JP2011231167A - Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment - Google Patents
Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment Download PDFInfo
- Publication number
- JP2011231167A JP2011231167A JP2010100752A JP2010100752A JP2011231167A JP 2011231167 A JP2011231167 A JP 2011231167A JP 2010100752 A JP2010100752 A JP 2010100752A JP 2010100752 A JP2010100752 A JP 2010100752A JP 2011231167 A JP2011231167 A JP 2011231167A
- Authority
- JP
- Japan
- Prior art keywords
- polyamide resin
- heat treatment
- polyamide
- component
- diamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyamides (AREA)
Abstract
Description
本発明は、自動車部品又は電気・電子部品用ポリアミド樹脂に関する。詳しくは、ジカルボン酸成分が蓚酸であるポリアミド樹脂であって、成形可能温度幅が広く、成形加工性に優れ、かつ低吸水性、耐薬品性、耐加水分解性などにも優れ、特に熱処理による密度変化が小さく、高温環境下での物性および寸法安定性が要求される自動車部品又は電気・電子部品用ポリアミド樹脂に関するものである。 The present invention relates to a polyamide resin for automobile parts or electric / electronic parts. Specifically, it is a polyamide resin whose dicarboxylic acid component is oxalic acid, has a wide moldable temperature range, excellent molding processability, low water absorption, chemical resistance, hydrolysis resistance, etc., especially by heat treatment The present invention relates to a polyamide resin for automobile parts or electric / electronic parts, which has a small density change and requires physical properties and dimensional stability in a high temperature environment.
ナイロン6、ナイロン66などに代表される結晶性ポリアミドは、その優れた特性と溶融成形の容易さから、衣料用、産業資材用繊維、あるいは汎用のエンジニアリングプラスチックとして広く用いられている。 Crystalline polyamides typified by nylon 6 and nylon 66 are widely used as textiles for clothing, industrial materials, or general-purpose engineering plastics because of their excellent properties and ease of melt molding.
一方では、自動車のエンジンルーム内部品や電気電子用部品などでは、吸水や高温環境下での物性および寸法の変化などの問題点も指摘されている。これらの現象は、一般的に結晶性ポリアミド樹脂は吸水率が高いことや熱処理すると結晶度が増加することにより密度が増加することが原因と考えられている。これらの問題に対しては、使用前に実使用時の平衡吸水率まで吸水させる方法や実使用時以上の温度で熱処理を施す方法などがある。しかし、前記処理を行うことで生産性が低下し、さらにアニール処理では成形品の寸法が変化したり、劣化したりする恐れがあり、吸水およびアニール処理を必要としない、より吸水や熱に対する物性および寸法の安定性に優れたポリアミド樹脂への要求が高まっている。 On the other hand, problems such as changes in physical properties and dimensions under water absorption and high-temperature environments have been pointed out for parts in the engine compartment of automobiles and parts for electric and electronic equipment. These phenomena are generally considered to be caused by the fact that the crystalline polyamide resin has a high water absorption rate and the density increases due to an increase in crystallinity upon heat treatment. To solve these problems, there are a method of absorbing water up to an equilibrium water absorption rate at the time of actual use before use and a method of performing a heat treatment at a temperature higher than that at the time of actual use. However, productivity decreases due to the above treatment, and the size of the molded product may change or deteriorate in the annealing treatment, and water absorption and annealing treatment are not required. In addition, there is an increasing demand for polyamide resins having excellent dimensional stability.
上記の問題を解決する方法としては、耐熱性や耐水性を向上させたポリアミド樹脂が提案されている。例えば、特開2002-220461(特許文献1)には1,9−ノナンジアミンと1,9−ノナンジアミン以外の脂肪族ジアミンとテレフタル酸からなるポリアミドが開示されている。これらのポリアミドは従来のポリアミドに比べて、低吸水で高結晶状態の成形品を提供できるものの、成形品を高温下で使用した場合にさらに結晶化が促進され、密度が変化することにより物性や寸法の変化を生じる恐れがある。 As a method for solving the above problems, polyamide resins having improved heat resistance and water resistance have been proposed. For example, Japanese Patent Application Laid-Open No. 2002-220461 (Patent Document 1) discloses a polyamide composed of 1,9-nonanediamine, an aliphatic diamine other than 1,9-nonanediamine, and terephthalic acid. Although these polyamides can provide molded articles with low water absorption and high crystallinity compared to conventional polyamides, crystallization is further promoted when the molded articles are used at high temperatures, and physical properties and May cause dimensional changes.
一方、ジカルボン酸成分として蓚酸を用いるポリアミド樹脂はポリオキサミド樹脂と呼ばれ、同じアミノ基濃度の他のポリアミド樹脂と比較して融点が高いこと、吸水率が低いことが知られ(特許文献2)、吸水による物性および寸法の変化が問題となっていた従来のポリアミドが使用困難な分野での活用が期待される。 On the other hand, a polyamide resin using oxalic acid as a dicarboxylic acid component is called a polyoxamide resin, and is known to have a higher melting point and lower water absorption than other polyamide resins having the same amino group concentration (Patent Document 2). It is expected to be utilized in fields where conventional polyamides are difficult to use due to changes in physical properties and dimensions due to water absorption.
これまでに、ジアミン成分として種々の脂肪族直鎖ジアミンを用いたポリオキサミド樹脂が提案されている。例えば、WO2008072754A(特許文献3)では、ジアミン成分として1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンのモル比が6:94〜99:1である混合物を用いた場合のポリオキサミド樹脂が溶融重合による高分子量化が可能であり、成形可能温度幅が90℃以上と広く、溶融成形性に優れ、さらに低吸水性、耐薬品性、耐加水分解性にも優れることが示されている。
しかし、先行文献においては、ポリオキサミド樹脂に関して、熱処理に対する密度の安定性についての開示はされていない。
However, in the prior literature, regarding the polyoxamide resin, there is no disclosure regarding the stability of the density with respect to the heat treatment.
本発明が解決しようとする課題は、脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性、耐薬品性、耐加水分解性を損なうことなく、従来の脂肪族ポリアミド樹脂と比較して熱処理後の密度変化が小さいポリアミド樹脂を提供することにある。 The problem to be solved by the present invention is the density after heat treatment as compared with conventional aliphatic polyamide resin without impairing the low water absorption, chemical resistance and hydrolysis resistance found in aliphatic linear polyoxamide resins. The object is to provide a polyamide resin with little change.
本発明者らは、上記の課題を解決するために鋭意検討を重ねた結果、蓚酸源として蓚酸ジエステルを用い、ジアミン成分が炭素数6〜12の脂肪族ジアミンを用いることにより、ポリオキサミド樹脂に見られる低吸水性、耐薬品性、耐加水分解性を損なうことなく、従来のポリアミドに比較して熱処理後の密度変化が小さいポリアミド樹脂が得られることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that polyoxamido resin is obtained by using an oxalic acid diester as the oxalic acid source and an aliphatic diamine having a diamine component of 6 to 12 carbon atoms. The present inventors have found that a polyamide resin having a small density change after heat treatment can be obtained as compared with conventional polyamide without impairing the low water absorption, chemical resistance and hydrolysis resistance.
本発明のポリアミド樹脂は、低吸水性、耐薬品性、耐加水分解性に優れ、特に熱処理後の密度変化が小さく、高温環境下での物性および寸法安定性に優れる。 The polyamide resin of the present invention is excellent in low water absorption, chemical resistance, and hydrolysis resistance, particularly has a small density change after heat treatment, and is excellent in physical properties and dimensional stability under a high temperature environment.
(1)ポリアミド樹脂の構成成分
本発明のポリアミドは、ジカルボン酸成分が蓚酸であり、ジアミン成分が脂肪族ジアミンであり、前記ジカルボン酸成分とジアミン成分とを縮合させて得られるポリアミド樹脂である。
(1) Constituent Component of Polyamide Resin The polyamide of the present invention is a polyamide resin obtained by condensing the dicarboxylic acid component and the diamine component, wherein the dicarboxylic acid component is oxalic acid, the diamine component is an aliphatic diamine.
本発明のポリアミドの製造に用いられる蓚酸源としては、蓚酸ジエステルが用いられ、これらはアミノ基との反応性を有するものであれば特に制限はなく、蓚酸ジメチル、蓚酸ジエチル、蓚酸ジn−(またはi−)プロピル、蓚酸ジn−(またはi−、またはt−)ブチル等の脂肪族1価アルコールの蓚酸ジエステル、蓚酸ジシクロヘキシル等の脂環式アルコールの蓚酸ジエステル、蓚酸ジフェニル等の芳香族アルコールの蓚酸ジエステル等が挙げられる。 As the oxalic acid source used in the production of the polyamide of the present invention, oxalic acid diesters are used, and these are not particularly limited as long as they have reactivity with amino groups. Dimethyl oxalate, diethyl oxalate, di-n-oxalate ( Or i-) propyl, oxalic acid diester of aliphatic monohydric alcohol such as di-n- (or i-, or t-) butyl oxalate, oxalic acid diester of alicyclic alcohol such as dicyclohexyl oxalate, aromatic alcohol such as diphenyl oxalate And oxalic acid diesters.
上記の蓚酸ジエステルの中でも炭素原子数が3を超える脂肪族1価アルコールの蓚酸ジエステル、脂環式アルコールの蓚酸ジエステル、芳香族アルコールの蓚酸ジエステルが好ましく、その中でも蓚酸ジブチル及び蓚酸ジフェニルが特に好ましい。 Among the above oxalic acid diesters, oxalic acid diesters of aliphatic monohydric alcohols having more than 3 carbon atoms, oxalic acid diesters of alicyclic alcohols, and oxalic acid diesters of aromatic alcohols are preferred, and among them, dibutyl oxalate and diphenyl oxalate are particularly preferred.
ジアミン成分としては炭素数6〜12の脂肪族ジアミン、好ましくは炭素数9〜12の脂肪族ジアミン、より好ましくは炭素数9〜10の脂肪族ジアミンを重合することにより低吸水性、耐薬品性、耐加水分解性、特に熱処理による密度変化の小さいポリアミドが得られる。 As the diamine component, an aliphatic diamine having 6 to 12 carbon atoms, preferably an aliphatic diamine having 9 to 12 carbon atoms, more preferably an aliphatic diamine having 9 to 10 carbon atoms, is used to polymerize, thereby reducing water absorption and chemical resistance. Thus, a polyamide having a hydrolysis resistance, in particular, a small density change due to heat treatment is obtained.
(2)ポリアミド樹脂の製造
本発明のポリアミド樹脂は、ポリアミドを製造する方法として知られている任意の方法を用いて製造することができる。本発明者らの研究によれば、ジアミン及び蓚酸ジエステルをバッチ式又は連続式で重縮合反応させることにより得ることができる。具体的には、以下の操作で示されるような、(i)前重縮合工程、(ii)後重縮合工程の順で行うのが好ましい。
(2) Manufacture of polyamide resin The polyamide resin of this invention can be manufactured using the arbitrary methods known as a method of manufacturing polyamide. According to the study by the present inventors, it can be obtained by subjecting diamine and oxalic acid diester to a polycondensation reaction in a batch or continuous manner. Specifically, it is preferable to carry out in the order of (i) pre-polycondensation step and (ii) post-polycondensation step as shown by the following operations.
(i)前重縮合工程:まず反応器内を窒素置換した後、ジアミン(ジアミン成分)及び蓚酸ジエステル(蓚酸源)を混合する。混合する場合にジアミン及び蓚酸ジエステルが共に可溶な溶媒を用いても良い。ジアミン成分及び蓚酸源が共に可溶な溶媒としては、特に制限されないが、トルエン、キシレン、トリクロロベンゼン、フェノール、トリフルオロエタノールなどを用いることができ、特にトルエンを好ましく用いることができる。例えば、ジアミンを溶解したトルエン溶液を50℃に加熱した後、これに対して蓚酸ジエステルを加える。このとき、蓚酸ジエステルと上記ジアミンの仕込み比は、蓚酸ジエステル/上記ジアミンで、0.8〜1.5(モル比)、好ましくは0.91〜1.1(モル比)、更に好ましくは0.99〜1.01(モル比)である。 (I) Pre-polycondensation step: First, the inside of the reactor is purged with nitrogen, and then diamine (diamine component) and oxalic acid diester (oxalic acid source) are mixed. When mixing, a solvent in which both the diamine and the oxalic acid diester are soluble may be used. The solvent in which both the diamine component and the oxalic acid source are soluble is not particularly limited, but toluene, xylene, trichlorobenzene, phenol, trifluoroethanol, and the like can be used, and particularly, toluene can be preferably used. For example, after heating the toluene solution which melt | dissolved diamine to 50 degreeC, oxalic acid diester is added with respect to this. At this time, the charging ratio of the oxalic acid diester and the diamine is oxalic acid diester / the diamine, 0.8 to 1.5 (molar ratio), preferably 0.91 to 1.1 (molar ratio), more preferably 0. .99 to 1.01 (molar ratio).
このように仕込んだ反応器内を攪拌及び/又は窒素バブリングしながら、常圧下で昇温する。反応温度は、最終到達温度が80〜150℃、好ましくは100〜140℃の範囲になるように制御するのが好ましい。最終到達温度での反応時間は3時間〜6時間である。 The temperature in the reactor charged in this way is increased under normal pressure while stirring and / or nitrogen bubbling. The reaction temperature is preferably controlled so that the final temperature reaches 80 to 150 ° C., preferably 100 to 140 ° C. The reaction time at the final temperature reached is 3-6 hours.
(ii)後重縮合工程:更に高分子量化を図るために、前重縮合工程で生成した重合物を常圧下において反応器内で徐々に昇温する。昇温過程において前重縮合工程の最終到達温度、すなわち80〜150℃から、最終的に220℃以上300℃以下、好ましくは230℃以上280℃以下、更に好ましくは240℃以上270℃以下の温度範囲にまで到達させる。昇温時間を含めて1〜8時間、好ましくは2〜6時間保持して反応を行うことが好ましい。さらに後重合工程において、必要に応じて減圧下での重合を行うこともできる。減圧重合を行う場合の好ましい最終到達圧力は0.1MPa未満〜13.3Paである。 (Ii) Post-polycondensation step: In order to further increase the molecular weight, the polymer produced in the pre-polycondensation step is gradually heated in the reactor under normal pressure. In the temperature rising process, the final temperature of the prepolycondensation step, that is, from 80 to 150 ° C, is finally 220 ° C to 300 ° C, preferably 230 ° C to 280 ° C, more preferably 240 ° C to 270 ° C. Let reach the range. It is preferable to carry out the reaction for 1 to 8 hours including the temperature raising time, preferably 2 to 6 hours. Furthermore, in the post-polymerization step, polymerization can be performed under reduced pressure as necessary. The preferable final ultimate pressure in the case of performing the vacuum polymerization is less than 0.1 MPa to 13.3 Pa.
(3)ポリアミド樹脂の性状及び物性
本発明から得られるポリアミド樹脂の分子量に特別の制限はないが、ポリアミド樹脂濃度が1.0g/dlの96%濃硫酸溶液を用い、25℃で測定した相対粘度ηrが1.8〜6.0の範囲内である。好ましくは2.0〜5.5であり、2.5〜4.5が特に好ましい。ηrが1.8より低いと成形物が脆くなり物性が低下する。一方、ηrが6.0より高いと溶融粘度が高くなり、成形加工性が悪くなる。
(3) Properties and properties of polyamide resin There is no particular limitation on the molecular weight of the polyamide resin obtained from the present invention, but the relative value measured at 25 ° C. using a 96% concentrated sulfuric acid solution with a polyamide resin concentration of 1.0 g / dl. The viscosity ηr is in the range of 1.8 to 6.0. Preferably it is 2.0-5.5, and 2.5-4.5 is especially preferable. If ηr is lower than 1.8, the molded product becomes brittle and the physical properties deteriorate. On the other hand, if ηr is higher than 6.0, the melt viscosity becomes high, and the molding processability deteriorates.
本発明のポリアミド樹脂は、カルボン酸成分として蓚酸を用い、ジアミン成分として炭素数6〜12の脂肪族ジアミンを用いて重合することで、上記相対粘度を増加させること、すなわち分子量を増加させることが可能である。また、実質的な熱分解の指標である1%重量減少温度(以下、Tdと略す)と融点(以下、Tmと略す)の差(Td−Tm)で表される成形可能温度範囲が、蓚酸と1,9−ノナンジアミンからなるポリアミドと比べて拡大し、好ましくは60℃以上、より好ましくは70℃以上であることができ、さらには90℃以上も可能である。本発明のポリアミド樹脂は、Tdが好ましくは300℃以上、さらに好ましくは320℃以上であり、高い耐熱性を有することを特徴とする。 The polyamide resin of the present invention can be polymerized using oxalic acid as the carboxylic acid component and an aliphatic diamine having 6 to 12 carbon atoms as the diamine component, thereby increasing the relative viscosity, that is, increasing the molecular weight. Is possible. The moldable temperature range represented by the difference (Td−Tm) between the 1% weight loss temperature (hereinafter abbreviated as Td) and the melting point (hereinafter abbreviated as Tm), which is a substantial thermal decomposition index, is oxalic acid. And a polyamide composed of 1,9-nonanediamine, preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and even 90 ° C. or higher. The polyamide resin of the present invention has a Td of preferably 300 ° C. or higher, more preferably 320 ° C. or higher, and has high heat resistance.
本発明のポリアミド樹脂は熱処理後の密度変化が0.0%〜+0.3%の範囲であり、好ましくは0.0%〜+0.2%の範囲、より好ましくは0.0%〜0.1%の範囲である。熱処理後の密度変化が上記範囲内であることにより、熱処理に対する物性および寸法安定性に優れたポリアミド樹脂が得られる。 The polyamide resin of the present invention has a density change after heat treatment in the range of 0.0% to + 0.3%, preferably in the range of 0.0% to + 0.2%, and more preferably in the range of 0.0% to 0.00. The range is 1%. When the density change after heat treatment is within the above range, a polyamide resin excellent in physical properties and dimensional stability against heat treatment can be obtained.
(4)ポリアミド樹脂に配合できる成分
本発明により得られるポリアミド樹脂には、本発明の効果を損なわない範囲で他のジカルボン酸成分を混合する事が出来る。蓚酸以外の他のジカルボン酸成分としては、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2−ジメチルグルタル酸、3,3−ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸などの脂肪族ジカルボン酸、また、1,3−シクロペンタンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、さらにテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,4−フェニレンジオキシジ酢酸、1,3−フェニレンジオキシジ酢酸、ジ安息香酸、4,4’−オキシジ安息香酸、ジフェニルメタン−4,4’−ジカルボン酸、ジフェニルスルホン−4,4’−ジカルボン酸、4,4’−ビフェニルジカルボン酸などの芳香族ジカルボン酸などを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。さらに、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カルボン酸を溶融成形が可能な範囲内で用いることもできる。
(4) Components that can be blended with the polyamide resin The polyamide resin obtained according to the present invention can be mixed with other dicarboxylic acid components as long as the effects of the present invention are not impaired. Examples of dicarboxylic acid components other than succinic acid include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3, Aliphatic dicarboxylic acids such as 3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid, alicyclic dicarboxylic acids such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, and terephthalic acid , Isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, dibenzoic acid Acid, 4,4′-oxydibenzoic acid, diphenylmethane-4,4′-dicarboxylic acid, diphenyls Hong-4,4'-dicarboxylic acid, 4,4'-biphenyl and the like alone aromatic dicarboxylic acids such as dicarboxylic acids, or may be added to any mixture thereof during the polycondensation reaction. Furthermore, polyvalent carboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid can be used as long as melt molding is possible.
また、本発明から得られるポリアミド樹脂には本発明の効果を損なわない範囲で、他のジアミン成分を混合する事が出来る。他のジアミン成分としては、エチレンジアミン、プロピレンジアミン、1,4−ブタンジアミン、1,6−ヘキサンジアミン、1,8−オクタンジアミン、1,10−デカンジアミン、1,12−ドデカンジアミン、3−メチル−1,5−ペンタンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、5−メチル−1,9−ノナンジアミンなどの脂肪族ジアミン、さらにシクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンなどの脂環式ジアミン、さらにp−フェニレンジアミン、m−フェニレンジアミン、p−キシレンジアミン、m−キシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテルなどの芳香族ジアミンなどを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。 The polyamide resin obtained from the present invention can be mixed with other diamine components as long as the effects of the present invention are not impaired. Other diamine components include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, and 3-methyl. Fats such as -1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 5-methyl-1,9-nonanediamine Group diamines, alicyclic diamines such as cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine, p-phenylenediamine, m-phenylenediamine, p-xylenediamine, m-xylenediamine, 4,4′-diaminodiphenylmethane, 4 , 4′-Diaminodiphenylsulfone, 4,4 - it can be added alone and aromatic diamines, such as diaminodiphenyl ether, or any mixture thereof during the polycondensation reaction.
また、本発明には本発明の効果を損なわない範囲で、他のポリオキサミドや、芳香族ポリアミド、脂肪族ポリアミド、脂環式ポリアミドなどポリアミド類を混合することが可能である。更に、ポリアミド以外の熱可塑性ポリマー、エラストマー、フィラーや、補強繊維、各種添加剤を同様に配合することができる。 In the present invention, other polyoxamides, polyamides such as aromatic polyamides, aliphatic polyamides, and alicyclic polyamides can be mixed within a range not impairing the effects of the present invention. Furthermore, thermoplastic polymers other than polyamide, elastomers, fillers, reinforcing fibers, and various additives can be similarly blended.
さらに、本発明により得られるポリアミド樹脂には必要に応じて、銅化合物などの安定剤、着色剤、紫外線吸収剤、光安定化剤、酸化防止剤、帯電防止剤、難燃剤、結晶化促進剤、ガラス繊維、可塑剤、潤滑剤などを重縮合反応時、またはその後に添加することもできる。 Furthermore, the polyamide resin obtained according to the present invention may optionally contain a stabilizer such as a copper compound, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a flame retardant, and a crystallization accelerator. Glass fiber, plasticizer, lubricant and the like can be added during or after the polycondensation reaction.
(5)ポリアミド樹脂の成形加工
本発明により得られるポリアミド樹脂の成形方法としては、射出、押出、中空、プレス、ロール、発泡、真空・圧空、延伸などポリアミドに適用できる公知の成形加工法はすべて可能であり、これらの成形法によってフィルム、シート、成形品、繊維などに加工することができる。
(5) Polyamide resin molding process The polyamide resin molding method obtained by the present invention includes all known molding process methods applicable to polyamide, such as injection, extrusion, hollow, press, roll, foaming, vacuum / pressure, and stretching. The film can be processed into a film, a sheet, a molded product, a fiber, or the like by these molding methods.
(6)ポリアミド成形物の用途
本発明によって得られるポリアミドの成形物は、高温環境下での物性および寸法安定性が要求される、インテークマニホールド、エアクリーナー、レゾネーター、フューエルレール、スロットルボディおよびバルブ、エアフローメーター、ハーネスコネクター、エンジンカバー、シリンダーヘッドカバー、タイミングベルト(チェーンカバー)、タイミングチェーン(ベルト)テンショナーおよびガイド、アルタネーターカバー、ディストリビューターカバー、ブレーキマスターシリンダー、オイルポンプ、オイルフィルター、エンジンマウントなどのエンジンルーム内で使用される部品や、ラジエータコア、ラジエタータンクのトップ及びベース等のラジエタータンク部品、冷却液リザーブタンク、ウォーターパイプ、ウォーターポンプハウジング、ウォーターポンプインペラ、ウォータージャケットスペーサー、バルブ、サーモスタットケースなどのエンジン冷却系部品などの自動車アンダーフード部品やコネクターや結束バンド、モーターケース、ギヤおよびカムなどの電気電子部品に好適に使用できる。
(6) Use of polyamide molded product The polyamide molded product obtained by the present invention has an intake manifold, an air cleaner, a resonator, a fuel rail, a throttle body and a valve, which require physical properties and dimensional stability under a high temperature environment. Air flow meter, harness connector, engine cover, cylinder head cover, timing belt (chain cover), timing chain (belt) tensioner and guide, alternator cover, distributor cover, brake master cylinder, oil pump, oil filter, engine mount, etc. Parts used in the engine room, radiator core parts such as radiator core, radiator tank top and base, coolant reserve tank, water -Suitable for automotive underhood parts such as engine cooling system parts such as pipes, water pump housings, water pump impellers, water jacket spacers, valves and thermostat cases, and electrical and electronic parts such as connectors, cable ties, motor cases, gears and cams Can be used.
[物性測定、成形、評価方法]
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらにより何ら制限されるものではない。なお、実施例中の密度測定、フィルム成形及び熱処理は以下の方法により行った。
[Physical property measurement, molding, evaluation method]
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, density measurement, film forming, and heat treatment were performed by the following methods.
(1)フィルム成形
東邦マシナリー社製真空プレス機TMB−10を用いて、50mm×50mm×厚さ約0.15mmのシートを圧縮成形した。500〜700Paの減圧雰囲気下260℃で5分間加熱溶融させた後、10MPaで1分間プレスを行い成形した。次に減圧雰囲気を常圧まで戻したのち室温5MPaで1分間冷却固化させて試料を得た。
(1) Film molding A 50 mm x 50 mm x about 0.15 mm thick sheet was compression molded using a vacuum press TMB-10 manufactured by Toho Machinery Co., Ltd. After being melted by heating at 260 ° C. for 5 minutes in a reduced pressure atmosphere of 500 to 700 Pa, pressing was performed at 10 MPa for 1 minute to form. Next, the reduced-pressure atmosphere was returned to normal pressure, and then cooled and solidified at room temperature of 5 MPa for 1 minute to obtain a sample.
(2)熱処理
ポリアミド樹脂を(1)の条件で成形したシートを500〜700Paの減圧雰囲気下、140℃で48時間処理した。
(2) A sheet obtained by molding the heat-treated polyamide resin under the condition (1) was treated at 140 ° C. for 48 hours in a reduced pressure atmosphere of 500 to 700 Pa.
(3)密度測定
(1)の条件で成形した試料およびそれらを(2)の方法で熱処理した試料の密度をJIS K7112の密度勾配管法により測定した。
(3) Density measurement The density of the sample molded under the condition (1) and the sample heat-treated by the method (2) were measured by the density gradient tube method of JIS K7112.
[実施例1]
(i)前重縮合工程:撹拌機、還流冷却器、窒素導入管、原料投入口を備えた内容積が500mlのセパラブルフラスコの内部を純度が99.9999%の窒素ガスで置換し、脱水済みトルエン200ml、2−メチル−1,8−オクタンジアミン24.9530g(0.1577モル)を仕込んだ。このセパラブルフラスコをオイルバス中に設置して50℃に昇温した後、蓚酸ジブチル31.8849g(0.1577モル)を仕込んだ。次にオイルバスの温度を130℃まで昇温し、還流下、5時間反応を行った。なお、原料仕込みから反応終了までの全ての操作は50ml/分の窒素気流下で行った。
[Example 1]
(I) Pre-polycondensation step: The interior of a 500 ml separable flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, and raw material inlet is replaced with nitrogen gas having a purity of 99.9999% for dehydration. 200 ml of used toluene and 24.9530 g (0.1577 mol) of 2-methyl-1,8-octanediamine were charged. The separable flask was placed in an oil bath and the temperature was raised to 50 ° C., and 31.88849 g (0.1577 mol) of dibutyl oxalate was charged. Next, the temperature of the oil bath was raised to 130 ° C., and the reaction was carried out for 5 hours under reflux. Note that all operations from preparation of raw materials to completion of the reaction were performed under a nitrogen stream of 50 ml / min.
(ii)後重縮合工程:上記操作によって得られた前重合物を撹拌機、空冷管、窒素導入管を備えた直径約35mmφのガラス製反応管に仕込み、反応管内を13.3Pa以下の減圧下に保ち、次に常圧まで窒素ガスを導入する操作を5回繰り返した後、50ml/分の窒素気流下210℃に保った塩浴に移し、直ちに昇温を開始した。1時間かけて塩浴の温度を260℃とした後、さらに2時間反応させた。塩浴から取り出し50ml/分の窒素気流下で室温まで冷却してポリアミド樹脂を得た。得られたポリアミドは強靭なポリマーであった。 (Ii) Post-polycondensation step: The prepolymer obtained by the above operation is charged into a glass reaction tube having a diameter of about 35 mmφ equipped with a stirrer, an air cooling tube, and a nitrogen introduction tube, and the pressure inside the reaction tube is reduced to 13.3 Pa or less. Then, the operation of introducing nitrogen gas to normal pressure was repeated five times, and then the mixture was transferred to a salt bath maintained at 210 ° C. under a nitrogen stream of 50 ml / min, and temperature increase was immediately started. The temperature of the salt bath was adjusted to 260 ° C. over 1 hour, and the reaction was further continued for 2 hours. The polyamide resin was obtained by removing from the salt bath and cooling to room temperature under a nitrogen stream of 50 ml / min. The obtained polyamide was a tough polymer.
[実施例2]
(i)前重縮合工程:攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、放圧口、ポリマー取出口、および直径1/8インチのSUS316製配管によって原料フィードポンプを直結させた原料投入口を備えた5Lの耐圧容器に、シュウ酸ジブチル1048.87g(5.18616モル)を仕込み、耐圧容器内を純度が99.9999%の窒素ガスで3.0MPaに加圧した後、次に常圧まで窒素ガスを放出する操作を5回繰り返した後、封圧下、系内を昇温した。20分間かけて内部温度を100℃にした後、1,9−ノナンジアミン49.26g(0.3112モル)と2−メチル−1,8−オクタンジアミン771.74g(4.8756モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94)を原料フィードポンプにより流速13ml/分で17分間かけて反応容器内に注入すると同時に昇温した。全量注入直後の耐圧容器内の内圧は、重縮合反応により生成した1−ブタノールによって0.35MPaまで上昇し、内部温度は168℃まで上昇した。
[Example 2]
(I) Pre-polycondensation step: A raw material feed pump was directly connected by a stirrer, a thermometer, a torque meter, a pressure gauge, a nitrogen gas inlet, a pressure outlet, a polymer outlet, and a pipe made of SUS316 having a diameter of 1/8 inch. After charging 1048.87 g (5.18616 mol) of dibutyl oxalate into a 5 L pressure vessel equipped with a raw material inlet, the inside of the pressure vessel was pressurized to 3.0 MPa with 99.9999% purity nitrogen gas, Next, the operation of releasing nitrogen gas to normal pressure was repeated five times, and then the system was heated under a sealing pressure. After the internal temperature was raised to 100 ° C. over 20 minutes, a mixture of 49.26 g (0.3112 mol) of 1,9-nonanediamine and 771.74 g (4.8756 mol) of 2-methyl-1,8-octanediamine (4.8756 mol) The molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine was 6:94) was poured into the reaction vessel over 17 minutes at a flow rate of 13 ml / min by a raw material feed pump, and the temperature was increased. The internal pressure in the pressure vessel immediately after injection of the whole amount increased to 0.35 MPa by 1-butanol generated by the polycondensation reaction, and the internal temperature increased to 168 ° C.
(ii)後重縮合工程:注入直後から生成したブタノールの留去を開始し、内圧を0.25MPaに保持したまま、2時間かけて内部温度を235℃にした。内部温度が235℃に達した直後から放圧口より重縮合反応によって生成した1−ブタノールを20分間かけて抜き出した。放圧後、260ml/分の窒素気流下において昇温を開始し、1時間かけて内部温度を260℃にし、260℃において0.5時間反応させた。その後、攪拌を止めて系内を窒素で3MPaに加圧して10分間静置した後、内圧0.5MPaまで放圧し、重合物を圧力容器下部より紐状に抜き出した。紐状の重合物は直ちに水冷し、水冷した紐状の重合物はペレタイザーによってペレット化した。得られた重合物は強靭なポリマーであった。 (Ii) Post-polycondensation step: Distillation of butanol produced immediately after injection was started, and the internal temperature was maintained at 235 ° C. over 2 hours while maintaining the internal pressure at 0.25 MPa. Immediately after the internal temperature reached 235 ° C., 1-butanol produced by the polycondensation reaction was extracted from the pressure release port over 20 minutes. After releasing the pressure, the temperature was raised under a nitrogen stream of 260 ml / min. The internal temperature was raised to 260 ° C. over 1 hour, and the reaction was carried out at 260 ° C. for 0.5 hour. Thereafter, the stirring was stopped, the inside of the system was pressurized to 3 MPa with nitrogen and allowed to stand for 10 minutes, and then released to an internal pressure of 0.5 MPa, and the polymer was extracted from the lower part of the pressure vessel in a string shape. The string-like polymer was immediately cooled with water, and the water-cooled string-like polymer was pelletized with a pelletizer. The obtained polymer was a tough polymer.
[実施例3]
前重合工程において、1,9−ノナンジアミン9.6677g(0.0611モル)、2−メチル−1,8−オクタンジアミン22.5581g(0.1425モル)(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が30:70)、蓚酸ジブチル41.1781g(0.2036モル)を仕込んだ以外は実施例1と同様に反応を行ってポリアミドを得た。得られたポリアミドは強靭なポリマーであった。
[Example 3]
In the prepolymerization step, 9.6777 g (0.0611 mol) of 1,9-nonanediamine, 22.58581 g (0.1425 mol) of 2-methyl-1,8-octanediamine (1,9-nonanediamine and 2-methyl- A polyamide was obtained in the same manner as in Example 1 except that the molar ratio of 1,8-octanediamine was 30:70) and 41.1781 g (0.2036 mol) of dibutyl oxalate was charged. The obtained polyamide was a tough polymer.
[実施例4]
前重合工程において、1,9−ノナンジアミン16.1129g(0.1018モル)、2−メチル−1,8−オクタンジアミン16.1129g(0.1018モル)(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が50:50)、蓚酸ジブチル41.1781g(0.2036モル)を仕込んだ以外は実施例1と同様に反応を行ってポリアミドを得た。得られたポリアミドは強靭なポリマーであった。
[Example 4]
In the prepolymerization step, 16.129 g (0.1018 mol) of 1,9-nonanediamine and 16.129 g (0.1018 mol) of 2-methyl-1,8-octanediamine (1,9-nonanediamine and 2-methyl- Polyamide was obtained by carrying out the reaction in the same manner as in Example 1 except that the molar ratio of 1,8-octanediamine was 50:50) and 41.1781 g (0.2036 mol) of dibutyl oxalate was charged. The obtained polyamide was a tough polymer.
[実施例5]
(i)前重縮合工程:撹拌機、空冷管、窒素導入管、原料投入口を備えた内容積が5リットルのセパラブルフラスコの内部を純度が99.9999%の窒素ガスで置換し、蓚酸ジブチル1211g(5.9871モル)を仕込んだ。この容器を20℃に保ち、攪拌しながら1,9−ノナンジアミン807.6g(5.102モル)、2−メチル−1,8−オクタンジアミン142.5g(0.9004モル)を加え(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が85:15)、重縮合反応を行った。なお、原料仕込みから反応終了までの全ての操作は200ml/分の窒素気流下で行った。
[Example 5]
(I) Pre-polycondensation step: The inside of a separable flask having a volume of 5 liters equipped with a stirrer, an air cooling tube, a nitrogen inlet tube, and a raw material inlet is replaced with nitrogen gas having a purity of 99.9999%, and oxalic acid 1211 g (5.99871 mol) of dibutyl was charged. While maintaining this container at 20 ° C., 807.6 g (5.102 mol) of 1,9-nonanediamine and 142.5 g (0.9004 mol) of 2-methyl-1,8-octanediamine were added while stirring (1,004 mol). The molar ratio of 9-nonanediamine and 2-methyl-1,8-octanediamine was 85:15), and the polycondensation reaction was performed. Note that all operations from preparation of raw materials to completion of the reaction were performed under a nitrogen stream of 200 ml / min.
(ii)後重縮合工程:上記操作によって得られた前重合物を攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口及びポリマー取り出し口を備えた5Lの圧力容器に仕込み、圧力容器内を3.0MPa以上の加圧下に保ち、次に常圧まで窒素ガスを放出する操作を5回繰り返した後、窒素気流及び常圧下、系内を昇温した。1.5時間かけて内部温度を120℃にした。この時、ブタノールの留出を確認した。ブタノールを留出させながら5時間かけて260℃まで昇温し、2時間反応させた。その後、系内を250℃に降温し、攪拌を止め25分間静置した後に系内を窒素で3.5MPaに加圧し、重合物を圧力容器下部より紐状に抜き出した。紐状の重合物は直ちに水冷し、水冷した紐状の重合物はペレタイザーによってペレット化した。得られた重合物は強靭なポリマーであった。 (Ii) Post-polycondensation step: The prepolymer obtained by the above operation is charged into a 5 L pressure vessel equipped with a stirrer, thermometer, torque meter, pressure gauge, nitrogen gas inlet and polymer outlet, and the inside of the pressure vessel Was maintained under a pressure of 3.0 MPa or more and then the operation of releasing nitrogen gas to normal pressure was repeated five times, and then the system was heated under a nitrogen stream and normal pressure. The internal temperature was raised to 120 ° C. over 1.5 hours. At this time, distillation of butanol was confirmed. While distilling butanol, the temperature was raised to 260 ° C. over 5 hours and reacted for 2 hours. Thereafter, the temperature in the system was lowered to 250 ° C., the stirring was stopped, and the mixture was allowed to stand for 25 minutes. The string-like polymer was immediately cooled with water, and the water-cooled string-like polymer was pelletized with a pelletizer. The obtained polymer was a tough polymer.
[実施例6]
前重合工程において、1,9−ノナンジアミン26.1474g(0.1652モル)、蓚酸ジブチル33.4111g(0.1652モル)を仕込んだ以外は実施例1と同様に反応を行ってポリアミドを得た。得られたポリアミドは強靭なポリマーであった。(1)の方法において温度を270℃とした以外は同様にしてフィルムを成形し、このフィルムおよび(2)の方法で熱処理したフィルムの密度を測定した。
[Example 6]
In the prepolymerization step, polyamide was obtained by reacting in the same manner as in Example 1 except that 26.1474 g (0.1652 mol) of 1,9-nonanediamine and 33.4111 g (0.1652 mol) of dibutyl oxalate were charged. . The obtained polyamide was a tough polymer. A film was formed in the same manner except that the temperature was 270 ° C. in the method (1), and the density of this film and the film heat-treated by the method (2) were measured.
[実施例7]
(i)前重縮合工程:攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、放圧口、ポリマー取出口、および直径1/8インチのSUS316製配管によって原料フィードポンプを直結させた原料投入口を備えた5Lの耐圧容器に、デカンジアミン875.0g(5.081モル)を仕込み、耐圧容器内を純度が99.9999%の窒素ガスで3.0MPaに加圧した後、次に常圧まで窒素ガスを放出する操作を5回繰り返した後、封圧下、系内を昇温した。45分間かけて内部温度を190℃にした後、蓚酸ジブチルを原料フィードポンプにより流速65ml/分で17分間かけて反応容器内に注入すると同時に昇温した。全量注入直後の耐圧容器内の内圧は、重縮合反応により生成した1−ブタノールによって0.65MPaまで上昇し、内部温度は198℃まで上昇した。
[Example 7]
(I) Pre-polycondensation step: A raw material feed pump was directly connected by a stirrer, a thermometer, a torque meter, a pressure gauge, a nitrogen gas inlet, a pressure outlet, a polymer outlet, and a pipe made of SUS316 having a diameter of 1/8 inch. A 5 L pressure vessel equipped with a raw material inlet is charged with 875.0 g (5.081 mol) of decanediamine and the inside of the pressure vessel is pressurized to 3.0 MPa with nitrogen gas having a purity of 99.9999%. After repeating the operation of releasing nitrogen gas to normal pressure 5 times, the system was heated up under a sealing pressure. After the internal temperature was raised to 190 ° C. over 45 minutes, dibutyl oxalate was poured into the reaction vessel over 17 minutes at a flow rate of 65 ml / min by a raw material feed pump, and the temperature was raised at the same time. The internal pressure in the pressure vessel immediately after injection of the whole amount increased to 0.65 MPa by 1-butanol generated by the polycondensation reaction, and the internal temperature increased to 198 ° C.
(ii)後重縮合工程:注入直後から生成したブタノールの留去を開始し、内圧を0.5MPaに保持したまま、3時間かけて内部温度を250℃にした。内部温度が250℃に達した直後から放圧口より重縮合反応によって生成した1−ブタノールを20分間かけて抜き出した。放圧後、260ml/分の窒素気流下で、1.5時間かけて内部温度を270℃にした後、270℃において0.5時間反応させた。その後、攪拌を止めて系内を窒素で3MPaに加圧して10分間静置した後、内圧0.5MPaまで放圧し、重合物を圧力容器下部より紐状に抜き出した。紐状の重合物は直ちに水冷し、水冷した紐状の重合物はペレタイザーによってペレット化した。得られた重合物は強靭なポリマーであった。(1)の方法において温度を270℃とした以外は同様にしてフィルムを成形し、このフィルムおよび(2)の方法で熱処理したものの密度を測定した。 (Ii) Post-polycondensation step: Distillation of butanol generated immediately after injection was started, and the internal temperature was increased to 250 ° C. over 3 hours while maintaining the internal pressure at 0.5 MPa. Immediately after the internal temperature reached 250 ° C., 1-butanol produced by the polycondensation reaction was extracted from the pressure release port over 20 minutes. After releasing the pressure, the internal temperature was raised to 270 ° C. over 1.5 hours under a nitrogen stream of 260 ml / min, and then reacted at 270 ° C. for 0.5 hours. Thereafter, the stirring was stopped, the inside of the system was pressurized to 3 MPa with nitrogen and allowed to stand for 10 minutes, and then released to an internal pressure of 0.5 MPa, and the polymer was extracted from the lower part of the pressure vessel in a string shape. The string-like polymer was immediately cooled with water, and the water-cooled string-like polymer was pelletized with a pelletizer. The obtained polymer was a tough polymer. A film was formed in the same manner except that the temperature was set to 270 ° C. in the method (1), and the density of this film and the material heat-treated by the method (2) was measured.
[比較例1]
本発明のポリアミド樹脂に替えてナイロン9T(クラレ製、N1000D−H)を用いてT−ダイ押出成形機でフィルムを成形した。得られたナイロン9Tのフィルムは強靭なフィルムであった。このフィルムおよびそれを(2)の方法で熱処理したものの密度を測定した。
[Comparative Example 1]
A film was formed with a T-die extruder using nylon 9T (Kuraray, N1000D-H) instead of the polyamide resin of the present invention. The obtained nylon 9T film was a tough film. The density of this film and the film heat-treated by the method (2) were measured.
[比較例2]
本発明のポリアミド樹脂に替えてナイロン12(宇部興産製、UBESTA 3030XA)を用いてフィルムを成形した。得られたナイロン12のフィルムは強靭なフィルムであった。このフィルムおよびそれを(2)の方法で熱処理したものの密度を測定した。
[Comparative Example 2]
In place of the polyamide resin of the present invention, a film was formed using nylon 12 (Ube Industries, UBESTA 3030XA). The obtained nylon 12 film was a tough film. The density of this film and the film heat-treated by the method (2) were measured.
実施例1から7、比較例1および2により得られたポリマーと熱処理による密度変化を表1に示す。実施例1〜7により得られるポリマーは比較例1および2により得られたポリマーより熱処理後の密度変化量(熱処理前後の密度差)が小さいことから、本発明のポリアミド樹脂は熱処理による密度変化が小さい。 Table 1 shows changes in density due to heat treatment with the polymers obtained in Examples 1 to 7 and Comparative Examples 1 and 2. Since the polymers obtained in Examples 1 to 7 have a smaller density change amount after heat treatment (density difference before and after heat treatment) than the polymers obtained in Comparative Examples 1 and 2, the polyamide resin of the present invention has a density change due to heat treatment. small.
本発明のポリアミド樹脂は、低吸水性、耐薬品性、耐加水分解性などに優れ、溶融成形加工性に優れ、特に熱処理による密度変化が小さいので、自動車エンジンルーム内部品の製造に好適に使用できる。また、高温環境下での物性及び寸法安定性が要求される各種自動車部品、電気・電子部品などの用途にも使用できる。 The polyamide resin of the present invention is excellent in low water absorption, chemical resistance, hydrolysis resistance, etc., is excellent in melt molding processability, and especially has a small density change due to heat treatment. it can. It can also be used for various automotive parts, electrical / electronic parts, and the like that require physical properties and dimensional stability in a high temperature environment.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010100752A JP2011231167A (en) | 2010-04-26 | 2010-04-26 | Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010100752A JP2011231167A (en) | 2010-04-26 | 2010-04-26 | Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011231167A true JP2011231167A (en) | 2011-11-17 |
Family
ID=45320821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010100752A Pending JP2011231167A (en) | 2010-04-26 | 2010-04-26 | Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011231167A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013062089A1 (en) * | 2011-10-28 | 2013-05-02 | 宇部興産株式会社 | Polyamide resin and molded article formed therefrom |
WO2013108344A1 (en) * | 2012-01-18 | 2013-07-25 | 宇部興産株式会社 | Resin composition, and composition containing polyamide resin and glass fibers |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008072754A1 (en) * | 2006-12-11 | 2008-06-19 | Ube Industries, Ltd. | Polyamide resin |
JP2009235225A (en) * | 2008-03-27 | 2009-10-15 | Ube Ind Ltd | Polyamide resin |
JP2009235223A (en) * | 2008-03-27 | 2009-10-15 | Ube Ind Ltd | Polyamide resin for automobile member |
WO2009151145A1 (en) * | 2008-06-10 | 2009-12-17 | 宇部興産株式会社 | Novel polyamide resin composition and polyamide resin-containing product |
JP2009298864A (en) * | 2008-06-10 | 2009-12-24 | Ube Ind Ltd | Injection-molding material containing new polyamide resin |
JP2009298870A (en) * | 2008-06-10 | 2009-12-24 | Ube Ind Ltd | Internal component of automobile engine room |
JP2010077214A (en) * | 2008-09-24 | 2010-04-08 | Ube Ind Ltd | Vehicle part produced using novel polyamide resin, vehicle interior part, vehicle exterior part, and internal part of vehicle engine room |
JP2010077221A (en) * | 2008-09-24 | 2010-04-08 | Ube Ind Ltd | Plasticizer-containing polyamide resin composition, and molded product |
-
2010
- 2010-04-26 JP JP2010100752A patent/JP2011231167A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008072754A1 (en) * | 2006-12-11 | 2008-06-19 | Ube Industries, Ltd. | Polyamide resin |
JP2009235225A (en) * | 2008-03-27 | 2009-10-15 | Ube Ind Ltd | Polyamide resin |
JP2009235223A (en) * | 2008-03-27 | 2009-10-15 | Ube Ind Ltd | Polyamide resin for automobile member |
WO2009151145A1 (en) * | 2008-06-10 | 2009-12-17 | 宇部興産株式会社 | Novel polyamide resin composition and polyamide resin-containing product |
JP2009298864A (en) * | 2008-06-10 | 2009-12-24 | Ube Ind Ltd | Injection-molding material containing new polyamide resin |
JP2009298870A (en) * | 2008-06-10 | 2009-12-24 | Ube Ind Ltd | Internal component of automobile engine room |
JP2010077214A (en) * | 2008-09-24 | 2010-04-08 | Ube Ind Ltd | Vehicle part produced using novel polyamide resin, vehicle interior part, vehicle exterior part, and internal part of vehicle engine room |
JP2010077221A (en) * | 2008-09-24 | 2010-04-08 | Ube Ind Ltd | Plasticizer-containing polyamide resin composition, and molded product |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013062089A1 (en) * | 2011-10-28 | 2013-05-02 | 宇部興産株式会社 | Polyamide resin and molded article formed therefrom |
WO2013108344A1 (en) * | 2012-01-18 | 2013-07-25 | 宇部興産株式会社 | Resin composition, and composition containing polyamide resin and glass fibers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5056763B2 (en) | Polyamide resin | |
JP5218399B2 (en) | Molding material for fuel parts and fuel parts using the same | |
AU2011283795B2 (en) | Polyamide resin | |
JP5796573B2 (en) | Polyamide resin | |
JP5975038B2 (en) | Polyamide resin and molded product comprising the same | |
JP2009235225A (en) | Polyamide resin | |
KR20130060301A (en) | Polyoxamide resin having excellent impact resistance and impact-resistant part | |
JP2009298870A (en) | Internal component of automobile engine room | |
JP2011231167A (en) | Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment | |
JP5321434B2 (en) | Polyamide resin composition for SMT connectors | |
JP5584968B2 (en) | Plasticizer-containing polyamide resin composition and molded article | |
JP2009298853A (en) | Polyamide resin composition | |
JP2009235223A (en) | Polyamide resin for automobile member | |
JP2013095777A (en) | Polyamide resin composition for printed board surface mounting component and printed board surface mounting component obtained by molding the same | |
JP5584963B2 (en) | Polyamide resin composition | |
JP6273883B2 (en) | Polyamide resin | |
JP6451082B2 (en) | Polyamide resin | |
JP2011063695A (en) | Transparent member using polyamide resin | |
JP2015000966A (en) | Polyamide resin composition and molded article produced using the same | |
JP5572921B2 (en) | Molded parts in direct contact with biodiesel fuel | |
JP5584966B2 (en) | Heat-resistant agent-containing resin composition and molded product formed from the heat-resistant agent-containing resin composition | |
JP2009298856A (en) | Heat-resistant agent-containing resin composition and molded article formed from the heat-resistant agent-containing resin composition | |
JP2013095792A (en) | Filler-containing polyamide resin composition | |
JP2013095780A (en) | Polyamide resin composition for injection molding and injection-molded product obtained by injection-molding the same | |
JP2010077215A (en) | Molded member directly contacted with bio-diesel fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140129 |