WO2013107411A1 - 数据的传输方法及装置 - Google Patents

数据的传输方法及装置 Download PDF

Info

Publication number
WO2013107411A1
WO2013107411A1 PCT/CN2013/070767 CN2013070767W WO2013107411A1 WO 2013107411 A1 WO2013107411 A1 WO 2013107411A1 CN 2013070767 W CN2013070767 W CN 2013070767W WO 2013107411 A1 WO2013107411 A1 WO 2013107411A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
data
antenna ports
unit
groups
Prior art date
Application number
PCT/CN2013/070767
Other languages
English (en)
French (fr)
Inventor
刘江华
吴强
高驰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA2861928A priority Critical patent/CA2861928C/en
Priority to RU2014134197/07A priority patent/RU2590913C2/ru
Priority to EP13738460.8A priority patent/EP2797275B1/en
Priority to EP21205481.1A priority patent/EP4044541B1/en
Priority to JP2014552505A priority patent/JP5985656B2/ja
Publication of WO2013107411A1 publication Critical patent/WO2013107411A1/zh
Priority to US14/336,747 priority patent/US9306652B2/en
Priority to US15/066,578 priority patent/US10079624B2/en
Priority to US16/123,340 priority patent/US10659111B2/en
Priority to US16/864,145 priority patent/US11038561B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to the field of communication systems, and in particular, to a data transmission method and apparatus.
  • LTE Long Term Evolution
  • eNB evolved Node B
  • the PDCCH Physical Downlink Control Channel
  • e-PDCCH Enhanced Physical Downlink Control Channel
  • the resources allocated to the e-PDCCH are highly flexible, and are no longer subject to three OFDM (Orthogonal Frequency Division Multiplexing) symbols, thereby improving the capacity of the PDCCH or simultaneously scheduling user equipment.
  • the e-PDCCH can also use a DMRS (UE-specific Reference Signal)-based transmission mode, which can achieve spatial reuse to improve the transmission efficiency of the control channel.
  • DMRS UE-specific Reference Signal
  • the embodiment of the invention provides a data transmission method and device, which solves the problem that two types of transmission diversity schemes are used when transmitting data in the transmission diversity mode based on the RS, and the eNB and the UE are increased (the complexity of the user transmission and reception)
  • the technical solution adopted by the embodiment of the present invention is: a data transmission method, including:
  • each of the second resource groups can carry at least two reference signals, where the at least two reference signals are included
  • Each reference signal corresponds to a different antenna port; the data to be transmitted is encoded to generate two data streams;
  • the two data streams are respectively mapped to available resource units of two different antenna ports, and the reference signals corresponding to the two different antenna ports are respectively carried in two different first groups of the first resource group.
  • Data on the two antenna ports is transmitted on available resource elements of the two different antenna ports.
  • a data transmission device includes:
  • a setting unit configured to set at least two second resource groups in each of the at least one first resource group, where each of the second resource groups can carry at least two reference signals, where the at least two reference signals Each of the two reference signals respectively corresponds to a different antenna port;
  • a generating unit configured to encode the data to be sent to generate two data streams
  • a mapping unit configured to map the two data streams generated by the generating unit to the available resource units of two different antenna ports, where the corresponding reference signals of the two different antenna ports are respectively carried in the setting And transmitting, by the sending unit, the mapping unit is mapped to the two antenna ports on the available resource units of the two different antenna ports. The data on it.
  • the data transmission method and apparatus provided by the embodiment of the present invention firstly set at least two groups of second resource groups in each of the at least one first resource group, and set at least each group of the second resource group Two reference signals, which are then encoded to generate two data streams, and then the two data streams are respectively mapped to available resource units of two different antenna ports, the two different antennas
  • the reference signals respectively corresponding to the ports are set on two different groups of second resource groups, and finally the data on the two antenna ports is transmitted on the available resource units of the two different antenna ports.
  • data transmission can be performed by using both SFBC and STBC at the same time
  • the data transmission of one e-PDCCH requires two transmission diversity schemes, thereby increasing the complexity of transmission and reception of the eNB and the UE.
  • the embodiment of the present invention only needs a transmission diversity scheme to perform data transmission, and solves the problem of increasing the complexity of transmission and reception of the eNB and the UE.
  • FIG. 1 is a flowchart of a method for transmitting data according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a data transmission apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of a method for transmitting data according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a data transmission apparatus according to Embodiment 2 of the present invention.
  • 5 is a schematic diagram of physical resource block pairs of DMRS port 7; 6 is a schematic diagram of physical resource block pairs of DMRS port 8;
  • FIG. 7 is a schematic diagram of physical resource block pairs of DMRS port 9;
  • FIG. 9 is a schematic diagram of coding of physical resource block pairs of DMRS port 7.
  • FIG. 10 is a schematic diagram of coding of physical resource block pairs of DMRS port 8.
  • 11 is a schematic diagram of coding of physical resource block pairs of DMRS port 9;
  • FIG. 12 is a schematic diagram of coding of physical resource block pairs of the DMRS port 10;
  • Figure 13 is a schematic diagram of interference between different RRHs.
  • This embodiment provides a data transmission method. As shown in FIG. 1, the method includes:
  • each of the second resource groups can carry at least two reference signals, where the at least two references Each of the reference signals in the signal corresponds to a different antenna port, wherein the first resource group may be a physical resource block pair, and the second resource group may be a resource unit RE, where the at least two reference signals are Each reference signal corresponds to one antenna port, and each of the second resource groups is orthogonal to each other in time and frequency, and each of the second resource groups includes 12 of the REs.
  • DMRS ports 7 ⁇ 14 eight antenna ports are defined as DMRS ports 7 ⁇ 14 , one for each DMRS port.
  • DMRS the information of each DMRS includes the time-frequency resources occupied by the DMRS and the DMRS sequence.
  • the DMRS associated with the DMRS port ⁇ 7, 8, 11, 13 ⁇ is defined or set on 12 REs on a physical resource block pair (PRB pair).
  • PRB pair a physical resource block pair
  • one physical resource block includes 12 consecutive subcarriers in the frequency domain, and 7 consecutive OFDM symbols are included in the time domain
  • one physical resource block pair refers to two physical resource blocks that are consecutive in time, for example, one.
  • the physical resource block pair includes 12 consecutive subcarriers in the frequency domain, and the time domain includes 14 consecutive OFDM symbols, where the first 7 OFDM symbols belong to the first physical resource block, and the latter 7 OFDM symbols belong to the second. Physical resource blocks.
  • the DMRS associated with the DMRS port ⁇ 9, 10, 12, 14 ⁇ is defined or set on another 12 REs on the same PRB pair.
  • Figure 5 to Figure 8 show the time-frequency resources occupied by four DMRS ports ⁇ 7, 8 ⁇ and ⁇ 9, 10 ⁇ in one PRB pair, respectively. Ports 7 and 8 occupy the same time-frequency resources, but they pass The DMRS sequences associated with each other are distinguished; ports 9 and 10 are similar.
