WO2013107255A1 - 一种气体处理装置及医疗设备 - Google Patents

一种气体处理装置及医疗设备 Download PDF

Info

Publication number
WO2013107255A1
WO2013107255A1 PCT/CN2012/087489 CN2012087489W WO2013107255A1 WO 2013107255 A1 WO2013107255 A1 WO 2013107255A1 CN 2012087489 W CN2012087489 W CN 2012087489W WO 2013107255 A1 WO2013107255 A1 WO 2013107255A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
interface
air
monitoring module
zero
Prior art date
Application number
PCT/CN2012/087489
Other languages
English (en)
French (fr)
Inventor
张学刚
刘中华
朱萌
周卫东
岑建
熊双涛
黄光齐
盖布里埃尔松⋅约肯姆·卡尔
韦纳⋅约翰·尼尔斯·厄恩斯特
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2013107255A1 publication Critical patent/WO2013107255A1/zh
Priority to US14/334,435 priority Critical patent/US9506900B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0836Measuring rate of CO2 production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0841Joints or connectors for sampling
    • A61M16/085Gas sampling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0841Joints or connectors for sampling
    • A61M16/0858Pressure sampling ports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes specially adapted for anaesthetising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/104Preparation of respiratory gases or vapours specially adapted for anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1025Measuring a parameter of the content of the delivered gas the O2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1035Measuring a parameter of the content of the delivered gas the anaesthetic agent concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/432Composition of exhalation partial CO2 pressure (P-CO2)

Definitions

  • the present invention relates to the field of medical devices, and more particularly to a gas processing device and a medical device.
  • the anesthetic gas and the carbon dioxide gas concentration monitoring module are generally used to monitor the concentration of the anesthetic gas and the CO 2 from the gas of the patient.
  • the anesthetic gas and the anesthetic gas sampling gas channel in the carbon dioxide gas concentration monitoring module are provided with anesthesia.
  • the gas monitoring probe (referred to as the GMB probe), after the anesthetic gas enters the anesthetic gas and the carbon dioxide gas concentration monitoring module through the anesthetic gas sampling gas path, the GMB probe can monitor the concentration of the anesthetic gas and the CO 2 as needed.
  • anesthetic gas and CO 2 In clinical practice, in addition to monitoring the concentration of anesthetic gases and CO 2 , it is sometimes necessary to perform other forms of treatment on the gas, such as monitoring the oxygen concentration using an oxygen concentration monitoring module, or monitoring the gas gauge pressure and gas differential pressure using a respiratory mechanics module. Respiratory mechanics parameters, etc.
  • the oxygen sampling gas path in the sampling gas path and the oxygen concentration monitoring module has a complicated structure and a large volume of equipment, which is inconvenient to operate.
  • the present invention provides a gas processing apparatus that simplifies a gas path connection structure and is capable of integrating a plurality of gas processing functions.
  • a gas processing apparatus comprising:
  • At least one first gas monitoring module At least one first gas monitoring module
  • At least one second gas monitoring module At least one second gas monitoring module
  • a main control module which is respectively coupled to the first gas monitoring module and the second gas monitoring module, and controls the first gas monitoring module and the second gas monitoring module;
  • An integrated gas circuit board comprising:
  • a first gas path is provided inside the integrated gas passage plate, wherein the first gas path is a passage having a gas inlet and outlet, and the first inlet port and the exhaust port are respectively opposite to both ends of the first gas path Connected, the first gas path is connected to the first gas monitoring module through at least one monitoring interface; and
  • the second air passage is a blind road having only one end communicating, and the second air inlet is connected to one end of the second air passage,
  • the second gas path is connected to the second gas monitoring module via at least one monitoring interface.
  • An integrated gas circuit board comprising:
  • a first gas path is provided inside the integrated gas passage plate, wherein the first gas path is a passage having a gas inlet and outlet, and the first inlet port and the exhaust port are respectively opposite to both ends of the first gas path
  • the first gas path connects the plurality of first gas monitoring modules in series through the corresponding monitoring interface.
  • a medical device comprising the gas treatment device described above.
  • FIG. 1 is an assembled view of a gas processing apparatus according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing a gas processing apparatus according to an embodiment of the present invention
  • FIG. 3 is a structural exploded view of another perspective view of a gas treatment device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of gas path evacuation in an integrated gas circuit panel according to an embodiment of the present invention.
  • the gas processing device realizes real-time collection and/or natural communication of the gas to be measured by guiding the gas in a specific gas path of the integrated gas passage plate, thereby performing at least two forms of treatment on the gas, for example, according to Specifically, the treatment method may include concentration monitoring, mechanical parameter monitoring, and/or negative pressure treatment on the gas to be measured.
  • the gas processing device can simplify the gas path structure, effectively reduce the link connecting the gas path through the soft rubber pipe, and is convenient to operate.
  • the gas treatment device includes at least one first gas monitoring module, at least one second gas monitoring module, a master module, and an integrated manifold.
  • the main control module is coupled to the first gas monitoring module and the second gas monitoring module, respectively, to control the first gas monitoring module and the second gas monitoring module.
  • the surface of the integrated air circuit board has an exhaust port, at least one air inlet and at least one monitoring interface, and a first air path and at least one second air path are opened inside; wherein the air inlet includes a first air inlet and a second air inlet
  • the air inlet, the first air path is a passage having a gas inlet and outlet, and the first air inlet and the air outlet respectively communicate with both ends of the first air passage to form a through gas passage, and the first air passage passes at least one monitoring
  • the interface is correspondingly connected to the first gas monitoring module, and the gas to be tested flows into the first gas path from the first air inlet under the action of the air pump, and then flows out through the first gas monitoring module and then flows out from the exhaust port to make the first
  • the gas path collects the gas to be measured in real time.
  • the second air passage is a blind road with only one end communicating, the second air inlet is connected to one end of the second air passage, and the second air passage is connected to the second gas monitoring module through at least one monitoring interface, and the gas to be tested is from the second
  • the gas port naturally flows into the second gas path and is directly monitored by the second gas detecting module, so that the gas in the second gas path is not in communication with the outside air and is not interfered by the external air flow.
  • the main body of the gas processing device is a layered structure
  • the gas processing device comprises a laminated circuit board and an integrated gas circuit board, wherein the circuit board is located on a side of the integrated gas circuit board with a monitoring interface, and the main control module is installed at On the circuit board, the circuit board can also integrate power supply circuit, signal processing circuit, signal sampling and sensing module and other components to realize system power supply, signal acquisition, data calculation and output, etc., and the circuit board and the integrated gas circuit board are stacked and installed. Make the device structure more compact, reducing device size and power consumption.
  • Each gas monitoring module includes a signal interface and a pneumatic circuit interface, and the signal interface is connected with the main control module signal and can communicate with the main control module, and the signal interface and the main control module can be wired or wirelessly connected, by wired or The wireless communication mode realizes information interaction between the signal interface and the main control module.
  • the gas path interface is sealed with the corresponding monitoring interface in the integrated gas circuit board for corresponding treatment of the gas.
  • the gas processing device includes a plurality of first monitoring modules and an integrated gas circuit board, and the integrated gas circuit board surface has an exhaust port, a first air inlet, and a plurality of monitoring interfaces, and the inside is provided with a first a gas path, the first gas path is a passage having a gas inlet and outlet, and the first inlet port and the exhaust port respectively communicate with both ends of the first gas path to form a through gas passage, and the first gas passage passes corresponding monitoring
  • the interface connects the plurality of first gas monitoring modules in series, After the gas to be tested flows from the first air inlet to the first air path under the action of the air pump, it is sequentially detected by the plurality of first gas monitoring modules and then flows out from the air outlet.
  • the integrated gas passage plate may be a plate-shaped member made of metal or plastic, for example, the two plates having the groove are fixed by ultrasonic welding, laser welding or bonding to form an integrated gas.
  • the road plate, the corresponding grooves on the two plates are closed to form a gas path; of course, a sealing material may be filled between the two plates to form a gas path.
  • the gas treatment device is used in a medical device for processing gas in a patient's breathing circuit, such as monitoring gas concentration, monitoring respiratory mechanics parameters, etc., depending on specific needs,
  • the gas is subjected to a vacuum treatment to output a negative pressure gas for use by other equipment.
  • the first gas monitoring module includes an oxygen concentration monitoring module and an anesthetic gas and a carbon dioxide gas concentration monitoring module for monitoring oxygen concentration, anesthetic gas, and CO 2 concentration, respectively.
  • the first gas monitoring module further It can be a gas concentration monitoring module for monitoring other types of gas concentrations, as well as a gas monitoring module for monitoring other characteristics of the gas.
  • the second monitoring module is a respiratory mechanics monitoring module, including a gauge pressure sensor and a differential pressure sensor, respectively for monitoring gas gauge pressure and gas differential pressure. For example, by measuring the pressure of several points of gas in the airway, three basic parameters of airway pressure, airway flow and time are obtained, and then the calculation such as tidal volume, inspiratory expiratory time ratio (I: E rate ), exhalation is obtained. Parameters such as PEEP Pressure are used to measure airway ventilation in patients.
  • the second gas monitoring module can also be a gas monitoring module for monitoring other characteristics of the gas.
  • the differential pressure sensor may be used to detect the gas path pressure difference during the monitoring of the gas concentration, and the gas flow rate may be calculated by the gas path pressure difference to feed the gas flow rate to the system for gas flow control.
  • the integrated gas passage plate 1 of the embodiment is an injection-molded metal or plastic plate, and a plurality of air inlets and an exhaust port are arranged side by side at the ends, and a monitoring interface for connecting the gas monitoring modules is provided on the surface and used for connection.
  • Three-way valve 6 and other interfaces of the air pump unit, etc., internal air capacity, gas path restrictor and multiple gas paths are provided.
  • the gas path interface and integrated gas circuit board of each gas monitoring module 1 The corresponding monitoring interface of the surface is sealed by a sealing ring 5.
  • the main control module on the circuit board 2 is the core control component of the whole system, and is connected with the signal of each monitoring module and the three-way valve 6, and the circuit board 2 also integrates the hardware power supply circuit and the signal processing circuit which are connected with the signal of the main control module. , signal sampling sensor module, etc.
  • the gauge plate 3, the differential pressure sensor 4, and three three-way valves 6 for zero calibration are fixed on the circuit board 2 by soldering, bonding, or the like, and the pins of these devices are used. Both are soldered to the corresponding pins of the main control module.
  • the three-way valve 6 is also sealedly connected to the corresponding interface on the integrated gas circuit board 1 by the self-contained sealing ring 9 of the end face, and the pressure plate 7 is pressed on the three three-way valves 6 arranged side by side, and the screw 8 passes through the pressure plate 7 to make the line
  • the plate 2 is fixedly integrated with the integrated gas path plate 1 to make the structure of the entire device more compact and compact.
  • the number of three-way valves 6 and the mounting position can be flexibly set, for example, the number of three-way valves 6 is the same as the number of air paths inside the manifold plate 1.
  • the air inlet of the end of the integrated air circuit board 1 includes a negative pressure air inlet 43d, a first air inlet 44d, a zero air inlet 45d and two second air inlets 46d. 47d, the gas entering the negative pressure air inlet 43d, the first air inlet 44d, and the zero air inlet 45d needs to flow out from the exhaust port 48d under the action of the air pump and flowing in the corresponding air passage.
  • the gas path in the integrated gas circuit board 1 mainly includes a first gas path, a second gas path, a third gas path, and a zero-zero gas path.
  • the first gas path is a sampling gas path, which is used for realizing the concentration monitoring of the gas in the breathing circuit of the patient, and the gas in the breathing circuit of the patient needs to be collected in real time, so the first gas path is an air flow path, and the inlet and outlet thereof are respectively
  • the first intake port 44d and the exhaust port 48d on the integrated manifold plate 1 are in communication with each other.
  • the gas path interface of the anesthetic gas and carbon dioxide gas concentration monitoring module is a set of GMB probes, and the corresponding monitoring interface on the surface of the integrated gas circuit board 1 includes a GMB air inlet port 12a and a GMB air outlet port 11a.
  • the oxygen concentration monitoring module may select the built-in oxygen concentration monitoring module or the external oxygen concentration monitoring module according to the volume, and the corresponding monitoring interface on the surface of the integrated gas circuit board 1 may include an external connection for connecting the external oxygen concentration monitoring module.
  • the gas pipe is selectively connected between the 32c and the built-in gas outlet port 31c.
  • the external air inlet port 41d and the external air outlet port 42d may be arranged side by side with the plurality of air inlets and exhaust ports 48d of the integrated air circuit board 1 to reduce the volume of the device and facilitate the airway connection.
  • the first gas path may also be in series communication with a plurality of first gas monitoring modules for other ways of monitoring the gas through the corresponding monitoring interface, one or more of the first gas monitoring modules.
  • the external first gas monitoring module or the built-in first gas monitoring module may also be included, and is connected between the external air inlet interface 41d and the external air outlet interface 42d or the built-in air inlet interface 32c and the built-in air outlet by the manner of the above embodiment. Between the interfaces 31c.
  • the second gas path includes two independent respiratory mechanics gas paths, isolated from the sampling gas path as indicated by the dashed lines in FIG.
  • the second air passage is a blind road having only one intake end, and naturally communicates with the breathing circuit, is not interfered by the external airflow, and does not form an additional airflow disturbance.
  • the monitoring interface that communicates with the respiratory mechanics gas path on the surface of the integrated gas circuit board 1 includes a gauge pressure sensor interface 61f and two differential pressure sensor interfaces, and the gauge pressure sensor interface 61f connects one of the respiratory mechanics air passages, and the gauge pressure sensor 3 is closely attached.
  • the gauge pressure sensor interface 61f, and the gas passage interface thereof is in sealing communication with the gauge pressure sensor interface 61f
  • the differential pressure sensor interface includes a first differential pressure collection port 62f and a second differential pressure collecting port 63f, a first differential pressure collecting port 62f and a
  • the two differential pressure collecting ports 63f respectively connect two respiratory mechanical gas paths
  • the differential pressure sensor 4 is closely attached to the two differential pressure sensor interfaces
  • the gas path interface is sealed and communicated with the two differential pressure sensor interfaces.
  • the second gas path may also have more than three and independent of each other, respectively connected to a plurality of second gas monitoring modules for other ways of monitoring the gas through respective monitoring interfaces.
  • the third gas path is a negative pressure gas path, wherein a negative pressure gas path restrictor 55e is provided, and the negative pressure gas path connects the negative pressure air inlet 43d with the exhaust port 48d for negative pressure treatment of the gas and then outputs
  • the negative pressure gas is used by other devices, and the negative pressure gas path of the embodiment can be shared by the sampling gas path portion.
  • the gas treatment device may further include an air pump unit, wherein the sampling gas path further includes a first air volume 54e and a second air volume 57e for stabilizing the air pressure of the air outlet of the air pump unit, and the air pump unit may be connected between the two air contents to realize pumping.
  • the gas function, the negative pressure gas path can share the two gas volume and air pump units with the sampling gas path.
  • the embodiment has two air pump units connected in parallel, and the two air pump units may respectively comprise one or more air pumps, both for pumping gas from the first air volume 54e into the second air volume 57e, the gases extracted by the two.
  • a complementary gas flow can be formed to further stabilize the gas flow.
  • the first air pump unit is connected to the first group of air pump ports 21b and 22b on the surface of the integrated gas path plate 1
  • the second air pump unit is connected to the second group air pump ports 23b and 24b on the surface of the integrated gas path plate 1.
  • one or two or more air pump units may be connected between the first air volume 54e and the second air volume 57e according to specific needs.
  • the zero gas path is shown as the arrow in Fig. 4, which is a blind road with only one end connected.
  • Each three-way valve 6 has a zero-fining end, a first connecting end and a second connecting end, and the first connecting end and the second connecting end are in a normally-on state, and the zero-correcting end is connected to the second in the zero-calibration state. End connected.
  • At least one zero-zero interface is provided on the surface of the integrated gas circuit board 6, and the air inlet of the integrated gas circuit board 6 further includes a zero-zero air inlet 45d, and the intake end of the zero-zero gas path is connected with the zero-zero air inlet 45d.
  • the zero-zero gas path is respectively connected to the zero-receiving end of each three-way valve 6 through at least one zero-zero interface, and the anesthetic gas and carbon dioxide are controllably connected to the sampling gas path through the three-way valve 6 according to the instruction of the main control module 1.
  • the gas concentration monitoring module is partially connected to the oxygen concentration monitoring module or is connected to a portion of the respiratory mechanics gas path that connects the gauge pressure sensor 3 or the differential pressure sensor 4.
  • the standard gas enters the sampling gas path or the respiratory mechanics gas path from the zero inlet port 45d to zero the corresponding gas monitoring module to improve the accuracy of gas monitoring.
  • This embodiment includes a sampler and two respiratory mechanical gas paths, so the zero-zero gas path on the integrated gas circuit plate 1 has three zero-zero interfaces.
  • the sampling gas path and each respiratory mechanics gas path are separated into a front section and a rear section according to a gas flow direction, and an anesthetic gas and a carbon dioxide gas concentration monitoring module and an oxygen concentration monitoring module are connected to a rear section of the first gas path, and the gauge pressure sensor 3 or
  • the differential pressure sensor 4 is connected to the rear section of the respiratory mechanics gas path, and the first three-way valve interface and the second three-way valve interface respectively connected to the front and rear sections are respectively opened on the surface of the integrated gas circuit board 1, that is, the sampling gas
  • the front section of the road or respiratory mechanics is connected to a first three-way valve interface, and the rear section is connected to a second three-way valve interface, and the positions of the two three-way valve interfaces in the same airway are adjacent.
  • the calibration zero interface, the first three-way valve interface and the second three-way valve interface of the corresponding gas path are connected to the three-way valve 6 Zero end, first connection end and second connection end.
  • the zero calibration interface, the first three-way valve interface, and the second three-way valve interface for connecting the same three-way valve 6 on each air passage are arranged on the same straight line, and the integrated pneumatic circuit board 2 is further
  • the three-way valve 6 can be closely attached, and the calibration zero interface, the first three-way valve interface and the second three-way valve interface are respectively aligned with the zero-fining end, the first connecting end and the second connecting end of the three-way valve 6, Making the gas path structure more compact can further reduce the size of the equipment.
  • the first three-way valve interface 79g and the second three-way valve interface 78g are respectively connected to the first connection end and the second connection end of the first three-way valve, and are in a normally-on state, and need to be corrected.
  • the three-way valve 6 controls the disconnection between the first three-way valve port 79g and the second three-way valve port 78g, and controls the zero-fixing end 77g thereof to communicate with the second three-way valve port 78g to make the zero-pitch circuit Connected to the sampling gas path.
  • the first three-way valve interface 76g and the second three-way valve interface 75g are respectively connected to the first connection end and the second connection end of the second three-way valve, and are in a normally-on state, and are required
  • the three-way valve 6 controls the disconnection between the first three-way valve interface 76g and the second three-way valve interface 75g, and controls the zero-engagement end 74g thereof to communicate with the second three-way valve interface 75g to make the zero-gas
  • the road is connected to the first respiratory mechanics.
  • the first three-way valve interface 73g and the second three-way valve interface 72g are respectively connected to the first connection end and the second connection end of the third three-way valve and are in constant communication.
  • the three-way valve 6 controls the disconnection between the first three-way valve interface 73g and the second three-way valve interface 72g, and controls the zero-crossing end 71g thereof to communicate with the second three-way valve interface 72g.
  • the zeroer gas path is connected to the second respiratory mechanics gas path.
  • the order of gas flow in the sampling gas path is:
  • the first air inlet 44d (or the zero inlet air inlet 45d is used in the zeroing process) -> three-way valve 6 -> enters through the MBB air inlet 12a and the GMB air outlet 11a GMB probe ->
  • the built-in air intake interface 32c and the built-in air outlet interface 31c enter the built-in oxygen concentration monitoring module (or enter the external oxygen concentration monitoring module through the external air inlet interface 41d and the external air outlet interface 42d) -> Sample gas path current limiter 53e and differential pressure sensors 51e, 52e -> first gas volume 54e ->
  • the first air pump unit is accessed through the first air pump unit interface 21b, 22b while entering the second air pump unit -> second air volume 57e -> exhaust port 48d through the second air pump unit interface 23b, 24b.
  • the soft hose is connected between the external air inlet port 41d and the external air outlet port 42d. If the external oxygen concentration monitoring module is selected, the built-in air inlet port is used. A soft hose is connected between the 31c and the built-in air outlet port 32c, or it can be connected by shorting the pneumatic parts.
  • the sampling gas path restrictor 53e can generate a pressure difference across the gas path, and the system can measure the pressure difference to calculate the gas flow rate.
  • the differential pressure sensors 51e, 52e are disposed at both ends of the current limiter 53e for monitoring the gas pressure difference, and the monitoring result is transmitted to the main control module 2, and the main control module 2 outputs the gas flow rate for calculation by the staff.
  • the order of gas flow in the negative pressure gas path is:
  • Negative pressure air inlet 43d >
  • the first respiratory mechanics circuit is connected in the following ways:
  • the second intake port 46d (or the zero-intake port 45d is used during the zeroing process) - the three-way valve 6 is connected to the differential pressure sensor through the first differential pressure collecting port 62f.
  • the second respiratory mechanics circuit is connected in the following ways:
  • the second air inlet 47d (or the zero inlet air inlet 45d is used in the zeroing process) - the three-way valve 6 is connected to the differential pressure sensor through the second differential pressure collecting port 63f - the gauge pressure sensor is connected through the gauge pressure sensor interface 61f.
  • the above gas processing device integrates a plurality of gas paths for treating the gas, simplifies the gas path connection structure, and avoids the use of the soft rubber pipe to connect the gas path, so the structure is simple, the operation is convenient, and the equipment volume is reduced.
  • the gas processing device also controls the gas processing process through the main control module, and can configure the power supply circuit and some sensors on the main control module, which improves the integration degree of the system from the function and the structure, thereby significantly reducing the equipment volume. Reduce power consumption and cost, making it more convenient and flexible to use.
  • the above gas processing device can be widely applied to medical equipment or other gas processing equipment, for example, the medical equipment is an anesthesia equipment or a monitoring device, and the air circuit connection structure is simple, and the device integration is high, the volume is small, and the clinical use is more favorable.
  • two, three or more gas paths can be selectively produced in the integrated gas circuit board according to the needs of the equipment, and these gas paths can be used simultaneously. It can be used selectively, for example, by using a part of the gas path, and closing or idle another part of the gas path.
  • the gas path in the integrated manifold may be made in two or three layers depending on the thickness of the integrated manifold.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Obesity (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Automation & Control Theory (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

一种气体处理装置,包括至少一个第一监测模块、至少一个第二监测模块、线路板(2)和一体化气路板(1),第二监测模块连接在线路板(2)上;一体化气路板(1)表面开设排气口(48d)和至少一个进气口,内部设有第一气路和至少一条第二气路,第一气路和第二气路上都具有监测接口,进气口包括第一进气口(44d)和第二进气口(46d,47d),第一进气口(44d)与排气口(48d)分别与第一气路的两端连通而形成贯通的气体通道,第二进气口(46d,47d)与第二气路的一端连通而形成另一端封闭的气体通道,第一监测模块和第二监测模块分别通过对应的监测接口连接在第一气路和第二气路中。所述气体处理装置集成了多种对气体进行处理的气路,简化了气路连接结构,减少了设备体积,降低了功耗和成本且操作方便。

Description

一种气体处理装置及医疗设备
【技术领域】
本发明涉及医疗设备领域,尤其涉及一种气体处理装置及医疗设备。
【背景技术】
医疗过程中,通常利用麻醉气体以及二氧化碳气体浓度监测模块对来自病人的气体进行麻醉气体以及CO2的浓度监测,具体地,麻醉气体以及二氧化碳气体浓度监测模块内的麻醉气体采样气路中设置麻醉气体监测探头(简称GMB探头),麻醉气体通过麻醉气体采样气路进入麻醉气体以及二氧化碳气体浓度监测模块后,GMB探头即可根据需要监测麻醉气体以及CO2的浓度。
临床实践中,除了监测麻醉气体以及CO2的浓度外,有时还需要对气体进行其他形式的处理,例如利用氧浓度监测模块监测氧气浓度,或利用呼吸力学模块监测包括气体表压和气体差压在内的呼吸力学参数等。此时,需要将麻醉气体以及二氧化碳气体浓度监测模块与其他气体处理模块配置在一起协同工作,必要时,还需要联结气路,例如利用软管联结麻醉气体以及二氧化碳气体浓度监测模块中的麻醉气体采样气路和氧浓度监测模块中的氧气采样气路,结构复杂且设备体积庞大,不便操作。
【发明内容】
本发明提供一种简化气路连接结构的气体处理装置,能够集成多种气体处理功能。
根据本发明的第一方面,提供一种气体处理装置, 包括:
至少一个第一气体监测模块;
至少一个第二气体监测模块;
主控模块,其分别耦合到第一气体监测模块和第二气体监测模块,对第一气体监测模块和第二气体监测模块进行控制;
一体化气路板,所述一体化气路板包括:
开设在一体化气路板表面的排气口、至少一个进气口和至少一个监测接口,所述进气口包括第一进气口和第二进气口;
开设在一体化气路板内部的第一气路,所述第一气路为具有气体进出口的通路,所述第一进气口与排气口分别与所述第一气路的两端连通,所述第一气路通过至少一个监测接口连通到第一气体监测模块;和
开设在一体化气路板内部的至少一条第二气路,所述第二气路为只有一端连通的盲路,所述第二进气口与所述第二气路的一端连通,所述第二气路通过至少一个监测接口连通到第二气体监测模块。
根据本发明的第二方面,还公开了另一种气体处理装置,包括:
多个第一气体监测模块;
一体化气路板,所述一体化气路板包括:
开设在一体化气路板表面的排气口、第一进气口和多个监测接口;
开设在一体化气路板内部的第一气路,所述第一气路为具有气体进出口的通路,所述第一进气口与排气口分别与所述第一气路的两端连通,所述第一气路通过对应的监测接口将多个第一气体监测模块串联连通。
根据本发明的第三方面,还提供一种医疗设备,包括上述的气体处理装置。
【附图说明】
图1为本发明一种实施例的气体处理装置装配图;
图2为本发明一种实施例的气体处理装置结构分解图;
图3为本发明一种实施例的气体处理装置另一视角的结构分解图;
图4为本发明一种实施例的一体化气路板中的气路走气示意图。
【具体实施方式】
下面通过具体实施例结合附图对本发明作进一步详细说明。
本申请提供的气体处理装置通过一体化气路板中特定的气路引导气体的走向,实现对被测气体的实时采集和/或自然连通,从而对气体进行至少两种形式的处理,例如根据具体需要,处理方式可以包括对被测气体进行浓度监测、力学参数监测和/或负压处理等。该气体处理装置能够简化气路结构,有效减少通过软胶管联结气路的环节且方便操作。
一种实施例中,气体处理装置包括至少一个第一气体监测模块、至少一个第二气体监测模块、主控模块、以及一体化气路板。主控模块分别耦合到第一气体监测模块和第二气体监测模块,对第一气体监测模块和第二气体监测模块进行控制。一体化气路板表面开设排气口、至少一个进气口和至少一个监测接口,内部开设第一气路和至少一条第二气路;其中,进气口包括第一进气口和第二进气口,第一气路为具有气体进出口的通路,第一进气口与排气口分别与第一气路的两端连通而形成贯通的气体通道,第一气路通过至少一个监测接口对应地连通到第一气体监测模块,待测气体在气泵的作用下从第一进气口流入第一气路后,经第一气体监测模块检测后再从排气口流出,使第一气路可实时地采集被测气体。第二气路为只有一端连通的盲路,第二进气口与第二气路的一端连通,第二气路通过至少一个监测接口连通到第二气体监测模块,待测气体从第二进气口自然流入第二气路后直接被第二气体检测模块监测,使第二气路中的气体不与外界气体连通且不受外部气流的干扰。
一种实施方式中,气体处理装置主体为层状结构,气体处理装置包括层叠的线路板和一体化气路板,线路板位于一体化气路板开设有监测接口的一面,主控模块安装在线路板上,线路板还可同时集成供电电路、信号处理电路、信号采样传感模块等组成部分实现系统供电、信号采集、数据计算和输出等,线路板与一体化气路板层叠式安装,使设备结构更加紧凑,从而减少设备体积和功耗。一体化气路板或线路板上还可固定一些气体处理模块或其他器件,例如传感器、氧浓度监测模块、三通阀等,以便进一步减小设备实现多功能测试时的总体积。每个气体监测模块都包括信号接口和气路接口,其信号接口与主控模块信号连接且能与主控模块进行通讯,信号接口与主控模块之间可以是有线连接或无线连接,通过有线或无线的通讯方式在信号接口与主控模块之间实现信息交互。气路接口与一体化气路板中对应的监测接口密封连接以便对气体进行相应的处理。
另一种实施例中,气体处理装置包括多个第一监测模块和一体化气路板,一体化气路板表面开设排气口、第一进气口和多个监测接口,内部设有第一气路,第一气路为具有气体进出口的通路,第一进气口与排气口分别与第一气路的两端连通而形成贯通的气体通道,第一气路通过对应的监测接口将多个第一气体监测模块串联连通, 待测气体在气泵的作用下从第一进气口流入第一气路后,依次经过多个第一气体监测模块检测后再从排气口流出。
以上实施例中,一体化气路板可采用金属或塑胶制成的板形件,例如将具有凹槽的两块板通过超声焊接、激光焊或粘合的方式固接而制成一体化气路板,两块板上的位置对应的凹槽合拢而形成气路;当然还可在两块板之间填充密封材料而形成气路。
请参考图1至图3的实施例,气体处理装置用在医疗设备中,用于对病人呼吸回路中的气体进行处理,例如监测气体浓度、监测呼吸力学参数等,根据具体需要,还可对气体进行负压处理后输出负压气体以供其他设备使用。具体地,第一气体监测模块包括氧浓度监测模块和麻醉气体以及二氧化碳气体浓度监测模块,分别用于监测氧浓度、麻醉气体和CO2浓度,当然在其他实施例中,第一气体监测模块还可为用于监测其他类型气体浓度的气体浓度监测模块,以及用于监测气体的其他特性的气体监测模块。第二监测模块为呼吸力学监测模块,包括表压传感器和压差传感器,分别用于监测气体表压和气体差压。例如通过测量气道内几个点气体的压力,获得气道压力、气道流量和时间三个基本参数,再通过计算获得如潮气量、吸气呼气时间比 ( I:E rate ) 、 呼气末端正向压力 ( PEEP Pressure ) 等参数,用来衡量病人气道通气状况。当然在其他实施例中,第二气体监测模块还可为用于监测气体的其他特性的气体监测模块。
在有些实施例中,在监测气体浓度的过程中还可利用压差传感器检测气路压差,通过气路压差计算气体流量,以便将气体流量反馈给系统进行气体流量控制。
本实施例的一体化气路板1为注塑成型的金属或塑胶板,端部并排设置多个进气口和一个排气口,表面开设用于连接各气体监测模块的监测接口以及用于连接三通阀6和气泵单元等器件的其他接口,内部设置气容、气路限流器以及多条气路,为了实现气路密封,各气体监测模块的气路接口与一体化气路板1表面对应的监测接口通过密封圈5密封连接。线路板2上的主控模块是整个系统的核心控制部件,其与各监测模块及三通阀6信号连接,线路板2上还集成了与主控模块信号连接的硬件供电电路、信号处理电路、信号采样传感模块等。本实施例中,为了节省空间,线路板2上还通过焊接、粘结等方式固定了表压传感器3、差压传感器4和三个用于校零的三通阀6,这些器件的管脚都与主控模块的相应管脚焊接。三通阀6还通过端面的自带密封圈9与一体化气路板1上对应的接口密封连接,压板7压在并排设置的三个三通阀6上,螺钉8穿过压板7将线路板2与一体化气路板1固定为一体,使整个装置的结构更加紧凑和小巧。
在有些实施例中,三通阀6的数量、安装位置都可灵活设置,例如使三通阀6的数量与一起化气路板1内部的气路数量相同。
请参考图3和图4,一体化气路板1端部的进气口包括负压进气口43d、第一进气口44d、校零进气口45d和两个第二进气口46d、47d,进入负压进气口43d、第一进气口44d、校零进气口45d的气体都需要在气泵的作用下,在相应的气路中流动后从排气口48d流出。
一体化气路板1中的气路主要包括第一气路、第二气路、第三气路和校零气路。其中,第一气路为采样气路,用于实现对病人呼吸回路中的气体进行浓度监测,需要对病人呼吸回路中的气体进行实时采集,因此第一气路为气流通路,与其进出口分别和一体化气路板1上的第一进气口44d和排气口48d连通。如图4中带有箭头的虚线所示的气路,其通过对应的监测接口将麻醉气体以及二氧化碳气体浓度监测模块和氧浓度监测模块串联在第一气路中,用于供麻醉气体以及二氧化碳气体浓度监测模块和氧浓度监测模块依次提取一定样气后,分别进行相应的气体浓度监测。麻醉气体以及二氧化碳气体浓度监测模块的气路接口为一组GMB探头,在一体化气路板1表面对应的监测接口包括GMB进气口12a和GMB出气口11a。氧浓度监测模块可根据体积大小选择使用内置氧浓度监测模块或外置氧浓度监测模块,在一体化气路板1表面对应的监测接口可包括用于连接外置氧浓度监测模块的外置进气接口41d和外置出气接口42d、以及用于连接内置氧浓度监测模块的内置进气接口32c和内置出气接口31c,外置进气接口41d与外置出气接口42d之间或者内置进气接口32c和内置出气接口31c之间选择性地采用气体管道连通。其中,外置进气接口41d和外置出气接口42d可与一体化气路板1的多个进气口和排气口48d并排设置,以便减少设备体积且便于气路连接。在有些实施例中,第一气路通过对应的监测接口还可将多个用于对气体进行其他方式的监测的第一气体监测模块串联连通,这些第一气体监测模块中的一个或者多个也可包括外置第一气体监测模块或内置第一气体监测模块,并采用以上实施例的方式选择连接在外置进气接口41d与外置出气接口42d之间或者内置进气接口32c与内置出气接口31c之间。
第二气路包括两条独立的呼吸力学气路,如图4中虚线所示与采样气路隔离。对病人呼吸回路进行呼吸力学参数监测时,需要模拟呼吸回路中的气流状况,以便检测压力和压差。本实施例中,第二气路为只有一个进气端的盲路,与呼吸回路自然连通,不受外界的气流干扰,也不会形成额外的气流扰动。在一体化气路板1表面与呼吸力学气路连通的监测接口包括表压传感器接口61f和两个压差传感器接口,表压传感器接口61f连通其中一条呼吸力学气路,表压传感器3紧贴表压传感器接口61f,且其气路接口与表压传感器接口61f密封连通,压差传感器接口包括第一压差采集口62f和第二压差采集口63f,第一压差采集口62f和第二压差采集口63f分别连通两条呼吸力学气路,差压传感器4紧贴两个压差传感器接口,且其气路接口与两个压差传感器接口密封连通。在有些实施例中,第二气路还可具有三条以上且相互独立,分别通过对应的监测接口连接到多个用于对气体进行其他方式的监测的第二气体监测模块。
第三气路为负压气路,其中设有负压气路限流器55e,负压气路将负压进气口43d与排气口48d连通,用于对气体进行负压处理后输出负压气体以供其他设备使用,本实施例的负压气路可采样气路部分共用。
气体处理装置还可包括气泵单元,采样气路中还包括用于稳定气泵单元出气口气压的第一气容54e和第二气容57e,气泵单元可连接在两个气容之间以实现抽气功能,负压气路可与采样气路共用这两个气容及气泵单元。本实施例具有两个并联的气泵单元,两个气泵单元分别可包含一个或者多个气泵,都用于将气体从第一气容54e中抽至第二气容57e中,二者抽取的气体能够形成互补气流从而进一步稳定气流。本实施方式中,第一气泵单元与一体化气路板1表面的第一组气泵接口21b、22b连接,第二气泵单元与一体化气路板1表面的第二组气泵接口23b、24b连接。当然根据具体需要,第一气容54e和第二气容57e之间还可连接一个或者两个以上的气泵单元。
校零气路如图4中箭头所示,为只有一端连通的盲路。每个三通阀6都具有校零端、第一连接端和第二连接端,第一连接端与第二连接端之间处于常通状态,校零端在校零状态下与第二连接端连通。一体化气路板6表面开设至少一个校零接口,一体化气路板6的进气口还包括校零进气口45d,校零气路的进气端与校零进气口45d连通,校零气路通过至少一个校零接口分别连通到各三通阀6的校零端,并根据主控模块1的指令,通过三通阀6可控地与采样气路中连通麻醉气体以及二氧化碳气体浓度监测模块和氧浓度监测模块的部分连通,或与呼吸力学气路中连通表压传感器3或压差传感器4的部分连通。校零过程中,标准气体从校零进气口45d进入采样气路或呼吸力学气路从而对相应的气体监测模块进行校零,以提高气体监测的准确性。
本实施例包括一条采样器和两条呼吸力学气路,因此一体化气路板1上的校零气路具有三个校零接口。采样气路和每条呼吸力学气路都按照气流方向分隔成前段和后段,麻醉气体以及二氧化碳气体浓度监测模块和氧浓度监测模块都连接在第一气路的后段,表压传感器3或压差传感器4都连接在呼吸力学气路的后段,一体化气路板1表面还开设有分别连通到前段和后段的第一三通阀接口和第二三通阀接口,即采样气路或呼吸力学气路的前段各连通一个第一三通阀接口,后段各连通一个第二三通阀接口,同一气路中两个三通阀接口的位置相邻。将三通阀6与采样气路或呼吸力学气路进行气路连接时,对应气路的校零接口、第一三通阀接口和第二三通阀接口连通到各三通阀6的校零端、第一连接端和第二连接端。本实施例中,每条气路上用于连接同一三通阀6的校零接口、第一三通阀接口和第二三通阀接口都排列在同一直线上,一体化气路板2还可紧贴三通阀6,且使各校零接口、第一三通阀接口和第二三通阀接口分别对准三通阀6的校零端、第一连接端和第二连接端,使气路结构更加紧凑,能够进一步减少设备体积。
具体地,采样气路中,第一三通阀接口79g和第二三通阀接口78g分别连接在第一个三通阀的第一连接端和第二连接端而处于常通状态,需要校零时,该三通阀6控制第一三通阀接口79g与第二三通阀接口78g之间断开,并控制其校零端77g与第二三通阀接口78g连通而使校零气路与采样气路连通。第一条呼吸力学气路中,第一三通阀接口76g与第二三通阀接口75g分别连接在第二个三通阀的第一连接端和第二连接端而处于常通状态,需要校零时,该三通阀6控制第一三通阀接口76g与第二三通阀接口75g之间断开,并控制其校零端74g与第二三通阀接口75g连通而使较零气路与第一条呼吸力学气路连通。同样地,第二条呼吸力学气路中,第一三通阀接口73g与第二三通阀接口72g分别连接在第三个三通阀的第一连接端和第二连接端而处于常通状态,需要校零时,该三通阀6控制第一三通阀接口73g与第二三通阀接口72g之间断开,并控制其校零端71g与第二三通阀接口72g连通而使较零气路与第二条呼吸力学气路连通。
本实施例中,采样气路中的气体流动顺序为:
第一进气口44d(或校零过程中采用较零进气口45d)—>三通阀6—>通过GMB进气口12a和GMB出气口11a进入 GMB探头—> 通过内置进气接口32c和内置出气接口31c进入内置氧浓度监测模块(或通过外置进气接口41d和外置出气接口42d进入外置氧浓度监测模块)—> 采样气路限流器53e及差压传感器51e、52e—> 第一气容54e—> 通过第一气泵单元接口21b、22b进入第一气泵单元、同时通过第二气泵单元接口23b、24b进入第二气泵单元—>第二气容57e—>排气口48d。
以上气路中,如果选用内置氧浓度监测模块,则将外置进气接口41d和外置出气接口42d之间采用软胶管接通,如果选用外置氧浓度监测模块,则将内置进气接口31c和内置出气接口32c之间采用软胶管接通,或者可以采用短接气路零件进行接通。采样气路限流器53e可在气路上产生压差,系统可以测量该压差来计算气体流量。具体的,该限流器53e的两端设置差压传感器51e、52e用于监测气体压差,监测结果将传送至主控模块2,主控模块2通过计算后输出气体流量供工作人员参考。
负压气路中的气体流动顺序为:
负压气路进气口43d—> 负压气路限流器55e—>第一气容54e—>通过第一气泵单元接口21b、22b进入第一气泵单元、同时通过第二气泵单元接口23b、24b进入第二气泵单元—>第二气容57e—>排气口48d。
第一条呼吸力学气路采用以下方式连通:
第二进气口46d(或校零过程中采用较零进气口45d)—三通阀6—通过第一差压采集口62f连通差压传感器。
第二条呼吸力学气路采用以下方式连通:
第二进气口47d(或校零过程中采用较零进气口45d)—三通阀6—通过第二差压采集口63f连通差压传感器—通过表压传感器接口61f连通表压传感器。
以上气体处理装置集成了多种对气体进行处理的气路,简化了气路连接结构,避免了采用软胶管连接气路的环节,因此结构简单、操作方便、且减小了设备体积。气体处理装置还通过主控模块对气体处理过程进行统一控制,并可在主控模块上配置供电电路以及部分传感器,从功能和结构上都提高了系统的集成度,因此显著减小了设备体积,降低了功耗和成本,使用更加方便灵活。
以上气体处理装置可广泛应用与医疗设备或其他气体处理设备中,例如医疗设备为麻醉设备或监护设备,由于气路连接结构简单,且设备集成度高、体积小、更加有利于临床使用。
根据本申请公开的内容,本领域技术人员应当理解,根据设备的需要,在一体化气路板中可以选择性地制作两条、三条或更多条气路,这些气路可以同时使用,也可以选择性的使用,例如使用其中的一部分气路,而关闭或闲置另一部分气路。在另外的实施例中,一体化气路板中的气路还可根据一体化气路板的厚度制作成两层或三层。
以上内容是结合具体的实施例对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (15)

  1. 一种气体处理装置, 其特征在于,包括:
    至少一个第一气体监测模块;
    至少一个第二气体监测模块;
    主控模块,其分别耦合到第一气体监测模块和第二气体监测模块,对第一气体监测模块和第二气体监测模块进行控制;
    一体化气路板,所述一体化气路板包括:
    开设在一体化气路板表面的排气口、至少一个进气口和至少一个监测接口,所述进气口包括第一进气口和第二进气口;
    开设在一体化气路板内部的第一气路,所述第一气路为具有气体进出口的通路,所述第一进气口与排气口分别与所述第一气路的两端连通,所述第一气路通过至少一个监测接口连通到第一气体监测模块;和
    开设在一体化气路板内部的至少一条第二气路,所述第二气路为只有一端连通的盲路,所述第二进气口与所述第二气路的一端连通,所述第二气路通过至少一个监测接口连通到第二气体监测模块。
  2. 如权利要求1所述的装置,其特征在于,还包括线路板,所述主控模块安装在所述线路板上,所述线路板与一体化气路板为层叠式结构且线路板位于一体化气路板开设有监测接口的一面。
  3. 如权利要求2所述的装置,其特征在于,还包括:
    至少一个三通阀,其与所述主控模块信号连接,每个所述三通阀都具有校零端;
    开设在一体化气路板表面的至少一个校零接口;
    所述一体化气路板内部还设有校零气路,所述校零气路为只有一端连通的盲路,所述进气口还包括校零进气口,所述校零气路的进气端与所述校零进气口连通,所述校零气路通过至少一个校零接口分别连通到各三通阀的校零端,并通过所述三通阀可控地与第一气路中连通所述第一气体监测模块的部分连通,或与第二气路中连通所述第二气体监测模块的部分连通。
  4. 如权利要求3所述的装置,其特征在于,
    每个所述三通阀还具有第一连接端和第二连接端,所述第一连接端与第二连接端之间常通,所述校零端在校零状态下与所述第二连接端连通;
    所述第一气路和第二气路按照气流方向分隔成前段和后段,一体化气路板表面还开设有分别连通到前段和后段的第一三通阀接口和第二三通阀接口,所述第一三通阀接口和第二三通阀接口对应连通到各三通阀的第一连接端和第二连接端;与同一三通阀相连的所述校零接口、第一三通阀接口和第二三通阀接口排列在同一直线上。
  5. 如权利要求4所述的装置,其特征在于,所述三通阀具有多个,多个所述三通阀并排安装在所述线路板上,所述一体化气路板紧贴所述三通阀,且使各校零接口、第一三通阀接口和第二三通阀接口分别对准三通阀的校零端、第一连接端和第二连接端。
  6. 如权利要求1所述的装置,其特征在于,还包括至少一个气泵单元,所述第一气路中还设有两个气容,所述气泵单元连接在两个所述气容之间。
  7. 如权利要求6所述的装置,其特征在于,所述气泵单元具有两个,且两个所述气泵单元并联。
  8. 如权利要求1至7中任一项所述的装置,其特征在于,所述第一气体监测模块为气体浓度监测模块,所述第二气体监测模块为呼吸力学监测模块,所述呼吸力学监测模块包括表压传感器和压差传感器,所述第二气路具有两条且相互独立,与第二气路连通的监测接口包括表压传感器接口和两个压差传感器接口,所述表压传感器接口连通其中一条第二气路,且表压传感器紧贴表压传感器接口,所述压差传感器接口包括第一压差采集口和第二压差采集口,所述第一压差采集口和第二压差采集口分别连通两条第二气路,且差压传感器紧贴压差传感器接口。
  9. 如权利要求8所述的装置,其特征在于,所述第一气体监测模块具有多个,所述第一气路通过对应的监测接口将多个第一气体监测模块串接在第一气路上。
  10. 如权利要求9所述的装置,其特征在于,所述第一气体监测模块包括氧浓度监测模块和麻醉气体以及二氧化碳气体浓度监测模块。
  11. 如权利要求8所述的装置,其特征在于,所述第一气体监测模块包括外置第一气体监测模块或内置第一气体监测模块,与第一气路连通的监测接口包括用于连接外置第一气体监测模块的外置进气接口和外置出气接口、以及用于连接内置第一气体监测模块的内置进气接口和内置出气接口,所述外置进气接口与外置出气接口之间或者所述内置进气接口与内置出气接口之间选择性地采用管道连通。
  12. 如权利要求9所述的装置,其特征在于,所述一体化气路板内部还设有第三气路,所述进气口还包括负压进气口,所述第三气路中设有气流限流器,所述负压进气口与排气口分别与所述第三气路的两端连通。
  13. 一种气体处理装置,其特征在于,包括:
    多个第一气体监测模块;
    一体化气路板,所述一体化气路板包括:
    开设在一体化气路板表面的排气口、第一进气口和多个监测接口;
    开设在一体化气路板内部的第一气路,所述第一气路为具有气体进出口的通路,所述第一进气口与排气口分别与所述第一气路的两端连通,所述第一气路通过对应的监测接口将多个第一气体监测模块串接在第一气路上。
  14. 一种医疗设备,其特征在于,包括权利要求1-13中任一项所述的气体处理装置。
  15. 如权利要求14所述的医疗设备,其特征在于,所述医疗设备为麻醉设备或监护设备。
PCT/CN2012/087489 2012-01-19 2012-12-26 一种气体处理装置及医疗设备 WO2013107255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/334,435 US9506900B2 (en) 2012-01-19 2014-07-17 Gas treatment device and medical equipment using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210018137.0 2012-01-19
CN201210018137.0A CN103217320B (zh) 2012-01-19 2012-01-19 一种气体处理装置及医疗设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/334,435 Continuation US9506900B2 (en) 2012-01-19 2014-07-17 Gas treatment device and medical equipment using the same

Publications (1)

Publication Number Publication Date
WO2013107255A1 true WO2013107255A1 (zh) 2013-07-25

Family

ID=48798592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087489 WO2013107255A1 (zh) 2012-01-19 2012-12-26 一种气体处理装置及医疗设备

Country Status (3)

Country Link
US (1) US9506900B2 (zh)
CN (1) CN103217320B (zh)
WO (1) WO2013107255A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409053A (zh) * 2022-01-26 2022-04-29 海宁天纵电子科技有限公司 一种安瓿瓶装药剂无害化处理装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696248B2 (en) * 2014-04-29 2017-07-04 Solon Manufacturing Company Gas insulated switchgear monitoring apparatus and method
CN104090074A (zh) * 2014-07-08 2014-10-08 河南汉威电子股份有限公司 标定气路板及气体传感器模块标定装置
WO2016109925A1 (zh) * 2015-01-05 2016-07-14 深圳迈瑞生物医疗电子股份有限公司 血压测量仪及其气路结构以及气路盒
CN108132679B (zh) * 2016-12-01 2020-08-11 杭州三花研究院有限公司 流量控制装置及其控制系统、控制方法
CN111093746B (zh) * 2017-10-20 2023-02-28 深圳迈瑞生物医疗电子股份有限公司 麻醉机、氧电池校准系统及其校准方法
CN109009123A (zh) * 2018-06-01 2018-12-18 深圳市理邦精密仪器股份有限公司 一体化气路板、气体处理装置及其医疗设备
JP7278383B2 (ja) * 2018-12-31 2023-05-19 コーニンクレッカ フィリップス エヌ ヴェ 患者に酸素を送達するための方法及びシステム
CN110339443A (zh) * 2019-08-14 2019-10-18 北京毅安峰技术有限公司 一种吸入麻醉剂蒸发装置
CN110496290B (zh) * 2019-09-24 2024-04-02 北京毅安峰技术有限公司 一种吸入麻醉剂电子蒸发装置
WO2022141318A1 (zh) * 2020-12-30 2022-07-07 深圳迈瑞生物医疗电子股份有限公司 气体测量仪、气体测量板及医疗通气系统
CN114056769A (zh) * 2021-11-09 2022-02-18 杭州遂真生物技术有限公司 一种基于移动柱塞的气动一体式pcr检测试剂盒及其检测方法
CN114657049B (zh) * 2022-05-12 2023-06-13 广州国家实验室 一种核酸扩增用卡盒

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546778A (en) * 1983-05-26 1985-10-15 Critikon, Inc. Moisture detector for respiratory monitoring systems
US5616923A (en) * 1990-05-23 1997-04-01 Novametrix Medical Systems Inc. Gas analyzer cuvettes
CN101609089A (zh) * 2009-06-22 2009-12-23 深圳市安保科技有限公司 一种气路块和采用其制作的呼气末二氧化碳监测模块
CN101784229A (zh) * 2007-08-29 2010-07-21 Ric投资有限责任公司 用在呼吸测量系统中的电-气动组件
CN201840743U (zh) * 2010-09-26 2011-05-25 深圳市百格医疗技术有限公司 一种麻醉机用呼吸回路
CN202010339U (zh) * 2011-01-26 2011-10-19 北京谊安医疗系统股份有限公司 麻醉机回路集成装置
CN102266619A (zh) * 2010-12-31 2011-12-07 北京谊安医疗系统股份有限公司 麻醉呼吸机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005038349B4 (de) * 2005-08-11 2008-04-10 Fritz Stephan Gmbh Pneumatischer Nebenwiderstand sowie Gasmischer
US8522782B2 (en) * 2005-09-12 2013-09-03 Mergenet Medical, Inc. High flow therapy device utilizing a non-sealing respiratory interface and related methods
US20100294021A1 (en) * 2006-03-28 2010-11-25 Mitsui Mining & Smelting Co., Ltd. Fluid Identification Device and Fluid Identification Method
US8365724B2 (en) * 2009-12-29 2013-02-05 General Electric Company Medical vaporizer and method of control of a medical vaporizer
US10512741B2 (en) * 2013-09-13 2019-12-24 Mallinckrodt Hospital Products IP Limited Clinical decision support system and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546778A (en) * 1983-05-26 1985-10-15 Critikon, Inc. Moisture detector for respiratory monitoring systems
US5616923A (en) * 1990-05-23 1997-04-01 Novametrix Medical Systems Inc. Gas analyzer cuvettes
CN101784229A (zh) * 2007-08-29 2010-07-21 Ric投资有限责任公司 用在呼吸测量系统中的电-气动组件
CN101609089A (zh) * 2009-06-22 2009-12-23 深圳市安保科技有限公司 一种气路块和采用其制作的呼气末二氧化碳监测模块
CN201840743U (zh) * 2010-09-26 2011-05-25 深圳市百格医疗技术有限公司 一种麻醉机用呼吸回路
CN102266619A (zh) * 2010-12-31 2011-12-07 北京谊安医疗系统股份有限公司 麻醉呼吸机
CN202010339U (zh) * 2011-01-26 2011-10-19 北京谊安医疗系统股份有限公司 麻醉机回路集成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409053A (zh) * 2022-01-26 2022-04-29 海宁天纵电子科技有限公司 一种安瓿瓶装药剂无害化处理装置
CN114409053B (zh) * 2022-01-26 2023-09-01 海宁天纵电子科技有限公司 一种安瓿瓶装药剂无害化处理装置

Also Published As

Publication number Publication date
CN103217320A (zh) 2013-07-24
US20140326046A1 (en) 2014-11-06
CN103217320B (zh) 2016-12-14
US9506900B2 (en) 2016-11-29

Similar Documents

Publication Publication Date Title
WO2013107255A1 (zh) 一种气体处理装置及医疗设备
CN202113460U (zh) 清醒镇痛监护系统
WO2013107254A1 (zh) 一种气体监测医疗设备
CN102114290A (zh) 呼吸机的检测方法、设备及系统
EP2818107B1 (en) On-airway pulmonary function tester
CN110226931A (zh) 一种呼气分析装置及使用方法
WO2023046170A1 (zh) 肺泡气气体浓度检测装置
CN210871585U (zh) 一种旁流式二氧化碳测量装置
CN218391088U (zh) 一种多呼吸道的气体检测系统
US10682073B2 (en) Measurement device and method for human respiratory system function
CN101609089B (zh) 一种气路块和采用其制作的呼气末二氧化碳监测模块
CN204336917U (zh) 人类呼吸系统功能的测量装置
US20080264418A1 (en) Y-piece for medical respiration systems
CN207991986U (zh) 口罩静态呼吸阻力测试系统
CN210673313U (zh) 一种呼气分析装置
CN111329482A (zh) 肺功能仪测试头、肺功能仪及肺通气测试单元
CN206292062U (zh) 一种麻醉呼吸系统安全和性能检测设备
CN217132895U (zh) 一种口罩密合性检测装置
CN219434837U (zh) 一种呼气一氧化氮测量装置
CN108709982A (zh) 呼气式癌症检测系统
CN108709983A (zh) 呼气式癌症检测仪
CN108709984A (zh) 呼气式癌症检测方法
CN103340631A (zh) 最大正负压检测装置及其检测方法
TWI473994B (zh) 感測裝置
WO2023240832A1 (zh) 一种呼气末采集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10.12.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12866187

Country of ref document: EP

Kind code of ref document: A1