WO2013108343A1 - 音声復号装置及び音声復号方法 - Google Patents

音声復号装置及び音声復号方法 Download PDF

Info

Publication number
WO2013108343A1
WO2013108343A1 PCT/JP2012/008156 JP2012008156W WO2013108343A1 WO 2013108343 A1 WO2013108343 A1 WO 2013108343A1 JP 2012008156 W JP2012008156 W JP 2012008156W WO 2013108343 A1 WO2013108343 A1 WO 2013108343A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
decoded signal
filter
low
pass filter
Prior art date
Application number
PCT/JP2012/008156
Other languages
English (en)
French (fr)
Inventor
勝統 大毛
押切 正浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/370,080 priority Critical patent/US9390721B2/en
Priority to JP2013554102A priority patent/JP6082703B2/ja
Priority to EP12865640.2A priority patent/EP2806423B1/en
Publication of WO2013108343A1 publication Critical patent/WO2013108343A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/002Dynamic bit allocation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding

Definitions

  • the present invention relates to a speech decoding apparatus and a speech decoding method having, for example, a scalable configuration.
  • Mobile communication systems are required to transmit audio signals compressed at a low bit rate in order to effectively use radio resources and the like.
  • it is also desired to improve the quality of call voice or to realize a call service with a high sense of reality.
  • This technique includes a first layer that encodes an input signal to a wide band (0 to 7 kHz), and a band extension layer that encodes to an ultra wide band (0 to 14 kHz) using the input signal and the decoded signal of the first layer.
  • a wide band (0 to 7 kHz)
  • a band extension layer that encodes to an ultra wide band (0 to 14 kHz) using the input signal and the decoded signal of the first layer.
  • FIG. 1 is a diagram illustrating a wideband part and an extended band part in an input signal spectrum.
  • the technique of performing hierarchical encoding in this way is general because the bitstream obtained from the encoding device has scalability, that is, a decoded signal can be obtained even from partial information of the bitstream. This is called scalable coding (hierarchical coding).
  • the scalable coding scheme can be flexibly adapted to communication between networks with different bit rates because of its nature, so it can be said that it is suitable for the future network environment in which various networks are integrated by the IP protocol.
  • Non-Patent Document 1 As an example of realizing scalable coding using a technology standardized by ITU-T (International Telecommunication Union Telecommunication Standardization Sector), for example, there is a technology disclosed in Non-Patent Document 1.
  • the signal of the wideband portion is encoded in the first layer, and in the band extension layer, encoding is performed by extending the signal of the extension band portion using the signal of the wideband portion.
  • the output signal (decoded signal) has a very annoying sound quality (an unusual sound feeling) because there are few bits allocated to the band extension layer.
  • the frequency band of the output signal is limited according to the bit rate, and abnormal noise is reduced by allocating bits intensively to the remaining band.
  • Non-patent Document 2 there is a demerit that restricting the band impairs the clarity of the sound (band feeling) and lowers the subjective quality. That is, when the band limiting method as described above is used, the sense of noise and the sense of band are in a trade-off relationship.
  • the bandwidth of the output signal is not completely limited, but a low-pass filter having a gradual characteristic is applied to the output signal to attenuate high-frequency energy.
  • a method of reducing the sense of noise while maintaining a sense of bandwidth can be considered.
  • Patent Document 1 can be cited. This is a method of adjusting the coefficient of the high frequency emphasis filter in accordance with the proportion of energy of the high frequency in the post filter high frequency emphasis processing, and weakening the high frequency emphasis when the energy ratio is high. Accordingly, a filter having an appropriate strength can be designed according to the characteristics of the input signal (decoded signal) to the filter, and the sense of noise can be suppressed while maintaining a sense of bandwidth to some extent.
  • Patent Document 1 in order to adjust the overall slope of the spectrum of the output signal, the spectrum slope of the low-frequency signal is changed. That is, when this configuration is applied to the scalable coding scheme, the spectral tilts of both the wideband portion and the extended bandwidth portion are changed.
  • the scalable coding scheme improves the coding quality of the wideband portion by allocating many bits to the wideband portion that is important perceptually. Therefore, if the spectral tilt of the wideband portion is adjusted, the sound quality deteriorates. There is a fear.
  • the filter coefficient is adjusted by the ratio of the high frequency energy, and the filter processing is performed in all frames. Therefore, when a signal having a high ratio of the high frequency energy is input as a whole, The state of weak strength will continue for a long time. Therefore, there is a problem that the loss of band feeling associated with the attenuation of the high frequency part is easily perceived and the sound is heard. In particular, since the voice of women has a relatively high proportion of high-frequency energy, deterioration in sound quality is significant.
  • An object of the present invention is to provide speech decoding that can prevent deterioration in sound quality associated with adjusting the slope of a spectrum of an output signal (decoded signal), and can hardly perceive a loss of band feeling due to attenuation in a high frequency part.
  • An apparatus and a speech decoding method are provided.
  • the speech decoding apparatus includes: first layer encoded data obtained by encoding a wideband portion speech signal; and band extension layer encoded data obtained by encoding a speech signal in an extension band portion higher than the wideband portion.
  • An acquisition means for acquiring, and decoding the first layer encoded data acquired by the acquisition means to generate a first layer decoded signal, and decoding the band extension layer encoded data acquired by the acquisition means Decoding means for generating a band enhancement layer decoded signal, and applying or not applying a low-pass filter to the band enhancement layer decoded signal based on an energy change of the band enhancement layer decoded signal.
  • Determining means for determining each predetermined section; and the band extension ray of the predetermined section determined to apply the low-pass filter by the determining means.
  • the decoded signal employs a configuration having a, and filtering means for filtering by the low-pass filter.
  • the speech decoding method of the present invention comprises: first layer encoded data obtained by encoding a wideband portion speech signal; and band extension layer encoded data obtained by encoding a speech signal in an extension band portion higher than the wideband portion.
  • a step of acquiring, and a step of decoding the acquired first layer encoded data to generate a first layer decoded signal, and a step of decoding the acquired band extension layer encoded data to generate a band extension layer decoded signal Determining, based on energy change of the band enhancement layer decoded signal, application and non-application of a low-pass filter for the band enhancement layer decoded signal for each predetermined section of the band enhancement layer decoded signal; A filter that filters the band enhancement layer decoded signal in the predetermined interval determined to apply a low-pass filter with the low-pass filter. Tsu and up, was to be equipped with.
  • the present invention it is possible to prevent deterioration in sound quality due to adjustment of the slope of the spectrum of the output signal, and it is possible to make it difficult to perceive a loss of band feeling due to attenuation in the high frequency part.
  • the figure which shows the wide band part and the expansion band part in the input signal spectrum The block diagram which shows the structure of the communication system in embodiment of this invention.
  • the block diagram which shows the structure of the filter judgment part in embodiment of this invention The block diagram which shows the structure of the filter coefficient adjustment part in embodiment of this invention
  • the present invention relates to a method for determining whether or not a low-pass filter process is necessary and a method for adaptively adjusting an attenuation amount of an extension band in a decoding method for a low bit rate scalable coding method.
  • scalable coding schemes it is common to encode by assigning many bits to the wideband part, which is important perceptually. Therefore, it is not possible to apply a low-pass filter to a wideband signal that is already of good quality. It is not preferable. Therefore, in the present invention, the decoding scheme for the scalable coding scheme uses the generation of the decoded signal of the wideband portion and the decoded signal of the extension band portion independently of each other. Apply a low-pass filter only to