  • the DMRSs associated with the ports ⁇ 7, 8, 11, 13 ⁇ occupy the same time-frequency resources and are distinguished by the DMRS sequence; the associated ports ⁇ 9.10, 12, 14 ⁇ are associated with each other.
  • the DMRS occupies the same time-frequency resources and is distinguished by the DMRS sequence.
  • the coding mode is space frequency coding or space time coding
  • the encoding may also be precoding, that is, precoding operation on data to be transmitted, since space frequency coding or space time coding may be expressed as a special implementation of precoding.
  • precoding that is, precoding operation on data to be transmitted, since space frequency coding or space time coding may be expressed as a special implementation of precoding.
  • the specific operation of the precoding is related to the reference signal used to transmit the data.
  • the precoding operation When the reference signal used is a cell-specific reference signal, such as a CRS (cell-specific reference signal) in the LTE system, the precoding operation at this time pre-codes the data through a precoding matrix or vector, and then precodes Each of the subsequent data streams corresponds to an antenna port corresponding to one CRS; when the reference signal used is a user equipment specific reference signal, such as a DMRSOJE-specific reference signal in an LTE system, the precoding operation is data Corresponding to the antenna port corresponding to one DMRS, the corresponding data stream is obtained. For example, precoding operation )[,]— x(.)(,)
  • N 0,1, -,Nl, N is an integer representing data x(.) () directly corresponds to DMRS antenna port 7, [,] ⁇ (1) () The data ⁇ (1 )( ) directly corresponds to the DMRS antenna port 8, and the corresponding data streams are respectively
  • the first data stream corresponds to an antenna port corresponding to the reference signal in the first second resource in the first resource group
  • the second data stream corresponds to the second resource group.
  • the length of the two data streams generated after the data is encoded may be equal or unequal.
  • the data to be transmitted is x(0), x(l), —, x(Nl), and N is an even number, which is subjected to space-frequency coding or space-time coding to obtain two data streams of equal length;
  • the DMRS ports used in a first resource group are 7 and 9.
  • the respective values of L, L 4 may be 0; here are assumed to have two first resource groups, and the DMRS ports used in the first first resource group are 7 and 9, in the second first resource group.
  • the DMRS ports used are 8 and 10.
  • the reference signals respectively corresponding to the two different antenna ports are set on two different groups of second resource groups.
  • the available resource unit of each antenna port refers to a resource unit that can be used to transmit the data stream generated by the coding, for example, except for the PDCCH and the resource unit occupied by the reference signal, other resource units can be used to transmit the data stream.
  • the embodiment provides a data transmission device.
  • the device includes: a setting unit 21, a generating unit 22, a mapping unit 23, and a sending unit 24.
  • the setting unit 21 is configured to set at least two second resource groups in each of the at least one first resource group, where each of the second resource groups can carry at least two reference signals, where Each of the at least two reference signals corresponds to a different antenna port.
  • the first resource group is a physical resource block pair
  • the second resource group is a resource unit RE
  • each of the at least two reference signals respectively corresponds to one antenna port
  • the resource groups are orthogonal to each other in time and frequency, and each of the second resource groups includes 12 of the REs.
  • each DMRS port corresponds to one DMRS .
  • the information of each DMRS includes the time-frequency resources occupied by the DMRS and the DMRS sequence.
  • the DMRS associated with the DMRS port ⁇ 7, 8, 11, 13 ⁇ is defined or set on 12 REs on a physical resource block pair (PRB pa i r ).
  • PRB pa i r a physical resource block pair
  • one physical resource block includes 12 consecutive subcarriers in the frequency domain, and 7 consecutive OFDM symbols are included in the time domain, and one physical resource block pair refers to two physical resource blocks that are consecutive in time, for example, one.
  • the physical resource block pair includes 12 consecutive subcarriers in the frequency domain, and the time domain includes 14 consecutive OFDM symbols, where the first 7 OFDM symbols belong to the first physical resource block, and the latter 7 OFDM symbols belong to the second. Physical resource blocks.
  • the DMRS associated with the DMRS port ⁇ 9, 10, 12, 14 ⁇ is defined or set on the other 12 REs on the same PRB pa i r.
  • Figure 5 to Figure 8 show the time-frequency resources occupied by four DMRS ports ⁇ 7, 8 ⁇ and ⁇ 9, 10 ⁇ in one PRB pa ir, respectively. Ports 7 and 8 occupy the same time-frequency resources, but they Distinguish by the DMRS sequences associated with each other; ports 9 and 10 are similar.
  • the DMRSs associated with the ports ⁇ 7, 8, 11, 13 ⁇ occupy the same time-frequency resources and are distinguished by the DMRS sequence; the same port ⁇ 9. 10, 12, 14 ⁇
  • the associated DMRS occupies the same time-frequency resource and is distinguished by the DMRS sequence.
  • the generating unit 22 is configured to encode the data to be sent to generate two data streams.
  • the coding mode is space frequency coding or space time coding;
  • the coding may also be precoding, that is, precoding operation on data to be transmitted, because space frequency coding or space time coding may be represented as a special implementation of precoding.
  • the mapping unit 23 is configured to map the two data streams generated by the generating unit 22 to available resource units of two different antenna ports.
  • the reference signals corresponding to the two different antenna ports are respectively set on the second resource group of two different groups.
  • the available resource unit of each antenna port refers to a resource unit that can be used to transmit the data stream generated by the code, for example, except for the resource unit occupied by the PDCCH and the reference signal, other resource units can be used to transmit the data stream.
  • the sending unit 24 is configured to send data mapped by the mapping unit 23 to the two antenna ports on the available resource units of the two different antenna ports.
  • the data transmission method and apparatus firstly set at least two groups of second resource groups in each of the at least one first resource group, and set at least each group of the second resource group Two reference signals, which are then encoded to generate two data streams, and then the two data streams are respectively mapped to available resource units of two different antenna ports, the two different antennas
  • the reference signals respectively corresponding to the ports are set on two different groups of second resource groups, and finally the data on the two antenna ports is transmitted on the available resource units of the two different antenna ports.
  • the embodiment of the present invention only needs a transmit diversity scheme to perform data transmission, and solves the problem of increasing the complexity of transmission and reception of the eNB and the UE, and the problem of poor channel estimation performance, and the time-frequency divided orthogonal reference signal. Channel estimation performance is also improved.
  • This embodiment provides a data transmission method. As shown in FIG. 3, the method includes:
  • the first resource group is a physical resource block pair
  • the second resource group is a resource unit RE
  • each of the at least two reference signals respectively corresponds to one antenna port
  • the resource groups are orthogonal to each other in time and frequency, and each of the second resource groups includes 12 of the REs.
