WO2013106958A1 - 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件 - Google Patents

穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件 Download PDF

Info

Publication number
WO2013106958A1
WO2013106958A1 PCT/CN2012/000154 CN2012000154W WO2013106958A1 WO 2013106958 A1 WO2013106958 A1 WO 2013106958A1 CN 2012000154 W CN2012000154 W CN 2012000154W WO 2013106958 A1 WO2013106958 A1 WO 2013106958A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
loop
skeleton
current sensor
air gap
Prior art date
Application number
PCT/CN2012/000154
Other languages
English (en)
French (fr)
Inventor
邹高芝
Original Assignee
Zou Gaozhi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zou Gaozhi filed Critical Zou Gaozhi
Priority to CN201280056650.7A priority Critical patent/CN104520721B/zh
Publication of WO2013106958A1 publication Critical patent/WO2013106958A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates to a magnetic core coil assembly for a Hall current sensor, and more particularly to a coaxial double-loop magnetic core coil assembly for a core-type high-precision closed-loop Hall current sensor. Background technique
  • Hall current sensors are industrialized because of their excellent cost performance. Hall current sensors usually have open-loop and closed-loop operating modes.
  • the closed-loop Hall current sensor is A new type of current sensor with frequency bandwidth, good linearity, electrical isolation, high cost performance, convenient use, etc., is widely used in various self-control fields of current measurement and monitoring objects such as various current conversion technologies and AC numerical control devices. .
  • the closed-loop Hall current sensor consists of a Hall element, an air gap core made of soft magnetic material, a secondary coil winding, and a suitable power amplifier circuit.
  • this current sensor operates in a large closed-loop negative feedback loop structure, it is called a closed-loop Hall current sensor.
  • the magnetic induction B around an infinitely long current-carrying conductor is proportional to the magnitude I of the current and inversely proportional to the distance r.
  • the closed-loop Hall current sensor is generally laminated or wound into a toroidal core with an iron-nickel alloy strip or a cold-punching sheet.
  • the toroidal core has a square cross section, plus a sheath, a long coil path, and an internal resistance. Large; sensor linear measurement range is small, anti-saturation ability is poor; in order to reduce the internal resistance of the coil, thickening the wire diameter, which increases the size and weight of the sensor, is not conducive to the miniaturization of the sensor, and consumes more copper, so that the cost of the sensor increase.
  • This structure does not fundamentally solve the problem of residual magnetism of the magnetic core.
  • many control systems lag behind the monitored current in the time when the power supply of the sensor is behind, that is, the current is monitored first and then the power supply of the sensor is added.
  • the problem of remanence of the core is more prominent, and the remanence of the core increases with time.
  • the output of the Hall element is processed by summing, which effectively solves the effect of magnetic core remanence and position error on current measurement accuracy, but the number of air gaps
  • the increase of the magnetic induction intensity in the air gap is doubled under the same current and the lower limit of the measurement and the lowest resolution of the sensor, which affects the current measurement span and versatility of the sensor.
  • the measurement range is 1. 5-2 times the rated current, the accuracy is preferably 1. 0% FS, - 3db bandwidth is 0-15 0KHZ.
  • the core coil assembly is not easy to install and fix with the PCB board, which greatly reduces the consistency of mass production of the sensor and affects the production efficiency and reliability of the sensor.
  • an object of the present invention is to provide a coaxial double-loop magnetic core coil assembly for a core-type high-precision closed-loop Hall current sensor having a larger measurement range, more precision, and more cost.
  • the complete technical solution of the present invention is a coaxial double-loop magnetic core coil assembly for a core-type high-precision closed-loop Hall current sensor, comprising two annular cores of the same size and a skeleton, the two rings a magnetic core is coaxially mounted on upper and lower sides of the bobbin, and each of the toroidal cores is disposed There are n air gaps, the n air gaps are symmetrically distributed or evenly distributed to each toroidal core, 2n air gaps are misaligned or symmetrically distributed or evenly distributed throughout the coaxial double loop; Provided with a Hall element;
  • the skeleton further includes two skeleton cover plates respectively disposed on outer sides of the two annular magnetic cores; the corners of the skeleton cover plates are chamfered;
  • a secondary coil winding is wound around the bobbin; the bobbin is mounted, the coil winding is connected to a printed circuit board, and the Hall element in the lower annular core air gap Directly connected to the printed circuit board, the Hall element in the upper annular core air gap is connected to the printed circuit board via a conversion printed board.
  • the toroidal core is nickel-containing. More than 80% of iron-nickel alloy.
  • the toroidal core is laminated with a core punching hole and an air gap positioning post with different widths of cold punching.
  • the upper and lower loops of the bobbin have positioning slots corresponding to the magnetic core air gap positioning column and the positioning hole, the positioning post and the component fixing holes of the equal dividing loop.
  • the toroidal core is wound with an ultrafine ribbon.
  • the thickness of the ultra-microcrystalline ribbon is 0. 03-0. 05
  • the output voltages of the 2n Hall elements are averaged or the output voltages of the n Hall elements in each loop are first summed and summed.
  • n 1 or 2
  • the thickness of the toroidal core and the pitch of the two toroidal cores are greater than or equal to 2 times the air gap width and greater than or equal to 1/4 of the long axis in the toroidal core.
  • the skeleton has magnetic core air gap positioning partitions on the upper and lower loops and component fixing columns having at least three equal divided loops.
  • the printed board is provided with a soldering hole matching the size of the fixing pinhole or the fixing post of the component or Fix the hole.
  • the toroidal core and the corresponding skeleton are circular or square or shaped.
  • the present invention has the following beneficial effects as compared with the prior art:
  • the invention provides a magnetic core coil assembly of a coaxial double loop structure.
  • the toroidal core of 2D height is divided into two, and becomes a toroidal core with two D heights.
  • the toroidal core is coaxially mounted on the upper and lower sides of the skeleton to ensure the consistency of the position and width of the air gap and the mounting height of the Hall element. Improve the consistency and reliability of the core-through closed-loop Hall current sensor.
  • each annular core is provided with n air gaps, n air gaps or symmetrically distributed or equally divided into each toroidal core, 2n The air gap is misaligned or symmetrically distributed or evenly divided over the entire coaxial double loop.
  • the output voltage of 2n Hall elements is calculated as an arithmetic mean or the output voltages of n Hall elements in each loop are first averaged and then summed.
  • the influence of the residual magnetism of the magnetic core on the measurement accuracy of the current sensor is eliminated, and the principle error-position error of the core-through closed-loop Hall current sensor is eliminated, and the core-through closed-loop type is greatly improved.
  • the current measurement accuracy of the Hall current sensor; the chamfered cover plate on the skeleton is matched with the skeleton, so that the assembly has the shortest winding path under the same core size, wire diameter and number of turns, and the coil internal resistance Small, the linear measurement range and anti-saturation capability of the closed-loop Hall current sensor are improved; the interconnected holes are arranged between the printed circuit board and the skeleton, which greatly improves product consistency and production efficiency, and also improves The reliability of the product.
  • FIG. 1 is a schematic view showing a single air gap structure of the present invention
  • FIG. 2 is a schematic view of a double air gap structure of the present invention.
  • a coaxial double-loop magnetic core coil assembly for a core-type high-precision closed-loop Hall current sensor includes two toroidal cores of the same size and a skeleton, and the two toroidal cores are coaxially mounted on the skeleton.
  • each annular core is provided with n air gaps, n air gaps or symmetrically distributed or evenly distributed to each toroidal core, 2n air gaps are misaligned or symmetrically distributed or evenly distributed throughout the coaxial double loop
  • n is equal to 1, as shown in FIG.
  • the two toroidal cores are coaxially disposed, and the air gap direction is rotated by 180. Installation, a Hall element is arranged in each air gap. Due to the small cross-sectional size of the core, the iron-nickel alloy containing more than 80% nickel is riveted into a magnetic core positioning hole by cold-punching sheets of different widths.
  • the thickness of the toroidal core is greater than or equal to 2 times the air gap width and greater than or equal to the inside of the toroidal core 1 / 4 semi-long axis, the distance between the cores in the double loop is greater than or equal to 2 times the air gap width;
  • the output voltage of the two Hall elements is the arithmetic mean;
  • the skeleton also includes two skeleton covers, and the skeleton cover is respectively set in two The outer side of the toroidal core, the corner of the skeleton cover is chamfered, and also includes a secondary coil winding, the secondary coil winding is wound around the skeleton, and cooperates with the skeleton cover to make the secondary coil windings in the same core Under the condition of size, wire diameter and number of turns, the winding path is the shortest, and the inner resistance of the coil is the smallest; the positioning groove and the positioning column corresponding to the
  • the fixing hole has a welding hole matched with the size of the fixing hole of the component, the fixing pin passes through the fixing hole on the plastic skeleton, and the magnetic core coil component is mounted on the circuit board, and the two ends of the coil are directly welded On the circuit board; the Hall element in the lower annular core air gap is directly connected to the printed circuit board, and the Hall element in the upper annular core air gap is connected to the printed circuit board through a conversion printed board, the skeleton There is also a slot on the side, and the conversion board is inserted in the slot.
  • the components first find the arithmetic mean and then sum, as shown in Figure 2, in order to reduce the influence of the leakage of the air gap and ensure good electromagnetic induction and coupling, the thickness of the toroidal core is greater than or equal to 2 times the air gap width and greater than Equal to the 1 / 4 semi-major axis in the toroidal core,
  • the spacing of the magnetic cores in the double loop is greater than or equal to 2 times the air gap width;
  • the skeleton further comprises two skeleton cover plates, the skeleton cover plates are respectively disposed on the outer sides
  • the invention also adopts the following technical measures:
  • the present invention adopts a coaxial core coil assembly with a coaxial double-loop structure.
  • the toroidal core is riveted or laminated by an iron-nickel alloy strip or a cold-punched sheet containing more than 80% of nickel. Wound; when an even number of air gaps are used, the toroidal core is laminated or wound by a 50% nickel-nickel alloy strip or cold-punched sheet.
  • the iron-nickel alloy strip The thickness is 0. 03-0. 3 blue.
  • L is the average magnetic path length of the magnetic ring. Its effective permeability is: ⁇
  • the upper and lower cores are mounted coaxially on the fixed frame.
  • SH and Ic are the sensitivity and operating current of the Hall element in the air gap, respectively
  • B is the magnetic induction intensity generated by the measured current in the air gap
  • Sii ' ⁇ ⁇ 2 is the magnetic induction of the measured current in the two air gaps, S H1 1 ,
  • the Hall voltage is the accumulation of positive and negative charges q generated by the moving carriers by the external magnetic field to change the direction of motion on the two plates, which is very similar to the parallel plate capacitor after charging.
  • the capacitance of the plate capacitor C £S / fl ; the Hall elements of the same package have almost the same
  • the dielectric constant ⁇ , the plate area s and the distance a have the same capacitance value. Therefore, the output voltages of the two Hall elements are equivalent to the parallel average of the parallel plate capacitors through the arithmetic mean value of the circuit.
  • the Hall element and the number of air gaps are the same as the output voltage summation processing method of the Hall element, and the sensitivity of the current sensor is the same, and the Hall element is The offset voltage, temperature drift, and output noise are all reduced by 2 V , which greatly improves the linearity, accuracy, and temperature stability of the through-core closed-loop Hall current sensor, and also reduces the lower limit of the current sensor measurement.
  • the minimum current rating of the sensor is 25AT /
  • the present invention provides a magnetic core coil assembly of a coaxial double loop structure.
  • the two-dimensional height of the toroidal core is divided into two, and becomes a toroidal core with two D heights.
  • the weight of the core material used and the number of Hall elements are constant, and the additional cost is not greatly increased;
  • the upper and lower coaxial mounting of the skeleton ensures the consistency of the position and width of the air gap and the mounting height of the Hall element, and improves the consistency and reliability of the through-core closed-loop Hall current sensor.
  • the cold-punched strips of different widths are riveted into a toroidal core with a magnetic core positioning hole and an air gap positioning post, and the chamfered cover plate on the skeleton is matched to make the assembly Under the same core size, wire diameter and number of turns, the winding path is the shortest and the internal resistance of the coil is the smallest, which improves the linear measurement range and anti-saturation capability of the closed-loop Hall current sensor.
  • the output voltage of the four Hall elements or the arithmetic mean of the circuit or the output voltage of the two Hall elements in each loop is first summed by the circuit and then summed to eliminate the Hall current.
  • the principle error of the sensor is a position error. From (17), (18), it can be seen that the sensitivity of the current sensor is ensured compared with the output voltage summation method of the Hall element under the same number of Hall elements and air gaps. The same size, the Hall element's offset voltage, temperature drift, output noise, etc. are reduced by 2v times, so that the linearity, accuracy and temperature stability of the through-core closed-loop Hall current sensor have been greatly improved.
  • the measurement span of this current sensor is also increased by 2.828 times.
  • the flow achieves high precision measurement through the core.
  • coaxial double-loop per core double air gap structure makes the soft magnetic material used in the current sensor can be selected to be low-cost 0. 03-0. 05mm ultra-microcrystalline ribbon wound into a toroidal core and glue to make it A whole, processed into a double air gap core, the core-through closed-loop Hall current sensor is truly cheap.
  • the present invention provides a core coil assembly of a coaxial dual loop structure.
  • the toroidal core of 2D height is divided into two, and becomes a toroidal core with two D heights.
  • the toroidal core is coaxially mounted on the upper and lower sides of the skeleton to ensure the consistency of the position and width of the air gap and the mounting height of the Hall element. Improve the consistency and reliability of the core-through closed-loop Hall current sensor.
  • each annular core is provided with n air gaps, n air gaps or symmetrically distributed or equally divided into each toroidal core, 2n The air gap is misaligned or symmetrically distributed or evenly divided over the entire coaxial double loop.
  • the output voltage of 2n Hall elements is calculated as an arithmetic mean or the output voltages of n Hall elements in each loop are first averaged and then summed.
  • the current measurement accuracy of the Hall current sensor; the chamfered cover plate on the skeleton is matched with the skeleton, so that the assembly has the shortest winding path under the same core size, wire diameter and number of turns, in the coil
  • the minimum resistance increases the linear measurement range and anti-saturation capability of the closed-loop Hall current sensor.
  • the interconnected holes are arranged between the printed circuit board and the skeleton, which greatly improves product consistency and production efficiency. Improve the reliability of the product.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本发明属于霍尔电流传感器用磁芯线圈组件领域,公开了一种穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件,包括两个尺寸相同的环形磁芯以及一个骨架,两个环形磁芯同轴安装在骨架的上下两面,每个环形磁芯上设置有n个气隙,n个气隙或对称分布或均分每个环形磁芯,2n个气隙错位安装或对称分布或均分整个同轴双环路;2n个霍尔元件的输出电压求算术平均值或每个环路n个霍尔元件的输出电压先求算术平均值再求和;还包括一个绕在骨架上的次级线圈绕组;骨架安装、线圈绕组连接在印制电路板上,下层的霍尔元件直接与印制电路板连接,上层的通过一个转换印制板与印制电路板连接,本发明的有益效果是测量范围更大、更加精确、更节省成本。

Description

说 明 书 穿芯式高精度闭环型霍尔电流传感器用
同轴双环路磁芯线圈组件
技术领域 本发明涉及一种霍尔电流传感器用磁芯线圏组件, 具体说是一种穿芯式高 精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件。 背景技术
对电流的非接触测量和监控方法很多,霍尔电流传感器因其优异的性 价比被广泛应用而形成产业化; 霍尔电流传感器通常有开环、 闭环两种工作 模式,闭环型霍尔电流传感器是一种新型的电流传感器,具有频带宽、线性好、 电隔离、 性价比高、 使用方便等特点, 被广泛用于各种变流技术、 交流数控 装置等以电流作测量和监控对象的自控领域中。
闭环型霍尔电流传感器由霍尔元件、 软磁材料制成的带气隙的磁芯、 次 级线圈绕组、 适当的功率放大器电路组成。 其工作原理为: 用霍尔元件检测 磁芯气隙中次级电流安匝数 Ns l s 所产生的磁感应强度抵消初级电流安匝数 Nplp所产生的磁感应强度的程度, 达到动态平衡时, 在理想状态下, 有: Nplp-Ns l s=0 …… (1)
由于这种电流传感器其工作过程为大闭环负反馈环路结构, 故称其为闭 环型霍尔电流传感器。
由电磁学中毕奥.萨伐尔定律可知, 在无限长载流导体周围的磁感应强度 B与电流大小 I成正比, 与距离 r成反比, 即
2 r 因此当被测电流的载流导体在磁芯中移动位置时, 在磁芯气隙中产生的 磁感应强度的大小不同, 便产生了位置误差, 这就是单磁芯、 单气隙闭环型 确认本 电流传感器原理性误差。 除此之外, 这种磁路结构还存在以下问题:
1、 闭环型霍尔电流传感器一般采用铁镍合金带或冷沖片铆沖叠层或卷绕 成环形磁芯, 环形磁芯的截面为方形, 再加上护套, 线圈路径长, 内阻大; 传感器线性测量范围小, 抗饱和能力差; 为减小线圈内阻, 加粗线径, 既增 大传感器的体积和重量, 不利于传感器小型化, 又消耗更多铜材, 使传感器 成本增加。
2、 这种结构没有从根本上解决磁芯的剩磁问题, 特别是许多控制系统在时 间上传感器供电电源落后于被监控电流, 即先有监控电流而后加传感器供电 电源。 在这种情况下磁芯的剩磁问题更为突出, 且随着时间推移磁芯的剩磁 在积累增加。 采用单磁路、 2n个气隙和霍尔元件, 对霍尔元件输出端采用求 和方式处理信号, 有效地解决磁芯剩磁和位置误差对电流测量精度大的影响, 但气隙个数的增多, 在相同电流匝数奈件下, 气隙中磁感应强度成倍减少, 传感器的测量下限和最低分辨率变差,从而影响了传感器的电流测量跨度和 通用性。 其测量范围为 1. 5-2倍额定电流, 精度最好为 1. 0%FS, - 3db带宽为 0-15 0KHZ。
3、 磁芯线圈组件的磁芯气隙中插入霍尔元件时, 无法保证安装高度一致 性, 影响了传感器性能一致性; 调试时, 人为地调节线圈匝数即耗时, 又费 事。
4、 磁芯线圈组件不易与 PCB板安装固定, 大大地降低了传感器批量生产 一致性, 影响了生产效率及传感器的可靠性。
发明内容
为了解决上述技术问题, 本发明的目的在于提供一种测量范围更大、 更 加精确、 更节省成本的穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁 芯线圈组件。 本发明的完整技术方案是, 一种穿芯式高精度闭环型霍尔电流传感器用 同轴双环路磁芯线圏组件, 包括两个尺寸相同的环形磁芯以及一个骨架, 所 述两个环形磁芯同轴安装在所述骨架的上下两面, 所述每个环形磁芯上设置 有 n个气隙, 所述 n个气隙或对称分布或均分每个环形磁芯, 2n个气隙错位 安装或对称分布或均分整个同轴双环路; 所述每个气隙中均设置有一个霍尔 元件;
所述骨架还包括两个骨架盖板, 所述骨架盖板分别设置在所述两个环形 磁芯的外侧; 所述骨架盖板拐角处为倒角;
还包括一个次级线圈绕组, 所述次级线圈绕组绕在所述骨架上; 所述骨架安装、 线圈绕组连接在印制电路板上, 所述下层的环形磁芯气 隙中的霍尔元件直接与所述印制电路板连接, 所述上层的环形磁芯气隙中的 霍尔元件通过一个转换印制板与所述印制电路板连接。
在匝比 1 : 3000T, 额定电流为 300AT以下时, 单气隙的两个尺寸相同的 环形磁芯, 在骨架上上下安装而气隙均分同轴双环路, 所述环形磁芯用含镍 80%以上的铁镍合金制成。
所述环形磁芯上用不同宽度的冷冲片铆冲叠层出带磁芯定位孔和气隙定 位柱。
所述骨架上在上下环路均有与磁芯气隙定位柱、 定位孔相对应的定位槽、 定位柱及均分环路的组件固定孔。
在匝比 1 : 5000T, 额定电流为 500AT以上时, 所述环形磁芯用超微晶带 卷绕而成。
所述超微晶带的厚度为 0. 03-0. 05
所述 2n个霍尔元件的输出电压求算术平均值或每个环路中 n个霍尔元件 的输出电压先求算术平均值再求和。
所述 n等于 1或 2
所述环形磁芯的厚度以及两个环形磁芯的间距大于等于 2 倍的气隙宽度 且大于等于所述环形磁芯内 1/4半长轴。
所述骨架上在上下环路均有磁芯气隙定位隔板及至少有三个以上均分环 路的组件固定柱。
所述印制板上设置有与所述组件固定针孔或固定柱的尺寸相配的焊孔或 固定孔。
所述环形磁芯以及相对应的骨架为圆形或方形或异形。
由上可见, 本发明与现在技术相比有如下有益效果:
本发明提供了一种同轴双环路结构的磁芯线圈组件。 由 2D高度的环形磁 芯一分为二, 变成加工两个 D 高度的环形磁芯, 环形磁芯在骨架上下同轴安 装确保气隙的位置、 宽度和霍尔元件安装高度的一致性, 提高了穿芯式闭环 型霍尔电流传感器的一致性、 可靠性, 同时每个环形磁芯上设置有 n个气隙, n个气隙或对称分布或均分每个环形磁芯, 2n个气隙错位安装或对称分布或 均分整个同轴双环路, 2n个霍尔元件的输出电压求算术平均值或每个环路中 n个霍尔元件的输出电压先求算术平均值再求和,在理论上既消除了磁芯的剩 磁对电流传感器的测量精度的影响, 又消除了穿芯式闭环型霍尔电流传感器 的原理性误差一位置误差, 大大地提高了穿芯式闭环型霍尔电流传感器的电 流测量精度; 骨架上带倒角的盖板与骨架相配, 使组件在相同的磁芯尺寸、 线径、 匝数条件下, 绕线路径最短, 线圈内阻最小, 提高了闭环型霍尔电流 传感器的线性测量范围和抗饱和能力; 印制电路板与骨架之间设置有相互连 接的孔位, 大大的提高了产品的一致性以及生产效率, 同时也提高了产品的 可靠性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 并不构成对本发明的不当限定, 在附图中:
图 1为本发明单气隙结构示意图;
图 2为本发明双气隙结构示意图。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明, 在此本发明的示意 性实施例以及说明用来解释本发明, 但并不作为对本发明的限定。 实施例 1: 本实施例一种穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线 圏组件, 包括两个尺寸相同的环形磁芯以及一个骨架, 两个环形磁芯同轴安 装在骨架的上下两面, 每个环形磁芯上设置有 n个气隙, n个气隙或对称分 布或均分每个环形磁芯, 2n个气隙错位安装或对称分布或均分整个同轴双环 路; 本实施例中 n等于 1, 如图 1所示, 两个环形磁芯同轴设置, 而气隙方向 旋转 180。 安装,每个气隙中均设置有一个霍尔元件,由于其磁芯截面尺寸小, 用含镍 80%以上的铁镍合金以不同宽度的冷冲片铆沖叠层成带磁芯定位孔和 气隙定位柱的环形磁芯, 为了减小气隙的漏磁的影响以及确保良好的电磁感 应与耦合, 环形磁芯的厚度大于等于 2倍的气隙宽度且大于等于环形磁芯内 1 /4半长轴, 双环路中磁芯的间距大于等于 2倍的气隙宽度;2个霍尔元件的 输出电压求算术平均值; 骨架还包括两个骨架盖板, 骨架盖板分别设置在两 个环形磁芯的外侧, 骨架盖板拐角处为倒角, 还包括一个次级线圈绕组, 次 级线圈绕组绕在骨架上, 与骨架盖板相配合, 使次级线圈绕组在相同的磁芯 尺寸、 线径、 匝数条件下, 绕线路径最短, 线圈内阻最小; 骨架上在上下环 路均有与磁芯气隙定位柱、 磁芯定位孔相对应的定位槽、 定位柱及均分环路 的组件固定孔, 印制板上有与组件固定孔的尺寸相配的焊孔, 固定引针穿过 塑料骨架上的固定孔, 将磁芯线圈组件安装到线路板上, 线圈的两端头直 接焊接在线路板上; 下层的环形磁芯气隙中的霍尔元件直接与印制电路板连 接, 上层的环形磁芯气隙中的霍尔元件通过一个转换印制板与印制电路板连 接, 骨架的侧面上还设置有一个插槽, 转换印制板插在插槽内。
实施例 2:
本实施例与实施例 1的不同之处在于,本实施中 n=2, 两个磁芯同轴而气 隙方向旋转 90° 安装, 用 0. 03-0. 05麵超微晶带卷绕而成环形磁芯并用胶使 之成为一个整体;每个气隙中均设置有一个霍尔元件, 霍尔元件的输出电压为 2n个霍尔元件求算术平均值或每个磁芯的霍尔元件先求算术平均值再求和, 如图 2 所示, 为了减小气隙的漏磁的影响以及确保良好的电磁感应与耦合, 环形磁芯的厚度大于等于 2倍的气隙宽度且大于等于环形磁芯内 1 /4半长轴, 双环路中磁芯的间距大于等于 2倍的气隙宽度;骨架还包括两个骨架盖板, 骨 架盖板分别设置在两个环形磁芯的外侧, 骨架盖板拐角处为倒角, 还包括一 个次级线圈绕组, 次级线圈绕组绕在骨架上, 与骨架盖板相配合, 使次级线 圈绕组在相同的磁芯尺寸、 线径、 匝数条件下, 绕线路径最短, 线圈内阻最 小; 骨架上在上下环路均有磁芯气隙定位隔板及至少有三个以上均分环路的 组件固定柱, 骨架连接在印制电路板上, 印制板上有与组件固定柱的尺寸相 配的焊孔或固定孔, 在线圈绕制完成后用自攻螺丝将组件固定在线路板上; 下层的环形磁芯气隙中的霍尔元件直接与印制电路板连接, 上层的环形磁芯 气隙中的霍尔元件通过一个转换印制板与印制电路板连接, 骨架的侧面上还 设置有一个插槽, 转换印制板插在插槽内。
本发明还采取下述技术措施:
( 1 )本发明采用同轴双环路结构的磁芯线圈组件,当环路磁芯单气隙时,环形 磁芯由含镍 80%以上的铁镍合金带或冷冲片铆沖叠层或卷绕而成;当用偶数个 气隙时,环形磁芯由含镍 50%的铁镍合金带或冷沖片铆冲叠层或卷绕而成, 为 提高传感器的带宽, 铁镍合金带的厚度为 0. 03-0. 3蘭。
( 2 )有效磁导率
如图 1,对于磁导率为 μ , 气隙宽度为 g的磁环, L为磁环的平均磁路长 度。 其有效磁导率为: μ
^有 — 1 + (μ— 1 ) 一般地, μ » 1000 , L» g,则有:
如果在磁环上均分 η个相同宽度的气隙时,有: (3) 根据 (1 ) 式, 在理想状态下, 是指磁芯所用软磁材料的磁导率、 放大器 的开环放大倍数、 霍尔元件的灵敏度是否非常大, 而实际上以上参数均为有 限值, 特别是软磁材料的磁导率, 虽然(3)式有 10%- 20%的误差, 但仍能说明, 带气隙的磁芯无论其材料的磁导率有多高, 其有效磁导率低了很多, 且气隙 的宽度越大, 其有效磁导率越低。 因此, 对于闭环型霍尔电流传感器的环形 磁芯, 其气隙宽度或数量越小越好, 一般地 n=l、 2。
对于高度为 D、 n个气隙的环形磁芯在固定架上上下同轴安装, 如图一、 图二, 为了确保气隙中磁感应强度均匀性和减小气隙的漏磁的影响, 必须使 D ≥2g, d≥2g。 为确保良好的电磁感应与耦合, 必须使每环路磁芯的高度 1/4 b; 在 a=b=R (圓环形) 时, D^ l/4 R。
( 3 )求算术平均值消除原理性误差 -—位置误差.
在图一,图二中,因被测电流载流导体在穿芯孔中位置不同而引起气隙中 磁感应强度 B的大小不同,产生了不同的霍尔电压, 有:
VH=SIIICB …… (4)
式中 SH、 Ic分别为气隙中霍尔元件的灵敏度和工作电流
B为被测电流在气隙中产生的磁感应强度
将此电压经电路求算术平均值后,有:
在图一中.
Figure imgf000009_0001
式中 Sii ' Βί 2 分别为被测电流在两气隙中的磁感应强度, SH1 1
SHi 2 - ι, 分别为两气隙中霍尔元件的灵敏度和工作电流。
由霍尔效应原理可知, 霍尔电压是由运动的载流子受外磁场作用而改变 运动方向在两极板上产生的正负电荷 q的积累,这与充电后的平行板电容器极 相似.而平板电容器的电容 C = £S/fl; 两只相同封装的霍尔元件具有几乎相同 的介电常数 ε ,极板面积 s和距离 a, 具有同样的电容值.因此两只霍尔元件的 输出电压经电路求算术平均值按平行板电容并联等效,有
Figure imgf000010_0001
C12 二 被测电流载流导体在穿芯孔中位置不同时,作用于霍尔元件上的磁感应强 度 B不同而产生的电荷量 qu, q12不同,有:
Figure imgf000010_0002
+ ^yc】)
=0· 5(νΗ11 十 vHl2)
=0.5 (Siil llcuB11 +SH12Icl2B12) …… (6)
由(5) , (6)式可知, 多个霍尔电压经电路求算术平均值的处理方法等效于多 个霍尔元件输出端并联。
在图二中,同理有:
1 二=0. 5 (Sy2I lC2 ι 2 i+SH22
Figure imgf000010_0003
…-. (7) 从(5) , (6), (7)可知, 多个霍尔电压经电路求算术平均值的处理方法, 在理论上消除了穿芯式闭环霍尔电流传感器的原理性误差 位量误差。 在每个气隙中安装一个霍尔元件, 气隙及霍尔元件的数量越多, 求算术平均 值后, 位置误差补偿越彻底, 穿芯式闭环霍尔电流传感器的线性度、 精度越 好。 但实际应用中一般采用每环路中, 偶数个气隙和霍尔元件, 以抵消磁芯 的剩磁对电流测量精度的影响, 同时兼顾测量精度和测量分辨下限, 采用同 一环路气隙中霍尔元件输出端求算术平均值, 不同环路中气隙中霍尔元件输 出电压求和处理方式, 使测量精度和分辨下限最佳化。
(4) 电流测量的跨度及下限
在图一中, 我们把它看作高度为 2D的一个磁芯均分为高度为 D、 单气隙 宽度为 g的两个尺寸相同磁芯, 两个磁芯同轴而气隙方向旋转 180° 安装;在 图二中, 把它看作高度为 2D每边一个气隙的一个磁芯均分为高度为 D、 对称 双气隙宽度为 g的两个尺寸相同磁芯, 两个磁芯同轴而气隙方向旋转 90。 安 装。 当无限长的载流导体在穿芯孔任意位置, 其坐标为 (x. y ) ,对于安装在 下层的磁路,根据毕奥.萨伐尔定律可以证明,其气隙中的磁感应强度8= 4 1 /2 π r仍然成立, 因此我们把它放在同一坐标系中来处理。
对单磁芯双气隙时的霍尔元件的输出电压求和与同轴双磁芯单气隙时的 霍尔元件的输出电压求算术平均值进行比较, 为了便于比较,假设霍尔元件灵 敏度 5Η,工作电流 相同 (实际上对霍尔元件分档配对后可以做到) ,有:
Figure imgf000011_0001
将(3)代入(8 ) 式
Figure imgf000011_0002
此时, 霍尔元件的输出电压中噪声电压为 Ve, 求算术平均值后为: =2 Ve (10)
SHICN1 L
HI (― + (11)
4 g — )
11 r12 Ϊ=]^ …… (12) 对比单磁芯四气隙时的霍尔元件的输出电压求和与同轴汉磁芯每环路双 气隙时的霍尔元件输出求算术平均值后再求和, 有: ∑¾ -^^(- ^→- + -) ...... (13)
S"S r21 r22 r23 r24
Figure imgf000012_0001
Σ ^ ^^^ (丄 + 丄 +丄) ...... (15)
8ττ§ Γ21 Γ22 r23 r2
Figure imgf000012_0002
∑VH2 « ∑"¾ (17)
Figure imgf000012_0003
从理论来看, 同轴多环路磁芯结构是可行的, 但在实际应用中, 不仅要 考虑实际安装是否方便可行, 是否能批量生产, 还需考虑制造成本,一般采用 同轴双环路磁芯结构。
从(17), (18) 式可知, 在霍尔元件和气隙数量相同条件下与霍尔元件 的输出电压求和处理方式相比, 既确保电流传感器的灵敏度大小相同, 又使 霍尔元件的失调电压及温漂、 输出噪声等均下降 2V 倍, 使穿芯式闭环型霍 尔电流传感器的线性度、 精度、 温度稳定性等有了大的提高, 亦使电流传感 器测量下限降低了 2V'倍; 对于最小额定电流为 25A的闭环型霍尔电流传感 器, 在霍尔元件的输出噪声电压同为 的奈件下, 此电流传感器的最小额定 电流降低了 2 倍, 此时闭环型电流传感器的最小额定电流为 25AT/
=8.84AT, 实现 10ΛΤ 的待测电流穿芯式高精度测量; 亦使这种电流传感器的 测量跨度提高了 2v 倍。
本发明的有益效果
1、 本发明是提供一种同轴双环路结构的磁芯线圏组件。 由 2D高度的环形 磁芯一分为二, 变成加工两个 D高度的环形磁芯, 所用磁芯材料的重量和霍 尔元件数量不变, 不会大幅度增加额外成本; 环形磁芯在骨架上下同轴安装 确保气隙的位置、 宽度和霍尔元件安装高度的一致性, 提高了穿芯式闭环型 霍尔电流传感器的一致性、 可靠性。 用含镍 80%的铁镍合金以不同宽度的冷沖 片铆冲叠层成带磁芯定位孔和气隙定位柱的环形磁芯, 骨架上带倒角的盖板 与之相配, 使组件在相同的磁芯尺寸、 线径、 匝数条件下, 绕线路径最短, 线圈内阻最小, 提高了闭环形霍尔电流传感器的线性测量范围和抗饱和能力。
2、 2 个气隙或对称分布或均分每个环形磁芯, 消除磁芯的剩磁对电流传 感器的测量精度的影响; 4 个气隙错位安装或对称分布或均分整个同轴双环 路, 减小了载流导体在穿芯孔中的位置误差。
3、 4 个霍尔元件的输出电压或经电路求算术平均值或每环路中, 2 个霍 尔元件的输出电压经电路先求算术平均值再求和, 从理论上消除了霍尔电流 传感器的原理性误差一位置误差; 从(17 ), (18 ) 式可知, 在霍尔元件和气 隙数量相同条件下与霍尔元件的输出电压求和处理方式相比, 既确保电流传 感器的灵敏度大小相同, 又使霍尔元件的失调电压及温漂、 输出噪声等均下 降 2v 倍, 使穿芯式闭环型霍尔电流传感器的线性度、 精度、 温度稳定性等 有了大的提高, 亦使电流传感器测量下限降低了 2v' 倍; 对于最小额定电流 为 25A 的闭环型霍尔电流传感器, 在霍尔元件的输出噪声电压同为 ^的条件 下, 此电流传感器的最小额定电流降低了 2V 倍, 此时闭环型电流传感器的 最小额定电流为 25AT/' =8. 84AT, 实现 10AT 的待测电流穿芯式高精度测
量; 亦使这种电流传感器的测量跨度提高了 2. 828 倍。 利用同轴多环路磁芯 结构及霍尔元件输出求和与求算术平均值方式相结合运用, 使 10AT的待测电 流实现穿芯式高精度测量。
4、 同轴双环路每磁芯双气隙结构使得此种电流传感器所用软磁材料可选 择造价低的 0. 03-0. 05mm超微晶带卷绕而成环形磁芯并用胶使之成为一个整 体, 加工成双气隙磁芯, 使穿芯式闭环型霍尔电流传感器真正做到了价廉物 美。
5、 采用发明人申请的另一专利——种高精度闭环型霍尔电流传感器用电 子线路与同轴双环路磁芯线圈组件组合, 使穿芯式闭环型霍尔电流传感器精 度达到 0. 1 % FS, 其失调电压温漂达到 30 ppm/°C ~ 100 ppm/°C, 工作温区达 到- 40 ~ 85。C, 同时亦使电流传感器测量跨度从近 20倍提高到近 60倍, -3db 带宽为 0-300KHzo
由上可见, 本发明提供了一种同轴双环路结构的磁芯线圈组件。 由 2D高 度的环形磁芯一分为二, 变成加工两个 D 高度的环形磁芯, 环形磁芯在骨架 上下同轴安装确保气隙的位置、 宽度和霍尔元件安装高度的一致性, 提高了 穿芯式闭环型霍尔电流传感器的一致性、 可靠性, 同时每个环形磁芯上设置 有 n个气隙, n个气隙或对称分布或均分每个环形磁芯, 2n个气隙错位安装 或对称分布或均分整个同轴双环路, 2n个霍尔元件的输出电压求算术平均值 或每个环路中 n个霍尔元件的输出电压先求算术平均值再求和, 在理论上既 消除了磁芯的剩磁对电流传感器的测量精度的影响, 又消除了穿芯式闭环型 霍尔电流传感器的原理性误差一位置误差, 大大地提高了穿芯式闭环型霍尔 电流传感器的电流测量精度; 骨架上带倒角的盖板与骨架相配, 使组件在相 同的磁芯尺寸、 线径、 匝数条件下, 绕线路径最短, 线圈内阻最小, 提高了 闭环形霍尔电流传感器的线性测量范围和抗饱和能力; 印制电路板与骨架之 间设置有相互连接的孔位, 大大的提高了产品的一致性以及生产效率, 同时 也提高了产品的可靠性。
以上对本发明实施例所提供的技术方案进行了详细介绍, 本文中应用了 明只适用于帮助理解本发明实施例的原理; 同时, 对于本领域的一般技术人 员, 依据本发明实施例, 在具体实施方式以及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求 书
1、 一种穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组 件, 其特征在于, 包括两个尺寸相同的环形磁芯以及一个骨架, 所述两个环 形磁芯同轴安装在所述骨架的上下两面, 所述每个环形磁芯上设置有 n个气 隙, 所述 n个气隙或对称分布或均分每个环形磁芯, 2n个气隙错位安装或对 称分布或均分整个同轴双环路; 所述每个气隙中均设置有一个霍尔元件; 所述 2n个霍尔元件的输出电压求算术平均值或每个环路中 n个霍尔元件 的输出电压先求算术平均值再求和;
所述 n等于 1或 2;
所述骨架还包括两个骨架盖板, 所述骨架盖板分别设置在所述两个环形 磁芯的外侧;
所述骨架盖板拐角处为倒角;
还包括一个次级线圈绕组, 所述次级线圈绕组绕在所述骨架上; 所述骨架安装、 线圈绕组连接在印制电路板上, 所述下层的环形磁芯气 隙中的霍尔元件直接与所述印制电路板连接, 所述上层的环形磁芯气隙中的 霍尔元件通过一个转换印制板与所述印制电路板连接;
所述骨架的侧面上还设置有一个插槽且与环形磁芯气隙相通, 转换印制 板插在插槽内。
2、 根据权利要求 1所述的一种穿芯式高精度闭环型霍尔电流传感器用同 轴双环路磁芯线圈组件, 其特征在于, 在匝比 1: 3000T、 额定电流为 300ΑΤ 以下时, 单气隙的两个尺寸相同的环形磁芯, 在骨架上上下安装而气隙均分 同轴双环路, 所述环形磁芯用含镍 80%以上的铁镍合金制成。
3、 根据权利要求 2所述的一种穿芯式高精度闭环型霍尔电流传感器用同 轴双环路磁芯线圈组件, 其特征在于, 所述环形磁芯上用不同宽度的冷沖片 铆沖叠层出带磁芯定位孔和气隙定位柱。
4、 根据权利要求 1所述的一种穿芯式高精度闭环型霍尔电流传感器用同 轴双环路磁芯线圈组件, 其特征在于, 在匝比 1: 5000Τ, 额定电流为 500ΑΤ 以上时, 所述环形磁芯用超微晶带卷绕而成, 所述超微晶带的厚度为
0. 03-0. 05隱。 。
5、 根据权利要求 1所述的一种穿芯式高精度闭环型霍尔电流传感器用同 轴双环路磁芯线圈组件, 其特征在于, 所述环形磁芯的厚度以及两个环形磁 芯的间距大于等于 2倍的气隙宽度且大于等于所述环形磁芯内 1 /4半长轴。
6、 根据权利要求 1、 2、 3中的任一条所述的一种穿芯式高精度闭环型霍 尔电流传感器用同轴双环路磁芯线圏组件, 其特征在于, 所述骨架上在上下 环路均有与磁芯气隙定位柱、 定位孔相对应的定位槽、 定位柱及均分环路的 组件固定孔。
7、 根据权利要求 1、 1、 4中的任一条所述的一种穿芯式高精度闭环型霍 尔电流传感器用同轴双环路磁芯线圈组件, 其特征在于, 所述骨架上在上下 环路均有磁芯气隙定位隔板及至少有三个以上均分环路的组件固定柱。
8、 根据权利要求 1中的任一条所述的一种穿芯式高精度闭环型霍尔电流 传感器用同轴双环路磁芯线圈组件, 其特征在于, 所述印制板上设置有与所 述组件固定孔或固定柱的尺寸相配的焊孔或固定孔。
9、 根据权利要求 1所述的一种穿芯式高精度闭环型霍尔电流传感器用同 轴双环路磁芯线圈组件, 其特征在于, 所述环形磁芯以及相对应的骨架为圆 形或方形或异形。
PCT/CN2012/000154 2012-01-19 2012-02-09 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件 WO2013106958A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280056650.7A CN104520721B (zh) 2012-01-19 2012-02-09 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012200260414U CN202661526U (zh) 2012-01-19 2012-01-19 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件
CN201220026041.4 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013106958A1 true WO2013106958A1 (zh) 2013-07-25

Family

ID=47456424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000154 WO2013106958A1 (zh) 2012-01-19 2012-02-09 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件

Country Status (2)

Country Link
CN (2) CN202661526U (zh)
WO (1) WO2013106958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860535A1 (en) * 2013-10-02 2015-04-15 Rockwell Automation Technologies, Inc. Hall effect sensor core with multiple air gaps

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541581B2 (en) * 2014-10-27 2017-01-10 Fluke Corporation Flexible current sensor
CN104931756B (zh) * 2015-05-25 2017-10-13 山东航天电子技术研究所 一种适用于方形对插磁芯的电流传感器骨架
CN105548658B (zh) * 2015-12-31 2019-04-23 深圳青铜剑科技股份有限公司 一种闭环霍尔电流传感器
CN106526283A (zh) * 2016-11-03 2017-03-22 清华大学 一种基于巨磁阻效应的多量程电流传感装置
CN106706990B (zh) * 2017-02-28 2023-07-25 南京普肯传感科技有限公司 一种穿芯式霍尔电流传感器用磁芯气隙固定结构组件
CN107422165B (zh) * 2017-06-09 2023-11-03 盐城工学院 可在线退磁的闭环霍尔电流传感器
US11073539B2 (en) * 2017-11-10 2021-07-27 Abb Schweiz Ag Split core current sensor
CN108267621A (zh) * 2018-03-22 2018-07-10 广东电网有限责任公司清远供电局 一种基于霍尔元件的钳式电流测量器
CN108535527B (zh) * 2018-06-05 2023-12-05 南京普肯传感科技有限公司 一种全pcb安装式闭环型霍尔电流传感器安装结构
CN108562774B (zh) * 2018-06-21 2021-05-07 山东航天电子技术研究所 一种小型金属外壳集磁式霍尔电流传感器
CN109683009A (zh) * 2019-01-17 2019-04-26 上海崇林汽车电子有限公司 一种大量程高精度霍尔电流传感器的磁路装置
CN110672902A (zh) * 2019-10-10 2020-01-10 国网四川省电力公司电力科学研究院 磁场聚集组件、非接触式泄漏电流测量装置及测量方法
CN113970663A (zh) * 2021-10-26 2022-01-25 中国电子科技集团公司第四十九研究所 一种闭环霍尔电流传感器用磁芯
WO2023077900A1 (zh) * 2021-11-04 2023-05-11 中国电力科学研究院有限公司 一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法
CN114113738A (zh) * 2022-01-25 2022-03-01 南京普肯传感科技有限公司 一种穿芯式闭环型霍尔电流传感器用磁路及安装结构
CN117594340B (zh) * 2024-01-15 2024-04-16 江苏常荣电器股份有限公司 一种闭环霍尔电流传感器线圈设计结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060232902A1 (en) * 2005-04-13 2006-10-19 Kevin Woolsey Current sensor
CN201277993Y (zh) * 2008-08-21 2009-07-22 天津市松正电动科技有限公司 用于电动车辆控制器的磁感应电流传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923162A (en) * 1997-04-18 1999-07-13 Bell Technologies Inc. Non-inductive lead path hall effect electrical current sensor
CN2689237Y (zh) * 2004-04-28 2005-03-30 邹高芝 无磁芯护套的电流传感器用线圈磁芯组件
CN101271130A (zh) * 2008-01-24 2008-09-24 武汉格蓝若光电互感器有限公司 点阵式霍尔电流传感器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060232902A1 (en) * 2005-04-13 2006-10-19 Kevin Woolsey Current sensor
CN201277993Y (zh) * 2008-08-21 2009-07-22 天津市松正电动科技有限公司 用于电动车辆控制器的磁感应电流传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860535A1 (en) * 2013-10-02 2015-04-15 Rockwell Automation Technologies, Inc. Hall effect sensor core with multiple air gaps
US9285437B2 (en) 2013-10-02 2016-03-15 Rockwell Automation Technologies, Inc. Hall effect sensor core with multiple air gaps

Also Published As

Publication number Publication date
CN104520721B (zh) 2017-05-17
CN202661526U (zh) 2013-01-09
CN104520721A (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
WO2013106958A1 (zh) 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件
CN202661525U (zh) 穿芯式高精度开环型霍尔电流传感器用同轴双环路磁芯结构组件
CN202711934U (zh) 全pcb安装式高精度闭环型霍尔电流传感器用轴对称磁路磁芯线圈组件
CN1243248C (zh) 一种电流传感器
CN107037251A (zh) 电流传感器和用于测量电流的装置
US5642041A (en) Alternating current sensor employing parallel plates and having high dynamic range and accuracy
CN201765902U (zh) 立式三角形铁心三相电抗器
US11721472B2 (en) Coil component, circuit board, and power supply device
CN106706990B (zh) 一种穿芯式霍尔电流传感器用磁芯气隙固定结构组件
CN101162635A (zh) 一种高磁导率Rogowski线圈
US9431170B2 (en) 0.2Ss class special-type high-voltage measuring current transformer
CN106324539B (zh) 一种高精度电流比较仪
JP2008235773A (ja) インダクタ
CN1267734C (zh) 双重检测式电流传感器
CN100536044C (zh) 一种基于印刷电路板的钳形双绕组空芯线圈
CN111785510A (zh) 一种制备高准确级双级钳形电流互感器的方法
CN108535527B (zh) 一种全pcb安装式闭环型霍尔电流传感器安装结构
CN208335975U (zh) 一种三相三元件组合互感器
Chen et al. Wire-positioning algorithm for coreless Hall array sensors in current measurement
CN207947157U (zh) 一种含校准线圈的高精度pcb罗氏线圈
CN206161700U (zh) 开口式罗氏线圈
CN111381084B (zh) 一种杂散参数精细化可调的高频电流传感器
CN114113738A (zh) 一种穿芯式闭环型霍尔电流传感器用磁路及安装结构
CN101477145B (zh) 一种交流大电流传感器
CN2689240Y (zh) 双重检测式电流传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865723

Country of ref document: EP

Kind code of ref document: A1