  • the low-pass filter is not applied to all the frames, but the filter process is performed only on the frames that may generate abnormal noise.
  • the knowledge that an abrupt change in the energy of the extension band portion leads to an abnormal feeling is used. Specifically, by calculating the average energy of the extension band with a slow time-tracking capability and comparing the energy of the extension band with the calculated average energy for each frame, abrupt changes in the energy of the extension band Is detected. By detecting this sudden change in energy and applying a low-pass filter only to the frames that are determined to have a high possibility of abnormal noise, loss of bandwidth can be minimized. .
  • the attenuation amount of the low-pass filter is determined using the ratio of the energy in the extended band portion to the energy of the entire band of the decoded signal (hereinafter referred to as “expanded band energy ratio”). Since the higher the expansion band energy ratio, the easier it is to hear an abnormal sound, the filter coefficient of the low-pass filter is adaptively adjusted for each frame using the expansion band energy ratio of the decoded signal in the current frame.
  • the sound quality can be improved by achieving both the reduction of abnormal noise in the extension band and the maintenance of the band feeling without affecting the quality of the wideband signal in the scalable coding system.
  • FIG. 2 is a block diagram showing a configuration of the communication system 100 according to the embodiment of the present invention.
  • the communication system 100 includes a speech encoding device 101 and a speech decoding device 103.
  • the speech encoding apparatus 101 and the speech decoding apparatus 103 are in a state where they can communicate with each other via the transmission path 102.
  • the speech encoding apparatus 101 generates a bit stream by encoding the input signal, and transmits the generated bit stream to the speech decoding apparatus 103 via the transmission path 102.
  • the speech decoding apparatus 103 receives the bit stream transmitted from the speech encoding apparatus 101 via the transmission path 102, decodes the received bit stream, and outputs it as an output signal.
  • both the speech encoding device 101 and the speech decoding device 103 are usually mounted and used in a base station device or a communication terminal device.
  • FIG. 3 is a block diagram showing a configuration of speech encoding apparatus 101 in the embodiment of the present invention.
  • 1st layer encoding part 201 performs the encoding process of an input signal, and produces
  • First layer encoding section 201 outputs the generated first layer encoded data to band extension layer encoding section 202 and multiplexing section 203.
  • Band extension layer encoding section 202 performs encoding processing of the extension band section using the input signal and the first layer encoded data received from first layer encoding section 201, and generates band extension layer encoded data To do. Band extension layer encoding section 202 outputs band extension layer encoded data to multiplexing section 203.
  • the multiplexing unit 203 multiplexes the first layer encoded data received from the first layer encoding unit 201 and the band extension layer encoded data received from the band extension layer encoding unit 202 to generate a bitstream.
  • the generated bit stream is output to the transmission path 102.
  • FIG. 4 is a block diagram showing a configuration of speech decoding apparatus 103 according to the embodiment of the present invention.
  • the separating unit 301 separates the first layer encoded data and the band extension layer encoded data from the bit stream received from the transmission path 102 (that is, the encoded data received from the audio encoding device 101). Separating section 301 then outputs the first layer encoded data to first layer decoding section 302 and outputs the band enhancement layer encoded data to band enhancement layer decoding section 303.
  • First layer decoding section 302 performs decoding on the first layer encoded data received from demultiplexing section 301 to generate a first layer decoded signal, and generates the generated first layer decoded signal as filter coefficient adjustment section 305 and The result is output to the adding unit 307.
  • Band extension layer decoding section 303 decodes the band extension layer encoded data received from demultiplexing section 301 to generate a band extension layer decoded signal, and generates the generated band extension layer decoded signal by filter determination section 304 and low-pass The data is output to the filter processing unit 306.
  • the filter determination unit 304 calculates the energy (enhancement band energy) of the band extension layer decoded signal received from the band extension layer decoding unit 303.
  • the filter determination unit 304 determines the necessity of filter processing in the current frame based on the energy change of the band extension layer decoded signal received from the band extension layer decoding unit 303.
  • the filter determination unit 304 outputs a filter flag indicating the determination result of the necessity of filter processing to the filter coefficient adjustment unit 305 and the low-pass filter processing unit 306, and the calculated extension band energy is output to the filter coefficient adjustment unit 305.
  • Output The filter flag is information indicating whether or not to perform the filtering process in the current frame. For example, “1” is set when it is determined that the filtering process is performed, and “0” is set when it is determined that the filtering process is not performed. The Details of the filter determination unit 304 will be described later.
  • the filter coefficient adjustment unit 305 adjusts the filter coefficient using the first layer decoded signal received from the first layer decoding unit 302, the filter flag and the extended band energy received from the filter determination unit 304.
  • the filter coefficient adjustment unit 305 outputs the filter coefficient to the low-pass filter processing unit 306, but the filter flag input from the filter determination unit 304 If “0”, nothing is output. Details of the filter coefficient adjustment unit 305 will be described later.
  • the low-pass filter processing unit 306 uses the band enhancement layer decoded signal received from the band enhancement layer decoding unit 303, the filter flag received from the filter determination unit 304, and the filter coefficient received from the filter coefficient adjustment unit 305. Filter processing is performed on the band enhancement layer decoded signal. When the filter flag received from the filter determination unit 304 is “1”, the low-pass filter processing unit 306 generates a band enhancement layer attenuated signal by performing filter processing on the band enhancement layer decoded signal, The generated band extension layer attenuation signal is output to adder 307.
  • the low-pass filter processing unit 306 does not perform the filter process, and receives the band enhancement layer decoded signal received from the band enhancement layer decoding unit 303.
  • the data is output to the adder 307 as it is. Details of the low-pass filter processing unit 306 will be described later.
  • the adding unit 307 adds the first layer decoded signal received from the first layer decoding unit 302 and the band extension layer attenuated signal or band extension layer decoded signal received from the low pass filter processing unit 306, and outputs an output signal. Is generated and output.
  • FIG. 5 is a block diagram showing the configuration of the filter determination unit 304 in the embodiment of the present invention.
  • the extension band energy calculation unit 401 calculates the energy of the band extension layer decoded signal received from the band extension layer decoding unit 303, uses the calculated energy as the extension band energy Ehb, the extension band average energy calculation unit 402, the energy comparison unit 403, Output to the filter coefficient adjustment unit 305.
  • the extension band average energy calculation unit 402 includes the extension band energy Ehb received from the extension band energy calculation unit 401 and the extension band average energy Ehb_ave (n ⁇ 1) (n is calculated in a frame before the current frame). Using the frame index representing the current frame, that is, in this case, the extension band average energy for the previous frame), the extension band average energy Ehb_ave (n) of the current frame is calculated recursively. The expansion band average energy Ehb_ave (n) of the current frame is output to the energy comparison unit 403.
  • the extension band average energy calculation unit 402 calculates the extension band average energy Ehb_ave (n) of the current frame by the equation (1).
  • is a smoothing coefficient that determines the degree of smoothing of the extension band average energy, and takes a value from 0 to 1.
  • the energy comparison unit 403 compares the extension band energy Ehb received from the extension band energy calculation unit 401 with the extension band average energy Ehb_ave (n) received from the extension band average energy calculation unit 402.
  • the expansion band energy Ehb with the expansion band average energy having low time followability obtained by the equation (1), it is possible to detect a rapid change in the expansion band energy Ehb.
  • the energy comparison unit 403 sets the filter flag FF to “1” when the value obtained by subtracting the extension band average energy from the extension band energy is equal to or greater than the threshold value TH. If it is smaller than the threshold value TH, the filter flag FF is set to “0”.
  • the energy comparison unit 403 outputs the set filter flag to the filter coefficient adjustment unit 305 and the low-pass filter processing unit 306.
  • FIG. 6 is a block diagram showing a configuration of the filter coefficient adjustment unit 305 in the embodiment of the present invention.
  • the first layer energy calculation unit 501 calculates the energy of the first layer decoded signal received from the first layer decoding unit 302, and outputs the calculated energy to the filter coefficient calculation unit 502 as the first layer energy LBenergy.
  • HBR is determined by equation (3).
  • HBR calculated by equation (3) takes a value of about 0.37 to 0.43 in the vowel section.
  • the unvoiced interval may take a value smaller than 0.37, and the consonant interval may take a value higher than 0.43.
  • the filter coefficient calculation unit 502 outputs the adjusted filter coefficient to the switch unit 503. A method for adjusting the filter coefficient will be described later.
  • the switch unit 503 is turned on only when the filter flag received from the filter determination unit 304 is “1”, and outputs the filter coefficient received from the filter coefficient calculation unit 502 to the low-pass filter processing unit 306. On the other hand, when the filter flag received from the filter determination unit 304 is “0”, the switch unit 503 is turned off and outputs nothing.
  • FIG. 7 is a block diagram showing a configuration of the low-pass filter processing unit 306 in the embodiment of the present invention.
  • the filtering unit 601 performs low-pass filter processing on the band enhancement layer decoded signal received from the band enhancement layer decoding unit 303 using the filter coefficient received from the filter coefficient adjustment unit 305. At this time, when the filter flag received from the filter determination unit 304 is “1”, the filtering unit 601 performs a low-pass filter process to generate a band extension layer attenuation signal, and the generated extension band layer attenuation signal Is output to the adder 307. On the other hand, when the filter flag received from the filter determination unit 304 is “0”, the filtering unit 601 does not perform the low-pass filter process, and uses the band enhancement layer decoded signal received from the band enhancement layer decoding unit 303 as it is. The result is output to the adding unit 307.
  • the filter adjusted by the filter coefficient adjustment unit 305 is, for example, a first-order FIR (Finite Impulse Response) filter, and has a configuration of filter coefficients ⁇ and ⁇ as shown in Equation (4).
  • FIR Finite Impulse Response
  • the filter coefficient ⁇ in the vowel section takes a value of about 0.55 to 1
  • the filter coefficient ⁇ takes a value of about 0 to 0.46. Therefore, the filter represented by equation (4) is a low-pass filter.
  • the filter coefficient ⁇ is adjusted to a smaller value as the HBR becomes larger, and the filter coefficient ⁇ is adjusted to become a larger value as the HBR becomes larger. Therefore, the higher the HBR, the smaller the gain of the designed low-pass filter and the greater the attenuation. That is, the larger the HBR value is, the stronger the expansion band energy is attenuated.
  • the intention of adjusting the filter characteristics of the low-pass filter by combining the filter coefficients ⁇ and ⁇ is to obtain a desired attenuation even when a low-order filter is used.
  • the low-pass filter process using the first-order FIR filter is a low calculation process, the attenuation is insufficient only by adjusting the filter coefficient ⁇ because it is low-order. Therefore, the filter coefficient ⁇ is introduced and adjusted so that the filter coefficient ⁇ decreases as the HBR increases.
  • the filter inclination (attenuation characteristic) can be adjusted with the filter coefficient ⁇ , and the overall gain can be lowered with the filter coefficient ⁇ , so that a desired attenuation can be obtained.
  • ⁇ Effects of the present embodiment> it is possible to prevent deterioration in sound quality associated with adjusting the slope of the spectrum of the output signal (decoded signal), and to make it difficult to perceive the loss of band feeling associated with the attenuation of the high frequency part. it can.
  • the quality of the decoded signal in the wideband part can be maintained by performing the low-pass filter process only on the decoded signal in the extension band part. it can.
  • the low-pass filter processing is not performed on all the frames, and the low-pass filter processing is performed only on the selected frame.
  • the loss can be limited to the selected frame.
  • the characteristics of the low-pass filter are adaptively adjusted by the expansion band energy ratio for each frame, so that the loss of band feeling in the frame to which the low-pass filter processing is applied is reduced. Can be minimized.
  • the filter coefficient is adjusted so as to attenuate more strongly as the HBR increases.
  • the present invention is not limited to this, and the upper limit value TH HIGH is set as the HBR value, and the HBR is changed from TH LOW to TH HIGH .
  • the filter coefficient may be obtained only when taking a value. Generally, since HBR becomes high when a consonant is uttered, it is determined as a consonant section when HBR exceeds TH HIGH . When it is determined as a consonant section, the clearness of the output speech (decoded signal) can be maintained by preventing the low-pass filter from operating.
  • the smoothing coefficient in the expression (1) is a constant.
  • the smoothing coefficient in the expression (1) is used as the voice rise period (onset period), You may change by a downward section (offset-period), a stationary section (stationary-period), a silent section (inactive-period), etc.
  • the smoothing coefficient is set high in order to improve the time followability of the expansion band average energy, and the smoothing coefficient is set in the steady section. Set low.
  • the smoothing coefficient is set to “0” and the extension band average energy is not updated.
  • the smoothing coefficient may be switched according to the vowel section or consonant section of the speech. Specifically, the smoothing coefficient is set to a certain value in the vowel section, the smoothing coefficient is set to “0” in the consonant section, and the extension band average energy is not updated. Thereby, the temporary increase in the extension band energy in the consonant section can be excluded from the calculation of the extension band average energy.
  • the threshold value TH in the equation (2) is a constant.
  • the present invention is not limited to this, and the threshold value TH in the equation (2) may be adaptively changed according to, for example, HBR. Good.
  • the threshold value TH is set such that the larger the HBR, the smaller the threshold value TH, and the smaller the HBR, the larger the threshold value TH.
  • the filter coefficient is obtained from the expressions (5) and (6).
  • the present invention is not limited to this, and the filter coefficient may be obtained using a table corresponding to the HBR. At this time, the table is set so that the filter coefficient ⁇ increases and the filter coefficient ⁇ decreases as the HBR value increases.
  • the filter designed by the filter adjustment unit 305 is a first-order filter.
  • the present invention is not limited to this, and a higher-order filter may be used.
  • the type of filter is not limited to FIR, and an IIR (InfiniteInImpulse Response) filter may be used.
  • the present invention is applied to the decoding scheme for the scalable encoding scheme.
  • the present invention is not limited to this, and a decoding scheme for an encoding scheme having a non-scalable configuration is also applicable.
  • the present invention can also be applied to a scalable configuration having three or more layers.
  • both the audio signal and the music signal are included as the input signal, but the present invention is particularly suitable for the audio signal.
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection or setting of circuit cells inside the LSI may be used.
  • the present invention is suitable for a speech decoding apparatus and a speech decoding method having a scalable configuration, for example.

Abstract

 出力信号(復号信号)のスペクトルの傾きを調整することに伴う音質劣化を防ぎ、高域部の減衰による帯域感の損失を知覚され難くすることができる音声復号装置。第1レイヤ復号部(302)は、第1レイヤ符号化データを復号して第1レイヤ復号信号を生成する。帯域拡張レイヤ復号部(303)は、帯域拡張レイヤ符号化データを復号して帯域拡張レイヤ復号信号を生成する。フィルタ判断部(304)は、帯域拡張レイヤ復号信号のエネルギー変化に基づいて、帯域拡張レイヤ復号信号に対する低域通過フィルタの適用と非適用とを帯域拡張レイヤ復号信号のフレーム毎に判定する。低域通過フィルタ処理部(306)は、フィルタ判断部(304)により低域通過フィルタを適用すると判定したフレームの帯域拡張レイヤ復号信号を、低域通過フィルタでフィルタ処理する。

Description

音声復号装置及び音声復号方法
 本発明は、例えばスケーラブル構成を有する音声復号装置及び音声復号方法に関する。
 移動体通信システムでは、電波資源等の有効利用のために、音声信号を低ビットレートに圧縮して伝送することが要求されている。その一方で、通話音声の品質向上あるいは臨場感の高い通話サービスの実現も望まれており、その実現には、より帯域の広い音声信号または音楽信号等を高品質に符号化することが望ましい。
 このように相反する2つの要求に対し、複数の符号化技術を階層的に統合する技術が有望視されている。この技術は、入力信号を広帯域(0~7kHz)まで符号化する第1レイヤと、入力信号と第1レイヤの復号信号とを用いて超広帯域(0~14kHz)まで符号化を行う帯域拡張レイヤとを階層的に組み合わせるものである。
 以下の説明では、第1レイヤで符号化される信号帯域(0~7kHz)を広帯域部、帯域拡張レイヤで符号化される信号帯域(7kHz~14kHz)を拡張帯域部と呼ぶ。図1は、入力信号スペクトルにおける広帯域部及び拡張帯域部を示す図である。このように階層的に符号化を行う技術は、符号化装置から得られるビットストリームにスケーラビリティ性、すなわち、ビットストリームの一部の情報からでも復号信号を得ることができる性質を有するため、一般的にスケーラブル符号化(階層符号化)と呼ばれている。
 スケーラブル符号化方式は、その性質から、ビットレートの異なるネットワーク間の通信に柔軟に対応することができるので、IPプロトコルで多様なネットワークが統合されていく今後のネットワーク環境に適したものと言える。
 ITU-T(International Telecommunication Union Telecommunication Standardization Sector)で規格化された技術を用いてスケーラブル符号化を実現する例として、例えば、非特許文献1に開示されている技術がある。この技術は、第1レイヤにおいて、広帯域部の信号を符号化し、帯域拡張レイヤにおいては、広帯域部の信号を用いて拡張帯域部の信号を拡張することによって符号化を行う。
 このようなスケーラブル構成を用いることにより、音声信号や、音声信号よりも帯域の広い音楽信号等の高品質化を図ることが可能となる。
 しかしながら、低ビットレートで符号化する場合には、帯域拡張レイヤに割り当てられるビットが少ないために、出力信号(復号信号)が非常に耳障りな音質(異音感)になってしまう。このような、ある周波数帯域に対して少ないビットしか割り当てられない場合には、ビットレートに応じて出力信号の周波数帯域を制限し、残った帯域に集中的にビットを割当てることで異音を低減する方式を取ることがある(非特許文献2)。しかし同時に、帯域を制限することで音の明瞭感(帯域感)が損なわれ、主観的な品質を下げてしまうというデメリットも生じる。つまり、上記のような帯域制限方式を取る場合、異音感と帯域感とはトレードオフの関係にある。
 このような問題を避けるため、上記出力信号の帯域幅を完全に制限するのではなく、出力信号に対して緩やかな特性を持つ低域通過フィルタを適用し、高域エネルギーを減衰させることによって、帯域感を維持しながら異音感を低減させる方式が考えられる。その際、フィルタ係数を(出力)信号の特徴に応じて適応的に切り替えることが望ましい。フィルタ係数を適応的に切替える方式としては、例えば特許文献1などが挙げられる。これは、ポストフィルタの高域強調処理において、高域の持つエネルギーの割合に応じて高域強調フィルタの係数を調整し、エネルギーの割合が高い場合には高域の強調を弱める方式である。これによって、フィルタへの入力信号(復号信号)の特徴に応じて適切な強度のフィルタを設計することができ、帯域感をある程度維持しながら異音感を抑えることができる。
特開平8-202399号公報
Recommendation ITU-T G.718 AnnexB,2010年3月 3GPP TS 26.290 (2005年6月)(AMR-WB+規格書)
 しかしながら、特許文献1においては、出力信号のスペクトルの全体的な傾きを調整するため、低域部の信号のスペクトル傾斜を変えてしまうことになる。つまり、スケーラブル符号化方式にこの構成を適用する場合、広帯域部と拡張帯域部との両方のスペクトル傾斜を変化させてしまうことになる。一般にスケーラブル符号化方式では、聴感的に重要な広帯域部に多くのビットを割り当てることによって、広帯域部の符号化品質を良くしているので、広帯域部のスペクトル傾斜が調整されると音質劣化を招く恐れがある。
 また、特許文献1においては、高域エネルギーの割合でフィルタ係数を調整し、全てのフレームでフィルタ処理を行なうので、高域エネルギーの割合が全体的に高い信号が入力されると、高域強調の強度が弱い状態が長く続いてしまう。よって、高域部の減衰に伴う帯域感の損失が知覚されやすくなり、こもった音に聴こえてしまうという問題がある。特に、女性の声は高域エネルギーの割合が比較的高いために、音質の劣化が顕著である。
 本発明の目的は、出力信号(復号信号)のスペクトルの傾きを調整することに伴う音質劣化を防ぐことができ、高域部の減衰による帯域感の損失を知覚され難くすることができる音声復号装置及び音声復号方法を提供することである。
 本発明の音声復号装置は、広帯域部の音声信号を符号化した第1レイヤ符号化データと、前記広帯域部より高域の拡張帯域部の音声信号を符号化した帯域拡張レイヤ符号化データとを取得する取得手段と、前記取得手段により取得した前記第1レイヤ符号化データを復号して第1レイヤ復号信号を生成するとともに、前記取得手段により取得した前記帯域拡張レイヤ符号化データを復号して帯域拡張レイヤ復号信号を生成する復号手段と、前記帯域拡張レイヤ復号信号のエネルギー変化に基づいて、前記帯域拡張レイヤ復号信号に対する低域通過フィルタの適用と非適用とを前記帯域拡張レイヤ復号信号の所定区間毎に判定する判定手段と、前記判定手段により前記低域通過フィルタを適用すると判定した前記所定区間の前記帯域拡張レイヤ復号信号を、前記低域通過フィルタでフィルタ処理するフィルタ処理手段と、を具備する構成を採る。
 本発明の音声復号方法は、広帯域部の音声信号を符号化した第1レイヤ符号化データと、前記広帯域部より高域の拡張帯域部の音声信号を符号化した帯域拡張レイヤ符号化データとを取得するステップと、取得した前記第1レイヤ符号化データを復号して第1レイヤ復号信号を生成するとともに、取得した前記帯域拡張レイヤ符号化データを復号して帯域拡張レイヤ復号信号を生成するステップと、前記帯域拡張レイヤ復号信号のエネルギー変化に基づいて、前記帯域拡張レイヤ復号信号に対する低域通過フィルタの適用と非適用とを前記帯域拡張レイヤ復号信号の所定区間毎に判定するステップと、前記低域通過フィルタを適用すると判定した前記所定区間の前記帯域拡張レイヤ復号信号を、前記低域通過フィルタでフィルタ処理するステップと、を具備するようにした。
 本発明によれば、出力信号のスペクトルの傾きを調整することに伴う音質劣化を防ぐことができ、高域部の減衰による帯域感の損失を知覚され難くすることができる。
入力信号スペクトルにおける広帯域部及び拡張帯域部を示す図 本発明の実施の形態における通信システムの構成を示すブロック図 本発明の実施の形態における音声符号化装置の構成を示すブロック図 本発明の実施の形態に係る音声復号装置の構成を示すブロック図 本発明の実施の形態におけるフィルタ判断部の構成を示すブロック図 本発明の実施の形態におけるフィルタ係数調整部の構成を示すブロック図 本発明の実施の形態における低域通過フィルタ処理部の構成を示すブロック図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (実施の形態)
 <本発明の概要>
 本発明は、低ビットレートスケーラブル符号化方式に対する復号方式における、低域通過フィルタ処理の必要性の有無の判断法と、拡張帯域部の減衰量の適応的調整法とに係るものである。スケーラブル符号化方式では、聴感的に重要である広帯域部に多くのビットを割り当てて符号化するのが一般的であるため、既に品質のよい広帯域部の信号に低域通過フィルタを適用することは好ましくない。従って、本発明では、スケーラブル符号化方式に対する復号方式が広帯域部の復号信号と拡張帯域部の復号信号とをそれぞれ独立に生成することを利用して、異音が生じやすい拡張帯域部の復号信号のみに低域通過フィルタを適用する。