  • the coding mode is space frequency coding or space time coding
  • the coding may also be precoding, that is, precoding operation on data to be transmitted, because space frequency coding or space time coding may be represented as a special implementation of precoding.
  • the reference signals corresponding to the two different antenna ports are respectively set on the second resource group of two different groups.
  • the antenna port is a DMRS port.
  • two sets of second resource groups RE are defined in the first resource group PRB pa ir , where each group of resource units includes 12 REs, and the two sets of REs are time-frequency orthogonal; two reference signals are defined on the 12 REs of the first group, the two reference signals correspond to DMRS ports 7 and 8, respectively, and the second group of 12 Two other reference signals are defined on the REs, corresponding to DMRS ports 9 and 10, respectively.
  • the two antenna ports used in this embodiment are respectively associated with reference signals defined on the first group and the second group of 12 REs, such as DMRS ports 7 and 9, DMRS ports 8 and 10, DMRS ports 8 and 9, DMRS. Ports 8 and 10. Further, the two ports used are DMRS ports 7 and 9, and the transmit diversity scheme used is SFBC, and the SFBC encodes the e-PDCCH data to be transmitted to obtain two data streams, and the two data streams are respectively mapped in On the DMRS ports 7 and 9, as shown in FIG. 9 and FIG. 10, the first three columns of REs in the figure are PDCCH regions, that is, the resource elements are unavailable, and "1" on the same time-frequency resource location on the two ports.
  • the resource elements marked “1" and “2" are available resource units.
  • the transmit diversity scheme in the embodiment of the present invention is not limited to SFBC.
  • the available OFDM symbols in a PRB pair are even, as shown in FIG. 11 and FIG. 12, the available OFDM symbols are two, and STBC may also be used.
  • the first two columns RE in the figure are the PDCCH region, that is, this part of the resource unit is unavailable.
  • the allocated antenna is separated.
  • the port is sent.
  • multiple RRHs are disposed in addition to the macro base station in the coverage of one macro cell, and the RRHs are connected to the macro base station by using optical fibers or other manners, and the RRHs have macro cells with them.
  • ID Due to the DMRS based transmission mode, each RRH can serve some users separately, but each RRH is transparent to the user.
  • the UE served by one RRH border will be interfered by another neighboring RRH.
  • the UE_5 of the RRH2 service will be interfered by RRH1.
  • the impact of the interference on the RS interference is more serious, because the DMRS is used for channel estimation, and the estimated channel is used to detect the data channel.
  • different DMRS ports can be assigned. Different RRHs or UEs to avoid interference between DMRSs. Without loss of generality, here is a concrete example.
  • RRH1 and RRH2 in Figure 13 can be used to assign RRH1 or UEs served in RRH1.
  • the assigned DMRS ports are 7 and 9, respectively, and the DMRS ports assigned to RRH 2 or UEs served in RRH 2 are 8 and 10, respectively.
  • the UE in each RRH only needs to use one transmit diversity scheme SFBC when transmitting; in addition, the DMRS sequences associated with DMRS ports 7 and 8 (or 9 and 10) defined in the same group of resource units are orthogonal. Or quasi-orthogonal, so that interference between two RRHs out of the DMRS of the UE can be avoided or reduced, thereby improving channel estimation performance.
  • the at least two PRB pa irs may be continuous or discrete in the frequency domain, preferably discrete.
  • each e_PDCCH may be separately mapped to some of the four PRB pa irs.
  • the e_PDCCH of the UE1 is divided into four parts, and the four parts are respectively mapped to the PRB pa i rl ⁇ 4 On the REs on the 4 and 5 OFDM symbols; or interleaving the e-PDCCHs of at least two UEs, and then mapping the interleaved data in the 4 PRB pa ir according to a certain rule.
  • the embodiment provides a data transmission device.
  • the device includes: a setting unit 41, a generating unit 42, a mapping unit 43, a sending unit 44, and an allocating unit 45.
  • the setting unit 41 is configured to set at least two groups of second resource groups in each of the at least one first resource group, and can carry at least two reference signals in each group of the second resource group.
  • the first resource group is a physical resource block pair
  • the second resource group is a resource unit RE
  • each of the at least two reference signals respectively corresponds to one antenna port
  • the resource groups are orthogonal to each other in time and frequency, and each of the second resource groups includes 12 of the REs.
  • the generating unit 42 is configured to encode the data to be sent to generate two data streams.
  • the coding mode is space frequency coding or space time coding
  • the coding may also be precoding, that is, precoding operation on data to be transmitted, because space frequency coding or space time coding may be represented as a special implementation of precoding.
  • the mapping unit 43 is configured to map the two data streams generated by the generating unit 42 to two Different antenna ports are available on the resource unit.
  • the reference signals corresponding to the two different antenna ports are respectively carried on two different groups of the second resource group.
  • the sending unit 44 is configured to send data mapped by the mapping unit 43 to the two antenna ports on the available resource units of the two different antenna ports.
  • the allocating unit 45 is configured to: when at least two remote radio units are connected to the base station, and one of the at least two remote radio units provides services for the user equipment, respectively, the at least two remote radio units Different antenna ports set by the setting unit are allocated and transmitted by the mapping unit to the antenna port allocated by the allocation unit for transmission.
  • the data transmission method and apparatus provided by the embodiment of the present invention firstly set at least two groups of second resource groups in each of the at least one first resource group, and set at least each group of the second resource group Two reference signals, which are then encoded to generate two data streams, and then the two data streams are respectively mapped to available resource units of two different antenna ports, the two different antennas
  • the reference signals respectively corresponding to the ports are set on two different groups of second resource groups, and finally the data on the two antenna ports is transmitted on the available resource units of the two different antenna ports.
  • data transmission can be performed by using both SFBC and STBC at the same time
  • the data transmission of one e-PDCCH requires two transmission diversity schemes, thereby increasing the complexity of transmission and reception of the eNB and the UE.
  • the embodiment of the present invention only needs a transmission diversity scheme to perform data transmission, and solves the problem of increasing the complexity of transmission and reception of the eNB and the UE, and the time-frequency orthogonal reference signal improves the performance of channel estimation.
  • the data transmission apparatus provided by the embodiment of the present invention may implement the foregoing method embodiments.
  • the data transmission method and apparatus provided by the embodiments of the present invention can be applied to the field of communication systems, but are not limited thereto.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • ROM read-only memory
  • RAM random access memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了一种数据的传输方法及装置,所述方法包括:首先在至少一个第一资源组中的每一个第一资源组中设置至少两组第二资源组,并在每组第二资源组中设置至少两个参考信号,再将需要发送的数据进行编码后生成两个数据流,然后将所述两个数据流分别映射到两个不同的天线端口的可用资源单元上,所述两个不同的天线端口分别对应的参考信号设置在两个不同组的第二资源组上,最后在所述两个不同的天线端口的可用资源单元上发送所述两个天线端口上的数据。本发明适用于通信系统领域。

Description

数据的传输方法及装置
本申请要求了于 2012年 1月 21日提交中国专利局,申请号为 201210019841.8、 发明名称为 "数据的传输方法及装置" 的中国申请的优先权, 以及于 2012年 7月 28 日提交中国专利局, 申请号为 201210264189.6、 发明名称为 "数据的 传输方法及装置" 的中国申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域 本发明涉及通信系统领域, 特别涉及一种数据的传输方法及装置。 背景技术 长期演进 (LTE, Long Term Evolution )标准 Rel_8/9/10通信系统釆用 了动态调度的技术来提高系统的性能, 即基站(eNB, evolved Node B)根据用户设 备的信道状况来进行调度和分配资源, 使得调度到的用户都在其最优的信道 上传输。
然而 PDCCH (Physical Downlink Control Channel, 物理下行控制信道) 容量受限问题在 LTE Rel-10系统的进一步演进中很突出。 由于多用户 MIM0 (Multiple-Input Multiple-Out-put,多入多出系统)会在演进系统中更多地应用来提高 系统的谱效率, 这使得同时调度的用户设备数增加了, 因此就需要更多的 PDCCH。 基于此, 现有的 PDCCH进行了增强, 即在原有的 PDSCH区域划分出一部 分资源来传输增强的 PDCCH (e-PDCCH, Enhanced Physical Downlink Control Channel, 增强物理下行控制信道)。 这样分配给 e-PDCCH的资源就有很大的灵 活度, 不再受艮于三个 OFDM (Orthogonal Frequency Division Multiplexing,正交频分复用)符 号, 从而可以提高 PDCCH的容量或者同时调度用户设备的个数; 同时 e-PDCCH 也可以釆用基于 DMRS (UE-specific Reference Signal, 解调参考信号) 的 传输方式, 可以实现空间上的重用来提高控制信道的传输效率。
目前, 在进行基于丽 RS的发送分集方式传输数据时, 分别在频域上两个 连续的 RE ( Resource Element , 资源单元)和时 i或上两个连续的 RE上进行空时 分组码 (Alamout i )编码后, 同时釆用 SFBC ( Space Frequency Block Coding , 空频编码)和 STBC ( Space Time Block Coding , 空时编码) 两种方式进行数 据传输。 但是由于一个 e-PDCCH的数据传输釆用了两种发送分集方案, 增加了 eNB和 UE ( User Equipment , 用户设备)发送和接收的复杂度。 发明内容
本发明实施例提供一种数据的传输方法及装置, 解决了在进行基于丽 RS的发 送分集方式传输数据时釆用了两种发送分集方案,造成的增加 eNB和 UE( User 发送和接收的复杂度的问题。 本发明实施例釆用的技术方案为: 一种数据的传输方法, 包括:
在至少一个第一资源组中的每一个第一资源组中设置至少两个第二资源 组, 所述每个第二资源组中能够承载至少两个参考信号, 所述至少两个参考 信号中的每一个参考信号分别对应不同的天线端口; 将需要发送的数据进行编码后生成两个数据流;
将所述两个数据流分别映射到两个不同的天线端口的可用资源单元上, 所述两个不同的天线端口分别对应的参考信号分别承载在所述第一资源组的 两个不同的第二资源组上;
在所述两个不同的天线端口的可用资源单元上发送所述两个天线端口上 的数据。
一种数据的传输装置, 包括:
设置单元, 用于在至少一个第一资源组中的每一个第一资源组中设置至 少两个第二资源组, 所述每个第二资源组中能够承载至少两个参考信号, 所 述至少两个参考信号中的每一个参考信号分别对应不同的天线端口;
生成单元, 用于将需要发送的数据进行编码后生成两个数据流; 映射单元, 用于将所述生成单元生成的两个数据流分别映射到两个不同 的天线端口的可用资源单元上, 所述两个不同的天线端口分别对应的参考信 号分别承载在所述设置单元设置的第一资源组的两个不同的第二资源组上; 发送单元, 用于在所述两个不同的天线端口的可用资源单元上发送所述 映射单元映射到所述两个天线端口上的数据。
本发明实施例提供的数据的传输方法及装置, 首先在至少一个第一资源 组中的每一个第一资源组中设置至少两组第二资源组, 并在每组第二资源组 中设置至少两个参考信号, 再将需要发送的数据进行编码后生成两个数据流, 然后将所述两个数据流分别映射到两个不同的天线端口的可用资源单元上, 所述两个不同的天线端口分别对应的参考信号设置在两个不同组的第二资源 组上, 最后在所述两个不同的天线端口的可用资源单元上发送所述两个天线 端口上的数据。 虽然目前可以通过同时釆用 SFBC和 STBC两种方式进行数据传 输, 但是由于一个 e-PDCCH的数据传输需要釆用两种发送分集方案, 从而增加 了 eNB和 UE发送和接收的复杂度。 而本发明实施例只需要一种发送分集方案就 可以进行数据传输, 解决了增加 eNB和 UE发送和接收的复杂度的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其它的附图。
图 1为本发明实施例一提供的数据的传输方法流程图;
图 2为本发明实施例一提供的数据的传输装置结构示意图;
图 3为本发明实施例二提供的数据的传输方法流程图;
图 4为本发明实施例二提供的数据的传输装置结构示意图;
图 5为 DMRS端口 7的物理资源块对示意图; 图 6为 DMRS端口 8的物理资源块对示意图;
图 7为 DMRS端口 9的物理资源块对示意图;
图 8为 DMRS端口 10的物理资源块对示意图;
图 9为 DMRS端口 7的物理资源块对编码示意图;
图 10为 DMRS端口 8的物理资源块对编码示意图;
图 11为 DMRS端口 9的物理资源块对编码示意图;
图 12为 DMRS端口 10的物理资源块对编码示意图;
图 13为不同 RRH之间干扰示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
为使本发明技术方案的优点更加清楚, 下面结合附图和实施例对本发明 作详细说明。
实施例一
本实施例提供一种数据的传输方法, 如图 1所示, 所述方法包括:
101、 在至少一个第一资源组中的每一个第一资源组中设置至少两个第二 资源组, 所述每个第二资源组中能够承载至少两个参考信号, 所述至少两个 参考信号中的每一个参考信号分别对应不同的天线端口; 其中, 所述第一资源组可以为物理资源块对, 所述第二资源组可以为资 源单元 RE,所述至少两个参考信号中的每一个参考信号分别对应一个天线端 口, 所述每组第二资源组之间在时间和频率上相互正交, 所述每组第二资源 组包括 12个所述 RE。
例如, 定义了 8个天线端口为 DMRS端口 7 ~ 14 , 每个 DMRS端口对应一个 DMRS, 每个 DMRS的信息包括 DMRS所占用的时频资源以及 DMRS序列。 DMRS端口 {7, 8, 11, 13}所关联的 DMRS定义或设置在一个物理资源块对(PRB pair ) 上的 12个 RE上。 具体地, 一个物理资源块是频域上包含 12个连续的子载波, 时域上包含 7个连续的 OFDM符号, 一个物理资源块对是指在时间上连续的两个 物理资源块, 例如一个物理资源块对在频域上包含 12个连续的子载波, 时域 上包含 14个连续的 OFDM符号, 其中前 7个 OFDM符号属于第一个物理资源块, 后 面的 7个 OFDM符号属于第二个物理资源块。 DMRS端口 {9, 10, 12, 14}所关联的 DMRS定义或设置在同一个 PRB pair上的另外 12个 RE上。 图 5到图 8分别表示了 4 个 DMRS端口 {7, 8}和 {9, 10}在一个 PRB pair中所占用的时频资源情况, 端口 7 和 8占用同样的时频资源, 但是它们通过彼此所关联的 DMRS序列来区分; 端口 9和 10类似。 在 8个 DMRS端口存在的情况下, 端口 {7, 8, 11, 13}所关联的 DMRS占 用同样的时频资源并通过 DMRS序列来区分; 同理端口 {9.10, 12, 14}所关联的 DMRS占用同样的时频资源通过 DMRS序列来区分。
102、 将需要发送的数据进行编码后生成两个数据流。
其中, 所述编码方式为空频编码或空时编码;
另一方面, 所述的编码也可以是预编码, 即对需要发送的数据进行预编 码操作, 因为空频编码或空时编码都可以表示为预编码的一种特殊实现方式。 预编码的具体操作与传输数据时所用的参考信号有关。 当所用的参考信号是 小区特定的参考信号时, 如 LTE系统中的 CRS (cell-specific reference signal) ,此时的预编码操作是通过一个预编码矩阵或者向量对数据进行预编 码, 然后预编码后的每个数据流分别对应一个 CRS所对应的天线端口; 当所用 的参考信号是用户设备特定的参考信号时, 如 LTE系统中的 DMRSOJE-specific reference signal) ,这时预编码的操作就是数据直接对应一个 DMRS所对应的 天 线 端 口 , 得 到 相 应 的 数 据 流 。 例 如 , 预 编 码 操 作 )[,]— x(。)(,)
= 0,1, -,N-l, N是整数表示数据 x(。) ()直接对应 DMRS天线端口 7 , [,] χ(1)() 数据 χ(1)( )直接对应 DMRS天线端 口 8 , 得到相应的数据流分别是
Figure imgf000007_0001
这里, 第一个数据流对应的是所述第一资源组中的第一个第二资源中参 考信号所对应的天线端口, 第二个数据流对应的是所述第一资源组中第二资 源中参考信号所对应的天线端口。 在所述的数据进行编码后生成两个数据流 的长度可以是相等的, 也可以是不等的。 例如, 需要发送的数据为 x(0),x(l),— ,x(N-l),N是一个偶数, 对其进行空频编码或者空时编码得到长度相等 的两个数据流; 对其进行预编码, 也可以得到两个长度相等的数据流, 例如 • = 0,l,---,N/2-l; 也可以对其进行预编码, 得到两个长度不
Figure imgf000007_0004
等的数据流, 例如第一数据流为 7)[] =
Figure imgf000007_0002
i = 0,1,— ,J-l,J<N,J≠N/2 , 第二数 y{9)[j] = x{j + L)j = 0X-,N-l-L,这里假设所述的至少一个第一资源组中 所 用 的 DMRS 端 口 为 7 和 9 。 另 夕卜 , 第 一数据 流可 以 包括 _y (7)第一资源组 1 [/'] =
Figure imgf000007_0003
-l,Jj <N
_y(8) — 2[] = Jc(+A), = 0,l,"-,J2_l,J1+J2<N , 第 二 数据 vju 可 以 包 括 y '第一资源组 l [z^ ^' + L, +L2),i = 0,l,---,L3-l,Ll +L2 +L3 <N
_y(10)第一资源组 2 = + J2+J3)J = 0,1,···, J4_ 1,^+4+ J3+J4 =N , 其中 LX,L2,L ,L4的 分别的取值可以为 0; 这里假设有两个第一资源组, 且第一个第一资源组中所 用的 DMRS端口为 7和 9, 第二个第一资源组中所用的 DMRS端口为 8和 10。
103、 将所述两个数据流分别映射到两个不同的天线端口的可用资源单元 上。
其中, 所述两个不同的天线端口分别对应的参考信号设置在两个不同组 的第二资源组上。 另外, 每个天线端口的可用资源单元是指可以用来传输所 述编码生成的数据流的资源单元, 例如除了 PDCCH以及参考信号占用的资源单 元, 其它资源单元可以用来传输所述数据流。 104、 在所述两个不同的天线端口的可用资源单元上发送所述两个天线端 口上的数据。
本实施例提供一种数据的传输装置, 如图 2所示, 所述装置包括: 设置单 元 21、 生成单元 22、 映射单元 23、 发送单元 24。
设置单元 21 , 用于在至少一个第一资源组中的每一个第一资源组中设置 至少两个第二资源组, 所述每个第二资源组中能够承载至少两个参考信号, 所述至少两个参考信号中的每一个参考信号分别对应不同的天线端口。
其中, 所述第一资源组为物理资源块对, 所述第二资源组为资源单元 RE, 所述至少两个参考信号中的每一个参考信号分别对应一个天线端口, 所述每 组第二资源组之间在时间和频率上相互正交, 所述每组第二资源组包括 12个 所述 RE。
例如, 定义了 8个天线端口为 DMRS端口 7 ~ 14 , 每个 DMRS端口对应一个 DMRS , 每个 DMRS的信息包括 DMRS所占用的时频资源以及 DMRS序列。 DMRS端口 {7 , 8 , 11 , 13}所关联的 DMRS定义或设置在一个物理资源块对(PRB pa i r ) 上的 12个 RE上。 具体地, 一个物理资源块是频域上包含 12个连续的子载波, 时域上包含 7个连续的 OFDM符号, 一个物理资源块对是指在时间上连续的两个 物理资源块, 例如一个物理资源块对在频域上包含 12个连续的子载波, 时域 上包含 14个连续的 OFDM符号, 其中前 7个 OFDM符号属于第一个物理资源块, 后 面的 7个 OFDM符号属于第二个物理资源块。 DMRS端口 {9, 10, 12, 14}所关联的 DMRS定义或设置在同一个 PRB pa i r上的另外 12个 RE上。 图 5到图 8分别表示了 4 个 DMRS端口 {7, 8}和 {9, 10}在一个 PRB pa i r中所占用的时频资源情况, 端口 7 和 8占用同样的时频资源, 但是它们通过彼此所关联的 DMRS序列来区分; 端口 9和 10类似。 在 8个 DMRS端口存在的情况下, 端口 {7, 8, 11, 13}所关联的 DMRS占 用同样的时频资源并通过 DMRS序列来区分; 同理端口 {9. 10, 12, 14}所关联的 DMRS占用同样的时频资源通过 DMRS序列来区分。
生成单元 22 , 用于将需要发送的数据进行编码后生成两个数据流。 其中, 所述编码方式为空频编码或空时编码;
另外, 所述的编码也可以是预编码, 即对需要发送的数据进行预编码操 作, 因为空频编码或空时编码都可以表示为预编码的一种特殊实现方式。
映射单元 23 , 用于将所述生成单元 22生成的两个数据流分别映射到两个 不同的天线端口的可用资源单元上。
其中, 所述两个不同的天线端口分别对应的参考信号设置在两个不同组 的第二资源组上。 另外, 每个天线端口的可用资源单元是指可以用来传输所 述编码生成的数据流的资源单元, 例如除了 PDCCH以及参考信号占用的资源单 元, 其它资源单元可以用来传输所述数据流。
发送单元 24 , 用于在所述两个不同的天线端口的可用资源单元上发送所 述映射单元 23映射到两个天线端口上的数据。
本发明实施例提供的数据的传输方法及装置, 首先在至少一个第一资源 组中的每一个第一资源组中设置至少两组第二资源组, 并在每组第二资源组 中设置至少两个参考信号, 再将需要发送的数据进行编码后生成两个数据流, 然后将所述两个数据流分别映射到两个不同的天线端口的可用资源单元上, 所述两个不同的天线端口分别对应的参考信号设置在两个不同组的第二资源 组上, 最后在所述两个不同的天线端口的可用资源单元上发送所述两个天线 端口上的数据。 虽然目前可以通过同时釆用 SFBC和 STBC两种方式进行数据传 输, 但是由于一个 e-PDCCH的数据传输需要釆用两种发送分集方案, 从而增加 了 eNB和 UE发送和接收的复杂度。 而本发明实施例只需要一种发送分集方案就 可以进行数据传输, 解决了增加 eNB和 UE发送和接收的复杂度的问题以及信道 估计性能较差的问题, 另外时频分正交的参考信号也提高了信道估计性能。
实施例二
本实施例提供一种数据的传输方法, 如图 3所示, 所述方法包括:
301、 在至少一个第一资源组中的每一个第一资源组中设置至少两组第二 资源组, 并在每组第二资源组中设置至少两个参考信号。 其中, 所述第一资源组为物理资源块对, 所述第二资源组为资源单元 RE, 所述至少两个参考信号中的每一个参考信号分别对应一个天线端口, 所述每 组第二资源组之间在时间和频率上相互正交, 所述每组第二资源组包括 12个 所述 RE。
302、 将需要发送的数据进行编码后生成两个数据流。
其中, 所述编码方式为空频编码或空时编码;
另外, 所述的编码也可以是预编码, 即对需要发送的数据进行预编码操 作, 因为空频编码或空时编码都可以表示为预编码的一种特殊实现方式。
303、 将所述两个数据流分别映射到两个不同的天线端口的可用资源单元 上。
其中, 所述两个不同的天线端口分别对应的参考信号设置在两个不同组 的第二资源组上。
304、 在所述两个不同的天线端口的可用资源单元上发送所述两个天线端 口上的数据。
具体地, 在本发明实施例中, 天线端口为 DMRS端口, 如图 5到图 8所示, 在第一资源组 PRB pa i r中定义了两组第二资源组 RE , 其中每组资源单元包括 12个 RE , 且这两组 RE是时频正交的; 在第一组的 12个 RE上定义了两个参考信 号, 这两个参考信号分别对应 DMRS端口 7和 8 , 第二组的 12个 RE上定义了另外 两个参考信号, 分别对应 DMRS端口 9和 10 。 这个实施例所釆用的两个天线端 口分别关联定义在第一组和第二组 12个 RE上的参考信号, 如 DMRS端口 7和 9 , DMRS端口 8和 10 , DMRS端口 8和 9 , DMRS端口 8和 10。 进一步地, 釆用的两个端 口是 DMRS端口 7和 9 , 釆用的发送分集方案是 SFBC , SFBC对需要发送的 e-PDCCH 数据进行编码得到两个数据流, 这两个数据流分别映射在 DMRS端口 7和 9上, 如图 9和图 10所示,图中前 3列 RE为 PDCCH区域,即这部分资源单元是不可用的, 两个端口上同一时频资源位置上的 "1 " 和 "2" 来传输一个 Alamout i编码的 输出, 标 "1" 和 "2" 的资源单元都是可用的资源单元。 例如需要发送的 e-PDCCH调制符号为 = ··· n} , 其中 , = 0,l,...,2N-l是调制符号, N是正整数。把/)分成两个调制符号集合; ^和 Y, 分别为 = {x。,W w— ^ = 1)。, VJn},其中 ^= , = +1, 0,1,...,N— 1; 然 后对 j j中的元素符号进行 SFBC「 y' i = 0X-,N- 其中 *表示的是取共 轭操作, 得到两个数据流 M和 N , 具体分别为 M={ 。, l,. , 2W― J , Ν = {η0ι,···,η_ι}, 其中 m2! = x!,m2!+1 = =— *,"2!+1 = χ!* , / = 0,1,---,N-1; 其次 把两个数据流 M,N分别映射在 DMRS端口 7和 9上。
本发明实施例中的发送分集方案不限于 SFBC,当一个 PRB pair中的可用 OFDM符号是偶数时, 如图 11和图 12所示, 可用 OFDM符号是 2个, 也可以釆用 STBC。 图中前两列 RE为 PDCCH区域, 即这部分资源单元是不可用的。
305、 当至少两个远端射频单元连接在宏基站上且具有与宏基站同样的小 区 ID, 并且所述至少两个远端射频单元中的一个为用户设备提供服务时, 分 述分配的天线端口进行发送。 具体地, 在异构网场景中, 在一个宏小区的覆盖范围内除了宏基站外安置 了多个 RRH, 这些 RRH通过光纤或者其它方式连接在宏基站上, 且这些 RRH具有 与其所在的宏小区相同的小区标识(ID); 由于基于 DMRS的发送模式, 因此每 个 RRH都可以单独服务一些用户, 但是每个 RRH对用户而言是透明的。 在这个 场景下, 一个 RRH边界服务的 UE会受到另外一个邻近的 RRH的干扰, 如图 13中 所示的 RRH2服务的 UE_ 5会受到 RRH1的干扰。 这种干扰对丽 RS干扰的影响要严 重一些, 因为 DMRS用来做信道估计, 并利用估计的信道来检测数据信道, 当本发明实施例应用在这个场景时, 可以通过分配不同的 DMRS端口给不 同的 RRH或者 UE来避免 DMRS之间的干扰。 不失一般性, 这里以一个具体的例子 来说明。 仍以图 13的 RRH1和 RRH2为例, 可以给 RRH1或者在 RRH1内服务的 UE分 配的 DMRS端口分别是 7和 9 , 给 RRH 2或者在 RRH 2内服务的 UE分配的 DMRS端口分 别为 8和 10。 这样, 每个 RRH内的 UE在发送时只需釆用一种发送分集方案 SFBC; 另外由于定义在同一组资源单元的 DMRS端口 7和 8 (或者 9和 10 ) 关联的 DMRS 序列是正交的或者准正交的, 这样就可以避免或降低两个 RRH边界出 UE的 DMRS 之间的干扰, 从而提高信道估计性能。 在本发明实施例中, 对于至少两个 PRB pa i r可以是频域上连续的或者离 散的, 优选的是离散的。 下面假设有 4个 PRB pa i r用来传输 e-PDCCH, 且这 4个 PRB pa i r在频域上是离散的, 并釆用发送分集方案。 在传输 e-PDCCH时, 可以 是每个 e_PDCCH单独地映射到这 4个 PRB pa i r中的一些 RE上,例如 UE1的 e_PDCCH 分成 4部分, 这 4部分分别映射在 PRB pa i rl ~ 4的第 4和 5个 OFDM符号上的 RE上; 或者把至少两个 UE的 e-PDCCH放在一起进行交织, 然后把交织后的数据按照一 定的规则映射在所述的 4个 PRB pa i r中。
本实施例提供一种数据的传输装置, 如图 4所示, 所述装置包括: 设置单 元 41、 生成单元 42、 映射单元 43、 发送单元 44、 分配单元 45。
设置单元 41 , 用于在至少一个第一资源组中的每一个第一资源组中设置 至少两组第二资源组, 并在每组第二资源组中能够承载至少两个参考信号。
其中, 所述第一资源组为物理资源块对, 所述第二资源组为资源单元 RE, 所述至少两个参考信号中的每一个参考信号分别对应一个天线端口, 所述每 组第二资源组之间在时间和频率上相互正交, 所述每组第二资源组包括 12个 所述 RE。
生成单元 42 , 用于将需要发送的数据进行编码后生成两个数据流。
其中, 所述编码方式为空频编码或空时编码;
另外, 所述的编码也可以是预编码, 即对需要发送的数据进行预编码操 作, 因为空频编码或空时编码都可以表示为预编码的一种特殊实现方式。
映射单元 43 , 用于将所述生成单元 42生成的两个数据流分别映射到两个 不同的天线端口的可用资源单元上。
其中, 所述两个不同的天线端口分别对应的参考信号承载在两个不同组 的第二资源组上。
发送单元 44 , 用于在所述两个不同的天线端口的可用资源单元上发送所 述映射单元 43映射到两个天线端口上的数据。
分配单元 45 , 用于当至少两个远端射频单元连接在基站上, 并且所述至 少两个远端射频单元中的一个为用户设备提供服务时, 分别为所述至少两个 远端射频单元分配所述设置单元设置的不同的天线端口并由所述映射单元将 数据映射到所述分配单元分配的天线端口进行发送。
本发明实施例提供的数据的传输方法及装置, 首先在至少一个第一资源 组中的每一个第一资源组中设置至少两组第二资源组, 并在每组第二资源组 中设置至少两个参考信号, 再将需要发送的数据进行编码后生成两个数据流, 然后将所述两个数据流分别映射到两个不同的天线端口的可用资源单元上, 所述两个不同的天线端口分别对应的参考信号设置在两个不同组的第二资源 组上, 最后在所述两个不同的天线端口的可用资源单元上发送所述两个天线 端口上的数据。 虽然目前可以通过同时釆用 SFBC和 STBC两种方式进行数据传 输, 但是由于一个 e-PDCCH的数据传输需要釆用两种发送分集方案, 从而增加 了 eNB和 UE发送和接收的复杂度。 而本发明实施例只需要一种发送分集方案就 可以进行数据传输, 解决了增加 eNB和 UE发送和接收的复杂度的问题, 另外时 频分正交的参考信号提高了信道估计的性能。
本发明实施例提供的数据的传输装置可以实现上述提供的方法实施例, 具体功能实现请参见方法实施例中的说明, 在此不再赘述。 本发明实施例提 供的数据的传输方法及装置可以适用于通信系统领域, 但不仅限于此。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存 己忆体 ( Random Access Memory, RAM )等。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应该以权利要求的保护范围为准。

Claims

权 利 要求 书
1、 一种数据的传输方法, 其特征在于, 包括:
在至少一个第一资源组中的每一个第一资源组中设置至少两个第二资源 组, 所述每个第二资源组中能够承载至少两个参考信号, 所述至少两个参考信 号中的每一个参考信号分别对应不同的天线端口;
将需要发送的数据进行编码后生成两个数据流;
将所述两个数据流分别映射到两个不同的天线端口的可用资源单元上, 所 述两个不同的天线端口分别对应的参考信号分别承载在所述第一资源组的两个 不同的第二资源组上;
在所述两个不同的天线端口的可用资源单元上发送所述两个天线端口上的 数据。
2、 根据权利要求 1所述的方法, 其特征在于,
所述第一资源组包括物理资源块对, 所述第二资源组包括资源单元 RE。
3、 根据权利要求 1所述的方法, 其特征在于,
所述天线端口的可用资源单元包括第一资源组中除了物理下行控制信道 PDCCH以及参考信号占用的资源单元以外的资源单元。
4、 根据权利要求 1所述的方法, 其特征在于, 所述每组第二资源组之间在 时间和频率上相互正交, 所述每组第二资源组包括 12个所述 RE。
5、 根据权利要求 1所述的方法, 其特征在于, 所述编码方式为空频编码或 空时编码。
6、 根据权利要求 1所述的方法, 其特征在于, 当至少两个远端射频单元连 接在基站上, 并且所述至少两个远端射频单元中的一个为用户设备提供服务时, 所述方法还包括:
7、 一种数据的传输装置, 其特征在于, 包括:
设置单元, 用于在至少一个第一资源组中的每一个第一资源组中设置至少 两个第二资源组, 所述每个第二资源组中能够承载至少两个参考信号, 所述至 少两个参考信号中的每一个参考信号分别对应不同的天线端口;
生成单元, 用于将需要发送的数据进行编码后生成两个数据流;
映射单元, 用于将所述生成单元生成的两个数据流分别映射到两个不同的 天线端口的可用资源单元上, 所述两个不同的天线端口分别对应的参考信号分 别承载在所述设置单元设置的第一资源组的两个不同的第二资源组上;
发送单元, 用于在所述两个不同的天线端口的可用资源单元上发送所述映 射单元映射到所述两个天线端口上的数据。
8、 根据权利要求 7所述的装置, 其特征在于, 所述每组第二资源组之间在 时间和频率上相互正交, 所述每组第二资源组包括 12个所述 RE。
9、 根据权利要求 7所述的装置, 其特征在于, 所述编码方式为空频编码或 空时编码。
10、 根据权利要求 7所述的装置, 其特征在于, 还包括: 分配单元, 用于当至少两个远端射频单元连接在基站上, 并且所述至少两 个远端射频单元中的一个为用户设备提供服务时, 分别为所述至少两个远端射 频单元分配所述设置单元设置的不同的天线端口并由所述映射单元将数据映射 到所述分配单元分配的天线端口进行发送。
PCT/CN2013/070767 2012-01-21 2013-01-21 数据的传输方法及装置 WO2013107411A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2861928A CA2861928C (en) 2012-01-21 2013-01-21 Method and apparatus for transmitting data
RU2014134197/07A RU2590913C2 (ru) 2012-01-21 2013-01-21 Способ и устройство передачи данных
EP13738460.8A EP2797275B1 (en) 2012-01-21 2013-01-21 Data transmission method and apparatus
EP21205481.1A EP4044541B1 (en) 2012-01-21 2013-01-21 Method and apparatus for transmitting data
JP2014552505A JP5985656B2 (ja) 2012-01-21 2013-01-21 データを送信するための方法と装置
US14/336,747 US9306652B2 (en) 2012-01-21 2014-07-21 Method and apparatus for transmitting data
US15/066,578 US10079624B2 (en) 2012-01-21 2016-03-10 Method and apparatus for transmitting data
US16/123,340 US10659111B2 (en) 2012-01-21 2018-09-06 Method and apparatus for transmitting data
US16/864,145 US11038561B2 (en) 2012-01-21 2020-04-30 Method and apparatus for transmitting data

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210019841 2012-01-21
CN201210019841.8 2012-01-21
CN201210264189.6A CN103220029B (zh) 2012-01-21 2012-07-28 数据的传输方法及装置
CN201210264189.6 2012-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/336,747 Continuation US9306652B2 (en) 2012-01-21 2014-07-21 Method and apparatus for transmitting data

Publications (1)

Publication Number Publication Date
WO2013107411A1 true WO2013107411A1 (zh) 2013-07-25

Family

ID=48798667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070767 WO2013107411A1 (zh) 2012-01-21 2013-01-21 数据的传输方法及装置

Country Status (7)

Country Link
US (4) US9306652B2 (zh)
EP (2) EP4044541B1 (zh)
JP (4) JP5985656B2 (zh)
CN (3) CN107645329B (zh)
CA (1) CA2861928C (zh)
RU (2) RU2658334C1 (zh)
WO (1) WO2013107411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952207B2 (en) 2017-03-20 2021-03-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data, terminal device and network device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140732A1 (ja) 2012-03-19 2013-09-26 パナソニック株式会社 送信装置、受信装置、送信方法及び受信方法
ES2808566T3 (es) * 2013-05-31 2021-03-01 Qualcomm Inc Precodificación lineal en sistemas MIMO de dimensión completa
US10763939B2 (en) 2014-05-15 2020-09-01 Huawei Technologies Co., Ltd. Base station, user equipment, and communication signal transmitting and receiving methods
CN106856426B (zh) * 2015-12-09 2019-07-19 电信科学技术研究院 一种dmrs指示方法、终端及基站
US10574425B2 (en) * 2016-06-28 2020-02-25 Lg Electronics Inc. Method for receiving downlink signal and user equipment, and method for transmitting downlink signal and base station
CN107733617B (zh) 2016-08-12 2020-11-06 华为技术有限公司 参考信号映射方法及装置
CN107863995B (zh) * 2016-09-21 2020-09-11 华为技术有限公司 数据发送方法、数据接收方法、设备及系统
CN108809599B (zh) * 2017-05-05 2023-09-08 华为技术有限公司 一种通信方法、相关设备和系统
CN108111275B (zh) * 2017-08-11 2022-01-28 中兴通讯股份有限公司 参考信号信息的配置方法及装置
WO2019032034A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) SELECTIVE REPEAT OF SYMBOLS FOR SFBC ON SPDCCH
CN110768699B (zh) 2018-07-27 2022-08-26 华为技术有限公司 接收和发送数据的方法以及通信装置
CN112968756B (zh) * 2018-09-14 2022-06-28 华为技术有限公司 参考信号配置方法和装置
WO2020077504A1 (en) * 2018-10-15 2020-04-23 Nokia Shanghai Bell Co., Ltd. Methods, devices and computer readable medium for downlink transmissions
CN116566557A (zh) * 2022-01-26 2023-08-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034340A2 (ko) * 2009-09-15 2011-03-24 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조신호를 전송하는 방법 및 장치
CN102006107A (zh) * 2009-09-03 2011-04-06 大唐移动通信设备有限公司 一种发送和接收sr的方法、系统及装置
CN102088434A (zh) * 2009-12-04 2011-06-08 中兴通讯股份有限公司 解调参考信号发送方法、序列生成方法及发射、接收装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698770B1 (ko) 2005-03-09 2007-03-23 삼성전자주식회사 광대역 무선통신시스템에서 시공간 부호화 데이터의 부반송파 사상 장치 및 방법
CN1964218A (zh) * 2005-11-09 2007-05-16 华为技术有限公司 一种无线信号的多天线发送系统、方法及无线通信系统
KR101425981B1 (ko) 2007-03-21 2014-08-05 인터디지탈 테크날러지 코포레이션 전용 기준 신호 모드에 기초하여 리소스 블록 구조를 전송 및 디코딩하는 mimo 무선 통신 방법 및 장치
CN101355408A (zh) * 2007-07-25 2009-01-28 华为技术有限公司 数据的传输处理方法与传输处理装置
JP2009164961A (ja) 2008-01-08 2009-07-23 Sharp Corp 無線通信システム、無線通信方法、無線送信装置、無線送信プログラム、無線受信装置、及び無線受信プログラム
CN101800718B (zh) * 2009-02-06 2015-07-22 中兴通讯股份有限公司 基于多点协作传输的映射处理方法
KR101757452B1 (ko) * 2010-01-08 2017-07-13 삼성전자주식회사 무선 통신 시스템에서 자원 매핑 및 디매핑 방법 및 장치
WO2011096646A2 (en) * 2010-02-07 2011-08-11 Lg Electronics Inc. Method and apparatus for transmitting downlink reference signal in wireless communication system supporting multiple antennas
KR20110095823A (ko) * 2010-02-19 2011-08-25 엘지전자 주식회사 무선 통신 시스템에서 복수의 레이어들을 복수의 안테나 포트들에 맵핑하는 방법 및 장치
JP5259639B2 (ja) 2010-03-12 2013-08-07 株式会社日立製作所 無線通信システム及び方法、基地局装置
US8593933B2 (en) 2010-04-27 2013-11-26 Qualcomm Incorporated Modified spatial diversity schemes for coverage enhancement
KR101780503B1 (ko) * 2010-10-06 2017-09-21 언와이어드 플래넷 인터내셔널 리미티드 데이터 송수신 방법 및 장치
CA2822505C (en) * 2010-12-22 2018-01-23 Nokia Siemens Networks Oy Allocation of resources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006107A (zh) * 2009-09-03 2011-04-06 大唐移动通信设备有限公司 一种发送和接收sr的方法、系统及装置
WO2011034340A2 (ko) * 2009-09-15 2011-03-24 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조신호를 전송하는 방법 및 장치
CN102088434A (zh) * 2009-12-04 2011-06-08 中兴通讯股份有限公司 解调参考信号发送方法、序列生成方法及发射、接收装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797275A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952207B2 (en) 2017-03-20 2021-03-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data, terminal device and network device

Also Published As

Publication number Publication date
CN103220029B (zh) 2017-10-24
EP2797275A1 (en) 2014-10-29
JP2016226012A (ja) 2016-12-28
US20160261317A1 (en) 2016-09-08
US11038561B2 (en) 2021-06-15
RU2014134197A (ru) 2016-03-20
JP6313381B2 (ja) 2018-04-18
US10659111B2 (en) 2020-05-19
RU2658334C1 (ru) 2018-06-20
EP2797275A4 (en) 2014-12-10
JP2018139414A (ja) 2018-09-06
US20190097691A1 (en) 2019-03-28
EP4044541B1 (en) 2024-04-03
CA2861928C (en) 2019-03-05
CN107733511A (zh) 2018-02-23
EP4044541A1 (en) 2022-08-17
JP2015510318A (ja) 2015-04-02
CN103220029A (zh) 2013-07-24
US9306652B2 (en) 2016-04-05
JP2020123969A (ja) 2020-08-13
JP5985656B2 (ja) 2016-09-06
RU2590913C2 (ru) 2016-07-10
JP6691159B2 (ja) 2020-04-28
CA2861928A1 (en) 2013-07-25
JP7105824B2 (ja) 2022-07-25
CN107733511B (zh) 2021-02-26
CN107645329A (zh) 2018-01-30
US10079624B2 (en) 2018-09-18
US20140355709A1 (en) 2014-12-04
US20200328781A1 (en) 2020-10-15
EP2797275B1 (en) 2022-06-01
CN107645329B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
US11038561B2 (en) Method and apparatus for transmitting data
US11128510B2 (en) Data transmission method, user equipment, and network side device
EP2837123B1 (en) Transmit diversity on a control channel without additional reference signals
CN110574304A (zh) 用于高级无线通信系统中的高级别csi报告的方法和装置
CN107592961B (zh) 基于叠加发送的网络节点,用户设备及其方法
WO2014110928A1 (zh) 上行解调参考信号的发送方法、装置和系统
WO2011153859A1 (zh) 一种解调参考符号的映射方法及系统
US9936483B2 (en) Control information processing method and device
AU2021203293B2 (en) System and method for demodulation reference signal overhead reduction
CA2845077A1 (en) Flexible transmission of messages in a wireless communication system with multiple transmit antennas
WO2013063988A1 (zh) 一种传输信息的方法、系统和设备
CN114828252A (zh) 多传输点数据传输的方法及装置
WO2012152214A1 (zh) 传输参数指示/传输参数确定方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014552505

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2861928

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013738460

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014134197

Country of ref document: RU

Kind code of ref document: A