WO2013105429A1 - Molding material, coating composition, and method for manufacturing molding material - Google Patents

Molding material, coating composition, and method for manufacturing molding material Download PDF

Info

Publication number
WO2013105429A1
WO2013105429A1 PCT/JP2012/083460 JP2012083460W WO2013105429A1 WO 2013105429 A1 WO2013105429 A1 WO 2013105429A1 JP 2012083460 W JP2012083460 W JP 2012083460W WO 2013105429 A1 WO2013105429 A1 WO 2013105429A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molding material
compound
surface layer
fingerprint
Prior art date
Application number
PCT/JP2012/083460
Other languages
French (fr)
Japanese (ja)
Inventor
石田康之
岩谷忠彦
高田育
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201280065793.4A priority Critical patent/CN104023969B/en
Priority to JP2013505652A priority patent/JP6102735B2/en
Priority to KR1020147017784A priority patent/KR102061920B1/en
Publication of WO2013105429A1 publication Critical patent/WO2013105429A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1668Vinyl-type polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/04Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/102Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/20Polymers characterized by their physical structure
    • C08J2400/202Dendritic macromolecules, e.g. dendrimers or hyperbranched polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08J2433/16Homopolymers or copolymers of esters containing halogen atoms

Definitions

  • the present invention relates to a molding material having a surface layer excellent in fingerprint resistance, a coating composition capable of forming a surface layer excellent in fingerprint resistance, and a method for producing the molding material.
  • a fingerprint is a pattern formed by a line (ridge) where the opening of a sweat gland on the skin of the fingertip is raised, and a pattern in which the pattern is attached to the surface of an object. If it cannot be easily wiped off, there is a problem of giving an unpleasant impression that the appearance is dirty.
  • electronic devices operated with fingers such as smartphones / touch panels, keyboards, TV / air conditioner remote controls, etc., are increasing. For example, there is a problem that a fingerprint is attached by grasping a casing of a mobile phone, and the fingerprint is conspicuous and the clean feeling is impaired.
  • a signal display unit such as a warning light, or the surface of a lens / mirror
  • the display image, display signal, reflection image is blurred, or the part where the fingerprint is attached
  • the visibility is lowered due to a difference in reflectance at a portion where it is not attached.
  • fingerprint resistance the characteristic that the fingerprint on the surface of the article is not conspicuous, difficult to see, or difficult to see, or can easily wipe off the attached fingerprint.
  • a characteristic of the member having it is disclosed in Patent Document 1 that “a low refractive index layer having a light refractive index of less than 1.75 on one surface of a substrate, or a light refractive index at a wavelength of 550 nm”.
  • a high refractive index layer having a refractive index of 1.75 or more, or both
  • an olein having a dry film thickness of 20 ⁇ m on the surface of the thin film layer
  • Patent Document 2 discloses that “a glossiness meter is used to measure a 75 to 20 degree specular gloss of a film formed on an object to be an initial gloss.
  • Patent Document 3 “a base material, an optical functional layer formed on the base material, a surface element ratio formed on the optical functional layer, and a silicon element ( Si) to carbon element (C) ratio Si / C is 0.25 to 1.0, and F / C, which is the ratio of fluorine element (F) to carbon element (C), is 0.10 to 1.
  • An optical functional film comprising an antifouling layer having 0 and the following characteristics:
  • Liquid paraffin contact angle is 65 ° or more, and liquid paraffin falling angle is 15 ° or less b.
  • Black magic contact angle is 35 ° or more and black magic sliding angle is 15 ° or less c. "The coefficient of dynamic friction is less than 0.15" has been proposed.
  • Patent Document 4 states that “a hard coat film having a hard coat layer on at least one surface on a transparent substrate and having a hard coat layer positioned on the outermost surface”.
  • the hard coat layer contains a fluorine compound and / or a silicon-based compound, and the fluorine atom: oxygen atom: carbon atom abundance 20 atomic on the surface of the hard coat layer is measured with an X-ray photoelectron spectrometer. % Or more and less than 50 atomic%: 20 atomic% or more and less than 30 atomic%: 30 atomic% or more and less than 60 atomic%, and the silicon abundance is in the range of 0 atomic% or more and less than 10 atomic%, and surface contact.
  • the surface free energy calculated from the corner is 15 mN / m or more and 20 m / Have been proposed hard coat film ", characterized in that m is within the range.
  • Patent Document 5 describes that “at least one vinyl monomer selected from a vinyl monomer having an alkyl group having 6 to 22 carbon atoms (a1) and an aromatic vinyl monomer (a2)”.
  • Polymerization containing (A) and vinyl monomer (B) having 5 to 13 fluorine atoms in the molecule in a weight ratio of (A) :( B) 90 to 99.9: 0.1 to 10
  • An anti-fingerprinting agent characterized by comprising a copolymer (I) obtained by polymerizing components has been proposed.
  • Patent Document 1 and Patent Document 2 the present inventors have confirmed the visibility of fingerprints under various conditions. As a result, only by satisfying these characteristics, the fingerprints are inconspicuous or the fingerprints can be easily wiped off. It was insufficient.
  • Patent Document 3 focuses on the liquid paraffin contact angle and the falling angle, but when the present inventors have confirmed various surface layers, the contact angle, the falling angle and the fingerprint visibility, and the wiping property are not necessarily obtained. It was found that even when the range of Patent Document 3 was satisfied, sufficient fingerprint resistance could not be obtained.
  • Patent Documents 4 and 5 were confirmed by the present inventors, and the effect was limited. In particular, the technique was insufficient when a fingerprint having a lot of sebum was attached.
  • the problems to be solved by the present invention include a molding material excellent in fingerprint resistance, in particular, fingerprint wiping property while maintaining glossiness or transparency and scratch resistance necessary for practical use, a paint composition that can be formed, and It is providing the manufacturing method of a molding material.
  • the present invention is as follows.
  • a molding material having a surface layer on at least one surface A molding material in which the surface layer has a 60 ° specular gloss specified by JIS Z8741: 1997 of 60% or more and a receding contact angle ⁇ r of oleic acid of 60 ° or more.
  • the specular reflection light after wiping the simulated fingerprint based on the state before the simulated fingerprint adhesion obtained according to JIS Z8730: 2009 and JIS Z8722: 2009
  • ⁇ E SCI-2 Sb10W10
  • ⁇ E * ab de: 8 °
  • a molding material in which Sb10W10 (hereinafter referred to as ⁇ E SCE-2 ) satisfies the range of the following formula (1).
  • Simulated fingerprint adhesion conditions A dispersion composed of 70% by mass of oleic acid and 30% by mass of silica particles having a number average particle diameter of 2 ⁇ m has a Ra defined by JIS B0601: 2001 of 3 ⁇ m and a rubber defined by JIS K6253: 1997. 1.0 g / m 2 is adhered to a silicone rubber having a hardness of 50, and this is adhered to the target surface at a pressure of 30 KPa.
  • Simulated fingerprint wiping conditions The simulated fingerprint attached by the above method is rubbed three times with a nonwoven fabric at a pressure of 30 KPa and a speed of 5 cm / sec.
  • Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group 2)
  • Compound B having a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group and a reactive site 3)
  • Binder component [8] The molding material according to any one of [1] to [6], wherein the surface layer contains the following 1) to 3).
  • Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group
  • Binder component 3) Particle component comprising particle d (I) having a number average particle diameter of 5 nm to 20 nm and particle d (II) having a number average particle diameter of 50 nm to 300 nm
  • the surface layer is from 1) below The molding material according to [8] above, which contains 3).
  • Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group 2)
  • Compound B having a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group and a reactive site 3)
  • Binder raw material [11]
  • a coating composition containing the following 1) to 3).
  • Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group 2) Binder raw material 3) Particle component consisting of particles D (I) having a number average particle diameter of 5 nm or more and 20 nm or less and particles D (II) having a number average particle diameter of 50 nm or more and 300 nm or less [12] containing the following 1) to 3) The coating composition according to [11] above.
  • Patent Document 1 applies oleic acid and evaluates the color difference based on only regular reflection of the single incident light before and after the application, so that the state actually seen by humans cannot be reproduced.
  • Patent Document 2 evaluates adhesion and wiping by changing the glossiness, but since the evaluation by glossiness only looks at the influence of light scattering due to adhesion, It is considered that the change in color due to adhesion could not be evaluated, and the correspondence with visibility was insufficient.
  • oleic acid is used as a simulated fingerprint liquid for evaluating visibility
  • oleic acid is used in Patent Document 1 and higher fatty acids and terpenes are used in Patent Document 2, but the liquid constituting the actual fingerprint is supplied from the finger skin.
  • water and organic salts such as uric acid salts
  • sebum such as oleic acid
  • particles in dust and cosmetics in the living environment sand dust, titanium oxide, zinc oxide, silica, etc.
  • Patent Document 3 uses the contact angle and the falling angle of the fingerprint-adhesive liquid paraffin as described above, and the former is a dynamic of liquid components such as fingerprint attachment and wiping.
  • the latter is a parameter indicating the dynamic behavior of the droplet, and the latter is greatly affected by the mass of the droplet from the principle of the measurement method. It is thought that the dynamic behavior of was not able to be expressed.
  • Patent Document 4 regulates the abundance ratio of fluorine atom: oxygen atom: carbon atom on the surface of the hard coat layer, but prevents adhesion of sebum components and further adheres.
  • the oil repellent component that is, the fluorine component
  • Patent Document 5 uses a copolymer of a long-chain alkyl group and a fluorine compound, thereby preventing the uniform presence of the fluorine compound on the surface, resulting in an effect. Is considered to have been insufficient.
  • the present inventors attach a simulated fingerprint close to the actual fingerprint composition to a molding material having a glossy or transparent feeling under a certain condition, and then wipe it off.
  • the color difference after wiping with reference to the pre-adhesion as a reference satisfies the specific relationship (formula (1) described later), and glossiness and fingerprint resistance, It was found that the fingerprint wiping property is excellent. This is due to the fact that the human eye recognizes fingerprints or smudges caused by fingerprints based on changes in glossiness and changes in color tone. This is because the change in taste is evaluated by the color difference of regular reflection removal, and it has been found that it is difficult to visually recognize the fingerprint in a range satisfying a specific relationship (formula (1) described later) obtained by integrating these values.
  • the present inventors have focused on the behavior of the liquid when the liquid component of the fingerprint adheres to the surface of the molding material, and also found that the receding contact angle formed on the molding material by the liquid component has the above-mentioned preferable range. . Whether the fingerprint component is likely to stick between the finger or the molding material surface is governed by the receding contact angle between the fingerprint component and the finger or the molding material surface, and the receding contact angle of the surface layer of the molding material is This is because it has been found that the fingerprint component hardly adheres when exceeding a specific range.
  • the relationship between the advancing contact angle and the receding contact angle of the fingerprint component of the surface layer of the molding material in order to achieve both glossiness and fingerprint resistance, in particular fingerprint wiping property is governed by two factors: “easy transfer of the fingerprint component to the wiping material” and “easy mobility of the fingerprint component on the surface layer”. This is because the receding contact angle and the latter can be expressed by the advancing contact angle, and it has been found that if the specific relationship (formula (2) described later) is integrated, the attached fingerprint can be easily wiped off.
  • the present inventors have found that the fingerprint resistance, in particular, the fingerprint wiping property can be further improved by making the surface satisfy a specific form (formula (3) and formula (4) described later). . This is because the fact that sebum adhering to the cloth when the fingerprint is wiped can be smoothly moved on the surface affects the wipeability of the fingerprint, and it has been found that this can be realized by reducing the contact area.
  • the molding material of the present invention has a surface layer on at least one surface, and the surface layer has a specific specular gloss and adheres a simulated fingerprint, then wipes off under certain conditions, and reflects the color before the simulated fingerprint is attached.
  • the reflection color obtained after wiping off the simulated fingerprint was measured by the same method using two methods of specular reflection light inclusion and specular reflection light removal, and was obtained from the color difference obtained from the measurement. It is preferable to set the calculated value to a specific value or less.
  • the specular gloss shown here is a value obtained by measuring the 60 ° specular gloss specified in JIS Z8741: 1997, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more. If the specular gloss is less than 60%, the glossiness may be felt to be insufficient.
  • the receding contact angle ⁇ r of oleic acid in the surface layer is preferably 60 ° or more, more preferably 65 ° or more, and particularly preferably 70 ° or more.
  • the measuring method and meaning of the receding contact angle will be described later.
  • the receding contact angle has no problem when it is high.
  • the receding contact angle is lower than 60 °, the fingerprint component tends to adhere gradually and the fingerprint resistance may be lowered.
  • the surface layer was subjected to simulated fingerprint attachment and simulated fingerprint wiping under the following conditions, and the reflection of the specular reflection light after wiping the simulated fingerprint based on the state before the simulated fingerprint adhesion determined according to JIS Z8730: 2009 and JIS Z8722: 2009
  • Color difference ⁇ E * ab (di: 8 °) Sb10W10 (hereinafter referred to as ⁇ E SCI-2 ) and the color difference ⁇ E * ab (de: 8 °) after removing the regular reflection light after wiping the simulated fingerprint based on the state before the dummy fingerprint is attached )
  • Sb10W10 referred to as ⁇ E SCE-2
  • ⁇ E SCE-2 preferably satisfies the following expression (1), that is, the value on the left side of expression (1) is 2.0 or less.
  • the value on the left side of Equation (1) is 0 or a positive value, there will be no problem if it is small. On the other hand, if this value is greater than 2.0, the fingerprint wiping property is insufficient, resulting in anti-fingerprint resistance. May decrease. From this viewpoint, the value on the left side of the formula (1) is more preferably 1.7 or less, and particularly preferably 1.5 or less.
  • Simulated fingerprint adhesion conditions A dispersion composed of 70% by mass of oleic acid and 30% by mass of silica particles having a number average particle diameter of 2 ⁇ m has a Ra defined by JIS B0601: 2001 of 3 ⁇ m and a rubber defined by JIS K6253: 1997. 1.0 g / m 2 is adhered to a silicone rubber having a hardness of 50, and this is adhered to the target surface at a pressure of 30 KPa.
  • the variation of Ra is allowed to be ⁇ 1 ⁇ m, and the amount of the dispersion consisting of 70% by mass of oleic acid and 30% by mass of silica having a number average particle diameter of 2 ⁇ m to the surface of the silicone rubber is ⁇ 0.1 g / m 2 . Variation is acceptable. A specific simulated fingerprint attachment procedure will be described later. Simulated fingerprint wiping conditions: The simulated fingerprint attached by the above method is rubbed three times with a nonwoven fabric at a pressure of 30 KPa and a speed of 5 cm / sec.
  • the receding contact angle ⁇ r of oleic acid in the surface layer is preferably 50 ° or more, more preferably 60 ° or more, and particularly preferably 70 ° or more.
  • the measuring method and meaning of the receding contact angle will be described later.
  • the receding contact angle is lower than 50 °, the fingerprint component tends to adhere, and it may be difficult to satisfy the formula (1), and the fingerprint resistance may be lowered.
  • the advancing contact angle ⁇ a and receding contact angle ⁇ r of the oleic acid of the surface layer satisfy the following formula (2), that is, 15 ° or less, preferably 12 ° or less, more preferably 10 °.
  • the following are particularly preferred: If the value of the formula (2) is 0 or a positive value, it is preferable for a small amount. On the other hand, if this value is larger than 15 °, the fingerprint wiping property is insufficient and the fingerprint resistance is lowered. There is.
  • the contact angle of the liquid on the solid surface is essentially a thermodynamic quantity and should take a single value once the system is determined.
  • the contact angle on the opposite side (retreat side) to the contact angle in the traveling direction often does not take the same value.
  • the contact angle of the traveling method at this time is called a forward contact angle, and the contact angle on the opposite side is called a receding contact angle.
  • the value of the advancing contact angle by the expansion-contraction method is that when a liquid (oleic acid) is applied on the surface layer to expand the droplet, the contact angle of the droplet is measured continuously several times, and the contact angle is constant. It is represented by the average value of where it became.
  • the receding contact angle value is determined by applying liquid (oleic acid) on the surface layer and gradually discharging the liquid to expand the droplet, and then drawing the droplet and contracting the droplet.
  • the contact angle of the droplet is continuously measured a plurality of times, and is expressed as an average value when the contact angle becomes constant. Specifically, for example, when liquid is discharged and sucked between 1 and 50 ⁇ L (droplet expansion and contraction), the advancing contact angle is 1 ⁇ L to 50 ⁇ L at the time of liquid-liquid discharging, and the receding contact angle is 50 ⁇ L at the time of droplet suction. 1 to 1 ⁇ L, and can be determined by obtaining a value at which the contact angle of the droplet becomes substantially constant during the expansion or contraction process of the liquid.
  • the contact angle in the expansion contraction method can be measured using, for example, Drop Master (manufactured by Kyowa Interface Science Co., Ltd.).
  • the elemental composition of the surface layer preferably contains 50% or more of fluorine by atomic ratio, 55% The above is more preferable, and 60% or more is particularly preferable.
  • the elemental composition of the surface layer there is no problem with a large amount of fluorine from the viewpoint of durability, but since a skeleton for forming the layer is required, the upper limit is practically about 80%, Above that, reactive sites in the surface layer are likely to be damaged, and it may be difficult to obtain sufficient hardness.
  • X-ray photoelectron spectroscopy refers to a method for analyzing the constituent elements of a sample and their electronic states by irradiating the sample surface with X-rays and measuring the energy of the resulting photoelectrons.
  • the elemental composition of the portion ⁇ 10 nm or less
  • the elemental composition obtained by analysis at a photoelectron escape angle of 15 ° when the amount of fluorine is less than 50%, fingerprint adhesion and fingerprint wiping may be deteriorated.
  • Elements other than fluorine are not particularly limited, but carbon, oxygen, silicon, and the like are preferably included from the relationship of constituting the compound.
  • the surface form of the surface layer is a large concavo-convex structure that reduces the contact area of the surface and a fine structure that reduces the visibility of the attached fingerprint. It is preferable that an uneven structure coexists.
  • the coexistence of a large concavo-convex structure and a fine concavo-convex structure means a state in which a region having a large concavo-convex structure and a region having a fine concavo-convex structure are mixed.
  • each region does not need to form a separate region, and may be in a state in which a fine concavo-convex structure is further present on a part or the entire surface of a large concavo-convex structure.
  • the ten-point average roughness Rz and the centerline average roughness Ra specified by JIS B0601: 2001 satisfy the following formulas (3) and (4).
  • the ten-point average roughness Rz is a value obtained by calculating the average of the top five values for the height of the convex portion and the depth of the concave portion of the concavo-convex structure on the surface, and taking the sum. This is a value that characterizes a large uneven structure existing at a low frequency.
  • the center line average roughness Ra is a value that captures all of the in-plane uneven structures on the average. Therefore, Ra does not exceed Rz. Further, when Ra is larger than 4 nm, sufficient transparency of the molding material may not be obtained, and when Ra is smaller than 0.30 nm, the effect of introducing a fine uneven structure may not be obtained. .
  • the surface layer is a fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group.
  • a compound B having a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group and a reactive site, and a binder component.
  • the fluorine compound A, the compound B, and the binder component are included not only when they are mixed in an unreacted state, but also, for example, the reactive site of the fluorine compound A, the compound B, and / or the binder.
  • the fluorine compound A, the compound B and the binder component are the main components of the surface layer.
  • the main component means a component occupying 50% by mass or more of all components unless otherwise specified.
  • the total of the fluorine compound A, the compound B, and the binder component indicates 50% by mass or more.
  • the details and preferable content ratios of the fluorine compound A, the compound B, and the binder component will be described later.
  • the fluorine compound A is attached by increasing the contact angle of the liquid constituting the fingerprint by reducing the surface energy.
  • the compound B acts as an auxiliary agent for allowing the fluorine compound A to be present at a high density on the surface, and the binder component immobilizes these components in the surface layer and binds to the base material. And has a role of imparting practically necessary scratch resistance.
  • the surface layer is a fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group.
  • a binder component, and a particle d (I) having a number average particle size of 5 nm to 20 nm and a particle d (II) having a number average particle size of 50 nm to 300 nm are preferable.
  • the binder component C (I) which is a compound having 10 or more reactive sites in the molecule and having a number average molecular weight of 1500 or more and 3000 or less, and having 3 or more and 6 or less reactive sites in the molecule as the binder component, the number average A binder component formed from a binder raw material C (II) which is a compound having a molecular weight of 500 or more and 1500 or less, and as a particle, a particle d (I) having a number average particle size of 5 nm to 20 nm and a number average particle size of 50 nm to 300 nm It is
  • Fluorine compound A (II) is a compound in which the reactive sites are specified as 2 or more and 5 or less in fluorine compound A, and by selecting and using such a specific compound among fluorine compounds A, the cloth width is particularly determined during wiping. Thus, it is possible to further improve the wiping durability, which is the durability to the change in the surface of the molding material due to rubbing.
  • the binder component formed from the binder raw material C (I) contributes particularly to the improvement of hardness, and the binder component formed from the binder raw material C (II) is particularly useful for fixing the fluorine compound A. Contribute. And by containing particle
  • the coating composition of the present invention is a fluorine having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group. It is preferable to contain the compound A, the compound B having a reactive site and a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group, and a binder raw material. Moreover, it is preferable that the fluorine compound A and the compound B are not couple
  • the coating composition of the present invention is a fluorine having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group. It is preferable to contain the compound A, a binder raw material, a particle D (I) having a number average particle size of 5 nm to 20 nm, and a particle D (II) having a number average particle size of 50 nm to 300 nm.
  • fluorine compound A (II) The binder raw material has 10 or more reactive sites in the molecule, the binder raw material C (I), which is a compound having a number average molecular weight of 1500 to 3000, and 3 to 6 reactive sites in the molecule.
  • Binder raw material C (II) which is a compound having a molecular weight of 500 to 1500, particles D (I) having a number average particle size of 5 nm to 20 nm and particles D (II) having a number average particle size of 50 nm to 300 nm as particles It is more preferable to contain.
  • the function of each component is as described for the molding material (in this case, d (I) is read as D (I) and d (II) is read as D (II)).
  • the molding material of the present invention may be any of a flat shape (film, sheet, plate) and three-dimensional shape (molded product) as long as it has the characteristics of the present invention and / or a surface layer containing the material.
  • the surface layer in the present invention refers to a portion and an elemental composition that are directed from the surface of the molding material in the thickness direction (in the case of a planar shape) or in the internal direction (in the case of a three-dimensional shape) and adjacent in the thickness direction or the internal direction.
  • the shape and physical properties of inclusions (particles, etc.) can be distinguished by having a discontinuous boundary surface, and indicate a portion having a finite thickness.
  • composition / element analyzers IR, XPS, XRF, EDAX, SIMS, etc.
  • electron microscope transmission type, scanning type
  • optical microscope optical microscope
  • the surface layer may have other functions such as antireflection, hard coat, antistatic, antifouling, conductivity, heat ray reflection, near infrared absorption, electromagnetic wave shielding, and easy adhesion. .
  • the thickness of the surface layer is not particularly limited, but is preferably 1 nm or more and 100 ⁇ m or less, more preferably 5 nm or more and 50 ⁇ m or less, and the thickness can be selected according to the other functions described above.
  • the coating composition of the present invention is a liquid composition at room temperature that can form the “surface layer” on the surface of the molding material by a general coating process including coating, drying, and curing, and a process such as vapor deposition. It preferably contains fluorine compound A, compound B, binder raw material C, and particles D, and may further contain various additives such as a solvent, a photopolymerization initiator, a curing agent, and a catalyst. Details of the fluorine compound A, the compound B, the binder raw material C, and the particles D will be described later.
  • the fluorine compound A refers to a compound having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group.
  • a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group, and a fluorooxyalkanediyl group are alkyl groups, oxyalkyl groups, alkenyl groups, alkanediyl groups, and oxyalkanediyl groups.
  • a part or all of the substituents are replaced by fluorine, both of which are mainly composed of fluorine atoms and carbon atoms, and there may be branching in the structure.
  • a plurality of linked dimers, trimers, oligomers, and polymer structures may be formed.
  • the reactive site refers to a site that reacts with other components by external energy such as heat or light.
  • reactive sites include alkoxysilyl groups and silanol groups in which alkoxysilyl groups are hydrolyzed from the viewpoint of reactivity, carboxyl groups, hydroxyl groups, epoxy groups, vinyl groups, allyl groups, acryloyl groups, methacryloyl groups, and the like.
  • vinyl, allyl, alkoxysilyl, silyl ether or silanol, epoxy, and acryloyl (methacryloyl) groups are preferred from the viewpoints of reactivity and handling, and vinyl, allyl, and acryloyl (methacryloyl) are preferred.
  • acryloyl (methacryloyl) group is more preferable, and acryloyl (methacryloyl) group is particularly preferable.
  • fluorine having 2 to 5 of the reactive sites described above.
  • compound A (II) From the viewpoint of durability of the surface layer at the time of fingerprint wiping, it is desirable that the fluorine compound A has many reactive sites. On the other hand, if the reactive site is 6 or more in the molecule, the effect of reducing the surface energy is sufficient. May not be obtained.
  • fluorine compound A is a compound represented by the following chemical formula (1).
  • R f1 -R 2 -D 1 Chemical formula (1)
  • R f1 is a fluoroalkyl group, fluorooxyalkyl group, fluoroalkenyl group, fluoro alkanediyl group, the site containing the fluoroxy alkanediyl group
  • R 2 is derived alkanediyl group, alkanetriyl groups, and from them D 1 represents a reactive site in the ester structure, urethane structure, ether structure, and triazine structure).
  • Examples of the compound of the chemical formula (1) include 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropyl acrylate, 2-perfluorobutylethyl acrylate, 3-perfluorobutyl -2-hydroxypropyl acrylate, 2-perfluorohexylethyl acrylate, 3-perfluorohexyl-2-hydroxypropyl acrylate, 2-perfluorooctylethyl acrylate, 3-perfluorooctyl-2-hydroxypropyl acrylate, 2-per Fluorodecylethyl acrylate, 2-perfluoro-3-methylbutylethyl acrylate, 3-perfluoro-3-methoxybutyl-2-hydroxypropyl acrylate, 2-perfluoro-5-methylhexylethylacrylate 3-perfluoro-5-methylhexyl-2-hydroxypropyl acrylate, 2-perfluoro-7-methyl
  • R 2 is a so-called fluorine-containing dendrimer having a multi-branched structure
  • the other is a fluoro group consisting of a fluorooxyalkyl group and a fluorooxyalkanediyl group as R f1 moiety in the chemical formula (1).
  • the fluorine-containing dendrimer refers to a dendrimer containing a group such as a fluoroalkyl group or fluorooxyalkyl, a fluoroalkenyl group, a fluoroalkanediyl group, or a fluorooxyalkanediyl group.
  • Dendrimers include, for example, Hawker, et. al. J. et al. Chem. Soc. , Chem. Commun. 1990, (15), 1010-1013. , D. A. Tomalia, et. al. Angew. Chem. Int. Ed. Engl. 29, 138-175 (1990). J. et al. M.M. J. et al.
  • the weight average molecular weight (hereinafter abbreviated as Mw) of the fluorine-containing dendrimer is preferably 1000-200000, more preferably 2000-100000, and most preferably 5000-60000 in terms of polystyrene by gel permeation chromatography (GPC).
  • the fluoropolyether moiety is a moiety comprising a fluoroalkyl group, an oxyfluoroalkyl group, an oxyfluoroalkanediyl group, etc., and has a structure represented by chemical formulas (2) and (3).
  • n1 is an integer of 1 to 3
  • n2 to n5 are integers of 1 or 2
  • k, m, p, and s are integers of 0 or more
  • p + s is 1 or more.
  • n1 is 2 or more
  • n2 to n5 are integers of 1 or 2
  • n2 and n4 are 2, and n3 and n5 are integers of 1 or 2.
  • this fluoropolyether moiety preferably 4 or more and 12 or less, more preferably 4 or more and 10 or less, and particularly preferably 6 or more and 8 or less.
  • the chain length of this fluoropolyether moiety preferably 4 or more and 12 or less, more preferably 4 or more and 10 or less, and particularly preferably 6 or more and 8 or less.
  • the fluorine compound A may have a plurality of fluoropolyether moieties per molecule.
  • Examples of commercially available fluorine compound A include RS-75 (DIC Corporation), OPTOOL DSX, OPTOOL DAC (Daikin Industries, Ltd.), C10GACRY, C8HGOL (Oil Products), and the like. These products can be used.
  • Compound B refers to a compound having a reactive site and a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group.
  • the reactive site is as described in the section of the fluorine compound A.
  • compound B is a compound represented by the following chemical formula (4).
  • R 10 -R 11 -D 12 Chemical formula (4) (R 10 is a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group, R 11 is an alkanediyl group, an alkanetriyl group, and an ester structure, urethane structure, ether structure, triazine derived therefrom)
  • D 12 represents a reactive site).
  • the compound B represented by the chemical formula (4) is preferably a (meth) acrylate monomer, oligomer, alkoxysilane, alkoxysilane hydrolyzate, alkoxysilane oligomer, or the like, and more preferably an acrylate monomer.
  • acrylate monomers include acrylates having one or more (meth) acryloyloxy groups in one molecule, and specific examples include isobornyl (meth) acrylate, (iso) stearyl (meth) acrylate, and lauryl.
  • (meth) acrylate represents acrylate and methacrylate
  • (meth) acryloyloxy group represents acryloyloxy group and methacryloyloxy group generically. (The same applies to the case where “(meth) acryl ...” is contained in the compound in addition to the above).
  • acrylate monomers include Shin-Nakamura Chemical Co., Ltd. (trade name “NK Ester” series, etc.), Toagosei Co., Ltd. (“Aronix” (registered trademark) series, etc.), Kyoeisha Chemical Co., Ltd. (Product name: “light acrylate”, “light ester” series, etc. can be mentioned, and these products can be used.
  • the binder raw material is a compound contained in the coating composition, and is a raw material for the binder component present in the surface layer formed by applying, drying, and curing the coating composition. That is, the binder raw material contained in the surface layer after the binder raw material contained in the coating composition of the present invention is cured by heat or ionizing radiation is referred to as a binder component. Some binder materials may exist in the surface layer in the same state as in the coating composition (may be left unreacted), and even in that case, the material in the surface layer is the binder component. That's it.
  • the binder raw material in the coating composition is not particularly limited, but is preferably a binder raw material that can be cured by heat and / or active energy rays from the viewpoint of manufacturability.
  • One type of binder raw material in the coating composition may be used, or two or more types may be mixed and used.
  • the monomer having an alkoxy group, silanol group, reactive double bond, and functional group capable of ring-opening reaction in the molecule is preferably a binder raw material.
  • oxygen concentration is preferably as low as possible because oxygen inhibition can be prevented, and curing in an anaerobic atmosphere is more preferable. By reducing the oxygen concentration, the cured state of the outermost surface is improved and chemical resistance may be improved.
  • binder raw material a binder raw material which is a compound having 10 or more reactive sites in the molecule and having a number average molecular weight of 1500 to 3000 and 3 to 6 reactive sites in the molecule.
  • binder raw material C (II) which is a compound having a number average molecular weight of 500 or more and 1500 or less, and it is preferable to form a binder component using either or both of these as raw materials.
  • the binder raw material C (I) When the binder raw material C (I) is added to form the binder component, there is an effect of improving the hardness of the surface layer of the molding material obtained thereby.
  • the molecular weight and reactive site of the binder raw material C (I) are preferably sufficiently large.
  • the binder raw material C (I) is preferably a compound having 10 or more reactive sites in the molecule and a molecular weight of 1500 or more and 3000 or less.
  • the surface layer of the molding material obtained thereby is preferable because the dispersion of the fluorine compound A is preferable. It is particularly preferable that it is formed from a mixed system containing the binder raw material C (II) in addition to the raw material C (I).
  • the binder raw material C (II) is preferable because it has an effect of improving the dispersion of the fluorine compound A in the surface layer as described above.
  • the binder raw material C (II) has a reactive site number close to that of the fluorine material and preferably has a smaller molecular weight.
  • the binder raw material C (II) has a molecular weight that can maintain the hardness of the molding material and the number of crosslinks.
  • a compound having a reactive site and a molecular weight of 500 or more is preferable.
  • the molecular weight is greater than 1500 or the number of reaction sites is more than 7, the fluidity is impaired, the fluorine compound A cannot be dispersed in the surface layer, and the effect of reducing the surface energy is sufficiently obtained. It may not be possible.
  • the binder raw material in such a coating composition is preferably a polyfunctional acrylate monomer, oligomer, alkoxysilane, alkoxysilane hydrolyzate, alkoxysilane oligomer or the like, and more preferably a polyfunctional acrylate monomer or oligomer.
  • polyfunctional acrylate monomers include polyfunctional acrylates having three or more (meth) acryloyloxy groups in one molecule and modified polymers thereof. Specific examples include pentaerythritol tri (meth) acrylate and pentaerythritol.
  • Pentaerythritol triacrylate hexanemethylene diisocyanate urethane polymer and the like can be used. These monomers can be used alone or in combination of two or more.
  • polyfunctional acrylic compositions include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam” (registered trademark) series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol” (registered trademark) series, etc.) Shinnakamura Chemical Co., Ltd .; (trade name “NK Ester” series, etc.), DIC Corporation; (trade name “Unidic” (registered trademark), etc.), Toagosei Co., Ltd.
  • the layer which the molding material of this invention has, and a coating composition contain a particle component.
  • the particles may be either inorganic particles or organic particles, but inorganic particles are preferred from the viewpoint of durability.
  • inorganic particles include those subjected to surface treatment.
  • This surface treatment means introducing a compound onto the particle surface by chemical bonds (including covalent bonds, hydrogen bonds, ionic bonds, van der Waals bonds, hydrophobic bonds, etc.) and adsorption (including physical adsorption and chemical adsorption). Even if the compound introduced by the surface treatment is an organic compound, it is an inorganic particle if the underlying particle is an inorganic particle.
  • the type of inorganic particles contained is preferably 1 or more and 20 or less.
  • the kind of inorganic particle 1 type or more and 10 types or less are further more preferable, and 2 or more types and 4 types or less are especially preferable.
  • the kind of inorganic particles is determined by the kind of elements constituting the inorganic particles, and when any surface treatment is performed, it is decided by the kind of elements constituting the particles before the surface treatment. For example, since titanium oxide (TiO 2 ) and nitrogen-doped titanium oxide (TiO 2 ⁇ x N x ) in which part of oxygen of titanium oxide is substituted with nitrogen as an anion, the elements constituting the inorganic particles are different, Suppose that they are different types of inorganic particles.
  • particles (ZnO) consisting only of the same element, for example, Zn, O even if there are a plurality of particles having different number average particle diameters, and the composition ratio of Zn and O is different, These are the same type of particles. Even if there are a plurality of Zn particles having different oxidation numbers, as long as the elements constituting the particles are the same (in this example, all elements other than Zn are the same), these are the same kind of particles.
  • the particles contained in the coating composition of the present invention are contained in the surface layer in a form in which the surface state is changed by heat, ionizing radiation or the like in the treatment such as coating, drying, curing treatment or vapor deposition.
  • the particle component present in the coating composition of the present invention is the particles D (I) or D (II), and the coating layer is applied to the surface layer formed by a treatment such as coating, drying, curing or vapor deposition.
  • the existing particle component is referred to as particle d (I) or d (II). Note that some of the particles d (I) or d (II) present in the surface layer may exist in the same state as in the coating composition even in the surface layer (when they remain unreacted). In this case, the particles in the surface layer are expressed as particles d.
  • the inorganic particles are not particularly limited, but are preferably metal or metalloid oxides, nitrides, borides, chlorides, carbonates, sulfates, composite oxides containing two metals, metalloids, Different elements may be introduced between the lattices, lattice points may be replaced with different elements, or lattice defects may be introduced.
  • the inorganic particles are oxide particles in which at least one metal or semimetal selected from the group consisting of Si, Al, Ca, Zn, Ga, Mg, Zr, Ti, In, Sb, Sn, Ba, and Ce is oxidized. More preferably.
  • the form of the inorganic particles is not particularly limited, but the silica has a long chain structure in which the silica is connected in a bead shape (a shape in which a plurality of silicas are connected in a chain), or the connected silica is branched.
  • the thing and the bent thing are preferable. These are hereinafter referred to as beaded and / or branched silica.
  • the bead-like and / or branched silica is obtained by bonding particles between particles by interposing metal ions having a valence of 2 or more, preferably 3 or more, more preferably 5 or more, Preferably 7 or more connected.
  • the connection, branching, and bending states of the silica connected in the bead shape and / or branched can be confirmed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Commercially available products of this linked and / or branched silica are PS-S, PS-M (water dispersion), IPA-ST (IPA dispersion), MEK-ST manufactured by Nissan Chemical Industries, Ltd. (MEK dispersion), PL-1-IPA (IPA dispersion), PL-1-MEK (MEK dispersion) manufactured by Fuso Chemical Industry Co., Ltd., and the like, and these products can be used. .
  • the above-described chain silica is subjected to a surface treatment necessary for stable dispersion in a good solvent as a binder raw material.
  • a surface treatment necessary for stable dispersion in a good solvent as a binder raw material.
  • the surface treatment requires an alkyl group, alkenyl group, vinyl group, (meth) acryl group or the like having a carbon number of 1 to 5 or less on the surface. It is preferably introduced.
  • the molding material of the present invention preferably contains two types of particles d (I) and particles d (II).
  • the coating composition contains two types of particles D (I) and particles D (II). Is preferred.
  • particle d (I) or particle D (I) and particle d (II) or particle D (II) there is a particularly preferred number average particle size, respectively.
  • the particles d (I) or the particles D (I) are components that contribute to the fingerprint resistance.
  • the fine particles are dispersed on the surface to provide an effect of making the fingerprints less noticeable.
  • the number average particle diameter of the particles d (I) or the particles D (I) is preferably 5 nm or more and 20 nm or less. If the number average particle diameter is smaller than 5 nm, the above-described effect of making the fingerprint inconspicuous may not be sufficiently obtained. If it is larger than 20 nm, the transparency of the molding material may be impaired.
  • the particle d (II) or the particle D (II) is a component that contributes to the fingerprint wiping property.
  • the number average particle diameter of the particles d (II) or the particles D (II) is preferably 50 nm or more and 300 nm or less. When the number average particle diameter is smaller than 50 nm, the above-described friction reducing effect may not be sufficiently obtained. If it is large, the concavo-convex structure formed thereby may trigger the value of the aforementioned receding contact angle.
  • the number average particle diameter of the inorganic particles means the number-based arithmetic average length diameter described in JIS Z8819-2: 2001, and both the particles d in the molding material and the particles D in the coating composition are scanning electrons.
  • a primary particle is observed using a microscope (SEM), a transmission electron microscope, etc., and the diameter of the circumscribed circle of each primary particle is defined as an equivalent particle diameter, and is a value obtained from the number-based average value.
  • the number average particle diameter can be determined by observing the surface or cross section.
  • the coating composition diluted with a solvent is dropped and dried. Thus, it is possible to prepare and observe a sample.
  • the coating composition of the present invention may contain a solvent.
  • a solvent 1 type or more and 20 types or less are preferable, More preferably, they are 1 type or more and 10 types or less, More preferably, they are 1 type or more and 6 types or less.
  • the “solvent” refers to a substance that is liquid at room temperature and normal pressure, which can evaporate almost the entire amount in the drying step after coating.
  • the type of solvent is determined by the molecular structure constituting the solvent. That is, the same elemental composition and the same type and number of functional groups have different bond relationships (structural isomers), which are not structural isomers, but what conformations are in three-dimensional space Those that do not overlap exactly even if they are removed (stereoisomers) are treated as different types of solvents. For example, 2-propanol and n-propanol are handled as different solvents.
  • the coating composition of the present invention preferably further contains a photopolymerization initiator, a thermal polymerization initiator, a curing agent, and a catalyst.
  • a photopolymerization initiator, a thermal polymerization initiator, a curing agent, and a catalyst are used for promoting the reaction between the binder raw materials, and further between the binder raw material, the fluorine compound A, and the compound B.
  • the photopolymerization initiator, thermal polymerization initiator, curing agent and catalyst those capable of initiating or accelerating polymerization and / or silanol condensation and / or crosslinking reaction of the coating composition by radical reaction or the like are preferable.
  • Various photopolymerization initiators, thermal polymerization initiators, curing agents and catalysts can be used. A plurality of initiators may be used at the same time or may be used alone. Furthermore, you may use together an acidic catalyst, a thermal-polymerization initiator, and a photoinitiator.
  • acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like.
  • thermal polymerization initiators include peroxides and azo compounds.
  • examples of the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, and amine compounds. From the viewpoint of curability, alkylphenone compounds are preferable.
  • Examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2- Dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- (4-phenyl) -1-butane, 2-benzyl- 2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4 Morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenylketone, 2-methyl-1-phenylpropan-1-one, 1- [4- (2-ethoxy) -phenyl] -2-hydroxy-2-methyl -1-propan-1-one, and the like
  • the content ratio of the photopolymerization initiator, the thermal polymerization initiator, the curing agent, and the catalyst is preferably 0.001 to 30 parts by mass, more preferably 100 parts by mass with respect to a total of 100 parts by mass of the binder raw material in the coating composition. Is 0.05 to 20 parts by mass, more preferably 0.1 to 10 parts by mass.
  • the coating composition of the present invention may further contain additives such as surfactants, thickeners and leveling agents as necessary.
  • the coating composition of this invention contains the fluorine compound A, the compound B, the binder raw material C, and the particle
  • the binder raw material C indicates the total of the binder raw material C (I) and the binder raw material C (II)
  • the particle D indicates the total of the particle D (I) and the particle D (II).
  • the fluorine compound A is 0.025% by mass to 7% by mass, and when the compound B is contained, 0.2% by mass to 55% by mass and the binder raw material C is 0%. 8% by mass or more and 66% by mass or less, and when particles D are contained, 0.1% to 35% by mass, the solvent is 30% by mass to 95% by mass, the initiator, the curing agent, and other components of the catalyst. 0.025 mass% or more and 7 mass% or less are illustrated preferably.
  • the fluorine compound A is 0.05 mass% to 6 mass%
  • the compound B is 0.4 mass% to 36 mass%
  • the binder raw material C is 3.2 mass% to 56 mass%
  • the solvent is 40 mass% or more and 90 mass% or less
  • curing agent, and a catalyst are 0.05 mass% or more and 6 mass% or less.
  • a support base material is required to provide the “surface layer”.
  • a support base material Although a glass plate, a plastic film, a plastic sheet, a plastic lens, a metal plate etc. are mentioned, it is not limited to these.
  • plastic films and plastic sheets examples include cellulose esters (eg, triacetyl cellulose, diacetyl cellulose, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, nitrocellulose), polyamides, polycarbonates, polyesters (Eg, polyethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, poly-1,4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, polybutylene terephthalate ), Polystyrene (eg, syndiotactic polystyrene), polyolefin (eg, polypropylene, polyethylene, polymethylpentene), polysulfone Polyether sulfone, polyarylate, polyetherimide, but such as polymethyl methacrylate and polyether ketones, in particular triacetyl cellulose Among these,
  • the surface of the support substrate can be subjected to various surface treatments before forming the surface layer.
  • the surface treatment include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment and ozone oxidation treatment.
  • glow discharge treatment, ultraviolet irradiation treatment, corona discharge treatment and flame treatment are preferred, and glow discharge treatment and ultraviolet treatment are more preferred.
  • the surface layer formed on the surface of the molding material of the present invention is vapor phase treatment such as vapor deposition, sputtering, CVD, liquid phase treatment such as coating, impregnation, plating, saponification, solid phase treatment such as transfer, bonding, It may be formed on the surface of the molding material by a combination of these treatments, but a vapor phase treatment by vapor deposition and a liquid phase treatment by coating are preferred, and a liquid formed by coating a coating composition on a supporting substrate or the like Phase treatment is more preferred.
  • the method for producing the molding material by coating is not particularly limited, but the coating composition is supported by a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method (US Pat. No. 2,681,294), or the like. It is preferable to form the surface layer by coating on a material or the like. Further, among these coating methods, the gravure coating method or the die coating method is more preferable as the coating method. The manufacturing method of the coating composition applied to these coating methods will be described later.
  • the liquid film coated on the support substrate is dried.
  • drying methods include heat transfer drying (adherence to high-temperature objects), convection heat transfer (hot air), radiant heat transfer (infrared rays), and others (microwave, induction heating).
  • heat transfer drying adherence to high-temperature objects
  • convection heat transfer hot air
  • radiant heat transfer infrared rays
  • microwave, induction heating microwave, induction heating
  • the drying process is generally divided into (A) a constant rate drying period and (B) a decreasing rate drying period. Since the former is the rate of drying, diffusion of solvent molecules into the atmosphere on the liquid film surface is The drying speed is constant in this section, the drying speed is governed by the partial pressure of the solvent to be evaporated in the atmosphere, the wind speed and the temperature, and the film surface temperature is constant at a value determined by the hot air temperature and the partial pressure of the solvent to be evaporated in the atmosphere. Become. In the latter, since the diffusion of the solvent in the liquid film is rate-limiting, the drying rate does not show a constant value in this section and continues to decrease, and is governed by the diffusion coefficient of the solvent in the liquid film, and the film surface temperature is To rise.
  • the drying rate represents the amount of solvent evaporation per unit time and unit area, and has a dimension of g ⁇ m ⁇ 2 ⁇ s ⁇ 1 .
  • the drying speed has a preferable range, and is preferably 10 g ⁇ m ⁇ 2 ⁇ s ⁇ 1 or less, more preferably 5 g ⁇ m ⁇ 2 ⁇ s ⁇ 1 or less.
  • the wind speed and temperature are not particularly limited.
  • the fluorine compound A is oriented along with the evaporation of the remaining solvent during the rate of drying. Since this process requires time for orientation, there is a preferred range for the film surface temperature increase rate during the decreasing drying period, preferably 5 ° C./second or less, preferably 1 ° C./second or less. More preferably.
  • a further curing operation may be performed by irradiating heat or energy rays.
  • the temperature is preferably from room temperature to 200 ° C, more preferably from 100 ° C to 200 ° C from the viewpoint of the activation energy of the curing reaction, and from 130 ° C to 200 ° C. More preferably.
  • the oxygen concentration is preferably as low as possible because oxygen inhibition can be prevented, and curing in a nitrogen atmosphere (nitrogen purge) is more preferable.
  • the oxygen concentration is high, the curing of the outermost surface is inhibited, the curing becomes insufficient, and the scratch resistance, durability, and alkali resistance (saponification resistance) may be insufficient.
  • Examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method.
  • UV curing is performed using a high-pressure mercury lamp which is a discharge lamp method
  • UV irradiation is performed under the condition that the illuminance of UV is 100 to 3000 mW / cm 2 , preferably 200 to 2000 mW / cm 2 , more preferably 300 to 1500 mW / cm 2.
  • the ultraviolet illuminance is the irradiation intensity received per unit area, and changes depending on the lamp output, the emission spectral efficiency, the diameter of the light emitting bulb, the design of the reflector, and the light source distance to the irradiated object.
  • the illuminance does not change depending on the conveyance speed.
  • the UV integrated light amount is irradiation energy received per unit area, and is the total amount of photons reaching the surface.
  • the integrated light quantity is inversely proportional to the irradiation speed passing under the light source, and is proportional to the number of irradiations and the number of lamps.
  • the coating composition of the present invention is obtained by mixing a solvent and other additives (particle dispersion such as an initiator, a curing agent, a catalyst, etc.) in addition to the fluorine compound A, the compound B and the binder raw material.
  • the production method is obtained by measuring the prescribed amounts of the above components by mass or volume, and mixing them by stirring.
  • a solvent removal treatment using a reduced pressure or reverse osmosis membrane, a dehydration treatment using a molecular sieve, an ion exchange treatment using an ion exchange resin, or the like may be performed.
  • the stirring conditions and the stirring device at the time of preparing the coating composition are not particularly limited, but may be any device and rotation speed necessary for sufficient mixing of the entire liquid, and the local shear rate in the liquid is 10 4 S. It is preferably in a range smaller than ⁇ 1 and having a Reynolds number of 1000 or more.
  • the obtained coating composition may be subjected to an appropriate filtration treatment before coating.
  • the appropriate filtration treatment is more preferably performed by selecting a solvent, a binder raw material, a filter material matched to the polarity of the additive, and a filter opening and filtering.
  • Fluoropolyether-modified trimethoxysilane (“DOW CORNING” 2634 COATING manufactured by Toray Dow Corning Co., Ltd.) was used as the fluorine compound A1.
  • Fluorine compound A2 As the fluorine compound A2, a compound containing a fluoropolyether moiety (“Megafac” manufactured by RS-75 DIC Corporation) was used.
  • Fluorine compound A3 As the fluorine compound A3, a compound containing a fluoropolyether moiety (“OPTOOL” DAC manufactured by Daikin Industries, Ltd.) was used.
  • fluorine compound A4 A fluorine-containing dendrimer was used as the fluorine compound A4.
  • the synthesis method is as follows. A 200 mL reaction flask was charged with 32 g of toluene, and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the internal temperature was refluxed (temperature 110 ° C. or higher). In another 100 mL reaction flask, 4.0 g (20 mmol) of ethylene glycol dimethacrylate (EGDMA), 8.6 g (20 mmol) of 2- (perfluorohexyl) ethyl methacrylate C, dimethyl 2,2-azobisisobutyrate (MAIB) 2. 3 g (10 mmol) and 32 g of toluene were charged, and nitrogen was introduced for 5 minutes while stirring, followed by nitrogen substitution, and cooling to 0 ° C. in an ice bath.
  • EGDMA ethylene glycol dimethacrylate
  • MAIB dimethyl 2,2-azobisiso
  • the contents were added dropwise from the 100 mL reaction flask charged with EGDMA, C6FM and MAIB into the refluxed toluene in the 200 mL reaction flask using a dropping pump over 30 minutes. After completion of dropping, the mixture was aged for 1 hour.
  • this reaction solution was added to 277 g of hexane / toluene (mass ratio 4: 1) to precipitate the polymer in a slurry state.
  • This slurry was filtered under reduced pressure, redissolved using 36 g of THF, and a THF solution of this polymer was added to 277 g of hexane to reprecipitate the polymer in a slurry state.
  • the slurry was filtered under reduced pressure and dried under reduced pressure to obtain a white powder of fluorine compound A4.
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained fluorine compound A4 was 16000, and the dispersity Mw / Mn was 1.8.
  • Fluorine compound A5 As the fluorine compound A5, a bifunctional acrylate compound containing a fluorotetraethylene glycol moiety (FPTMG-A manufactured by Yushi Co., Ltd.) was used. This fluorine compound A5 corresponds to fluorine compound A (II).
  • Fluorine compound A6 A compound containing a fluoroalkyl moiety (triacryloyl-heptadecafluorononenyl-pentaerythritol manufactured by Kyoeisha Chemical Co., Ltd.) was used as the fluorine compound A6. This fluorine compound A6 corresponds to fluorine compound A (II).
  • Fluorine compound A7 A compound containing a fluoroalkyl moiety (pentaacryloyl-heptadecafluorononenyl-dipentaerythritol manufactured by Kyoeisha Chemical Co., Ltd.) was used as the fluorine compound A7. This fluorine compound A7 corresponds to fluorine compound A (II).
  • Fluorine compound A8 As the fluorine compound A8, a compound containing a fluoropolyether moiety (MA-78 Miwon Specialty Chemical Co., Ltd.) was used. This fluorine compound A8 corresponds to fluorine compound A (II).
  • Fluorine compound A9 A compound containing a fluoropolyether moiety (X-7366, manufactured by Nikka Chemical Co., Ltd.) was used as the fluorine compound A9.
  • Fluorine compound A10 As the fluorine compound A10, a compound containing a fluoropolyether part (MF-12 Miwon Specialty Chemical Co., Ltd.) was used. This fluorine compound A10 corresponds to fluorine compound A (II).
  • Binder raw material C [Binder raw material C1] Dipentaerythritol hexaacrylate (“KAYARAD” DPHA manufactured by Nippon Kayaku Co., Ltd.) was used as the binder material C1. This binder raw material C1 corresponds to binder raw material C (II).
  • Binder raw material C2 Pentaerythritol triacrylate (“KAYARAD” PET30 manufactured by Nippon Kayaku Co., Ltd.) was used as the binder material C2.
  • Binder raw material C3 As the binder raw material C3, urethane acrylate oligomer (“UNIDIC” 17-806 manufactured by DIC Corporation) was used.
  • Binder raw material C4 Urethane acrylate oligomer ("KRM" 8655 manufactured by Daicel-Cytec Co., Ltd.) was used as the binder material C4. This binder raw material C4 corresponds to the binder raw material C (I).
  • Binder raw material C5 A urethane acrylate oligomer (“KRM” 8200 manufactured by Daicel-Cytec Co., Ltd.) was used as the binder material C5. This binder raw material C5 corresponds to the binder raw material C (II).
  • Binder raw material C6 As the binder material C6, a polyester acrylate oligomer (“EBECRYL” 1830 manufactured by Daicel-Cytec Co., Ltd.) was used. This binder raw material C6 corresponds to binder raw material C (II).
  • binder raw material C7 As the binder material C7, urethane acrylate oligomer (“KRM” 8452 manufactured by Daicel Cytec Co., Ltd.) was used.
  • KRM urethane acrylate oligomer
  • Binder raw material C8 Urethane acrylate oligomer (“Art Resin” UN-904, manufactured by Negami Kogyo Co., Ltd.) was used as the binder material C8.
  • Binder raw material C9 As the binder material C9, urethane acrylate oligomer (“KRM” 8804 manufactured by Daicel Cytec Co., Ltd.) was used.
  • Binder raw material C10 As the binder raw material C10, pentaerythritol tetraacrylate (“EBECRYL” 180 manufactured by Daicel Cytec Co., Ltd.) was used.
  • EBECRYL pentaerythritol tetraacrylate
  • Binder raw material C11 As the binder material C11, a polyester acrylate oligomer (“EBECRYL” 884 manufactured by Daicel Cytec Co., Ltd.) was used.
  • EBECRYL polyester acrylate oligomer 884 manufactured by Daicel Cytec Co., Ltd.
  • particle D1 As particles D1, organosilica sol (MEK-ST-UP manufactured by Nissan Chemical Industries, Ltd.) was used. The present particle D1 corresponds to the particle D (I).
  • particle D2 As particles D2, organosilica sol (MEK-ST-2040, manufactured by Nissan Chemical Industries, Ltd.) was used. The present particle D2 corresponds to the particle D (II).
  • Particle D3 Organosilica sol (OSCAL JGC Catalysts & Chemicals Co., Ltd. solid content concentration 5%) was used as the particles D3.
  • the present particle D3 corresponds to the particle D (I).
  • particles D4 organosilica sol (MIBK-SD manufactured by Nissan Chemical Industries, Ltd.) was used.
  • the present particle D4 corresponds to the particle D (I).
  • Particle D5 Silica particles (High Presica SP 300 nm, manufactured by Ube Nitto Kasei Co., Ltd.) were used as the particles D5.
  • the present particle D5 corresponds to the particle D (II).
  • particle D6 As particles D6, organosilica sol (MIBK-SD-L manufactured by Nissan Chemical Industries, Ltd.) was used. The present particle D6 corresponds to the particle D (II).
  • Coating composition 1 The following materials were mixed to obtain a coating composition 1.
  • Fluorine compound A Fluorine compound A1 0.64 parts by mass
  • Compound B Compound B1 5.8 parts by mass
  • Binder raw material Binder raw material C1 13.5 parts by mass
  • Solvent MIBK 79.6 parts by mass
  • Other additives photopolymerization initiator: 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF) 0.5 parts by weight.
  • a coating composition 13 was obtained by mixing the following materials. Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: binder raw material C1 19.3 parts by mass Particle D (I): Particle D1 49.8 parts by mass Particle D (II): Particle D2 0.5 parts by mass Solvent: MEK 29.3 parts by mass Other additives (photopolymerization initiator): 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF) 0.5 parts by weight.
  • a coating composition 14 was obtained by mixing the following materials. Fluorine compound A: Fluorine compound A2 0.03 parts by mass Binder raw material C: Binder raw material C1 8.77 parts by mass Particle D (I): Particle D3 70.5 parts by mass Particle D (II): Particle D2 0.2 parts by mass Solvent: MEK 20.0 parts by mass Other additives (photopolymerization initiator): 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF) 0.5 parts by weight.
  • a coating composition 15 was obtained by mixing the following materials. Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: Binder raw material C1 19.3 parts by mass Particle D (I): Particle D4 33.2 parts by mass Particle D (II): Particle D2 0.5 parts by mass Solvent: MIBK 45.9 parts by mass Other additives (photopolymerization initiator): 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF) 0.5 parts by weight.
  • a coating composition 16 was obtained by mixing the following materials. Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: binder raw material C1 19.3 parts by mass Particle D (I): Particle D1 49.8 parts by mass Solvent: MEK 29.8 parts by mass Other additives (light Polymerization initiator): 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF) 0.5 parts by weight.
  • a coating composition 17 was obtained by mixing the following materials. Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: binder raw material C1 19.3 parts by mass Particle D (I): Particle D1 49.8 parts by mass Particle D (II): Particle D5 0.2 parts by mass Solvent: MEK 29.6 parts by mass Other additives (photopolymerization initiator): 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF) 0.5 parts by weight.
  • a coating composition 17 was obtained by mixing the following materials.
  • Fluorine compound A Fluorine compound A2 0.64 parts by mass
  • Binder raw material C Binder raw material C1 19.3 parts by mass
  • Particle D Particle D1 49.8 parts by mass
  • Particle D Particle D6 0.6 part by mass
  • Solvent MEK 29.2 parts by mass
  • Other additives photopolymerization initiator: 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF) 0.5 parts by weight.
  • a coating composition 19 was obtained by mixing the following materials. Fluorine compound A: Fluorine compound A7 0.64 parts by mass Binder raw material C (I): Binder raw material C4 14.5 parts by mass Binder raw material C (II): Binder raw material C5 4.8 parts by mass Particle D (I): Particle D1 49.8 parts by mass Particle D (II): Particle D5 0.2 parts by mass Solvent: MEK 29.6 parts by mass Other additives (photopolymerization initiator) ): 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF) 0.5 parts by weight.
  • Fluorine compound A Fluorine compound A7 0.64 parts by mass Binder raw material C (I): Binder raw material C4 14.5 parts by mass Binder raw material C (II): Binder raw material C5 4.8 parts by mass Particle D (I): Particle D1 49.8 parts by mass Particle D (II): Particle D5
  • coating compositions 20 to 29 As shown in Table 1, with respect to the coating composition 13, except that fluorine compound A7 was replaced with fluorine compounds A8 to A10, and binder raw materials C4 and C5 were replaced with binder raw materials C6 to C11. Similarly, coating compositions 20 to 28 were obtained.
  • Coating composition 32 The following materials were mixed to obtain a coating composition 13.
  • Fluorine compound A Fluorine compound A2 0.64 parts by mass
  • Binder raw material C binder raw material C1 19.3 parts by mass
  • Particle D Particle D1 49.8 parts by mass
  • Particle D Particle D2 0.5 parts by mass
  • Solvent MEK 29.3 parts by mass
  • Other additives photopolymerization initiator: 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF) 0.5 parts by weight.
  • the glossiness of the target surface of the molding material is determined by measuring the 60 ° specular glossiness according to JIS Z 8741: 1997 using a VG7000 manufactured by Nippon Denshoku Industries Co., Ltd. did.
  • the advancing contact angle and receding contact angle were measured by the expansion-contraction method, and using the contact angle meter Drop Master DM-501 manufactured by Kyowa Interface Science, the expansion-contraction method measurement manual of the same apparatus was used. Specifically, the advancing contact angle is obtained by continuously discharging oleic acid (manufactured by Nacalai Standard No. 1 Nacalai Tesque) from a syringe to a final liquid volume of 50 ⁇ L at a liquid discharge speed of 8.5 ⁇ L / sec. Images were taken 30 times per second, and the respective contact angles were determined from the images using the integrated analysis software “FAMAS” attached to the apparatus.
  • oleic acid manufactured by Nacalai Standard No. 1 Nacalai Tesque
  • the contact angle during the expansion process of the droplet first changes with expansion and then shows a behavior that becomes almost constant. Therefore, when the contact angle data is arranged in the order of measurement and five consecutive points are selected in that order, five consecutive points are selected.
  • the average value when the standard deviation of the first became 1 ° or less was defined as the advancing contact angle of the measurement, this measurement was performed five times for one sample, and the average value was defined as the advancing contact angle of the sample.
  • the adhesion of the simulated fingerprint to the target surface of the molding material of the present invention is as follows. 1. Preparation of simulated fingerprint liquid 2. Production of simulated fingerprint sheet 3. Transfer of simulated fingerprint liquid to silicone rubber. The simulation fingerprinting was performed in four steps: attachment to the surface of the molding material. 1. Preparation of simulated fingerprint liquid The following materials were weighed at the following ratios, and then stirred for 30 minutes with a magnetic stirrer. Oleic acid 14 parts by mass Silica particles (number average particle diameter 2 ⁇ m) 6 parts by mass Isopropyl alcohol 80 parts by mass The number average particle diameter of the silica particles is 5% by mass in solid content in the dispersion medium (isopropyl alcohol).
  • Fingerprint resistance (fingerprint wiping)] After attaching the fingerprint by the above-mentioned method, then, using a cellulose long-fiber nonwoven fabric gauze (“Hize” gauze NT-4 manufactured by Kawamoto Sangyo Co., Ltd.) with a folded size of 12.5 ⁇ 12.5 cm, it is wiped off. went. Fingerprint wiping property evaluated the visibility after wiping with this wiping method on the following evaluation criteria, and made 5 points or more acceptable. 10 points: When wiped once, it becomes almost unrecognizable. 7 points: When wiped once, it becomes almost unnoticeable. 5 points: When wiped three times, it becomes almost unrecognizable. 1 point: The above evaluation was performed on 10 subjects who remained dirty even after wiping 5 times or more, and the average value was obtained. The numbers after the decimal point were rounded off.
  • Table 1 summarizes the composition of the coating composition
  • Table 2 summarizes the evaluation results of the molding materials obtained. Regarding evaluation items that did not pass even one item, it was judged that the problem was not achieved.
  • the examples of the present invention pass both glossiness and fingerprint resistance, and achieve the problems to be solved by the present invention.
  • the molding material, the coating composition, and the method for producing the molding material according to the present invention can be suitably used for imparting fingerprint resistance, as well as various plastic molded articles, lenses on the outermost surface portion of the camera, and glasses. It can also be used to impart similar functions to the surfaces of lenses, window glass of buildings and vehicles, and various printed materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

The present invention attempts to solve the problem of providing the following: a molding material on which fingerprints are difficult to discern, despite said molding material exhibiting glossiness or transparency; a coating composition that can form a surface layer that exhibits the aforementioned effect; and a method for manufacturing the aforementioned molding material. This molding material has a surface layer on at least one surface, the 60° specular glossiness of said surface layer as defined by JIS Z8741:1997 is at least 60%, and the receding contact angle (θr) of oleic acid thereon is at least 60°.

Description

成形材料、塗料組成物および成形材料の製造方法MOLDING MATERIAL, COATING COMPOSITION, AND METHOD FOR PRODUCING MOLDING MATERIAL
 本発明は、耐指紋性に優れた表面層を有する成形材料、耐指紋性に優れた表面層を形成可能な塗料組成物および成形材料の製造方法に関する。 The present invention relates to a molding material having a surface layer excellent in fingerprint resistance, a coating composition capable of forming a surface layer excellent in fingerprint resistance, and a method for producing the molding material.
 物の表面に人の指が触れることによって指紋(指紋とは、指先の皮膚にある汗腺の開口部が隆起した線(隆線)によりできる紋様、及び前記文様が物体の表面に付着した跡をいう)が付着し、それを容易に拭き取ることができないと、見た目が汚れたような不快な印象を与えるという問題がある。特に最近ではスマートフォン・タッチパネル、キーボード、テレビ・エアコンのリモコン等の様に、指で操作する電子機器が増加している。例えば、携帯電話の筐体を掴むことで指紋が付着し、指紋が目立って清潔感が損なわれるというような問題がある。 Fingers touching the surface of an object (a fingerprint is a pattern formed by a line (ridge) where the opening of a sweat gland on the skin of the fingertip is raised, and a pattern in which the pattern is attached to the surface of an object. If it cannot be easily wiped off, there is a problem of giving an unpleasant impression that the appearance is dirty. In particular, recently, electronic devices operated with fingers, such as smartphones / touch panels, keyboards, TV / air conditioner remote controls, etc., are increasing. For example, there is a problem that a fingerprint is attached by grasping a casing of a mobile phone, and the fingerprint is conspicuous and the clean feeling is impaired.
 更に、画像表示機器の画像表示部、警告灯などの信号表示部、レンズ・鏡の表面等に指紋が付着すると、表示画像、表示信号、反射像における不鮮明感や、指紋が付着している箇所と付着していない箇所の反射率の違いなどによって視認性が低下するという問題がある。例えば、スマートフォン、テレビ、カーナビゲーション、パソコンの液晶画面、案内・警告・避難誘導のための信号表示灯、メガネ・サングラス・望遠鏡・カメラのレンズ、時計の文字盤の透明カバー、車のバックミラー・ルームミラー等である。これらの機器に一旦指紋が付着すると指紋によって対象物の視認性が低下する。 Furthermore, when fingerprints are attached to the image display unit of an image display device, a signal display unit such as a warning light, or the surface of a lens / mirror, the display image, display signal, reflection image is blurred, or the part where the fingerprint is attached There is a problem that the visibility is lowered due to a difference in reflectance at a portion where it is not attached. For example, smartphones, TVs, car navigation systems, personal computer LCD screens, signal indicators for guidance / warning / evacuation guidance, glasses / sunglasses / telescopes / camera lenses, transparent clock face covers, car rearview mirrors, Such as a room mirror. Once a fingerprint is attached to these devices, the visibility of the object is reduced by the fingerprint.
 また近年、スマートフォン、テレビ、パソコンのモニターなどの各種ディスプレイでは画像のコントラストを高く見せるため、表面に光沢のある反射防止部材(アンチリフレクションフィルム)が用いられるが、このような光沢感のある材料は同時に指紋が視認されやすくなり、課題となっている。 In recent years, glossy anti-reflective members (anti-reflection films) have been used on the surface of various displays such as smartphones, televisions, and personal computer monitors in order to make the contrast of images high. At the same time, fingerprints are easily visible, which is a problem.
 このような問題に対して、物品表面への指紋が目立ちにくい、視認されにくい、または見えにくい、もしくは付着した指紋を容易に拭き取ることができる特性(前記物性を以降、耐指紋性と呼ぶ)を有する部材の特性として、特許文献1では「基材の一方の面上に、光の波長550nmでの屈折率が1.75未満である低屈折率層、または、光の波長550nmでの屈折率が1.75以上である高屈折率層、または、その両方、を少なくとも含む薄膜層を形成してなる光学薄膜フィルムであって、前記薄膜層の面上に、乾燥膜厚が20μmであるオレイン酸を塗布したときに、前記オレイン酸を塗布した前記光学薄膜フィルムと、前記オレイン酸を塗布していない前記光学薄膜フィルムと、のD65光源、5°入射、2°視野、正反射光におけるCIELAB(JIS Z 8729に準拠)の色差ΔE ab(={(ΔL+(Δa+(Δb1/2)が5以下であることを特徴とする光学薄膜フィルム」が提案されている。 With respect to such problems, the characteristic that the fingerprint on the surface of the article is not conspicuous, difficult to see, or difficult to see, or can easily wipe off the attached fingerprint (the physical property is hereinafter referred to as fingerprint resistance). As a characteristic of the member having, it is disclosed in Patent Document 1 that “a low refractive index layer having a light refractive index of less than 1.75 on one surface of a substrate, or a light refractive index at a wavelength of 550 nm”. Is an optical thin film formed by forming a thin film layer including at least a high refractive index layer having a refractive index of 1.75 or more, or both, and an olein having a dry film thickness of 20 μm on the surface of the thin film layer When an acid is applied, the optical thin film coated with the oleic acid and the optical thin film not coated with the oleic acid in a D65 light source, 5 ° incidence, 2 ° field of view, and regular reflection light Color difference Delta] E * ab of CIELAB (conforming to JIS Z 8729) (= {( ΔL *) 2 + (Δa *) 2 + (Δb *) 2} 1/2) optical thin film characterized in that it is 5 or less "Film" has been proposed.
 また、指紋の拭き取りやすさを示す特性として、特許文献2には「光沢計を用いて、被塗物上に形成された被膜の75~20度鏡面光沢度を測定し初期光沢度とする、初期光沢度測定工程、該被膜上に耐指紋評価液を付着させる、耐指紋評価液付着工程、該耐指紋評価液が付着した部分の該鏡面光沢度を測定する、拭き取り前光沢度測定工程、付着した耐指紋評価液を拭き取る、耐指紋評価液拭き取り工程、耐指紋評価液拭き取り後の該鏡面光沢度を測定する、拭き取り後光沢度測定工程、および得られた測定値を下記式で処理し、付着性評価率および拭き取り後評価率を求める、算出工程、
付着性評価率(%)=(拭き取り前光沢度)/(初期光沢度)×100
拭き取り後評価率(%)=(拭き取り後光沢度)/(初期光沢度)×100
を包含する、被膜の耐指紋性評価方法」が提案されている。
In addition, as a characteristic indicating the ease of wiping off fingerprints, Patent Document 2 discloses that “a glossiness meter is used to measure a 75 to 20 degree specular gloss of a film formed on an object to be an initial gloss. Initial gloss measurement step, attaching anti-fingerprint evaluation liquid on the coating, anti-fingerprint evaluation liquid attaching step, measuring the specular gloss of the part to which the anti-fingerprint evaluation liquid is attached, pre-wiping gloss measurement step, Wipe off the attached anti-fingerprint evaluation solution, wipe off the anti-fingerprint evaluation solution, measure the specular gloss after wiping off the anti-fingerprint evaluation solution, process the measured glossiness after wiping, and the measured value obtained by the following formula Calculating the adhesion evaluation rate and the evaluation rate after wiping,
Adhesion evaluation rate (%) = (Glossiness before wiping) / (Initial glossiness) × 100
Evaluation rate after wiping (%) = (Glossiness after wiping) / (Initial glossiness) × 100
A method for evaluating the anti-fingerprint property of a film, including
 さらに耐指紋性を有する部材の物性として、特許文献3では「基材と、前記基材上に形成された光学機能層と、前記光学機能層上に形成され、表面の元素割合がケイ素元素(Si)と炭素元素(C)の比Si/Cが0.25~1.0であり、かつフッ素元素(F)と炭素元素(C)の比であるF/Cが0.10~1.0であり、かつ以下の特性を有する防汚層とを有することを特徴とする光学機能フィルム。 Furthermore, as a physical property of a member having fingerprint resistance, in Patent Document 3, “a base material, an optical functional layer formed on the base material, a surface element ratio formed on the optical functional layer, and a silicon element ( Si) to carbon element (C) ratio Si / C is 0.25 to 1.0, and F / C, which is the ratio of fluorine element (F) to carbon element (C), is 0.10 to 1. An optical functional film comprising an antifouling layer having 0 and the following characteristics:
 a.流動パラフィン接触角が65°以上であり、かつ流動パラフィン転落角が15°以下
 b.黒マジック接触角が35°以上であり、かつ黒マジック転落角が15°以下
 c.動摩擦係数が0.15未満」が提案されている。
a. Liquid paraffin contact angle is 65 ° or more, and liquid paraffin falling angle is 15 ° or less b. Black magic contact angle is 35 ° or more and black magic sliding angle is 15 ° or less c. "The coefficient of dynamic friction is less than 0.15" has been proposed.
 また、耐指紋性を有する部材の元素構成として、特許文献4では「透明基材上の少なくとも一方の面にハードコート層を備え、且つ、ハードコート層が最表面に位置するハードコートフィルムであって、該ハードコート層がフッ素化合物および/またはケイ素系化合物を含んでなり、且つ、X線光電子分光分析装置で測定される前記ハードコート層表面のフッ素原子:酸素原子:炭素原子の存在率20atomic%以上50atomic%未満:20atomic%以上~30atomic%未満:30atomic%以上~60atomic%未満の範囲であり、且つ、ケイ素の存在率が0atomic%以上~10atomic%未満の範囲内であり、且つ、表面接触角から算出される表面自由エネルギーが15mN/m以上20mN/m以下の範囲内であることを特徴とするハードコートフィルム」が提案されている。 Further, as an elemental structure of a member having fingerprint resistance, Patent Document 4 states that “a hard coat film having a hard coat layer on at least one surface on a transparent substrate and having a hard coat layer positioned on the outermost surface”. The hard coat layer contains a fluorine compound and / or a silicon-based compound, and the fluorine atom: oxygen atom: carbon atom abundance 20 atomic on the surface of the hard coat layer is measured with an X-ray photoelectron spectrometer. % Or more and less than 50 atomic%: 20 atomic% or more and less than 30 atomic%: 30 atomic% or more and less than 60 atomic%, and the silicon abundance is in the range of 0 atomic% or more and less than 10 atomic%, and surface contact. The surface free energy calculated from the corner is 15 mN / m or more and 20 m / Have been proposed hard coat film ", characterized in that m is within the range.
 さらに、耐指紋性を付与する材料構成として特許文献5には、「炭素数6~22のアルキル基を有するビニルモノマー(a1)および芳香族系ビニルモノマー(a2)から選ばれる少なくとも一種のビニルモノマー(A)と、分子中に5~13個のフッ素原子を有するビニルモノマー(B)を、(A):(B)=90~99.9:0.1~10の重量比で含有する重合成分を重合して得られる共重合体(I)からなることを特徴とする耐指紋性向上剤」が提案されている。 Furthermore, as a material structure for imparting fingerprint resistance, Patent Document 5 describes that “at least one vinyl monomer selected from a vinyl monomer having an alkyl group having 6 to 22 carbon atoms (a1) and an aromatic vinyl monomer (a2)”. Polymerization containing (A) and vinyl monomer (B) having 5 to 13 fluorine atoms in the molecule in a weight ratio of (A) :( B) = 90 to 99.9: 0.1 to 10 "An anti-fingerprinting agent characterized by comprising a copolymer (I) obtained by polymerizing components" has been proposed.
特開2009-122416号公報JP 2009-122416 A 特開2011-99744号公報JP 2011-99744 A 国際公開第2008/038714号パンフレットInternational Publication No. 2008/038714 Pamphlet 特開2011-043606号公報JP 2011-043606 A 特開2010-24283号公報JP 2010-24283 A
 特許文献1、特許文献2の技術について、本発明者らが様々な条件にて指紋の視認性を確認したところ、これらの特性を満たすだけでは指紋を目立たなくする、もしくは指紋を拭き取りやすい効果が不十分であった。 Regarding the technologies of Patent Document 1 and Patent Document 2, the present inventors have confirmed the visibility of fingerprints under various conditions. As a result, only by satisfying these characteristics, the fingerprints are inconspicuous or the fingerprints can be easily wiped off. It was insufficient.
 特許文献3の技術は、流動パラフィン接触角と転落角に着目しているが、本発明者らが様々な表面層について確認したところ、接触角、転落角と指紋の視認性、拭き取り性は必ずしも一致せず、特許文献3の範囲を満たしても、十分な耐指紋性が得られないことが分かった。 The technique of Patent Document 3 focuses on the liquid paraffin contact angle and the falling angle, but when the present inventors have confirmed various surface layers, the contact angle, the falling angle and the fingerprint visibility, and the wiping property are not necessarily obtained. It was found that even when the range of Patent Document 3 was satisfied, sufficient fingerprint resistance could not be obtained.
 特許文献4、5の技術は、本発明者らが確認したところ、その効果は限定的で特に皮脂の多い指紋を付着した場合には、不十分であった。 The techniques of Patent Documents 4 and 5 were confirmed by the present inventors, and the effect was limited. In particular, the technique was insufficient when a fingerprint having a lot of sebum was attached.
 本発明が解決しようとする課題は、光沢感、または透明性と実用上必要な耐擦傷性を維持しつつ耐指紋性、特に指紋拭き取り性に優れた成形材料、形成可能な塗料組成物、および成形材料の製造方法を提供することにある。 The problems to be solved by the present invention include a molding material excellent in fingerprint resistance, in particular, fingerprint wiping property while maintaining glossiness or transparency and scratch resistance necessary for practical use, a paint composition that can be formed, and It is providing the manufacturing method of a molding material.
 上記課題を解決するために本発明者らは、鋭意研究を重ねた結果、以下の発明を完成させた。すなわち、本発明は以下の通りである。 In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, completed the following invention. That is, the present invention is as follows.
 [1]少なくとも一方の面に表面層を有する成形材料であって、
前記表面層のJIS Z8741:1997で規定する60°鏡面光沢度が60%以上で、オレイン酸の後退接触角θが60°以上である成形材料。
[1] A molding material having a surface layer on at least one surface,
A molding material in which the surface layer has a 60 ° specular gloss specified by JIS Z8741: 1997 of 60% or more and a receding contact angle θ r of oleic acid of 60 ° or more.
 [2]少なくとも一方の面に表面層を有する成形材料であって、
前記表面層のJIS Z8741:1997で規定する60°鏡面光沢度が60%以上であり、
前記表面層に下記の条件により模擬指紋付着および模擬指紋拭き取りを行ったとき、JIS Z8730:2009およびJIS Z8722:2009に従って求めた模擬指紋付着前の状態を基準とした模擬指紋拭き取り後の正反射光込みの色差ΔE ab(di:8°)Sb10W10(以降ΔESCI-2とする)および模擬指紋付着前の状態を基準とした模擬指紋拭き取り後の正反射光除去の色差ΔE ab(de:8°)Sb10W10(以降ΔESCE-2とする)が、下記の式(1)の範囲を満たす成形材料。 
[2] A molding material having a surface layer on at least one surface,
The 60 ° specular gloss specified by JIS Z8741: 1997 of the surface layer is 60% or more,
When the surface layer is subjected to simulated fingerprint adhesion and simulated fingerprint wiping under the following conditions, the specular reflection light after wiping the simulated fingerprint based on the state before the simulated fingerprint adhesion obtained according to JIS Z8730: 2009 and JIS Z8722: 2009 Color difference ΔE * ab (di: 8 °) Sb10W10 (hereinafter referred to as ΔE SCI-2 ) and the color difference ΔE * ab (de: 8 °) A molding material in which Sb10W10 (hereinafter referred to as ΔE SCE-2 ) satisfies the range of the following formula (1).
 ((ΔESCI-2+(ΔESCE-21/2 ≦2.0
                          ・・・ 式(1)
・模擬指紋付着の条件:オレイン酸70質量%と数平均粒子径2μmのシリカ粒子30質量%からなる分散物を、JIS B0601:2001で規定するRaが3μmで、JIS K6253:1997で規定するゴム硬度50のシリコーンゴムに1.0g/m付着させ、これを対象とする面に30KPaの圧力で付着させる。
・模擬指紋拭き取りの条件:前記方法で付着した模擬指紋を不織布にて30KPaの圧力、5cm/秒の速度で3回擦る。
((ΔE SCI-2 ) 2 + (ΔE SCE-2 ) 2 ) 1/2 ≦ 2.0
... Formula (1)
・ Simulated fingerprint adhesion conditions: A dispersion composed of 70% by mass of oleic acid and 30% by mass of silica particles having a number average particle diameter of 2 μm has a Ra defined by JIS B0601: 2001 of 3 μm and a rubber defined by JIS K6253: 1997. 1.0 g / m 2 is adhered to a silicone rubber having a hardness of 50, and this is adhered to the target surface at a pressure of 30 KPa.
Simulated fingerprint wiping conditions: The simulated fingerprint attached by the above method is rubbed three times with a nonwoven fabric at a pressure of 30 KPa and a speed of 5 cm / sec.
 [3]前記表面層のオレイン酸の後退接触角θが、50°以上である、前記[2]に記載の成形材料。 [3] The molding material according to [2], wherein the surface layer has a receding contact angle θ r of oleic acid of 50 ° or more.
 [4]前記表面層のオレイン酸の前進接触角θ、後退接触角θが下記の式(2)を満たす、前記[1]から[3]のいずれかに記載の成形材料。 [4] The molding material according to any one of [1] to [3], wherein the advancing contact angle θ a and receding contact angle θ r of the oleic acid of the surface layer satisfy the following formula (2).
 (θa-θr)≦ 15°             ・・・ 式(2)。 a −θ r ) ≦ 15 ° Formula (2).
 [5]前記表面層のX線光電子分光法(XPS)による光電子脱出角度15°での分析により得られた元素組成において、フッ素の割合が原子数比で50%以上である、前記[1]から[4]のいずれかに記載の成形材料。 [5] In the elemental composition obtained by analyzing the surface layer by X-ray photoelectron spectroscopy (XPS) at a photoelectron escape angle of 15 °, the proportion of fluorine is 50% or more in terms of the atomic ratio [1] To [4].
 [6]前記表面層の原子間力顕微鏡にて観測した表面の形態において、JIS B0601:2001で規定する十点平均粗さRzと中心線平均粗さRaが下記の式(3)および(4)を満たす、前記[1]から[5]のいずれかに記載の成形材料。  [6] In the form of the surface of the surface layer observed with an atomic force microscope, the ten-point average roughness Rz and the centerline average roughness Ra specified by JIS B0601: 2001 are the following formulas (3) and (4 ) The molding material according to any one of [1] to [5]. *
 4nm<Rz≦25nm              ・・・ 式(3)
 Ra≦4nm                   ・・・ 式(4)。
4 nm <Rz ≦ 25 nm (3)
Ra <= 4nm ... Formula (4).
 [7]前記表面層が下記1)から3)を含有する、前記[1]から[5]のいずれかに記載の成形材料。 [7] The molding material according to any one of [1] to [5], wherein the surface layer contains the following 1) to 3).
 1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物A
 2)炭素数8以上のアルキル基および/またはアルカンジイル基を含む部位と反応性部位とを有する化合物B
 3)バインダー成分
 [8]前記表面層が下記1)から3)を含有する、前記[1]から[6]のいずれかに記載の成形材料。
1) Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group
2) Compound B having a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group and a reactive site
3) Binder component [8] The molding material according to any one of [1] to [6], wherein the surface layer contains the following 1) to 3).
 1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物A
 2)バインダー成分
 3)数平均粒子径5nm以上20nm以下の粒子d(I)および数平均粒子径50nm以上300nm以下の粒子d(II)からなる粒子成分
 [9]前記表面層が下記1)から3)を含有する、前記[8]に記載の成形材料。 
1) Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group
2) Binder component 3) Particle component comprising particle d (I) having a number average particle diameter of 5 nm to 20 nm and particle d (II) having a number average particle diameter of 50 nm to 300 nm [9] The surface layer is from 1) below The molding material according to [8] above, which contains 3).
 1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と一分子中に2以上5以下の反応性部位を有するフッ素化合物A(II)
 2)分子中に10以上の反応性部位を持ち、数平均分子量1500以上3000以下の化合物であるバインダー原料C(I)および分子中に3以上6以下の反応性部位を持ち、数平均分子量500以上1500以下の化合物であるバインダー原料C(II)から形成されてなるバインダー成分
 3)数平均粒子径5nm以上20nm以下の粒子d(I)および数平均粒子径50nm以上300nm以下の粒子d(II)からなる粒子成分
 [10]下記1)から3)を含有する、塗料組成物。
1) a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group, and a reactive site of 2 to 5 in one molecule Fluorine compound A (II) having
2) The binder raw material C (I), which is a compound having 10 or more reactive sites in the molecule and a number average molecular weight of 1500 to 3000, and a reactive site of 3 to 6 in the molecule, and having a number average molecular weight of 500 Binder component formed from binder raw material C (II) which is a compound of 1500 or less and 3 or less 3) Particle d (I) having a number average particle size of 5 nm or more and 20 nm or less and Particle d (II) having a number average particle size of 50 nm or more and 300 nm or less [10] A coating composition containing the following 1) to 3).
 1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物A
 2)炭素数8以上のアルキル基および/またはアルカンジイル基を含む部位と反応性部位とを有する化合物B
 3)バインダー原料
 [11]下記1)から3)を含有する、塗料組成物。 
1) Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group
2) Compound B having a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group and a reactive site
3) Binder raw material [11] A coating composition containing the following 1) to 3).
 1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物A
 2)バインダー原料
 3)数平均粒子径5nm以上20nm以下の粒子D(I)および数平均粒子径50nm以上300nm以下の粒子D(II)からなる粒子成分
 [12]下記1)から3)を含有する、前記[11]に記載の塗料組成物。 
1) Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group
2) Binder raw material 3) Particle component consisting of particles D (I) having a number average particle diameter of 5 nm or more and 20 nm or less and particles D (II) having a number average particle diameter of 50 nm or more and 300 nm or less [12] containing the following 1) to 3) The coating composition according to [11] above.
 1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と一分子中に2以上5以下の反応性部位を有するフッ素化合物A(II)
 2)分子中に10以上の反応性部位を持ち、数平均分子量1500以上3000以下の化合物であるバインダー原料C(I)および分子中に3以上6以下の反応性部位を持ち、数平均分子量500以上1500以下の化合物であるバインダー原料C(II)からなるバインダー原料
 3)数平均粒子径5nm以上20nm以下の粒子D(I)および数平均粒子径50nm以上300nm以下の粒子D(II)からなる粒子成分
 [13]前記[10]から[12]のいずれかに記載の塗料組成物を表面に塗工する、成形材料の製造方法。
1) a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group, and a reactive site of 2 to 5 in one molecule Fluorine compound A (II) having
2) The binder raw material C (I), which is a compound having 10 or more reactive sites in the molecule and a number average molecular weight of 1500 to 3000, and a reactive site of 3 to 6 in the molecule, and having a number average molecular weight of 500 Binder raw material consisting of binder raw material C (II) which is a compound of 1500 or less 3) It consists of particles D (I) having a number average particle diameter of 5 nm to 20 nm and particles D (II) having a number average particle diameter of 50 nm to 300 nm. Particle component [13] A method for producing a molding material, wherein the coating composition according to any one of [10] to [12] is applied to a surface.
 本発明によれば、光沢感および透明性と実用上必要な耐擦傷性を維持しつつ指紋が視認されにくく、かつ拭き取りやすい成形材料、前記効果を発現する表面層を形成可能な塗料組成物、および前記表面層の製造方法を得ることができる。 According to the present invention, while maintaining glossiness and transparency and scratch resistance necessary for practical use, fingerprints are hardly visible and easy to wipe, a coating composition capable of forming a surface layer that exhibits the above effects, And the manufacturing method of the said surface layer can be obtained.
 本発明を実施するための形態を説明する前に、従来技術の問題点について本発明者の視点で考察する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing a mode for carrying out the present invention, problems of the prior art will be considered from the viewpoint of the present inventor.
 まず、指紋の視認メカニズムに関して、特許文献1ではオレイン酸を塗布し、塗布前後の単入射光を正反射のみから色差を評価しているため、実際に人間が視認する状態を再現することができない点に問題があり、さらに特許文献2の技術は、光沢度の変化にて付着性、拭き取り性を評価しているが、光沢度による評価では付着による光散乱の影響のみを見ているため、付着による色味の変化を評価することができず、視認性との対応が不十分であったものと考えられる。 First, regarding the fingerprint visual recognition mechanism, Patent Document 1 applies oleic acid and evaluates the color difference based on only regular reflection of the single incident light before and after the application, so that the state actually seen by humans cannot be reproduced. In addition, the technique of Patent Document 2 evaluates adhesion and wiping by changing the glossiness, but since the evaluation by glossiness only looks at the influence of light scattering due to adhesion, It is considered that the change in color due to adhesion could not be evaluated, and the correspondence with visibility was insufficient.
 次に、視認性の評価に用いる模擬指紋液として、特許文献1ではオレイン酸を、特許文献2では高級脂肪酸やテルペン類を用いているが、実際の指紋を構成する液体は指の皮膚から供給される汗に含まれる水と有機塩(尿酸塩等)、皮脂(オレイン酸等)に加えて、生活環境に存在する塵や化粧品に含まれる粒子(砂塵、酸化チタン、酸化亜鉛、シリカ等)を含有したいわゆる分散物であり、特許文献1、2の方法では粒子の存在による光散乱の影響を評価できなかったものと考えられる。 Next, oleic acid is used as a simulated fingerprint liquid for evaluating visibility, and oleic acid is used in Patent Document 1 and higher fatty acids and terpenes are used in Patent Document 2, but the liquid constituting the actual fingerprint is supplied from the finger skin. In addition to water and organic salts (such as uric acid salts) and sebum (such as oleic acid) contained in perspiration, particles in dust and cosmetics in the living environment (sand dust, titanium oxide, zinc oxide, silica, etc.) It is considered that the effects of light scattering due to the presence of particles could not be evaluated by the methods of Patent Documents 1 and 2.
 次に指紋の付着メカニズムに関して、特許文献3の技術は、前述のように指紋付着性の流動パラフィンの接触角、転落角を用いており、前者は指紋付着、拭き取りのような液体成分の動的な挙動を見ることができないところに問題があり、後者は液滴の動的な挙動を示すパラメーターであり測定方法の原理から液滴の質量の影響を大きく受けるため、指紋のようなごく微量成分の動的な挙動を表すことができなかったものと考えられる。 Next, regarding the fingerprint attachment mechanism, the technique of Patent Document 3 uses the contact angle and the falling angle of the fingerprint-adhesive liquid paraffin as described above, and the former is a dynamic of liquid components such as fingerprint attachment and wiping. The latter is a parameter indicating the dynamic behavior of the droplet, and the latter is greatly affected by the mass of the droplet from the principle of the measurement method. It is thought that the dynamic behavior of was not able to be expressed.
 次に表面層の構成元素に関して、特許文献4の技術は、ハードコート層表面のフッ素原子:酸素原子:炭素原子の存在率を規定しているが、皮脂成分の付着を防止し、さらに付着した成分が容易に離れやすくするには、撥油成分、すなわちフッ素成分が表層に選択的に存在することが重要と考えられるため、この特許文献4に規定の範囲では不十分であったと考えられる。 Next, regarding the constituent elements of the surface layer, the technique of Patent Document 4 regulates the abundance ratio of fluorine atom: oxygen atom: carbon atom on the surface of the hard coat layer, but prevents adhesion of sebum components and further adheres. In order to easily separate the components, it is considered important that the oil repellent component, that is, the fluorine component, is selectively present on the surface layer. Therefore, it is considered that the range specified in Patent Document 4 is insufficient.
 また、表面層を構成する材料に関して、特許文献5の技術は、長鎖アルキル基とフッ素化合物の共重合体を用いているため、表面へのフッ素化合物の均一な存在を妨げ、その結果、効果が不十分であったものと考えられる。 Moreover, regarding the material constituting the surface layer, the technique of Patent Document 5 uses a copolymer of a long-chain alkyl group and a fluorine compound, thereby preventing the uniform presence of the fluorine compound on the surface, resulting in an effect. Is considered to have been insufficient.
 本発明者らは、光沢感もしくは透明感を有する成形材料に、実際の指紋の組成に近い模擬指紋を一定条件下で付着、次いで拭き取りを行い、付着前、拭き取り後の反射色を正反射光込みと正反射光除去の2つの方法で測定し、付着前を基準とした拭き取り後の色差が、特定の関係(後述の式(1))を満たすものが、光沢感と耐指紋性、とくに指紋拭き取り性が優れていることを見出した。これは、人間の目が指紋、もしくは指紋に起因する汚れを光沢感の変化と色味の変化により認識しているという点に着目し、光沢感の変化を正反射光込みの色差で、色味の変化を正反射除去の色差で評価し、これらの値を統合した特定の関係(後述の式(1))を満たす範囲では指紋を視認しにくくなることを見出したためである。 The present inventors attach a simulated fingerprint close to the actual fingerprint composition to a molding material having a glossy or transparent feeling under a certain condition, and then wipe it off. The color difference after wiping with reference to the pre-adhesion as a reference satisfies the specific relationship (formula (1) described later), and glossiness and fingerprint resistance, It was found that the fingerprint wiping property is excellent. This is due to the fact that the human eye recognizes fingerprints or smudges caused by fingerprints based on changes in glossiness and changes in color tone. This is because the change in taste is evaluated by the color difference of regular reflection removal, and it has been found that it is difficult to visually recognize the fingerprint in a range satisfying a specific relationship (formula (1) described later) obtained by integrating these values.
 また、本発明者らは、指紋の液体成分が成形材料表面に付着するときの液体の挙動に着目し、液体成分が成形材料上でなす後退接触角に前述の好ましい範囲があることも見出した。これは、指紋成分が指と成形材料表面との間でどちらに付きやすいかは、指紋成分と指、もしくは成形材料表面のなす後退接触角に支配され、成形材料の表面層の後退接触角が特定の範囲を超える場合に指紋成分が付着しにくいことを見出したためである。 Further, the present inventors have focused on the behavior of the liquid when the liquid component of the fingerprint adheres to the surface of the molding material, and also found that the receding contact angle formed on the molding material by the liquid component has the above-mentioned preferable range. . Whether the fingerprint component is likely to stick between the finger or the molding material surface is governed by the receding contact angle between the fingerprint component and the finger or the molding material surface, and the receding contact angle of the surface layer of the molding material is This is because it has been found that the fingerprint component hardly adheres when exceeding a specific range.
 加えて、光沢感と耐指紋性、特に指紋拭き取り性を両立するには、成形材料が有する表面層の指紋成分の前進接触角と後退接触角の関係に好ましい範囲があることを見出した。これは、指紋拭き取り性が「指紋成分の拭き取る材料への転移しやすさ」と「表面層上での指紋成分の移動しやすさ」の2つの因子によって支配されることに着目し、前者が後退接触角、後者が前進接触角で表すことができ、これらを統合した特定の関係(後述の式(2))を満たせば、付着した指紋を容易に拭き取ることができることを見出したためである。 In addition, it has been found that there is a preferable range for the relationship between the advancing contact angle and the receding contact angle of the fingerprint component of the surface layer of the molding material in order to achieve both glossiness and fingerprint resistance, in particular fingerprint wiping property. This is based on the fact that the fingerprint wiping property is governed by two factors: “easy transfer of the fingerprint component to the wiping material” and “easy mobility of the fingerprint component on the surface layer”. This is because the receding contact angle and the latter can be expressed by the advancing contact angle, and it has been found that if the specific relationship (formula (2) described later) is integrated, the attached fingerprint can be easily wiped off.
 さらに、成形材料の表面層の最表面のフッ素の割合を前述の特定の範囲とすることにより、上記の物性が得られることを見出し、この構成を達成する方法として、特定のフッ素化合物(フッ素化合物A)と特定の化合物(化合物B)を共重合せず、混合した状態で塗工することが有効なことをも見出した。 Furthermore, it has been found that the above physical properties can be obtained by setting the proportion of fluorine on the outermost surface of the surface layer of the molding material to the above-mentioned specific range. As a method for achieving this configuration, a specific fluorine compound (fluorine compound) It has also been found that it is effective to coat A) and a specific compound (compound B) in a mixed state without copolymerization.
 また、本発明者らは、表面を特定の形態(後述の式(3)および式(4))を満たすものにすることで,耐指紋性、特に指紋拭き取り性をさらに良化できることを見出した。これは、指紋の拭き取り時に布巾と付着した皮脂が表面を滑らかに移動できることが指紋の拭き取り性に影響しており、接触面積の低減によりこれを実現できることを見出したためである。 In addition, the present inventors have found that the fingerprint resistance, in particular, the fingerprint wiping property can be further improved by making the surface satisfy a specific form (formula (3) and formula (4) described later). . This is because the fact that sebum adhering to the cloth when the fingerprint is wiped can be smoothly moved on the surface affects the wipeability of the fingerprint, and it has been found that this can be realized by reducing the contact area.
 加えて、指紋の拭き取り時に布巾により擦られることによって成形材料表面が変化することで指紋の拭き取り性が悪化するため、この変化への耐久性すなわち拭き取り耐久性を有することが重要であり、一分子中に特定の数の反応性部位を有するフッ素化合物A(II)を用いることが拭き取り耐久性の向上に有効であることを見出した。 In addition, since the surface of the molding material is changed by rubbing with the cloth when wiping the fingerprint, the wiping property of the fingerprint deteriorates. Therefore, it is important to have durability against this change, that is, wiping durability. It has been found that the use of a fluorine compound A (II) having a specific number of reactive sites therein is effective in improving the wiping durability.
 本発明の成形材料は、少なくとも一方の面に表面層を有し、その表面層が特定の鏡面光沢度で、かつ模擬指紋を付着、次いで一定条件で拭き取りを行い、模擬指紋付着前の反射色を正反射光込みと正反射光除去の2つの方法で測定してこれを基準とし、模擬指紋の拭き取り後に得られた反射色を同様の方法で測定し、それより求めた色差から得られた計算値を特定の値以下にすることが好ましい。 The molding material of the present invention has a surface layer on at least one surface, and the surface layer has a specific specular gloss and adheres a simulated fingerprint, then wipes off under certain conditions, and reflects the color before the simulated fingerprint is attached. The reflection color obtained after wiping off the simulated fingerprint was measured by the same method using two methods of specular reflection light inclusion and specular reflection light removal, and was obtained from the color difference obtained from the measurement. It is preferable to set the calculated value to a specific value or less.
 ここで示す鏡面光沢度はJIS Z8741:1997に規定される60°鏡面光沢度の測定による値で、60%以上が好ましく、70%以上がより好ましく、80%以上が特に好ましい。鏡面光沢度が60%未満では光沢感が不十分と感じられる場合がある。 The specular gloss shown here is a value obtained by measuring the 60 ° specular gloss specified in JIS Z8741: 1997, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more. If the specular gloss is less than 60%, the glossiness may be felt to be insufficient.
 また、前記表面層のオレイン酸の後退接触角θが、60°以上であることが好ましく、65°以上がより好ましく、70°以上が特に好ましい。後退接触角の測定方法と意味については後述する。後退接触角は高い分には問題なく、一方で60°よりも低くなると指紋成分が徐々に付着しやすくなり、耐指紋性が低下する場合がある。 Further, the receding contact angle θ r of oleic acid in the surface layer is preferably 60 ° or more, more preferably 65 ° or more, and particularly preferably 70 ° or more. The measuring method and meaning of the receding contact angle will be described later. The receding contact angle has no problem when it is high. On the other hand, when the receding contact angle is lower than 60 °, the fingerprint component tends to adhere gradually and the fingerprint resistance may be lowered.
 前記表面層に下記の条件により模擬指紋付着および模擬指紋拭き取りを行い、JIS Z8730:2009およびJIS Z8722:2009に従って求めた模擬指紋付着前の状態を基準とした模擬指紋拭き取り後の正反射光込みの色差ΔE ab(di:8°)Sb10W10(以降ΔESCI-2とする)と模擬指紋付着前の状態を基準とした模擬指紋拭き取り後の正反射光除去の色差ΔE ab(de:8°)Sb10W10(ΔESCE-2とする)は下記の式(1)を満たすこと、すなわち式(1)の左辺の値が2.0以下であることが好ましい。式(1)の左辺の値は0もしくは正の値であれば小さい分には問題なく、一方でこの値が2.0よりも大きくなると、指紋の拭き取り性が不十分で、結果として耐指紋性が低下する場合がある。かかる観点から、式(1)の左辺の値は1.7以下であることがより好ましく、1.5以下が特に好ましい。 The surface layer was subjected to simulated fingerprint attachment and simulated fingerprint wiping under the following conditions, and the reflection of the specular reflection light after wiping the simulated fingerprint based on the state before the simulated fingerprint adhesion determined according to JIS Z8730: 2009 and JIS Z8722: 2009 Color difference ΔE * ab (di: 8 °) Sb10W10 (hereinafter referred to as ΔE SCI-2 ) and the color difference ΔE * ab (de: 8 °) after removing the regular reflection light after wiping the simulated fingerprint based on the state before the dummy fingerprint is attached ) Sb10W10 (referred to as ΔE SCE-2 ) preferably satisfies the following expression (1), that is, the value on the left side of expression (1) is 2.0 or less. If the value on the left side of Equation (1) is 0 or a positive value, there will be no problem if it is small. On the other hand, if this value is greater than 2.0, the fingerprint wiping property is insufficient, resulting in anti-fingerprint resistance. May decrease. From this viewpoint, the value on the left side of the formula (1) is more preferably 1.7 or less, and particularly preferably 1.5 or less.
 ((ΔESCI-2+(ΔESCE-21/2 ≦2.0
                          ・・・ 式(1)
ここで、模擬指紋付着および模擬指紋拭き取りの条件は以下のとおりである。
・模擬指紋付着の条件:オレイン酸70質量%と数平均粒子径2μmのシリカ粒子30質量%からなる分散物を、JIS B0601:2001で規定するRaが3μmで、JIS K6253:1997で規定するゴム硬度50のシリコーンゴムに1.0g/m付着させ、これを対象とする面に30KPaの圧力で付着させる。なお、Raは±1μmの変動は許容でき、オレイン酸70質量%と数平均粒子径2μmのシリカ30質量%からなる分散物のシリコーンゴムの表面への付着量は±0.1g/mの変動は許容できる。具体的な模擬指紋付着の手順ついては後述する。
・模擬指紋拭き取りの条件:前記方法で付着した模擬指紋を不織布にて30KPaの圧力、5cm/秒の速度で3回擦る。
((ΔE SCI-2 ) 2 + (ΔE SCE-2 ) 2 ) 1/2 ≦ 2.0
... Formula (1)
Here, the conditions for simulated fingerprint attachment and simulated fingerprint wiping are as follows.
・ Simulated fingerprint adhesion conditions: A dispersion composed of 70% by mass of oleic acid and 30% by mass of silica particles having a number average particle diameter of 2 μm has a Ra defined by JIS B0601: 2001 of 3 μm and a rubber defined by JIS K6253: 1997. 1.0 g / m 2 is adhered to a silicone rubber having a hardness of 50, and this is adhered to the target surface at a pressure of 30 KPa. The variation of Ra is allowed to be ± 1 μm, and the amount of the dispersion consisting of 70% by mass of oleic acid and 30% by mass of silica having a number average particle diameter of 2 μm to the surface of the silicone rubber is ± 0.1 g / m 2 . Variation is acceptable. A specific simulated fingerprint attachment procedure will be described later.
Simulated fingerprint wiping conditions: The simulated fingerprint attached by the above method is rubbed three times with a nonwoven fabric at a pressure of 30 KPa and a speed of 5 cm / sec.
 この時、前記表面層のオレイン酸の後退接触角θが、50°以上であることが好ましく、60°以上がより好ましく、70°以上が特に好ましい。後退接触角の測定方法と意味については後述する。後退接触角は高い分には問題なく、一方で50°よりも低くなると指紋成分が付着しやすくなり、前記の式(1)を満たすことが困難となり耐指紋性が低下する場合がある。 At this time, the receding contact angle θ r of oleic acid in the surface layer is preferably 50 ° or more, more preferably 60 ° or more, and particularly preferably 70 ° or more. The measuring method and meaning of the receding contact angle will be described later. On the other hand, there is no problem with a high receding contact angle. On the other hand, when the receding contact angle is lower than 50 °, the fingerprint component tends to adhere, and it may be difficult to satisfy the formula (1), and the fingerprint resistance may be lowered.
 さらに、前記表面層のオレイン酸の前進接触角θ、後退接触角θが下記の式(2)を満たすこと、すなわち15°以下であることが好ましく、12°以下がより好ましく、10°以下が特に好ましい。式(2)の値は0もしくは正の値であれば小さい分には好ましく、一方でこの値が15°よりも大きくなると、指紋の拭き取り性が不十分なため、耐指紋性が低下する場合がある。 Furthermore, the advancing contact angle θ a and receding contact angle θ r of the oleic acid of the surface layer satisfy the following formula (2), that is, 15 ° or less, preferably 12 ° or less, more preferably 10 °. The following are particularly preferred: If the value of the formula (2) is 0 or a positive value, it is preferable for a small amount. On the other hand, if this value is larger than 15 °, the fingerprint wiping property is insufficient and the fingerprint resistance is lowered. There is.
 (θa-θr)≦ 15°             ・・・ 式(2)。 a −θ r ) ≦ 15 ° Formula (2).
 ここで、前述の後退接触角と前進接触角について説明する。固体表面の液体の接触角は本来熱力学的な量であり、系が定まれば1つの値をとるはずである。しかし実際には液体が固体表面を動く場合には、進行方向の接触角と反対側(後退側)の接触角は同じ値をとらないことが多い。このときの進行方法の接触角を前進接触角、反対側の接触角を後退接触角と呼ぶ。 Here, the above-described backward contact angle and forward contact angle will be described. The contact angle of the liquid on the solid surface is essentially a thermodynamic quantity and should take a single value once the system is determined. However, when the liquid actually moves on the surface of the solid, the contact angle on the opposite side (retreat side) to the contact angle in the traveling direction often does not take the same value. The contact angle of the traveling method at this time is called a forward contact angle, and the contact angle on the opposite side is called a receding contact angle.
 前進接触角、後退接触角の値には、いくつかの測定方法があるが、転落角法のように原理的に液滴質量の影響を受ける方法は、避けるべきである。ここでは、拡張-収縮法による測定を説明する。拡張-収縮法による前進接触角の値は、表面層上に液体(オレイン酸)を付与して液滴を拡張するとき、液滴の接触角を連続的に複数回測定し、接触角が一定になったところの平均値で表される。同様にして後退接触角の値は、表面層上に液体(オレイン酸)を付与して液体を徐々に吐出して液滴を拡張した後、その液滴を吸引し液滴が収縮する過程で、液滴の接触角を連続的に複数回測定し、接触角が一定になったところの平均値で表される。具体的に、例えば1~50μLの間で液体を吐出-吸引(液滴を拡張収縮)させる場合において、前進接触角は液液吐出時の1μLから50μL、後退接触角は液滴吸引時の50μLから1μLまでの間、1μLの間隔で測定し、液体の拡張、もしくは収縮過程において液滴の接触角がほぼ一定になったところの値を求めることにより決定することができる。拡張収縮法における接触角の測定は、例えば、Drop Master (協和界面科学株式会社製)を用いて測定することができる。 There are several methods for measuring the advancing contact angle and receding contact angle, but methods that are influenced by the drop mass in principle, such as the falling angle method, should be avoided. Here, the measurement by the expansion-contraction method will be described. The value of the advancing contact angle by the expansion-contraction method is that when a liquid (oleic acid) is applied on the surface layer to expand the droplet, the contact angle of the droplet is measured continuously several times, and the contact angle is constant. It is represented by the average value of where it became. Similarly, the receding contact angle value is determined by applying liquid (oleic acid) on the surface layer and gradually discharging the liquid to expand the droplet, and then drawing the droplet and contracting the droplet. The contact angle of the droplet is continuously measured a plurality of times, and is expressed as an average value when the contact angle becomes constant. Specifically, for example, when liquid is discharged and sucked between 1 and 50 μL (droplet expansion and contraction), the advancing contact angle is 1 μL to 50 μL at the time of liquid-liquid discharging, and the receding contact angle is 50 μL at the time of droplet suction. 1 to 1 μL, and can be determined by obtaining a value at which the contact angle of the droplet becomes substantially constant during the expansion or contraction process of the liquid. The contact angle in the expansion contraction method can be measured using, for example, Drop Master (manufactured by Kyowa Interface Science Co., Ltd.).
 また、前記表面層の元素組成として、前記表面層のX線光電子分光法(XPS)による光電子脱出角度15°の元素組成が、原子数比で50%以上のフッ素を含むことが好ましく、55%以上がより好ましく、60%以上が特に好ましい。 Further, as the elemental composition of the surface layer, the elemental composition at a photoelectron escape angle of 15 ° by X-ray photoelectron spectroscopy (XPS) of the surface layer preferably contains 50% or more of fluorine by atomic ratio, 55% The above is more preferable, and 60% or more is particularly preferable.
 前記表面層の元素組成として、耐久性の観点からはフッ素の量が多い分には問題がないが、層を形成するための骨格を必要とするため、現実的に80%程度が上限となり、それ以上では前記表面層内の反応性部位が損なわれやすく、十分な硬度が得難くなる場合がある。 As the elemental composition of the surface layer, there is no problem with a large amount of fluorine from the viewpoint of durability, but since a skeleton for forming the layer is required, the upper limit is practically about 80%, Above that, reactive sites in the surface layer are likely to be damaged, and it may be difficult to obtain sufficient hardness.
 ここで、X線光電子分光法とは、サンプル表面にX線を照射し、生じる光電子のエネルギーを測定することで、サンプルの構成元素とその電子状態を分析する方法を指し、さらに光電子脱出角度を制御することで、ごく表面に近い部分の(~10nm以下)の元素組成を知ることができるものである。本発明においては光電子脱出角度15°での分析により得られた元素組成において、50%よりもフッ素が少ない場合には、指紋付着性、指紋拭き取り性が低下する場合がある。フッ素以外の元素は特に限定されないが、化合物を構成する関係から、炭素、酸素、ケイ素、などが含まれることが好ましい。 Here, X-ray photoelectron spectroscopy refers to a method for analyzing the constituent elements of a sample and their electronic states by irradiating the sample surface with X-rays and measuring the energy of the resulting photoelectrons. By controlling, it is possible to know the elemental composition of the portion (˜10 nm or less) very close to the surface. In the present invention, in the elemental composition obtained by analysis at a photoelectron escape angle of 15 °, when the amount of fluorine is less than 50%, fingerprint adhesion and fingerprint wiping may be deteriorated. Elements other than fluorine are not particularly limited, but carbon, oxygen, silicon, and the like are preferably included from the relationship of constituting the compound.
 さらに、前記表面層の表面の形態としては、前記表面層の原子間力顕微鏡で観測される表面の形態について、表面の接触面積を低減させる大きな凹凸構造と、付着指紋の視認性を低減させる微細な凹凸構造が共存することが好ましい。ここで大きな凹凸構造と微細な凹凸構造が共存するとは、大きな凹凸構造を有する領域と微細な凹凸構造を有する領域が混在している状態をいう。また、それぞれの領域は分離した領域を形成している必要はなく、大きな凹凸構造の表面上の一部、もしくは全面に微細な凹凸構造がさらに存在する状態であってもよい。具体的には、JIS B0601:2001で規定する十点平均粗さRzと中心線平均粗さRaが下記の式(3)および(4)を満たすことが好ましい。 Furthermore, as the surface form of the surface layer, the surface form observed by an atomic force microscope of the surface layer is a large concavo-convex structure that reduces the contact area of the surface and a fine structure that reduces the visibility of the attached fingerprint. It is preferable that an uneven structure coexists. Here, the coexistence of a large concavo-convex structure and a fine concavo-convex structure means a state in which a region having a large concavo-convex structure and a region having a fine concavo-convex structure are mixed. In addition, each region does not need to form a separate region, and may be in a state in which a fine concavo-convex structure is further present on a part or the entire surface of a large concavo-convex structure. Specifically, it is preferable that the ten-point average roughness Rz and the centerline average roughness Ra specified by JIS B0601: 2001 satisfy the following formulas (3) and (4).
 4nm<Rz≦25nm              ・・・ 式(3)
 Ra≦4nm                   ・・・ 式(4)
すなわち、Rzについては4nm超25nm以下が好ましく、5nm以上20nm以下がさらに好ましく、Raについては4nm以下であることが好ましく2nm以下がさらに好ましい。また、Raについては0.30nm以上がより好ましく、0.35nm以上がさらに好ましい。
4 nm <Rz ≦ 25 nm (3)
Ra ≦ 4 nm Formula (4)
That is, Rz is preferably more than 4 nm and 25 nm or less, more preferably 5 nm or more and 20 nm or less, and Ra is preferably 4 nm or less, more preferably 2 nm or less. Moreover, about Ra, 0.30 nm or more is more preferable, and 0.35 nm or more is further more preferable.
 ここで、十点平均粗さRzとは表面における凹凸構造の凸部分の高さと凹部分の深さについて、それぞれ上位5つの値の平均を算出して和を取った値であり、測定範囲内に低頻度で存在する大きな凹凸構造を特徴付ける値である。一方で中心線平均粗さRaは面内における凹凸構造全てを平均的に捉える値である。従ってRaがRzを上回ることはない。またRaが4nmより大きくなる場合には成形材料の十分な透明性が得られない場合があり、Raが0.30nmより小さくなる場合は微細な凹凸構造を導入する効果が得られない場合がある。一方でRzが4nmより小さくとなる場合には表面の形態による接触面積低減の効果が得られない場合があり、Rzが25nmより大きくなる場合には前述の後退接触角の値が小さくなり、十分な耐指紋性が得られない場合がある。 Here, the ten-point average roughness Rz is a value obtained by calculating the average of the top five values for the height of the convex portion and the depth of the concave portion of the concavo-convex structure on the surface, and taking the sum. This is a value that characterizes a large uneven structure existing at a low frequency. On the other hand, the center line average roughness Ra is a value that captures all of the in-plane uneven structures on the average. Therefore, Ra does not exceed Rz. Further, when Ra is larger than 4 nm, sufficient transparency of the molding material may not be obtained, and when Ra is smaller than 0.30 nm, the effect of introducing a fine uneven structure may not be obtained. . On the other hand, when Rz is smaller than 4 nm, the effect of reducing the contact area due to the surface form may not be obtained, and when Rz is larger than 25 nm, the value of the receding contact angle is small and sufficient. Fingerprint resistance may not be obtained.
 さらに、前記表面層はフルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物Aと、炭素数8以上のアルキル基および/またはアルカンジイル基を含む部位と反応性部位を有する化合物Bとバインダー成分とを含有することが好ましい。ここで、フッ素化合物Aと化合物Bとバインダー成分とを含有するとは、それぞれが、未反応状態で混合されている場合だけではなく、例えば、フッ素化合物Aの反応性部位と化合物Bおよび/またはバインダー成分のうち該反応性部位の一部または全部が反応可能な部位で化学結合を形成している場合も含むものとする(以下、本発明の成形材料および塗料組成物について、同様とする)。また、前記フッ素化合物Aと前記化合物Bと前記バインダー成分が前記表面層の主成分であることがより好ましい。本明細書で主成分とは、特に断らない限り、全成分のうち50質量%以上を占める成分であることを指す。この場合はフッ素化合物Aと化合物Bとバインダー成分の合計が50質量%以上であることを指す。前記フッ素化合物Aと化合物Bとバインダー成分のそれぞれの詳細および好ましい含有比率等については後述するが、フッ素化合物Aは表面エネルギーを低下させることにより、指紋を構成する液体の接触角を上昇させて付着量を低減させるものであり、化合物Bはフッ素化合物Aを表面に高密度に存在させるための助剤として作用し、バインダー成分はこれらの成分を表面層内に固定化、さらに基材と結着させ、実用上必要な耐擦傷性を付与する役目を有する。 Further, the surface layer is a fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group. And a compound B having a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group and a reactive site, and a binder component. Here, the fluorine compound A, the compound B, and the binder component are included not only when they are mixed in an unreacted state, but also, for example, the reactive site of the fluorine compound A, the compound B, and / or the binder. The case where a chemical bond is formed at a site where a part or all of the reactive sites among the components can react (hereinafter, the same applies to the molding material and the coating composition of the present invention). More preferably, the fluorine compound A, the compound B and the binder component are the main components of the surface layer. In the present specification, the main component means a component occupying 50% by mass or more of all components unless otherwise specified. In this case, the total of the fluorine compound A, the compound B, and the binder component indicates 50% by mass or more. The details and preferable content ratios of the fluorine compound A, the compound B, and the binder component will be described later. The fluorine compound A is attached by increasing the contact angle of the liquid constituting the fingerprint by reducing the surface energy. The compound B acts as an auxiliary agent for allowing the fluorine compound A to be present at a high density on the surface, and the binder component immobilizes these components in the surface layer and binds to the base material. And has a role of imparting practically necessary scratch resistance.
 また、前記表面層はフルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物Aと、バインダー成分、および数平均粒子径5nm以上20nm以下の粒子d(I)および数平均粒子径50nm以上300nm以下の粒子d(II)を含有することが好ましく、このうち特にフッ素化合物Aとして、フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と1分子中に反応性部位2以上5以下を有するフッ素化合物A(II)と、バインダー成分として、分子中に10以上の反応性部位を持ち、数平均分子量1500以上3000以下の化合物であるバインダー原料C(I)および分子中に3以上6以下の反応性部位を持ち、数平均分子量500以上1500以下の化合物であるバインダー原料C(II)から形成されてなるバインダー成分と、粒子として、数平均粒子径5nm以上20nm以下の粒子d(I)および数平均粒子径50nm以上300nm以下の粒子d(II)とを含有する表面層であることがより好ましい。 The surface layer is a fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group. And a binder component, and a particle d (I) having a number average particle size of 5 nm to 20 nm and a particle d (II) having a number average particle size of 50 nm to 300 nm are preferable. Fluorine having a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group, and 2 to 5 reactive sites in one molecule Compound A (II) and The binder component C (I), which is a compound having 10 or more reactive sites in the molecule and having a number average molecular weight of 1500 or more and 3000 or less, and having 3 or more and 6 or less reactive sites in the molecule as the binder component, the number average A binder component formed from a binder raw material C (II) which is a compound having a molecular weight of 500 or more and 1500 or less, and as a particle, a particle d (I) having a number average particle size of 5 nm to 20 nm and a number average particle size of 50 nm to 300 nm It is more preferable that the surface layer contains the particles d (II).
 前記フッ素化合物Aおよびフッ素化合A(II)、バインダー原料C(I)およびバインダー原料C(II)、粒子d(I)および粒子d(II)の詳細および好ましい含有比率等については後述するが、それぞれの機能は以下の通りである。フッ素化合物A(II)はフッ素化合物Aのうち、反応性部位を2以上5以下に特定した化合物であり、フッ素化合物Aの中でもかかる特定の化合物を選択して用いることにより、特に、拭き取り時に布巾により擦られることによる成形材料表面の変化への耐久性である拭き取り耐久性をさらに向上させることが可能となる。また、バインダー原料C(I)から形成されてなるバインダー成分は、特に硬度の向上に寄与し、バインダー原料C(II)から形成されてなるバインダー成分は、特に、前記フッ素化合物Aの固定化に寄与する。そして、粒子d(I)および粒子d(II)を含有することにより表面に前述の式(3)、式(4)で表される特定の表面の形態が形成される。 The details and preferred content ratios of the fluorine compound A and the fluorine compound A (II), the binder raw material C (I) and the binder raw material C (II), the particles d (I) and the particles d (II) will be described later. Each function is as follows. Fluorine compound A (II) is a compound in which the reactive sites are specified as 2 or more and 5 or less in fluorine compound A, and by selecting and using such a specific compound among fluorine compounds A, the cloth width is particularly determined during wiping. Thus, it is possible to further improve the wiping durability, which is the durability to the change in the surface of the molding material due to rubbing. In addition, the binder component formed from the binder raw material C (I) contributes particularly to the improvement of hardness, and the binder component formed from the binder raw material C (II) is particularly useful for fixing the fluorine compound A. Contribute. And by containing particle | grains d (I) and particle | grains d (II), the form of the specific surface represented by above-mentioned Formula (3) and Formula (4) is formed on the surface.
 また本発明の塗料組成物はフルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物Aと、炭素数8以上のアルキル基および/またはアルカンジイル基を含む部位と反応性部位を有する化合物Bと、バインダー原料とを含有することが好ましい。また、フッ素化合物Aと化合物Bは塗料組成物の状態では、フッ素化合物Aと化合物Bが共重合体などの形で結合していないことが好ましい。 The coating composition of the present invention is a fluorine having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group. It is preferable to contain the compound A, the compound B having a reactive site and a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group, and a binder raw material. Moreover, it is preferable that the fluorine compound A and the compound B are not couple | bonded in the form of a copolymer etc. in the state of a coating composition.
 また本発明の塗料組成物はフルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物Aと、バインダー原料および数平均粒子径5nm以上20nm以下の粒子D(I)および数平均粒子径50nm以上300nm以下の粒子D(II)を含有することが好ましく、このうち特にフッ素化合物Aとして、フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と1分子中に反応性部位2以上5以下を有するフッ素化合物A(II)と、バインダー原料として、分子中に10以上の反応性部位を持ち、数平均分子量1500以上3000以下の化合物であるバインダー原料C(I)および分子中に3以上6以下の反応性部位を持ち、数平均分子量500以上1500以下の化合物であるバインダー原料C(II)と、粒子として、数平均粒子径5nm以上20nm以下の粒子D(I)および数平均粒子径50nm以上300nm以下の粒子D(II)とを含有することがより好ましい。それぞれの成分の機能は、成形材料に関して述べたとおりである(この場合d(I)をD(I)に、d(II)をD(II)に読み替えるものとする)。 The coating composition of the present invention is a fluorine having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group. It is preferable to contain the compound A, a binder raw material, a particle D (I) having a number average particle size of 5 nm to 20 nm, and a particle D (II) having a number average particle size of 50 nm to 300 nm. , A site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group, and a reactive site of 2 to 5 in one molecule With fluorine compound A (II) The binder raw material has 10 or more reactive sites in the molecule, the binder raw material C (I), which is a compound having a number average molecular weight of 1500 to 3000, and 3 to 6 reactive sites in the molecule. Binder raw material C (II) which is a compound having a molecular weight of 500 to 1500, particles D (I) having a number average particle size of 5 nm to 20 nm and particles D (II) having a number average particle size of 50 nm to 300 nm as particles It is more preferable to contain. The function of each component is as described for the molding material (in this case, d (I) is read as D (I) and d (II) is read as D (II)).
 前記フッ素化合物Aおよびフッ素化合物A(II)、バインダー原料C(I)およびバインダー原料C(II)、粒子D(I)および粒子D(II)の詳細およびそれぞれの好ましい比率については後述する。 Details of the fluorine compound A and the fluorine compound A (II), the binder raw material C (I) and the binder raw material C (II), the particles D (I) and the particles D (II), and preferred ratios thereof will be described later.
 [成形材料、および表面層]
 本発明の成形材料は本発明の特性、およびまたは材料を含む表面層を有していれば平面状(フィルム、シート、プレート)、3次元形状(成形体)のいずれであってもよい。ここで、本発明における表面層とは、前記成形材料の表面から厚み方向(平面状の場合)または内部方向(3次元形状の場合)に向かい、厚み方向または内部方向に隣接する部位と元素組成、含有物(粒子等)の形状、物理特性が不連続な境界面を有することにより区別でき、有限の厚さを有する部位を指す。より具体的には、前記成形材料を表面から厚み方向に各種組成/元素分析装置(IR、XPS,XRF、EDAX、SIMS等)、電子顕微鏡(透過型、走査型)または光学顕微鏡にて断面観察した際、前記不連続な境界面により区別される。
[Molding material and surface layer]
The molding material of the present invention may be any of a flat shape (film, sheet, plate) and three-dimensional shape (molded product) as long as it has the characteristics of the present invention and / or a surface layer containing the material. Here, the surface layer in the present invention refers to a portion and an elemental composition that are directed from the surface of the molding material in the thickness direction (in the case of a planar shape) or in the internal direction (in the case of a three-dimensional shape) and adjacent in the thickness direction or the internal direction. The shape and physical properties of inclusions (particles, etc.) can be distinguished by having a discontinuous boundary surface, and indicate a portion having a finite thickness. More specifically, cross-sectional observation of the molding material in the thickness direction from the surface using various composition / element analyzers (IR, XPS, XRF, EDAX, SIMS, etc.), electron microscope (transmission type, scanning type) or optical microscope Are distinguished by the discontinuous boundary surface.
 前記表面層は耐指紋性に加えて、反射防止、ハードコート、帯電防止、防汚性、導電性、熱線反射、近赤外線吸収、電磁波遮蔽、易接着等の他の機能を有してもよい。 In addition to fingerprint resistance, the surface layer may have other functions such as antireflection, hard coat, antistatic, antifouling, conductivity, heat ray reflection, near infrared absorption, electromagnetic wave shielding, and easy adhesion. .
 前記表面層の厚みは特に限定はないが、1nm以上100μm以下が好ましく、5nm以上50μm以下がより好ましく、前述した他の機能に応じてその厚みを選択することができる。 The thickness of the surface layer is not particularly limited, but is preferably 1 nm or more and 100 μm or less, more preferably 5 nm or more and 50 μm or less, and the thickness can be selected according to the other functions described above.
 [塗料組成物]
 本発明の塗料組成物は、塗工、乾燥、および硬化からなる一般的な塗工プロセスや、蒸着等のプロセスにより前記「表面層」を成形材料表面に形成可能な、常温にて液状の組成物を指し、フッ素化合物A、化合物B、バインダー原料C、粒子Dを含んでいることが好ましく、このほかに溶媒や、光重合開始剤、硬化剤、触媒などの各種添加剤を含んでもよい。フッ素化合物A、化合物B、バインダー原料C、粒子Dの詳細については後述する。
[Coating composition]
The coating composition of the present invention is a liquid composition at room temperature that can form the “surface layer” on the surface of the molding material by a general coating process including coating, drying, and curing, and a process such as vapor deposition. It preferably contains fluorine compound A, compound B, binder raw material C, and particles D, and may further contain various additives such as a solvent, a photopolymerization initiator, a curing agent, and a catalyst. Details of the fluorine compound A, the compound B, the binder raw material C, and the particles D will be described later.
 [フッ素化合物A]
 フッ素化合物Aは、フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有する化合物を指す。
[Fluorine compound A]
The fluorine compound A refers to a compound having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group.
 ここで、フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基、フルオロオキシアルカンジイル基とはアルキル基、オキシアルキル基、アルケニル基、アルカンジイル基、オキシアルカンジイル基が持つ水素の一部、あるいは全てがフッ素に置き換わった置換基であり、いずれも主にフッ素原子と炭素原子から構成される置換基であり、構造中に分岐があってもよく、これらの部位を有する構造が複数連結したダイマー、トリマー、オリゴマー、ポリマー構造を形成していてもよい。 Here, a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group, and a fluorooxyalkanediyl group are alkyl groups, oxyalkyl groups, alkenyl groups, alkanediyl groups, and oxyalkanediyl groups. A part or all of the substituents are replaced by fluorine, both of which are mainly composed of fluorine atoms and carbon atoms, and there may be branching in the structure. A plurality of linked dimers, trimers, oligomers, and polymer structures may be formed.
 また、反応性部位とは、熱または光などの外部エネルギーにより他の成分と反応する部位を指す。このような反応性部位として、反応性の観点からアルコキシシリル基及びアルコキシシリル基が加水分解されたシラノール基や、カルボキシル基、水酸基、エポキシ基、ビニル基、アリル基、アクリロイル基、メタクリロイル基などが挙げられる。なかでも、反応性、ハンドリング性の観点から、ビニル基、アリル基、アルコキシシリル基、シリルエーテル基あるいはシラノール基や、エポキシ基、アクリロイル(メタクリロイル)基が好ましく、ビニル基、アリル基、アクリロイル(メタクリロイル)基がより好ましく、アクリロイル(メタクリロイル)基が特に好ましい。また表面エネルギー低減の効果と、拭き取り時に布巾により擦られることによる成形材料表面の変化への耐久性である拭き取り耐久性とを両立させるには、特に前記の反応性部位を2以上5以下有するフッ素化合物A(II)を適用することが特に好ましい。指紋拭き取り時の前記表面層の耐久性の観点から、フッ素化合物Aが反応性部位を多く有することが望ましいが、一方で反応性部位が分子中に6以上となると表面エネルギーを低下させる効果が十分に得られない場合がある。 Also, the reactive site refers to a site that reacts with other components by external energy such as heat or light. Examples of such reactive sites include alkoxysilyl groups and silanol groups in which alkoxysilyl groups are hydrolyzed from the viewpoint of reactivity, carboxyl groups, hydroxyl groups, epoxy groups, vinyl groups, allyl groups, acryloyl groups, methacryloyl groups, and the like. Can be mentioned. Of these, vinyl, allyl, alkoxysilyl, silyl ether or silanol, epoxy, and acryloyl (methacryloyl) groups are preferred from the viewpoints of reactivity and handling, and vinyl, allyl, and acryloyl (methacryloyl) are preferred. ) Group is more preferable, and acryloyl (methacryloyl) group is particularly preferable. Further, in order to achieve both the effect of reducing the surface energy and the wiping durability, which is the durability against changes in the surface of the molding material due to being rubbed by the cloth during wiping, in particular, fluorine having 2 to 5 of the reactive sites described above. Particular preference is given to applying compound A (II). From the viewpoint of durability of the surface layer at the time of fingerprint wiping, it is desirable that the fluorine compound A has many reactive sites. On the other hand, if the reactive site is 6 or more in the molecule, the effect of reducing the surface energy is sufficient. May not be obtained.
 フッ素化合物Aの一例は次の化学式(1)で表される化合物である。 An example of the fluorine compound A is a compound represented by the following chemical formula (1).
 Rf1-R-D              ・・・ 化学式(1)
(Rf1はフルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基、フルオロオキシアルカンジイル基を含む部位を、Rはアルカンジイル基、アルカントリイル基、およびそれらから導出されるエステル構造、ウレタン構造、エーテル構造、トリアジン構造を、Dは反応性部位を示す。)。
R f1 -R 2 -D 1 ... Chemical formula (1)
(R f1 is a fluoroalkyl group, fluorooxyalkyl group, fluoroalkenyl group, fluoro alkanediyl group, the site containing the fluoroxy alkanediyl group, R 2 is derived alkanediyl group, alkanetriyl groups, and from them D 1 represents a reactive site in the ester structure, urethane structure, ether structure, and triazine structure).
 化学式(1)の化合物の例としては2,2,2-トリフルオロエチルアクリレート、2,2,3,3,3-ペンタフロオロプロピルアクリレート、2-パーフルオロブチルエチルアクリレート、3-パーフルオロブチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロヘキシルエチルアクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピルアクリレート、2-パーフルオロオクチルエチルアクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロデシルエチルアクリレート、2-パーフルオロ-3-メチルブチルエチルアクリレート、3-パーフルオロ-3-メトキシブチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロ-5-メチルヘキシルエチルアクリレート、3-パーフルオロ-5-メチルヘキシル-2-ヒドロキシプロピルアクリレート、2-パーフルオロ-7-メチルオクチル-2-ヒドロキシプロピルアクリレート、テトラフルオロプロピルアクリレート、オクタフルオロペンチルアクリレート、ドデカフルオロヘプチルアクリレート、ヘキサデカフルオロノニルアクリレート、ヘキサフルオロブチルアクリレート、2,2,2-トリフルオロエチルメタクリレート、2,2,3,3,3-ペンタフルオロプロピルメタクリレート、2-パーフルオロブチルエチルメタクリレート、3-パーフルオロブチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロオクチルエチルメタクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロデシルエチルメタクリレート、2-パーフルオロ-3-メチルブチルエチルメタクリレート、3-パーフルオロ-3-メチルブチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロ-5-メチルヘキシルエチルメタクリレート、3-パーフルオロ-5-メチルヘキシル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロ-7-メチルオクチルエチルメタクリレート、3-パーフルオロ-6-メチルオクチルメタクリレート、テトラフルオロプロピルメタクリレート、オクタフルオロペンチルメタクリレート、オクタフルオロペンチルメタクリレート、ドデカフルオロヘプチルメタクリレート、ヘキサデカフルオロノニルメタクリレート、1-トリフルオロメチルトリフルオロエチルメタクリレート、ヘキサフルオロブチルメタクリレート、トリアクリロイル-ヘプタデカフルオロノネニル-ペンタエリスリトールなどが挙げられる。 Examples of the compound of the chemical formula (1) include 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropyl acrylate, 2-perfluorobutylethyl acrylate, 3-perfluorobutyl -2-hydroxypropyl acrylate, 2-perfluorohexylethyl acrylate, 3-perfluorohexyl-2-hydroxypropyl acrylate, 2-perfluorooctylethyl acrylate, 3-perfluorooctyl-2-hydroxypropyl acrylate, 2-per Fluorodecylethyl acrylate, 2-perfluoro-3-methylbutylethyl acrylate, 3-perfluoro-3-methoxybutyl-2-hydroxypropyl acrylate, 2-perfluoro-5-methylhexylethylacrylate 3-perfluoro-5-methylhexyl-2-hydroxypropyl acrylate, 2-perfluoro-7-methyloctyl-2-hydroxypropyl acrylate, tetrafluoropropyl acrylate, octafluoropentyl acrylate, dodecafluoroheptyl acrylate, Hexadecafluorononyl acrylate, hexafluorobutyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, 2-perfluorobutylethyl methacrylate, 3-perfluorobutyl -2-hydroxypropyl methacrylate, 2-perfluorooctylethyl methacrylate, 3-perfluorooctyl-2-hydroxypropyl methacrylate, 2-perf Orodecylethyl methacrylate, 2-perfluoro-3-methylbutylethyl methacrylate, 3-perfluoro-3-methylbutyl-2-hydroxypropyl methacrylate, 2-perfluoro-5-methylhexylethyl methacrylate, 3-perfluoro-5 -Methylhexyl-2-hydroxypropyl methacrylate, 2-perfluoro-7-methyloctylethyl methacrylate, 3-perfluoro-6-methyloctyl methacrylate, tetrafluoropropyl methacrylate, octafluoropentyl methacrylate, octafluoropentyl methacrylate, dodecafluoro Heptyl methacrylate, hexadecafluorononyl methacrylate, 1-trifluoromethyltrifluoroethyl methacrylate, hexafluo And robutyl methacrylate, triacryloyl-heptadecafluorononenyl-pentaerythritol, and the like.
 また、フッ素化合物Aには好ましい材料があり、一つは前記化学式(1)にて、Rf1部として複数のフルオロアルキル基を、Dの部分で複数のアクリロイル(メタクリロイル)基を有し、Rの部分が多分岐構造になった、いわゆる含フッ素デンドリマーであり、もう一つは、前記化学式(1)にて、Rf1部としてのフルオロオキシアルキル基とフルオロオキシアルカンジイル基からなるフルオロポリエーテル部位を、Rの部分でアルカンジイル基を、Dの部分でアクリロイル(メタクリロイル)基を有する、いわゆるフルオロポリエーテル部位を有する材料である。 In addition, there is a preferable material for the fluorine compound A, one of which has a plurality of fluoroalkyl groups as the R f1 part and a plurality of acryloyl (methacryloyl) groups at the D 1 part in the chemical formula (1), R 2 is a so-called fluorine-containing dendrimer having a multi-branched structure, and the other is a fluoro group consisting of a fluorooxyalkyl group and a fluorooxyalkanediyl group as R f1 moiety in the chemical formula (1). It is a material having a so-called fluoropolyether moiety having a polyether moiety, an alkanediyl group at the R 2 moiety, and an acryloyl (methacryloyl) group at the D 1 moiety.
 ここで、含フッ素デンドリマーとは、フルオロアルキル基、フルオロオキシアルキル等の基、フルオロアルケニル基、フルオロアルカンジイル基、フルオロオキシアルカンジイル基を含むデンドリマーを指す。デンドリマーとは、例えば、Hawker,et.al.J.Chem.Soc.,Chem. Commun.1990,(15),1010-1013.、D.A.Tomalia,et.al.Angew.Chem.Int.Ed.Engl.,29,138-175(1990).、J.M.J.Frechet,Science,263,1710.(1994)、柿本雅明;化学,50巻,608頁(1995)等に記載されている規則的な樹枝状分岐を有する分岐高分子の総称であり、このような分子は、分子の中心から規則的な分岐をした高分子構造を有するため、例えばD.A.Tomalia,et.al.Angew.Chem.Int. Ed.Engl.,29,138-175 (1990).に解説されているように、高分子量化するにつれて生じる分岐末端の極度の立体的込み合いにより球状の分子形態をとるようになる。 Here, the fluorine-containing dendrimer refers to a dendrimer containing a group such as a fluoroalkyl group or fluorooxyalkyl, a fluoroalkenyl group, a fluoroalkanediyl group, or a fluorooxyalkanediyl group. Dendrimers include, for example, Hawker, et. al. J. et al. Chem. Soc. , Chem. Commun. 1990, (15), 1010-1013. , D. A. Tomalia, et. al. Angew. Chem. Int. Ed. Engl. 29, 138-175 (1990). J. et al. M.M. J. et al. Frechet, Science, 263, 1710. (1994), Masaaki Enomoto; Kagaku, Vol. 50, p. 608 (1995), etc., is a general term for branched polymers having regular dendritic branches, and such molecules are ordered from the center of the molecule. For example, D.M. A. Tomalia, et. al. Angew. Chem. Int. Ed. Engl. 29, 138-175 (1990). As described in (1), due to the extreme steric crowding of the branched ends that occurs as the molecular weight increases, a spherical molecular form comes to be taken.
 含フッ素デンドリマーの重量平均分子量(以下Mwと略記)は、ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算で好ましくは1000~200000、さらに好ましくは2000~100000、最も好ましくは5000~60000である。 The weight average molecular weight (hereinafter abbreviated as Mw) of the fluorine-containing dendrimer is preferably 1000-200000, more preferably 2000-100000, and most preferably 5000-60000 in terms of polystyrene by gel permeation chromatography (GPC).
 また、前記フルオロポリエーテル部位とは、フルオロアルキル基、オキシフルオロアルキル基、オキシフルオロアルカンジイル基などからなる部位で、化学式(2)、(3)に代表される構造である。
CFn1(3-n1)-(CFn2(2-n2)kO-(CFn3(2-n3)mO-
                        ・・・ 化学式(2)
-(CFn4(2-n4)pO-(CFn5(2-n5)sO- ・・・ 化学式(3)
ここで、n1は1~3の整数、n2~n5は1または2の整数、k、m、p、sは0以上の整数でかつp+sは1以上である。好ましくはn1は2以上、n2~n5は1または2の整数であり、より好ましくはn1は3、n2とn4は2、n3とn5は1または2の整数である。
The fluoropolyether moiety is a moiety comprising a fluoroalkyl group, an oxyfluoroalkyl group, an oxyfluoroalkanediyl group, etc., and has a structure represented by chemical formulas (2) and (3).
CF n1 H (3-n1) - (CF n2 H (2-n2)) k O- (CF n3 H (2-n3)) m O-
... Chemical formula (2)
- (CF n4 H (2- n4)) p O- (CF n5 H (2-n5)) s O- ··· formula (3)
Here, n1 is an integer of 1 to 3, n2 to n5 are integers of 1 or 2, k, m, p, and s are integers of 0 or more, and p + s is 1 or more. Preferably, n1 is 2 or more, n2 to n5 are integers of 1 or 2, more preferably n1 is 3, n2 and n4 are 2, and n3 and n5 are integers of 1 or 2.
 このフルオロポリエーテル部位の鎖長には好ましい範囲があり、炭素数が4以上12以下が好ましく、4以上10以下がより好ましく、6以上8以下が特に好ましい。炭素数が、3以下では表面エネルギーが十分に低下しないため撥油性が低下する場合があり、13以上では溶媒への溶解性が低下するため、塗膜の品位が低下する場合がある。 There is a preferred range for the chain length of this fluoropolyether moiety, preferably 4 or more and 12 or less, more preferably 4 or more and 10 or less, and particularly preferably 6 or more and 8 or less. When the number of carbon atoms is 3 or less, the surface energy is not sufficiently reduced, so that the oil repellency may be lowered. When the carbon number is 13 or more, the solubility in a solvent is lowered, so that the quality of the coating film may be lowered.
 なお、フッ素化合物Aは1分子あたり複数のフルオロポリエーテル部位を有していてもよい。
上記フッ素化合物Aの市販されている例としては、RS-75(DIC株式会社)、オプツールDSX,オプツールDAC(ダイキン工業株式会社)、C10GACRY、C8HGOL(油脂製品株式会社)などを挙げることができ、これらの製品を利用することができる。
The fluorine compound A may have a plurality of fluoropolyether moieties per molecule.
Examples of commercially available fluorine compound A include RS-75 (DIC Corporation), OPTOOL DSX, OPTOOL DAC (Daikin Industries, Ltd.), C10GACRY, C8HGOL (Oil Products), and the like. These products can be used.
 [化合物B]
 化合物Bは、炭素数8以上のアルキル基および/またはアルカンジイル基を含む部位と反応性部位を有する化合物を指す。また、反応性部位はフッ素化合物Aの項で述べたとおりである。
[Compound B]
Compound B refers to a compound having a reactive site and a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group. The reactive site is as described in the section of the fluorine compound A.
 化合物Bの一例は次の化学式(4)で表される化合物である。
10-R11-D12             ・・・ 化学式(4)
(R10は炭素数8以上のアルキル基および/またはアルカンジイル基を含む部位を、R11はアルカンジイル基、アルカントリイル基、およびそれらから導出されるエステル構造、ウレタン構造、エーテル構造、トリアジン構造を、D12は反応性部位を示す。)。
An example of compound B is a compound represented by the following chemical formula (4).
R 10 -R 11 -D 12 ... Chemical formula (4)
(R 10 is a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group, R 11 is an alkanediyl group, an alkanetriyl group, and an ester structure, urethane structure, ether structure, triazine derived therefrom) In the structure, D 12 represents a reactive site).
 化学式(4)で示される化合物Bは、具体的には(メタ)アクリレートモノマー、オリゴマー、アルコキシシラン、アルコキシシラン加水分解物、アルコキシシランオリゴマー等が好ましく、アクリレートモノマーがより好ましい。 Specifically, the compound B represented by the chemical formula (4) is preferably a (meth) acrylate monomer, oligomer, alkoxysilane, alkoxysilane hydrolyzate, alkoxysilane oligomer, or the like, and more preferably an acrylate monomer.
 アクリレートモノマーの例としては、1分子中に1個以上の(メタ)アクリロイルオキシ基を有するアクリレートを指し、具体的な例としては、イソボニル(メタ)アクリレート、(イソ)ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、(イソ)デシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、トリデシル(メタ)アクリレート、2-メチル-1,8オクタンジオールジ(メタ)アクリレート、テトラデシル(メタ)アクリレート、セチル(メタ)アクリレート、1,10デカンジオールジ(メタ)アクリレート、1,9ノナンジオールジ(メタ)アクリレート、ジメチロールシクロデカンジ(メタ)アクリレートなどが挙げられる。これらの単量体は、1種または2種以上を混合して使用することができる。 Examples of acrylate monomers include acrylates having one or more (meth) acryloyloxy groups in one molecule, and specific examples include isobornyl (meth) acrylate, (iso) stearyl (meth) acrylate, and lauryl. (Meth) acrylate, (iso) decyl (meth) acrylate, isooctyl (meth) acrylate, tridecyl (meth) acrylate, 2-methyl-1,8 octanediol di (meth) acrylate, tetradecyl (meth) acrylate, cetyl (meth) ) Acrylate, 1,10 decanediol di (meth) acrylate, 1,9 nonanediol di (meth) acrylate, dimethylolcyclodecane di (meth) acrylate, and the like. These monomers can be used alone or in combination of two or more.
 なお、「(メタ)アクリレート」は、アクリレートとメタクリレートを「(メタ)アクリロイルオキシ基」は、アクリロイルオキシ基とメタクリロイルオキシ基を総称して、表すものとする。(上記以外に化合物中に「(メタ)アクリ・・・」が含まれる場合も同様である)。 In addition, “(meth) acrylate” represents acrylate and methacrylate, and “(meth) acryloyloxy group” represents acryloyloxy group and methacryloyloxy group generically. (The same applies to the case where “(meth) acryl ...” is contained in the compound in addition to the above).
 また、市販されている(メタ)アクリレートモノマーとしては新中村化学株式会社;(商品名“NKエステル”シリーズなど)、東亞合成株式会社;(“アロニックス”(登録商標)シリーズなど)、共栄社化学株式会社;(商品名“ライトアクリレート”、“ライトエステル”シリーズなどなどを挙げることができ、これらの製品を利用することができる。 In addition, commercially available (meth) acrylate monomers include Shin-Nakamura Chemical Co., Ltd. (trade name “NK Ester” series, etc.), Toagosei Co., Ltd. (“Aronix” (registered trademark) series, etc.), Kyoeisha Chemical Co., Ltd. (Product name: “light acrylate”, “light ester” series, etc. can be mentioned, and these products can be used.
 [バインダー成分、バインダー原料]
 バインダー原料は前記塗料組成物中に含まれる化合物であり、前記塗料組成物を塗工、乾燥、硬化処理により形成された前記表面層に存在するバインダー成分の原料である。つまり、本発明の塗料組成物中に含まれるバインダー原料が、熱や電離放射線などにより硬化して、表面層に含まれるものを、バインダー成分という。なお、一部のバインダー原料については、表面層中でも塗料組成物中と同様の状態で存在する場合もあり(未反応のまま存在する場合もあり)、その場合でも表面層中のものはバインダー成分という。
[Binder component, Binder raw material]
The binder raw material is a compound contained in the coating composition, and is a raw material for the binder component present in the surface layer formed by applying, drying, and curing the coating composition. That is, the binder raw material contained in the surface layer after the binder raw material contained in the coating composition of the present invention is cured by heat or ionizing radiation is referred to as a binder component. Some binder materials may exist in the surface layer in the same state as in the coating composition (may be left unreacted), and even in that case, the material in the surface layer is the binder component. That's it.
 前記塗料組成物中のバインダー原料は特に限定するものではないが、製造性の観点より、熱および/または活性エネルギー線などにより、硬化可能なバインダー原料であることが好ましい。塗料組成物中のバインダー原料は、一種類であってもよいし、二種類以上を混合して用いてもよい。 The binder raw material in the coating composition is not particularly limited, but is preferably a binder raw material that can be cured by heat and / or active energy rays from the viewpoint of manufacturability. One type of binder raw material in the coating composition may be used, or two or more types may be mixed and used.
 また、本発明においてフッ素化合物A、化合物Bを表面層中に保持する観点より、分子中にアルコキシ基、シラノール基、反応性二重結合、および開環反応可能な官能基を有しているモノマー、オリゴマーがバインダー原料であることが好ましい。さらにUV線により硬化する場合は、酸素阻害を防ぐことができることから酸素濃度ができるだけ低い方が好ましく、嫌気性雰囲気下で硬化する方がより好ましい。酸素濃度を下げることにより最表面の硬化状態が向上し、耐薬品耐性が良化する場合がある。 In the present invention, from the viewpoint of retaining the fluorine compound A and the compound B in the surface layer, the monomer having an alkoxy group, silanol group, reactive double bond, and functional group capable of ring-opening reaction in the molecule. The oligomer is preferably a binder raw material. Further, in the case of curing with UV rays, oxygen concentration is preferably as low as possible because oxygen inhibition can be prevented, and curing in an anaerobic atmosphere is more preferable. By reducing the oxygen concentration, the cured state of the outermost surface is improved and chemical resistance may be improved.
 また、より好ましいバインダー原料として、分子中に10以上の反応性部位を持ち、数平均分子量1500以上3000以下の化合物であるバインダー原料C(I)および分子中に3以上6以下の反応性部位を持ち、数平均分子量500以上1500以下の化合物であるバインダー原料C(II)が挙げられ、これらの何れかまたは両方を原料としてバインダー成分を形成することが好ましい。 Further, as a more preferable binder raw material, a binder raw material C (I) which is a compound having 10 or more reactive sites in the molecule and having a number average molecular weight of 1500 to 3000 and 3 to 6 reactive sites in the molecule. And binder raw material C (II) which is a compound having a number average molecular weight of 500 or more and 1500 or less, and it is preferable to form a binder component using either or both of these as raw materials.
 バインダー原料C(I)を加えて、バインダー成分を形成すると、これにより得られる成形材料の表面層の硬度を向上する効果がある。バインダー原料C(I)の分子量および反応性部位は十分に大きいことが好ましいが、一方で分子量が多すぎる場合には、溶解性が低下し、フッ素化合物Aや粒子Dなどの構成成分を分散させることができず、成形材料表面の透明性や平滑性が損なわれる場合がある。従ってバインダー原料C(I)は分子中に10以上の反応性部位を持ち、分子量1500以上3000以下の化合物であることが好ましい。 When the binder raw material C (I) is added to form the binder component, there is an effect of improving the hardness of the surface layer of the molding material obtained thereby. The molecular weight and reactive site of the binder raw material C (I) are preferably sufficiently large. On the other hand, when the molecular weight is too large, the solubility is lowered and the constituent components such as the fluorine compound A and the particles D are dispersed. In some cases, the transparency and smoothness of the surface of the molding material may be impaired. Therefore, the binder raw material C (I) is preferably a compound having 10 or more reactive sites in the molecule and a molecular weight of 1500 or more and 3000 or less.
 バインダー原料C(II)を加えて、バインダー成分を形成すると、これにより得られる成形材料の表面層では前記フッ素化合物Aの分散が良好となる効果があることから好ましい
 さらに、バインダー成分は前記のバインダー原料C(I)に加えてバインダー原料C(II)を含有する混合系から形成されてなるものであることが特に好ましい。バインダー原料C(II)には前述の通り表面層にフッ素化合物Aの分散を良好とする効果があることから好ましい。バインダー原料C(II)は、前記フッ素材料と近い反応性部位数を有し、分子量はより少ないことが好ましいが、成形材料の硬度を維持できる分子量および架橋数から一分子中に3つ以上の反応性部位有し、かつ分子量が500以上の化合物であることが好ましい。一方分子量が1500より大きい、あるいは反応部位数が7より多い場合には、流動性が損なわれ、フッ素化合物Aを前記表面層に分散させることができず、表面エネルギーを低下させる効果が十分に得られない場合がある。
When the binder raw material C (II) is added to form a binder component, the surface layer of the molding material obtained thereby is preferable because the dispersion of the fluorine compound A is preferable. It is particularly preferable that it is formed from a mixed system containing the binder raw material C (II) in addition to the raw material C (I). The binder raw material C (II) is preferable because it has an effect of improving the dispersion of the fluorine compound A in the surface layer as described above. The binder raw material C (II) has a reactive site number close to that of the fluorine material and preferably has a smaller molecular weight. However, the binder raw material C (II) has a molecular weight that can maintain the hardness of the molding material and the number of crosslinks. A compound having a reactive site and a molecular weight of 500 or more is preferable. On the other hand, when the molecular weight is greater than 1500 or the number of reaction sites is more than 7, the fluidity is impaired, the fluorine compound A cannot be dispersed in the surface layer, and the effect of reducing the surface energy is sufficiently obtained. It may not be possible.
 このような塗料組成物中のバインダー原料は、具体的には多官能アクリレートモノマー、オリゴマー、アルコキシシラン、アルコキシシラン加水分解物、アルコキシシランオリゴマー等が好ましく、多官能アクリレートモノマー、オリゴマーがより好ましい。 Specifically, the binder raw material in such a coating composition is preferably a polyfunctional acrylate monomer, oligomer, alkoxysilane, alkoxysilane hydrolyzate, alkoxysilane oligomer or the like, and more preferably a polyfunctional acrylate monomer or oligomer.
 多官能アクリレートモノマーの例としては、1分子中に3個以上の(メタ)アクリロイルオキシ基を有する多官能アクリレートおよびその変性ポリマー、具体的な例としては、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサンメチレンジイソシアネートウレタンポリマーなどを用いることができる。これらの単量体は、1種または2種以上を混合して使用することができる。 Examples of polyfunctional acrylate monomers include polyfunctional acrylates having three or more (meth) acryloyloxy groups in one molecule and modified polymers thereof. Specific examples include pentaerythritol tri (meth) acrylate and pentaerythritol. Tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate Pentaerythritol triacrylate hexanemethylene diisocyanate urethane polymer and the like can be used. These monomers can be used alone or in combination of two or more.
 また、市販されている多官能アクリル系組成物としては三菱レイヨン株式会社;(商品名“ダイヤビーム”(登録商標)シリーズなど)、長瀬産業株式会社;(商品名“デナコール”(登録商標)シリーズなど)、新中村化学株式会社;(商品名“NKエステル”シリーズなど)、DIC株式会社;(商品名“UNIDIC”(登録商標)など)、東亞合成株式会社;(“アロニックス”(登録商標)シリーズなど)、日油株式会社;(“ブレンマー”(登録商標)シリーズなど)、日本化薬株式会社;(商品名“KAYARAD”(登録商標)シリーズなど)、共栄社化学株式会社;(商品名“ライトエステル”シリーズなど)などを挙げることができ、これらの製品を利用することができる。 In addition, commercially available polyfunctional acrylic compositions include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam” (registered trademark) series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol” (registered trademark) series, etc.) Shinnakamura Chemical Co., Ltd .; (trade name “NK Ester” series, etc.), DIC Corporation; (trade name “Unidic” (registered trademark), etc.), Toagosei Co., Ltd. (“Aronix” (registered trademark)) Series, etc.), NOF Corporation; (“Blemmer” (registered trademark) series, etc.), Nippon Kayaku Co., Ltd .; (trade name “KAYARAD” (registered trademark) series, etc.), Kyoeisha Chemical Co., Ltd .; Light ester "series and the like), and these products can be used.
 [粒子成分、粒子D、粒子d]
 本発明の成形材料が有する層、および塗料組成物は粒子成分を含むことが好ましい。ここで、粒子とは無機粒子、有機粒子のいずれでもよいが、耐久性の観点から無機粒子が好ましい。
[Particle component, particle D, particle d]
It is preferable that the layer which the molding material of this invention has, and a coating composition contain a particle component. Here, the particles may be either inorganic particles or organic particles, but inorganic particles are preferred from the viewpoint of durability.
 ここで、「無機粒子」とは表面処理を施したものも含む。この表面処理とは、粒子表面に化合物を化学結合(共有結合、水素結合、イオン結合、ファンデルワールス結合、疎水結合等を含む)や吸着(物理吸着、化学吸着を含む)によって導入することを指し、表面処理により導入された化合物が有機化合物であっても、下地となる粒子が無機粒子であれば無機粒子であるものとする。 Here, “inorganic particles” include those subjected to surface treatment. This surface treatment means introducing a compound onto the particle surface by chemical bonds (including covalent bonds, hydrogen bonds, ionic bonds, van der Waals bonds, hydrophobic bonds, etc.) and adsorption (including physical adsorption and chemical adsorption). Even if the compound introduced by the surface treatment is an organic compound, it is an inorganic particle if the underlying particle is an inorganic particle.
 含まれる無機粒子の種類としては1種類以上20種類以下が好ましい。無機粒子の種類は1種類以上10種類以下がさらに好ましく、2種類以上4種類以下が特に好ましい。ここで無機粒子の種類とは、無機粒子を構成する元素の種類によって決まり、何らかの表面処理を行う場合には、表面処理される前の粒子を構成する元素の種類によって決まるものとする。例えば、酸化チタン(TiO)と酸化チタンの酸素の一部をアニオンである窒素で置換した窒素ドープ酸化チタン(TiO2-x)とでは、無機粒子を構成する元素が異なるために、異なる種類の無機粒子であるとする。また、同一の元素、例えばZn、Oのみからなる粒子(ZnO)であれば、その数平均粒子径が異なる粒子が複数存在しても、またZnとOとの組成比が異なっていても、これらは同一種類の粒子である。また酸化数の異なるZn粒子が複数存在しても、粒子を構成する元素が同一である限りは(この例ではZn以外の元素が全て同一である限りは)、これらは同一種類の粒子であるとする。 The type of inorganic particles contained is preferably 1 or more and 20 or less. As for the kind of inorganic particle, 1 type or more and 10 types or less are further more preferable, and 2 or more types and 4 types or less are especially preferable. Here, the kind of inorganic particles is determined by the kind of elements constituting the inorganic particles, and when any surface treatment is performed, it is decided by the kind of elements constituting the particles before the surface treatment. For example, since titanium oxide (TiO 2 ) and nitrogen-doped titanium oxide (TiO 2−x N x ) in which part of oxygen of titanium oxide is substituted with nitrogen as an anion, the elements constituting the inorganic particles are different, Suppose that they are different types of inorganic particles. Further, if particles (ZnO) consisting only of the same element, for example, Zn, O, even if there are a plurality of particles having different number average particle diameters, and the composition ratio of Zn and O is different, These are the same type of particles. Even if there are a plurality of Zn particles having different oxidation numbers, as long as the elements constituting the particles are the same (in this example, all elements other than Zn are the same), these are the same kind of particles. And
 また、本発明の塗料組成物中に含まれる粒子は、塗工、乾燥、硬化処理もしくは蒸着等の処理において、熱や電離放射線などによりその表面状態が変化した形で、前記表面層に含まれる場合もある。そこで本発明の塗料組成物中に存在する粒子成分を粒子D(I)またはD(II)、前記塗料組成物を塗工、乾燥、硬化処理もしくは蒸着等の処理により形成された前記表面層に存在する粒子成分を粒子d(I)またはd(II)と記す。なお、表面層に存在する粒子d(I)またはd(II)の一部の粒子については、表面層中でも塗料組成物中と同様の状態で存在する場合もあり(未反応のまま存在する場合もあり)、その場合でも表面層中のものは粒子dと表記する。 Further, the particles contained in the coating composition of the present invention are contained in the surface layer in a form in which the surface state is changed by heat, ionizing radiation or the like in the treatment such as coating, drying, curing treatment or vapor deposition. In some cases. Therefore, the particle component present in the coating composition of the present invention is the particles D (I) or D (II), and the coating layer is applied to the surface layer formed by a treatment such as coating, drying, curing or vapor deposition. The existing particle component is referred to as particle d (I) or d (II). Note that some of the particles d (I) or d (II) present in the surface layer may exist in the same state as in the coating composition even in the surface layer (when they remain unreacted). In this case, the particles in the surface layer are expressed as particles d.
 無機粒子は特に限定されないが、金属や半金属の酸化物、窒化物、ホウ素化物、塩化物、炭酸塩、硫酸塩であることが好ましく、2種類の金属、半金属を含む複合酸化物や、格子間に異元素が導入されたり、格子点が異種元素で置換されたり、格子欠陥が導入されていてもよい。 The inorganic particles are not particularly limited, but are preferably metal or metalloid oxides, nitrides, borides, chlorides, carbonates, sulfates, composite oxides containing two metals, metalloids, Different elements may be introduced between the lattices, lattice points may be replaced with different elements, or lattice defects may be introduced.
 無機粒子はSi、Al、Ca、Zn、Ga、Mg、Zr、Ti、In、Sb、Sn、BaおよびCeよりなる群から選ばれる少なくとも一つの金属や半金属が酸化された酸化物粒子であることがさらに好ましい。 The inorganic particles are oxide particles in which at least one metal or semimetal selected from the group consisting of Si, Al, Ca, Zn, Ga, Mg, Zr, Ti, In, Sb, Sn, Ba, and Ce is oxidized. More preferably.
 具体的にはシリカ(SiO)、酸化アルミニウム(Al)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化インジウム(In)、酸化スズ(SnO)、酸化アンチモン(Sb)およびインジウムスズ酸化物(In・SnO)からなる群より選ばれる少なくとも一つの金属酸化物や半金属酸化物であることが好ましい。特に好ましくはシリカ(SiO)である。 Specifically, silica (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), indium oxide (In 2 O 3 ), tin oxide It is preferably at least one metal oxide or semimetal oxide selected from the group consisting of (SnO 2 ), antimony oxide (Sb 2 O 3 ), and indium tin oxide (In 2 O 3 .SnO 2 ). Particularly preferred is silica (SiO 2 ).
 さらに、無機粒子の形態は特に限定するものではないが、シリカが数珠状に連結(複数のシリカが連鎖状につながった形状)した長鎖の構造を有するもの、または、連結したシリカが分岐したものや屈曲したものが好ましい。以降これらを数珠状に連結したおよび/または分岐したシリカと呼ぶ。 Furthermore, the form of the inorganic particles is not particularly limited, but the silica has a long chain structure in which the silica is connected in a bead shape (a shape in which a plurality of silicas are connected in a chain), or the connected silica is branched. The thing and the bent thing are preferable. These are hereinafter referred to as beaded and / or branched silica.
 前記数珠状に連結したおよび/または分岐したシリカは、シリカの一次粒子を2価以上の金属イオンを介在させ粒子-粒子間を結合させたもので、3個以上、好ましくは5個以上、更に好ましくは7個以上連結したものをいう。前記数珠状に連結したおよび/または分岐したシリカの連結、分岐、屈曲状態は走査型電子顕微鏡(SEM)を用いて確認することができる。この数珠状に連結したおよび/または分岐したシリカの市販品としては日産化学工業株式会社製の、PS-S、PS-M(水分散体)、IPA-ST(IPA分散体)、MEK-ST(MEK分散体)、扶桑化学工業株式会社製のPL-1-IPA(IPA分散体)、PL-1-MEK(MEK分散体)などを挙げることができ、これらの製品を利用することができる。 The bead-like and / or branched silica is obtained by bonding particles between particles by interposing metal ions having a valence of 2 or more, preferably 3 or more, more preferably 5 or more, Preferably 7 or more connected. The connection, branching, and bending states of the silica connected in the bead shape and / or branched can be confirmed using a scanning electron microscope (SEM). Commercially available products of this linked and / or branched silica are PS-S, PS-M (water dispersion), IPA-ST (IPA dispersion), MEK-ST manufactured by Nissan Chemical Industries, Ltd. (MEK dispersion), PL-1-IPA (IPA dispersion), PL-1-MEK (MEK dispersion) manufactured by Fuso Chemical Industry Co., Ltd., and the like, and these products can be used. .
 本発明の特に好ましい表面の形態を得るためには、前述の連鎖状シリカがバインダー原料の良溶媒中で安定に分散するのに必要な表面処理がなされていることが特に好ましい。例えば、バインダー原料としてアクリル系モノマー、オリゴマーを使用する場合には、表面処理としては炭素数1~5以内のアルキル基、アルケニル基、ビニル基、(メタ)アクリル基などが必要最低限、表面に導入されていることが好ましい。 In order to obtain a particularly preferable surface form of the present invention, it is particularly preferable that the above-described chain silica is subjected to a surface treatment necessary for stable dispersion in a good solvent as a binder raw material. For example, when an acrylic monomer or oligomer is used as the binder raw material, the surface treatment requires an alkyl group, alkenyl group, vinyl group, (meth) acryl group or the like having a carbon number of 1 to 5 or less on the surface. It is preferably introduced.
 さらに本発明の成形材料は2種類の粒子d(I)および粒子d(II)を含むことが好ましく、同様に塗料組成物は2種類の粒子D(I)および粒子D(II)を含むことが好ましい。粒子d(I)または粒子D(I)および粒子d(II)または粒子D(II)についてはそれぞれ特に好ましい数平均粒子径が存在する。粒子d(I)または粒子D(I)は前記耐指紋性に寄与する成分であり、指紋の付着物を表面に細かく分散させることにより、指紋を目立ちにくくする効果を与える。粒子d(I)または粒子D(I)の数平均粒子径は5nm以上20nm以下であることが好ましく、5nmより小さい場合には前述の、指紋を目立ちにくくする効果が十分に得られない場合があり、20nmより大きい場合には成形材料の透明感が損なわれる場合がある。 Further, the molding material of the present invention preferably contains two types of particles d (I) and particles d (II). Similarly, the coating composition contains two types of particles D (I) and particles D (II). Is preferred. For particle d (I) or particle D (I) and particle d (II) or particle D (II), there is a particularly preferred number average particle size, respectively. The particles d (I) or the particles D (I) are components that contribute to the fingerprint resistance. The fine particles are dispersed on the surface to provide an effect of making the fingerprints less noticeable. The number average particle diameter of the particles d (I) or the particles D (I) is preferably 5 nm or more and 20 nm or less. If the number average particle diameter is smaller than 5 nm, the above-described effect of making the fingerprint inconspicuous may not be sufficiently obtained. If it is larger than 20 nm, the transparency of the molding material may be impaired.
 一方、粒子d(II)または粒子D(II)は前記指紋拭き取り性に寄与する成分であり、拭き取り時の表面摩擦抵抗を低減させることで、前記表面層の劣化を防ぎ、拭き取り性を向上させる効果がある。粒子d(II)または粒子D(II)の数平均粒子径は50nm以上300nm以下であることが好ましく、50nmより小さい場合には前述の摩擦低減効果が十分に得られない場合があり、300nmより大きい場合にはそれにより形成される凹凸構造がきっかけとなり、前述の後退接触角の値が小さくなる場合がある。 On the other hand, the particle d (II) or the particle D (II) is a component that contributes to the fingerprint wiping property. By reducing the surface frictional resistance during wiping, the surface layer is prevented from being deteriorated and the wiping property is improved. effective. The number average particle diameter of the particles d (II) or the particles D (II) is preferably 50 nm or more and 300 nm or less. When the number average particle diameter is smaller than 50 nm, the above-described friction reducing effect may not be sufficiently obtained. If it is large, the concavo-convex structure formed thereby may trigger the value of the aforementioned receding contact angle.
 ここで無機粒子の数平均粒子径は、JIS Z8819-2:2001に記載の個数基準算術平均長さ径を意味し、成形材料における粒子d、塗料組成物における粒子Dのいずれにおいても走査型電子顕微鏡(SEM)、透過型電子顕微鏡等を用いて一次粒子を観察し、各一次粒子の外接円の直径を等価粒子径とし、その個数基準平均値から求めた値を指す。成形材料の場合には、表面、または断面を観察することにより数平均粒子径を求めることが可能であり、また、塗料組成物の場合には、溶媒で希釈した塗料組成物を滴下、乾燥することによりサンプルを調製して観察することが可能である。 Here, the number average particle diameter of the inorganic particles means the number-based arithmetic average length diameter described in JIS Z8819-2: 2001, and both the particles d in the molding material and the particles D in the coating composition are scanning electrons. A primary particle is observed using a microscope (SEM), a transmission electron microscope, etc., and the diameter of the circumscribed circle of each primary particle is defined as an equivalent particle diameter, and is a value obtained from the number-based average value. In the case of a molding material, the number average particle diameter can be determined by observing the surface or cross section. In the case of a coating composition, the coating composition diluted with a solvent is dropped and dried. Thus, it is possible to prepare and observe a sample.
 [溶媒]
 本発明の塗料組成物は溶媒を含んでもよい。溶媒の種類としては1種類以上20種類以下が好ましく、より好ましくは1種類以上10種類以下、さらに好ましくは1種類以上6種類以下である。ここで「溶媒」とは、塗工後の乾燥工程にてほぼ全量を蒸発させることが可能な、常温、常圧で液体である物質を指す。
[solvent]
The coating composition of the present invention may contain a solvent. As a kind of solvent, 1 type or more and 20 types or less are preferable, More preferably, they are 1 type or more and 10 types or less, More preferably, they are 1 type or more and 6 types or less. Here, the “solvent” refers to a substance that is liquid at room temperature and normal pressure, which can evaporate almost the entire amount in the drying step after coating.
 ここで、溶媒の種類とは溶媒を構成する分子構造によって決まる。すなわち、同一の元素組成で、かつ官能基の種類と数が同一であっても結合関係が異なるもの(構造異性体)、前記構造異性体ではないが、3次元空間内ではどのような配座をとらせてもぴったりとは重ならないもの(立体異性体)は、種類の異なる溶媒として取り扱う。例えば、2-プロパノールと、n-プロパノールは異なる溶媒として取り扱う。 Here, the type of solvent is determined by the molecular structure constituting the solvent. That is, the same elemental composition and the same type and number of functional groups have different bond relationships (structural isomers), which are not structural isomers, but what conformations are in three-dimensional space Those that do not overlap exactly even if they are removed (stereoisomers) are treated as different types of solvents. For example, 2-propanol and n-propanol are handled as different solvents.
 [その他の添加剤]
 本発明の塗料組成物としては、更に光重合開始剤、熱重合開始剤や硬化剤や触媒を含むことが好ましい。
[Other additives]
The coating composition of the present invention preferably further contains a photopolymerization initiator, a thermal polymerization initiator, a curing agent, and a catalyst.
 光重合開始剤、熱重合開始剤や硬化剤や触媒はバインダー原料間、さらに、バインダー原料とフッ素化合物A、化合物B間の反応を促進するために用いられる。光重合開始剤、熱重合開始剤や硬化剤や触媒としては、塗料組成物をラジカル反応等による重合および/またはシラノール縮合および/または架橋反応を開始あるいは促進できるものが好ましい。 A photopolymerization initiator, a thermal polymerization initiator, a curing agent, and a catalyst are used for promoting the reaction between the binder raw materials, and further between the binder raw material, the fluorine compound A, and the compound B. As the photopolymerization initiator, thermal polymerization initiator, curing agent and catalyst, those capable of initiating or accelerating polymerization and / or silanol condensation and / or crosslinking reaction of the coating composition by radical reaction or the like are preferable.
 光重合開始剤、熱重合開始剤や硬化剤や触媒は、種々のものを使用できる。また、複数の開始剤を同時に用いてもよいし、単独で用いてもよい。さらに、酸性触媒や、熱重合開始剤や光重合開始剤を併用してもよい。酸性触媒の例としては、塩酸水溶液、蟻酸、酢酸などが挙げられる。 Various photopolymerization initiators, thermal polymerization initiators, curing agents and catalysts can be used. A plurality of initiators may be used at the same time or may be used alone. Furthermore, you may use together an acidic catalyst, a thermal-polymerization initiator, and a photoinitiator. Examples of acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like.
 熱重合開始剤の例としては、過酸化物、アゾ化合物が挙げられる。また、光重合開始剤の例としては、アルキルフェノン系化合物、含硫黄系化合物、アシルホスフィンオキシド系化合物、アミン系化合物などが挙げられるが、硬化性の点から、アルキルフェノン系化合物が好ましく、具体例としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-フェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-(4-フェニル)-1-ブタン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタン、1-シクロヒキシル-フェニルケトン、2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-エトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、などが挙げられる。 Examples of thermal polymerization initiators include peroxides and azo compounds. Examples of the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, and amine compounds. From the viewpoint of curability, alkylphenone compounds are preferable. Examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2- Dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- (4-phenyl) -1-butane, 2-benzyl- 2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4 Morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenylketone, 2-methyl-1-phenylpropan-1-one, 1- [4- (2-ethoxy) -phenyl] -2-hydroxy-2-methyl -1-propan-1-one, and the like.
 なお、光重合開始剤、熱重合開始剤や硬化剤や触媒の含有割合は、塗料組成物中のバインダー原料の合計100質量部に対して0.001質量部から30質量部が好ましく、より好ましくは0.05質量部から20質量部であり更に好ましくは0.1質量部から10質量部である。 The content ratio of the photopolymerization initiator, the thermal polymerization initiator, the curing agent, and the catalyst is preferably 0.001 to 30 parts by mass, more preferably 100 parts by mass with respect to a total of 100 parts by mass of the binder raw material in the coating composition. Is 0.05 to 20 parts by mass, more preferably 0.1 to 10 parts by mass.
 本発明の塗料組成物には更に、界面活性剤、増粘剤、レベリング剤などの添加剤を必要に応じて適宜含有させてもよい。 The coating composition of the present invention may further contain additives such as surfactants, thickeners and leveling agents as necessary.
 [塗料組成物中の各成分の含有量]
 本発明の塗料組成物は、フッ素化合物A、化合物B、バインダー原料Cおよび粒子Dを含むが、塗料組成物中のそれぞれの質量関係について説明する。なお、ここでバインダー原料Cは、バインダー原料C(I)とバインダー原料C(II)の合計を、粒子Dは、粒子D(I)と粒子D(II)の合計を示すものとする。
[Content of each component in the coating composition]
Although the coating composition of this invention contains the fluorine compound A, the compound B, the binder raw material C, and the particle | grains D, each mass relationship in a coating composition is demonstrated. Here, the binder raw material C indicates the total of the binder raw material C (I) and the binder raw material C (II), and the particle D indicates the total of the particle D (I) and the particle D (II).
 本発明の塗料組成物100質量%において、フッ素化合物Aが0.025質量%以上7質量%以下、化合物Bを含有させる場合には0.2質量%以上55質量%以下、バインダー原料Cが0.8質量%以上66質量%以下、粒子Dを含有させる場合には0.1%以上35%以下、溶媒が30質量%以上95質量%以下、開始剤、硬化剤、触媒のその他の成分が0.025質量%以上7質量%以下が好ましく例示される。より好ましくは、フッ素化合物Aが0.05質量%以上6質量%以下、化合物Bが0.4質量%以上36質量%以下、バインダー原料Cが3.2質量%以上56質量%以下、溶媒が40質量%以上90質量%以下、光重合開始剤、熱重合開始剤、硬化剤、触媒のその他の成分が0.05質量%以上6質量%以下である。 In 100% by mass of the coating composition of the present invention, the fluorine compound A is 0.025% by mass to 7% by mass, and when the compound B is contained, 0.2% by mass to 55% by mass and the binder raw material C is 0%. 8% by mass or more and 66% by mass or less, and when particles D are contained, 0.1% to 35% by mass, the solvent is 30% by mass to 95% by mass, the initiator, the curing agent, and other components of the catalyst. 0.025 mass% or more and 7 mass% or less are illustrated preferably. More preferably, the fluorine compound A is 0.05 mass% to 6 mass%, the compound B is 0.4 mass% to 36 mass%, the binder raw material C is 3.2 mass% to 56 mass%, and the solvent is 40 mass% or more and 90 mass% or less, and other components of a photoinitiator, a thermal polymerization initiator, a hardening | curing agent, and a catalyst are 0.05 mass% or more and 6 mass% or less.
 [支持基材]
 本発明の成形材料が平面状である場合には、前記「表面層」を設けるため支持基材を必要とする。支持基材に特に限定はなく、ガラス板、プラスチックフィルム、プラスチックシート、プラスチックレンズ、金属板等が挙げられるが、これらに限定されるものではない。
[Supporting substrate]
When the molding material of the present invention is planar, a support base material is required to provide the “surface layer”. There is no limitation in particular in a support base material, Although a glass plate, a plastic film, a plastic sheet, a plastic lens, a metal plate etc. are mentioned, it is not limited to these.
 プラスチックフィルム、プラスチックシートを支持基材に使用する場合の例としては、セルロースエステル(例、トリアセチルセルロース、ジアセチルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、ポリ-1,4-シクロヘキサンジメチレンテレフタレート、ポリエチレン-1,2-ジフェノキシエタン-4,4’-ジカルボキシレート、ポリブチレンテレフタレート)、ポリスチレン(例、シンジオタクチックポリスチレン)、ポリオレフィン(例、ポリプロピレン、ポリエチレン、ポリメチルペンテン)、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミド、ポリメチルメタクリレート及びポリエーテルケトンなどが挙げられるが、これらの中でも特にトリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレートおよびポリエチレンナフタレートが好ましい。 Examples of using plastic films and plastic sheets as supporting substrates include cellulose esters (eg, triacetyl cellulose, diacetyl cellulose, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, nitrocellulose), polyamides, polycarbonates, polyesters (Eg, polyethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, poly-1,4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, polybutylene terephthalate ), Polystyrene (eg, syndiotactic polystyrene), polyolefin (eg, polypropylene, polyethylene, polymethylpentene), polysulfone Polyether sulfone, polyarylate, polyetherimide, but such as polymethyl methacrylate and polyether ketones, in particular triacetyl cellulose Among these, polycarbonates, polyethylene terephthalate and polyethylene naphthalate are preferred.
 支持基材の表面には、前記表面層を形成する前に各種の表面処理を施すことも可能である。表面処理の例としては、薬品処理、機械的処理、コロナ放電処理、火焔処理、紫外線照射処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理、混酸処理およびオゾン酸化処理が挙げられる。これらの中でもグロー放電処理、紫外線照射処理、コロナ放電処理および火焔処理が好ましく、グロー放電処理と紫外線処理がさらに好ましい。 The surface of the support substrate can be subjected to various surface treatments before forming the surface layer. Examples of the surface treatment include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment and ozone oxidation treatment. Among these, glow discharge treatment, ultraviolet irradiation treatment, corona discharge treatment and flame treatment are preferred, and glow discharge treatment and ultraviolet treatment are more preferred.
 [成形材料の製造方法]
 本発明の成形材料の表面に形成される表面層は蒸着、スパッタリング、CVDなどの気相処理、塗工、含浸、めっき、ケン化などの液相処理、転写、貼合などの固相処理、およびこれら処理の組み合わせによって成形材料の表面に形成してもよいが、蒸着による気相処理、塗工による液相処理が好ましく、塗料組成物を支持基材等に塗工することにより形成する液相処理がより好ましい。
[Method of manufacturing molding material]
The surface layer formed on the surface of the molding material of the present invention is vapor phase treatment such as vapor deposition, sputtering, CVD, liquid phase treatment such as coating, impregnation, plating, saponification, solid phase treatment such as transfer, bonding, It may be formed on the surface of the molding material by a combination of these treatments, but a vapor phase treatment by vapor deposition and a liquid phase treatment by coating are preferred, and a liquid formed by coating a coating composition on a supporting substrate or the like Phase treatment is more preferred.
 塗工による成形材料の製造方法は特に限定されないが、塗料組成物をディップコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やダイコート法(米国特許第2681294号明細書)などにより支持基材等に塗工することにより表面層を形成することが好ましい。さらに、これらの塗工方式のうち、グラビアコート法または、ダイコート法が塗工方法としてより好ましい。これらの塗工方法に適用する塗料組成物の製造方法については後述する。 The method for producing the molding material by coating is not particularly limited, but the coating composition is supported by a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method (US Pat. No. 2,681,294), or the like. It is preferable to form the surface layer by coating on a material or the like. Further, among these coating methods, the gravure coating method or the die coating method is more preferable as the coating method. The manufacturing method of the coating composition applied to these coating methods will be described later.
 次いで、支持基材等の上に塗工された液膜を乾燥する。得られる成形材料中から完全に溶媒を除去する事に加え、液膜中のフッ素化合物Aの表面への移動を促進する観点からも、乾燥工程では液膜の加熱を伴うことが好ましい。 Next, the liquid film coated on the support substrate is dried. In addition to completely removing the solvent from the molding material to be obtained, it is preferable to involve heating of the liquid film in the drying step from the viewpoint of promoting movement of the fluorine compound A in the liquid film to the surface.
 乾燥方法については、伝熱乾燥(高熱物体への密着)、対流伝熱(熱風)、輻射伝熱(赤外線)、その他(マイクロ波、誘導加熱)などが挙げられる。この中でも、本発明の製造方法では、精密に幅方向でも乾燥速度を均一にする必要から、対流伝熱、または輻射伝熱を使用した方式が好ましい。 Examples of drying methods include heat transfer drying (adherence to high-temperature objects), convection heat transfer (hot air), radiant heat transfer (infrared rays), and others (microwave, induction heating). Among these, in the manufacturing method of the present invention, a method using convective heat transfer or radiant heat transfer is preferable because it is necessary to make the drying speed uniform even in the width direction.
 乾燥過程は一般的に(A)恒率乾燥期間、(B)減率乾燥期間に分けられ、前者は、液膜表面において溶媒分子の大気中への拡散が乾燥の律速になっているため、乾燥速度は、この区間において一定で、乾燥速度は大気中の被蒸発溶媒分圧、風速、温度により支配され、膜面温度は熱風温度と大気中の被蒸発溶媒分圧により決まる値で一定になる。後者は、液膜中での溶媒の拡散が律速となっているため、乾燥速度はこの区間において一定値を示さず低下し続け、液膜中の溶媒の拡散係数により支配され、膜面温度は上昇する。ここで乾燥速度とは、単位時間、単位面積当たりの溶媒蒸発量を表わしたもので、g・m-2・s-1の次元からなる。 The drying process is generally divided into (A) a constant rate drying period and (B) a decreasing rate drying period. Since the former is the rate of drying, diffusion of solvent molecules into the atmosphere on the liquid film surface is The drying speed is constant in this section, the drying speed is governed by the partial pressure of the solvent to be evaporated in the atmosphere, the wind speed and the temperature, and the film surface temperature is constant at a value determined by the hot air temperature and the partial pressure of the solvent to be evaporated in the atmosphere. Become. In the latter, since the diffusion of the solvent in the liquid film is rate-limiting, the drying rate does not show a constant value in this section and continues to decrease, and is governed by the diffusion coefficient of the solvent in the liquid film, and the film surface temperature is To rise. Here, the drying rate represents the amount of solvent evaporation per unit time and unit area, and has a dimension of g · m −2 · s −1 .
 前記乾燥速度には、好ましい範囲があり、10g・m-2・s-1以下であることが好ましく、5g・m-2・s-1以下であることがより好ましい。恒率乾燥区間における乾燥速度をこの範囲にすることにより、乾燥速度の不均一さに起因するムラを防ぐことができる。 The drying speed has a preferable range, and is preferably 10 g · m −2 · s −1 or less, more preferably 5 g · m −2 · s −1 or less. By setting the drying speed in the constant rate drying section within this range, unevenness due to nonuniform drying speed can be prevented.
 0.1g・m-2・s-1以上10g・m-2・s-1以下の範囲の乾燥速度が得られるならば、特に特定の風速、温度に限定されない。 As long as a drying speed in the range of 0.1 g · m −2 · s −1 or more and 10 g · m −2 · s −1 or less can be obtained, the wind speed and temperature are not particularly limited.
 本発明の製造方法では、減率乾燥期間では残存溶媒の蒸発と共に、フッ素化合物Aの配向が行われる。この過程においては配向のための時間を必要とするため、減率乾燥期間における膜面温度上昇速度には好ましい範囲が存在し、5℃/秒以下であることが好ましく、1℃/秒以下であることがより好ましい。 In the production method of the present invention, the fluorine compound A is oriented along with the evaporation of the remaining solvent during the rate of drying. Since this process requires time for orientation, there is a preferred range for the film surface temperature increase rate during the decreasing drying period, preferably 5 ° C./second or less, preferably 1 ° C./second or less. More preferably.
 さらに、熱またはエネルギー線を照射する事によるさらなる硬化操作(硬化工程)を行ってもよい。硬化工程において、熱で硬化する場合には、室温から200℃であることが好ましく、硬化反応の活性化エネルギーの観点から、100℃以上200℃以下がより好ましく、130℃以上200℃以下であることがさらに好ましい。 Furthermore, a further curing operation (curing process) may be performed by irradiating heat or energy rays. In the curing step, when cured with heat, the temperature is preferably from room temperature to 200 ° C, more preferably from 100 ° C to 200 ° C from the viewpoint of the activation energy of the curing reaction, and from 130 ° C to 200 ° C. More preferably.
 また、エネルギー線により硬化する場合には汎用性の点から電子線(EB線)および/または紫外線(UV線)であることが好ましい。また紫外線により硬化する場合は、酸素阻害を防ぐことができることから酸素濃度ができるだけ低い方が好ましく、窒素雰囲気下(窒素パージ)で硬化する方がより好ましい。酸素濃度が高い場合には、最表面の硬化が阻害され、硬化が不十分となり、耐擦傷性、耐久性、耐アルカリ性(耐ケン化性)が不十分となる場合がある。 In addition, when curing with energy rays, electron beams (EB rays) and / or ultraviolet rays (UV rays) are preferable from the viewpoint of versatility. In the case of curing with ultraviolet rays, the oxygen concentration is preferably as low as possible because oxygen inhibition can be prevented, and curing in a nitrogen atmosphere (nitrogen purge) is more preferable. When the oxygen concentration is high, the curing of the outermost surface is inhibited, the curing becomes insufficient, and the scratch resistance, durability, and alkali resistance (saponification resistance) may be insufficient.
 また、紫外線を照射する際に用いる紫外線ランプの種類としては、例えば、放電ランプ方式、フラッシュ方式、レーザー方式、無電極ランプ方式等が挙げられる。放電ランプ方式である高圧水銀灯を用いて紫外線硬化させる場合、紫外線の照度が100~3000mW/cm、好ましくは200~2000mW/cm、さらに好ましくは300~1500mW/cmとなる条件で紫外線照射を行うことが好ましく、紫外線の積算光量が100~3000mJ/cm、好ましく200~2000mJ/cm、さらに好ましくは300~1500mJ/cmとなる条件で紫外線照射を行うことがより好ましい。ここで、紫外線照度とは、単位面積当たりに受ける照射強度で、ランプ出力、発光スペクトル効率、発光バルブの直径、反射鏡の設計及び被照射物との光源距離によって変化する。しかし、搬送スピードによって照度は変化しない。また、紫外線積算光量とは単位面積当たりに受ける照射エネルギーで、その表面に到達するフォトンの総量である。積算光量は、光源下を通過する照射速度に反比例し、照射回数とランプ灯数に比例する。 Examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method. When UV curing is performed using a high-pressure mercury lamp which is a discharge lamp method, UV irradiation is performed under the condition that the illuminance of UV is 100 to 3000 mW / cm 2 , preferably 200 to 2000 mW / cm 2 , more preferably 300 to 1500 mW / cm 2. preferably performing, integrated light quantity of 100 ~ 3000mJ / cm 2 of ultraviolet rays, preferably 200 ~ 2000mJ / cm 2, more preferably it is more preferable to carry out ultraviolet irradiation under the condition that the 300 ~ 1500mJ / cm 2. Here, the ultraviolet illuminance is the irradiation intensity received per unit area, and changes depending on the lamp output, the emission spectral efficiency, the diameter of the light emitting bulb, the design of the reflector, and the light source distance to the irradiated object. However, the illuminance does not change depending on the conveyance speed. Further, the UV integrated light amount is irradiation energy received per unit area, and is the total amount of photons reaching the surface. The integrated light quantity is inversely proportional to the irradiation speed passing under the light source, and is proportional to the number of irradiations and the number of lamps.
 [塗料組成物の製造方法]
 本発明の塗料組成物は、フッ素化合物A、化合物B、バインダー原料に加えて溶媒や他添加物(開始剤、硬化剤、触媒等、粒子分散物)を混合して得られる。その製造方法は前記成分の処方量を質量、または体積で計量し、これらを攪拌により混合することにより得られる。この時、加えて減圧や逆浸透膜による脱溶媒処理、モレキュレーシーブによる脱水処理、イオン交換樹脂によるイオン交換処理などを行ってもよい。
[Method for producing coating composition]
The coating composition of the present invention is obtained by mixing a solvent and other additives (particle dispersion such as an initiator, a curing agent, a catalyst, etc.) in addition to the fluorine compound A, the compound B and the binder raw material. The production method is obtained by measuring the prescribed amounts of the above components by mass or volume, and mixing them by stirring. At this time, in addition, a solvent removal treatment using a reduced pressure or reverse osmosis membrane, a dehydration treatment using a molecular sieve, an ion exchange treatment using an ion exchange resin, or the like may be performed.
 塗料組成物調合時の攪拌条件、攪拌装置は特に限定されないが、液全体が十分混合するのに必要な装置、および回転数であればよく、液中での局所的なせん断速度が10-1よりも小さく、かつレイノルズ数が1000以上である範囲であることが好ましい。 The stirring conditions and the stirring device at the time of preparing the coating composition are not particularly limited, but may be any device and rotation speed necessary for sufficient mixing of the entire liquid, and the local shear rate in the liquid is 10 4 S. It is preferably in a range smaller than −1 and having a Reynolds number of 1000 or more.
 得られた塗料組成物は、塗工する前に適当なろ過処理を行ってもよい。この適当なろ過処理とは、溶媒、バインダー原料、添加剤の極性に合わせたフィルター材料、フィルター目開きを選択してろ過することがより好ましい。 The obtained coating composition may be subjected to an appropriate filtration treatment before coating. The appropriate filtration treatment is more preferably performed by selecting a solvent, a binder raw material, a filter material matched to the polarity of the additive, and a filter opening and filtering.
 次に、実施例に基づいて本発明を説明するが、本発明は必ずしもこれらに限定されるものではない。 Next, the present invention will be described based on examples, but the present invention is not necessarily limited thereto.
 [フッ素化合物A]
 [フッ素化合物A1]
 フッ素化合物A1としてフルオロポリエーテル変性トリメトキシシラン(“DOW CORNING”2634 COATING 東レ・ダウコーニング株式会社製)を使用した。
[Fluorine compound A]
[Fluorine compound A1]
Fluoropolyether-modified trimethoxysilane (“DOW CORNING” 2634 COATING manufactured by Toray Dow Corning Co., Ltd.) was used as the fluorine compound A1.
 [フッ素化合物A2]
 フッ素化合物A2としてフルオロポリエーテル部位を含む化合物(“メガファック” RS-75 DIC株式会社製)を使用した。
[Fluorine compound A2]
As the fluorine compound A2, a compound containing a fluoropolyether moiety (“Megafac” manufactured by RS-75 DIC Corporation) was used.
 [フッ素化合物A3]
 フッ素化合物A3としてフルオロポリエーテル部位を含む化合物(“オプツール”DAC ダイキン工業株式会社製)を使用した。
[Fluorine compound A3]
As the fluorine compound A3, a compound containing a fluoropolyether moiety (“OPTOOL” DAC manufactured by Daikin Industries, Ltd.) was used.
 [フッ素化合物A4]
 フッ素化合物A4として、含フッ素デンドリマーを使用した。その合成法は下記の通りである。
200mLの反応フラスコに、トルエン32gを仕込み、攪拌しながら5分間窒素を流し込み、内温が還流するまで(温度110℃以上)加熱した。別の100mLの反応フラスコに、エチレングリコールジメタクリレート(EGDMA)4.0g(20mmol)、2-(パーフルオロヘキシル)エチルメタクリレートC6FM8.6g(20mmol)、2,2-アゾビスイソ酪酸ジメチル(MAIB)2.3g(10mmol)及びトルエン32gを仕込み、攪拌しながら5分間窒素を流し込み窒素置換を行い、氷浴にて0℃まで冷却を行った。
[Fluorine compound A4]
A fluorine-containing dendrimer was used as the fluorine compound A4. The synthesis method is as follows.
A 200 mL reaction flask was charged with 32 g of toluene, and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the internal temperature was refluxed (temperature 110 ° C. or higher). In another 100 mL reaction flask, 4.0 g (20 mmol) of ethylene glycol dimethacrylate (EGDMA), 8.6 g (20 mmol) of 2- (perfluorohexyl) ethyl methacrylate C, dimethyl 2,2-azobisisobutyrate (MAIB) 2. 3 g (10 mmol) and 32 g of toluene were charged, and nitrogen was introduced for 5 minutes while stirring, followed by nitrogen substitution, and cooling to 0 ° C. in an ice bath.
 前述の200mL反応フラスコ中の還流してあるトルエン中に、EGDMA、C6FM及びMAIBが仕込まれた前記100mLの反応フラスコから、滴下ポンプを用いて、内容物を30分間かけて滴下した。滴下終了後、1時間熟成させた。 The contents were added dropwise from the 100 mL reaction flask charged with EGDMA, C6FM and MAIB into the refluxed toluene in the 200 mL reaction flask using a dropping pump over 30 minutes. After completion of dropping, the mixture was aged for 1 hour.
 次に、この反応液をヘキサン/トルエン(質量比 4:1)277gに添加してポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、THF 36gを用い再溶解し、このポリマーのTHF溶液をヘキサン277gに添加してポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、減圧乾燥して、フッ素化合物A4の白色粉末を得た。得られたフッ素化合物A4のGPCによるポリスチレン換算で測定される重量平均分子量Mwは16000、分散度Mw/Mnは1.8であった。 Next, this reaction solution was added to 277 g of hexane / toluene (mass ratio 4: 1) to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, redissolved using 36 g of THF, and a THF solution of this polymer was added to 277 g of hexane to reprecipitate the polymer in a slurry state. The slurry was filtered under reduced pressure and dried under reduced pressure to obtain a white powder of fluorine compound A4. The weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained fluorine compound A4 was 16000, and the dispersity Mw / Mn was 1.8.
 [フッ素化合物A5]
 フッ素化合物A5としてフルオロテトラエチレングリコール部位を含む2官能アクリレート化合物(FPTMG-A 油脂製品株式会社製)を使用した。本フッ素化合物A5は、フッ素化合物A(II)に該当する。
[Fluorine compound A5]
As the fluorine compound A5, a bifunctional acrylate compound containing a fluorotetraethylene glycol moiety (FPTMG-A manufactured by Yushi Co., Ltd.) was used. This fluorine compound A5 corresponds to fluorine compound A (II).
 [フッ素化合物A6]
 フッ素化合物A6としてフルオロアルキル部位を含む化合物(トリアクリロイル-ヘプタデカフルオロノネニル-ペンタエリスリトール 共栄社化学株式会社製)を使用した。本フッ素化合物A6は、フッ素化合物A(II)に該当する。
[Fluorine compound A6]
A compound containing a fluoroalkyl moiety (triacryloyl-heptadecafluorononenyl-pentaerythritol manufactured by Kyoeisha Chemical Co., Ltd.) was used as the fluorine compound A6. This fluorine compound A6 corresponds to fluorine compound A (II).
 [フッ素化合物A7]
 フッ素化合物A7としてフルオロアルキル部位を含む化合物(ペンタアクリロイル-ヘプタデカフルオロノネニル-ジペンタエリスリトール 共栄社化学株式会社製)を使用した。本フッ素化合物A7は、フッ素化合物A(II)に該当する。
[Fluorine compound A7]
A compound containing a fluoroalkyl moiety (pentaacryloyl-heptadecafluorononenyl-dipentaerythritol manufactured by Kyoeisha Chemical Co., Ltd.) was used as the fluorine compound A7. This fluorine compound A7 corresponds to fluorine compound A (II).
 [フッ素化合物A8]
 フッ素化合物A8としてフルオロポリエーテル部位を含む化合物(MA-78 Miwon Specialty Chemical Co.,Ltd製)を使用した。本フッ素化合物A8は、フッ素化合物A(II)に該当する。
[Fluorine compound A8]
As the fluorine compound A8, a compound containing a fluoropolyether moiety (MA-78 Miwon Specialty Chemical Co., Ltd.) was used. This fluorine compound A8 corresponds to fluorine compound A (II).
 [フッ素化合物A9]
 フッ素化合物A9としてフルオロポリエーテル部位を含む化合物(X-7366 日華化学株式会社製)を使用した。
[Fluorine compound A9]
A compound containing a fluoropolyether moiety (X-7366, manufactured by Nikka Chemical Co., Ltd.) was used as the fluorine compound A9.
 [フッ素化合物A10]
 フッ素化合物A10としてフルオロポリエーテル部位を含む化合物(MF-12 Miwon Specialty Chemical Co.,Ltd製)を使用した。本フッ素化合物A10は、フッ素化合物A(II)に該当する。
[Fluorine compound A10]
As the fluorine compound A10, a compound containing a fluoropolyether part (MF-12 Miwon Specialty Chemical Co., Ltd.) was used. This fluorine compound A10 corresponds to fluorine compound A (II).
 [化合物B]
 [化合物B1]
 化合物B1として、イソデシルアクリレート(SR395 サートマー・ジャパン株式会社製)を使用した。
[Compound B]
[Compound B1]
Isodecyl acrylate (SR395 Sartomer Japan, Inc.) was used as compound B1.
 [化合物B2]
 化合物B2として、ステアリルアクリレート(SR257 サートマー・ジャパン株式会社製)を使用した。
[Compound B2]
As compound B2, stearyl acrylate (SR257 Sartomer Japan, Inc.) was used.
 [化合物B3]
 化合物B3として、1,9ノナンジオールジアクリレート(A-NOD-N 新中村化学工業株式会社製)を使用した。
[Compound B3]
As compound B3, 1,9 nonanediol diacrylate (A-NOD-N manufactured by Shin-Nakamura Chemical Co., Ltd.) was used.
 [化合物B4]
 化合物B4として、イソアミルアクリレート(“ライトアクリレート”IAA 共栄社化学株式会社製)を使用した。
[Compound B4]
As compound B4, isoamyl acrylate ("light acrylate" IAA manufactured by Kyoeisha Chemical Co., Ltd.) was used.
 [化合物B5]
 化合物B5として、イソオクチルアクリレート(“Miramer”M1084 Miwon Specialty Chemical Co.Ltd製)を使用した。
[Compound B5]
As compound B5, isooctyl acrylate ("Miramer" M1084 by Miwon Specialty Chemical Co. Ltd) was used.
 [バインダー原料C]
 [バインダー原料C1]
 バインダー原料C1として、ジペンタエリスリトールヘキサアクリレート(“KAYARAD”DPHA 日本化薬株式会社製)を使用した。本バインダー原料C1は、バインダー原料C(II)に該当する。
[Binder raw material C]
[Binder raw material C1]
Dipentaerythritol hexaacrylate (“KAYARAD” DPHA manufactured by Nippon Kayaku Co., Ltd.) was used as the binder material C1. This binder raw material C1 corresponds to binder raw material C (II).
 [バインダー原料C2]
 バインダー原料C2として、ペンタエリスリトールトリアクリレート(“KAYARAD”PET30 日本化薬株式会社製)を使用した。
[Binder raw material C2]
Pentaerythritol triacrylate (“KAYARAD” PET30 manufactured by Nippon Kayaku Co., Ltd.) was used as the binder material C2.
 [バインダー原料C3]
 バインダー原料C3として、ウレタンアクリレートオリゴマー(“UNIDIC”17-806 DIC株式会社製)を使用した。
[Binder raw material C3]
As the binder raw material C3, urethane acrylate oligomer (“UNIDIC” 17-806 manufactured by DIC Corporation) was used.
 [バインダー原料C4]
 バインダー原料C4として、ウレタンアクリレートオリゴマー(“KRM”8655 ダイセル・サイテック株式会社製)を使用した。本バインダー原料C4は、バインダー原料C(I)に該当する。
[Binder raw material C4]
Urethane acrylate oligomer ("KRM" 8655 manufactured by Daicel-Cytec Co., Ltd.) was used as the binder material C4. This binder raw material C4 corresponds to the binder raw material C (I).
 [バインダー原料C5]
 バインダー原料C5として、ウレタンアクリレートオリゴマー(“KRM”8200 ダイセル・サイテック株式会社製)を使用した。本バインダー原料C5は、バインダー原料C(II)に該当する。
[Binder raw material C5]
A urethane acrylate oligomer (“KRM” 8200 manufactured by Daicel-Cytec Co., Ltd.) was used as the binder material C5. This binder raw material C5 corresponds to the binder raw material C (II).
 [バインダー原料C6]
 バインダー原料C6として、ポリエステルアクリレートオリゴマー(“EBECRYL”1830 ダイセル・サイテック株式会社製)を使用した。本バインダー原料C6は、バインダー原料C(II)に該当する。
[Binder raw material C6]
As the binder material C6, a polyester acrylate oligomer (“EBECRYL” 1830 manufactured by Daicel-Cytec Co., Ltd.) was used. This binder raw material C6 corresponds to binder raw material C (II).
 [バインダー原料C7]
 バインダー原料C7として、ウレタンアクリレートオリゴマー(“KRM”8452 ダイセル・サイテック株式会社製)を使用した。
[Binder raw material C7]
As the binder material C7, urethane acrylate oligomer (“KRM” 8452 manufactured by Daicel Cytec Co., Ltd.) was used.
 [バインダー原料C8]
 バインダー原料C8として、ウレタンアクリレートオリゴマー(“アートレジン”UN-904 根上工業株式会社製)を使用した。
[Binder raw material C8]
Urethane acrylate oligomer (“Art Resin” UN-904, manufactured by Negami Kogyo Co., Ltd.) was used as the binder material C8.
 [バインダー原料C9]
 バインダー原料C9として、ウレタンアクリレートオリゴマー(“KRM”8804 ダイセル・サイテック株式会社製)を使用した。
[Binder raw material C9]
As the binder material C9, urethane acrylate oligomer (“KRM” 8804 manufactured by Daicel Cytec Co., Ltd.) was used.
 [バインダー原料C10]
 バインダー原料C10として、ペンタエリスリトールテトラアクリレート(“EBECRYL”180 ダイセル・サイテック株式会社製)を使用した。
[Binder raw material C10]
As the binder raw material C10, pentaerythritol tetraacrylate (“EBECRYL” 180 manufactured by Daicel Cytec Co., Ltd.) was used.
 [バインダー原料C11]
 バインダー原料C11として、ポリエステルアクリレートオリゴマー(“EBECRYL”884 ダイセル・サイテック株式会社製)を使用した。
[Binder raw material C11]
As the binder material C11, a polyester acrylate oligomer (“EBECRYL” 884 manufactured by Daicel Cytec Co., Ltd.) was used.
 [粒子成分]
 [粒子D1]
 粒子D1として、オルガノシリカゾル(MEK-ST-UP 日産化学工業株式会社製)を使用した。本粒子D1は、粒子D(I)に該当する。
[Particle component]
[Particle D1]
As particles D1, organosilica sol (MEK-ST-UP manufactured by Nissan Chemical Industries, Ltd.) was used. The present particle D1 corresponds to the particle D (I).
 [粒子D2]
 粒子D2として、オルガノシリカゾル(MEK-ST-2040 日産化学工業株式会社製)を使用した。本粒子D2は、粒子D(II)に該当する。
[Particle D2]
As particles D2, organosilica sol (MEK-ST-2040, manufactured by Nissan Chemical Industries, Ltd.) was used. The present particle D2 corresponds to the particle D (II).
 [粒子D3]
 粒子D3として、オルガノシリカゾル(OSCAL 日揮触媒化成株式会社製固形分濃度5%)を使用した。本粒子D3は、粒子D(I)に該当する。
[Particle D3]
Organosilica sol (OSCAL JGC Catalysts & Chemicals Co., Ltd. solid content concentration 5%) was used as the particles D3. The present particle D3 corresponds to the particle D (I).
 [粒子D4]
 粒子D4として、オルガノシリカゾル(MIBK-SD 日産化学工業株式会社製)を使用した。本粒子D4は、粒子D(I)に該当する。
[Particle D4]
As particles D4, organosilica sol (MIBK-SD manufactured by Nissan Chemical Industries, Ltd.) was used. The present particle D4 corresponds to the particle D (I).
 [粒子D5]
 粒子D5として、シリカ粒子(ハイプレシカSP 300nm 宇部日東化成株式会社製)を使用した。本粒子D5は、粒子D(II)に該当する。
[Particle D5]
Silica particles (High Presica SP 300 nm, manufactured by Ube Nitto Kasei Co., Ltd.) were used as the particles D5. The present particle D5 corresponds to the particle D (II).
 [粒子D6]
 粒子D6として、オルガノシリカゾル(MIBK-SD-L 日産化学工業株式会社製)を使用した。本粒子D6は、粒子D(II)に該当する。
[Particle D6]
As particles D6, organosilica sol (MIBK-SD-L manufactured by Nissan Chemical Industries, Ltd.) was used. The present particle D6 corresponds to the particle D (II).
 [粒子D7]
 粒子D7として、シリカ粒子(ハイプレシカSP 600nm 宇部日東化成株式会社製)を使用した。
[Particle D7]
Silica particles (High Presica SP 600 nm, manufactured by Ube Nitto Kasei Co., Ltd.) were used as the particles D7.
 [塗料組成物の作成]
 [塗料組成物1]下記材料を混合し塗料組成物1を得た。
フッ素化合物A: フッ素化合物A1         0.64 質量部
化合物B:    化合物B1            5.8  質量部
バインダー原料: バインダー原料C1       13.5  質量部
溶媒:      MIBK            79.6  質量部
その他添加剤(光重合開始剤):
         1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
         (イルガキュア184 BASF社製)
                          0.5  質量部。
[Preparation of paint composition]
[Coating composition 1] The following materials were mixed to obtain a coating composition 1.
Fluorine compound A: Fluorine compound A1 0.64 parts by mass Compound B: Compound B1 5.8 parts by mass Binder raw material: Binder raw material C1 13.5 parts by mass Solvent: MIBK 79.6 parts by mass Other additives (photopolymerization initiator) :
1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF)
0.5 parts by weight.
 [塗料組成物2~12および30、31]表1に示すように前記塗料組成物1に対して、フッ素化合物A1を前記フッ素化合物A2~A6、化合物B1を化合物B2~B5、バインダー原料C1をバインダー原料C2、3に置き換えた以外は同様にして塗料組成物2~12および塗料組成物30、31を得た。 [Coating compositions 2 to 12, 30 and 31] As shown in Table 1, with respect to the coating composition 1, the fluorine compound A1 is the fluorine compounds A2 to A6, the compound B1 is the compounds B2 to B5, and the binder raw material C1 is Coating compositions 2 to 12 and coating compositions 30 and 31 were obtained in the same manner except that the binder raw materials C2 and 3 were replaced.
 [塗料組成物13]下記材料を混合し塗料組成物13を得た。
フッ素化合物A:  フッ素化合物A2        0.64 質量部
バインダー原料C: バインダー原料C1      19.3  質量部
粒子D(I):   粒子D1           49.8  質量部
粒子D(II):  粒子D2            0.5  質量部
溶媒:       MEK            29.3  質量部
その他添加剤(光重合開始剤):
          1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
          (イルガキュア184 BASF社製)
                          0.5  質量部。
[Coating composition 13] A coating composition 13 was obtained by mixing the following materials.
Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: binder raw material C1 19.3 parts by mass Particle D (I): Particle D1 49.8 parts by mass Particle D (II): Particle D2 0.5 parts by mass Solvent: MEK 29.3 parts by mass Other additives (photopolymerization initiator):
1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF)
0.5 parts by weight.
 [塗料組成物14]下記材料を混合し塗料組成物14を得た。
フッ素化合物A:  フッ素化合物A2        0.03 質量部
バインダー原料C: バインダー原料C1       8.77 質量部
粒子D(I):   粒子D3           70.5  質量部
粒子D(II):  粒子D2            0.2  質量部
溶媒:       MEK            20.0  質量部
その他添加剤(光重合開始剤):
          1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
          (イルガキュア184 BASF社製)
                          0.5  質量部。
[Coating composition 14] A coating composition 14 was obtained by mixing the following materials.
Fluorine compound A: Fluorine compound A2 0.03 parts by mass Binder raw material C: Binder raw material C1 8.77 parts by mass Particle D (I): Particle D3 70.5 parts by mass Particle D (II): Particle D2 0.2 parts by mass Solvent: MEK 20.0 parts by mass Other additives (photopolymerization initiator):
1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF)
0.5 parts by weight.
 [塗料組成物15]下記材料を混合し塗料組成物15を得た。
フッ素化合物A:  フッ素化合物A2        0.64 質量部
バインダー原料C: バインダー原料C1      19.3  質量部
粒子D(I):   粒子D4           33.2  質量部
粒子D(II):  粒子D2            0.5  質量部
溶媒:       MIBK           45.9  質量部
その他添加剤(光重合開始剤):
          1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
          (イルガキュア184 BASF社製)
                          0.5  質量部。
[Coating composition 15] A coating composition 15 was obtained by mixing the following materials.
Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: Binder raw material C1 19.3 parts by mass Particle D (I): Particle D4 33.2 parts by mass Particle D (II): Particle D2 0.5 parts by mass Solvent: MIBK 45.9 parts by mass Other additives (photopolymerization initiator):
1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF)
0.5 parts by weight.
 [塗料組成物16]下記材料を混合し塗料組成物16を得た。
フッ素化合物A:  フッ素化合物A2        0.64 質量部
バインダー原料C: バインダー原料C1      19.3  質量部
粒子D(I):   粒子D1           49.8  質量部
溶媒:       MEK            29.8  質量部
その他添加剤(光重合開始剤):
          1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
          (イルガキュア184 BASF社製)
                          0.5  質量部。
[Coating composition 16] A coating composition 16 was obtained by mixing the following materials.
Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: binder raw material C1 19.3 parts by mass Particle D (I): Particle D1 49.8 parts by mass Solvent: MEK 29.8 parts by mass Other additives (light Polymerization initiator):
1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF)
0.5 parts by weight.
 [塗料組成物17]下記材料を混合し塗料組成物17を得た。
フッ素化合物A:  フッ素化合物A2        0.64 質量部
バインダー原料C: バインダー原料C1      19.3  質量部
粒子D(I):   粒子D1           49.8  質量部
粒子D(II):  粒子D5            0.2  質量部
溶媒:       MEK            29.6  質量部
その他添加剤(光重合開始剤):
          1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
          (イルガキュア184 BASF社製)
                          0.5  質量部。
[Coating composition 17] A coating composition 17 was obtained by mixing the following materials.
Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: binder raw material C1 19.3 parts by mass Particle D (I): Particle D1 49.8 parts by mass Particle D (II): Particle D5 0.2 parts by mass Solvent: MEK 29.6 parts by mass Other additives (photopolymerization initiator):
1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF)
0.5 parts by weight.
 [塗料組成物18]下記材料を混合し塗料組成物17を得た。
フッ素化合物A:  フッ素化合物A2        0.64 質量部
バインダー原料C: バインダー原料C1      19.3  質量部
粒子D(I):   粒子D1           49.8  質量部
粒子D(II):  粒子D6            0.6  質量部
溶媒:       MEK            29.2  質量部
その他添加剤(光重合開始剤):
          1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
          (イルガキュア184 BASF社製)
                          0.5  質量部。
[Coating composition 18] A coating composition 17 was obtained by mixing the following materials.
Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: Binder raw material C1 19.3 parts by mass Particle D (I): Particle D1 49.8 parts by mass Particle D (II): Particle D6 0.6 part by mass Solvent: MEK 29.2 parts by mass Other additives (photopolymerization initiator):
1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF)
0.5 parts by weight.
 [塗料組成物19]下記材料を混合し塗料組成物19を得た。
フッ素化合物A:  フッ素化合物A7        0.64 質量部
バインダー原料C(I):
          バインダー原料C4      14.5  質量部
バインダー原料C(II):
          バインダー原料C5       4.8  質量部
粒子D(I):   粒子D1           49.8  質量部
粒子D(II):  粒子D5            0.2  質量部
溶媒:       MEK            29.6  質量部
その他添加剤(光重合開始剤):
          1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
          (イルガキュア184 BASF社製)
                          0.5  質量部。
[Coating composition 19] A coating composition 19 was obtained by mixing the following materials.
Fluorine compound A: Fluorine compound A7 0.64 parts by mass Binder raw material C (I):
Binder raw material C4 14.5 parts by mass Binder raw material C (II):
Binder raw material C5 4.8 parts by mass Particle D (I): Particle D1 49.8 parts by mass Particle D (II): Particle D5 0.2 parts by mass Solvent: MEK 29.6 parts by mass Other additives (photopolymerization initiator) ):
1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF)
0.5 parts by weight.
 [塗料組成物20~29]表1に示すように前記塗料組成物13に対して、フッ素化合物A7を前記フッ素化合物A8~A10、バインダー原料C4およびC5をバインダー原料C6~C11に置き換えた以外は同様にして塗料組成物20~28を得た。 [Coating compositions 20 to 29] As shown in Table 1, with respect to the coating composition 13, except that fluorine compound A7 was replaced with fluorine compounds A8 to A10, and binder raw materials C4 and C5 were replaced with binder raw materials C6 to C11. Similarly, coating compositions 20 to 28 were obtained.
 [塗料組成物32]下記材料を混合し塗料組成物13を得た。
フッ素化合物A:  フッ素化合物A2        0.64 質量部
バインダー原料C: バインダー原料C1      19.3  質量部
粒子D(I):   粒子D1           49.8  質量部
粒子D(II):  粒子D2            0.5  質量部
溶媒:       MEK            29.3  質量部
その他添加剤(光重合開始剤):
          1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
          (イルガキュア184 BASF社製)
                          0.5  質量部。
[Coating composition 32] The following materials were mixed to obtain a coating composition 13.
Fluorine compound A: Fluorine compound A2 0.64 parts by mass Binder raw material C: binder raw material C1 19.3 parts by mass Particle D (I): Particle D1 49.8 parts by mass Particle D (II): Particle D2 0.5 parts by mass Solvent: MEK 29.3 parts by mass Other additives (photopolymerization initiator):
1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by BASF)
0.5 parts by weight.
 [成形材料の作製]
 支持基材としてPET樹脂フィルム上に易接着性塗料が塗工されている“ルミラー”(登録商標)U46(東レ(株)製)を用いた。前記塗料組成物1~14を搬送速度10m/分の条件で、小径グラビアコーターを有する連続塗工装置を用い、固形分塗工膜厚が2μmになるようにグラビア線数、およびグラビアロール速度比を調整して塗工した。塗工から乾燥、硬化までの間に液膜にあたる風の条件は下記の通りである。
[Production of molding material]
“Lumirror” (registered trademark) U46 (manufactured by Toray Industries, Inc.) in which an easy-adhesive paint was applied on a PET resin film was used as a supporting substrate. Using the continuous coating apparatus having a small-diameter gravure coater under the condition of a conveyance speed of 10 m / min, the coating compositions 1 to 14 were subjected to the number of gravure lines and the gravure roll speed ratio so that the solid coating thickness was 2 μm. The coating was adjusted. The conditions of the wind hitting the liquid film from coating to drying and curing are as follows.
 第1乾燥工程
送風温湿度: 温度:   45℃、
       相対湿度: 10%
風速:    塗工面側: 5m/秒、
       反塗工面側:5m/秒
風向:    塗工面側: 基材の面に対して平行、
       反塗工面側:基材の面に対して垂直
滞留時間:  1分間。
1st drying process ventilation temperature and humidity: Temperature: 45 degreeC,
Relative humidity: 10%
Wind speed: coating side: 5m / sec,
Anti-coating surface side: 5 m / sec Wind direction: Coating surface side: Parallel to the surface of the substrate,
Anti-coating surface side: Vertical residence time with respect to the surface of the substrate: 1 minute.
 第2乾燥工程
送風温湿度: 温度:   100℃、
       相対湿度: 1%
風速:    塗工面側: 5m/秒、
       反塗工面側:5m/秒
風向    : 塗工面側:基材の面に対して垂直、
       反塗工面側:基材の面に対して垂直
滞留時間:  1分間
 光硬化工程
照射出力:  600W/cm
積算光量:  120mJ/cm
酸素濃度:  0.1体積%
 なお、風速、温湿度は熱線式風速計(日本カノマックス株式会社 アネモマスター風速・風量計 MODEL6034)による測定値を使用した。
以上の方法により実施例1~29、比較例1~3の成形材料を作成した。
2nd drying process ventilation temperature and humidity: Temperature: 100 degreeC,
Relative humidity: 1%
Wind speed: coating side: 5m / sec,
Anti-coating surface side: 5 m / sec. Wind direction: Coating surface side: perpendicular to the surface of the substrate,
Anti-coating surface side: Vertical residence time with respect to the surface of the substrate: 1 minute Photocuring process irradiation output: 600 W / cm 2
Integrated light quantity: 120 mJ / cm 2
Oxygen concentration: 0.1% by volume
In addition, the measured value by a hot-wire anemometer (Nippon Kanomax Co., Ltd. Anemomaster anemometer / air flow meter MODEL6034) was used for the wind speed and temperature / humidity.
The molding materials of Examples 1 to 29 and Comparative Examples 1 to 3 were prepared by the above method.
 [成形材料の評価]
 作製した成形材料について、次に示す性能評価を実施し、得られた結果を表2に示す。特に断らない場合を除き、測定は各実施例・比較例において1つのサンプルについて場所を変えて3回測定を行い、その平均値を用いた。
[Evaluation of molding materials]
About the produced molding material, the following performance evaluation was implemented and the obtained result is shown in Table 2. Unless otherwise specified, the measurement was performed three times by changing the location of one sample in each example and comparative example, and the average value was used.
 [60°鏡面光沢度]
 成形材料の対象とする面の光沢度は、日本電色工業製 VG7000を用いて、成形材料表面の光沢度をJIS Z 8741:1997に従い60°鏡面光沢度を測定し、60%以上を合格とした。
[60 ° specular gloss]
The glossiness of the target surface of the molding material is determined by measuring the 60 ° specular glossiness according to JIS Z 8741: 1997 using a VG7000 manufactured by Nippon Denshoku Industries Co., Ltd. did.
 [オレイン酸前進接触角、後退接触角 ]
 前進接触角、後退接触角の測定は拡張-収縮法により測定を行い、協和界面科学製接触角計Drop Master DM-501を用いて、同装置の拡張-収縮法測定マニュアルに従った。前進接触角は、具体的にはシリンジからオレイン酸(ナカライ規格一級 ナカライテスク製)を液吐出速度8.5μL/秒で最終液量50μLまで連続的に吐出し、液滴の形状を0.5秒毎に30回撮影し、同画像から、同装置付属の統合解析ソフト“FAMAS”を用いてそれぞれの接触角を求めた。液滴の拡張過程での接触角は最初、拡張につれて変化し、次いでほぼ一定になる挙動を示すため、測定順に接触角データを並べ、その順に連続した5点を選択したとき、連続した5点の標準偏差が最初に1°以下になった時の平均値をその測定の前進接触角とし、この測定を1サンプルについて5回行い、その平均値を試料の前進接触角とした。
[Oleic acid advancing contact angle, receding contact angle]
The advancing contact angle and receding contact angle were measured by the expansion-contraction method, and using the contact angle meter Drop Master DM-501 manufactured by Kyowa Interface Science, the expansion-contraction method measurement manual of the same apparatus was used. Specifically, the advancing contact angle is obtained by continuously discharging oleic acid (manufactured by Nacalai Standard No. 1 Nacalai Tesque) from a syringe to a final liquid volume of 50 μL at a liquid discharge speed of 8.5 μL / sec. Images were taken 30 times per second, and the respective contact angles were determined from the images using the integrated analysis software “FAMAS” attached to the apparatus. The contact angle during the expansion process of the droplet first changes with expansion and then shows a behavior that becomes almost constant. Therefore, when the contact angle data is arranged in the order of measurement and five consecutive points are selected in that order, five consecutive points are selected. The average value when the standard deviation of the first became 1 ° or less was defined as the advancing contact angle of the measurement, this measurement was performed five times for one sample, and the average value was defined as the advancing contact angle of the sample.
 後退接触角は、初期液滴量50μL、液吐出速度8.5μL/秒で液滴を連続的に吸引し、同液滴の縮小過程の形状を撮影し、同様の方法でそれぞれの接触角を求めた。液滴の収縮過程の接触角は最初、収縮につれて変化し、次いでほぼ一定になる挙動を示すため、液滴の収縮していく方向に接触角を並べ、その順に連続した5点を選択したとき、連続した5点の標準偏差が最初に1°以下になったときの平均値をその測定の後退接触角とし、この測定を1サンプルについて5回行い、その平均値を試料の後退接触角とした。なお、サンプルによっては液滴の収縮過程の接触角が一定にならず、連続的に低下し続けるものもあるが、これについては後退接触角を0°とした。 With respect to the receding contact angle, droplets are continuously sucked at an initial droplet amount of 50 μL and a liquid discharge speed of 8.5 μL / second, the shape of the shrinking process of the droplet is photographed, and each contact angle is set in the same manner. Asked. Since the contact angle of the droplet shrinkage process changes with shrinkage and then becomes almost constant, the contact angles are arranged in the direction of droplet shrinkage, and five consecutive points are selected in that order. The average value when the standard deviation of five consecutive points first becomes 1 ° or less is set as the receding contact angle of the measurement, this measurement is performed five times for one sample, and the average value is set as the receding contact angle of the sample. did. Note that, depending on the sample, the contact angle during the contraction process of the droplets is not constant and continues to decrease, but for this, the receding contact angle was set to 0 °.
 [X線光電子分光法による表面の元素組成測定]
 下記の装置と条件にて、表面の元素組成測定を行い、検出された元素の中でフッ素原子数の割合を求めた。
装置:Quantera SXM (PHI 社製)
励起X線:monochromatic Al Kα1,2 線(1486.6 eV)
X線径:200μm
光電子脱出角度:15°。
[Measurement of surface elemental composition by X-ray photoelectron spectroscopy]
The elemental composition of the surface was measured with the following equipment and conditions, and the ratio of the number of fluorine atoms among the detected elements was determined.
Equipment: Quantera SXM (PHI)
Excitation X-ray: monochromic Al Kα1,2 ray (1486.6 eV)
X-ray diameter: 200 μm
Photoelectron escape angle: 15 °.
 [原子間力顕微鏡による十点平均粗さRz、中心線平均粗さRa]
 下記の装置と条件にて、表面構造の測定を行い、JIS B0601:2001で規定する十点平均粗さRzおよび中心線平均粗さRaを求めた。
装置:Nanoscope IIIa (Degital Instruments社製)
測定モード:タッピングモード
走査範囲:5μm×5μm
分解能:512×512 pixel。
[10-point average roughness Rz, centerline average roughness Ra by atomic force microscope]
The surface structure was measured under the following apparatus and conditions, and the 10-point average roughness Rz and the centerline average roughness Ra defined by JIS B0601: 2001 were determined.
Apparatus: Nanoscope IIIa (manufactured by Digital Instruments)
Measurement mode: Tapping mode Scanning range: 5 μm × 5 μm
Resolution: 512 × 512 pixels.
 [模擬指紋付着方法]
 本発明の成形材料の対象とする面への模擬指紋の付着は、1.模擬指紋液の調製、2.模擬指紋シートの作製、3.模擬指紋液のシリコーンゴムへの転写、4.模擬指紋の成形材料表面への付着の4ステップで行った。
1.模擬指紋液の調製
 下記材料を下記比率で秤量後、30分間マグネチックスターラーにて攪拌して得た。
オレイン酸              14質量部
シリカ粒子(数平均粒子径 2μm)   6質量部
イソプロピルアルコール        80質量部
 なお、前記シリカ粒子の数平均粒子径は前記シリカ粒子を分散媒(イソプロピルアルコール)に固形分濃度5質量%にて混合、超音波にて分散後、導電テープ上に滴下して観察サンプルを調製した以外は前記方法と同様にして求めた値である。
2.模擬指紋シートの作製
 前記指紋コーティング液を支持基材としてPET樹脂フィルム上に易接着性塗料が塗工されている“ルミラー”(登録商標)U46(東レ(株)製)上にワイヤーバー(♯7)を用いて塗工し、50℃で2分間乾燥して得た。
3.模擬指紋のシリコーンゴムへの転写
 JIS K6253:1997のゴム硬度50のシリコーンゴムを#250の耐水ペーパーでJIS B0601:2001の表面粗さをRa=3μmに研磨した。次いで、前記耐水ペーパーで研磨したシリコーンゴムを30KPaで2項で作製した模擬指紋シートに押し付けた。シリコーンゴムへの模擬指紋液の付着量(g/m)は、シリコーンゴムの面積と付着前後の質量差から求めた値を指し、上記手法で行った結果、いずれも0.9g/m以上1.1g/m以下であった。
4.模擬指紋の成形材料表面への付着
 3.にて模擬指紋液が転写されたシリコーンゴムを、成形材料表面に30KPaで押し付けて成形材料表面に形成された痕跡を模擬指紋とした。
[Simulated fingerprint attachment method]
The adhesion of the simulated fingerprint to the target surface of the molding material of the present invention is as follows. 1. Preparation of simulated fingerprint liquid 2. Production of simulated fingerprint sheet 3. Transfer of simulated fingerprint liquid to silicone rubber. The simulation fingerprinting was performed in four steps: attachment to the surface of the molding material.
1. Preparation of simulated fingerprint liquid The following materials were weighed at the following ratios, and then stirred for 30 minutes with a magnetic stirrer.
Oleic acid 14 parts by mass Silica particles (number average particle diameter 2 μm) 6 parts by mass Isopropyl alcohol 80 parts by mass The number average particle diameter of the silica particles is 5% by mass in solid content in the dispersion medium (isopropyl alcohol). It is a value obtained in the same manner as in the above method except that the observation sample was prepared by mixing the mixture at, and dispersing with ultrasonic waves, and dropping it onto the conductive tape.
2. Preparation of Simulated Fingerprint Sheet A wire bar (#) on “Lumirror” (registered trademark) U46 (manufactured by Toray Industries, Inc.), in which an easy-adhesive paint is coated on a PET resin film using the fingerprint coating solution as a supporting substrate. 7) and dried at 50 ° C. for 2 minutes.
3. Transfer of Simulated Fingerprint to Silicone Rubber A silicone rubber having a rubber hardness of 50 of JIS K6253: 1997 was polished with # 250 water-resistant paper to a surface roughness of JIS B0601: 2001 to Ra = 3 μm. Next, the silicone rubber polished with the water-resistant paper was pressed against the simulated fingerprint sheet prepared in item 2 at 30 KPa. The adhesion amount (g / m 2 ) of the simulated fingerprint liquid to the silicone rubber refers to a value obtained from the area of the silicone rubber and the mass difference before and after the adhesion, and as a result of performing the above method, both are 0.9 g / m 2. It was 1.1 g / m 2 or more.
4). 2. Adhesion of simulated fingerprint on the surface of molding material The silicone rubber onto which the simulated fingerprint liquid was transferred was pressed against the surface of the molding material at 30 KPa, and the trace formed on the molding material surface was used as the simulated fingerprint.
 [模擬指紋の模擬拭き取り方法]
 前記方法で対象とする面に模擬指紋を付着させた成形材料を平板上に固定し、その上に折り上げ寸法が12.5×12.5cmのセルロース長繊維不織布ガーゼ(“ハイゼ”ガーゼ NT-4 川本産業株式会社製)を置き、その上に錘を載せることで30KPaの圧力をかけ、それを5cm/秒の速度で10cmを3往復させることにより、拭き取りをおこなった。
[Simulated wipe method for simulated fingerprints]
A molding material in which a simulated fingerprint is adhered to the target surface by the above method is fixed on a flat plate, and a cellulose long fiber nonwoven fabric gauze (“Hize” gauze NT-) having a folded size of 12.5 × 12.5 cm is fixed thereon. (4 manufactured by Kawamoto Sangyo Co., Ltd.) was placed, a weight was placed thereon, a pressure of 30 KPa was applied, and it was wiped by reciprocating 10 cm three times at a speed of 5 cm / sec.
 [模擬指紋付着前、模擬指紋拭き取り後の正反射光込み、正反射光除去の色差]
 成形材料の対象とする面の反対面に黒ビニールテープを貼り付け、前述の模擬指紋の付着前と拭き取り後の反射色をコニカミノルタ株式会社製分光測色計CM-3600Aを使用して、JIS Z8722:2009に基づき、正反射光除去の反射色を鏡面反射光トラップを用いた(de:8°)Sb10W10条件で、正反射光込みの反射色を鏡面反射光トラップを用いない(di:8°)Sb10W10条件で、JIS Z8730:2009に記載のCIE1976(L)にて測定した。
さらに、この模擬指紋付着前、模擬指紋拭き取り後の反射色からJIS Z8730:2009に記載の計算方法により、模擬指紋付着前、模擬指紋拭き取り後の反射色から(ΔE ab(di:8°)Sb10W10)と、(ΔE ab(de:8°)Sb10W10)を求め、前者をΔESCI-2に、後者をΔESCE-2とした。
[Color difference between specular reflection light removal and specular reflection light removal before and after simulated fingerprint wiping]
A black vinyl tape is pasted on the opposite side of the target surface of the molding material, and the reflection color before and after wiping off the above-mentioned simulated fingerprint is measured using a spectral colorimeter CM-3600A manufactured by Konica Minolta Co., Ltd. Based on Z8722: 2009, the reflection color for specular reflection removal is a Sb10W10 condition using a specular reflection light trap (de: 8 °), and the reflection color including the specular reflection light is not used (di: 8). °) Under Sb10W10 conditions, measurement was performed with CIE 1976 (L * a * b * ) described in JIS Z8730: 2009.
Further, from the reflection color after the dummy fingerprint is wiped off by the calculation method described in JIS Z8730: 2009 from the reflection color after the dummy fingerprint is wiped off (ΔE * ab (di: 8 °)) Sb10W10) and (ΔE * ab (de: 8 °) Sb10W10) were determined, and the former was designated as ΔE SCI-2 and the latter as ΔE SCE-2 .
 [耐指紋性(指紋付着性)]
 指紋付着防止性は、成形材料の評価する面を上にして黒画用紙上に置き、指紋を押し付ける指(人差し指)と親指を3回こすってから、前記表面層の表面にゆっくりと押し付け、付着した指紋の視認性を下記の評価基準で評価し、5点以上を合格とした。
10点: 指紋が視認されない、もしくは未付着部との差がわからない
 7点: 指紋がほとんど視認できない、もしくは指紋だとは認識されない
 5点: 指紋が僅かに視認されるが、ほとんど気にならない
 3点: 指紋が視認される
 1点: 指紋が明確に視認され、非常に気になる
上記評価を10人の対象者について行い、その平均値を求めた。小数点以下については四捨五入して取り扱った。
[Fingerprint resistance (fingerprint adhesion)]
The anti-fingerprint property was placed on a black drawing paper with the evaluation surface of the molding material facing up, rubbed the finger (index finger) and thumb for pressing the fingerprint three times, and then slowly pressed and adhered to the surface of the surface layer. The visibility of the fingerprint was evaluated according to the following evaluation criteria, and 5 points or more were regarded as acceptable.
10 points: The fingerprint is not visually recognized or the difference from the non-attached part is not recognized. 7 points: The fingerprint is hardly visible or not recognized as the fingerprint. 5 points: The fingerprint is slightly visible, but hardly noticed. Points: Fingerprints are visually recognized. 1 point: The above evaluations were performed on 10 subjects who were clearly aware of fingerprints and were very worrisome, and the average value was obtained. The numbers after the decimal point were rounded off.
 [耐指紋性(指紋拭き取り性)]
 前述の方法で、指紋を付着させた後、次いで、折り上げ寸法が12.5×12.5cmのセルロース長繊維不織布ガーゼ(“ハイゼ”ガーゼ NT-4 川本産業株式会社製)を用いて拭き取りを行った。指紋拭き取り性は、この拭き取り方法で拭いた後の視認性を下記の評価基準で評価し、5点以上を合格とした。
10点: 1回拭くと、ほぼ視認されなくなる
 7点: 1回拭くと、ほぼ気にならない程度になる
 5点: 3回拭くと、ほぼ視認されなくなる
 3点: 5回拭けば、ほぼ気にならない程度になる
 1点: 5回以上拭いても、汚れが残る
上記評価を10人の対象者について行い、その平均値を求めた。小数点以下については四捨五入して取り扱った。
[Fingerprint resistance (fingerprint wiping)]
After attaching the fingerprint by the above-mentioned method, then, using a cellulose long-fiber nonwoven fabric gauze (“Hize” gauze NT-4 manufactured by Kawamoto Sangyo Co., Ltd.) with a folded size of 12.5 × 12.5 cm, it is wiped off. went. Fingerprint wiping property evaluated the visibility after wiping with this wiping method on the following evaluation criteria, and made 5 points or more acceptable.
10 points: When wiped once, it becomes almost unrecognizable. 7 points: When wiped once, it becomes almost unnoticeable. 5 points: When wiped three times, it becomes almost unrecognizable. 1 point: The above evaluation was performed on 10 subjects who remained dirty even after wiping 5 times or more, and the average value was obtained. The numbers after the decimal point were rounded off.
 [拭き取り耐久性]
 折り上げ寸法が12.5×12.5cmのセルロース長繊維不織布ガーゼ(“ハイゼ”ガーゼ NT-4 川本産業株式会社製)を用いて、成形材料表面を100回連続で摩擦した後に、前述の方法で指紋を付着させた。付着した指紋の視認性を下記の評価基準で評価し、5点以上を合格とした。
10点: 指紋が視認されない、もしくは未付着部との差がわからない
 7点: 指紋がほとんど視認できない、もしくは指紋だとは認識されない
 5点: 指紋が僅かに視認されるが、ほとんど気にならない
 3点: 指紋が視認される
 1点: 指紋が明確に視認され、非常に気になる
上記評価を10人の対象者について行い、その平均値を求めた。小数点以下については四捨五入して取り扱った。
[Wipe durability]
The above-mentioned method after rubbing the surface of the molding material 100 times continuously using a cellulose long fiber nonwoven fabric gauze (“Hize” gauze NT-4 manufactured by Kawamoto Sangyo Co., Ltd.) having a folded dimension of 12.5 × 12.5 cm A fingerprint was attached. The visibility of the attached fingerprint was evaluated according to the following evaluation criteria, and 5 points or more were regarded as acceptable.
10 points: The fingerprint is not visually recognized or the difference from the non-attached part is not recognized. 7 points: The fingerprint is hardly visible or not recognized as the fingerprint. 5 points: The fingerprint is slightly visible, but hardly noticed. Points: Fingerprints are visually recognized. 1 point: The above evaluations were performed on 10 subjects who were clearly aware of fingerprints and were very worrisome, and the average value was obtained. The numbers after the decimal point were rounded off.
 表1に塗料組成物の組成を、表2に得られた成形材料の評価結果をまとめた。評価項目において1項目でも合格とならないものについて、課題未達成と判断した。 Table 1 summarizes the composition of the coating composition, and Table 2 summarizes the evaluation results of the molding materials obtained. Regarding evaluation items that did not pass even one item, it was judged that the problem was not achieved.
 表2に示すように本発明の実施例は、光沢性と耐指紋性のいずれにおいても合格しており、本発明が解決しようとする課題を達成している。 As shown in Table 2, the examples of the present invention pass both glossiness and fingerprint resistance, and achieve the problems to be solved by the present invention.
 式(2)のθa-θrの値が、本発明の好ましい範囲からはずれる実施例8と実施例10と、式(2)のθa-θrの値と、化合物Bの構造が本発明の好ましい範囲から外れる実施例11は、耐指紋性がやや劣っていたが、許容できる範囲であった。 Examples 8 and 10 in which the value of θa-θr in formula (2) deviates from the preferred range of the present invention, the value of θa-θr in formula (2), and the structure of compound B are within the preferred range of the present invention. Example 11 which deviates from the above was slightly inferior in fingerprint resistance, but was in an acceptable range.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明に係る成形材料、塗料組成物、および成形材料の製造方法は、耐指紋性を付与するために好適に使用できるだけでなく、種々のプラスチック成形品、カメラの最表面部のレンズ、眼鏡のレンズ、建築物や車両などの窓ガラスおよび種々の印刷物のそれぞれの表面に同様の機能を付与するためにも用いることができる。 The molding material, the coating composition, and the method for producing the molding material according to the present invention can be suitably used for imparting fingerprint resistance, as well as various plastic molded articles, lenses on the outermost surface portion of the camera, and glasses. It can also be used to impart similar functions to the surfaces of lenses, window glass of buildings and vehicles, and various printed materials.

Claims (13)

  1. 少なくとも一方の面に表面層を有する成形材料であって、
    前記表面層のJIS Z8741:1997で規定する60°鏡面光沢度が60%以上で、オレイン酸の後退接触角θが60°以上である成形材料。
    A molding material having a surface layer on at least one surface,
    A molding material in which the surface layer has a 60 ° specular gloss specified by JIS Z8741: 1997 of 60% or more and a receding contact angle θ r of oleic acid of 60 ° or more.
  2. 少なくとも一方の面に表面層を有する成形材料であって、
    前記表面層のJIS Z8741:1997で規定する60°鏡面光沢度が60%以上であり、
    前記表面層に下記の条件により模擬指紋付着および模擬指紋拭き取りを行ったとき、JIS Z8730:2009およびJIS Z8722:2009に従って求めた模擬指紋付着前の状態を基準とした模擬指紋拭き取り後の正反射光込みの色差ΔE ab(di:8°)Sb10W10(以降ΔESCI-2とする)および模擬指紋付着前の状態を基準とした模擬指紋拭き取り後の正反射光除去の色差ΔE ab(de:8°)Sb10W10(以降ΔESCE-2とする)が、下記の式(1)の範囲を満たす成形材料。
     ((ΔESCI-2+(ΔESCE-21/2 ≦2.0
                              ・・・ 式(1)
    ・模擬指紋付着の条件:オレイン酸70質量%と数平均粒子径2μmのシリカ粒子30質量%からなる分散物を、JIS B0601:2001で規定するRaが3μmで、JIS K6253:1997で規定するゴム硬度50のシリコーンゴムに1.0g/m付着させ、これを対象とする面に30KPaの圧力で付着させる。
    ・模擬指紋拭き取りの条件:前記方法で付着した模擬指紋を不織布にて30KPaの圧力、5cm/秒の速度で3回擦る。
    A molding material having a surface layer on at least one surface,
    The 60 ° specular gloss specified by JIS Z8741: 1997 of the surface layer is 60% or more,
    When the surface fingerprint is subjected to simulated fingerprint attachment and simulated fingerprint wiping under the following conditions, the specular reflection light after wiping the simulated fingerprint based on the state before the simulated fingerprint adhesion obtained in accordance with JIS Z8730: 2009 and JIS Z8722: 2009 Color difference ΔE * ab (di: 8 °) Sb10W10 (hereinafter referred to as ΔE SCI-2 ) and the color difference ΔE * ab (de: 8 °) A molding material in which Sb10W10 (hereinafter referred to as ΔE SCE-2 ) satisfies the range of the following formula (1).
    ((ΔE SCI-2 ) 2 + (ΔE SCE-2 ) 2 ) 1/2 ≦ 2.0
    ... Formula (1)
    ・ Simulated fingerprint adhesion conditions: A dispersion composed of 70% by mass of oleic acid and 30% by mass of silica particles having a number average particle diameter of 2 μm has a Ra defined by JIS B0601: 2001 of 3 μm and a rubber defined by JIS K6253: 1997. 1.0 g / m 2 is adhered to a silicone rubber having a hardness of 50, and this is adhered to the target surface at a pressure of 30 KPa.
    Simulated fingerprint wiping conditions: The simulated fingerprint attached by the above method is rubbed three times with a nonwoven fabric at a pressure of 30 KPa and a speed of 5 cm / sec.
  3. 前記表面層のオレイン酸の後退接触角θが、50°以上である、請求項2に記載の成形材料。 The molding material of Claim 2 whose receding contact angle (theta) r of the oleic acid of the said surface layer is 50 degrees or more.
  4. 前記表面層のオレイン酸の前進接触角θ、後退接触角θが下記の式(2)を満たす、請求項1から3のいずれかに記載の成形材料。
     (θa-θr)≦ 15°             ・・・ 式(2)
    The molding material in any one of Claim 1 to 3 with which the advancing contact angle (theta) a and receding contact angle (theta) r of the oleic acid of the said surface layer satisfy | fills following formula (2).
    a −θ r ) ≦ 15 ° Formula (2)
  5. 前記表面層のX線光電子分光法(XPS)による光電子脱出角度15°での分析により得られた元素組成において、フッ素の割合が原子数比で50%以上である、請求項1から4のいずれかに記載の成形材料。 5. The element composition obtained by analyzing the surface layer by X-ray photoelectron spectroscopy (XPS) at a photoelectron escape angle of 15 °, wherein the proportion of fluorine is 50% or more by atomic ratio. Molding material according to crab.
  6. 前記表面層の原子間力顕微鏡にて観測した表面の形態において、JIS B0601:2001で規定する十点平均粗さRzと中心線平均粗さRaが下記の式(3)および(4)を満たす、請求項1から5のいずれかに記載の成形材料。
     4nm<Rz≦25nm              ・・・ 式(3)
     Ra≦4nm                   ・・・ 式(4)
    In the form of the surface of the surface layer observed with an atomic force microscope, the ten-point average roughness Rz and the centerline average roughness Ra specified by JIS B0601: 2001 satisfy the following formulas (3) and (4). The molding material according to any one of claims 1 to 5.
    4 nm <Rz ≦ 25 nm (3)
    Ra ≦ 4 nm Formula (4)
  7. 前記表面層が下記1)から3)を含有する、請求項1から5のいずれかに記載の成形材料。
     1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物A
     2)炭素数8以上のアルキル基および/またはアルカンジイル基を含む部位と反応性部位とを有する化合物B
     3)バインダー成分
    The molding material according to any one of claims 1 to 5, wherein the surface layer contains the following 1) to 3).
    1) Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group
    2) Compound B having a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group and a reactive site
    3) Binder component
  8. 前記表面層が下記1)から3)を含有する、請求項1から6のいずれかに記載の成形材料。
     1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物A
     2)バインダー成分
     3)数平均粒子径5nm以上20nm以下の粒子d(I)および数平均粒子径50nm以上300nm以下の粒子d(II)からなる粒子成分
    The molding material in any one of Claim 1 to 6 in which the said surface layer contains the following 1) to 3).
    1) Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group
    2) Binder component 3) Particle component comprising particle d (I) having a number average particle diameter of 5 nm to 20 nm and particle d (II) having a number average particle diameter of 50 nm to 300 nm
  9. 前記表面層が下記1)から3)を含有する、請求項8に記載の成形材料。
     1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と一分子中に2以上5以下の反応性部位を有するフッ素化合物A(II)
     2)分子中に10以上の反応性部位を持ち、数平均分子量1500以上3000以下の化合物であるバインダー原料C(I)および分子中に3以上6以下の反応性部位を持ち、数平均分子量500以上1500以下の化合物であるバインダー原料C(II)から形成されてなるバインダー成分
     3)数平均粒子径5nm以上20nm以下の粒子d(I)および数平均粒子径50nm以上300nm以下の粒子d(II)からなる粒子成分
    The molding material according to claim 8, wherein the surface layer contains the following 1) to 3).
    1) a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group, and a reactive site of 2 to 5 in one molecule Fluorine compound A (II) having
    2) The binder raw material C (I), which is a compound having 10 or more reactive sites in the molecule and a number average molecular weight of 1500 to 3000, and a reactive site of 3 to 6 in the molecule, and having a number average molecular weight of 500 Binder component formed from binder raw material C (II) which is a compound of 1500 or less and 3 or less 3) Particle d (I) having a number average particle size of 5 nm or more and 20 nm or less and Particle d (II) having a number average particle size of 50 nm or more and 300 nm or less Particle component consisting of
  10. 下記1)から3)を含有する、塗料組成物。
     1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物A
     2)炭素数8以上のアルキル基および/またはアルカンジイル基を含む部位と反応性部位とを有する化合物B
     3)バインダー原料
    The coating composition containing the following 1) to 3).
    1) Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group
    2) Compound B having a site containing an alkyl group having 8 or more carbon atoms and / or an alkanediyl group and a reactive site
    3) Binder raw material
  11. 下記1)から3)を含有する、塗料組成物。
     1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と反応性部位を有するフッ素化合物A
     2)バインダー原料
     3)数平均粒子径5nm以上20nm以下の粒子D(I)および数平均粒子径50nm以上300nm以下の粒子D(II)からなる粒子成分
    The coating composition containing the following 1) to 3).
    1) Fluorine compound A having a reactive site and a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group
    2) Binder raw material 3) Particle component consisting of particles D (I) having a number average particle diameter of 5 nm to 20 nm and particles D (II) having a number average particle diameter of 50 nm to 300 nm
  12. 下記1)から3)を含有する、請求項11に記載の塗料組成物。
     1)フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも1つを含む部位と一分子中に2以上5以下の反応性部位を有するフッ素化合物A(II)
     2)分子中に10以上の反応性部位を持ち、数平均分子量1500以上3000以下の化合物であるバインダー原料C(I)および分子中に3以上6以下の反応性部位を持ち、数平均分子量500以上1500以下の化合物であるバインダー原料C(II)からなるバインダー原料
     3)数平均粒子径5nm以上20nm以下の粒子D(I)および数平均粒子径50nm以上300nm以下の粒子D(II)からなる粒子成分
    The coating composition according to claim 11, comprising the following 1) to 3).
    1) a site containing at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group and a fluorooxyalkanediyl group, and a reactive site of 2 to 5 in one molecule Fluorine compound A (II) having
    2) The binder raw material C (I), which is a compound having 10 or more reactive sites in the molecule and a number average molecular weight of 1500 to 3000, and a reactive site of 3 to 6 in the molecule, and having a number average molecular weight of 500 Binder raw material consisting of binder raw material C (II) which is a compound of 1500 or less 3) It consists of particles D (I) having a number average particle diameter of 5 nm to 20 nm and particles D (II) having a number average particle diameter of 50 nm to 300 nm. Particle component
  13. 請求項10から12のいずれかに記載の塗料組成物を表面に塗工する、成形材料の製造方法。 The manufacturing method of the molding material which coats the coating composition in any one of Claim 10 to 12 on the surface.
PCT/JP2012/083460 2012-01-13 2012-12-25 Molding material, coating composition, and method for manufacturing molding material WO2013105429A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280065793.4A CN104023969B (en) 2012-01-13 2012-12-25 The manufacture method of moulding material, coating composition and moulding material
JP2013505652A JP6102735B2 (en) 2012-01-13 2012-12-25 MOLDING MATERIAL, COATING COMPOSITION, AND METHOD FOR PRODUCING MOLDING MATERIAL
KR1020147017784A KR102061920B1 (en) 2012-01-13 2012-12-25 Molding material, coating composition, and method for manufacturing molding material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-004766 2012-01-13
JP2012004766 2012-01-13
JP2012-211934 2012-09-26
JP2012211934 2012-09-26

Publications (1)

Publication Number Publication Date
WO2013105429A1 true WO2013105429A1 (en) 2013-07-18

Family

ID=48781387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083460 WO2013105429A1 (en) 2012-01-13 2012-12-25 Molding material, coating composition, and method for manufacturing molding material

Country Status (5)

Country Link
JP (1) JP6102735B2 (en)
KR (1) KR102061920B1 (en)
CN (1) CN104023969B (en)
TW (1) TWI565767B (en)
WO (1) WO2013105429A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109177A1 (en) * 2013-01-09 2014-07-17 東レ株式会社 Laminated film
WO2014109178A1 (en) * 2013-01-09 2014-07-17 東レ株式会社 Molding material
KR20150100252A (en) * 2014-02-25 2015-09-02 동우 화인켐 주식회사 Preparing method for anti-finger layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6814527B2 (en) 2014-12-24 2021-01-20 株式会社ニトムズ Adhesive cleaner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036835A (en) * 2004-07-23 2006-02-09 Jsr Corp Curable resin composition and antireflection coating film
JP2006231316A (en) * 2004-11-15 2006-09-07 Jsr Corp Manufacturing method of laminate
JP2010005799A (en) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd Water and oil repelling woody building material
WO2010098636A2 (en) * 2009-02-27 2010-09-02 주식회사 엘지화학 Outstandingly abrasion resistant and pollution resistant coating composition and coating film
JP2011505452A (en) * 2007-11-29 2011-02-24 エルジー・ケム・リミテッド Coating composition and coating film excellent in abrasion resistance and fingerprint removal
WO2013008645A1 (en) * 2011-07-11 2013-01-17 東レ株式会社 Molding material, coating composition, and method for producing molding material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036835A (en) * 2004-07-23 2006-02-09 Jsr Corp Curable resin composition and antireflection coating film
JP2006231316A (en) * 2004-11-15 2006-09-07 Jsr Corp Manufacturing method of laminate
JP2011505452A (en) * 2007-11-29 2011-02-24 エルジー・ケム・リミテッド Coating composition and coating film excellent in abrasion resistance and fingerprint removal
JP2010005799A (en) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd Water and oil repelling woody building material
WO2010098636A2 (en) * 2009-02-27 2010-09-02 주식회사 엘지화학 Outstandingly abrasion resistant and pollution resistant coating composition and coating film
WO2013008645A1 (en) * 2011-07-11 2013-01-17 東レ株式会社 Molding material, coating composition, and method for producing molding material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109177A1 (en) * 2013-01-09 2014-07-17 東レ株式会社 Laminated film
WO2014109178A1 (en) * 2013-01-09 2014-07-17 東レ株式会社 Molding material
JPWO2014109177A1 (en) * 2013-01-09 2017-01-19 東レ株式会社 Laminated film
KR20150100252A (en) * 2014-02-25 2015-09-02 동우 화인켐 주식회사 Preparing method for anti-finger layer
KR102207976B1 (en) 2014-02-25 2021-01-25 동우 화인켐 주식회사 Preparing method for anti-finger layer

Also Published As

Publication number Publication date
CN104023969A (en) 2014-09-03
JP6102735B2 (en) 2017-03-29
TWI565767B (en) 2017-01-11
KR20140113661A (en) 2014-09-24
CN104023969B (en) 2016-09-28
TW201335296A (en) 2013-09-01
JPWO2013105429A1 (en) 2015-05-11
KR102061920B1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
JP6217818B2 (en) MOLDING MATERIAL, COATING COMPOSITION, AND METHOD FOR PRODUCING MOLDING MATERIAL
JP4801263B2 (en) Plastic laminate and image display protection film
JP2008001869A (en) Coating for forming transparent film and substrate with film
WO2013183487A1 (en) Laminated body, conductive laminated body, touch panel, coating composition, and method for manufacturing laminated body that uses said coating composition
JP6102735B2 (en) MOLDING MATERIAL, COATING COMPOSITION, AND METHOD FOR PRODUCING MOLDING MATERIAL
JP5000933B2 (en) Antireflection film
JP4866811B2 (en) Antireflection film
JP5123507B2 (en) Antireflection film
JP2008116597A (en) Antireflection film
JP2008156648A (en) Transparent hard coat layer, transparent hard coat material, and displaying device
JP6003550B2 (en) Molding material and method for producing molding material
JP4948387B2 (en) Antireflection film
JP2003183586A (en) Transparent hard coat layer and material, and display device
JP6221520B2 (en) Molding material
JP2008139526A (en) Antireflection film
JP2007245622A (en) Composition for hard coat layer, and laminated body
WO2014109178A1 (en) Molding material
JP2001281416A (en) Antireflection film
WO2016175064A1 (en) Laminated body
JP2001281408A (en) Antireflection film and method for manufacturing the same
WO2005037901A1 (en) Method for producing resin article coated with anti-staining film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013505652

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147017784

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865485

Country of ref document: EP

Kind code of ref document: A1