 この際、全てのフレームに対して低域通過フィルタを適用するのではなく、異音の発生する可能性があるフレームに対してのみフィルタ処理を行う。フィルタ処理の対象となるフレームの選択法については、拡張帯域部のエネルギーが急激に変化することで異音感に繋がるという知見を利用する。具体的には、時間追従性の緩やかな拡張帯域部の平均エネルギーを算出し、フレーム毎に、拡張帯域部のエネルギーと算出した平均エネルギーとを比較することによって拡張帯域部のエネルギーの急激な変化を検出する。このエネルギーの急激な変化を検出し、異音が発生する可能性が高いと判断されたフレームに対してのみ低域通過フィルタを適用することによって、帯域感の損失を最小限に抑えることができる。
 また、低域通過フィルタの減衰量については、復号信号の全帯域のエネルギーに占める拡張帯域部のエネルギーの割合(以下、「拡張帯域エネルギー比」と記載する)を用いて決定する。拡張帯域エネルギー比が高いほど異音が聴こえやすいと考えられるため、現在のフレームにおける復号信号の拡張帯域エネルギー比を用いて、低域通過フィルタのフィルタ係数はフレーム毎に適応的に調整される。
 これにより、スケーラブル符号化方式における広帯域信号の品質に影響を与えることなく、拡張帯域部における異音の低減と帯域感の維持との両立を図ることによって、音質を向上させることができる。
 <通信システムの構成>
 図2は、本発明の実施の形態における通信システム100の構成を示すブロック図である。
 図2より、通信システム100は、音声符号化装置101及び音声復号装置103を備えている。音声符号化装置101と音声復号装置103とは、それぞれ伝送路102を介して通信可能な状態となっている。
 音声符号化装置101は、入力信号を符号化することによりビットストリームを生成し、生成したビットストリームを、伝送路102を介して音声復号装置103に送信する。
 音声復号装置103は、音声符号化装置101から送信されたビットストリームを伝送路102を介して受信し、受信したビットストリームを復号して出力信号として出力する。
 なお、音声符号化装置101及び音声復号装置103はいずれも、通常、基地局装置あるいは通信端末装置等に搭載されて用いられる。
 <音声符号化装置の構成>
 図3は、本発明の実施の形態における音声符号化装置101の構成を示すブロック図である。
 第1レイヤ符号化部201は、入力信号の符号化処理を行い、第1レイヤ符号化データを生成する。第1レイヤ符号化部201は、生成した第1レイヤ符号化データを帯域拡張レイヤ符号化部202及び多重化部203に出力する。
 帯域拡張レイヤ符号化部202は、入力信号と第1レイヤ符号化部201から受け取った第1レイヤ符号化データとを用いて拡張帯域部の符号化処理を行い、帯域拡張レイヤ符号化データを生成する。帯域拡張レイヤ符号化部202は、帯域拡張レイヤ符号化データを多重化部203に出力する。
 多重化部203は、第1レイヤ符号化部201から受け取った第1レイヤ符号化データと、帯域拡張レイヤ符号化部202から受け取った帯域拡張レイヤ符号化データとを多重化してビットストリームを生成し、生成したビットストリームを伝送路102へ出力する。
 <音声復号装置の構成>
 図4は、本発明の実施の形態に係る音声復号装置103の構成を示すブロック図である。
 分離部301は、伝送路102から受け取ったビットストリーム(すなわち、音声符号化装置101から受信した符号化データ)の中から第1レイヤ符号化データと帯域拡張レイヤ符号化データとを分離する。そして、分離部301は、第1レイヤ符号化データを第1レイヤ復号部302に出力し、帯域拡張レイヤ符号化データを帯域拡張レイヤ復号部303に出力する。
 第1レイヤ復号部302は、分離部301から受け取った第1レイヤ符号化データに対して復号を行って第1レイヤ復号信号を生成し、生成した第1レイヤ復号信号をフィルタ係数調整部305及び加算部307に出力する。
 帯域拡張レイヤ復号部303は、分離部301から受け取った帯域拡張レイヤ符号化データの復号を行って帯域拡張レイヤ復号信号を生成し、生成した帯域拡張レイヤ復号信号をフィルタ判断部304及び低域通過フィルタ処理部306に出力する。
 フィルタ判断部304は、帯域拡張レイヤ復号部303から受け取った帯域拡張レイヤ復号信号のエネルギー(拡張帯域エネルギー)を算出する。フィルタ判断部304は、帯域拡張レイヤ復号部303から受け取った帯域拡張レイヤ復号信号のエネルギー変化に基づいて、現在のフレームにおけるフィルタ処理の必要性を判断する。フィルタ判断部304は、フィルタ処理の必要性の有無の判断結果を示すフィルタフラグをフィルタ係数調整部305及び低域通過フィルタ処理部306に出力し、算出した拡張帯域エネルギーをフィルタ係数調整部305に出力する。フィルタフラグは、現在のフレームにおいてフィルタ処理を行なうか否かを表す情報であり、例えばフィルタ処理を行なうと判断した場合には「1」、行なわないと判断した場合には「0」が設定される。フィルタ判断部304の詳細については後述する。
 フィルタ係数調整部305は、第1レイヤ復号部302から受け取った第1レイヤ復号信号と、フィルタ判断部304から受け取ったフィルタフラグ及び拡張帯域エネルギーとを用いて、フィルタ係数の調整を行なう。フィルタ係数調整部305は、フィルタ判断部304から入力したフィルタフラグが「1」の場合には、低域通過フィルタ処理部306にフィルタ係数を出力するが、フィルタ判断部304から入力したフィルタフラグが「0」の場合には何も出力しない。フィルタ係数調整部305の詳細に関しては後述する。
 低域通過フィルタ処理部306は、帯域拡張レイヤ復号部303から受け取った帯域拡張レイヤ復号信号と、フィルタ判断部304から受け取ったフィルタフラグと、フィルタ係数調整部305から受け取ったフィルタ係数とを用いて、帯域拡張レイヤ復号信号に対してフィルタ処理を行なう。低域通過フィルタ処理部306は、フィルタ判断部304から受け取ったフィルタフラグが「1」の場合には、帯域拡張レイヤ復号信号に対してフィルタ処理を行うことにより帯域拡張レイヤ減衰信号を生成し、生成した帯域拡張レイヤ減衰信号を加算部307に出力する。一方、低域通過フィルタ処理部306は、フィルタ判断部304から受け取ったフィルタフラグが「0」の場合には、フィルタ処理を行なわず、帯域拡張レイヤ復号部303から受け取った帯域拡張レイヤ復号信号をそのまま加算部307へ出力する。低域通過フィルタ処理部306の詳細に関しては後述する。
 加算部307は、第1レイヤ復号部302から受け取った第1レイヤ復号信号と、低域通過フィルタ処理部306から受け取った、帯域拡張レイヤ減衰信号または帯域拡張レイヤ復号信号とを加算し、出力信号を生成して出力する。
 <フィルタ判断部の構成>
 図5は、本発明の実施の形態におけるフィルタ判断部304の構成を示すブロック図である。
 拡張帯域エネルギー算出部401は、帯域拡張レイヤ復号部303から受け取った帯域拡張レイヤ復号信号のエネルギーを算出し、算出したエネルギーを拡張帯域エネルギーEhbとして拡張帯域平均エネルギー算出部402、エネルギー比較部403及びフィルタ係数調整部305へ出力する。
 拡張帯域平均エネルギー算出部402は、拡張帯域エネルギー算出部401から受け取った拡張帯域エネルギーEhbと、現在のフレームよりも前のフレームで算出された拡張帯域平均エネルギーEhb_ave(n-1)(nは、現在のフレームを表すフレームインデックス、つまり、この場合、1つ前のフレームに対する拡張帯域平均エネルギー)とを用いて、現在のフレームの拡張帯域平均エネルギーEhb_ave(n)を再帰的に算出し、算出した現在のフレームの拡張帯域平均エネルギーEhb_ave(n)をエネルギー比較部403に出力する。
 具体的には、拡張帯域平均エネルギー算出部402は、(1)式により現在のフレームの拡張帯域平均エネルギーEhb_ave(n)を算出する。
Figure JPOXMLDOC01-appb-M000001
 ただし、αは、拡張帯域平均エネルギーの平滑化の度合いを決める平滑化係数であり、0から1までの値を取る。本発明ではα=0.15程度の時間追従性の低い平滑化係数を用いる。
 エネルギー比較部403は、拡張帯域エネルギー算出部401から受け取った拡張帯域エネルギーEhbと、拡張帯域平均エネルギー算出部402から受け取った拡張帯域平均エネルギーEhb_ave(n)とを比較する。ここで、拡張帯域エネルギーEhbを、(1)式で求めた時間追従性の低い拡張帯域平均エネルギーと比較することによって、拡張帯域エネルギーEhbの急激な変動を検出できる。
 具体的には、(2)式に示すように、エネルギー比較部403は、拡張帯域エネルギーから拡張帯域平均エネルギーを差し引いた値が閾値TH以上の場合には、フィルタフラグFFを「1」に設定し、閾値THより小さい場合にはフィルタフラグFFを「0」に設定する。
Figure JPOXMLDOC01-appb-M000002
 (2)式において、閾値THを導入することにより、拡張帯域エネルギーの変化が定常的で、拡張帯域平均エネルギーとほぼ等しい値を取る場合(つまり、(2)式において、FF=0となる場合)には、低域通過フィルタの適用を除外することができる。これにより、不必要な帯域感の損失を防ぐことができる。
 エネルギー比較部403は、設定したフィルタフラグをフィルタ係数調整部305及び低域通過フィルタ処理部306に出力する。
 <フィルタ係数調整部の構成>
 図6は、本発明の実施の形態におけるフィルタ係数調整部305の構成を示すブロック図である。
