WO2013105613A1 - アモルファス皮膜の形成装置および形成方法 - Google Patents

アモルファス皮膜の形成装置および形成方法 Download PDF

Info

Publication number
WO2013105613A1
WO2013105613A1 PCT/JP2013/050331 JP2013050331W WO2013105613A1 WO 2013105613 A1 WO2013105613 A1 WO 2013105613A1 JP 2013050331 W JP2013050331 W JP 2013050331W WO 2013105613 A1 WO2013105613 A1 WO 2013105613A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
injection port
mist
material particles
amorphous film
Prior art date
Application number
PCT/JP2013/050331
Other languages
English (en)
French (fr)
Inventor
倉橋 隆郎
松本 宏
潤治 竹原
尚寿 福留
Original Assignee
株式会社中山製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社中山製鋼所 filed Critical 株式会社中山製鋼所
Priority to CN201380004743.XA priority Critical patent/CN104040015B/zh
Priority to US14/372,089 priority patent/US10773267B2/en
Priority to EP13735785.1A priority patent/EP2803752B1/en
Priority to JP2013553311A priority patent/JP6014606B2/ja
Publication of WO2013105613A1 publication Critical patent/WO2013105613A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the present invention is capable of forming an amorphous film forming apparatus and method for forming an amorphous (amorphous, including metallic glass) film on the surface of a base material (base material) by jetting, particularly a large area amorphous film.
  • the present invention relates to a large-sized forming apparatus and a forming method using the same.
  • Patent Document 1 As means for forming an amorphous film on the surface of a substrate by thermal spraying, there is an apparatus shown in Patent Document 1 below.
  • the apparatus is generally configured as shown in FIG. That is, ⁇ A flame containing material particles (powder) is sprayed from a thermal spray gun toward the substrate, and the material particles are melted by the flame, and the material particles and flame are cooled with a cooling gas before they reach the substrate.
  • a device for cooling A cylindrical body that separates the flame from the outside air is provided in the area where the material particles are melted (generally the first half of the flame) in the flame injection path of the spray gun, and is integrated with the cylindrical body along the cylindrical body. The flow path for the cooling gas is formed.
  • the conventional amorphous film forming apparatus shown in FIG. 11 has the following operational effects. ⁇ Since the flame is cooled with the cooling gas before reaching the base material, it is easy to amorphize the material particles, and even for metals with a high melting point and a narrow supercooling temperature region, the base material is an amorphous film. Can be formed on top. ⁇ Since the high-speed flame spraying method is not adopted, the material particles stay in the frame for a long time and the material particles are easily melted. From this point, the melting point is high and the supercooling temperature range is small. A film can also be formed for amorphous alloys other than metallic glass. -Since the device is compact, it is easy to handle and can smoothly form an amorphous film on site.
  • the above-described conventional apparatus has an advantage that a high-quality amorphous film can be formed for various alloys not limited to metal glass or the like, it is not efficient in forming a large-area amorphous film.
  • the flame diameter is about 30 mm and the width that can be produced is only about 7 mm, a large-area film cannot be formed unless the apparatus is reciprocated many times in the adjacent region on the substrate. If the thermal spraying is performed many times on the adjacent area on the substrate by reciprocating the device, the temperature of the substrate will be increased. In other words, the amorphous film is not necessarily formed smoothly.
  • the flame is enlarged and the cross section is expanded, thermal spraying of a large area becomes possible.
  • non-uniformity of the flame temperature and the like is increased in the cross section, it is highly industrial and high in production. It becomes difficult to form a quality and uniform amorphous film.
  • the present invention provides a large-sized forming apparatus or the like that is advantageous for forming a large-area amorphous film from the above viewpoint.
  • the apparatus for forming an amorphous coating according to the invention injects a flame containing material particles from a jet toward a substrate, melts the material particles by the flame, and cools the material particles and the flame before reaching the substrate.
  • An apparatus for forming an amorphous film that is cooled by a gas and is characterized by the following points.
  • the apparatus generally has the configuration shown in FIG. That is, a)
  • the above-mentioned flame containing the material particles should have a horizontal cross-section (that is, a size that is larger in a direction perpendicular to the size in one direction than the size in one direction.
  • the material particle injection port and the flame injection port are continuously provided along the straight line on the front surface of the injector (“continuously provided” means that a plurality of injection ports are closely and narrow, respectively. This means that the injection port is provided as an opening arranged side by side or extending in a slit shape (the same applies hereinafter).
  • inert gas including nitrogen
  • injection ports for rectifying and cooling the flame (flame containing material particles) along the straight line.
  • mist liquid mist, for example, water mist
  • the mouth is continuously provided along the straight line.
  • Such a device has the following effects.
  • the material particles can be amorphized and have a high melting point.
  • a metal having a narrow supercooling temperature region can be formed as an amorphous film on the substrate.
  • a metallic glass film can also be formed.
  • the cross section of the flame is enlarged only in one direction, unlike the case of increasing the diameter or the like, the distribution of temperature or the like is unlikely to occur in the cross section, and it is easy to realize uniform film formation.
  • a flow of inert gas for rectification and cooling is formed on both outer sides of the flame containing the material particles, and a jet of cooling mist is formed on both outer sides thereof.
  • the flow of material particles is disturbed and does not properly reach the substrate, and the quality of the amorphous film is deteriorated because outside air is entrained in the flame. Further, if the flame is not sufficiently cooled, the cooling rate of the material particles becomes insufficient and the material cannot be made amorphous.
  • mist is not rectified and the flame is disturbed as the mist undergoes a phase change or a chemical change.
  • a flow of inert gas is flowed just outside the flame to rectify and partially cool it, and a mist is flowed further outside and inside to strongly supplement the cooling of the flame. Can be done appropriately and sufficiently.
  • the mist injection port is angled so that the mist to be injected approaches the flame (that is, the mist injected from the positions on both sides crosses forward), and the angle can be freely set. It is preferable to be configured to be changeable. If the angle of the mist injection port is determined as described above, and the mist is injected so as to approach the flame from the positions on both sides of the flame containing the material particles, the mist and the flame are surely in contact with each other. Therefore, the sufficient cooling described above is realized. In addition, if the angle of the mist injection port can be changed, the strength of cooling against the flame can be adjusted.
  • amorphous films and the like of various alloys can be formed on the substrate by changing the chemical components of the material particles. Some of these various alloys require particularly high-speed cooling, while others, such as metal glass, become amorphous by relatively loose cooling. If the angle of the mist injection port can be changed and the cooling strength can be adjusted as described above, an amorphous film can be formed on these various alloys. By changing the angle, it is also possible to change the cross section of the flame (its short side dimension), thereby controlling the thickness and properties (including the ratio of amorphization) of the amorphous film to be formed. You can also.
  • the pressure of injection can be changed for each of the above inert gas and mist. If each of these injection pressures can be changed, the strength of the rectification and cooling against the flame can be adjusted, and is thus further advantageous in properly forming amorphous coatings of various alloys on the substrate. . For example, if the pressure of the inert gas is raised and the pressure of the mist is lowered, the cooling strength is weakened. If the pressure of the inert gas is lowered and the pressure of the mist is raised, the cooling strength is increased. In the latter case, if the angle of the mist is tilted closer to the flame, the contact of the mist with the flame becomes prominent and the cooling of the flame is further enhanced.
  • the apparatus of the invention injects water mist as the mist, and at the time of the injection, oxygen supplied to the flame injection port and injected therefrom is 50 to 80% of the oxygen amount necessary for complete combustion. Is particularly preferable.
  • Use of water mist as the mist is the lowest cost and has an excellent cooling effect. However, when water mist is used, the mist decomposes into oxygen and hydrogen due to contact with the flame, and the amount of oxygen in the flame may become excessive.
  • the apparatus of the invention has a thermal power stronger than that of a general spray gun as the size of the apparatus increases. Easy to make.
  • the amount of oxygen injected from the flame injection port is reduced to 50 to 80% of the amount of oxygen necessary for complete combustion (for example, the reduction flame is executed by using propane gas). By doing so, it is possible to avoid an excessive amount of oxygen in the flame, and it is possible to form an amorphous film that does not contain (or has little) an oxide obtained by reacting the flame and the material on the substrate. . Furthermore, the oxide originally present in the material is also reduced to form an amorphous film with less oxide.
  • the amount of oxygen injected from the flame injection port is appropriately set within the range of 50 to 80% according to the amount of water mist used, the temperature of the flame, and the like.
  • each of the inert gas and the mist can be injected so that the above-described inert gas and mist can cool the flame containing the material particles at a rate of 400,000 to 1,000,000 ° C./second. .
  • the material particles melted in the flame can be made amorphous to form a coating on the substrate.
  • a plurality of material particle injection ports are continuously arranged symmetrically with respect to an imaginary plane which is perpendicular to the above-described "straight line” and located at the center of the injector (that is, the center of the arrangement of material particle injection ports).
  • the supply of material particles to the injection ports is made up of a plurality of supply pipes (the supply quantity and the gas flow rate in each supply pipe) in which the supply amount of the material particles and the flow rate of the transport gas can be adjusted respectively. Therefore, it is preferable to carry out through a branch passage formed symmetrically with respect to the virtual plane and having the same passage length from the supply pipe (downstream end) to each injection port.
  • the material particles In the apparatus of the present invention in which the cross section of the flame is horizontally long, the material particles must be supplied and injected uniformly so that there is no bias or variation in the injection amount of the material particles in each part of the cross section of the flame.
  • a) a plurality of material particle injection ports are arranged symmetrically across the central portion of the injector, and b) the supply passage of material particles to the injection ports is also in the central portion.
  • a branch passage that is formed symmetrically across the same length and has the same length; c) the material particles are supplied from a plurality of supply pipes in which the particle supply amount and the transport gas flow rate can be adjusted respectively; It goes through the passage to the injection port.
  • the apparatus has a configuration generally shown in FIG.
  • the mist injection port is preferably provided as a slit-like opening extending along the straight line (a straight line along which the material particle injection port and the flame injection port are provided).
  • a plurality of mist injection ports may be continuously arranged in the same manner as the material particle injection ports described above. However, if it is provided as an opening that extends in a slit shape, there is less chance of the mist colliding with the inner wall of the injection port, so that the mist is likely to be injected while the particles are minute, and therefore the contact area with the flame is substantially widened. There is an advantage that the cooling effect on the flame becomes high.
  • the apparatus of the invention has a cylindrical body that surrounds the material particle injection port, the flame injection port and the inert gas injection port and extends in front of them so as to be removable. Since the material, flame, and inert gas injected from the device cause a decrease in pressure and flow velocity due to contact with air, the width of the film to be formed becomes narrower (width narrowing) or the deviation in film thickness increases. Easy (see Fig. 10 (a)). However, in the case of having a cylindrical body as described above, the area where the material, flame, and inert gas come into contact with air is reduced, so that the narrowing of the film and the increase in the deviation of the film thickness are suppressed (FIG. 10).
  • the apparatus of the invention has an inert dimension formed along the straight line having a longitudinal dimension of 150 mm or more in the cross section of the flame containing the material particles (for example, about 300 mm.
  • a short side dimension in the cross section is, for example, about 30 mm).
  • the continuous length dimension of the gas injection port and the mist injection port (including the length between both ends when a plurality of injection ports are closely and continuously present) is also 150 mm or more (for example, about 300 mm) Can be configured. If it is a large apparatus with such a horizontal cross section of the flame, a large-area amorphous film can be efficiently formed on the substrate.
  • the method for forming an amorphous film according to the invention uses the above-described amorphous film forming apparatus, and depending on the chemical composition of the material particles (and thus the amorphous film to be formed), the angle of the mist injection port, the inert gas and The mist injection pressure is changed. By doing so, it is possible to appropriately form films of various amorphous alloys having different chemical components and the like. This is because by changing the angle of the mist injection port and the injection pressure of the inert gas and mist, the flame containing the material particles can be rectified and the cooling strength can be adjusted appropriately.
  • Amorphous films of various alloys can be formed, including metals and metallic glasses, which have a high melting point and a narrow supercooling temperature range.
  • Fig. (A) is a front view of the apparatus 1 (aa cross-sectional view in Fig. (B)), Fig. (B) is a side view (showing a flame during film formation, etc.), and Fig. (C). Is a bottom view.
  • FIG. 1 shows an amorphous film forming apparatus 1 according to the invention.
  • This apparatus 1 injects flame a with a width of about 300 mm, and enables industrial formation of a large-area amorphous film having a corresponding width.
  • the flame a containing the material particles is shown as a base material (not shown in the figure.
  • FIG. 1 (a) is installed and moved). Then, the material particles are sprayed from the injector 2 and melted by the flame a, and then cooled before reaching the base material to form an amorphous film.
  • the specific configuration of the device 1 is as follows.
  • the material particle injection port 11 and the flame injection port 12 extend in the width direction of the injector 2 on the front surface of the injector 2 so that the cross section of the flame a including the material particles is a horizontally long one having a width of about 300 mm. A plurality of them are continuously arranged along the straight line at narrow intervals. Inert gas (nitrogen gas) injection ports 13 for rectifying and cooling the flame a containing the material particles at positions on both sides of the material particle injection port 11 and the flame injection port 12 are also narrow along the straight line. A plurality are continuously arranged at intervals.
  • Mist (water mist) injection nozzles 3 for cooling the flame are disposed at positions on both sides of the injector 2 including the material particle injection port 11, the flame injection port 12 and the inert gas injection port 13. .
  • the injection nozzle 3 has a mist injection port 14 facing downward, and the injection port 14 is provided as a slit having a continuous opening along the straight line.
  • the mist injection nozzle 3 is assembled to the injector 2 through a support 3 a connected to the injector 2.
  • the spray nozzle 3 is angled inward so that the sprayed mist approaches the flame a and crosses forward, and is attached to the support 3a so that the angle can be freely changed.
  • the inert gas injection port 13 is also angled inward so that the inert gas b to be injected approaches the flame a. Normally, however, the angle of the mist c injection is larger in order to increase the cooling effect.
  • the mist c enters the flame a.
  • Reference numeral 21 in FIG. 1 is a supply pipe (three in total) for supplying material particles together with a carrier gas (nitrogen gas or the like). The material particles are distributed from the supply pipe 21 through the branch path 26 formed inside the injector 2 and are injected from each of the material injection ports 11.
  • Reference numerals 22 and 23 are supply pipes for propane gas and oxygen, which are fuels of the flame a
  • reference numeral 24 is a supply pipe for an inert gas b for cooling and rectifying the flame (supply for the mist). The illustration of the pipe is omitted). The supply by these can each change the quantity per time, and can also change the injection pressure of the inert gas b and the mist c.
  • the cooling rate of the flame a can be adjusted appropriately.
  • the adjustment is made according to the chemical composition of the alloy to be sprayed (and therefore the chemical composition of the material particles).
  • the cooling is loosened, and when the metal has a high melting point and a narrow supercooling temperature range. In this case, the cooling rate is increased to about 400,000 to 1,000,000 ° C./second.
  • a belt-shaped thin plate base material is fed in a horizontal and constant direction, and from the apparatus 1 disposed on the surface at an interval of several hundred mm. Perform the injection. If the width (long side) direction of the apparatus 1 is set to be perpendicular to the feeding direction of the substrate, a large area amorphous film having a width of about 300 mm can be efficiently formed.
  • FIG. 2 is a schematic view showing the material particle supply pipe 21 and the branch passage 26 leading to it in the apparatus 1 with respect to one of the three supply pipes.
  • the graph shows the recovered weight of the material particles at each injection port when the material particles and the transport gas are flowed from the upstream.
  • the configuration of the supply pipe from the upstream to the injection port is such that a plurality of injection ports are arranged symmetrically across the central part of the injector, and the supply passage of material particles to the injection ports is also in the center. It is a bifurcated passage that is formed symmetrically across the part and is equal in length. For this reason, in the graph, it can be seen that the material particles can be ejected symmetrically without being biased to one of the longitudinal directions (that is, either left or right).
  • the result as shown in the graph is obtained, and variations in the injection amount are eliminated. I understand that.
  • FIG. 3 shows the temperature measurement results of the flame injected by the device of the invention.
  • the photograph in the figure is an injected flame, and in Tests 2 and 3, the mist (water mist for cooling the flame) is injected together with the flame.
  • the horizontal axis of the graph indicates the injection distance from the front of the injector, and the flame temperature measurement was performed at 750 mm in test 1, 150 mm, 250 mm, and 350 mm in test 2, and 350 mm and 450 mm in test 3 for comparison.
  • the graph shows the temperature distribution of the injected gas according to the temperature measurement result. The temperature of the injected gas exceeded 1200 ° C.
  • Test 1 with an injection distance of 750 mm, Test 2 with 150 mm, and Test 3 with 350 mm.
  • the temperature of the injected gas decreased to 100 ° C as a result of cooling.
  • the injection length from 1200 ° C. to 100 ° C. was 100 mm in Test 3. Since the speed of the propelling gas is 30 to 100 m / sec, it can be seen that in this case, the cooling speed of the propelling gas was 300,000 to 1,000,000 ° C./sec.
  • FIG. 4 shows the temperature distribution of the flame from the front of the injector to the injection object.
  • the graph compares the case where the injection distance from the front of the injector is 300mm, 350mm, 400mm, 450mm, 500mm, 550mm, 600mm.
  • Injection conditions were varied oxygen flow rate 50 Nm 3 / h and 68 nm 3 / h.
  • the graph shows the injected gas temperature distribution on a straight line parallel to the front surface.
  • the oxygen flow rate is 50 Nm 3 / h
  • the temperature near the center is about 1000 ° C when the injection distance is 300 mm.
  • the oxygen flow rate is 68 Nm 3 / h
  • the injection target melts at the center when the injection distance is 350 mm.
  • the temperature was such that it was damaged (1200 ° C or higher), and it was about 700 ° C at 400 mm. Further, it can be clearly seen that the temperature of the injected gas gradually decreases with distance.
  • FIG. 5 shows the temperature distribution of the flame from the front of the injector to the injection object and a photograph of the appearance of the flame.
  • the injection distance 0mm in the photograph is the front of the injector.
  • the graph compares the spray distances from the front when 550mm, 600mm, 650mm, 700mm, 750mm, and 800mm.
  • the graph shows the temperature distribution of the injected gas on a straight line parallel to the front surface of the injector. At 550 mm, the temperature range is 550 to 600 ° C. and the temperature distribution is almost uniform, but it can be seen that the temperature of the injected gas decreases and the temperature range increases with distance.
  • FIG. 6 shows a flame temperature distribution at an injection distance of 500 mm when nitrogen gas is used as the inert gas (inert gas for rectifying and cooling the flame). Comparison was made when the injection pressure of the inert gas was changed under a certain injection condition. As a result of the pressure change of the inert gas, the flow rates are 360 Nm 3 / h and 180 Nm 3 / h, and the graph shows the temperature distribution of the injected gas on a straight line parallel to the front surface of the injector. It can be seen that the cooling strength is adjusted by changing the injection pressure of the inert gas, and here, the influence of a difference of 50 to 100 ° C. occurs in the temperature distribution of the injection gas.
  • FIG. 7 shows the temperature distribution of the injection target at an injection distance of 400 mm when water mist is used as the mist (mist for cooling the flame). Comparison was made when the injection pressure of the water mist was changed under certain injection conditions.
  • the injection target was a thin plate substrate, and the powder material was 80Ni-20Cr.
  • the upstream water mist flow rate is changed to 4 liters / minute, 6 liters / minute, 8 liters / minute, or the downstream water mist flow rate is only 8 liters / minute, 10 liters / minute
  • the graph shows the temperature at the portion where the injection gas collides with the thin plate base material when it is changed to 12 liters / minute.
  • the “upstream side” and “downstream side” referred to above are the feeds for feeding the base material to be jetted by the apparatus of the invention (moving the base material relative to the apparatus of the invention).
  • the upstream side and downstream side along the line.
  • amorphous alloy thin plate having a thickness of 300 ⁇ m and a width of 300 mm is manufactured using a super-quenching transition control injector (amorphous film forming apparatus shown in FIG. 1).
  • a super-quenching transition control injector was installed in the test rolling mill and a production test was conducted.
  • Table 1 shows the test conditions for the ultra-quick transition control injector. 64.5Ni-10Cr-7.5Mo-18B by heating the surface temperature of the thin plate substrate to 400 ° C before injecting the amorphous alloy The powder is melted and sprayed from an ultra-quenching transition control sprayer to form an amorphous alloy film.
  • the surface is maintained with the film maintained in a plastic fluidity temperature range (300 to 520 ° C), eliminating internal voids. Is rolled to smooth, and then peeled off from the substrate.
  • the contact area where the flame a and the inert gas b come into contact with air depending on the flow velocity of the combustion gas, the width dimension of the film to be formed, and the like. Is preferably reduced. That is, the cylindrical body that integrally surrounds the material particle injection port 11, the flame injection port 12, and the inert gas injection port 13 shown in FIG. It is good to attach to the front part of the injector 2 as the code

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

【課題】大面積のアモルファス皮膜を形成するうえで有利な大型の形成装置、およびそれを用いて行うアモルファス皮膜形成方法を提供する。【解決手段】材料粒子を含む火炎を基材に向けて噴射機より噴射し、当該材料粒子を火炎によって溶融させたうえ、当該材料粒子および火炎を基材に達する前から冷却ガスにて冷却するアモルファス皮膜の形成装置であって、材料粒子を含む上記火炎の横断面を横長のものにするよう、噴射機の前面に、材料粒子噴射口(11)および火炎噴射口(12)を直線に沿って連続的に設ける。そして、それら材料粒子噴射口(11)および火炎噴射口(12)をはさむ両側の位置に、火炎を整流し冷却するための不活性ガスの噴射口(13)を、さらに、不活性ガスの噴射口(13)をはさむ両側の位置に、火炎を冷却するための液体ミストの噴射口(14)を、上記直線に沿って連続的に設ける。

Description

アモルファス皮膜の形成装置および形成方法
 本発明は、基材(母材)の表面に噴射によってアモルファス(非晶質。金属ガラスを含む)の皮膜を形成するアモルファス皮膜の形成装置および形成方法、とくに、大面積のアモルファス皮膜を形成できる大型の形成装置とそれを用いる形成方法とに関するものである。
 基材の表面に溶射によってアモルファス皮膜を形成する手段として、下記の特許文献1に示す装置がある。その装置は、概ね、図11に示す構成のものである。すなわち、
 ・ 材料粒子(粉末)を含む火炎を基材に向けて溶射ガンより噴射させ、当該材料粒子を火炎によって溶融させたうえ、材料粒子および火炎を、それらが基材に達する前から冷却ガスにて冷却する装置である。
 ・ 溶射ガンによる火炎の噴射経路のうち材料粒子を溶融させる領域(火炎の概ね前半部分)に、火炎と外気とを隔てる筒状体を設け、その筒状体に沿って筒状体と一体的に上記冷却ガスの流路を形成している。
 ・ 溶射ガンとしては、粉末式フレーム溶射用と同様のものを使用し、冷却ガスとしては、窒素や不活性ガス、空気、液体ミスト混合気体、その他の気体のうちいずれか一種を使用する。
 図11に示す従来のアモルファス皮膜形成装置には、つぎのような作用効果がある。
 ・ 基材に達するよりも前に冷却ガスにて火炎を冷却するため、材料粒子をアモルファス化することが容易で、高融点であって過冷却温度領域がせまい金属についても、アモルファス皮膜として基材上に形成することができる。
 ・ 高速フレーム溶射の方式を採用するものではないので、材料粒子がフレーム中に滞在する時間が長くて材料粒子が完全溶融しやすく、その点からも、高融点であって過冷却温度領域がせまい、金属ガラス以外のアモルファス合金についても皮膜形成可能である。
 ・ 装置がコンパクトに構成されているために、その取り扱いが容易であり、現場でのアモルファス皮膜の形成を円滑に行える。
特許第4579317号公報
 上記した従来の装置は、金属ガラス等に限定されない各種の合金について高品質のアモルファス皮膜を形成できるという利点を有するものの、大面積のアモルファス皮膜を形成するうえでは効率的なものでない。一般に火炎の直径が30mm程度で、作製できる幅は7mm程度にすぎないため、基材上の近接領域で装置を何度も往復させるなどしないと、大面積の皮膜形成ができないからである。
 装置を往復等させて基材上の近接領域に多数回の溶射を行うと、基材の温度上昇を招くため、装置の移動速度や往復の時間間隔、基材の冷却等を適切に制御せねばならず、アモルファス皮膜が必ずしも円滑には形成されなくなる。また、火炎を大きくしてその横断面を広げると、大面積の溶射は可能になるが、当該横断面内において火炎温度等の不均一性が増すこと等から、工業用材料として高生産で高品質かつ均一なアモルファス皮膜の形成は困難となる。
 本発明は、以上のような観点から、大面積のアモルファス皮膜を形成するうえで有利な大型の形成装置等を提供するものである。
 発明によるアモルファス皮膜の形成装置は、材料粒子を含む火炎を基材に向けて噴射機より噴射し、当該材料粒子を火炎によって溶融させたうえ、当該材料粒子および火炎を基材に達する前から冷却ガスにて冷却するアモルファス皮膜の形成装置であって、つぎの点を特徴とする。その装置は、概ね、図1に示す構成のものである。すなわち、
 a) 材料粒子を含む上記火炎の横断面を横長のもの(つまり、一方向の寸法に比してそれと直角方向の寸法が大きなもの。したがって、見る向きが異なる縦長のものを含む)にするよう、噴射機の前面に、材料粒子噴射口および火炎噴射口が直線に沿って連続的に設けられている(「連続的に設けられている」とは、複数個の噴射口がそれぞれ密接し狭い間隔で並べて配置され、またはスリット状に延びた開口として噴射口が設けられていることをいう。以下同様)。
 b) それら材料粒子噴射口および火炎噴射口をはさむ両側の位置に、火炎(材料粒子を含む火炎)を整流し冷却するための不活性ガス(窒素を含む)の噴射口が、上記直線に沿って連続的に設けられている。
 c) 上記の材料粒子噴射口、火炎噴射口および不活性ガスの噴射口をはさむ両側の位置に、火炎(材料粒子を含む火炎)を冷却するためのミスト(液体ミスト、たとえば水ミスト)の噴射口が、上記直線に沿って連続的に設けられている。
 こうした装置にはつぎのような作用効果がある。
 ・ 図11(前記特許文献1)に示す従来の装置と同様、基材に達するよりも前に冷却ガスにて火炎を冷却するため、材料粒子をアモルファス化することができ、高融点であって過冷却温度領域がせまい金属についても基材上にアモルファス皮膜として形成できる。金属ガラス皮膜の形成も可能である。
 ・ 材料粒子を含む上記火炎の横断面を横長のものにした大型の装置であるため、その長手方向と直角の方向に装置(または基材)を1回または少数回だけ移動させることにより、基材上に大面積のアモルファス皮膜を形成できる。火炎の横断面は一方向の寸法のみを大きくしていることから、直径等を大きくする場合とは違って横断面内において温度等の分布が生じにくく、したがって均一な皮膜形成を実現しやすい。
 ・ 材料粒子を含む火炎の両外側に、整流および冷却用の不活性ガスの噴射流れが形成され、さらにその両外側に、冷却用のミストの噴射流れが形成される。一般に、火炎が整流されなければ、材料粒子の流れが乱れて基材上に適切には届かなくなるほか、火炎中に外気が巻き込まれるためアモルファス皮膜の品質が低下する。また、火炎が十分に冷却されなければ、材料粒子の冷却速度が不十分となってアモルファス化させることができなくなる。上記のように不活性ガスおよびミストの噴射流れが形成されると、そのような整流および冷却を適切かつ十分に行うことができる。
 ・ ただし、火炎の整流および冷却を適切かつ十分に行えるのは、上記のように不活性ガスとミストとの双方を使用しているからであり、不活性ガスのみ、またはミストのみを流すことによっては、整流と冷却とを好ましく行うことはできない。すなわち、火炎の外側に不活性ガスを流すのみでは、横断面が横長になるよう大型化したことにともなって従来よりも火力が増大した火炎を、十分に冷却することは不活性ガス量が増大して冷却効率を悪化して困難である。その一方、ミストを流すのみでは、当該ミストが相変化したり化学変化したりするのにともなって整流がなされず火炎が乱れることになる。火炎のすぐ外側に不活性ガスを流してその整流化と部分的な冷却とを行い、そのさらに外側と内部にミストを流して火炎の冷却を強力に補う行うことによって初めて、火炎の整流および冷却を適切かつ十分に行えるのである。
 発明の装置において、ミストの噴射口は、噴射するミストが上記火炎に接近する(つまり、両側の位置から噴射されるミストが前方で交差する)ように角度を定められ、かつその角度が自由に変更できるように構成されるのが好ましい。
 ミストの噴射口の角度が上記のように定められていて、ミストが、材料粒子を含む火炎をはさむ両側の位置から上記火炎に接近するように噴射されるなら、ミストと火炎とが確実に接触し、したがって、上記した十分な冷却が実現する。
 また、ミストの噴射口の上記角度が変更できるなら、火炎に対する冷却の強さを調整することができる。発明の装置については、材料粒子の化学成分を変更することによって種々の合金のアモルファス皮膜等を基材上に形成できることが望まれる。そのような種々の合金の中には、とくに高速冷却が必要なものもあれば、金属ガラス等のように比較的緩い冷却によって非晶質化するものもある。ミストの噴射口の角度が変更できて上記のように冷却強さを調整できるなら、こうした種々の合金についてアモルファス皮膜の形成が可能になる。当該角度を変更することによって、火炎の横断面(の短辺寸法)を変更することも可能であり、それによって、形成するアモルファス皮膜の厚さや性状(アモルファス化の割合を含む)を制御することもできる。
 上記の不活性ガスおよびミストについて、それぞれ噴射の圧力が変更できるようにすると、さらに好ましい。
 これらの各噴射圧力を変更できるなら、火炎に対する整流の強さと冷却の強さとを調整することができ、したがって、種々の合金のアモルファス皮膜を基材上に適切に形成するうえでさらに有利である。たとえば、不活性ガスの圧力を高くしてミストの圧力を低くすれば冷却強さが弱まり、不活性ガスの圧力を低くしてミストの圧力を高くすれば冷却強さが増す。後者の場合、ミストの角度を火炎寄りに傾ければ、火炎に対するミストの接触が顕著になり、火炎の冷却をさらに強めることになる。
 発明の装置は、上記のミストとして水ミストを噴射するもので、その噴射の際、上記の火炎噴射口に供給されそこから噴射される酸素が、完全燃焼に必要な酸素量の50~80%とされるものであれば、とくに好ましい。
 ミストとしては水ミストを使用するのが最も低コストであり冷却効果にも優れる。しかし、水ミストを使用すると、火炎との接触によってミストが酸素と水素とに分解し、火炎中の酸素量を過剰気味にする場合がある。
 発明の装置は、大型化にともなって一般の溶射ガンよりも火力が強くなっているため、水ミストが分解して酸素を発生し、火炎中の酸素量を過剰にしてアモルファス皮膜中に酸化物を作りやすい。そのため、上記のとおり、火炎噴射口から噴射される酸素の量を減らし、完全燃焼に必要な酸素量の50~80%とする(たとえばプロパンガスで実行して、還元炎とする)。そのようにすれば、火炎中の酸素量が過剰になることが避けられ、火炎と材料とが反応した酸化物を含まない(または少ない)アモルファス皮膜を基材上に形成することが可能になる。更にもともと材料に在った酸化物も還元してしまいより酸化物の少ないアモルファス皮膜を形成する。なお、火炎噴射口から噴射する酸素の量は、使用する水ミストの量や火炎の温度等に応じて上記50~80%の範囲内で適宜設定する。
 発明の装置については、上記の不活性ガスおよびミストが、材料粒子を含む火炎を40万~100万℃/秒の速度で冷却できるように、不活性ガスおよびミストの各噴射を行えるのがよい。
 材料粒子を含む火炎をそのような速度で冷却することによって、火炎中で溶融した材料粒子をアモルファス化して基材の皮膜にすることが可能だからである。ただし、上記の速度で冷却しない場合であっても、金属ガラス等の皮膜を基材上に形成することは可能である。
 発明の装置における材料粒子の噴射口は、上記した「直線」と直角で噴射機の中央(すなわち材料粒子噴射口の配置の中央)に位置する仮想平面に関して対称に、複数個が連続的に配置されたものであり、それら噴射口へ至る材料粒子の供給は、材料粒子の供給量と輸送ガスの流量とをそれぞれ調整可能にした複数の供給管(各供給管において上記供給とガス流量とがそれぞれ調整できる)から、上記仮想平面に関し対称に形成されていて上記供給管(の下流端)から各噴射口までの通路長さを同一にした分岐通路を通じて行われるのが好ましい。
 火炎の横断面が横長になるようにしたこの発明の装置では、火炎の横断面の各部において材料粒子の噴射量に偏りやばらつきがないよう、均一に材料粒子を供給し噴射しなければならない。上記の構成は、イ)材料粒子噴射口が、噴射機の中央部分をはさんで左右対称に複数配置されたものであり、ロ)それら噴射口へ至る材料粒子の供給通路も、上記中央部分をはさんで対称に形成され長さを等しくされた分岐通路であって、ハ)材料粒子の供給は、粒子供給量と輸送ガス流量とをそれぞれ調整可能にした複数の供給管から上記の供給通路を経て噴射口に至るようになっている。こうした構成によると、横長にされた火炎に対し、長手方向の一方(つまり左右いずれか)に偏ることなく対称的に材料粒子を噴射でき、しかも複数ある上記供給管の各管ごとに材料供給量(すなわち噴射量)を調整することができる。そのため、火炎の横断面の各部において材料粒子の均一な噴射を実現することができる。なお、さらに均一な噴射のためには、各噴射口の大きさに差を付けたり、上記分岐通路の一部の内径を細く絞ったりするのがよい場合もある。たとえばその装置は、概ね図2に示す構成のものである。
 上記ミストの噴射口は、上記直線(材料粒子噴射口や火炎噴射口が沿って設けられている直線)に沿って延びたスリット状の開口として設けられているのが好ましい。
 ミストの噴射口も、上記した材料粒子の噴射口と同様に複数個が連続的に配置されたものとすることが可能である。しかし、スリット状に延びた開口として設けられると、ミストが噴射口の内壁に衝突する機会が少ないため、粒子が微小のままミストが噴射されやすく、したがって火炎との接触面積が実質的に広くなり、火炎に対する冷却効果が高くなる、という利点がある。
 発明の装置が、上記の材料粒子噴射口、火炎噴射口および不活性ガスの噴射口を囲んでそれらの前方に延びた筒状体を、たとえば着脱可能に有しているのも好ましい。
 装置から噴射された材料、火炎、不活性ガスは、空気との接触によって圧力・流速の低下を起こすため、形成する皮膜の幅が狭くなり(幅狭化)、または膜厚の偏差が増大しやすい(図10(a)参照)。しかし、上記のように筒状体を有する場合には、材料や火炎、不活性ガスが空気と接触する面積が少なくなるため、皮膜の幅狭化・膜厚の偏差増大が抑制され(図10(b)参照)、幅の広い均一なアモルファス皮膜を形成するうえで有利である。
 ただし、皮膜の幅狭化や膜厚の偏差増大は、装置に使用する燃焼ガスの量や形成する皮膜の幅寸法等に応じて異なるため、上記の筒状体は、皮膜の形成条件に応じて取り付けたり取り外したりできるものであるのが好ましい。
 発明の装置は、材料粒子を含む上記火炎の横断面における長手寸法が150mm以上(たとえば約300mm。当該横断面における短辺寸法はたとえば約30mm)であり、上記直線に沿って形成された不活性ガスの噴射口および上記ミストの噴射口の連続する長さ寸法(複数個の噴射口が密接して連続的に存在する場合の両端間の長さを含む)も150mm以上(たとえば約300mm)のものとして構成できる。
 火炎の横断面がそのように横長である大型の装置であれば、基材上に大面積のアモルファス皮膜を効率的に形成することができる。また、そのような大型の装置の場合、前記したように火炎のすぐ外側に不活性ガスを流して火炎の整流と部分的な冷却とを行い、そのさらに外側にミストを流して火炎の冷却を強力に補うことが、アモルファス皮膜の形成にとって不可欠となり、本件発明の意義が顕著になる。
 発明によるアモルファス皮膜の形成方法は、上記したアモルファス皮膜の形成装置を用い、材料粒子の(したがって形成するアモルファス皮膜の)化学成分に応じて、上記ミストの噴射口の角度、ならびに上記不活性ガスおよびミストの噴射圧力を変更することを特徴とする。
 そのようにすることによって、化学成分等の異なる各種アモルファス合金の皮膜を適切に形成することができる。上記ミストの噴射口の角度や、上記不活性ガスおよびミストの噴射圧力を変更することにより、材料粒子を含む火炎を整流し、その冷却強さを適宜に調整できるからである。
 本発明によれば、大面積であって均一かつ高品質のアモルファス皮膜を効率的に形成することができる。高融点であって過冷却温度領域がせまい金属や金属ガラスを含めて、各種合金のアモルファス皮膜を形成できる。
発明によるアモルファス皮膜形成装置1を示す図である。図(a)は装置1の正面図(図(b)におけるa-a断面図)、図(b)は側面図(皮膜形成中の火炎等を併せて示している)、また図(c)は底面図である。 発明の装置における材料粒子の供給管の分岐通路を示す模式図、および各噴射口(吐出口)からの噴射量の分布を示すグラフである。 発明の装置が噴射する火炎の温度測定結果を示す写真およびグラフである。 噴射機の前面から噴射対象物に至るまでの火炎の温度分布を示すグラフである。 噴射機の前面から噴射対象物に至るまでの火炎の温度分布を示すグラフと、噴射中の火炎等の外観写真である。 不活性ガスを用いたときの火炎の温度分布を示すである。 水ミストを用いたときの噴射対象物の温度分布を示すグラフである。 製造試験により得られたアモルファス合金薄板の外観写真である。 アモルファス合金薄板の断面顕微鏡写真と、その薄板についてのX線回折分析結果とを示す。 噴射機の前面に筒状体を取り付けない場合(図(a))と取り付けた場合(図(b))とについて皮膜の幅・膜厚偏差の違いを示す図である。 従来のアモルファス皮膜形成装置を示す図である。
 図1に、発明によるアモルファス皮膜の形成装置1を示す。この装置1は、約300mmの幅で火炎aを噴射し、相当する幅を有する大面積のアモルファス皮膜の工業的形成を可能にするものである。原理的には、図11に示す従来の装置と同様、粉末式フレーム溶射法にしたがい、材料粒子を含む火炎aを基材(図示省略。図1(a)の下方に設置して移動させる)に向けて噴射機2より噴射し、当該材料粒子を火炎aによって溶融させたうえ、基材に達する前から冷却して非晶質の皮膜とする。
 装置1の具体的な構成は以下のとおりである。
 材料粒子を含む上記火炎aの横断面を幅約300mmの横長のものにするよう、噴射機2の前面に、材料粒子噴射口11および火炎噴射口12が、噴射機2の幅方向に延びる共通の直線に沿ってそれぞれ複数個、せまい間隔で連続的に配置されている。
 それら材料粒子噴射口11および火炎噴射口12をはさむ両側の位置に、材料粒子を含む火炎aを整流し冷却するための不活性ガス(窒素ガス)噴射口13が、やはり上記直線に沿ってせまい間隔で複数個連続的に配置されている。
 上記の材料粒子噴射口11、火炎噴射口12および不活性ガス噴射口13を含む噴射機2をはさむ両側の位置に、火炎冷却のためのミスト(水ミスト)の噴射ノズル3が配置されている。噴射ノズル3は、下向きにミスト噴射口14を有しており、当該噴射口14は、上記直線に沿って開口の連続するスリットとして設けられている。
 図1(b)に示すように、ミスト噴射ノズル3は、噴射機2と連結された支持具3aを介して噴射機2に組み付けられている。当該噴射ノズル3は、噴射するミストが上記火炎aに接近して前方で交差するよう内向きに角度を定められ、かつその角度が自由に変更できるよう支持具3aに取り付けられている。不活性ガス噴射口13も、噴射する不活性ガスbが火炎aに接近するよう内向きに角度を定められているが、通常は、冷却効果を強めるべく、ミストcの噴射の方により大きな角度を付けてミストcが火炎aに入り込むようにしている。
図1中の符号21は、搬送ガス(窒素ガス等)とともに材料粒子を供給するための供給管(計3本)である。材料粒子は、供給管21から、噴射機2の内部に形成された分岐経路26を通って分配され、材料噴射口11のそれぞれから噴射される。符号22、符号23は、火炎aの燃料であるプロパンガスおよび酸素等の供給管、また符号24は、火炎の冷却および整流をなす不活性ガスbの供給管である(上記ミストのための供給管については図示を省略している)。これらによる供給は、それぞれ時間あたりの量を変更可能であり、また、不活性ガスbおよびミストcの噴射圧力も変更可能である。
火炎aが幅広で火力が強いため、噴射するミストが分解されて酸素を発生することから、火炎aの酸素が過剰になるのを避けるべく、供給管22へ送る酸素は、燃料ガスの完全燃焼に必要な量の50~80%に抑えている。
 それぞれのガスや材料粒子等について上記のように流量、圧力、および上記したミストcの噴射角度を変更できることから、この装置1においては、火炎aの冷却速度を適宜に調整することができる。その調整は、噴射する合金の化学成分(したがって材料粒子の化学成分)等に応じて行い、金属ガラス等を噴射する場合には冷却を緩くし、高融点で過冷却温度領域がせまい金属の場合には、40万~100万℃/秒の程度にまで冷却速度を高める。
装置1によって基材表面にアモルファス皮膜を形成するには、たとえば、帯状の薄板基材を水平の一定方向に送り、その表面上に、数百mmの間隔をおいて上方に配置した装置1から噴射を行う。装置1の幅(長辺)方向を当該基材の送り方向と直角にしておけば、幅が約300mmの大面積アモルファス皮膜を効率的に形成することができる。
 図2は、装置1における材料粒子の供給管21とそれに通じる分岐通路26を、3本ある供給管の1本に関して示す模式図である。グラフは、上流から材料粒子と輸送ガスを流した場合の、各噴射口における材料粒子の回収重量を示している。上流から噴射口へ至る供給管の構成は、噴射口が、噴射機の中央部分をはさんで左右対称に複数配置されたものであり、それら噴射口へ至る材料粒子の供給通路も、上記中央部分をはさんで対称に形成され長さを等しくされた分岐通路となっている。このため、グラフでは、長手方向の一方(つまり左右いずれか)に偏ることなく対称的に材料粒子を噴射できていることがわかる。さらに均一な噴射のために、上記分岐通路の図中部分a,部分bの内径を細く絞った対策を施すことにより、グラフの対策後のような結果が得られ、噴射量のばらつきが解消されたことがわかる。
以下、発明によるアモルファス皮膜形成装置(図1の装置1)に関して種々の測定結果を紹介する。
図3は、発明の装置が噴射する火炎の温度測定結果を示す。図中の写真は、噴射した火炎であり、テスト2,3は上記ミスト(火炎を冷却するための水ミスト)を火炎とともに噴射している。グラフの横軸は、噴射機の前面からの噴射距離を示し、火炎の温度測定は、テスト1では噴射距離750mm、テスト2では150mm,250mm,350mm、テスト3では350mm,450mmで行い比較した。グラフはその温度測定結果による噴射ガス温度分布を示す。噴射ガスの温度が1200℃を超えたのは、テスト1では噴射距離750mm、テスト2では150mm、テスト3では350mmであった。テスト2,3では冷却の結果100℃まで噴射ガス温度が低下した。ただし、上記水ミストの噴射圧力や噴射するミストの角度を変えているため、その噴射ガスの形態、ならびに温度分布は様相を異にしていることがわかる。なお、1200℃から100℃に至る噴射長さは、テスト3では100mmであった。噴射ガスの速度は30~100m/秒であるので、この場合、噴射ガスの冷却速度は30万~100万℃/秒であったことがわかる。
図4は、噴射機の前面から噴射対象物に至るまでの火炎の温度分布を示す。グラフは、噴射機の前面からの噴射距離が300mm,350mm,400mm,450mm,500mm,550mm,600mmの場合の比較をした。噴射条件は酸素流量を50 Nm3/hと68Nm3/hに変化させた。グラフは前面と平行な直線上の噴射ガス温度分布を示す。酸素流量50 Nm3/hの場合、噴射距離が300mmでは中央付近の温度は1000℃程度であったが、酸素流量68 Nm3/hの場合、噴射距離が350mmの中央で噴射対象物が溶損するほどの温度(1200℃以上)、400mmで700℃程度であった。また距離に従い噴射ガス温度が次第に低下する様子が明確にわかる。
図5は、噴射機の前面から噴射対象物に至るまでの火炎の温度分布と火炎の外観写真を示す。写真中の噴射距離0mmは噴射機の前面である。グラフは前面からの噴射距離が550mm,600mm,650mm,700mm,750mm,800mmの場合の比較をした。グラフは噴射機の前面と平行な直線上の噴射ガス温度分布を示す。550mmでは550~600℃の範囲でありほぼ一様な温度分布であるが、距離に従い噴射ガス温度が低下かつ温度範囲が大きくなっていることがわかる。
図6は、上記不活性ガス(火炎を整流し冷却するための不活性ガス)に窒素ガスを用いたときの、噴射距離500mmにおける火炎の温度分布を示す。噴射条件はある一定のもと、不活性ガスの噴射圧力を変更した場合の比較をした。不活性ガスの圧力変更の結果、流量が360Nm3/hと180Nm3/hの場合であり、グラフは噴射機の前面と平行な直線上の噴射ガス温度分布を示す。不活性ガスの噴射圧力を変更することにより冷却強さが調整され、ここでは噴射ガス温度分布で50~100℃差の影響が生じていることがわかる。
図7は、上記ミスト(火炎を冷却するためのミスト)に水ミストを用いたときの、噴射距離400mmにおける噴射対象物の温度分布を示す。噴射条件はある一定のもと、水ミストの噴射圧力を変更した場合の比較をした。噴射対象物としては薄板基材上、粉末材料は80Ni-20Crを用いた。水ミストの圧力変更の結果、上流側水ミスト流量のみ4リットル/分,6リットル/分,8リットル/分と変更した場合、あるいは下流側水ミスト流量のみ8リットル/分,10リットル/分,12リットル/分と変更した場合であり、グラフは噴射ガスが薄板基材に衝突した部分の温度を示す。水ミストの噴射圧力を変更することにより冷却強さが調整され、薄板基材温度は、最大で2リットル/分あたり30~60℃差の影響が生じていることがわかる。
 なお、上に言う「上流側」「下流側」とは、発明の装置による噴射の対象とする基材を送る(発明の装置に対して基材を相対的に移動させる)うえでの、送りに沿った上流側・下流側をさす。
 図1に示す装置を用いて行ったアモルファス合金薄板の製造試験につき、以下に紹介する。この試験では、以下に示すように圧延機等をも併せて使用した。
(1)試験方法
超急冷遷移制御噴射機(図1に示すアモルファス皮膜形成装置)を使用し厚み300μm、幅300mmのアモルファス合金薄板を製造することする。試験圧延機に超急冷遷移制御噴射機を設置して、製造試験を行った。その超急冷遷移制御噴射機の試験条件を表1に示す。アモルファス合金噴射前の薄板基材表面温度を400℃まで加熱し、64.5Ni-10Cr-7.5Mo-18B
の粉末を溶融させ超急冷遷移制御噴射機から噴射しアモルファス合金皮膜形成して、その皮膜を塑性流動性のある温度域(300~520℃)に保った状態で、内部の空孔をなくし表面を平滑化するように圧延し、その後に基材から剥がしたものである。
Figure JPOXMLDOC01-appb-T000001
(2)試験結果
 上記製造試験により得られたアモルファス合金薄板の外観を図8に示す。厚さ400μm・幅300mmの長さ4000mmの帯状に連続したアモルファス合金薄板を得ることができた。また、そうして得たアモルファス合金薄板の断面とそのX線回折分析結果とを図9に示す。
 上に説明した超急冷遷移制御噴射機(図1のアモルファス皮膜形成装置1)では、燃焼ガスの流速や形成する皮膜の幅寸法等によっては、火炎aや不活性ガスbが空気に触れる接触面積を少なくする方が好ましい。すなわち、図1に示す材料粒子噴射口11、火炎噴射口12および不活性ガスの噴射口13を一体的に囲んでそれらの前方に延びる筒状体を、長方形の中空断面のものとして図10(b)の符号6のとおり噴射機2の前部に取り付けるのがよい。
 そのような筒状体6を噴射機2の前部に取り付けて、火炎aや不活性ガスbのすぐ外側を囲むと、火炎a等と空気との接触面積が少なくなり、筒状体6を取り付けない場合(図10(a))に比べて形成皮膜の幅狭化や膜厚の偏差増大が抑制される。(表2参照)
Figure JPOXMLDOC01-appb-T000002
 1 アモルファス皮膜形成装置
 2 噴射機
 3 ミスト噴射ノズル
 6 筒状体
 11 材料噴射口
 12 火炎噴射口
 13 不活性ガス噴射口
 14 ミスト噴射口

Claims (10)

  1.  材料粒子を含む火炎を基材に向けて噴射機より噴射し、当該材料粒子を火炎によって溶融させたうえ、当該材料粒子および火炎を基材に達する前から冷却するアモルファス皮膜の形成装置であって、
     材料粒子を含む上記火炎の横断面を横長のものにするよう、噴射機の前面に、材料粒子噴射口および火炎噴射口が直線に沿って連続的に設けられ、
     それら材料粒子噴射口および火炎噴射口をはさむ両側の位置に、火炎を整流し冷却するための不活性ガスの噴射口が、上記直線に沿って連続的に設けられているとともに、
     上記材料粒子噴射口、火炎噴射口および不活性ガスの噴射口をはさむ両側の位置に、火炎を冷却するためのミストの噴射口が、上記直線に沿って連続的に設けられている
     ことを特徴とするアモルファス皮膜の形成装置。
  2.  ミストの噴射口は、噴射するミストが上記火炎に接近するように角度を定められ、かつその角度が変更できることを特徴とする請求項1に記載したアモルファス皮膜の形成装置。
  3.  上記の不活性ガスおよびミストについて、それぞれ噴射の圧力が変更できることを特徴とする請求項2に記載したアモルファス皮膜の形成装置。
  4.  上記のミストとして水ミストを噴射し、その噴射の際、上記の火炎噴射口から噴射される酸素が、完全燃焼に必要な酸素量の50~80%とされることを特徴とする請求項1~3のいずれかに記載したアモルファス皮膜の形成装置。
  5.  上記の不活性ガスおよびミストが、材料粒子を含む火炎を40万~100万℃/秒の速度で冷却できるように噴射され得ることを特徴とする請求項1~4のいずれかに記載したアモルファス皮膜の形成装置。
  6.  ミストの噴射口が、上記直線に沿って延びたスリット状の開口として設けられていることを特徴とする1~5のいずれかに記載したアモルファス皮膜の形成装置。
  7.  上記材料粒子噴射口、火炎噴射口および不活性ガスの噴射口を囲んでそれらの前方に延びた筒状体を有することを特徴とする請求項1~6のいずれかに記載したアモルファス皮膜の形成装置。
  8.  材料粒子の噴射口は、上記直線と直角で噴射機の中央に位置する仮想平面に関して対称に、複数個が連続的に配置されたものであり、
     それら噴射口へ至る材料粒子の供給が、材料粒子の供給量と輸送ガスの流量とをそれぞれ調整可能にした複数の供給管から、上記仮想平面に関し対称に形成されていて上記供給管から各噴射口までの通路長さを同一にした分岐通路を通じて行われる
     ことを特徴とする請求項1~7のいずれかに記載したアモルファス皮膜の形成装置。
  9.  材料粒子を含む上記火炎の横断面における長手寸法が150mm以上であり、上記直線に沿って形成された不活性ガスの噴射口および上記ミストの噴射口の連続する長さ寸法も150mm以上であることを特徴とする請求項1~8のいずれかに記載したアモルファス皮膜の形成装置。
  10.  請求項1~9に記載したアモルファス皮膜の形成装置を用い、材料粒子の化学成分に応じて、上記ミストの噴射口の角度、ならびに上記不活性ガスおよびミストの噴射圧力を変更することを特徴とするアモルファス皮膜の形成方法。
     
PCT/JP2013/050331 2012-01-13 2013-01-10 アモルファス皮膜の形成装置および形成方法 WO2013105613A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380004743.XA CN104040015B (zh) 2012-01-13 2013-01-10 非晶形薄膜的形成装置
US14/372,089 US10773267B2 (en) 2012-01-13 2013-01-10 Device for forming amorphous film and method for forming same
EP13735785.1A EP2803752B1 (en) 2012-01-13 2013-01-10 Device for forming amorphous film and method for forming same
JP2013553311A JP6014606B2 (ja) 2012-01-13 2013-01-10 アモルファス皮膜の形成装置および形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012005700 2012-01-13
JP2012-005700 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105613A1 true WO2013105613A1 (ja) 2013-07-18

Family

ID=48781555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050331 WO2013105613A1 (ja) 2012-01-13 2013-01-10 アモルファス皮膜の形成装置および形成方法

Country Status (6)

Country Link
US (1) US10773267B2 (ja)
EP (1) EP2803752B1 (ja)
JP (1) JP6014606B2 (ja)
CN (1) CN104040015B (ja)
HU (1) HUE041637T2 (ja)
WO (1) WO2013105613A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115394A1 (ja) * 2014-01-31 2015-08-06 株式会社中山アモルファス 耐食性溶射皮膜、その形成方法およびその形成用溶射装置
WO2016181939A1 (ja) * 2015-05-11 2016-11-17 株式会社中山アモルファス 高速フレーム溶射装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333293B (zh) * 2018-05-17 2024-03-29 东北大学 利用细水雾抑制地下狭长空间火灾轰燃的试验装置及方法
JP7224254B2 (ja) * 2019-07-17 2023-02-17 東京エレクトロン株式会社 基板処理装置、情報処理装置、及び基板処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351861Y2 (ja) * 1974-02-25 1978-12-12
JPH10507227A (ja) * 1994-08-18 1998-07-14 サルザー メトコ エイジー 大型基体上に均一な薄い被膜を形成するための装置および方法
JP2003183805A (ja) * 2001-10-09 2003-07-03 National Institute For Materials Science Hvof溶射ガンによる金属皮膜形成方法と溶射装置
JP2008174784A (ja) * 2007-01-17 2008-07-31 Nakayama Steel Works Ltd 溶射によるアモルファス皮膜の形成方法
JP4579317B2 (ja) 2008-07-15 2010-11-10 株式会社中山製鋼所 アモルファス皮膜の形成装置および形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1185898B (de) * 1961-04-12 1965-01-21 Knapsack Ag Schaeleinrichtung mit mindestens einem Brenner und einem seine Austrittsbreite regelnden Steuerventil
CA972005A (en) 1972-07-12 1975-07-29 Erste Deutsche Floatglas G.M.B.H. And Co. Carrying frame for giant glass sheets
JPS5646853Y2 (ja) * 1977-11-15 1981-11-02
JPS5588843A (en) 1978-12-27 1980-07-04 Matsushita Electric Ind Co Ltd Production of amorphous body
US4869936A (en) * 1987-12-28 1989-09-26 Amoco Corporation Apparatus and process for producing high density thermal spray coatings
US5120582A (en) 1991-01-16 1992-06-09 Browning James A Maximum combustion energy conversion air fuel internal burner
US6245390B1 (en) * 1999-09-10 2001-06-12 Viatcheslav Baranovski High-velocity thermal spray apparatus and method of forming materials
US20050199739A1 (en) * 2002-10-09 2005-09-15 Seiji Kuroda Method of forming metal coating with hvof spray gun and thermal spray apparatus
JP5260847B2 (ja) 2006-08-14 2013-08-14 株式会社中山製鋼所 過冷却液相金属皮膜の形成用溶射装置および過冷却液相金属皮膜の製造方法
US20090246398A1 (en) * 2006-08-14 2009-10-01 Nakayama Steel Works ,Ltd. Method and apparatus for forming amorphous coating film
DE102008000843A1 (de) 2008-03-27 2009-10-01 Voith Patent Gmbh Einrichtung zum Auftragen von mittels Gas zerstäubter Flüssigkeit
GB0904948D0 (en) 2009-03-23 2009-05-06 Monitor Coatings Ltd Compact HVOF system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351861Y2 (ja) * 1974-02-25 1978-12-12
JPH10507227A (ja) * 1994-08-18 1998-07-14 サルザー メトコ エイジー 大型基体上に均一な薄い被膜を形成するための装置および方法
JP2003183805A (ja) * 2001-10-09 2003-07-03 National Institute For Materials Science Hvof溶射ガンによる金属皮膜形成方法と溶射装置
JP2008174784A (ja) * 2007-01-17 2008-07-31 Nakayama Steel Works Ltd 溶射によるアモルファス皮膜の形成方法
JP4579317B2 (ja) 2008-07-15 2010-11-10 株式会社中山製鋼所 アモルファス皮膜の形成装置および形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2803752A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115394A1 (ja) * 2014-01-31 2015-08-06 株式会社中山アモルファス 耐食性溶射皮膜、その形成方法およびその形成用溶射装置
JP2015145516A (ja) * 2014-01-31 2015-08-13 株式会社中山アモルファス 耐食性溶射皮膜、その形成方法およびその形成用溶射装置
CN106062236A (zh) * 2014-01-31 2016-10-26 株式会社中山非晶质 耐腐蚀性热喷涂涂层、其形成方法及其形成用热喷涂装置
US10323153B2 (en) 2014-01-31 2019-06-18 Yoshikawa Kogyo Co., Ltd. Corrosion-resistant sprayed coating, method for forming same and spraying device for forming same
WO2016181939A1 (ja) * 2015-05-11 2016-11-17 株式会社中山アモルファス 高速フレーム溶射装置

Also Published As

Publication number Publication date
JP6014606B2 (ja) 2016-10-25
HUE041637T2 (hu) 2019-05-28
EP2803752B1 (en) 2018-09-26
EP2803752A1 (en) 2014-11-19
US20140335283A1 (en) 2014-11-13
US10773267B2 (en) 2020-09-15
CN104040015B (zh) 2016-10-19
JPWO2013105613A1 (ja) 2015-05-11
CN104040015A (zh) 2014-09-10
EP2803752A4 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
AU2018297846B2 (en) Cold spray gun and cold spray apparatus equipped with the same
FI90738B (fi) Supersoninen lämpösuihkutuspistooli ja päällystysmenetelmä
US6861101B1 (en) Plasma spray method for applying a coating utilizing particle kinetics
US6322856B1 (en) Power injection for plasma thermal spraying
JP6014606B2 (ja) アモルファス皮膜の形成装置および形成方法
WO2008020585A1 (fr) Procédé et dispositif de formage de film de revêtement amorphe
JP5260847B2 (ja) 過冷却液相金属皮膜の形成用溶射装置および過冷却液相金属皮膜の製造方法
JPH02131160A (ja) 高速火炎噴射装置及び素材物質成型方法
US20070166478A1 (en) Thermal spray powder and process for producing the same as well as method for spraying the same
WO2008026479A1 (en) Acceleration nozzle and ejection nozzle device
US20150225833A1 (en) Plasma-Kinetic Spray Apparatus and Method
US6544597B2 (en) Mixed powder thermal spraying method
EP2524736B1 (en) Device and method for forming amorphous coating film
US20080093045A1 (en) Method for Producing Metal Products
JP5848617B2 (ja) アモルファス板とその製造方法
US20120251885A1 (en) High power, wide-temperature range electrode materials, electrodes, related devices and methods of manufacture
JP2010003976A (ja) 成膜装置
CN115943050A (zh) 用于部件的增材制造的方法
JPS6029542B2 (ja) 熱スプレ−方法及び熱スプレ−装置
JP4863487B2 (ja) ウォームスプレー法
JP5983450B2 (ja) 溶融金属塗布装置
JP6715694B2 (ja) プラズマ溶射装置
JP2001003151A (ja) プラズマ溶射装置
JP2020514534A (ja) ノズル構造
KR20160007072A (ko) 혼합형 용사 코팅 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13735785

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013553311

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14372089

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013735785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE