.
 ポリアミド樹脂(A)の高分子量化の観点から、ジアミン(b)は、炭素原子数が9のジアミンである1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミン(C9ジアミンともいう)を含むことが好ましい。ポリアミド樹脂(A)に含まれる1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミン由来の単位の含有量、即ち、C9ジアミン由来の単位の含有量は、ポリアミド樹脂(A)に含まれる全ジアミン由来の単位の総量中に、1モル%以上であることが好ましく、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、60モル%以上であることがさらに好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることがさらに好ましい。 From the viewpoint of increasing the molecular weight of the polyamide resin (A), the diamine (b) includes 1,9-nonanediamine and 2-methyl-1,8-octanediamine (also referred to as C9 diamine), which are diamines having 9 carbon atoms. It is preferable to contain. The content of units derived from 1,9-nonanediamine and 2-methyl-1,8-octanediamine contained in the polyamide resin (A), that is, the content of units derived from C9 diamine is contained in the polyamide resin (A). In the total amount of all diamine-derived units, it is preferably 1 mol% or more, more preferably 20 mol% or more, further preferably 40 mol% or more, and 60 mol% or more. Is more preferably 80 mol% or more, and more preferably 90 mol% or more.
 ジアミン(b)は、1,6-ヘキサンジアミン、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを含むことがより好ましく、ポリアミド樹脂(A)の融点と熱分解温度(窒素中でのポリマーの1%重量減少温度)と他の特性とのバランスの観点から、ポリアミド樹脂(A)に含まれる1,6-ヘキサンジアミン、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミン由来の単位の合計の含有量は、ポリアミド樹脂(A)に含まれる全ジアミン由来の単位の総量中に、10モル%以上であることが好ましく、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、60モル%以上であることがさらに好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることがさらに好ましい。 The diamine (b) preferably contains 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine, and the melting point and thermal decomposition temperature (in nitrogen) of the polyamide resin (A). From the viewpoint of the balance between the 1% weight loss temperature of the polymer and other properties), 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8- contained in the polyamide resin (A) The total content of octanediamine-derived units is preferably 10 mol% or more, more preferably 20 mol% or more, in the total amount of all diamine-derived units contained in the polyamide resin (A). , 40 mol% or more, more preferably 60 mol% or more, further preferably 80 mol% or more, 90 mol% More preferably a top.
 1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンの合計と1,6-ヘキサンジアミンとのモル比、即ち、C9ジアミンと1,6-ヘキサンジアミンとのモル比は、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン及び蓚酸化合物を重合してできるポリアミド(以下、ポリアミド92ということもある。)の優れた特性を維持し、特に溶融成形性、低吸水性を損なうことなく、ポリアミド樹脂(A)の融点を高く、特に力学物性を向上させる観点から、1:99~99:1であることが好ましい。C9ジアミンと1,6-ヘキサンジアミンとのモル比は、より好ましくは5.1:94.9~99:1、さらに好ましくは10:90~99:1であり、ポリアミド樹脂(A)の融点を300℃以下にし、重合及び成形加工(溶融成形性)をより容易にする観点から、さらに好ましくは20:80~99:1、さらに好ましくは30:70~98:2であり、ポリアミド樹脂(A)の融点を280℃以下にし、溶融成形性がより容易にする観点から、さらに好ましくは30:70~90:10、さらに好ましくは30:70~70:30である。 The molar ratio of the sum of 1,9-nonanediamine and 2-methyl-1,8-octanediamine to 1,6-hexanediamine, ie, the molar ratio of C9 diamine to 1,6-hexanediamine is 1,9 -Maintaining the excellent properties of polyamide (hereinafter, sometimes referred to as polyamide 92) formed by polymerizing nonanediamine, 2-methyl-1,8-octanediamine and oxalic acid compound, and in particular, melt moldability and low water absorption. From the viewpoint of increasing the melting point of the polyamide resin (A) without impairing it, and particularly improving the mechanical properties, it is preferably 1:99 to 99: 1. The molar ratio of C9 diamine to 1,6-hexanediamine is more preferably 5.1: 94.9 to 99: 1, still more preferably 10:90 to 99: 1, and the melting point of the polyamide resin (A) From the viewpoint of facilitating polymerization and molding process (melt moldability), more preferably 20:80 to 99: 1, still more preferably 30:70 to 98: 2, and polyamide resin ( From the viewpoint of making the melting point of A) 280 ° C. or less and facilitating melt moldability, it is more preferably 30:70 to 90:10, further preferably 30:70 to 70:30.
 炭素原子数が9のジアミンであるC9ジアミンの1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンのモル比は、ポリアミド樹脂(A)の高分子量化の観点から、1:99~99:1であることが好ましく、5:95~95:5であることがより好ましく、5:95~40:60又は60:40~95:5であることがさらに好ましく、5:95~30:70又は70:30~90:10であることがさらに好ましい。1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン及び、1,6-ヘキサンジアミン由来の単位を上記の含有量を含有することにより、結晶化速度を遅くすることが可能になり、押出成形等に優れたポリアミド樹脂(A)が得られる。 The molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine of C9 diamine, which is a diamine having 9 carbon atoms, is 1:99 to from the viewpoint of increasing the molecular weight of the polyamide resin (A). 99: 1 is preferable, 5:95 to 95: 5 is more preferable, 5:95 to 40:60 or 60:40 to 95: 5 is further preferable, and 5:95 to 30 is preferable. : 70 or 70:30 to 90:10 is more preferable. By including the above units with units derived from 1,9-nonanediamine, 2-methyl-1,8-octanediamine and 1,6-hexanediamine, it becomes possible to slow down the crystallization rate, A polyamide resin (A) excellent in extrusion molding or the like is obtained.
 本発明の効果を損なわない範囲で、他のジアミンを含有することができる。具体的には、1,6-ヘキサンジアミン、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミン以外の他のジアミンとしては、エチレンジアミン、プロピレンジアミン、1,4-ブタンジアミン、1,8-オクタンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミン等の脂肪族ジアミン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等の脂環式ジアミン、p-フェニレンジアミン、m-フェニレンジアミン、p-キシレンジアミン、m-キシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミン等が挙げられ、これらを単独で、あるいは二種以上で、製造時に添加することができる。 Other diamines can be contained as long as the effects of the present invention are not impaired. Specifically, as other diamines other than 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine, ethylenediamine, propylenediamine, 1,4-butanediamine, 1, 8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4 -Aliphatic diamines such as trimethyl-1,6-hexanediamine and 5-methyl-1,9-nonanediamine, cycloaliphatic diamines such as cyclohexanediamine, methylcyclohexanediamine and isophoronediamine, p-phenylenediamine and m-phenylenediamine , P-xylenediamine, m-xylenediamine, 4,4'-diaminodi Enirumetan, 4,4'-diaminodiphenylsulfone, 4,4'-aromatic diamines diaminodiphenyl ether, etc., and the like, these alone, or in two or more may be added during manufacturing.
 他のジアミン由来の単位の含有量としては、本発明の効果を損なわない範囲であれば特に限定されないが、ポリアミド樹脂(A)の全ジアミン由来の単位中に、好ましくは、50モル%未満であり、より好ましくは20モル%以下であり、さらに好ましくは10モル%以下、さらに好ましくは5モル%以下、さらに好ましくは1モル%以下である。 The content of other diamine-derived units is not particularly limited as long as it does not impair the effects of the present invention, but is preferably less than 50 mol% in all diamine-derived units of the polyamide resin (A). More preferably, it is 20 mol% or less, More preferably, it is 10 mol% or less, More preferably, it is 5 mol% or less, More preferably, it is 1 mol% or less.
(3)ポリアミド樹脂(A)の製造
 本発明に用いられるポリアミド樹脂(A)は、ポリアミドを製造する方法として知られている任意の方法を用いて製造することができるが、高分子量化及び生産性の観点から、好ましくは、ジアミン(b)及びジカルボン酸(a)をバッチ式又は連続式で重縮合反応させることにより製造することであり、より好ましくは、ジアミン(b)及びジカルボン酸(a)を前重縮合工程と後重縮合工程とからなる二段重合法又はWO2008-072754公報記載の加圧重合法によって製造することである。
(3) Production of Polyamide Resin (A) The polyamide resin (A) used in the present invention can be produced using any method known as a method for producing polyamide. From the viewpoint of properties, preferably, the diamine (b) and the dicarboxylic acid (a) are produced by polycondensation reaction batchwise or continuously, and more preferably, the diamine (b) and the dicarboxylic acid (a ) Is produced by a two-stage polymerization method comprising a pre-polycondensation step and a post-polycondensation step, or a pressure polymerization method described in WO2008-072754.
 二段重合法及び加圧重合法の例としては、具体的には、以下の操作が挙げられる。 Specific examples of the two-stage polymerization method and the pressure polymerization method include the following operations.
(3-1)二段重合法
(i)前重縮合工程:まず反応器内を窒素置換した後、ジアミン(b)及びジカルボン酸(a)を混合する。混合する場合にジアミン(b)及びジカルボン酸(a)が共に可溶な溶媒を用いても良い。ジアミン及び蓚酸化合物が共に可溶な溶媒としては、トルエン、キシレン、トリクロロベンゼン、フェノール、トリフルオロエタノールなどを用いることができ、特にトルエンを好ましく用いることができる。例えば、ジアミンを溶解したトルエン溶液を50℃に加熱した後、これに対して蓚酸ジエステルを加える。
(3-1) Two-stage polymerization method (i) Pre-polycondensation step: First, the inside of the reactor is purged with nitrogen, and then the diamine (b) and the dicarboxylic acid (a) are mixed. When mixing, a solvent in which both the diamine (b) and the dicarboxylic acid (a) are soluble may be used. As a solvent in which both the diamine and the oxalic acid compound are soluble, toluene, xylene, trichlorobenzene, phenol, trifluoroethanol and the like can be used, and particularly, toluene can be preferably used. For example, after heating the toluene solution which melt | dissolved diamine to 50 degreeC, oxalic acid diester is added with respect to this.
 ジアミン(b)及びジカルボン酸(a)の仕込み比は、高分子量化の観点から、ジカルボン酸(a)のモル量/ジアミン(b)のモル量で、0.8~1.5(モル比)、好ましくは0.91~1.1(モル比)、更に好ましくは0.99~1.01(モル比)である。 The charging ratio of the diamine (b) and the dicarboxylic acid (a) is 0.8 to 1.5 (molar ratio) in terms of high molecular weight in terms of the molar amount of the dicarboxylic acid (a) / the molar amount of the diamine (b). ), Preferably 0.91 to 1.1 (molar ratio), more preferably 0.99 to 1.01 (molar ratio).
 このように仕込んだ反応器内を攪拌及び/又は窒素バブリングしながら、常圧下で昇温する。反応温度は、最終到達温度が80~150℃、好ましくは100~140℃の範囲になるように制御するのが好ましい。最終到達温度での反応時間は3時間~6時間とすることが好ましい。 The temperature inside the reactor charged in this way is increased under normal pressure while stirring and / or nitrogen bubbling. The reaction temperature is preferably controlled so that the final temperature reaches 80 to 150 ° C., preferably 100 to 140 ° C. The reaction time at the final temperature is preferably 3 to 6 hours.
(ii)後重縮合工程:更に高分子量化を図るために、前重縮合工程で生成した重合物を常圧下において反応器内で徐々に昇温する。昇温過程において前重縮合工程の最終到達温度、すなわち好ましくは80~150℃から、最終的に、好ましくは295℃以上350℃以下、より好ましくは298℃以上345℃以下、更に好ましくは298℃以上340℃以下の温度範囲にまで到達させる。 (Ii) Post-polycondensation step: In order to further increase the molecular weight, the polymer produced in the pre-polycondensation step is gradually heated in the reactor under normal pressure. In the temperature raising process, the final reached temperature of the pre-polycondensation step, that is, preferably 80 to 150 ° C., is finally preferably 295 to 350 ° C., more preferably 298 to 345 ° C., and more preferably 298 ° C. A temperature range of 340 ° C. or lower is reached.
 昇温時間を含めて好ましくは1~8時間、より好ましくは2~6時間保持して反応を行うことが好ましい。さらに後重合工程において、必要に応じて減圧下での重合を行うこともできる。減圧重合を行う場合の好ましい最終到達圧力は13.3Pa以上0.1MPa未満である。 It is preferable to carry out the reaction while keeping the temperature rising time preferably 1 to 8 hours, more preferably 2 to 6 hours. Furthermore, in the post-polymerization step, polymerization can be performed under reduced pressure as necessary. The preferable final pressure in the case of carrying out the vacuum polymerization is 13.3 Pa or more and less than 0.1 MPa.
(3-2)加圧重合法
 まずジアミン(b)を耐圧容器内に入れ窒素置換した後、封圧下において反応温度まで昇温する。その後、反応温度において封圧状態を保ったまま、ジカルボン酸(a)を耐圧容器内に注入し、重縮合反応を開始させる。反応温度は、ジアミン(b)及びジカルボン酸(a)の反応によって生じるポリアミドが、スラリー状、もしくは溶液状態を維持でき、かつ熱分解しない温度であれば特に制限されない。ジアミン(b)及びジカルボン酸(a)の仕込み比は、ジカルボン酸(a)のモル量/ジアミン(b)のモル量で、0.8~1.5(モル比)、好ましくは0.91~1.1(モル比)、更に好ましくは0.99~1.01(モル比)である。
(3-2) Pressurized polymerization method First, the diamine (b) is placed in a pressure-resistant vessel and purged with nitrogen, and then heated to the reaction temperature under a sealing pressure. Thereafter, while maintaining the sealed pressure state at the reaction temperature, the dicarboxylic acid (a) is injected into the pressure resistant vessel to start the polycondensation reaction. The reaction temperature is not particularly limited as long as the polyamide produced by the reaction of diamine (b) and dicarboxylic acid (a) can maintain a slurry or solution state and does not thermally decompose. The charge ratio of the diamine (b) and the dicarboxylic acid (a) is 0.8 to 1.5 (molar ratio), preferably 0.91 in terms of the molar amount of the dicarboxylic acid (a) / the molar amount of the diamine (b). To 1.1 (molar ratio), more preferably 0.99 to 1.01 (molar ratio).
 次に耐圧容器内を封圧状態に保ちながらポリアミド樹脂(A)の融点以上かつ熱分解しない温度以下に昇温する。例えば、成分(a)の場合、融点が通常は245~300℃であることから、250℃以上350℃以下、好ましくは255℃以上340℃以下、更に好ましくは260℃以上335℃以下に昇温する。所定温度に到達するまでの耐圧容器内の圧力は、およそ生成するアルコールの飽和蒸気圧から0.1MPaG、好ましくは1MPaGから0.2MPaGに調整する。所定温度に到達後は、生成したアルコールを留去しながら放圧し、必要に応じて常圧窒素気流下もしくは減圧下において継続して重縮合反応を行う。減圧重合を行う場合の好ましい最終到達圧力は13.3Pa以上0.1MPa未満である。 Next, the temperature is raised to a temperature not lower than the melting point of the polyamide resin (A) and not thermally decomposing while keeping the inside of the pressure vessel in a sealed pressure state. For example, in the case of component (a), since the melting point is usually 245 to 300 ° C., the temperature is raised to 250 to 350 ° C., preferably 255 to 340 ° C., more preferably 260 to 335 ° C. To do. The pressure in the pressure-resistant container until reaching the predetermined temperature is adjusted to approximately 0.1 MPaG, preferably 1 MPaG to 0.2 MPaG, from the saturated vapor pressure of the alcohol to be generated. After reaching the predetermined temperature, the pressure is released while distilling off the produced alcohol, and the polycondensation reaction is continued under normal pressure nitrogen flow or reduced pressure as necessary. The preferable final pressure in the case of carrying out the vacuum polymerization is 13.3 Pa or more and less than 0.1 MPa.
(4)ポリアミド樹脂(A)の特性
 ポリアミド樹脂濃度が1.0g/dl(溶媒:96質量%硫酸)の溶液を用い、25℃で測定した本発明に用いられるポリアミド樹脂(A)の相対粘度は、物性や成形性の観点から、1.8~6.0が好ましく、2.0~5.5がより好ましく、2.5~4.5がさらに好ましい。
(4) Properties of polyamide resin (A) Relative viscosity of polyamide resin (A) used in the present invention measured at 25 ° C. using a solution having a polyamide resin concentration of 1.0 g / dl (solvent: 96 mass% sulfuric acid) Is preferably from 1.8 to 6.0, more preferably from 2.0 to 5.5, and even more preferably from 2.5 to 4.5 from the viewpoints of physical properties and moldability.
[ポリフェニレンエーテル樹脂]
 本発明に用いられるポリフェニレンエーテル樹脂の具体例として、ポリ-1,4-フェニレンエーテル、ポリ-2,6-ジメチル-1,4-フェニレンエーテル、ポリ-2,6-ジエチル-1,4-フェニレンエーテル、ポリ-2,6-ジプロピル-1,4-フェニレンエーテル、ポリ-2-メチル-6-アリル-1,4-フェニレンエーテル、ポリ-2,6-ジメトキシ-1,4-フェニレンエーテル、ポリ-2-メチル-6-エチル-1,4-フェニレンエーテル、ポリ-2,6-ジクロロ-1,4-フェニレンエーテル、ポリ-2,6-ジクロロメチル-1,4-フェニレンエーテル、ポリ-2,3,6-トリメチル-1,4-フェニレンエーテル、ポリ-2,3,5,6-テトラフルオロ-1,4フェニレンエーテル、ポリ-2,3-ジフェニル-1,4-フェニレンエーテル,ポリ-2,3-ジトリル-1,4-フェニレンエーテル、2,6-ジメチルフェノールと他のフェノール類との共重合体などが挙げられる。その中でも、ポリ-2,6-ジメチル-1,4-フェニレンエーテルが好ましい。
[Polyphenylene ether resin]
Specific examples of the polyphenylene ether resin used in the present invention include poly-1,4-phenylene ether, poly-2,6-dimethyl-1,4-phenylene ether, poly-2,6-diethyl-1,4-phenylene. Ether, poly-2,6-dipropyl-1,4-phenylene ether, poly-2-methyl-6-allyl-1,4-phenylene ether, poly-2,6-dimethoxy-1,4-phenylene ether, poly -2-Methyl-6-ethyl-1,4-phenylene ether, poly-2,6-dichloro-1,4-phenylene ether, poly-2,6-dichloromethyl-1,4-phenylene ether, poly-2 , 3,6-trimethyl-1,4-phenylene ether, poly-2,3,5,6-tetrafluoro-1,4 phenylene ether, poly-2,3 Diphenyl-1,4-phenylene ether, poly-2,3-ditolyl-1,4-phenylene ether, copolymer of 2,6-dimethylphenol and other phenols and the like. Of these, poly-2,6-dimethyl-1,4-phenylene ether is preferred.
 本発明で用いられるポリフェニレンエーテル樹脂は、変性されたポリフェニレンエーテルでもよく、また、未変性のポリフェニレンエーテルと変性されたポリフェニレンエーテルとの混合物であっても構わない。ポリアミド樹脂(A)との親和性の観点から、変性されたポリフェニレンエーテルが好ましい。ポリフェニレンエーテルの製造方法は、公知の方法であればよく、特に限定されるものではない。 The polyphenylene ether resin used in the present invention may be a modified polyphenylene ether or a mixture of an unmodified polyphenylene ether and a modified polyphenylene ether. From the viewpoint of affinity with the polyamide resin (A), a modified polyphenylene ether is preferable. The production method of polyphenylene ether may be any known method and is not particularly limited.
 変性されたポリフェニレンエーテル樹脂は、ポリアミド樹脂(A)との親和性の観点から、カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、カルボン酸金属塩基、カルボン酸イミド基、カルボン酸アミド基、及び/又はエポキシ基を有することが好ましく、カルボキシル基、酸無水物基、アミノ基及びエポキシ基からなる群より選択される少なくとも1つの官能基を有することがより好ましい。 The modified polyphenylene ether resin has a carboxylic acid group, a carboxylic acid anhydride group, a carboxylic acid ester group, a carboxylic acid metal base, a carboxylic acid imide group, and a carboxylic acid amide group from the viewpoint of affinity with the polyamide resin (A). And / or an epoxy group, and more preferably at least one functional group selected from the group consisting of a carboxyl group, an acid anhydride group, an amino group, and an epoxy group.
 本発明に用いられるポリフェニレンエーテル樹脂の極限粘度に特別の制限はないが、30℃のクロロホルム中で測定した極限粘度が0.01~5dl/gであることが好ましく、0.1~4.5dl/gであることがより好ましい。 The intrinsic viscosity of the polyphenylene ether resin used in the present invention is not particularly limited, but the intrinsic viscosity measured in chloroform at 30 ° C. is preferably 0.01 to 5 dl / g, preferably 0.1 to 4.5 dl. / G is more preferable.
[樹脂組成物]
 本発明の樹脂組成物において、ポリフェニレンエーテル樹脂の含有量は、耐熱性と成形性の観点から、ポリアミド樹脂(A)及びポリフェニレンエーテル樹脂の総量に対し、60質量%未満であり、好ましくは56質量%以下であり、より好ましくは51質量%以下である。
[Resin composition]
In the resin composition of the present invention, the content of the polyphenylene ether resin is less than 60% by mass, preferably 56% by mass, based on the total amount of the polyamide resin (A) and the polyphenylene ether resin, from the viewpoints of heat resistance and moldability. % Or less, and more preferably 51% by mass or less.
 また、ポリアミド樹脂(A)及びポリフェニレンエーテル樹脂の合計の含有量は、それぞれの樹脂の効果、及び本発明の効果を維持する観点から、樹脂組成物全量中、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましい。 In addition, the total content of the polyamide resin (A) and the polyphenylene ether resin is preferably 50% by mass or more, and 70% by mass in the total amount of the resin composition from the viewpoint of maintaining the effects of the respective resins and the effects of the present invention. % Or more is more preferable, and 90 mass% or more is more preferable.
(1)他のポリマー
 本発明の樹脂組成物には、本発明に用いられるポリアミド樹脂(A)やポリフェニレンエーテル樹脂以外に、本発明の効果を損なわない範囲で、他のポリマーを含んでよい。他のポリマーとしては、他のポリアミド類、例えば、ポリアミド樹脂(A)以外のポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド、脂環式ポリアミド等、並びにポリアミド及びポリフェニレンエーテル以外の熱可塑性ポリマーが挙げられる。
(1) Other polymer In addition to the polyamide resin (A) and polyphenylene ether resin used in the present invention, the resin composition of the present invention may contain other polymers as long as the effects of the present invention are not impaired. Examples of other polymers include other polyamides such as polyoxamides other than polyamide resin (A), aromatic polyamides, aliphatic polyamides, alicyclic polyamides, and thermoplastic polymers other than polyamides and polyphenylene ethers.
 他のポリマーの含有量は、本発明の効果を損なわない範囲であれば特に限定されないが、本発明の樹脂組成物中に、その合計が、50質量%未満が好ましく、30質量%以下がより好ましく、10質量%以下がさらに好ましい。 The content of the other polymer is not particularly limited as long as it does not impair the effects of the present invention, but in the resin composition of the present invention, the total is preferably less than 50% by mass, more preferably 30% by mass or less. Preferably, 10 mass% or less is more preferable.
(2)添加剤
 本発明の樹脂組成物、本発明に用いられるポリアミド樹脂(A)やポリフェニレンエーテルは、本発明の効果を損なわない範囲において、他の添加剤を含有することができ、添加剤としては、例えば、顔料、染料、着色剤、耐熱剤、酸化防止剤、耐候剤、紫外線吸収剤、光安定剤、相溶化剤、滑材、結晶核材、結晶化促進剤、離型剤、帯電防止剤、可塑剤、帯電防止剤、難燃剤、ガラス繊維、潤滑剤、フィラー、補強繊維等を挙げることができる。これらの添加剤は、1種又は2種以上、含有することができる。その含有量は、本発明の効果を損なわない範囲であれば特に限定されないが、本発明の樹脂組成物中に、その合計が、50質量%以下が好ましく、30質量%以下がより好ましく、10質量%以下がさらに好ましい。
(2) Additive The resin composition of the present invention, the polyamide resin (A) and polyphenylene ether used in the present invention can contain other additives as long as the effects of the present invention are not impaired. As, for example, pigments, dyes, colorants, heat-resistant agents, antioxidants, weathering agents, ultraviolet absorbers, light stabilizers, compatibilizers, lubricants, crystal nucleating materials, crystallization accelerators, mold release agents, Examples thereof include an antistatic agent, a plasticizer, an antistatic agent, a flame retardant, glass fiber, a lubricant, a filler, and a reinforcing fiber. These additives can be contained alone or in combination of two or more. The content is not particularly limited as long as it does not impair the effects of the present invention, but in the resin composition of the present invention, the total content is preferably 50% by mass or less, more preferably 30% by mass or less. A mass% or less is more preferable.
 耐熱剤としては、銅含有化合物が好ましく、その中でも、ヨウ化銅や臭化銅などのハロゲン化銅が好ましい。銅含有化合物の含有量としては、本発明の樹脂組成物中に、10~1000ppmが好ましい。通常は、アルキルハロゲン化合物が、二次酸化防止剤としてさらに添加される。 As the heat-resistant agent, a copper-containing compound is preferable, and among them, copper halides such as copper iodide and copper bromide are preferable. The content of the copper-containing compound is preferably 10 to 1000 ppm in the resin composition of the present invention. Usually, an alkyl halogen compound is further added as a secondary antioxidant.
 酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤が挙げられ、1種又は2種以上、本発明の樹脂組成物中に含有することができる。 Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, and sulfur antioxidants, and one or more of them can be contained in the resin composition of the present invention.
 フェノール系酸化防止剤としては、例えば、トリエチレングリコール・ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール・ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等を挙げることができ、中でも、特にペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)が挙げられ、1種又は2種以上、本発明の樹脂組成物中に含有することができる。 Examples of phenolic antioxidants include triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol bis [3- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate], pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, N, N′-hexamethylenebis (3,5- Di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris (3,5-di-t- Til-4-hydroxybenzyl) benzene, 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2, 4,8,10-tetraoxaspiro [5,5] undecane, etc., among which pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate N, N′-hexamethylene bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), or one or more of them contained in the resin composition of the present invention can do.
 リン系酸化防止剤としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、2-[[2,4,8,10-テトラキス(1,1-ジメチルエーテル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェビン6-イル]オキシ]-N,N-ビス[2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェビン6-イル]オキシ]-エチル]エタナミン,ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトなどを挙げることができ、中でも特に2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェビン6-イル]オキシ]-エチル]エタナミンが挙げられ、1種又は2種以上、本発明の樹脂組成物中に含有することができる。 Examples of the phosphorus-based antioxidant include tris (2,4-di-t-butylphenyl) phosphite, 2-[[2,4,8,10-tetrakis (1,1-dimethylether) dibenzo [d, f] [1,3,2] dioxaphosphine 6-yl] oxy] -N, N-bis [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [ d, f] [1,3,2] dioxaphosphine 6-yl] oxy] -ethyl] ethanamine, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, etc. In particular, 2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphine 6-yl ] Oxy] -ethyl] ethanamine, one or more, It can be contained in the resin composition of the invention.
 イオウ系酸化防止剤としては、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、テトラキス[メチレン-3-(ドデシルチオ)プロピオネート]メタン等を挙げれ、1種又は2種以上、本発明の樹脂組成物中に含有することができる。 Sulfur-based antioxidants include 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], tetrakis [methylene-3- (dodecylthio) propionate] methane 1 type, or 2 or more types can be contained in the resin composition of the present invention.
 相溶化剤としては、アクリル酸、メタアクリル酸、マレイン酸、無水マレイン酸、イタコン酸、クエン酸、フマル酸、クロトン酸、メチルマレイン酸、メチルフマル酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ[2.2.1]-5-ヘプテン-2,3-ジカルボン酸及びこれらカルボン酸金属塩、マレイン酸モノメチル、イタコン酸モノメチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸-2-エチルへキシル、アクリル酸ヒドロキシエチル、メタクリル酸アミノエチル、マレイン酸ジメチル、イタコン酸ジメチル、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物、マレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-フェニルマレイミド、アクリルアミド、メタクリルアミド、メタクリル酸グリシジル、アクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジルなどが挙げられ、1種又は2種以上、本発明の樹脂組成物中に含有することができる。 Compatibilizers include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, citric acid, fumaric acid, crotonic acid, methylmaleic acid, methyl fumaric acid, mesaconic acid, citraconic acid, glutaconic acid, cis- 4-cyclohexene-1,2-dicarboxylic acid, endobicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid and carboxylic acid metal salts thereof, monomethyl maleate, monomethyl itaconate, methyl acrylate, Ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, aminoethyl methacrylate, dimethyl maleate, dimethyl itaconate, maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- [2.2.1] -5-heptene-2,3-dicarboxylic Acid anhydride, maleimide, N-ethylmaleimide, N-butylmaleimide, N-phenylmaleimide, acrylamide, methacrylamide, glycidyl methacrylate, glycidyl acrylate, glycidyl ethacrylate, glycidyl itaconate, glycidyl citraconic acid, etc. 1 type (s) or 2 or more types can be contained in the resin composition of this invention.
 上記他のポリマー及び添加剤の添加方法は、それぞれを上記ポリアミド系樹脂に分散させることができる方法であれば、特に制限されるものではなく、その効果を損なわない任意の時点において、ポリアミド樹脂(A)に添加することができる。例えば、他のポリマー及び添加剤を、上記ポリアミド樹脂(A)の前重合工程及び/又は後重合工程に添加することができ、また、ポリフェニレンエーテル(B)に添加することもでき、また、本発明の樹脂組成物を製造する前、製造中、製造後に添加することもできる。 The method for adding the other polymer and the additive is not particularly limited as long as each of them can be dispersed in the polyamide-based resin, and at any point that does not impair the effect, the polyamide resin ( A) can be added. For example, other polymers and additives can be added to the prepolymerization step and / or postpolymerization step of the polyamide resin (A), and can be added to the polyphenylene ether (B). It can also be added before, during and after production of the resin composition of the invention.
(3)樹脂組成物の製造
 本発明の樹脂組成物の製造方法は、ポリアミド樹脂(A)とポリフェニレンエーテル樹脂が含まれていればよく、特に制限はないが、例えば、ドライブレンドによる製造方法や単軸押出機、二軸押出機、多軸押出機、ニーダー等の溶融混練による製造方法が挙げられる。ポリアミド樹脂(A)とポリフェニレンエーテル樹脂の分散性の観点から、溶融混練による製造方法が好ましく、その中でも本発明の樹脂組成物の混練時の流動性の観点から、二軸押出機を使用した製造がより好ましい。
(3) Production of Resin Composition The production method of the resin composition of the present invention is not particularly limited as long as it contains the polyamide resin (A) and the polyphenylene ether resin. Examples thereof include a production method by melt kneading such as a single-screw extruder, a twin-screw extruder, a multi-screw extruder, and a kneader. From the viewpoint of dispersibility of the polyamide resin (A) and the polyphenylene ether resin, a production method by melt kneading is preferred, and among them, production using a twin screw extruder from the viewpoint of fluidity during kneading of the resin composition of the present invention. Is more preferable.
 本発明の樹脂組成物は、射出成形、押出成形、ブロー成形、真空成形、プレス成形等の公知の成形方法によって各種の成形品に成形することができる。特に射出成形、ブロー成形分野に有用である。 The resin composition of the present invention can be molded into various molded products by known molding methods such as injection molding, extrusion molding, blow molding, vacuum molding, and press molding. It is particularly useful in the fields of injection molding and blow molding.
 本発明の樹脂組成物は、成形可能温度幅が広く、低い誘電率及び誘電正接を有しているため、例えば、高周波域で使用されるアンテナ、ETC、無線LAN及び携帯電話等に好適に使用できる。 Since the resin composition of the present invention has a wide moldable temperature range and has a low dielectric constant and dielectric loss tangent, it is suitably used for, for example, antennas, ETCs, wireless LANs and mobile phones used in high frequency ranges. it can.
 その他にも、本発明の樹脂組成物は、ポリアミド樹脂及びポリフェニレンエーテルが本来有する優れた特性をバランス良く兼ね備え、優れた耐熱性を有していることから、自動車部品、工業材料、産業資材、機械部品、事務機器用部品、家庭用品、シート、フィルム、繊維等に有用に使用することができる。 In addition, since the resin composition of the present invention has excellent properties inherently possessed by the polyamide resin and polyphenylene ether in a well-balanced manner and has excellent heat resistance, it can be used for automobile parts, industrial materials, industrial materials, machinery. It can be usefully used for parts, office equipment parts, household goods, sheets, films, fibers and the like.
(第2の発明)
 本発明の組成物は、特定の原料を使用したポリアミド樹脂とガラス繊維を含む組成物である。
(Second invention)
The composition of this invention is a composition containing the polyamide resin and glass fiber which used the specific raw material.
[ポリアミド樹脂]
 本発明に用いるポリアミド樹脂は、蓚酸化合物を原料とするポリアミド樹脂を含む。組成物の実使用時の寸法変化、磨耗量、摩擦係数の低減の観点から、ポリアミド樹脂全量に対し、蓚酸化合物を原料とするポリアミド樹脂は10質量%以上が好ましく、50質量%以上がより好ましく、99質量%以上がさらに好ましい。
[Polyamide resin]
The polyamide resin used for this invention contains the polyamide resin which uses an oxalic acid compound as a raw material. From the viewpoint of dimensional change during actual use of the composition, the amount of wear, and the reduction of the friction coefficient, the polyamide resin made from oxalic acid compound is preferably 10% by mass or more, more preferably 50% by mass or more, based on the total amount of the polyamide resin. 99 mass% or more is more preferable.
(1)蓚酸化合物を原料とするポリアミド樹脂
 蓚酸化合物としては、蓚酸由来の単位を提供する化合物であり、蓚酸及び/又は蓚酸ジエステル等の蓚酸に由来した化合物である。蓚酸化合物はアミノ基との反応性を有するものであればよい。重合温度を高くして、ポリアミド樹脂を製造する場合、蓚酸そのものを原料として使用すると、蓚酸が熱分解することもあることから、重合温度を高くして、製造する場合の蓚酸化合物は、蓚酸に由来した化合物が好ましい。
(1) Polyamide resin using oxalic acid compound as raw material The oxalic acid compound is a compound that provides a unit derived from oxalic acid, and is a compound derived from oxalic acid such as oxalic acid and / or oxalic acid diester. The oxalic acid compound only needs to have reactivity with an amino group. When producing a polyamide resin at a high polymerization temperature, if oxalic acid itself is used as a raw material, oxalic acid may be thermally decomposed. Derived compounds are preferred.
 蓚酸に由来した化合物としては、重縮合反応における副反応を抑制する観点から蓚酸ジエステルが好ましい。 As the compound derived from oxalic acid, oxalic acid diester is preferable from the viewpoint of suppressing side reactions in the polycondensation reaction.
 蓚酸ジエステルとしては、脂肪族1価アルコールの蓚酸ジエステル、脂環式アルコールの蓚酸ジエステル、及び芳香族アルコールの蓚酸ジエステルが挙げられる。 Examples of oxalic acid diesters include oxalic acid diesters of aliphatic monohydric alcohols, oxalic acid diesters of alicyclic alcohols, and oxalic acid diesters of aromatic alcohols.
 脂肪族1価アルコールの蓚酸ジエステルとしては、蓚酸ジメチル、蓚酸ジエチル、蓚酸ジn-(又はi-)プロピル、蓚酸ジn-(又はi-、又はt-)ブチルが挙げられ、炭素原子数が3を超える脂肪族1価アルコールの蓚酸ジエステルが好ましく、蓚酸ジn-ブチル、蓚酸ジi-ブチル及び/又は蓚酸ジt-ブチルがより好ましく、蓚酸ジn-ブチルがさらに好ましい。 Examples of oxalic acid diesters of aliphatic monohydric alcohols include dimethyl oxalate, diethyl oxalate, di-n- (or i-) propyl oxalate, di-n- (or i-, or t-) butyl oxalate, and the number of carbon atoms is More than 3 oxalic acid diesters of aliphatic monohydric alcohols are preferred, di-n-butyl oxalate, di-butyl oxalate and / or di-t-butyl oxalate are more preferred, and di-n-butyl oxalate is more preferred.
 脂環式アルコールの蓚酸ジエステルとしては、蓚酸ジシクロヘキシル等が挙げられる。 Examples of oxalic acid diesters of alicyclic alcohols include dicyclohexyl oxalate.
 芳香族アルコールの蓚酸ジエステルとしては、蓚酸ジフェニル等が挙げられる。 Examples of oxalic acid diesters of aromatic alcohols include diphenyl oxalate.
 蓚酸ジエステルとしては、炭素原子数が3を超える脂肪族1価アルコールの蓚酸ジエステル、脂環式アルコールの蓚酸ジエステル及び芳香族アルコールの蓚酸ジエステルよりなる群から選択される少なくとも1種が好ましく、蓚酸ジn-ブチル、蓚酸ジi-ブチル及び/又は蓚酸ジt-ブチルがより好ましく、蓚酸ジn-ブチルがさらに好ましい。 The oxalic acid diester is preferably at least one selected from the group consisting of an oxalic acid diester of an aliphatic monohydric alcohol having more than 3 carbon atoms, an oxalic acid diester of an alicyclic alcohol, and an oxalic acid diester of an aromatic alcohol. N-butyl, di-butyl oxalate and / or di-t-butyl oxalate are more preferred, and di-n-butyl oxalate is more preferred.
 これらの蓚酸化合物は、単独で、あるいは2種以上で、蓚酸化合物を原料とするポリアミド樹脂の製造時に添加することができる。 These oxalic acid compounds can be added alone or in combination of two or more during the production of a polyamide resin using the oxalic acid compound as a raw material.
 また、蓚酸化合物を原料とするポリアミド樹脂には、蓚酸化合物以外のジカルボン酸化合物も原料に用いることができる。 Moreover, dicarboxylic acid compounds other than oxalic acid compounds can be used as raw materials for the polyamide resin using oxalic acid compounds as raw materials.
 蓚酸化合物以外のジカルボン酸化合物としては、脂肪族ジカルボン酸、脂環式ジカルボン、芳香族ジカルボン酸およびそれに由来した化合物が挙げられる。 Examples of dicarboxylic acid compounds other than oxalic acid compounds include aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, aromatic dicarboxylic acids, and compounds derived therefrom.
 脂肪族ジカルボン酸としては、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸が挙げられる。 Aliphatic dicarboxylic acids include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid. Examples include acids, azelaic acid, sebacic acid, and suberic acid.
 脂環式ジカルボン酸としては、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸が挙げられる。 Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,4-フェニレンジオキシジ酢酸、1,3-フェニレンジオキシジ酢酸、ジ安息香酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸が挙げられる。 Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3 -Phenylenedioxydiacetic acid, dibenzoic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, 4,4'-biphenyldicarboxylic acid Can be mentioned.
 これらの蓚酸化合物以外のジカルボン酸化合物は、単独で、あるいは2種以上で、ポリアミド樹脂の製造時に添加することができる。 These dicarboxylic acid compounds other than these oxalic acid compounds can be added singly or in combination of two or more when the polyamide resin is produced.
 さらに、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カルボン酸を蓚酸化合物以外のジカルボン酸の有無に関わらず、溶融成形が可能な範囲内で用いることもできる。 Furthermore, polycarboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid can be used within the range where melt molding is possible regardless of the presence or absence of dicarboxylic acids other than oxalic acid compounds.
 蓚酸化合物を原料とするポリアミド樹脂に含まれる蓚酸化合物以外のジカルボン酸及び/又は多価カルボン酸由来の単位の含有量は、蓚酸化合物を原料とするポリアミド樹脂に含まれる全ジカルボン酸及び全多価カルボン酸由来の単位の総量中に、50モル%未満が好ましく、20モル%以下であることがより好ましく、10モル%以下がさらに好ましく、5モル%以下がさらに好ましく、1モル%以下がさらに好ましい。 The content of units derived from dicarboxylic acid and / or polyvalent carboxylic acid other than oxalic acid compound contained in polyamide resin using oxalic acid compound as raw material is the total dicarboxylic acid and total polyvalent content contained in polyamide resin using oxalic acid compound as raw material. The total amount of carboxylic acid-derived units is preferably less than 50 mol%, more preferably 20 mol% or less, further preferably 10 mol% or less, further preferably 5 mol% or less, and further preferably 1 mol% or less. preferable.
 蓚酸化合物を原料とするポリアミド樹脂に用いられるジアミンとしては、特に、限定はないが、エチレンジアミン、プロピレンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、1,10-デカンジアミン、5-メチル-1,9-ノナンジアミン、1,12-ドデカンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン等の脂肪族ジアミン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等の脂環式ジアミン、p-フェニレンジアミン、m-フェニレンジアミン、p-キシレンジアミン、m-キシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミン等が挙げられ、これらを単独で、あるいは二種以上で、製造時に添加することができる。 The diamine used in the polyamide resin made from the oxalic acid compound is not particularly limited, but ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 2-methyl-1,5-pentane. Diamine, 3-methyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine, 1,10-decanediamine, 5-methyl-1, Aliphatic diamines such as 9-nonanediamine, 1,12-dodecanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, cyclohexanediamine, methyl Cycloaliphatic diamine, isophorone diamine and other alicyclic diamines, p-phenylene diamine, m And aromatic diamines such as phenylenediamine, p-xylenediamine, m-xylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 4,4′-diaminodiphenylether. Alternatively, two or more kinds can be added during production.
 これらの中でも、得られるポリアミド樹脂の融点と熱分解温度の関係から、1,6-ヘキサンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン及び1,10-デカンジアミンよりなる群から選択される少なくとも1種が好ましく、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンがより好ましい。 Among these, from the relationship between the melting point and thermal decomposition temperature of the obtained polyamide resin, it is composed of 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine and 1,10-decanediamine. At least one selected from the group is preferred, and 1,9-nonanediamine and 2-methyl-1,8-octanediamine are more preferred.
 1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンのモル比は、蓚酸化合物を原料とするポリアミド樹脂の高分子量化の観点から、1:99~99:1であることが好ましく、5:95~95:5であることがより好ましい。さらに、得られるポリアミド樹脂の融点の観点から、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンのモル比は、5:95~40:60又は60:40~95:5であることが好ましく、5:95~30:70又は70:30~90:10であることがより好ましい。 The molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is preferably 1:99 to 99: 1 from the viewpoint of increasing the molecular weight of the polyamide resin using a oxalic acid compound as a raw material, More preferably, it is 5:95 to 95: 5. Furthermore, from the viewpoint of the melting point of the obtained polyamide resin, the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 5:95 to 40:60 or 60:40 to 95: 5. It is preferably 5:95 to 30:70 or more preferably 70:30 to 90:10.
 1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンの含有量は、蓚酸化合物を原料とするポリアミド樹脂の全ジアミン由来の単位中に、好ましくは、50モル%以上であり、より好ましくは80モル%以上であり、さらに好ましくは90モル%以上、さらに好ましくは95モル%以上、さらにこのましくは99モル%以上である。 The content of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is preferably 50 mol% or more, more preferably in the units derived from all diamines of the polyamide resin starting from the oxalic acid compound. Is 80 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more, and more preferably 99 mol% or more.
 蓚酸化合物を原料とするポリアミド樹脂として、具体的には、ポリアミド92、ポリアミド102、ポリアミド122、ポリアミド62等の単独重合体、や、ポリアミド92/62、ポリアミド102/62、ポリアミド122/62等の共重合体が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、ポリアミド92、ポリアミド102、ポリアミド92/62及びポリアミド102/62よりなる群から選択される少なくとも1種が好ましい。 Specific examples of polyamide resins made from oxalic acid compounds include homopolymers such as polyamide 92, polyamide 102, polyamide 122, and polyamide 62, and polyamide 92/62, polyamide 102/62, and polyamide 122/62. A copolymer is mentioned. These can use 1 type (s) or 2 or more types. Among these, at least one selected from the group consisting of polyamide 92, polyamide 102, polyamide 92/62, and polyamide 102/62 is preferable.
 蓚酸化合物を原料とするポリアミド樹脂は、JIS K-6920に準じ、96質量%の硫酸中、ポリアミド樹脂濃度1質量%、温度25℃の条件で測定した相対粘度が、2.3以上6.0以下が成形時の流動性と成形品の靭性の観点から好ましく、2.5以上5.0以下がより好ましく、2.7以上4.0以下がさらに好ましい。 Polyamide resin using oxalic acid compound as a raw material has a relative viscosity of 2.3 or more and 6.0 in 96 mass% sulfuric acid in 1 mass% of polyamide resin at a temperature of 25 ° C. according to JIS K-6920. The following is preferable from the viewpoint of fluidity during molding and toughness of the molded product, more preferably 2.5 or more and 5.0 or less, and further preferably 2.7 or more and 4.0 or less.
(2)蓚酸化合物を原料とするポリアミド樹脂の製造
 本発明に用いられる蓚酸化合物を原料とするポリアミド樹脂は、ポリアミド樹脂を製造する方法として知られている任意の方法を用いて製造することができるが、高分子量化及び生産性の観点から、好ましくは、ジアミン及び蓚酸化合物を含むジカルボン化合物をバッチ式又は連続式で重縮合反応させることにより製造することであり、より好ましくは、ジアミン及び蓚酸化合物を含むジカルボン化合物を前重縮合工程と後重縮合工程からなる二段重合法もしくは、WO2008-072754公報記載の加圧重合法によって製造することである。
(2) Manufacture of polyamide resin using oxalic acid compound as raw material The polyamide resin using oxalic acid compound used as a raw material for the present invention can be manufactured using any method known as a method for manufacturing polyamide resin. However, from the viewpoint of increasing the molecular weight and productivity, it is preferable to carry out a batch-wise or continuous polycondensation reaction of a dicarboxylic compound containing a diamine and an oxalic acid compound, more preferably a diamine and an oxalic acid compound. Is produced by a two-stage polymerization method comprising a pre-polycondensation step and a post-polycondensation step, or a pressure polymerization method described in WO2008-072754.
 二段重合法及び加圧重合法としては、具体的には、以下の操作で示される。 Specific examples of the two-stage polymerization method and the pressure polymerization method are as follows.
(2-1)二段重合法
(i)前重縮合工程:まず反応器内を窒素置換した後、ジアミン及び蓚酸化合物を含むジカルボン化合物を混合する。混合する場合にジアミン及び蓚酸化合物を含むジカルボン化合物が共に可溶な溶媒を用いても良い。ジアミン及び蓚酸化合物が共に可溶な溶媒としては、トルエン、キシレン、トリクロロベンゼン、フェノール、トリフルオロエタノールなどを用いることができ、特にトルエンを好ましく用いることができる。例えば、ジアミンを溶解したトルエン溶液を50℃に加熱した後、これに対して蓚酸ジエステルを加える。
(2-1) Two-stage polymerization method (i) Pre-polycondensation step: First, the inside of the reactor is purged with nitrogen, and then a diamine and a dicarboxylic compound containing an oxalic acid compound are mixed. In the case of mixing, a solvent in which both a diamine and a dicarboxylic compound containing an oxalic acid compound are soluble may be used. As a solvent in which both the diamine and the oxalic acid compound are soluble, toluene, xylene, trichlorobenzene, phenol, trifluoroethanol and the like can be used, and particularly, toluene can be preferably used. For example, after heating the toluene solution which melt | dissolved diamine to 50 degreeC, oxalic acid diester is added with respect to this.
 ジアミン及び蓚酸化合物を含むジカルボン化合物の仕込み比は、高分子量化の観点から、ジカルボン酸(a)のモル量/ジアミン(b)のモル量で、0.8~1.5(モル比)、好ましくは0.91~1.1(モル比)、更に好ましくは0.99~1.01(モル比)である。 The charging ratio of the dicarboxylic compound containing the diamine and the oxalic acid compound is 0.8 to 1.5 (molar ratio) in terms of the high molecular weight in terms of the molar amount of the dicarboxylic acid (a) / the molar amount of the diamine (b). The ratio is preferably 0.91 to 1.1 (molar ratio), more preferably 0.99 to 1.01 (molar ratio).
 このように仕込んだ反応器内を攪拌及び/又は窒素バブリングしながら、常圧下で昇温する。反応温度は、最終到達温度が80~150℃、好ましくは100~140℃の範囲になるように制御するのが好ましい。最終到達温度での反応時間は3時間~6時間である。 The temperature inside the reactor charged in this way is increased under normal pressure while stirring and / or nitrogen bubbling. The reaction temperature is preferably controlled so that the final temperature reaches 80 to 150 ° C., preferably 100 to 140 ° C. The reaction time at the final temperature reached is 3-6 hours.
(ii)後重縮合工程:更に高分子量化を図るために、前重縮合工程で生成した重合物を常圧下において反応器内で徐々に昇温する。昇温過程において前重縮合工程の最終到達温度、すなわち好ましくは80~150℃から、最終的に、好ましくは150℃以上350℃以下、より好ましくは180℃以上330℃以下、更に好ましくは200℃以上320℃以下の温度範囲にまで到達させる。 (Ii) Post-polycondensation step: In order to further increase the molecular weight, the polymer produced in the pre-polycondensation step is gradually heated in the reactor under normal pressure. In the temperature raising process, the final ultimate temperature of the pre-polycondensation step, that is, preferably 80 to 150 ° C., is finally preferably 150 to 350 ° C., more preferably 180 to 330 ° C., and further preferably 200 ° C. A temperature range of 320 ° C. or lower is reached.
 昇温時間を含めて好ましくは1~8時間、より好ましくは2~6時間保持して反応を行うことが好ましい。さらに後重合工程において、必要に応じて減圧下での重合を行うこともできる。減圧重合を行う場合の好ましい最終到達圧力は13.3Pa以上0.1MPa未満である。 It is preferable to carry out the reaction while keeping the temperature rising time preferably 1 to 8 hours, more preferably 2 to 6 hours. Furthermore, in the post-polymerization step, polymerization can be performed under reduced pressure as necessary. The preferable final pressure in the case of carrying out the vacuum polymerization is 13.3 Pa or more and less than 0.1 MPa.
(2-2)加圧重合法
 まずジアミンを耐圧容器内に入れ窒素置換した後、封圧下において反応温度まで昇温する。その後、反応温度において封圧状態を保ったまま、蓚酸化合物を含むジカルボン化合物を耐圧容器内に注入し、重縮合反応を開始させる。反応温度は、ジアミン及び蓚酸化合物を含むジカルボン化合物の反応によって生じるポリアミド樹脂が、スラリー状、もしくは溶液状態を維持でき、かつ熱分解しない温度であれば特に制限されない。ジアミン及び蓚酸化合物を含むジカルボン化合物の仕込み比は、蓚酸化合物を含むジカルボン化合物のモル量/ジアミンのモル量で、0.8~1.5(モル比)、好ましくは0.91~1.1(モル比)、更に好ましくは0.99~1.01(モル比)である。
(2-2) Pressurized polymerization method First, diamine is placed in a pressure-resistant vessel and purged with nitrogen, and then heated to the reaction temperature under a sealing pressure. Thereafter, the dicarboxylic compound containing the oxalic acid compound is injected into the pressure vessel while maintaining the sealed pressure state at the reaction temperature, and the polycondensation reaction is started. The reaction temperature is not particularly limited as long as the polyamide resin produced by the reaction of the dicarboxylic compound containing diamine and oxalic acid compound can maintain a slurry or solution state and does not thermally decompose. The charging ratio of the dicarboxylic compound containing the diamine and the oxalic acid compound is 0.8 to 1.5 (molar ratio), preferably 0.91 to 1.1, in terms of the molar amount of the dicarboxylic compound containing the oxalic acid compound / the molar amount of the diamine. (Molar ratio), more preferably 0.99 to 1.01 (molar ratio).
 次に耐圧容器内を封圧状態に保ちながらポリアミド樹脂の融点以上かつ熱分解しない温度以下に昇温する。例えば、成分aの場合、融点は245~300℃であることから、250℃以上350℃以下、好ましくは255℃以上340℃以下、更に好ましくは260℃以上335℃以下に昇温する。所定温度に到達するまでの耐圧容器内の圧力は、およそ生成するアルコールの飽和蒸気圧から0.1MPaG、好ましくは1MPaGから0.2MPaGに調整する。所定温度に到達後は、生成したアルコールを留去しながら放圧し、必要に応じて常圧窒素気流下もしくは減圧下において継続して重縮合反応を行う。減圧重合を行う場合の好ましい最終到達圧力は13.3Pa以上0.1MPa未満である。 Next, while keeping the inside of the pressure vessel in a sealed pressure state, the temperature is raised to a temperature not lower than the melting point of the polyamide resin and not pyrolyzed. For example, in the case of Component a, since the melting point is 245 to 300 ° C., the temperature is raised to 250 to 350 ° C., preferably 255 to 340 ° C., more preferably 260 to 335 ° C. The pressure in the pressure-resistant container until reaching the predetermined temperature is adjusted to approximately 0.1 MPaG, preferably 1 MPaG to 0.2 MPaG, from the saturated vapor pressure of the alcohol to be generated. After reaching the predetermined temperature, the pressure is released while distilling off the produced alcohol, and the polycondensation reaction is continued under normal pressure nitrogen flow or reduced pressure as necessary. The preferable final pressure in the case of carrying out the vacuum polymerization is 13.3 Pa or more and less than 0.1 MPa.
(3)蓚酸化合物を原料とするポリアミド樹脂以外のポリアミド樹脂
 蓚酸化合物を原料とするポリアミド樹脂以外のポリアミド樹脂としては、例えば、ポリカプロラクタム(ポリアミド6)、ポリウンデカン酸ラクタム(ポリアミド11)、ポリラウリルラクタム(ポリアミド12)、ポリエチレンアジパミド(ポリアミド26)、ポリテトラメチレンスクシナミド(ポリアミド44)、ポリテトラメチレングルタミド(ポリアミド45)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリテトラメチレンアゼラミド(ポリアミド49)、ポリテトラメチレンセバカミド(ポリアミド410)、ポリテトラメチレンドデカミド(ポリアミド412)、ポリペンタメチレンスクシナミド(ポリアミド54)、ポリペンタメチレングルタミド(ポリアミド55)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリペンタメチレンアゼラミド(ポリアミド59)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリペンタメチレンドデカミド(ポリアミド512)、ポリヘキサメチレンスクシナミド(ポリアミド64)、ポリヘキサメチレングルタミド(ポリアミド65)、ポリヘキサメチレンジアミノアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)、やカプロラクタム/ヘキサメチレンジアミノアジピン酸共重合体(ポリアミド6/66)、カプロラクタム/ヘキサメチレンジアミノアゼライン酸共重合体(ポリアミド6/69)、カプロラクタム/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/610)、カプロラクタム/ヘキサメチレンジアミノウンデカン酸共重合体(ポリアミド6/611)、カプロラクタム/ヘキサメチレンジアミノドデカン酸共重合体(ポリアミド6/612)、カプロラクタム/アミノウンデカン酸共重合体(ポリアミド6/11)、カプロラクタム/ラウリルラクタム共重合体(ポリアミド6/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウリルラクタム(ポリアミド6/66/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノセバシン酸(ポリアミド6/66/610)及びカプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノドデカンジカルボン酸(ポリアミド6/66/612)が挙げられる。これらは1種又は2種以上を用いることができる。
(3) Polyamide resin other than polyamide resin using oxalic acid compound as raw material Polyamide resin other than polyamide resin using oxalic acid compound as raw material includes, for example, polycaprolactam (polyamide 6), polyundecanoic acid lactam (polyamide 11), and polylauryl. Lactam (polyamide 12), polyethylene adipamide (polyamide 26), polytetramethylene succinamide (polyamide 44), polytetramethylene glutamide (polyamide 45), polytetramethylene adipamide (polyamide 46), polytetramethylene Azelamide (polyamide 49), polytetramethylene sebamide (polyamide 410), polytetramethylene dodecamide (polyamide 412), polypentamethylene succinamide (polyamide 54), polypentamethylene glutata Amide (polyamide 55), polypentamethylene adipamide (polyamide 56), polypentamethylene azelamide (polyamide 59), polypentamethylene sebacamide (polyamide 510), polypentamethylene dodecamide (polyamide 512), polyhexa Methylene succinamide (polyamide 64), polyhexamethylene glutamide (polyamide 65), polyhexamethylene diaminoadipamide (polyamide 66), polyhexamethylene azelamide (polyamide 69), polyhexamethylene sebacamide (polyamide 610) ), Polyhexamethylene dodecamide (polyamide 612), polynonamethylene adipamide (polyamide 96), polynonamethylene azelamide (polyamide 99), polynonamethylene sebamide (polyamide 910), poly Namethylene Dodecamide (Polyamide 912), Poly Decamethylene Adipamide (Polyamide 106), Poly Decamethylene Azelamide (Polyamide 109), Poly Decamethylene Decamide (Polyamide 1010), Poly Decamethylene Dodecamide (Polyamide 1012), Polydodecamethylene adipamide (polyamide 126), polydodecamethylene azelamide (polyamide 129), polydodecamethylene sebamide (polyamide 1210), polydodecamethylene dodecamide (polyamide 1212), caprolactam / hexamethylenediaminoadipic acid Copolymer (polyamide 6/66), caprolactam / hexamethylene diamino azelaic acid copolymer (polyamide 6/69), caprolactam / hexamethylene diamino sebacic acid copolymer (polymer) Amide 6/610), caprolactam / hexamethylenediaminoundecanoic acid copolymer (polyamide 6/611), caprolactam / hexamethylenediaminododecanoic acid copolymer (polyamide 6/612), caprolactam / aminoundecanoic acid copolymer (polyamide) 6/11), caprolactam / lauryl lactam copolymer (polyamide 6/12), caprolactam / hexamethylenediaminoadipic acid / lauryllactam (polyamide 6/66/12), caprolactam / hexamethylenediaminoadipic acid / hexamethylenediaminosebacin Acid (polyamide 6/66/610) and caprolactam / hexamethylenediaminoadipic acid / hexamethylenediaminododecanedicarboxylic acid (polyamide 6/66/612). These can use 1 type (s) or 2 or more types.
[ガラス繊維]
 本発明に用いるガラス繊維は、特に限定されないが、ガラス繊維と樹脂との接着性を向上させる観点から、収束材で収束されていることが好ましい。
[Glass fiber]
Although the glass fiber used for this invention is not specifically limited, From a viewpoint of improving the adhesiveness of glass fiber and resin, it is preferable that it is converged with the convergence material.
 収束材も、特に限定されないが、ポリアミド樹脂との相溶性の観点から、ウレタン樹脂及び/又はアクリル樹脂であることが好ましい。それ以外の収束材の場合、ポリアミド樹脂との相溶性が十分でなく、物性等が低下する場合がある。 The converging material is not particularly limited, but is preferably a urethane resin and / or an acrylic resin from the viewpoint of compatibility with the polyamide resin. In the case of other convergent materials, the compatibility with the polyamide resin is not sufficient, and the physical properties and the like may decrease.
 本発明に用いるガラス繊維は、特に限定されないが、平均繊維径が、3μm以上13μm以下であり、3μm以上13μm以下の範囲外になると、本発明の成形体の寸法安定性及び機械特性が低下する。本発明の成形体の寸法安定性、機械特性及び摺動特性をさらに向上させる観点から、5μm以上12μm以下が好ましく、6μm以上11μm以下がより好ましい。 The glass fiber used in the present invention is not particularly limited, but when the average fiber diameter is 3 μm or more and 13 μm or less and outside the range of 3 μm or more and 13 μm or less, the dimensional stability and mechanical properties of the molded article of the present invention are deteriorated. . From the viewpoint of further improving the dimensional stability, mechanical properties, and sliding properties of the molded article of the present invention, 5 μm or more and 12 μm or less is preferable, and 6 μm or more and 11 μm or less is more preferable.
 ガラス繊維の平均繊維径はJIS R3420で測定することができる。 The average fiber diameter of the glass fiber can be measured according to JIS R3420.
 ガラス繊維は、ポリアミド樹脂との接着性の観点から、表面処理剤により表面処理がされていることが好ましい。表面処理剤としては、例えば、シラン系化合物、クロム系化合物、チタン系化合物等が挙げられ、シラン系化合物及び/又はチタン系化合物の表面処理剤が好ましい。 The glass fiber is preferably surface-treated with a surface treatment agent from the viewpoint of adhesiveness with the polyamide resin. Examples of the surface treatment agent include silane compounds, chromium compounds, titanium compounds, and the like, and surface treatment agents of silane compounds and / or titanium compounds are preferable.
 シラン系化合物の表面処理剤としては、収束剤との接着に優れたアミノシラン系のカップリング剤が好ましく、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アミノジチオプロピルトリヒドロキシシラン、γ-(ポリエチレンアミノ)プロピルトリメトキシシラン、N-β-(アミノプロピル)-γ-アミノプロピルメチルジメトキシシラン、N-(トリメトキシシリルプロピル)-エチレンジアミン、γ-ジブチルアミノプロピルトリメトキシシラン等が挙げられる。これらは1種又は2種以上を用いることができる。 As the surface treatment agent for the silane compound, an aminosilane coupling agent excellent in adhesion to the sizing agent is preferable. For example, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ -Aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, γ-aminodithiopropyltrihydroxysilane, γ- (polyethyleneamino) propyltrimethoxysilane, N-β- (aminopropyl) -γ-aminopropylmethyldimethoxysilane, N- (trimethoxysilylpropyl) -ethylenediamine, γ-dibutylaminopropyltrimethoxysilane, etc. It is done. These can use 1 type (s) or 2 or more types.
 チタン系化合物の表面処理剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトライソプロピルチタネート、テトラブチルチタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルジメタクリルイソステアロイルチタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、イソプロピルトリクミルフェニルチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、イソプロピルイソステアロイルジアクリルチタネート等が挙げられる。これらは1種又は2種以上を用いることができる。 Surface treatment agents for titanium compounds include isopropyl triisostearoyl titanate, isopropyl tri (N-aminoethyl) titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraisopropyl titanate, tetraisopropyl titanate, Butyl titanate, tetraoctyl bis (ditridecyl phosphite) titanate, isopropyl trioctanoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl tri (dioctyl phosphate) titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl dimethacrylisostearoyl titanate Tetra (2,2-diallyloxymethyl-1-buty ) Bis (ditridecylphosphite) titanate, isopropyl tricumylphenyl titanate, bis (dioctyl pyrophosphate) oxy acetate titanate, and isopropyl isostearoyl diacryl titanate. These can use 1 type (s) or 2 or more types.
 これらの中でも、N-β-(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)γ-アミノプロピルメチルジメトキシシラン及びγ-アミノプロピルトリエトキシシランよりなる群から選ばれる少なくとも1種が好ましい。 Among these, at least selected from the group consisting of N-β- (aminoethyl) γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) γ-aminopropylmethyldimethoxysilane and γ-aminopropyltriethoxysilane. One is preferred.
[組成物]
 本発明の組成物は、蓚酸化合物を原料とするポリアミド樹脂及び、特定のガラス繊維を含む。
[Composition]
The composition of this invention contains the polyamide resin which uses an oxalic acid compound as a raw material, and a specific glass fiber.
 本発明の組成物は、組成物全量に対し、機械物性や摺動性を向上させる観点から、ガラス繊維を10質量%以上80質量%以下含み、物性と摺動性をさらに向上させる観点から、ガラス繊維を15質量%以上60質量%以下含むことが好ましく、20質量%以上50質量%以下含むことがより好ましい。 From the viewpoint of improving mechanical properties and slidability with respect to the total amount of the composition, the composition of the present invention includes 10% by mass or more and 80% by mass or less of glass fiber, and from the viewpoint of further improving physical properties and slidability, The glass fiber is preferably contained in an amount of 15% by mass or more and 60% by mass or less, and more preferably 20% by mass or more and 50% by mass or less.
 また、本発明の組成物は、組成物全量に対し、ポリアミド樹脂を20質量%以上90質量%以下含むことが好ましく、機械物性や摺動性の観点から、ポリアミド樹脂を40質量%以上85質量%以下含むことが好ましく、50質量%以上80質量%以下含むことがより好ましい。 The composition of the present invention preferably contains 20% by mass to 90% by mass of the polyamide resin with respect to the total amount of the composition. From the viewpoint of mechanical properties and slidability, the polyamide resin is 40% by mass to 85% by mass. % Or less, more preferably 50% by mass or more and 80% by mass or less.
 さらに、本発明の組成物は、ヨウ化第一銅、ヨウ化カリウム及びメラミンを含むことが好ましく、組成物全量に対し、ヨウ化第一銅、ヨウ化カリウム及びメラミンを0.1質量%以上2.0質量%以下含むことが好ましく、0.2質量%以上1.0質量%以下含むことがより好ましく、0.25質量%以上0.38質量%以下含むことがさらに好ましい。また、ヨウ化第一銅、ヨウ化カリウム及びメラミンの質量比(ヨウ化第一銅:ヨウ化カリウム:メラミン)は、2~4:40~60:1~3であることが好ましく、2.5~3.5:45~55:1.5~2.5であることがより好ましい。 Furthermore, the composition of the present invention preferably contains cuprous iodide, potassium iodide and melamine, and the total amount of cuprous iodide, potassium iodide and melamine is 0.1% by mass or more. The content is preferably 2.0% by mass or less, more preferably 0.2% by mass or more and 1.0% by mass or less, and further preferably 0.25% by mass or more and 0.38% by mass or less. The mass ratio of cuprous iodide, potassium iodide and melamine (cuprous iodide: potassium iodide: melamine) is preferably 2 to 4:40 to 60: 1 to 3. It is more preferably 5 to 3.5: 45 to 55: 1.5 to 2.5.
 本発明の組成物は、成形性の観点から、脂肪酸金属を含むことが好ましく、組成物全量に対し、脂肪酸金属を100ppm以上300ppm以下含むことが好ましい。 The composition of the present invention preferably contains a fatty acid metal from the viewpoint of moldability, and preferably contains 100 ppm or more and 300 ppm or less of the fatty acid metal with respect to the total amount of the composition.
 脂肪酸金属としては、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ステアリン酸リチウム、ラウリン酸カルシウム、リノール酸亜鉛、リシノール酸カルシウム、2-エチルヘキソイン酸亜鉛等が挙げられ、成形性の観点から、ステアリン酸リチウム、ステアリン酸カルシウム及びステアリン酸ナトリウムよりなる群から選択される少なくも1種が好ましい。 Examples of the fatty acid metal include zinc stearate, calcium stearate, barium stearate, aluminum stearate, magnesium stearate, lithium stearate, calcium laurate, zinc linoleate, calcium ricinoleate, and zinc 2-ethylhexoate. From the viewpoint of properties, at least one selected from the group consisting of lithium stearate, calcium stearate and sodium stearate is preferred.
 本発明の組成物には、本発明の組成物の特性を損なわない範囲内で、通常配合される各種の添加剤、改質剤、強化材、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、耐候剤、フィラー、可塑剤、発泡剤、ブロッキング防止剤、粘着性付与剤、シール性改良剤、防雲剤、離型剤、架橋剤、発泡剤、難燃剤、着色剤(顔料、染料等)、カップリング剤、ガラス繊維等の無機強化材等を含有することができる。 In the composition of the present invention, various additives, modifiers, reinforcing materials such as heat stabilizers, antioxidants, UV absorption, etc., which are usually blended within the range that does not impair the properties of the composition of the present invention. Agents, weathering agents, fillers, plasticizers, foaming agents, antiblocking agents, tackifiers, sealability improvers, anti-clouding agents, mold release agents, crosslinking agents, foaming agents, flame retardants, colorants (pigments, dyes Etc.), inorganic reinforcing materials such as coupling agents and glass fibers.
 本発明の組成物には、本発明の組成物の特性を損なわない範囲内で、ポリアミド樹脂以外の熱可塑性樹脂を含むことができ、ポリアミド樹脂以外の熱可塑性樹脂としては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)、ポリプロピレン(PP)、エチレン/プロピレン共重合体(EPR)、エチレン/ブテン共重合体(EBR)、等のポリオレフィン系樹脂及び、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等のカルボキシル基及びその金属塩(Na、Zn、K、Ca、Mg)、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物等の酸無水物基、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル等のエポキシ基等の官能基が含有された化合物により変性された、上記ポリオレフィン系樹脂、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンオキシド(PPO)等のポリエーテル系樹脂、ポリフェニレンスルフィド(PPS)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、メタクリロニトリル/スチレン共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS)が挙げられる。 The composition of the present invention can contain a thermoplastic resin other than the polyamide resin within a range not impairing the properties of the composition of the present invention. As the thermoplastic resin other than the polyamide resin, a high-density polyethylene (HDPE) can be used. ), Medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra high molecular weight polyethylene (UHMWPE), polypropylene (PP), ethylene / propylene copolymer (EPR), ethylene / Polyolefin resins such as butene copolymer (EBR), acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, mesaconic acid, citraconic acid, glutaconic acid, cis-4-cyclohexene-1 , 2-dicarboxylic acid, endobicyclo- [2.2.1] -5-heptene Carboxyl groups such as 2,3-dicarboxylic acid and metal salts thereof (Na, Zn, K, Ca, Mg), maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- [2.2.1] -5 -Compounds containing functional groups such as epoxy groups such as acid anhydride groups such as heptene-2,3-dicarboxylic acid anhydride, glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, glycidyl citraconic acid Modified by the above-mentioned polyolefin resin, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyether resin such as polyphenylene oxide (PPO), polyphenylene sulfide (PPS), polymethacrylonitrile, acrylonitrile / styrene copolymer Polymer (AS), Metallic Ronitoriru / styrene copolymer, acrylonitrile / butadiene / styrene copolymer (ABS).
 本発明の組成物の製造方法は、特に制限はなく、通常、以下の製造方法を挙げることができる。円筒型混合機等の混合機を用いる方法、二軸押出機、単軸押出機、多軸押出機、バンバリミキサー、ロールミキサー、ニーダー等の押出機を用いる方法、混合機と押出機を組み合わせて製造する方法等をあげることができる。 The production method of the composition of the present invention is not particularly limited, and usually the following production methods can be mentioned. A method using a mixer such as a cylindrical mixer, a method using a twin screw extruder, a single screw extruder, a multi screw extruder, a Banbury mixer, a roll mixer, a kneader or the like, a combination of a mixer and an extruder The manufacturing method etc. can be mention | raise | lifted.
 本発明の組成物は、実使用時の寸法安定性、摩擦係数、磨耗量が低いことから、摺動性部品に用いられることが好ましい。 The composition of the present invention is preferably used for slidable parts because it has low dimensional stability, coefficient of friction, and wear during actual use.
[成形品]
 本発明の組成物を成形品にする方法としては、例えば、射出成形、押出成形などが挙げられ、これらの中でも、射出成形による方法が好ましい。
[Molding]
Examples of the method for forming the composition of the present invention into a molded product include injection molding and extrusion molding. Among these, the method by injection molding is preferable.
 本発明のポリアミド樹脂組成物を成形してなる成形品としては、射出成形品が好ましい。射出成形品の中でも、摺動部品が好ましく、摺動部品の中でも、ギア、プーリー、カム及び軸受よりなる群から選択される1種が好ましい。 As a molded product formed by molding the polyamide resin composition of the present invention, an injection molded product is preferable. Among the injection molded products, sliding parts are preferable, and among the sliding parts, one type selected from the group consisting of gears, pulleys, cams and bearings is preferable.
(第1の発明)
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらにより制限されるものではない。
(First invention)
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 [物性測定、成形、評価方法]
以下の方法により、成形や測定を行った。
[Physical property measurement, molding, evaluation method]
Molding and measurement were performed by the following methods.
(1)相対粘度(ηr)
 溶媒が96質量%硫酸であり、ポリアミド樹脂の濃度が1.0g/dlのである溶液を用いて、オスワルド粘度計により25℃で相対粘度を測定した。
(1) Relative viscosity (ηr)
The relative viscosity was measured at 25 ° C. with an Oswald viscometer using a solution in which the solvent was 96% by mass sulfuric acid and the polyamide resin concentration was 1.0 g / dl.
(2)試験片の作製
 得られた樹脂組成物を射出成形機に投入し、樹脂温度300℃、金型温度95℃にて試験片を作成した。試験片の寸法は、荷重たわみ温度測定用の試験片が128mm×12.7mm×6.2mm、吸水率測定用の試験片が100mm×30mm×1mm、電気特性用の試験片が80mm×80mm×3mmである。
(2) Preparation of test piece The obtained resin composition was put into an injection molding machine, and a test piece was prepared at a resin temperature of 300 ° C and a mold temperature of 95 ° C. The dimensions of the test piece were 128 mm × 12.7 mm × 6.2 mm for the test specimen for measuring the deflection temperature under load, 100 mm × 30 mm × 1 mm for the test piece for measuring water absorption, and 80 mm × 80 mm × for the test piece for electrical characteristics. 3 mm.
(3)荷重たわみ温度(熱変形温度)
 ASTM D648に準拠し、荷重1.82MPaで、試験片の荷重たわみ温度を測定した。
(3) Deflection temperature under load (thermal deformation temperature)
Based on ASTM D648, the load deflection temperature of the test piece was measured at a load of 1.82 MPa.
(4)衝撃強さ(シャルピーノッチ有)
 ASTM D6110に準拠し、温度23℃で、試験片の衝撃強さを測定した。
(4) Impact strength (with Charpy notch)
The impact strength of the test piece was measured at a temperature of 23 ° C. according to ASTM D6110.
(5)飽和吸水率
 23℃の蒸留水に試験片を浸漬させ、試験片の質量を測定し、試験片の質量の変化率が0.2%の範囲内で5日おきに3回続いた場合に試験片への水分の吸収が飽和に達したと判断して、水に浸漬する前の試験片の質量(Zg)と飽和に達した時の試験片の質量(Yg)から次の式(1)により飽和吸水率(%)を算出した。
 飽和吸水率(%)=(Y-Z)/Z×100 (1)
(5) Saturated water absorption rate The test piece was immersed in distilled water at 23 ° C., the mass of the test piece was measured, and the rate of change in the mass of the test piece lasted 3 times every 5 days within a range of 0.2%. In this case, it is determined that the absorption of water in the test piece has reached saturation, and the following equation is obtained from the mass (Zg) of the test piece before immersion in water and the mass (Yg) of the test piece when saturation is reached. The saturated water absorption (%) was calculated from (1).
Saturated water absorption (%) = (Y−Z) / Z × 100 (1)
(6)電気特性
 IEC60250に準拠し、23℃、50%RHの環境下で、安藤電気製誘電体損測定装置TR-10Cを用いて、周波数1MHz時の試験片の誘電率及び誘電正接を測定した。
(6) Electrical characteristics In accordance with IEC60250, the dielectric constant and dielectric loss tangent of a test piece at a frequency of 1 MHz are measured using a dielectric loss measuring device TR-10C manufactured by Ando Electric Co., Ltd. in an environment of 23 ° C. and 50% RH. did.
[ポリアミド樹脂(A)]
・ポリアミド92
 ポンプを直結した原料投入口、窒素ガス導入口、放圧口、攪拌機、温度計、トルクメーター、圧力計、圧力調整装置及びポリマー抜出口を備えた内容積が約150Lの圧力容器に、ジアミン(b)の1,9-ノナンジアミン20.1kg(127モル)と2-メチル-1,8-オクタンジアミン3.5kg(22モル)を仕込み、圧力容器を窒素ガスで0.5MPaGに加圧した後、次に常圧まで窒素ガスを放出する操作を繰り返し、窒素置換を行った後、封圧下、攪拌しながら系内を昇温した。約1時間かけて内温を150℃にした後、ジカルボン酸(a)の蓚酸ジブチル30.2kg(149モル)をポンプにより流速1.49L/分で反応容器内に供給すると同時に昇温した。供給直後の圧力容器内の内圧は、重縮合反応により生成したブタノールによって0.35MPaGまで上昇し、重縮合物の温度は約170℃まで上昇した。その後、温度を235℃まで昇温した。その間、生成したブタノールは放圧口より抜き出しながら、内圧を1.0MPaGに調節した。重縮合物の温度が235℃に達した直後から放圧口よりブタノールを抜き出し、内圧を常圧にした。常圧にしたところから、1.5L/分で窒素ガスを流しながら昇温を開始し、重縮合物の温度を260℃にし、260℃においてトルクの値が一定値になるまで反応させた。その後、攪拌を止めて系内を窒素で1MPaGに加圧して静置した後、内圧0.5MPaGまで放圧し、ポリアミド92(以下、PA92と呼ぶこともある。)を圧力容器下部抜出口より紐状に抜き出した。紐状のPA92を直ちに水冷し、それをペレタイザーによってペレット化した。相対粘度は、3.13であった。得られるPA92は、PA92に含まれる全ジカルボン酸由来の単位の総量中に、蓚酸化合物由来の単位の含有量が100モル%であり、全ジアミン(b)由来の単位の総量中に、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミン由来の単位の合計の含有量が、100モル%であり、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンのモル比は、83:17~86:14である。
[Polyamide resin (A)]
・ Polyamide 92
Into a pressure vessel with an internal volume of about 150 L equipped with a raw material inlet, a nitrogen gas inlet, a pressure outlet, a stirrer, a thermometer, a torque meter, a pressure gauge, a pressure regulator, and a polymer outlet directly connected to a pump, a diamine ( b) 1,9-nonanediamine 20.1 kg (127 mol) and 2-methyl-1,8-octanediamine 3.5 kg (22 mol) were charged, and the pressure vessel was pressurized to 0.5 MPaG with nitrogen gas. Then, after repeating the operation of releasing nitrogen gas to normal pressure and replacing with nitrogen, the system was heated while stirring under a sealing pressure. After the internal temperature was raised to 150 ° C. over about 1 hour, 30.2 kg (149 mol) of dibutyl oxalate dicarboxylic acid (a) was supplied into the reaction vessel at a flow rate of 1.49 L / min by a pump and the temperature was raised at the same time. The internal pressure in the pressure vessel immediately after the supply increased to 0.35 MPaG by butanol produced by the polycondensation reaction, and the temperature of the polycondensate increased to about 170 ° C. Thereafter, the temperature was raised to 235 ° C. Meanwhile, the internal pressure was adjusted to 1.0 MPaG while extracting the generated butanol from the pressure release port. Immediately after the temperature of the polycondensate reached 235 ° C., butanol was extracted from the pressure relief port, and the internal pressure was brought to normal pressure. From the normal pressure, the temperature was raised while flowing nitrogen gas at 1.5 L / min, the temperature of the polycondensate was adjusted to 260 ° C., and the reaction was continued at 260 ° C. until the torque value reached a constant value. Thereafter, the stirring is stopped and the inside of the system is pressurized to 1 MPaG with nitrogen and allowed to stand, and then released to an internal pressure of 0.5 MPaG. Polyamide 92 (hereinafter sometimes referred to as PA92) is drawn from the lower outlet of the pressure vessel. Extracted into a shape. The string-like PA92 was immediately cooled with water and pelletized by a pelletizer. The relative viscosity was 3.13. In the obtained PA92, the content of units derived from the succinic acid compound is 100 mol% in the total amount of units derived from all dicarboxylic acids contained in PA92, and 1 in the total amount of units derived from all diamine (b), The total content of units derived from 9-nonanediamine and 2-methyl-1,8-octanediamine is 100 mol%, and the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 83:17 to 86:14.
・ポリアミド92/62
 ポンプを直結した原料投入口、窒素ガス導入口、放圧口、攪拌機、温度計、トルクメーター、圧力計、圧力調整装置及びポリマー抜出口を備えた内容積が約150Lの圧力容器に、ジアミン(b)の1,9-ノナンジアミン10.5kg(66.4モル)、2-メチル-1,8-オクタンジアミン1.8kg(11.6モル)と1,6-ヘキサメチレンジアミン8.3kg(71.0モル)を仕込み、圧力容器を窒素ガスで0.5MPaGに加圧した後、次に常圧まで窒素ガスを放出する操作を5回繰り返し、窒素置換を行った後、封圧下、攪拌しながら系内を昇温した。約1時間かけて内温を170℃にした後、ジカルボン酸(a)の蓚酸ジブチル30.2kg(149モル)をポンプにより流速1.49L/分で反応容器内に供給すると同時に昇温した。供給直後の圧力容器内の内圧は、重縮合反応により生成したブタノールによって0.35MPaGまで上昇し、重縮合物の温度は約190℃まで上昇した。その後、温度を250℃まで昇温した。その間、生成したブタノールは放圧口より抜き出しながら、内圧を0.5MPaGに調節した。重縮合物の温度が250℃に達した直後から放圧口よりブタノールを抜き出し、内圧を常圧にした。常圧にしたところから、1.5L/分で窒素ガスを流しながら昇温を開始し、重縮合物の温度を270℃にし、270℃においてトルクの値が一定値になるまで反応させた。その後、攪拌を止めて系内を窒素で1MPaGに加圧して静置した後、内圧0.5MPaGまで放圧し、ポリアミド樹脂(A-2)(以下、PA92/62と呼ぶこともある。)を圧力容器下部抜出口より紐状に抜き出した。紐状のPA92/62を直ちに水冷し、それをペレタイザーによってペレット化した。相対粘度は、2.78であった。得られるPA92/62は、PA92/62に含まれる全ジカルボン酸由来の単位の総量中に、蓚酸化合物由来の単位の含有量が100モル%であり、全ジアミン(b)由来の単位の総量中に、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、及び1,6-ヘキサメチレンジアミン由来の単位の合計の含有量が、100モル%であり、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、及び1,6-ヘキサメチレンジアミンの重量比は、50:8.8:41.2~52:9.2:38.8である。
・ Polyamide 92/62
Into a pressure vessel with an internal volume of about 150 L equipped with a raw material inlet, a nitrogen gas inlet, a pressure outlet, a stirrer, a thermometer, a torque meter, a pressure gauge, a pressure regulator, and a polymer outlet directly connected to a pump, a diamine ( b) 1,9-nonanediamine 10.5 kg (66.4 mol), 2-methyl-1,8-octanediamine 1.8 kg (11.6 mol) and 1,6-hexamethylenediamine 8.3 kg (71 0.0 mol), the pressure vessel was pressurized to 0.5 MPaG with nitrogen gas, and then the operation of releasing the nitrogen gas to normal pressure was repeated five times to perform nitrogen substitution, and then stirred under a sealing pressure. The temperature inside the system was increased. After the internal temperature was raised to 170 ° C. over about 1 hour, 30.2 kg (149 mol) of dibutyl oxalate of dicarboxylic acid (a) was supplied into the reaction vessel at a flow rate of 1.49 L / min with a pump, and the temperature was raised at the same time. The internal pressure in the pressure vessel immediately after the supply increased to 0.35 MPaG by butanol generated by the polycondensation reaction, and the temperature of the polycondensate increased to about 190 ° C. Thereafter, the temperature was raised to 250 ° C. Meanwhile, the internal pressure was adjusted to 0.5 MPaG while the generated butanol was extracted from the pressure release port. Immediately after the temperature of the polycondensate reached 250 ° C., butanol was extracted from the pressure relief port, and the internal pressure was brought to normal pressure. From the normal pressure, the temperature was raised while flowing nitrogen gas at 1.5 L / min, the temperature of the polycondensate was changed to 270 ° C., and the reaction was continued at 270 ° C. until the torque value became a constant value. Thereafter, the stirring was stopped, the inside of the system was pressurized to 1 MPaG with nitrogen and allowed to stand, then the pressure was released to an internal pressure of 0.5 MPaG, and the polyamide resin (A-2) (hereinafter sometimes referred to as PA92 / 62). A string was extracted from the lower outlet of the pressure vessel. The string-like PA92 / 62 was immediately cooled with water and pelletized by a pelletizer. The relative viscosity was 2.78. In the obtained PA92 / 62, in the total amount of units derived from all dicarboxylic acids contained in PA92 / 62, the content of the unit derived from oxalic acid compound is 100 mol%, and in the total amount of units derived from all diamine (b) In addition, the total content of units derived from 1,9-nonanediamine, 2-methyl-1,8-octanediamine, and 1,6-hexamethylenediamine is 100 mol%, and 1,9-nonanediamine, The weight ratio of -methyl-1,8-octanediamine and 1,6-hexamethylenediamine is 50: 8.8: 41.2 to 52: 9.2: 38.8.
[ポリフェニレンエーテル樹脂]
・フマル酸で変性したポリフェニレンエーテル
 ポリフェニレンエーテル樹脂は、フマル酸で変性したポリフェニレンエーテルである出光興産株式会社製のザレック(登録商標)CX-1(以下、フマル酸変性PPEと呼ぶこともある。)を用いた。
[Polyphenylene ether resin]
-Polyphenylene ether modified with fumaric acid The polyphenylene ether resin is a polyphenylene ether modified with fumaric acid, Zarek (registered trademark) CX-1 (hereinafter also referred to as fumaric acid-modified PPE) manufactured by Idemitsu Kosan Co., Ltd. Was used.
[実施例1]
 PA92を70質量%及びフマル酸変性PPEを30質量%の割合で、二軸押出機に供給し、シリンダー温度300℃の条件下で溶融混練し、ストランドとして押し出し、冷却固化させた後、ペレタイザーにて切断し、ペレット状の樹脂組成物を得た。得られた樹脂組成物のペレットを乾燥させた。乾燥したペレットの試験片を作製し、荷重たわみ温度、衝撃強さ、飽和吸水率、誘電率及び誘電正接を測定した。結果を表1に示す。
[Example 1]
70 mass% of PA92 and 30 mass% of fumaric acid-modified PPE are fed to a twin screw extruder, melt-kneaded under conditions of a cylinder temperature of 300 ° C., extruded as a strand, cooled and solidified, and then put into a pelletizer. To obtain a pellet-shaped resin composition. The pellet of the obtained resin composition was dried. Test pieces of dried pellets were prepared, and the deflection temperature under load, impact strength, saturated water absorption, dielectric constant, and dielectric loss tangent were measured. The results are shown in Table 1.
[実施例2]
 PA92を50質量%及びフマル酸変性PPEを50質量%の割合に変更した以外は、実施例1と同様にした。結果を表1に示す。
[Example 2]
The procedure was the same as Example 1 except that PA92 was changed to 50% by mass and fumaric acid-modified PPE was changed to 50% by mass. The results are shown in Table 1.
[実施例3]
 PA92の代わりにPA92/62を用いた以外は、実施例1と同様にした。結果を表1に示す。
[Example 3]
Example 1 was repeated except that PA92 / 62 was used instead of PA92. The results are shown in Table 1.
[実施例4]
 PA92の代わりにPA92/62を用いた以外は、実施例2と同様にした。結果を表1に示す。結果を表1に示す。
[Example 4]
Example 2 was repeated except that PA92 / 62 was used instead of PA92. The results are shown in Table 1. The results are shown in Table 1.
[比較例1]
 PA92の試験片を作製し、荷重たわみ温度、衝撃強さ、飽和吸水率、誘電率及び誘電正接を測定した。結果を表1に示す。
[Comparative Example 1]
A specimen of PA92 was prepared, and the deflection temperature under load, impact strength, saturated water absorption, dielectric constant, and dielectric loss tangent were measured. The results are shown in Table 1.
[比較例2]
 PA92/62の試験片を作製し、荷重たわみ温度、衝撃強さ、飽和吸水率、誘電率及び誘電正接を測定した。結果を表1に示す。
[Comparative Example 2]
A specimen of PA92 / 62 was prepared, and the deflection temperature under load, impact strength, saturated water absorption, dielectric constant and dielectric loss tangent were measured. The results are shown in Table 1.
[比較例3]
 PA92の代わりに宇部興産株式会社製のポリアミド6である1015B(以下、PA6と呼ぶこともある。)を用い、シリンダー温度280℃で混練した以外は実施例1と同様にした。結果を表1に示す。
[Comparative Example 3]
1015B (hereinafter also referred to as PA6), which is polyamide 6 manufactured by Ube Industries, Ltd., was used instead of PA92, and the same procedure as in Example 1 was carried out except that kneading was performed at a cylinder temperature of 280 ° C. The results are shown in Table 1.
[比較例4]
 PA92の代わりに宇部興産株式会社製のポリアミド66であり2020B(以下、PA66と呼ぶこともある。)を用いて、シリンダー温度290℃で混練した以外は実施例1と同様にした。結果を表1に示す。
[Comparative Example 4]
The same procedure as in Example 1 was carried out except that polyamide 66 manufactured by Ube Industries, Ltd. instead of PA92 and 2020B (hereinafter also referred to as PA66) was used and kneaded at a cylinder temperature of 290 ° C. The results are shown in Table 1.
[比較例5]
 PA92を40質量%とフマル酸変性PPEを60質量%の割合で、実施例1と同条件で混練を行ったが、紐状の樹脂組成物であるストランドを得ることができなかった。
[Comparative Example 5]
Kneading was performed under the same conditions as in Example 1 at a ratio of 40% by mass of PA92 and 60% by mass of the fumaric acid-modified PPE, but a strand that was a string-like resin composition could not be obtained.
[比較例6]
 PA92/62を40質量%とフマル酸変性PPEを60質量%の割合で、実施例1と同条件で混練を行ったが、紐状の樹脂組成物であるストランドを得ることができなかった。
[Comparative Example 6]
Kneading was carried out under the same conditions as in Example 1 at a ratio of 40% by mass of PA92 / 62 and 60% by mass of the fumaric acid-modified PPE, but a strand that was a string-like resin composition could not be obtained.
[比較例7]
 フマル酸変性PPEの試験片は、フマル酸変性PPEの成型加工性が悪く、試験片が作製できなかった。
[Comparative Example 7]
The test piece of fumaric acid-modified PPE had poor molding processability of fumaric acid-modified PPE, and the test piece could not be produced.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
(第2の発明)
 以下において実施例及び比較例を掲げて本発明をさらに詳しく説明するが、本発明の要旨を越えない限り以下の例に限定されるものではない。以下に、各種評価方法、使用した材料を示す。
(Second invention)
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded. Various evaluation methods and materials used are shown below.
(1)寸法安定性
 住友重機械工業社製SE100Dの射出成形機を用いて、図1の200mm×40mm×3mmtの試験片を作成し、その試験片を23℃、湿度50%RHの条件下に放置し、約400時間の間隔で吸水による重量変化を測定し、平衡に達した時点を飽和吸水率とした。その試験片内のケガキ線間距離をOLYMPUS製マイクロスコープにて測定し、次の式により寸法安定性を算出した。尚、MDは、図1のA方向(流れ方向)の寸法安定性を指し、TDは、図1のB方向(垂直方向)の寸法安定性を指す。
 寸法安定性=(金型ケガキ線間距離-試験片内のケガキ線間距離)/金型ケガキ線間距離×100
(1) Dimensional stability Using a SE100D injection molding machine manufactured by Sumitomo Heavy Industries, Ltd., a test piece of 200 mm × 40 mm × 3 mmt in FIG. 1 was prepared, and the test piece was subjected to conditions of 23 ° C. and humidity 50% RH. The weight change due to water absorption was measured at intervals of about 400 hours, and the time when equilibrium was reached was defined as the saturated water absorption. The distance between the marking lines in the test piece was measured with an OLYMPUS microscope, and the dimensional stability was calculated by the following equation. MD indicates dimensional stability in the A direction (flow direction) in FIG. 1, and TD indicates dimensional stability in the B direction (vertical direction) in FIG.
Dimensional stability = (Distance between mold marking lines-Distance between marking lines in test specimen) / Distance between mold marking lines x 100
(2)限界PV値
 住友重機械工業社製SE100Dの射出成形機を用いて、100mm×30mm×3mmの試験片を作成し、23℃、湿度50%RHの条件下に500時間以上おいた後、JIS K7218A法に準拠し、鈴木式摩擦摩耗試験機で、材質がJIS規格G4051に記載のS45Cの炭素鋼である外径25.6mm、内径20mm、高さ15mmのリングを用いて、作成した試験片の限界PV値を、リングオンプレート方式で、試験速度を500mm/s、試験荷重を試験開始時に20kgf(196N)を掛け、10分毎に20kgf(196N)づつ荷重を上昇させていく条件で、測定した。試験片が溶融した荷重の直前の荷重を限界PV値とした。
(2) Limit PV value Using a SE100D injection molding machine manufactured by Sumitomo Heavy Industries, Ltd., creating a test piece of 100 mm × 30 mm × 3 mm and placing it under conditions of 23 ° C. and humidity 50% RH for 500 hours or more In accordance with the JIS K7218A method, a Suzuki friction friction tester was used, using a ring with an outer diameter of 25.6 mm, an inner diameter of 20 mm, and a height of 15 mm, which is S45C carbon steel described in JIS standard G4051. The limit PV value of the specimen is a ring-on-plate method, the test speed is 500 mm / s, the test load is multiplied by 20 kgf (196 N) at the start of the test, and the load is increased by 20 kgf (196 N) every 10 minutes. And measured. The load immediately before the load at which the test piece was melted was defined as the limit PV value.
(3)動摩擦係数
 上記限界PV値の測定装置を用いて、限界PV値の測定と同様に、リングオンプレート方式で、試験速度を500mm/s、20kgf(196N)の一定荷重を掛け、滑り距離が3km及び5kmの条件で測定を行った。次の式から動摩擦係数を算出した。
 動摩擦係数=(摩擦抵抗力)/(試験片にかけた荷重)
(3) Coefficient of dynamic friction Using the above-mentioned limit PV value measuring device, the sliding speed is applied by applying a constant load of 500 mm / s and 20 kgf (196 N) by the ring-on-plate method in the same manner as the measurement of the limit PV value. Was measured under conditions of 3 km and 5 km. The dynamic friction coefficient was calculated from the following equation.
Coefficient of dynamic friction = (friction resistance) / (load applied to specimen)
(4)摩耗量
 上記限界PV値の測定装置を用いて、動摩擦係数の測定と同条件にて測定を行ない、測定前の試験片の重量と測定終了後の試験片の重量の差から磨耗量を算出した。
 摩耗量=(測定前の試験片重量)-(測定後の試験片重量)
(4) Amount of wear Using the above-mentioned limit PV value measuring device, measurement is performed under the same conditions as the measurement of the dynamic friction coefficient, and the amount of wear is determined from the difference between the weight of the test piece before the measurement and the weight of the test piece after the measurement. Was calculated.
Amount of wear = (weight of specimen before measurement) − (weight of specimen after measurement)
[材料]
(1)蓚酸化合物を原料とするポリアミド樹脂(ポリアミド92)
 ポンプを直結した原料投入口、窒素ガス導入口、放圧口、攪拌機、温度計、トルクメーター、圧力計、圧力調整装置及びポリマー抜出口を備えた内容積が約150Lの圧力容器に、ジアミン(b)の1,9-ノナンジアミン20.1kg(127モル)と2-メチル-1,8-オクタンジアミン3.5kg(22モル)を仕込み、圧力容器を窒素ガスで0.5MPaGに加圧した後、次に常圧まで窒素ガスを放出する操作を繰り返し、窒素置換を行った後、封圧下、攪拌しながら系内を昇温した。約1時間かけて内温を150℃にした後、ジカルボン酸(a)の蓚酸ジブチル30.2kg(149モル)をポンプにより流速1.49L/分で反応容器内に供給すると同時に昇温した。供給直後の圧力容器内の内圧は、重縮合反応により生成したブタノールによって0.35MPaGまで上昇し、重縮合物の温度は約170℃まで上昇した。その後、温度を235℃まで昇温した。その間、生成したブタノールは放圧口より抜き出しながら、内圧を1.0MPaGに調節した。重縮合物の温度が235℃に達した直後から放圧口よりブタノールを抜き出し、内圧を常圧にした。常圧にしたところから、1.5L/分で窒素ガスを流しながら昇温を開始し、重縮合物の温度を260℃にし、260℃においてトルクの値が一定値になるまで反応させた。その後、攪拌を止めて系内を窒素で1MPaGに加圧して静置した後、内圧0.5MPaGまで放圧し、ポリアミド92(以下、PA92と呼ぶこともある。)を圧力容器下部抜出口より紐状に抜き出した。紐状のPA92を直ちに水冷し、それをペレタイザーによってペレット化した。相対粘度は、3.13であった。得られるPA92は、PA92に含まれる全ジカルボン酸由来の単位の総量中に、蓚酸化合物由来の単位の含有量が100モル%であり、全ジアミン(b)由来の単位の総量中に、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミン由来の単位の合計の含有量が、100モル%であり、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンのモル比は、83:17~86:14である。
(2)蓚酸化合物を原料とするポリアミド樹脂以外のポリアミド樹脂(ポリアミド66)
・ポリアミド66(PA66-1)(以下、(PA66-1)と称する場合がある。)
 JIS K-6920に準じ、96質量%の硫酸中、ポリアミド濃度1質量%、温度25℃の条件で測定した相対粘度が2.6~2.8であるポリアミド66。
・ポリアミド66(PA66-2)(以下、(PA66-2)と称する場合がある。)
 JIS K-6920に準じ、96質量%の硫酸中、ポリアミド樹脂濃度1質量%、温度25℃の条件で測定した相対粘度が3.2~3.4であるポリアミド66。
[material]
(1) Polyamide resin made from oxalic acid compound (polyamide 92)
Into a pressure vessel with an internal volume of about 150 L equipped with a raw material inlet, a nitrogen gas inlet, a pressure outlet, a stirrer, a thermometer, a torque meter, a pressure gauge, a pressure regulator, and a polymer outlet directly connected to a pump, a diamine ( b) 1,9-nonanediamine 20.1 kg (127 mol) and 2-methyl-1,8-octanediamine 3.5 kg (22 mol) were charged, and the pressure vessel was pressurized to 0.5 MPaG with nitrogen gas. Then, after repeating the operation of releasing nitrogen gas to normal pressure and replacing with nitrogen, the system was heated while stirring under a sealing pressure. After the internal temperature was raised to 150 ° C. over about 1 hour, 30.2 kg (149 mol) of dibutyl oxalate dicarboxylic acid (a) was supplied into the reaction vessel at a flow rate of 1.49 L / min by a pump and the temperature was raised at the same time. The internal pressure in the pressure vessel immediately after the supply increased to 0.35 MPaG by butanol produced by the polycondensation reaction, and the temperature of the polycondensate increased to about 170 ° C. Thereafter, the temperature was raised to 235 ° C. Meanwhile, the internal pressure was adjusted to 1.0 MPaG while extracting the generated butanol from the pressure release port. Immediately after the temperature of the polycondensate reached 235 ° C., butanol was extracted from the pressure relief port, and the internal pressure was brought to normal pressure. From the normal pressure, the temperature was raised while flowing nitrogen gas at 1.5 L / min, the temperature of the polycondensate was adjusted to 260 ° C., and the reaction was continued at 260 ° C. until the torque value reached a constant value. Thereafter, the stirring is stopped and the inside of the system is pressurized to 1 MPaG with nitrogen and allowed to stand, and then released to an internal pressure of 0.5 MPaG. Polyamide 92 (hereinafter sometimes referred to as PA92) is drawn from the lower outlet of the pressure vessel. Extracted into a shape. The string-like PA92 was immediately cooled with water and pelletized by a pelletizer. The relative viscosity was 3.13. In the obtained PA92, the content of units derived from the succinic acid compound is 100 mol% in the total amount of units derived from all dicarboxylic acids contained in PA92, and 1 in the total amount of units derived from all diamine (b), The total content of units derived from 9-nonanediamine and 2-methyl-1,8-octanediamine is 100 mol%, and the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 83:17 to 86:14.
(2) Polyamide resins other than polyamide resins made from oxalic acid compounds (polyamide 66)
Polyamide 66 (PA66-1) (hereinafter sometimes referred to as (PA66-1))
A polyamide 66 having a relative viscosity of 2.6 to 2.8 measured in 96 mass% sulfuric acid in a polyamide concentration of 1 mass% and a temperature of 25 ° C. according to JIS K-6920.
Polyamide 66 (PA66-2) (hereinafter sometimes referred to as (PA66-2))
Polyamide 66 having a relative viscosity of 3.2 to 3.4 measured in 96 mass% sulfuric acid in a polyamide resin concentration of 1 mass% and a temperature of 25 ° C. according to JIS K-6920.
(3)ガラス繊維
・ガラス繊維(GF-1)(以下、(GF-1)と称する場合がある。)
平均繊維径が6.5μmのガラス繊維である日本電気硝子株式会社製のECS03T-251DEを用いた。
・ガラス繊維(GF-2)(以下、(GF-2)と称する場合がある。)
平均繊維径が10.5μmのガラス繊維である日本電気硝子株式会社製のECS03T-251Hを用いた。
・ガラス繊維(GF-3)(以下、(GF-3)と称する場合がある。)
平均繊維径が6.5μmのガラス繊維である日本電気硝子株式会社製のECS03T-289DEを用いた。
・ガラス繊維(GF-4)(以下、(GF-4)と称する場合がある。)
平均繊維径が13.0μmのガラス繊維である日本電気硝子株式会社製のECS03T-289を用いた。
(3) Glass fiber / glass fiber (GF-1) (hereinafter sometimes referred to as (GF-1))
ECS03T-251DE manufactured by Nippon Electric Glass Co., Ltd., which is a glass fiber having an average fiber diameter of 6.5 μm, was used.
Glass fiber (GF-2) (hereinafter sometimes referred to as (GF-2))
ECS03T-251H manufactured by Nippon Electric Glass Co., Ltd., which is a glass fiber having an average fiber diameter of 10.5 μm, was used.
Glass fiber (GF-3) (hereinafter sometimes referred to as (GF-3))
ECS03T-289DE manufactured by Nippon Electric Glass Co., Ltd., which is a glass fiber having an average fiber diameter of 6.5 μm, was used.
Glass fiber (GF-4) (hereinafter sometimes referred to as (GF-4))
ECS03T-289 manufactured by Nippon Electric Glass Co., Ltd., which is a glass fiber having an average fiber diameter of 13.0 μm, was used.
[実施例1、2、比較例1、2]
 表2に記載のポリアミド樹脂及びガラス繊維を、表2に記載の割合で、バレル温度260℃に設定した44mmφベント付二軸押出機で混練し、ペレタイザーにて、ペレット化し、組成物のペレットを得た。
 次に、得られた組成物のペレットを110℃、10Torr(1330Pa)の条件で24時間乾燥した後、シリンダ温度260℃、金型温度80℃で射出成形して各種の試験片を得た。得られた試験片について上記の評価方法にて評価した。その結果を表2に示す。
[Examples 1 and 2, Comparative Examples 1 and 2]
The polyamide resin and glass fiber described in Table 2 were kneaded by a 44 mmφ vented twin-screw extruder set at a barrel temperature of 260 ° C. at the ratio described in Table 2, pelletized by a pelletizer, and the composition pellets were Obtained.
Next, the pellets of the obtained composition were dried at 110 ° C. and 10 Torr (1330 Pa) for 24 hours, and then injection molded at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. to obtain various test pieces. The obtained test piece was evaluated by the above evaluation method. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果より、蓚酸化合物を原料とするポリアミド樹脂とガラス繊維を含む組成物が、寸法安定性、耐摩耗性に優れることは明らかである。 From the results shown in Table 2, it is clear that the composition containing polyamide resin and glass fiber made from an oxalic acid compound is excellent in dimensional stability and wear resistance.
 第1の発明のポリアミド系樹脂とポリフェニレンエーテル系樹脂とを含む樹脂組成物は、吸水性が低く、優れた耐熱性及び成型加工性を有し、かつ低い誘電率や誘電正接を有している。本発明の樹脂組成物は、電気・電子部品、OA部品、車両部品、機械部品などの幅広い分野に使用することができる。
 第2の発明の組成物は、自動車、電気・電子、産業資材、工業材料、日用品及び家庭用品などの各種摺動部材として好適に使用することができる。
 
The resin composition containing the polyamide resin and the polyphenylene ether resin of the first invention has low water absorption, excellent heat resistance and molding processability, and low dielectric constant and dielectric loss tangent. . The resin composition of the present invention can be used in a wide range of fields such as electric / electronic parts, OA parts, vehicle parts, and machine parts.
The composition of 2nd invention can be used conveniently as various sliding members, such as a motor vehicle, an electric / electronic, an industrial material, an industrial material, daily necessities, and household goods.

Claims (13)

  1.  ポリアミド樹脂(A)及びポリフェニレンエーテル樹脂を含む樹脂組成物であり、
    前記ポリアミド樹脂(A)が、ジカルボン酸(a)由来の単位及びジアミン(b)由来の単位を含み、
    前記ジカルボン酸(a)が、蓚酸化合物を含み、
    前記ジアミン(b)が、1,6-ヘキサンジアミン、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンからなる群より選択される2種以上のジアミンを含み、
    前記ポリフェニレンエーテル樹脂の含有量が、前記ポリアミド樹脂(A)及び前記ポリフェニレンエーテル樹脂の合計量に対し、60質量%未満である樹脂組成物。
    A resin composition comprising a polyamide resin (A) and a polyphenylene ether resin;
    The polyamide resin (A) includes a unit derived from a dicarboxylic acid (a) and a unit derived from a diamine (b),
    The dicarboxylic acid (a) contains an oxalic acid compound,
    The diamine (b) includes two or more diamines selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine;
    The resin composition whose content of the said polyphenylene ether resin is less than 60 mass% with respect to the total amount of the said polyamide resin (A) and the said polyphenylene ether resin.
  2.  前記ジアミン(b)が、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを含む請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the diamine (b) contains 1,9-nonanediamine and 2-methyl-1,8-octanediamine.
  3.  前記ジアミン(b)が、1,6-ヘキサンジアミン、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを含む請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the diamine (b) contains 1,6-hexanediamine, 1,9-nonanediamine and 2-methyl-1,8-octanediamine.
  4.  前記1,9-ノナンジアミン及び前記2-メチル-1,8-オクタンジアミンの合計と前記1,6-ヘキサンジアミンとのモル比が5.1:94.9~99:1である請求項3に記載の樹脂組成物。 The molar ratio of the total of the 1,9-nonanediamine and 2-methyl-1,8-octanediamine to the 1,6-hexanediamine is 5.1: 94.9 to 99: 1. The resin composition as described.
  5.  前記1,9-ノナンジアミンと前記2-メチル-1,8-オクタンジアミンのモル比が、5:95~95:5である請求項2~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 2 to 4, wherein a molar ratio of the 1,9-nonanediamine and the 2-methyl-1,8-octanediamine is 5:95 to 95: 5.
  6.  前記ジカルボン酸(a)が蓚酸ジエステルである請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the dicarboxylic acid (a) is an oxalic acid diester.
  7.  請求項1~6のいずれか1項に記載の樹脂組成物を用いて製造される成形品。 A molded article produced using the resin composition according to any one of claims 1 to 6.
  8.  ポリアミド樹脂及びガラス繊維を含む組成物であり、
     前記ポリアミド樹脂は、蓚酸化合物を原料とするポリアミド樹脂を含むことを特徴とする摺動部品用の組成物。
    A composition comprising a polyamide resin and glass fibers;
    The composition for a sliding part, wherein the polyamide resin includes a polyamide resin made of an oxalic acid compound as a raw material.
  9.  ポリアミド樹脂及びガラス繊維を含む組成物であり、
     前記ポリアミド樹脂は、蓚酸化合物を原料とするポリアミド樹脂を含み、
     前記ガラス繊維の繊維径が3μm以上13μm以下である組成物。
    A composition comprising a polyamide resin and glass fibers;
    The polyamide resin includes a polyamide resin using a oxalic acid compound as a raw material,
    The composition whose fiber diameter of the said glass fiber is 3 micrometers or more and 13 micrometers or less.
  10.  前記ガラス繊維の繊維径が3μm以上13μm以下であることを特徴とする請求項8に記載の組成物。 The composition according to claim 8, wherein the fiber diameter of the glass fiber is 3 µm or more and 13 µm or less.
  11.  組成物全量に対し、ガラス繊維を10質量%以上80質量%以下含む請求項8~10のいずれか1項に記載の組成物。 The composition according to any one of claims 8 to 10, comprising 10% by mass to 80% by mass of glass fiber based on the total amount of the composition.
  12.  請求項8~11のいずれか1項に記載の組成物からなる摺動部品。 A sliding part comprising the composition according to any one of claims 8 to 11.
  13.  摺動部品がギアであることを特徴とする請求項12に記載の摺動部品。
     
    The sliding component according to claim 12, wherein the sliding component is a gear.
PCT/JP2012/008164 2012-01-18 2012-12-20 Resin composition, and composition containing polyamide resin and glass fibers WO2013108344A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012007596 2012-01-18
JP2012-007596 2012-01-18
JP2012-118496 2012-05-24
JP2012118496A JP2013245258A (en) 2012-05-24 2012-05-24 Composition containing polyamide resin and glass fiber
JP2012268975A JP2013166916A (en) 2012-01-18 2012-12-10 Resin composition
JP2012-268975 2012-12-10

Publications (1)

Publication Number Publication Date
WO2013108344A1 true WO2013108344A1 (en) 2013-07-25

Family

ID=48798797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008164 WO2013108344A1 (en) 2012-01-18 2012-12-20 Resin composition, and composition containing polyamide resin and glass fibers

Country Status (1)

Country Link
WO (1) WO2013108344A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034242A (en) * 2017-12-27 2018-05-15 南京鸿瑞塑料制品有限公司 A kind of fiberglass reinforced high wear-resistant PA 66/PPO composite material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151145A1 (en) * 2008-06-10 2009-12-17 宇部興産株式会社 Novel polyamide resin composition and polyamide resin-containing product
WO2011013536A1 (en) * 2009-07-27 2011-02-03 Ntn株式会社 Rotating shaft bearing and rotating section support device for wind turbine
WO2011016535A1 (en) * 2009-08-07 2011-02-10 宇部興産株式会社 Conductive polyamide resin composition
JP2011063695A (en) * 2009-09-16 2011-03-31 Ube Industries Ltd Transparent member using polyamide resin
JP2011116889A (en) * 2009-12-04 2011-06-16 Ube Industries Ltd Polyamide resin composition for smt connector
WO2011111713A1 (en) * 2010-03-08 2011-09-15 宇部興産株式会社 Polyamide resin composition
JP2011231167A (en) * 2010-04-26 2011-11-17 Ube Industries Ltd Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151145A1 (en) * 2008-06-10 2009-12-17 宇部興産株式会社 Novel polyamide resin composition and polyamide resin-containing product
WO2011013536A1 (en) * 2009-07-27 2011-02-03 Ntn株式会社 Rotating shaft bearing and rotating section support device for wind turbine
WO2011016535A1 (en) * 2009-08-07 2011-02-10 宇部興産株式会社 Conductive polyamide resin composition
JP2011063695A (en) * 2009-09-16 2011-03-31 Ube Industries Ltd Transparent member using polyamide resin
JP2011116889A (en) * 2009-12-04 2011-06-16 Ube Industries Ltd Polyamide resin composition for smt connector
WO2011111713A1 (en) * 2010-03-08 2011-09-15 宇部興産株式会社 Polyamide resin composition
JP2011231167A (en) * 2010-04-26 2011-11-17 Ube Industries Ltd Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034242A (en) * 2017-12-27 2018-05-15 南京鸿瑞塑料制品有限公司 A kind of fiberglass reinforced high wear-resistant PA 66/PPO composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
US6884485B2 (en) Molding composition based on polyetheramides
CN111448257B (en) Polyamide resin composition
TWI804479B (en) Polyamide resin composition, molding and method for producing polyamide resin pellets
WO2014109300A1 (en) Polyamide composition and molded article
CN110964316B (en) Polyamide composition, molded article, and semi-aromatic polyamide
WO2016002682A1 (en) Polyamide resin composition and molded article comprising same
WO2012043640A1 (en) Polyamide resin composition and molded article comprising same
JP2013028798A (en) Polyamide resin composition and molded product obtained by molding the same
JP2015155543A (en) plastic container and conduit
JP6369608B2 (en) Glass fiber reinforced polyamide resin composition
CN112313288B (en) Resin composition and molded article
WO2013108344A1 (en) Resin composition, and composition containing polyamide resin and glass fibers
JP6843698B2 (en) Polyamide composition and molded product
JP2019026670A (en) Polyamide composition and molding
KR102208253B1 (en) Polyamide Resin Composition for injection molding of thin product and molded product thererof
JP2013095777A (en) Polyamide resin composition for printed board surface mounting component and printed board surface mounting component obtained by molding the same
JP2013166916A (en) Resin composition
KR20200120703A (en) Polyamide composition for liquid assisted injection molding applications
JP2019178261A (en) Polyamide composition and molded article
JP2019127500A (en) Polyamide composition and molded article
JP2015000966A (en) Polyamide resin composition and molded article produced using the same
JP7223159B2 (en) REINFORCED RESIN COMPOSITION, MOLDED PRODUCT AND METHOD FOR IMPROVING TENSILE STRENGTH AT HIGH TEMPERATURE
JP2013245258A (en) Composition containing polyamide resin and glass fiber
WO2023037937A1 (en) Polyamide resin composition
JP2022051850A (en) Polyamide composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865624

Country of ref document: EP

Kind code of ref document: A1