 第1レイヤエネルギー算出部501は、第1レイヤ復号部302から受け取った第1レイヤ復号信号のエネルギーを算出し、算出したエネルギーを第1レイヤエネルギーLBenergyとしてフィルタ係数算出部502に出力する。
 フィルタ係数算出部502は、第1レイヤエネルギー算出部501から受け取った第1レイヤエネルギーLBenergyと、フィルタ判断部304から受け取った拡張帯域エネルギーHBenergy(HBenergy=Ehb)とを用いて、拡張帯域エネルギー比HBRを求め、求めた拡張帯域エネルギー比HBRを用いてフィルタ係数を調整する。
 HBRは、(3)式により求められる。
Figure JPOXMLDOC01-appb-M000003
 (3)式で求められたHBRは、母音区間ではおよそ0.37から0.43程度の値を取る。無声区間では0.37よりも小さな値を取る場合があり、また、子音区間では0.43よりも高い値を取り得る。
 フィルタ係数算出部502は、調整したフィルタ係数をスイッチ部503に出力する。なお、フィルタ係数の調整方法については後述する。
 スイッチ部503は、フィルタ判断部304から受け取ったフィルタフラグが「1」の場合のみオンとなり、フィルタ係数算出部502から受け取ったフィルタ係数を低域通過フィルタ処理部306に出力する。一方、スイッチ部503は、フィルタ判断部304から受け取ったフィルタフラグが「0」の場合はオフとなり、何も出力しない。
 <低域通過フィルタ処理部の構成>
 図7は、本発明の実施の形態における低域通過フィルタ処理部306の構成を示すブロック図である。
 フィルタリング部601は、フィルタ係数調整部305から受け取ったフィルタ係数を用いて、帯域拡張レイヤ復号部303から受け取った帯域拡張レイヤ復号信号に対して低域通過フィルタ処理を行なう。この際、フィルタリング部601は、フィルタ判断部304から受け取ったフィルタフラグが「1」の場合には、低域通過フィルタ処理を行なって帯域拡張レイヤ減衰信号を生成し、生成した拡張帯域レイヤ減衰信号を加算部307に出力する。一方、フィルタリング部601は、フィルタ判断部304から受け取ったフィルタフラグが「0」の場合には、低域通過フィルタ処理を行なわず、帯域拡張レイヤ復号部303から受け取った帯域拡張レイヤ復号信号をそのまま加算部307に出力する。
 <フィルタ係数調整部で調整されるフィルタについて>
 フィルタ係数調整部305で調整されるフィルタは、例えば1次のFIR(Finite Impulse Response)フィルタであり、(4)式のようなフィルタ係数β,γの構成になっている。
Figure JPOXMLDOC01-appb-M000004
 これらフィルタ係数β,γは、例えば(5)式及び(6)式より求められる。
Figure JPOXMLDOC01-appb-M000005
 よって、上述したHBRとTHLOWとの取り得る値を考慮すると、母音区間におけるフィルタ係数βはおよそ0.55から1の値を取り、フィルタ係数γは0から0.46程度の値を取る。よって、(4)式で表されるフィルタは低域通過フィルタとなる。
 (5)式及び(6)式より、フィルタ係数βはHBRが大きくなるほど小さい値になり、フィルタ係数γはHBRが大きくなるほど大きい値になるように調整される。よって、HBRが大きくなるほど、設計される低域通過フィルタのゲインは小さくなり、かつ減衰量は大きくなる。つまり、HBRが大きい値になるほど、拡張帯域エネルギーは強く減衰されることを意味する。
 上記のように、フィルタ係数β,γを組み合わせて低域通過フィルタのフィルタ特性を調整する意図は、低次のフィルタを用いた際にも所望の減衰量を得られるようにするためである。1次のFIRフィルタを用いた低域通過フィルタ処理は、低演算処理であるものの、低次であるためフィルタ係数γの調整のみでは減衰量が不十分である。そこで、フィルタ係数βを導入し、HBRが大きい程フィルタ係数βが小さくなるように調整する。これにより、フィルタ係数γでフィルタの傾き(減衰特性)を調整し、更にフィルタ係数βで全体的なゲインを落とすことができるため、所望の減衰量を得ることができる。
 <本実施の形態の効果>
 本実施の形態によれば、出力信号(復号信号)のスペクトルの傾きを調整することに伴う音質劣化を防ぐことができ、高域部の減衰に伴う帯域感の損失を知覚され難くすることができる。
 また、本実施の形態によれば、低域通過フィルタを適用する際には拡張帯域部の復号信号のみに低域通過フィルタ処理を行なうことにより、広帯域部の復号信号の品質を維持することができる。
 また、本実施の形態によれば、全てのフレームにおいて低域通過フィルタ処理を行なわず、選択されたフレームに対してのみ低域通過フィルタ処理を行なうことにより、低域通過フィルタ処理による帯域感の損失は、選択されたフレームに限定することができる。
 また、本実施の形態によれば、低域通過フィルタの特性は、フレーム毎の拡張帯域エネルギー比によって適応的に調整されるため、低域通過フィルタ処理が適用されたフレームにおける帯域感の損失を最小限に抑えることができる。
 <本実施の形態の変形例>
 上記実施の形態において、HBRが大きくなるほど強く減衰するようにフィルタ係数を調整したが、本発明はこれに限らず、HBRの値に上限値THHIGHを設定し、HBRがTHLOWからTHHIGHの値を取る場合にのみ、フィルタ係数を求めてもよい。一般に、子音の発声の際にはHBRが高くなるため、HBRがTHHIGHを超える際には子音区間と判定する。子音区間と判定された場合には低域通過フィルタが動作しないようにすることにより、出力音声(復号信号)の明瞭感を維持することができる。
 また、上記実施の形態において、(1)式における平滑化係数を定数にしたが、本発明はこれに限らず、(1)式における平滑化係数を、音声の立上り区間(onset period)、立下り区間(offset period)、定常区間(stationary period)、及び無音区間(inactive period)などによって変化させてもよい。具体的には、立上り区間及び立下り区間などの音声のエネルギーが急激に変化する区間では、拡張帯域平均エネルギーの時間追従性を上げるため平滑化係数を高く設定し、定常区間では平滑化係数を低く設定する。無音区間において拡張帯域平均エネルギーを更新した場合、拡張帯域平均エネルギーが小さくなり、次に続く音声の立上り区間において必ずフィルタ処理が行なわれてしまう。これを防ぐために、平滑化係数を「0」に設定し、拡張帯域平均エネルギーを更新しない。
 また、音声の母音区間または子音区間によって平滑化係数を切替えてもよい。具体的には、母音区間ではある一定値に平滑化係数を設定し、子音区間では平滑化係数を「0」に設定し、拡張帯域平均エネルギーを更新しない。これにより、子音区間における一時的な拡張帯域エネルギーの増加を拡張帯域平均エネルギーの算出から除外することができる。
 また、上記実施の形態において、(2)式における閾値THを定数にしたが、本発明はこれに限らず、(2)式における閾値THを、例えばHBRに応じて適応的に変化させてもよい。具体的には、HBRが大きいほど閾値THを小さくし、HBRが小さいほど閾値THを大きくするように閾値THを設定する。
 また、上記実施の形態において、フィルタ係数を(5)式及び(6)式より求めたが、本発明はこれに限らず、フィルタ係数をHBRに対応するテーブルを用いて求めてもよい。この際、HBRの値が大きいほどフィルタ係数βは大きくかつフィルタ係数γは小さくなるようにテーブルを設定する。
 また、上記実施の形態において、フィルタ調整部305で設計されるフィルタは1次のフィルタにしたが、本発明はこれに限らず、1次より高次のフィルタを用いてもよい。また、フィルタの種類もFIRに限らず、IIR(Infinite Impulse Response)フィルタを用いてもよい。
 また、本発明では、フィルタ係数調整部305は、フィルタフラグが「0」の場合にはフィルタ係数β=1及びフィルタ係数γ=0に設定し、低域通過フィルタ処理部306へ出力してもよい。
 また、上記実施の形態において、スケーラブル符号化方式に対する復号方式に適用したが、本発明はこれに限らず、スケーラブル構成ではない符号化方式に対する復号方式も適用可能である。
 また、本発明は、階層数が3以上のスケーラブル構成にも適用可能である。
 また、上記実施の形態では、入力信号として音声信号と音楽信号との双方を含むこととしたが、本発明は、特に音声信号に対して好適である。
 また、上記実施の形態において、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、または、LSI内部の回路セルの接続または設定を再構成可能なリコンフィギュラブルプロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2012年1月20日出願の特願2012-010264の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明は、例えばスケーラブル構成を有する音声復号装置及び音声復号方法に好適である。
 103 音声復号装置
 301 分離部
 302 第1レイヤ復号部
 303 帯域拡張レイヤ復号部
 304 フィルタ判断部
 305 フィルタ係数調整部
 306 低域通過フィルタ処理部
 307 加算部

Claims (4)

  1.  広帯域部の音声信号を符号化した第1レイヤ符号化データと、前記広帯域部より高域の拡張帯域部の音声信号を符号化した帯域拡張レイヤ符号化データとを取得する取得手段と、
     前記取得手段により取得した前記第1レイヤ符号化データを復号して第1レイヤ復号信号を生成するとともに、前記取得手段により取得した前記帯域拡張レイヤ符号化データを復号して帯域拡張レイヤ復号信号を生成する復号手段と、
     前記帯域拡張レイヤ復号信号のエネルギー変化に基づいて、前記帯域拡張レイヤ復号信号に対する低域通過フィルタの適用と非適用とを前記帯域拡張レイヤ復号信号の所定区間毎に判定する判定手段と、
     前記判定手段により前記低域通過フィルタを適用すると判定した前記所定区間の前記帯域拡張レイヤ復号信号を、前記低域通過フィルタでフィルタ処理するフィルタ処理手段と、
     を具備する音声復号装置。
  2.  前記判定手段は、
     前記所定区間毎に前記帯域拡張レイヤ復号信号のエネルギーを算出し、現在の前記所定区間の前記帯域拡張レイヤ復号信号のエネルギーと、現在の前記所定区間までの前記帯域拡張レイヤ復号信号の平均エネルギーとの差が閾値以上の場合に、現在の前記所定区間の前記帯域拡張レイヤ復号信号に対して前記低域通過フィルタを適用すると判定する、
     請求項1記載の音声復号装置。
  3.  前記第1レイヤ復号信号のエネルギーと前記帯域拡張レイヤ復号信号のエネルギーとを用いて、前記低域通過フィルタのフィルタ係数を適応的に変化させるフィルタ係数調整手段をさらに具備し、
     前記フィルタ処理手段は、
     前記フィルタ係数を用いて前記フィルタ処理を行う、
     請求項1記載の音声復号装置。
  4.  広帯域部の音声信号を符号化した第1レイヤ符号化データと、前記広帯域部より高域の拡張帯域部の音声信号を符号化した帯域拡張レイヤ符号化データとを取得するステップと、
     取得した前記第1レイヤ符号化データを復号して第1レイヤ復号信号を生成するとともに、取得した前記帯域拡張レイヤ符号化データを復号して帯域拡張レイヤ復号信号を生成するステップと、
     前記帯域拡張レイヤ復号信号のエネルギー変化に基づいて、前記帯域拡張レイヤ復号信号に対する低域通過フィルタの適用と非適用とを前記帯域拡張レイヤ復号信号の所定区間毎に判定するステップと、
     前記低域通過フィルタを適用すると判定した前記所定区間の前記帯域拡張レイヤ復号信号を、前記低域通過フィルタでフィルタ処理するステップと、
     を具備する音声復号方法。
     
PCT/JP2012/008156 2012-01-20 2012-12-20 音声復号装置及び音声復号方法 WO2013108343A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/370,080 US9390721B2 (en) 2012-01-20 2012-12-20 Speech decoding device and speech decoding method
JP2013554102A JP6082703B2 (ja) 2012-01-20 2012-12-20 音声復号装置及び音声復号方法
EP12865640.2A EP2806423B1 (en) 2012-01-20 2012-12-20 Speech decoding device and speech decoding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012010264 2012-01-20
JP2012-010264 2012-01-20

Publications (1)

Publication Number Publication Date
WO2013108343A1 true WO2013108343A1 (ja) 2013-07-25

Family

ID=48798796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008156 WO2013108343A1 (ja) 2012-01-20 2012-12-20 音声復号装置及び音声復号方法

Country Status (4)

Country Link
US (1) US9390721B2 (ja)
EP (1) EP2806423B1 (ja)
JP (1) JP6082703B2 (ja)
WO (1) WO2013108343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091334A (zh) * 2016-11-17 2018-05-29 株式会社东芝 识别装置、识别方法以及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2830064A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decoding and encoding an audio signal using adaptive spectral tile selection
EP3382703A1 (en) 2017-03-31 2018-10-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and methods for processing an audio signal
CN113808597A (zh) * 2020-05-30 2021-12-17 华为技术有限公司 一种音频编码方法和音频编码装置
CN113808596A (zh) * 2020-05-30 2021-12-17 华为技术有限公司 一种音频编码方法和音频编码装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202399A (ja) 1995-01-27 1996-08-09 Kyocera Corp 復号音声の後処理方法
WO2008066071A1 (en) * 2006-11-29 2008-06-05 Panasonic Corporation Decoding apparatus and audio decoding method
WO2008108082A1 (ja) * 2007-03-02 2008-09-12 Panasonic Corporation 音声復号装置および音声復号方法
WO2008120438A1 (ja) * 2007-03-02 2008-10-09 Panasonic Corporation ポストフィルタ、復号装置およびポストフィルタ処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138876A1 (en) 2003-01-10 2004-07-15 Nokia Corporation Method and apparatus for artificial bandwidth expansion in speech processing
BRPI0515551A (pt) * 2004-09-17 2008-07-29 Matsushita Electric Ind Co Ltd aparelho de codificação de áudio, aparelho de decodificação de áudio, aparelho de comunicação e método de codificação de áudio
JP4958780B2 (ja) * 2005-05-11 2012-06-20 パナソニック株式会社 符号化装置、復号化装置及びこれらの方法
WO2007037361A1 (ja) * 2005-09-30 2007-04-05 Matsushita Electric Industrial Co., Ltd. 音声符号化装置および音声符号化方法
US20100017197A1 (en) * 2006-11-02 2010-01-21 Panasonic Corporation Voice coding device, voice decoding device and their methods
EP2407964A2 (en) * 2009-03-13 2012-01-18 Panasonic Corporation Speech encoding device, speech decoding device, speech encoding method, and speech decoding method
JP5598536B2 (ja) * 2010-03-31 2014-10-01 富士通株式会社 帯域拡張装置および帯域拡張方法
US8886523B2 (en) * 2010-04-14 2014-11-11 Huawei Technologies Co., Ltd. Audio decoding based on audio class with control code for post-processing modes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202399A (ja) 1995-01-27 1996-08-09 Kyocera Corp 復号音声の後処理方法
WO2008066071A1 (en) * 2006-11-29 2008-06-05 Panasonic Corporation Decoding apparatus and audio decoding method
WO2008108082A1 (ja) * 2007-03-02 2008-09-12 Panasonic Corporation 音声復号装置および音声復号方法
WO2008120438A1 (ja) * 2007-03-02 2008-10-09 Panasonic Corporation ポストフィルタ、復号装置およびポストフィルタ処理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS 26.290, June 2005 (2005-06-01)
RECOMMENDATION ITU-T G.718 ANNEXB, March 2010 (2010-03-01)
See also references of EP2806423A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091334A (zh) * 2016-11-17 2018-05-29 株式会社东芝 识别装置、识别方法以及存储介质

Also Published As

Publication number Publication date
EP2806423A4 (en) 2015-06-24
EP2806423B1 (en) 2016-09-14
JPWO2013108343A1 (ja) 2015-05-11
US9390721B2 (en) 2016-07-12
JP6082703B2 (ja) 2017-02-15
US20140343932A1 (en) 2014-11-20
EP2806423A1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP6518361B2 (ja) オーディオ/音声符号化方法およびオーディオ/音声符号化装置
RU2666291C2 (ru) Устройство и способ обработки сигнала и программа
JP6082703B2 (ja) 音声復号装置及び音声復号方法
JP5753540B2 (ja) ステレオ信号符号化装置、ステレオ信号復号装置、ステレオ信号符号化方法及びステレオ信号復号方法
WO2012169133A1 (ja) 音声符号化装置、音声復号装置、音声符号化方法及び音声復号方法
CA2780962C (en) Methods and arrangements for loudness and sharpness compensation in audio codecs
WO2009084226A1 (ja) ステレオ音声復号装置、ステレオ音声符号化装置、および消失フレーム補償方法
KR20100086001A (ko) 오디오 신호 처리 방법 및 장치
EP1780895B1 (en) Signal decoding apparatus
JP2020525847A (ja) チャネル間位相差パラメータ符号化方法および装置
JP5006975B2 (ja) 背景雑音情報の復号化方法および背景雑音情報の復号化手段
JP6552986B2 (ja) 音声符号化装置、方法及びプログラム
JP2001325000A (ja) オーディオ信号符号化装置
JPS59214346A (ja) サブバンド符号化方法とその符号化復号器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554102

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14370080

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012865640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012865640

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE