WO2013107160A1 - 超导体励磁结构磁悬浮平面电机 - Google Patents

超导体励磁结构磁悬浮平面电机 Download PDF

Info

Publication number
WO2013107160A1
WO2013107160A1 PCT/CN2012/078081 CN2012078081W WO2013107160A1 WO 2013107160 A1 WO2013107160 A1 WO 2013107160A1 CN 2012078081 W CN2012078081 W CN 2012078081W WO 2013107160 A1 WO2013107160 A1 WO 2013107160A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
primary
substrate
magnetic levitation
superconductor
Prior art date
Application number
PCT/CN2012/078081
Other languages
English (en)
French (fr)
Inventor
寇宝泉
刘孝坤
张鲁
张赫
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US14/116,109 priority Critical patent/US9634540B2/en
Publication of WO2013107160A1 publication Critical patent/WO2013107160A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the invention relates to a magnetic suspension plane motor, belonging to the field of motors.
  • Modern precision and ultra-precision machining equipment have urgent requirements for high-response, high-speed, high-precision plane drive devices, such as machining, electronic product production, mechanical loading and unloading, manufacturing automation instrumentation and even robotic drive.
  • these devices are powered by a rotary motor and converted into linear motion by mechanical means such as belts and ball screws. Due to the complexity of the mechanical device, the transmission accuracy and speed are limited, and it needs to be adjusted frequently, resulting in high cost, poor reliability and large volume.
  • the original planar drive unit was realized by two directly driven linear motors.
  • the stacked drive structure increased the complexity of the drive system. In essence, it did not get rid of the low-dimensional motion mechanism to form a high-dimensional motion mechanism. Mode.
  • the total mass of the upper linear motor and its associated mechanical components is carried, which seriously affects the positioning and control accuracy.
  • the planar motor that directly uses electromagnetic energy to generate plane motion has the characteristics of high output density, low heat consumption, high speed, high precision and high reliability, because the intermediate conversion device from rotary motion to linear motion to planar motion is omitted.
  • the control object can be integrated with the motor, and has the advantages of fast response, high sensitivity, good followability and simple structure.
  • the planar motor can be classified into a variable reluctance type, a synchronous type, and an inductive type.
  • the synchronous planar motor has good comprehensive performances such as simple structure, large thrust, high efficiency and fast response speed, and has broad application prospects in two-dimensional planar driving devices, especially precision two-dimensional planar driving devices.
  • FIGs 7 and 8 show a prior art permanent magnet synchronous planar motor structure.
  • the motor consists of two parts, a stator and a mover. Its working principle is similar to that of a three-phase rotating permanent magnet synchronous motor.
  • the stator consists of a core and four thrust windings placed perpendicular to each other. Each winding has three independent phases, X.
  • the thrust winding is used to drive the mover to move in the X direction, and the Y-direction thrust winding is used to drive the mover to move in the Y direction.
  • the mover includes a mover platform and four permanent magnet arrays. The permanent magnet array is arranged on the lower surface of the mover platform. By controlling the corresponding three-phase winding current, the mover platform can perform positioning motion on the plane.
  • the permanent magnet synchronous planar motor has problems of complicated motor structure, small range of planar motion, low utilization of windings, small thrust density, and low system efficiency.
  • the present invention proposes a superconductor excitation structure magnetic suspension planar motor.
  • the superconductor excitation structure magnetic levitation plane motor includes a primary and a secondary, an air gap between the primary and the secondary, the primary includes a primary substrate and an armature winding, the primary substrate is a flat plate shape, and the armature winding is fixed to the gas of the primary substrate
  • the secondary side includes a cooling container, 2h 2 superconducting magnets, and a secondary substrate, and the secondary substrate is evenly divided into 2h ⁇ 2h magnet cells, where h is a natural number, and the side length of the magnet cell is a magnet array a pole distance ⁇ p , wherein the 2 h 2 superconducting magnets are respectively fixed in diagonally adjacent superconducting magnet cells on the secondary substrate, and the superconducting magnets are not adjacent in parallel and perpendicular, the super The magnetizer is parallel magnetized, the magnetization direction is perpendicular to the surface of the secondary substrate air gap side, and the superconducting magnets in the same row or column have the same magnetization direction, and the supercon
  • the superconducting magnet is realized by a superconducting bulk material which is disc-shaped, circular or truncated.
  • the superconducting magnet is realized by a superconducting coil, and the superconducting coil is annular.
  • each of the superconducting coils is wound around a stem composed of a highly magnetically permeable material, and the stem is fixedly coupled to the secondary substrate.
  • the primary substrate is composed of a non-magnetic material.
  • the upper side of the primary substrate is attached with an electromagnetic shielding plate, and the upper side means the other side opposite to the air gap side.
  • the primary employs a liquid cooling structure in which a cooling liquid conduit is disposed on the primary substrate.
  • the primary stage further includes a yaw control winding, the yaw control winding is composed of an X-direction yaw control winding and a Y-direction yaw control winding, and 2m coils constituting the X-direction yaw control winding are evenly divided into two.
  • the magnetic levitation plane motor is a moving primary structure.
  • the secondary in the planar motor of the present invention is excited by a superconducting magnet, which greatly increases the air gap magnetic flux density. Therefore, the armature winding in the planar motor is constructed without a core structure, and between the primary and secondary The magnetic attraction force can realize the primary suspension movement, and the motor has large output thrust, high thrust density, good dynamic characteristics, large suspension height, strong bearing capacity, small thermal deformation and high positioning accuracy, and can be applied to a vacuum environment.
  • FIG. 1 is a schematic view of a secondary structure of Embodiment 2 when the superconducting bulk material is in the shape of a disk.
  • Fig. 2 is a schematic view showing the structure of the secondary when the superconducting bulk material is in the shape of a circular ring or a truncated cone.
  • Fig. 3 is a cross-sectional view taken along line A-A of Fig. 2 when the superconducting block is circular.
  • Fig. 4 is a cross-sectional view taken along line A-A of Fig. 2 when the superconducting block is in the shape of a truncated cone.
  • Figure 5 is a schematic view of the primary structure of the present invention.
  • 6 is a schematic diagram of a primary structure of a superconductor excitation structure magnetic levitation plane motor according to Embodiment 9.
  • 7 and 8 show a conventional permanent magnet synchronous planar motor structure.
  • the superconductor excitation structure magnetic levitation plane motor includes a primary and a secondary, an air gap between the primary and secondary, a primary including a primary substrate and an armature winding, and the primary substrate is a flat plate.
  • the armature winding is fixed on the air gap side of the primary substrate;
  • the secondary comprises a secondary substrate 1, a cooling container and 2h 2 superconducting magnets 2, and the secondary substrate 1 is evenly divided into 2h ⁇ 2h magnet cells, wherein h is a natural number, the side length of the magnet cell is a magnet array pole distance ⁇ p, and the 2h 2 superconducting magnets 2 are respectively fixed in diagonally adjacent superconducting magnet 2 cells on the secondary substrate 1, and
  • the superconducting magnet 2 is not adjacent in parallel and perpendicular, and the superconducting magnet 2 is parallel magnetized, and the magnetization direction is perpendicular to the surface of the air gap side of the secondary substrate 1, and the superconducting magnets are located in the same row or column.
  • the magnetization directions of 2 are the same, and the magnetization directions of the superconducting magnets 2 located in adjacent rows or columns are opposite; the cooling container is shielded outside the superconducting magnets 2.
  • the primary substrate in the primary embodiment described in this embodiment has a flat plate shape.
  • the armature winding has a coreless structure, and there is no magnetic attraction between the primary and secondary, thereby achieving a primary suspension motion.
  • Embodiment 2 The difference between the present embodiment and the superconductor excitation structure magnetic levitation plane motor described in the first embodiment is that the superconducting magnet 2 is realized by a superconducting bulk material which is disc-shaped or circular.
  • FIG. 1 it is a structure of a superconductor excitation structure magnetic levitation plane motor according to the embodiment.
  • Embodiment 3 The difference between the present embodiment and the superconductor excitation structure magnetic levitation plane motor described in the first embodiment is that the superconducting magnet 2 is realized by a superconducting block material having a truncated cone shape, and the larger diameter bottom surface of the circular table is The secondary substrate is fixedly connected.
  • Embodiment 4 The difference between the present embodiment and the superconductor excitation structure magnetic levitation plane motor according to the first embodiment is that the superconducting magnet 2 is realized by a superconducting coil, and the superconducting coil is annular.
  • Embodiment 5 differs from the superconductor excitation structure magnetic levitation planar motor described in the fourth embodiment in that each superconducting coil is wound around a stem composed of a highly magnetic material, and the stem is fixedly connected to the secondary substrate.
  • the stem is made of a magnetically permeable material. After the stem is added, the waveform of the magnetic field generated by the superconducting coil can be improved, the sinusoidal degree of the waveform is better, and the air gap magnetic power can be effectively improved.
  • Embodiment 6 differs from the superconductor excitation structure magnetic levitation planar motor described in the first embodiment in that the primary substrate is made of a non-magnetic material.
  • Embodiment 7 The present embodiment differs from the superconductor excitation structure magnetic levitation planar motor described in each of the above embodiments in that an electromagnetic shielding plate is attached to the upper side of the primary substrate, and the upper side refers to the other side opposite to the air gap side.
  • Embodiment 8 The present embodiment is different from the superconductor excitation structure magnetic levitation plane motor described in each of the above embodiments in that the primary uses a liquid cooling structure, and a cooling liquid pipe is disposed on the primary substrate.
  • Embodiment 9 The present embodiment is different from the superconductor excitation structure magnetic levitation plane motor described in each of the above embodiments in that the primary further includes a yaw control winding 3, and the yaw control winding 3 is controlled by the X yaw control winding 3 and the Y direction.
  • the yaw control winding 3 is composed, and the 2m coils constituting the X-direction yaw control winding 3 are evenly divided into two sets of coils, and the two sets of coils are symmetrically distributed and fixed on the X-direction sides of the armature winding on the primary substrate to form a Y-direction
  • the 2m coils of the yaw control winding 3 are evenly divided into two sets of coils which are symmetrically distributed and fixed on both sides of the Y-axis of the armature winding on the primary substrate, said m being a natural number greater than one.
  • the primary structure described in this embodiment is shown in FIG. 6.
  • Embodiment 10 The present embodiment is different from the superconductor excitation structure magnetic levitation plane motor described in each of the above embodiments in that the magnetic levitation plane motor is a moving primary structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Linear Motors (AREA)

Abstract

一种超导体励磁结构磁悬浮平面电机。初级基板为平板形,电枢绕组固定在初级基板的气隙侧;次级中的次级基板(1)被均匀分成2hX2h个磁体单元格,2h2个超导磁体(2)分别固定在次级基板上的对角相邻的超导磁体单元格中,并且超导磁体平行和垂直方向均不相邻;所述超导磁体为平行充磁,充磁方向垂直于次级基板气隙侧的表面,位于同一行或列的超导磁体的充磁方向相同,位于相邻行或列的超导磁体的充磁方向相反;冷却容器罩在所有超导磁体的外面。初级悬浮运动,且悬浮高度大、承载能力强,可应用于真空环境。该平面电机克服了永磁同步平面电机存在的结构复杂、平面运动范围大、绕组利用效率低、推力密度小和系统效率低的问题。

Description

超导体励磁结构磁悬浮平面电机 技术领域
本发明涉及一种磁悬浮平面电机,属于电机领域。
背景技术
现代精密、超精密加工装备对高响应、高速度、高精度的平面驱动装置有着迫切的需求,如机械加工、电子产品生产、机械装卸、制造自动化仪表设备甚至机器人驱动等。通常这些装置由旋转式电动机产生动力驱动,再由皮带、滚珠丝杆等机械装置,转换为直线运动。由于机械装置复杂,传动精度和速度都受到限制,且需经常调校,造成成本高、可靠性差、体积较大。
最初的平面驱动装置是由两台直接驱动的直线电机来实现的,采用层叠式驱动结构,这种结构增加了传动系统的复杂性,从本质上没有摆脱低维运动机构叠加形成高维运动机构的模式。对于底层的直线电机,要承载上层直线电机及其相关机械部件的总质量,从而严重影响了定位和控制精确度。而直接利用电磁能产生平面运动的平面电机,具有出力密度高、低热耗、高速度、高精度和高可靠性的特点,因省去了从旋转运动到直线运动再到平面运动的中间转换装置,可把控制对象同电机做成一体化结构,具有反应快、灵敏度高、随动性好及结构简单等优点。
根据平面电机电磁推力的产生原理,可以将平面电机分为变磁阻型、同步型和感应型。其中,同步型平面电机具有结构简单、推力大、效率高和响应速度快等良好的综合性能,在二维平面驱动装置、特别是精密二维平面驱动装置中具有广阔的应用前景。
图7和8所示为现有的一种永磁同步平面电机结构。该电机中包括定子和动子两大部件,它的工作原理类似于三相旋转永磁同步电机,定子包含铁心和4个相互垂直放置的推力绕组,每个绕组有独立的3个相,X向推力绕组用于驱动动子沿X方向运动,Y向推力绕组用于驱动动子沿Y方向运动。动子包含动子平台和4个永磁体阵列,永磁体阵列排列在动子平台的下表面,通过控制相应的三相绕组电流,动子平台就可以在平面上做定位运动。
但是,该永磁同步平面电机存在电机结构复杂、平面运动的范围小、绕组的利用率低、推力密度小、系统效率低等问题。
技术问题
为了解决现有永磁同步平面电机存在的结构复杂、平面运动范围大、绕组利用效率低、推理密度小和系统效率低的问题,本发明提出一种超导体励磁结构磁悬浮平面电机。
技术解决方案
超导体励磁结构磁悬浮平面电机包括初级和次级,所述初级和次级之间为气隙,初级包括初级基板和电枢绕组,所述初级基板为平板形,电枢绕组固定在初级基板的气隙侧;次级包括冷却容器、2h2个超导磁体和次级基板,将次级基板均匀分成2h×2h个磁体单元格,其中h为自然数,所述磁体单元格的边长为磁体阵列极距τp,所述2h2个超导磁体分别固定在次级基板上的对角相邻的超导磁体单元格中,并且所述超导磁体平行和垂直均不相邻,所述超导磁体为平行充磁,所述充磁方向垂直于次级基板气隙侧的表面,位于同一行或列的超导磁体的充磁方向相同,位于相邻行或列的超导磁体的充磁方向相反;冷却容器罩在所有超导磁体的外面。本发明中,所述超导磁体采用超导块材实现,所述超导块材为圆盘形、圆环形或圆台形。本发明中,所述超导磁体采用超导线圈实现,所述超导线圈为圆环形。本发明中,每个超导线圈均缠绕在由高导磁材料构成的心柱外,所述心柱与次级基板固定连接。本发明中,所述初级基板由非磁性材料构成。本发明中,所述初级基板的上侧贴有电磁屏蔽板,所述上侧是指与气隙侧相对的另一侧。本发明中,所述初级采用液体冷却结构,在初级基板上布置有冷却液体管道。本发明中,所述初级还包括偏摆控制绕组,所述偏摆控制绕组由X向偏摆控制绕组和Y向偏摆控制绕组组成,组成X向偏摆控制绕组的2m个线圈均匀分成两组线圈,所述两组线圈对称分布并固定在初级基板上电枢绕组的X向两侧,组成Y向偏摆控制绕组的2m个线圈均匀分成两组线圈,所述两组线圈对称分布并固定在初级基板上电枢绕组的Y向两侧,所述m为自然数。本发明中,所述磁悬浮平面电机为动初级结构。
有益效果
本发明所述的平面电机中的次级采用超导磁体励磁,大大提高了气隙磁通密度,因此,所构成的平面电机中的电枢绕组采用无铁心结构,初级与次级之间不存在磁吸力,从而能够实现初级的悬浮运动,且电机输出推力大、推力密度高、动态特性好、悬浮高度大、承载能力强,热变形小、定位精度高,可应用于真空环境。
附图说明
图1是当超导块材为圆盘形时实施方式二所述的次级结构示意图。图2是当超导块材为圆环形或圆台形时,次级的结构示意图。图3是当超导块材为圆环形时,图2的A-A剖视图。图4是当超导块材为圆台形时,图2的A-A剖视图。图5是本发明所述的初级结构示意图。图6是实施方式九所述的一种超导体励磁结构磁悬浮平面电机的初级结构示意图。图7和图8所示是现有一种永磁同步平面电机结构。
本发明的实施方式
实施方式一: 本实施方式所述的超导体励磁结构磁悬浮平面电机包括初级和次级,所述初级和次级之间为气隙,初级包括初级基板和电枢绕组,所述初级基板为平板形,电枢绕组固定在初级基板的气隙侧;次级包括次级基板1、冷却容器和2h2个超导磁体2,将次级基板1均匀分成2h×2h个磁体单元格,其中h为自然数,所述磁体单元格的边长为磁体阵列极距τp,所述2h2个超导磁体2分别固定在次级基板1上的对角相邻的超导磁体2单元格中,并且所述超导磁体2平行和垂直均不相邻,所述超导磁体2为平行充磁,所述充磁方向垂直于次级基板1气隙侧的表面,位于同一行或列的超导磁体2的充磁方向相同,位于相邻行或列的超导磁体2的充磁方向相反;冷却容器罩在所有超导磁体2的外面。
本实施方式所述的初级中的初级基板为平板形,参见图5所示,电枢绕组为无铁心结构,初级与次级之间不存在磁吸力,进而实现初级的悬浮运动。
实施方式二: 本实施方式与实施方式一所述的超导体励磁结构磁悬浮平面电机的区别在于,超导磁体2采用超导块材实现,所述超导块材为圆盘形或圆环形。
参见图1所示,是本实施方式所述的一种超导体励磁结构磁悬浮平面电机的结构,该结构中,h=2,次级基板分成4×4个单元格,次级中共有8个超导磁体2,所述8个超体磁体2的分布参见图1所示。图2是上述结构当超导块材为圆环形时的结构示意图。
实施方式三: 本实施方式与实施方式一所述的超导体励磁结构磁悬浮平面电机的区别在于,超导磁体2采用超导块材实现,所述超导块材为圆台形,该圆台中直径较大的底面与次级基板固定连接。
参见图2和4所示,是本实施方式所述的一种超导体励磁结构磁悬浮平面电机的结构,该结构中,h=2,次级基板1分成4×4个单元格,次级中共有8个超导磁体2,所述8个超体磁体2的分布参见图1所示。
实施方式四: 本实施方式与实施方式一所述的超导体励磁结构磁悬浮平面电机的区别在于,超导磁体2采用超导线圈实现,所述超导线圈为圆环形。
实施方式五: 本实施方式与实施方式四所述的超导体励磁结构磁悬浮平面电机的区别在于,每个超导线圈均缠绕在由高导磁材料构成的心柱外,所述心柱与次级基板固定连接。所述心柱采用导磁材料制作,增加心柱之后,能够改善超导线圈产生的磁场的波形,使该波形的正弦度更好,并且能够有效提高气隙磁幂。
实施方式六: 本实施方式与实施方式一所述的超导体励磁结构磁悬浮平面电机的区别在于,所述初级基板由非磁性材料构成。
实施方式七: 本实施方式与上述各实施方式所述的超导体励磁结构磁悬浮平面电机的区别在于,所述初级基板的上侧贴有电磁屏蔽板,所述上侧是指与气隙侧相对的另一侧。
实施方式八: 本实施方式与上述各实施方式所述的超导体励磁结构磁悬浮平面电机的区别在于,所述初级采用液体冷却结构,在初级基板上布置有冷却液体管道。
实施方式九: 本实施方式与上述各实施方式所述的超导体励磁结构磁悬浮平面电机的区别在于,所述初级还包括偏摆控制绕组3,所述偏摆控制绕组3由X向偏摆控制绕组3和Y向偏摆控制绕组3组成,组成X向偏摆控制绕组3的2m个线圈均匀分成两组线圈,所述两组线圈对称分布并固定在初级基板上电枢绕组的X向两侧,组成Y向偏摆控制绕组3的2m个线圈均匀分成两组线圈,所述两组线圈对称分布并固定在初级基板上电枢绕组的Y向两侧,所述m为大于1的自然数。本实施方式所述的初级结构参见图6所示。
实施方式十: 本实施方式与上述各实施方式所述的超导体励磁结构磁悬浮平面电机的区别在于,所述磁悬浮平面电机为动初级结构。

Claims (10)

  1. 超导体励磁结构磁悬浮平面电机,该平面电机包括初级和次级,所述初级和次级之间为气隙,初级包括初级基板和电枢绕组,所述初级基板为平板形,电枢绕组固定在初级基板的气隙侧;其特征在于,次级包括次级基板(1)、冷却容器和2h2个超导磁体(2),将次级基板(1)均匀分成2h×2h个磁体单元格,其中h为自然数,所述磁体单元格的边长为磁体阵列极距τp,所述2h2个超导磁体(2)分别固定在次级基板(1)上的对角相邻的超导磁体(2)单元格中,并且所述超导磁体(2)平行和垂直均不相邻,所述超导磁体(2)为平行充磁,所述充磁方向垂直于次级基板(1)气隙侧的表面,位于同一行或列的超导磁体(2)的充磁方向相同,位于相邻行或列的超导磁体(2)的充磁方向相反;冷却容器罩在所有超导磁体(2)的外面。
  2. 据权利要求1所述的超导体励磁结构磁悬浮平面电机,其特征在于,超导磁体(2)采用超导块材实现,所述超导块材为圆盘形或圆环形。
  3. 根据权利要求1所述的超导体励磁结构磁悬浮平面电机,其特征在于,超导磁体(2)采用超导块材实现,所述超导块材为圆台形,该圆台中直径较大的底面与次级基板(1)固定连接。
  4. 根据权利要求1所述的超导体励磁结构磁悬浮平面电机,其特征在于,超导磁体(2)采用超导线圈实现,所述超导线圈为圆环形。
  5. 根据权利要求4所述的超导体励磁结构磁悬浮平面电机,其特征在于,每个超导线圈均缠绕在由高导磁材料构成的心柱外,所述心柱与次级基板(1)固定连接。
  6. 根据权利要求1至5中任意一项权利要求所述的超导体励磁结构磁悬浮平面电机,其特征在于,所述初级基板由非磁性材料构成。
  7. 根据权利要求1至5中任意一项权利要求所述的超导体励磁结构磁悬浮平面电机,其特征在于,所述初级基板的上侧贴有电磁屏蔽板,所述上侧是指与气隙侧相对的另一侧。
  8. 根据权利要求1至5中任意一项权利要求所述的超导体励磁结构磁悬浮平面电机,其特征在于,所述初级采用液体冷却结构,在初级基板上布置有冷却液体管道。
  9. 根据权利要求1至5中任意一项权利要求所述的超导体励磁结构磁悬浮平面电机,其特征在于,所述初级还包括偏摆控制绕组(3),所述偏摆控制绕组(3)由X向偏摆控制绕组(3)和Y向偏摆控制绕组(3)组成,组成X向偏摆控制绕组(3)的2m个线圈均匀分成两组线圈,所述两组线圈对称分布并固定在初级基板上电枢绕组的X向两侧,组成Y向偏摆控制绕组(3)的2m个线圈均匀分成两组线圈,所述两组线圈对称分布并固定在初级基板上电枢绕组的Y向两侧,所述m为自然数。
  10. 根据权利要求1至5中任意一项权利要求所述的超导体励磁结构磁悬浮平面电机,其特征在于,所述磁悬浮平面电机为动初级结构。
PCT/CN2012/078081 2012-01-21 2012-07-03 超导体励磁结构磁悬浮平面电机 WO2013107160A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/116,109 US9634540B2 (en) 2012-01-21 2012-07-03 Magnetic suspension planar motor with structure of superconductor excitation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210019414.X 2012-01-21
CN201210019414.XA CN102594220B (zh) 2012-01-21 2012-01-21 超导体励磁结构磁悬浮平面电机

Publications (1)

Publication Number Publication Date
WO2013107160A1 true WO2013107160A1 (zh) 2013-07-25

Family

ID=46482508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078081 WO2013107160A1 (zh) 2012-01-21 2012-07-03 超导体励磁结构磁悬浮平面电机

Country Status (3)

Country Link
US (1) US9634540B2 (zh)
CN (1) CN102594220B (zh)
WO (1) WO2013107160A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594220B (zh) * 2012-01-21 2015-08-19 哈尔滨工业大学 超导体励磁结构磁悬浮平面电机
WO2016023565A1 (de) * 2014-08-11 2016-02-18 Festo Ag & Co. Kg Positioniersystem
CN105990998B (zh) * 2015-01-28 2018-11-09 上海微电子装备(集团)股份有限公司 一种超导音圈电机
FR3034365B1 (fr) * 2015-03-31 2017-05-19 Metrolab Cryostat, vehicule de transport a sustentation magnetique et systeme de transport a sustentation magnetique associes
CN105048880B (zh) * 2015-09-06 2017-08-25 哈尔滨工业大学 高速磁悬浮交流电机
CN106571731B (zh) * 2015-10-08 2019-04-12 上海微电子装备(集团)股份有限公司 一种超导体磁浮平面电机
WO2017076561A1 (en) * 2015-11-05 2017-05-11 Asml Netherlands B.V. Magnet array, electric coil device, displacement system, lithographic apparatus and device manufacturing method
DE102015222673A1 (de) * 2015-11-17 2017-05-18 Festo Ag & Co. Kg Bewegungseinrichtung
EP3470925A1 (en) 2017-10-11 2019-04-17 ASML Netherlands B.V. Positioning device, magnetic support system and lithographic apparatus
CN110417229A (zh) * 2019-08-29 2019-11-05 四川新卫新建筑智能化工程有限公司 磁悬浮巡检行走机构及磁悬浮巡检系统
CN115668719A (zh) * 2020-05-20 2023-01-31 Asml荷兰有限公司 磁体组件、线圈组件、平面马达、定位装置和光刻设备
CN112233875A (zh) * 2020-10-14 2021-01-15 中车株洲电机有限公司 一种中低速磁悬浮用超导电磁铁及中低速磁悬浮车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430433A (en) * 1987-07-22 1989-02-01 Canon Kk Superconducting coil for motor or generator
CN101741289A (zh) * 2009-12-24 2010-06-16 哈尔滨工业大学 短行程多自由度磁悬浮平面电机
CN101752983A (zh) * 2009-12-24 2010-06-23 哈尔滨工业大学 长行程高精度多自由度平面电机
CN102594220A (zh) * 2012-01-21 2012-07-18 哈尔滨工业大学 超导体励磁结构磁悬浮平面电机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2011732A1 (en) * 1989-03-27 1990-09-27 Robert A. Hawsey Axial gap superconducting electrical machine
US5015622A (en) * 1989-10-17 1991-05-14 Alfred University Multidirectional/rotational superconductor motor
US5237298A (en) * 1990-09-21 1993-08-17 Wisconsin Alumni Research Foundation Superconducting energy storage magnet
JPH04354107A (ja) * 1991-05-31 1992-12-08 Hitachi Cable Ltd エネルギー貯蔵装置
DE10218439A1 (de) * 2001-04-24 2002-12-19 Leibniz Inst Fuer Festkoerper Magnetanordnung für die Aufhängung und Führung schwebender Fahrzeuge und Transporteinrichtungen
US6998737B2 (en) * 2003-10-09 2006-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN100521468C (zh) * 2004-08-20 2009-07-29 清华大学 永磁同步平面电动机
JP4975496B2 (ja) * 2007-03-27 2012-07-11 公益財団法人鉄道総合技術研究所 推進浮上案内兼用路盤設置型超電導磁気浮上システム
US8238988B2 (en) * 2009-03-31 2012-08-07 General Electric Company Apparatus and method for cooling a superconducting magnetic assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430433A (en) * 1987-07-22 1989-02-01 Canon Kk Superconducting coil for motor or generator
CN101741289A (zh) * 2009-12-24 2010-06-16 哈尔滨工业大学 短行程多自由度磁悬浮平面电机
CN101752983A (zh) * 2009-12-24 2010-06-23 哈尔滨工业大学 长行程高精度多自由度平面电机
CN102594220A (zh) * 2012-01-21 2012-07-18 哈尔滨工业大学 超导体励磁结构磁悬浮平面电机

Also Published As

Publication number Publication date
US9634540B2 (en) 2017-04-25
CN102594220B (zh) 2015-08-19
CN102594220A (zh) 2012-07-18
US20140327327A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
WO2013107160A1 (zh) 超导体励磁结构磁悬浮平面电机
CN102215019B (zh) 有源型重力补偿电磁支撑装置
CN101214617B (zh) 动圈式大范围移动磁浮六自由度工作台
US9425675B2 (en) Permanent magnet synchronous planar motor with structure of concentric winding
CN101741289B (zh) 短行程多自由度磁悬浮平面电机
CN101741290B (zh) 六自由度磁悬浮微动平台
CN101610054A (zh) 采用三维永磁阵列的平面电机
CN103291832A (zh) 磁悬浮隔振平台
CN105673688B (zh) 一种自调整型五自由度磁轴承
CN108258877A (zh) 一种基于定子弧形与内阶梯型混合结构的永磁直线电机
CN109861493A (zh) 动磁式磁悬浮永磁同步平面电机
CN101710779A (zh) 集成绕组结构长行程同步平面电机
CN101610022B (zh) 一种采用槽型线圈的平面电机
CN101752983B (zh) 长行程高精度多自由度平面电机
CN102185443A (zh) 有限行程高动态平面电机
CN101599677B (zh) 复合电流驱动九相平面电机、直线-旋转电机及其驱动器
CN102739122B (zh) 双边初级结构磁悬浮平面电机
CN101800460B (zh) 集成绕组结构短行程直流平面电机
CN101608670A (zh) 一种垂直线圈径向均匀磁极低损耗外转子混合磁轴承
CN102223052B (zh) 多自由度短行程平面电机
CN203939869U (zh) 一种永磁偏置轴向径向磁轴承
CN101975223B (zh) 扁平型水平线圈外转子混合磁轴承
CN102290961B (zh) 磁通反向平面电机
CN114094794B (zh) 一种动磁铁直线电机
CN114389429B (zh) 多自由度磁悬浮微动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14116109

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865735

Country of ref document: EP

Kind code of ref document: A1