WO2023077900A1 - 一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法 - Google Patents

一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法 Download PDF

Info

Publication number
WO2023077900A1
WO2023077900A1 PCT/CN2022/111879 CN2022111879W WO2023077900A1 WO 2023077900 A1 WO2023077900 A1 WO 2023077900A1 CN 2022111879 W CN2022111879 W CN 2022111879W WO 2023077900 A1 WO2023077900 A1 WO 2023077900A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
magnetic field
digital
signal
wire
Prior art date
Application number
PCT/CN2022/111879
Other languages
English (en)
French (fr)
Inventor
周峰
余佶成
雷民
殷小东
岳长喜
梁思远
李熊
李鹤
姚力
李登云
陆春光
肖涛
徐子立
刘炜
朱凯
熊魁
Original Assignee
中国电力科学研究院有限公司
国网浙江省电力有限公司营销服务中心
中国电力科学研究院有限公司武汉分院
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122683680.XU external-priority patent/CN216847918U/zh
Priority claimed from CN202111299826.9A external-priority patent/CN114814330A/zh
Application filed by 中国电力科学研究院有限公司, 国网浙江省电力有限公司营销服务中心, 中国电力科学研究院有限公司武汉分院, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2023077900A1 publication Critical patent/WO2023077900A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present disclosure relates to but not limited to the technical field of electrical measurement, and in particular relates to an iron core-annular array multi-ring magnetosensitive current sensor and a current measurement method.
  • Magnetic sensor array is an effective way to replace magnetic sensor plus magnetic core, and it is an effective solution to solve problems such as space interference and magnetic core saturation.
  • TMR Tunnel Magnetoresistance
  • the basic principle is based on the ampere current loop law, using Multiple TMR sensors surrounding a current-carrying conductor measure the magnetic field, and the summation of the magnetic sensors approximates a closed loop.
  • the annular magnetic sensor array uses an iron-free structure, there is no saturation problem, and the transient performance is greatly improved, which can be widely used in various protection fault measurements.
  • the accuracy of the ring array current sensor still needs to be improved.
  • the disclosure proposes an iron core-annular array multi-ring magnetosensitive current sensor and a current measurement method to solve the problem of how to measure current and reduce measurement errors.
  • an iron core-annular array multi-ring magnetosensitive current sensor includes: a first ring structure, a second ring structure and a digital processing unit, wherein,
  • the first ring structure is sleeved on the wire and connected to the digital processing unit, and is used to obtain a feedback current signal generated according to the first magnetic field signal generated by the primary side current, and output the feedback current signal to said digital processing unit;
  • the second ring structure is sleeved on the wire and connected to the digital processing unit for measuring the second magnetic field signal generated by the current of the wire in the coil of the second ring structure, and The second magnetic field signal is output to the digital processing unit;
  • the digital processing unit is configured to determine, according to the feedback current signal and the second magnetic field signal, a characteristic quantity characterizing the current of the wire; and determine the current on the wire according to the characteristic quantity characterizing the current of the wire .
  • the first ring structure includes: an iron core, a feedback current acquisition circuit and a compensation winding; wherein,
  • the iron core is an open iron core with double air gaps symmetrically opened, and each air gap in the double air gaps is provided with a first tunnel magnetoresistance TMR sensor chip, and the first TMR sensor chip is used to measure the first magnetic field signal;
  • the feedback current acquisition circuit is configured to average the first magnetic field signals measured by the two first TMR sensor chips to obtain a first magnetic field average signal; generate the feedback based on the first magnetic field average signal current signal, and output the feedback current signal to the compensation winding and the digital processing unit;
  • the compensation winding is evenly wound on the iron core, the compensation winding is used to generate a compensation magnetic field according to the feedback current signal, and superimpose the compensation magnetic field and the first magnetic field signal; based on the superimposed
  • the first magnetic field signal controls the sensor to maintain a state of zero magnetic flux.
  • the second ring structure includes: four second TMR sensor chips, the four second TMR sensor chips are arranged in parallel and equidistantly symmetrically in the annular hollow shell, the second TMR The sensor chip is used to acquire the second magnetic field signal.
  • a double metal shielding layer is provided on the outside of the annular hollow casing.
  • the digital processing unit includes: an analog-to-digital conversion module, a digital processing module, and a digital-to-analog conversion module;
  • the analog-to-digital conversion module is connected to the digital processing module, and is used to convert the feedback current signal and the second magnetic field signal from analog to digital;
  • the digital processing module is connected to the digital-to-analog conversion module, and is used to calculate the characteristic quantity representing the current of the wire according to the digital feedback current signal and the digital second magnetic field signal;
  • the digital-to-analog conversion module is used to convert the characteristic quantity representing the current of the conductor from digital quantity into an analog quantity, so as to determine the current on the conductor according to the characteristic quantity representing the current of the conductor converted into an analog quantity.
  • the senor further includes a power supply unit
  • the power supply unit is configured to supply power to the first TMR sensor chip and the second TMR sensor chip.
  • a current measurement method is provided, the method is applied to a core-annular array multi-ring magnetosensitive current sensor, the sensor includes: a first ring structure, a second ring structure and digital processing unit; the method comprising:
  • Using the digital processing unit according to the feedback current signal and the second magnetic field signal, determine the characteristic quantity characterizing the current of the wire; determine the current on the wire according to the characteristic quantity characterizing the current of the wire.
  • the first loop structure further includes a compensation winding and a feedback current acquisition circuit; the compensation winding is wound on the iron core; the method further includes:
  • the first ring structure further includes: an iron core; the iron core is an open iron core with symmetrical double air gaps; each of the double air gaps is provided with a first tunnel Magnetoresistive TMR sensor chip; the first ring structure is used to obtain the feedback current signal generated by the first magnetic field signal generated according to the primary side current, including:
  • the feedback current acquisition circuit is used to average the first magnetic field signals measured by the two first TMR sensor chips to obtain a first magnetic field average signal, and the feedback current signal is generated based on the first magnetic field average signal.
  • the second ring structure includes: four second TMR sensor chips; the second ring structure is used to measure the first current generated by the wire in the coil of the second ring structure.
  • Two magnetic field signals including:
  • the second magnetic field signal is obtained by using the four second TMR sensor chips; wherein, the four second TMR sensor chips are arranged in parallel and equidistantly symmetrically in the annular hollow casing.
  • a double-layer metal shielding layer is provided on the outside of the annular hollow casing.
  • the digital processing unit includes: an analog-to-digital conversion module, a digital processing module, and a digital-to-analog conversion module; using the digital processing unit, according to the feedback current signal and the second magnetic field signal, Determining a characteristic quantity characterizing the current of the wire, comprising:
  • analog-to-digital conversion module to convert the feedback current signal and the second magnetic field signal from analog to digital
  • the determining the current on the wire according to the characteristic quantity characterizing the current of the wire includes:
  • the characteristic quantity representing the current of the conductor is converted from a digital quantity to an analog quantity, and the current on the conductor is determined according to the analog characteristic quantity representing the current of the conductor.
  • using the digital processing module to calculate the characteristic quantity characterizing the current of the wire according to the digital feedback current signal and the digital second magnetic field signal includes at least one of the following:
  • the characteristic quantity representing the current of the wire is obtained based on the arithmetic mean value of the second digital magnetic field signal.
  • the core-annular array multi-ring magnetosensitive current sensor also includes a power supply unit; the method also includes:
  • the power supply unit is used to supply power to the first TMR sensor chip and the second TMR sensor chip.
  • the present disclosure provides an iron core-annular array multi-ring magnetosensitive current sensor and a current measurement method, including: using the first ring structure to obtain the feedback current signal generated by the first magnetic field signal generated according to the primary side current; using the second ring structure The second magnetic field signal generated by the current of the wire in the structural measurement coil; the digital processing unit is used to calculate the characteristic quantity of the current representing the wire according to the feedback current signal and the second magnetic field signal, so as to Determine the current on the wire.
  • the present disclosure can aim at current measurement scenarios of power systems such as DC distribution network and DC charging piles of electric vehicles, based on the magnetic sensitive element that uses tunnel magnetoresistive sensing technology to sense the magnetic field generated by the current to be measured, and uses a double air gap iron core as the first
  • the first loop structure with the coreless annular array installed with multiple magnetic sensitive chips as the second loop structure, designs a closed-loop feedback structure based on the principle of zero magnetic flux, and determines the magnitude of the current through digital signal processing combined with two-way measurement results.
  • the disclosed current Combining the advantages of iron core structure and ironless structure, the sensor can effectively reduce the influence of errors such as eccentricity and crosstalk, expand the application range, and realize high-accuracy current measurement based on tunnel magneto-resistance elements.
  • FIG. 1 is a schematic structural diagram of a core-annular array multi-ring magnetosensitive current sensor 100 according to an embodiment of the present disclosure
  • FIG. 2 is a structural diagram of an iron core-annular array multi-ring magnetosensitive current sensor according to an embodiment of the present disclosure
  • FIG. 3 is a schematic circuit diagram of a first ring structure according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a current measurement method 400 based on a core-ring array multi-ring magnetosensitive current sensor according to an embodiment of the present disclosure.
  • a magnetic sensor array based on Discrete Fourier Transform (DFT) is used, and a digital signal processing unit is added to the output part of the ring array sensor, combined with the sensor output signal design
  • DFT Discrete Fourier Transform
  • a DFT-based signal processing algorithm is developed.
  • the principle of the algorithm is: Fourier expansion of the magnetic field around the measured conductor.
  • the analytical expression of the Fourier coefficient is obtained in the presence of a uniform field when the magnetic field is generated by a current perpendicular to the plane of the array.
  • the annular magnetic sensor array maps the magnetic field around the measured conductor to realize the sensor data space. Discrete Fourier transform.
  • the measured current value is then given by inverting the nonlinear system.
  • the disadvantage of this scheme is that the magnetic sensor array model based on discrete Fourier transform (DFT) only considers the case of circular cross-section conductors, but the magnetic field generated by the DC current flowing in rectangular cross-section conductors does not have radial symmetry Because of this, the sensors in the circular array centered on the busbar cannot measure the same magnetic field value. If the sensor data are processed by DFT algorithms, space harmonics of the magnetic field with orders of magnitude greater than zero will appear. Non-zero harmonics can also be attributed to crosstalk fields, making it difficult to separate contributions from currents inside the array from those from outside. The circular array sensor loses the magnetic gathering effect of the iron core, and the accuracy is insufficient, while the circular array sensor improved by the DFT algorithm has a limited degree of improvement in the accuracy of current measurement.
  • DFT discrete Fourier transform
  • a dual Hall element magneto-sensitive current sensor is used.
  • the output signal of the sensor has a large change, that is, the position error is large.
  • double air gaps are opened on the magnetic circuit of the magnetic sensitive current sensor.
  • a Hall element is installed in each gap and appropriate signal processing components are added to form a dual Hall element magnetosensitive current sensor. Due to the different positions of the measured current wires, the unequal Hall voltages generated when the magnetic fields at the two Hall elements are different are connected in parallel with the circuit and synthesized according to the equivalent circuit of parallel capacitors.
  • the output value of the sensor is two Hall voltages. Arithmetic mean of the component output values. This achieves full compensation for position errors.
  • the disadvantages of this scheme are: 1. There is saturation in the iron core structure, and its nonlinear error will affect the range and accuracy of current measurement, and its temperature stability will also affect the long-term use of the sensor; 2.
  • the Hall sensor has inherent Drawbacks, namely low sensitivity, high power consumption and poor linearity.
  • an embodiment of the present disclosure provides a core-annular array multi-ring magnetosensitive current sensor.
  • FIG. 1 is a schematic structural diagram of a core-ring array multi-ring magneto-sensitive current sensor 100 according to an embodiment of the present disclosure.
  • the iron core-annular array multi-ring magnetosensitive current sensor provided by the embodiment of the present disclosure can target current measurement scenarios in power systems such as DC distribution networks and DC charging piles for electric vehicles, based on tunnel magnetoresistance sensing technology
  • the magnetic sensitive element used to induce the magnetic field generated by the current to be measured uses a double air gap iron core as the first ring structure, and a coreless ring structure with multiple magnetic sensitive chips installed as the second ring structure, and the closed-loop feedback is designed based on the principle of zero magnetic flux Structure, through digital signal processing combined with two-way measurement results to determine the current size, the current sensor disclosed in the present disclosure combines the advantages of iron core structure and ironless structure, can effectively reduce the influence of errors such as eccentricity and crosstalk, and expand the scope of application.
  • the core-annular array multi-ring magnetosensitive current sensor 100 includes: a first ring structure 101, a second ring structure 102 and a digital processing unit 103.
  • the first ring structure 101 is sleeved on the wire and connected to the digital processing unit, for acquiring the feedback current signal generated according to the first magnetic field signal generated by the primary side current, and Outputting the feedback current signal to the digital processing unit.
  • the first ring structure includes: an iron core, a feedback current acquisition circuit and a compensation winding; wherein,
  • the iron core is an open iron core with double air gaps symmetrically opened, each air gap is provided with a first tunnel magnetoresistance TMR sensor chip, and the first TMR sensor chip is used to measure the first magnetic field signal ;
  • the feedback current acquisition circuit is used to average the first magnetic field signals measured by the two first TMR sensor chips to obtain a first magnetic field average signal, based on the first magnetic field average signal through the amplifier in the feedback current acquisition circuit generating a feedback current signal, and outputting the feedback current signal to the compensation winding and a digital processing unit;
  • the compensation winding is evenly wound on the iron core, and is used to generate a compensation magnetic field according to the feedback current signal, superimpose the compensation magnetic field and the first magnetic field signal, and control the The sensor is maintained at zero flux state.
  • said sensor also includes:
  • the power supply unit is used to supply power to the first TMR sensor chip.
  • the first ring structure includes an iron core, a feedback current acquisition circuit and a compensation winding.
  • the iron core is an open iron core with double air gaps symmetrically opened, and a first TMR sensor chip is installed at each air gap, and each first TMR sensor chip is used to measure the current generated by the primary side. magnetic field.
  • the first TMR sensor chip is powered by a power supply unit (not shown in the figure).
  • the feedback current acquisition circuit in the first loop structure averages the first magnetic field signals measured by the two first TMR sensor chips through a parallel circuit, outputs the averaged result to an operational amplifier, generates a feedback current through the operational amplifier, and The feedback current is output to the compensation winding and the digital signal processing unit.
  • the compensation winding in the first ring structure is evenly wound on the iron core, and the compensation winding is used to receive the feedback current generated by the feedback current acquisition circuit to generate a compensation magnetic field, which is superimposed with the magnetic field generated by the primary side current to maintain the sensor at zero Flux state.
  • the circuit of the first loop structure is as shown in Figure 3, wherein the feedback current acquisition circuit in the first loop structure first averages the measurement results of the two TMR sensor chips through a parallel circuit, and then calculates The amplifier and feedback circuit generate the feedback current, which is input to the compensation winding and the digital signal processing unit.
  • the second ring structure 102 is sleeved on the wire, and connected to the digital processing unit, for measuring the second magnetic field signal generated by the current of the wire in the coil, and converting the The second magnetic field signal is output to the digital processing unit.
  • the second ring structure includes: four second TMR sensor chips, the four second TMR sensor chips are arranged in parallel and equidistantly symmetrically in the annular hollow casing, the second TMR sensor chips The sensor chip is used to acquire the second magnetic field signal.
  • a double-layer metal shielding layer is arranged on the outside of the annular hollow casing.
  • said sensor also includes:
  • the power supply unit is used to supply power to the second TMR sensor chip.
  • the second ring structure includes four second TMR sensor chips, and the four second TMR sensor chips are equidistantly and symmetrically installed in the annular hollow casing, and there are double rings on the outside of the annular hollow casing. layers of metal shielding.
  • the second ring structure uses four second TMR sensor chips to measure the magnetic field generated by the current in the measuring coil, and outputs the obtained four second magnetic field signals to the digital signal processing unit.
  • the second TMR sensor chip is powered by a power supply unit (not shown in the figure).
  • the digital processing unit 103 is configured to calculate the characteristic quantity characterizing the current of the wire according to the feedback current signal and the second magnetic field signal, and determine the current on the wire according to the characteristic quantity characterizing the current of the wire .
  • the digital processing unit includes: an analog-to-digital conversion module, a digital processing module, and a digital-to-analog conversion module;
  • the analog-to-digital conversion module is connected to the digital processing module, and is used to convert the feedback current signal and the second magnetic field signal from analog to digital;
  • the digital processing module is connected with the digital-to-analog conversion module, and is used to calculate the characteristic quantity representing the current of the wire according to the feedback current signal converted into digital quantity and the second magnetic field signal of digital quantity;
  • the digital-to-analog conversion module is configured to convert the characteristic quantity representing the current of the conductor from digital quantity into an analog quantity, so as to determine the current on the conductor according to the characteristic quantity representing the current of the conductor converted into an analog quantity.
  • the calculation of the characteristic quantity characterizing the current of the wire according to the feedback current signal and the second magnetic field signal converted into digital quantities by using a digital processing module includes:
  • an arithmetic mean value is calculated based on the second magnetic field signal, so as to obtain the characteristic quantity characterizing the current of the wire.
  • the digital signal processing unit 103 includes: an analog-to-digital conversion module, a digital signal processing module and a digital-to-analog conversion module.
  • the analog-to-digital conversion module uses an on-chip 12-bit A/D converter to perform high-speed sampling on the signals (feedback current signal and four second magnetic field signals) measured by the double loop, and convert the sampled data into digital signals input to the digital signal processing module, so as to calculate and output the characteristic quantity representing the current of the wire through the digital signal processing module.
  • the low-end range part takes the first ring structure as the main ring and is modified by the second ring structure
  • the high-end range part takes the second ring structure as the main
  • the ring is modified by the first ring structure, and the transient sensing function is realized by the second ring structure.
  • the digital signal processing module can realize the following functions: in the low-end range, the measurement results of the first ring structure are the main ones, and the eccentricity errors are corrected by the measurement results of the four TMR sensor chips in the second ring structure; in the high-end range In the interior, the measurement results of the second ring structure are mainly used, and the crosstalk error is corrected by the measurement results of the first ring structure; in the application scenario of transient response, the measurement results of the four second TMR sensor chips of the second ring structure are directly Calculate the arithmetic mean value of the result and output it.
  • the digital-to-analog conversion module in the digital signal processing unit receives the characteristic quantity representing the current of the wire output by the digital signal processing module, it is converted into an analog voltage signal output by the digital-to-analog conversion module as the final output of the sensor , the current magnitude on the measured wire can be determined through the analog voltage signal output by the sensor.
  • the first ring structure is a double-air-gap open iron core with compensation windings, which measures the superimposed magnetic field generated by the primary current and the feedback current to realize the sensing function;
  • the second ring The structure is a magnetic sensor ring array, which realizes fast measurement and reduces eccentricity errors;
  • the digital signal processing unit combines the measurement results of the double rings, and realizes the purpose of correcting errors and expanding the measurement range for different application scenarios.
  • the application of this disclosure can develop a High-precision current sensors suitable for a wide range of fields such as power system metering and protection.
  • FIG. 4 is a flowchart of a current measurement method 400 based on a core-ring array multi-ring magnetosensitive current sensor according to an embodiment of the present disclosure.
  • the current measurement method 400 based on the iron core-ring array multi-ring magnetosensitive current sensor provided by the embodiment of the present disclosure includes:
  • Step 401 using the first loop structure to acquire a feedback current signal generated according to the first magnetic field signal generated by the primary side current, and output the feedback current signal to the digital processing unit.
  • using the first loop structure to obtain the feedback current signal generated according to the first magnetic field signal generated by the primary side current includes:
  • a feedback current signal is generated by an amplifier, and the feedback The current signal is output to the compensation winding and the digital processing unit;
  • Step 402 using the second loop structure to measure a second magnetic field signal generated by the current of the wire in the coil, and outputting the second magnetic field signal to the digital processing unit.
  • the second magnetic field signal generated by the current of the wire in the measuring coil using the second ring structure comprises:
  • the second magnetic field signal is obtained by using four second TMR sensor chips; wherein, the four second TMR sensor chips are connected in parallel and arranged equidistantly and symmetrically in the annular hollow casing.
  • a double-layer metal shielding layer is arranged on the outside of the annular hollow casing.
  • Step 403 using the digital processing unit to determine the characteristic quantity representing the current of the wire according to the feedback current signal and the second magnetic field signal, and determine the current on the wire according to the characteristic quantity representing the current of the wire.
  • the calculation of the characteristic quantity characterizing the current of the wire according to the feedback current signal and the second magnetic field signal by using a digital processing unit includes:
  • the calculation of the characteristic quantity characterizing the current of the wire according to the digital feedback current signal and the digital second magnetic field signal by using the digital processing module includes:
  • the corrected digital feedback current signal can be determined as the characteristic quantity representing the current of the wire.
  • the corrected digital second magnetic field signal can be determined as the characteristic quantity representing the current of the wire.
  • the characteristic quantity representing the current of the wire is obtained.
  • the arithmetic mean value of the second magnetic field signal may be determined as a characteristic quantity characterizing the current of the wire.
  • said method also comprises:
  • the power supply unit is used to supply power to the first TMR sensor chip and the second TMR sensor chip.
  • the current measurement method 400 based on the iron core-annular array multi-ring magnetosensitive current sensor of the embodiment of the present disclosure corresponds to the iron core-annular array multi-ring magnetic current sensor 100 based on another embodiment of the present disclosure.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • An embodiment of the present disclosure provides an iron core-annular array multi-ring magnetosensitive current sensor and a current measurement method, wherein the sensor includes: a first ring structure, a second ring structure and a digital processing unit; the first ring structure, set on the wire, and connected with the digital processing unit, used to obtain the feedback current signal generated according to the first magnetic field signal generated by the primary side current, and output the feedback current signal to the digital processing unit unit; the second ring structure is sleeved on the wire and connected to the digital processing unit for measuring the second magnetic field signal generated by the current of the wire in the coil of the second ring structure, and outputting the second magnetic field signal to the digital processing unit; the digital processing unit is configured to determine a characteristic quantity characterizing the current of the wire according to the feedback current signal and the second magnetic field signal; The characteristic quantity characterizing the current of the wire determines the current on the wire.
  • the current sensor provided by the disclosure combines the advantages of the iron core structure and the iron coreless structure, can effectively reduce the influence of errors such as

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法,包括:利用第一环结构(101)获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号;利用第二环结构(102)测量线圈内由导线的电流生成的第二磁场信号;利用数字处理单元(103)根据反馈电流信号和第二磁场信号计算表征导线的电流的特征量,根据表征导线的电流的特征量确定导线上的电流。

Description

一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法
相关申请的交叉引用
本公开基于申请号为202111299826.9、申请日为2021年11月04日、申请名称为“一种铁心-环形阵列多环磁敏电流传感器及电流测量方法”和申请号为202122683680.X、申请日为2021年11月04日、申请名称为“一种铁心-环形阵列多环磁敏电流传感器”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于电测量技术领域,尤其涉及一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法。
背景技术
针对电力系统普遍存在的电流测量需求,传统的铁芯电流传感器有了不少的应用,但是其不佳的线性度和温度稳定性会影响测量结果,而且不适用于保护等宽量程需求。磁传感阵列是代替磁传感器加磁芯的有效方式,是解决空间干扰、磁芯饱和等问题的有效解决办法。随着隧道磁电阻(Tunnel Magnetoresistance,TMR)等磁传感器的发展与成本降低,使得多个磁电阻传感器组成阵列进行非接触式电流测量变为可能,其基本原理是基于安培电流环路定律,利用围绕在载流导体周围的多个TMR传感器测量磁场,磁传感器的加和近似于闭合环路。使用环形磁传感器阵列方式测量电流有以下优势:环形磁传感器阵列使用无铁芯结构,不存在饱和问题,大大提高了瞬态性能,可以广泛应用于各类保护故障测量。但是由于串扰噪声等因素的影响,环形阵列电流传感器的精度仍有待提高。
发明内容
本公开提出一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法,以解决如何测量电流,减小测量误差的问题。
为了解决上述问题,根据本公开的一个方面,提供了一种铁芯-环形阵列多环磁敏电流传感器,所述传感器包括:第一环结构、第二环结构和数字处理单元,其中,
所述第一环结构,套设于导线上,且与所述数字处理单元相连接,用于获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,并将所述反馈电流信号输出至所述数字处理单元;
所述第二环结构,套设于所述导线上,且与所述数字处理单元相连接,用于测量第二环结构的线圈内由所述导线的电流生成的第二磁场信号,并将所述第二磁场信号输出至所述数字处理单元;
所述数字处理单元,用于根据所述反馈电流信号和所述第二磁场信号,确定表征所述导线的电流的特征量;根据所述表征导线的电流的特征量确定所述导线上的电流。
在一些实施例中,其中所述第一环结构包括:铁芯、反馈电流获取电路和补偿绕组;其中,
所述铁芯为对称开设双气隙的开口铁芯,所述双气隙中的每一气隙处均设置有第一隧道磁电阻TMR传感芯片,所述第一TMR传感芯片用于测量所述第一磁场信号;
所述反馈电流获取电路,用于对两个所述第一TMR传感芯片测量的所述第一磁场信号进行平均,得到第一磁场平均信号;基于所述第一磁场平均信号生成所述反馈电流信号,并将所述反馈电流信号输出至所述补偿绕组和所述数字处理单元;
所述补偿绕组均匀缠绕在所述铁芯上,所述补偿绕组用于根据所述反馈电流信号生成补偿磁场,将所述补偿磁场与所述第一磁场信号进行叠加;基于叠加后的所述第一磁场信号,控制所述传感器维持在零磁通状态。
在一些实施例中,其中所述第二环结构包括:四个第二TMR传感芯片,四个第二TMR传感芯片并联且等距的对称设置在环形空心外壳内,所述第二TMR传感芯片用于获取所述第二磁场信号。
在一些实施例中,其中所述环形空心外壳的外部设置有双层金属屏蔽层。
在一些实施例中,其中所述数字处理单元,包括:模数转换模块、数字处理模块和数模转换模块;
所述模数转换模块,与所述数字处理模块相连接,用于对所述反馈电流信号和第二磁场信号由模拟量转换为数字量;
所述数字处理模块,与所述数模转换模块相连接,用于根据数字量的反馈电流信号和数字量的第二磁场信号,计算所述表征导线的电流的特征量;
所述数模转换模块,用于将所述表征导线的电流的特征量由数字量转换为模拟量,以根据转换为模拟量的表征导线的电流的特征量确定所述导线上的电流。
在一些实施例中,其中所述传感器还包括电源单元;
所述电源单元,用于为所述第一TMR传感芯片和所述第二TMR传感芯片供电。
根据本公开的另一个方面,提供了一种电流测量方法,所述方法应用于铁芯-环形阵列多环磁敏电流传感器,所述传感器包括:第一环结构、第二环结构和数字处理单元;所述方法包括:
利用所述第一环结构,获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,并将所述反馈电流信号输出至所述数字处理单元;
利用所述第二环结构,测量所述第二环结构的线圈内由所述导线的电流生成的第二磁场信号,并将所述第二磁场信号输出至所述数字处理单元;
利用所述数字处理单元,根据所述反馈电流信号和所述第二磁场信号,确定表征所述导线的电流的特征量;根据所述表征导线的电流的特征量确定导线上的电流。
在一些实施例中,所述第一环结构还包括补偿绕组和反馈电流获取电路;所述补偿绕组缠绕在所述铁芯上;所述方法还包括:
利用所述反馈电流获取电路,将所述反馈电流信号输出至所述补偿绕组和所述数字处理单元;
利用所述补偿绕组,根据所述反馈电流信号生成补偿磁场,将所述补偿磁场与所述第一磁场信号进行叠加;基于叠加后的所述第一磁场信号,控制所述传感器维持在零磁通状态。
在一些实施例中,所述第一环结构还包括:铁芯;所述铁芯为对称开设双气隙的开口铁芯;所述双气隙中的每一气隙处均设置有第一隧道磁电阻TMR传感芯片;所述利用第一环结构,获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,包括:
利用所述第一TMR传感芯片,测量所述第一磁场信号;
利用所述反馈电流获取电路,对两个所述第一TMR传感芯片测量的第一磁场信号进行平均,得到第一磁场平均信号,基于所述第一磁场平均信号生成所述反馈电流信号。
在一些实施例中,所述第二环结构包括:四个第二TMR传感芯片;所述利用第二环结构,测量所述第二环结构的线圈内由所述导线的电流生成的第二磁场信号,包括:
利用所述四个第二TMR传感芯片,获取所述第二磁场信号;其中,所述四个第二TMR传感芯片并联且等距的对称设置在环形空心外壳内。
在一些实施例中,所述环形空心外壳的外部设置有双层金属屏蔽层。
在一些实施例中,所述数字处理单元包括:模数转换模块、数字处理模块和数模转换模块;所述利用所述数字处理单元,根据所述反馈电流信号和所述第二磁场信号,确定表征所述导线的电流的特征量,包括:
利用所述模数转换模块,对所述反馈电流信号和第二磁场信号由模拟量转换为数字量;
利用所述数字处理模块,根据数字量的反馈电流信号和数字量的第二磁场信号,计算所述表征导线的电流的特征量;
对应地,所述根据所述表征导线的电流的特征量确定导线上的电流,包括:
利用所述数模转换模块,将所述表征导线的电流的特征量由数字量转换为模拟量,根据模拟量的表征导线的电流的特征量确定所述导线上的电流。
在一些实施例中,所述利用所述数字处理模块,根据数字量的反馈电流信号和数字量的第二磁场信号,计算所述表征导线的电流的特征量,包括以下至少之一:
所述数字量的反馈电流信号在第一预设量程范围内的情况下,基于所述数字量的第二磁场信号对所述数字量的反馈电流信号进行偏心误差的修正,获取所述表征导线的电流的特征量;
所述数字量的反馈电流信号在第二预设量程范围内的情况下,基于所述数字量的反馈电流信号对所述数字量的第二磁场信号进行串扰误差的修正,获取所述表征导线的电流的特征量;
在瞬态响应的应用场景,基于所述数字量的第二磁场信号的算数平均值,获取所述表征导线的电流的特征量。
在一些实施例中,所述铁芯-环形阵列多环磁敏电流传感器还包括电源单元;所述方法还包括:
利用所述电源单元,为所述第一TMR传感芯片和所述第二TMR传感芯片供电。
本公开提供了一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法,包括:利用第一环结构获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号;利用第二环结构测量线圈内由导线的电流生成的第二磁场信号;利用数字处理单元根据所述反馈电流信号和第二磁场信号计算表征导线的电流的特征量,以根据所述表征导线的电流的特征量确定导线上的电流。本公开能够针对直流配电网、电动汽车直流充电桩等电力系统电流测量场景,基于采用隧道磁电阻传感技术来感应待测电流生成的磁场的磁敏元件,以双气隙铁芯为第一环结构,以安装多块磁敏芯片的无铁芯环形阵列为第二环结构,基于零磁通原理设计闭环反馈结构,通过数字信号处理结合两路测量结果确定电流大小,本公开的电流传感器结合铁芯结构和无铁芯结构的优势,能够有效减少偏心、串扰等误差影响,拓展应用范围,基于隧道磁电阻元件实现高准确度的电流测量。
附图说明
通过参考下面的附图,可以更为完整地理解本公开的示例性实施方式:
图1为根据本公开实施方式的铁芯-环形阵列多环磁敏电流传感器100的结构示意图;
图2为根据本公开实施方式的铁芯-环形阵列多环磁敏电流传感器的组成结构图;
图3为根据本公开实施方式的第一环结构的电路原理图;
图4为根据本公开实施方式的基于铁芯-环形阵列多环磁敏电流传感器的电流测量方法400的流程图。
具体实施方式
现在参考附图介绍本公开的示例性实施方式,然而,本公开可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本公开的范围。对于表示在附图中的示例性实施方式中的术语并不是对本公开的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
在相关技术中,为了减少串扰误差的影响,采用基于离散傅里叶变换(Discrete Fourier Transform,DFT)的磁传感器阵列,在环形阵列传感器的输出部分增加了数字信号处理单元,结合传感器输出信号设计了基于DFT的信号处理算法。该算法的原理是:被测导体周围磁场的傅立叶展开。傅里叶系数的解析表达式在磁场是有通过垂直于阵列平面的电流产生的情况下在均匀场的存在中得出,环形磁传感器阵列将被测导体周围的磁场映射,实现传感器数据的空间离散傅里叶变换。测量的电流值则由非线性系统求逆给出。该方案的缺点在 于:基于离散傅里叶变换(DFT)的磁传感器阵列模型只考虑了圆形截面导体的情况,但是,由于在矩形截面导体中流动的直流电流产生的磁场不具有径向对称性,导致以母线为中心的圆形阵列的传感器无法测量相同的磁场值。如果通过DFT算法处理传感器数据,则会出现数量级大于零的磁场空间谐波。非零谐波也会归因于串扰场,难以将阵列内部电流的贡献与外部电流的贡献区分开。环形阵列传感器失去铁芯聚磁作用,准确度有所不足,而通过DFT算法改进的环形阵列传感器对电流测量准确度的提升程度有限。
在另一相关技术中,采用双霍尔元件磁敏电流传感器。被测电流导体在传感器环状磁路中的位置改变时,传感器的输出信号有较大的变化,即位置误差较大,针对这一问题,在磁敏电流传感器磁路上开双气隙,气隙中各安装一只霍尔元件并加上了适当的信号处理部件,制成了双霍尔元件磁敏电流传感器。因被测电流导线位置不同而引起两只霍尔元件处磁场不同时所产生的不相等的霍尔电压经电路并联连接按并联电容的等效电路合成后,传感器的输出值为两只霍尔元件输出值的算术平均值。这实现了对位置误差的完全补偿。该方案的缺点在于:1.铁芯结构存在饱和情况,其非线性误差会影响电流测量的范围和准确性,另外其温度稳定性也会影响传感器的长期使用;2.霍尔传感器具有固有的缺陷,即灵敏度低、功耗高和线性度差。
基于此,本公开实施例提供了铁芯-环形阵列多环磁敏电流传感器。
图1为根据本公开实施方式的铁芯-环形阵列多环磁敏电流传感器100的结构示意图。如图1所示,本公开实施方式提供的铁芯-环形阵列多环磁敏电流传感器,能够针对直流配电网、电动汽车直流充电桩等电力系统电流测量场景,基于隧道磁电阻传感技术来感应待测电流生成的磁场的磁敏元件,以双气隙铁心为第一环结构,以安装多块磁敏芯片的无铁芯环形为第二环结构,基于零磁通原理设计闭环反馈结构,通过数字信号处理结合两路测量结果确定电流大小,本公开的电流传感器结合铁芯结构和无铁芯结构的优势,能够有效减少偏心、串扰等误差影响,拓展应用范围,基于隧道磁电阻元件(Tunnel Magnetic Resistance,TMR)实现高准确度的电流测量。本公开实施方式提供的铁芯-环形 阵列多环磁敏电流传感器100,包括:第一环结构101、第二环结构102和数字处理单元103。
在一些实施例中,所述第一环结构101,套设于导线上,且与所述数字处理单元相连接,用于获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,并将所述反馈电流信号输出至所述数字处理单元。
在一些实施例中,所述第一环结构包括:铁芯、反馈电流获取电路和补偿绕组;其中,
所述铁芯为对称开设双气隙的开口铁芯,每个气隙处均设置有第一隧道磁电阻TMR传感芯片,所述第一TMR传感芯片用于测量所述第一磁场信号;
所述反馈电流获取电路,用于对两个第一TMR传感芯片测量的第一磁场信号进行平均,得到第一磁场平均信号,基于所述第一磁场平均信号通过反馈电流获取电路中的放大器生成反馈电流信号,并将所述反馈电流信号输出至所述补偿绕组和数字处理单元;
所述补偿绕组均匀缠绕在所述铁芯上,用于根据所述反馈电流信号生成补偿磁场,将补偿磁场与所述第一磁场信号进行叠加,基于叠加后的所述第一磁场信号,控制传感器维持在零磁通状态。
在一些实施例中,其中所述传感器还包括:
电源单元,用于为第一TMR传感芯片供电。
结合图2所示,在本公开中,第一环结构包括铁芯、反馈电流获取电路和补偿绕组。其中,所述的铁芯为对称开了双气隙的开口铁芯,气隙处各安装了一块第一TMR传感芯片,每个第一TMR传感芯片均用于测量一次侧电流生成的磁场。其中,由电源单元(图中未示出)为第一TMR传感芯片供电。第一环结构中的反馈电流获取电路通过并联电路将两个第一TMR传感芯片测量的第一磁场信号进行平均,将平均后的结果输出至运算放大器,通过运算放大器生成反馈电流,并将反馈电流输出至补偿绕组和数字信号处理单元。第一环结构中的补偿绕组均匀缠绕在铁芯上,补偿绕组用于接收反馈电流获取电路生成的反馈电流,以生成补偿磁场,并与一次侧电流生成的磁场叠加,使得将传感器维 持在零磁通状态。
在一些实施例中,第一环结构的电路如图3所示,其中,第一环结构中的反馈电流获取电路首先通过并联电路将两个TMR传感芯片的测量结果进行平均,然后通过运算放大器和反馈电路生成反馈电流,输入补偿绕组和数字信号处理单元。
在一些实施例中,所述第二环结构102,套设于导线上,且与所述数字处理单元相连接,用于测量线圈内由导线的电流生成的第二磁场信号,并将所述第二磁场信号输出至所述数字处理单元。
在一些实施例中,其中所述第二环结构包括:四个第二TMR传感芯片,四个第二TMR传感芯片并联且等距对称设置在环形空心外壳内,所述第二TMR传感芯片用于获取所述第二磁场信号。
在一些实施例中,其中所述环形空心外壳外部设置有双层金属屏蔽层。
在一些实施例中,其中所述传感器还包括:
电源单元,用于为第二TMR传感芯片供电。
结合图2所示,在本公开中,第二环结构包括四个第二TMR传感芯片,四个第二TMR传感芯片等距对称的安装在环形空心外壳内,环形空心外壳外侧有双层金属屏蔽层。第二环结构利用四个第二TMR传感芯片测到测量线圈内由电流生成的磁场,将获取的四个第二磁场信号输出至数字信号处理单元。其中,其中,由电源单元(图中未示出)为第二TMR传感芯片供电。
在一些实施例中,所述数字处理单元103,用于根据所述反馈电流信号和第二磁场信号计算表征导线的电流的特征量,根据所述表征导线的电流的特征量确定导线上的电流。
在一些实施例中,其中所述数字处理单元,包括:模数转换模块、数字处理模块和数模转换模块;
所述模数转换模块,与所述数字处理模块相连接,用于对所述反馈电流信号和第二磁场信号由模拟量转换为数字量;
所述数字处理模块,与所述数模转换模块相连接,用于根据转换为数字量 的反馈电流信号和数字量的第二磁场信号计算所述表征导线的电流的特征量;
所述数模转换模块,用于将所述表征导线的电流的特征量由数字量转换为模拟量,以根据转换为模拟量的表征导线的电流的特征量确定导线上的电流。
在一些实施例中,其中所述利用数字处理模块根据转换为数字量的反馈电流信号和第二磁场信号计算所述表征导线的电流的特征量,包括:
数字量的反馈电流信号在第一预设量程范围内的情况下,基于所述数字量的第二磁场信号对数字量的反馈电流信号进行偏心误差的修正,获取所述表征导线的电流的特征量;
数字量的反馈电流信号在第二预设量程范围内的情况下,基于所述数字量的反馈电流信号对数字量的第二磁场信号进行串扰误差的修正,获取所述表征导线的电流的特征量;
在瞬态响应的应用场景,基于所述第二磁场信号计算算数平均值,以获取所述表征导线的电流的特征量。
在本公开中,数字信号处理单元103包括:模数转换模块、数字信号处理模块和数模转换模块组成。其中,所述的模数转换模块由片上12位A/D转换器对双环测量后的信号(反馈电流信号和四个第二磁场信号)进行高速采样,并将采样后的数据转换为数字信号输入至数字信号处理模块,以通过数字信号处理模块计算并输出表征导线的电流的特征量。
在本公开中,在通过数字信号处理模块计算表征导线的电流的特征量时,低端量程部分以第一环结构为主环由第二环结构修正,高端量程部分以第二环结构为主环由第一环结构修正,瞬态传感功能由第二环结构实现。数字信号处理模块可实现如下功能:在低端量程范围内,以第一环结构的测量结果为主,由第二环结构4个TMR传感芯片的测量结果修正其偏心误差;在高端量程范围内,以第二环结构的测量结果为主,由第一环结构的测量结果修正其串扰误差;在瞬态响应的应用场景,直接将第二环结构4个第二TMR传感芯片的测量结果求其算术平均值输出。
在本公开中,数字信号处理单元中的数模转换模块接收到数字信号处理模 块输出的表征导线的电流的特征量后,再通过数模转换模块转化为模拟电压信号输出,作为传感器的最终输出,通过传感器输出的模拟电压信号即可确定测量的导线上的电流大小。
本公开的铁芯-环形阵列多环磁敏电流传感器,第一环结构为带补偿绕组的双气隙开口铁芯,测量一次电流和反馈电流生成的叠加磁场,实现传感功能;第二环结构为磁传感环形阵列,实现快速测量并减少偏心误差;数字信号处理单元将双环的测量结果进行结合,针对不同的应用场景,实现修正误差和扩大测量范围的目的,应用本公开可以研制出适用于电力系统计量和保护等广泛领域的高精度电流传感器。
图4为根据本公开实施方式的基于铁芯-环形阵列多环磁敏电流传感器的电流测量方法400的流程图。如图4所示,本公开实施方式提供的基于如上所述的铁芯-环形阵列多环磁敏电流传感器的电流测量方法400,包括:
步骤401,利用第一环结构获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,并将所述反馈电流信号输出至所述数字处理单元。
在一些实施例中,所述利用第一环结构获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,包括:
利用设置在对称开了双气隙的开口铁芯的气隙处的第一TMR传感芯片测量所述第一磁场信号;
利用反馈电流获取电路对两个第一TMR传感芯片测量的第一磁场信号进行平均,得到第一磁场平均信号,基于所述第一磁场平均信号通过放大器生成反馈电流信号,并将所述反馈电流信号输出至所述补偿绕组和数字处理单元;
利用缠绕在铁芯上的补偿绕组,根据所述反馈电流信号生成补偿磁场,将补偿磁场与所述第一磁场信号进行叠加,基于叠加后的所述第一磁场信号,控制传感器维持在零磁通状态。
步骤402,利用第二环结构测量线圈内由导线的电流生成的第二磁场信号,并将所述第二磁场信号输出至所述数字处理单元。
在一些实施例中,其中所述利用第二环结构测量线圈内由导线的电流生成 的第二磁场信号,包括:
利用四个第二TMR传感芯片获取所述第二磁场信号;其中,四个第二TMR传感芯片并联且等距对称设置在环形空心外壳内。
在一些实施例中,其中所述环形空心外壳外部设置有双层金属屏蔽层。
步骤403,利用数字处理单元根据所述反馈电流信号和第二磁场信号确定表征导线的电流的特征量,根据所述表征导线的电流的特征量确定导线上的电流。
在一些实施例中,其中所述利用数字处理单元根据所述反馈电流信号和第二磁场信号计算表征导线的电流的特征量,包括:
利用模数转换模块对所述反馈电流信号和第二磁场信号由模拟量转换为数字量;
利用数字处理模块根据数字量的反馈电流信号和数字量的第二磁场信号计算所述表征导线的电流的特征量;
利用数模转换模块将所述表征导线的电流的特征量由数字量转换为模拟量,根据模拟量的表征导线的电流的特征量确定导线上的电流。
在一些实施例中,其中所述利用数字处理模块根据数字量的反馈电流信号和数字量的第二磁场信号计算所述表征导线的电流的特征量,包括:
所述数字量的反馈电流信号在第一预设量程范围内的情况下,基于所述数字量的第二磁场信号对数字量的反馈电流信号进行偏心误差的修正,获取所述表征导线的电流的特征量;其中,所述第一预设量程范围表征低端量程范围;在一些实施例中,可以将修正后的数字量的反馈电流信号确定为表征导线的电流的特征量。
所述数字量的反馈电流信号在第二预设量程范围内的情况下,基于所述数字量的反馈电流信号对数字量的第二磁场信号进行串扰误差的修正,获取所述表征导线的电流的特征量;其中,所述第二预设量程范围表征高端量程范围;在一些实施例中,可以将修正后的数字量的第二磁场信号确定为表征导线的电流的特征量。
在瞬态响应的应用场景,基于所述第二磁场信号的算数平均值,获取所述 表征导线的电流的特征量。在一些实施例中,可以将第二磁场信号的算数平均值确定为表征导线的电流的特征量。
在一些实施例中,其中所述方法还包括:
利用电源单元为第一TMR传感芯片和第二TMR传感芯片供电。
本公开的实施例的基于铁芯-环形阵列多环磁敏电流传感器的电流测量方法400与本公开的另一个实施例的基于铁芯-环形阵列多环磁敏电流传感器100相对应。
已经通过参考少量实施方式描述了本公开。然而,本领域技术人员所公知的,正如附带的专利权利要求所限定的,除了本公开以上公开的其他的实施例等同地落在本公开的范围内。
通常地,在权利要求中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个/所述/该[装置、组件等]”都被开放地解释为所述装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制,尽管参照上述实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者等同替换,而未脱离本公开精神和范围的任何修改或者等同替换,其均应涵盖在本公开的权利要求保护范围之内。
工业实用性
本公开实施例提供了一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法,其中,所述传感器包括:第一环结构、第二环结构和数字处理单元;所述第一环结构,套设于导线上,且与所述数字处理单元相连接,用于获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,并将所述反馈电流信号输出至所述数字处理单元;所述第二环结构,套设于所述导线上,且与所述数字处理单元相连接,用于测量第二环结构的线圈内由所述导线的电流生成的第二磁场信号,并将所述第二磁场信号输出至所述数字处理单元;所述数字处理单元,用于根据所述反馈电流信号和所述第二磁场信号,确定表征所述导线的电流的特征量;根据所述表征导线的电流的特征量确定所述导线上的电流。本公开提供的电流传感器结合铁芯结构和无铁芯结构的优势,能够有效减少偏心、串扰等误差影响,拓展应用范围,基于隧道磁电阻元件实现高准确度的电流测量。

Claims (14)

  1. 一种铁芯-环形阵列多环磁敏电流传感器,所述传感器包括:第一环结构、第二环结构和数字处理单元,其中,
    所述第一环结构,套设于导线上,且与所述数字处理单元相连接,用于获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,并将所述反馈电流信号输出至所述数字处理单元;
    所述第二环结构,套设于所述导线上,且与所述数字处理单元相连接,用于测量所述第二环结构的线圈内由所述导线的电流生成的第二磁场信号,并将所述第二磁场信号输出至所述数字处理单元;
    所述数字处理单元,用于根据所述反馈电流信号和所述第二磁场信号,确定表征所述导线的电流的特征量;根据所述表征导线的电流的特征量确定所述导线上的电流。
  2. 根据权利要求1所述的传感器,所述第一环结构包括:铁芯、反馈电流获取电路和补偿绕组;其中,
    所述铁芯为对称开设双气隙的开口铁芯,所述双气隙中的每一气隙处均设置有第一隧道磁电阻TMR传感芯片,所述第一TMR传感芯片用于测量所述第一磁场信号;
    所述反馈电流获取电路,用于对两个所述第一TMR传感芯片测量的所述第一磁场信号进行平均,得到第一磁场平均信号;基于所述第一磁场平均信号生成所述反馈电流信号,并将所述反馈电流信号输出至所述补偿绕组和所述数字处理单元;
    所述补偿绕组均匀缠绕在所述铁芯上,所述补偿绕组用于根据所述反馈电流信号生成补偿磁场,将所述补偿磁场与所述第一磁场信号进行叠加;基于叠加后的所述第一磁场信号,控制所述传感器维持在零磁通状态。
  3. 根据权利要求1或2所述的传感器,所述第二环结构包括:四个第二TMR传感芯片,所述四个第二TMR传感芯片并联且等距的对称设置在环形空心外壳内,所述第二TMR传感芯片用于获取所述第二磁场信号。
  4. 根据权利要求3所述的传感器,所述环形空心外壳的外部设置有双层金属屏蔽层。
  5. 根据权利要求1至4中任一项所述的传感器,所述数字处理单元,包括:模数转换模块、数字处理模块和数模转换模块;
    所述模数转换模块,与所述数字处理模块相连接,用于对所述反馈电流信号和第二磁场信号由模拟量转换为数字量;
    所述数字处理模块,与所述数模转换模块相连接,用于根据数字量的反馈电流信号和数字量的第二磁场信号,计算所述表征导线的电流的特征量;
    所述数模转换模块,用于将所述表征导线的电流的特征量由数字量转换为模拟量,根据模拟量的表征导线的电流的特征量确定所述导线上的电流。
  6. 根据权利要求2或3所述的传感器,所述传感器还包括电源单元;
    所述电源单元用于为所述第一TMR传感芯片和所述第二TMR传感芯片供电。
  7. 一种电流测量方法,所述方法应用于铁芯-环形阵列多环磁敏电流传感器,所述传感器包括:第一环结构、第二环结构和数字处理单元;所述方法包括:
    利用所述第一环结构,获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,并将所述反馈电流信号输出至所述数字处理单元;
    利用所述第二环结构,测量所述第二环结构的线圈内由所述导线的电流生成的第二磁场信号,并将所述第二磁场信号输出至所述数字处理单元;
    利用所述数字处理单元,根据所述反馈电流信号和所述第二磁场信号,确定表征所述导线的电流的特征量;根据所述表征导线的电流的特征量确定导线上的电流。
  8. 根据权利要求7所述的方法,所述第一环结构还包括补偿绕组和反馈电流获取电路;所述补偿绕组缠绕在所述铁芯上;所述方法还包括:
    利用所述反馈电流获取电路,将所述反馈电流信号输出至所述补偿绕组和所述数字处理单元;
    利用所述补偿绕组,根据所述反馈电流信号生成补偿磁场,将所述补偿磁 场与所述第一磁场信号进行叠加;基于叠加后的所述第一磁场信号,控制所述传感器维持在零磁通状态。
  9. 根据权利要求7或8所述的方法,所述第一环结构还包括:铁芯;所述铁芯为对称开设双气隙的开口铁芯;所述双气隙中的每一气隙处均设置有第一隧道磁电阻TMR传感芯片;
    所述利用所述第一环结构,获取根据一次侧电流生成的第一磁场信号产生的反馈电流信号,包括:
    利用所述第一TMR传感芯片,测量所述第一磁场信号;
    利用所述反馈电流获取电路,对两个所述第一TMR传感芯片测量的第一磁场信号进行平均,得到第一磁场平均信号,基于所述第一磁场平均信号生成所述反馈电流信号。
  10. 根据权利要求7至9中任一项所述的方法,所述第二环结构包括:四个第二TMR传感芯片;
    所述利用第二环结构,测量所述第二环结构的线圈内由所述导线的电流生成的第二磁场信号,包括:
    利用所述四个第二TMR传感芯片,获取所述第二磁场信号;其中,所述四个第二TMR传感芯片并联且等距的对称设置在环形空心外壳内。
  11. 根据权利要求10所述的方法,所述环形空心外壳的外部设置有双层金属屏蔽层。
  12. 根据权利要求7至11中任一项所述的方法,所述数字处理单元包括:模数转换模块、数字处理模块和数模转换模块;
    所述利用所述数字处理单元,根据所述反馈电流信号和所述第二磁场信号,确定表征所述导线的电流的特征量,包括:
    利用所述模数转换模块,对所述反馈电流信号和第二磁场信号由模拟量转换为数字量;
    利用所述数字处理模块,根据数字量的反馈电流信号和数字量的第二磁场信号,计算所述表征导线的电流的特征量;
    对应地,所述根据所述表征导线的电流的特征量确定导线上的电流,包括:
    利用所述数模转换模块,将所述表征导线的电流的特征量由数字量转换为模拟量,根据模拟量的表征导线的电流的特征量确定所述导线上的电流。
  13. 根据权利要求12所述的方法,所述利用所述数字处理模块,根据数字量的反馈电流信号和数字量的第二磁场信号,计算所述表征导线的电流的特征量,包括以下至少之一:
    所述数字量的反馈电流信号在第一预设量程范围内的情况下,基于所述数字量的第二磁场信号对所述数字量的反馈电流信号进行偏心误差的修正,获取所述表征导线的电流的特征量;
    所述数字量的反馈电流信号在第二预设量程范围内的情况下,基于所述数字量的反馈电流信号对所述数字量的第二磁场信号进行串扰误差的修正,获取所述表征导线的电流的特征量;
    在瞬态响应的应用场景,基于所述数字量的第二磁场信号的算数平均值,获取所述表征导线的电流的特征量。
  14. 根据权利要求8或10所述的方法,所述铁芯-环形阵列多环磁敏电流传感器还包括电源单元;所述方法还包括:
    利用所述电源单元,为所述第一TMR传感芯片和所述第二TMR传感芯片供电。
PCT/CN2022/111879 2021-11-04 2022-08-11 一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法 WO2023077900A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122683680.XU CN216847918U (zh) 2021-11-04 2021-11-04 一种铁心-环形阵列多环磁敏电流传感器
CN202111299826.9A CN114814330A (zh) 2021-11-04 2021-11-04 一种铁心-环形阵列多环磁敏电流传感器及电流测量方法
CN202122683680.X 2021-11-04
CN202111299826.9 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023077900A1 true WO2023077900A1 (zh) 2023-05-11

Family

ID=86240633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111879 WO2023077900A1 (zh) 2021-11-04 2022-08-11 一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法

Country Status (1)

Country Link
WO (1) WO2023077900A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250243A (ja) * 2012-06-04 2013-12-12 Soft Energy Controls Inc 電流検出器及び電流検出方法
CN104520721A (zh) * 2012-01-19 2015-04-15 邹高芝 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件
CN205210163U (zh) * 2015-11-25 2016-05-04 天津航空机电有限公司 一种巨磁阻效应电流传感器
CN106018919A (zh) * 2016-05-20 2016-10-12 清华大学 一种基于隧道磁阻效应的宽量程宽频带电流传感器
CN110297119A (zh) * 2018-03-22 2019-10-01 Abb瑞士股份有限公司 用于测量电流的装置
CN110546519A (zh) * 2017-04-07 2019-12-06 西门子股份公司 电流测量方法和电流测量装置
CN112362941A (zh) * 2020-12-04 2021-02-12 中国电力科学研究院有限公司 一种环形电流互感器及其测量电流的方法
CN112946358A (zh) * 2021-03-18 2021-06-11 中国电力科学研究院有限公司武汉分院 一种温漂误差补偿单元以及测量电流的方法
CN113447699A (zh) * 2021-09-01 2021-09-28 中国电力科学研究院有限公司 隧道磁电阻环形阵列电流传感器及电流测量方法
CN216847918U (zh) * 2021-11-04 2022-06-28 中国电力科学研究院有限公司 一种铁心-环形阵列多环磁敏电流传感器
CN114814330A (zh) * 2021-11-04 2022-07-29 中国电力科学研究院有限公司 一种铁心-环形阵列多环磁敏电流传感器及电流测量方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520721A (zh) * 2012-01-19 2015-04-15 邹高芝 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件
JP2013250243A (ja) * 2012-06-04 2013-12-12 Soft Energy Controls Inc 電流検出器及び電流検出方法
CN205210163U (zh) * 2015-11-25 2016-05-04 天津航空机电有限公司 一种巨磁阻效应电流传感器
CN106018919A (zh) * 2016-05-20 2016-10-12 清华大学 一种基于隧道磁阻效应的宽量程宽频带电流传感器
CN110546519A (zh) * 2017-04-07 2019-12-06 西门子股份公司 电流测量方法和电流测量装置
CN110297119A (zh) * 2018-03-22 2019-10-01 Abb瑞士股份有限公司 用于测量电流的装置
CN112362941A (zh) * 2020-12-04 2021-02-12 中国电力科学研究院有限公司 一种环形电流互感器及其测量电流的方法
CN112946358A (zh) * 2021-03-18 2021-06-11 中国电力科学研究院有限公司武汉分院 一种温漂误差补偿单元以及测量电流的方法
CN113447699A (zh) * 2021-09-01 2021-09-28 中国电力科学研究院有限公司 隧道磁电阻环形阵列电流传感器及电流测量方法
CN216847918U (zh) * 2021-11-04 2022-06-28 中国电力科学研究院有限公司 一种铁心-环形阵列多环磁敏电流传感器
CN114814330A (zh) * 2021-11-04 2022-07-29 中国电力科学研究院有限公司 一种铁心-环形阵列多环磁敏电流传感器及电流测量方法

Similar Documents

Publication Publication Date Title
US10139432B2 (en) Methods and systems relating to improved AC signal performance of dual stage transformers
JP5263024B2 (ja) 回転角検出装置および回転速度検出装置
CN113447699B (zh) 隧道磁电阻环形阵列电流传感器及电流测量方法
WO2012055354A1 (zh) 独立封装的电表传感器
Yang et al. A giant magneto resistive (GMR) effect based current sensor with a toroidal magnetic core as flux concentrator and closed-loop configuration
CN112362941B (zh) 一种环形电流互感器及其测量电流的方法
Xie et al. Giant-magnetoresistance-based galvanically isolated voltage and current measurements
JP5795152B2 (ja) Mrセンサの経年変化補正方法および電流測定方法
US11150272B2 (en) Method for measuring a current, and current-measuring device
CN112834805A (zh) 具有位置误差校准功能的隧穿磁阻电流传感器及校准方法
US20240125624A1 (en) Position sensor devices, methods and systems based on magnetic field gradients
CN104246517B (zh) 具有罗果夫斯基类型的电流换能器的用于测量电流的装置
CN111521856B (zh) 用于测量直流电流和交流电流的传感器设备
CN112946358A (zh) 一种温漂误差补偿单元以及测量电流的方法
JP6566188B2 (ja) 電流センサ
Rietveld et al. Accurate DC current ratio measurements for primary currents up to 600 A
CN216847918U (zh) 一种铁心-环形阵列多环磁敏电流传感器
CN114814330A (zh) 一种铁心-环形阵列多环磁敏电流传感器及电流测量方法
WO2023077900A1 (zh) 一种铁芯-环形阵列多环磁敏电流传感器及电流测量方法
CN113567897A (zh) 一种环型tmr阵列传感器自适应测量方法
Liu et al. Offset error reduction in Open Loop Hall Effect current sensors powered with single voltage source
CN116930589A (zh) 交直流多气隙磁阻电流传感器及电流测量方法
JP2020204524A (ja) 電流センサ及び測定装置
JP2018115929A (ja) 電流センサの信号補正方法、及び電流センサ
Chen et al. Wire-positioning algorithm for coreless Hall array sensors in current measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888935

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022888935

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022888935

Country of ref document: EP

Effective date: 20240328