WO2013104679A1 - Systeme de prospection electromagnetique du sol sous-marin - Google Patents

Systeme de prospection electromagnetique du sol sous-marin Download PDF

Info

Publication number
WO2013104679A1
WO2013104679A1 PCT/EP2013/050316 EP2013050316W WO2013104679A1 WO 2013104679 A1 WO2013104679 A1 WO 2013104679A1 EP 2013050316 W EP2013050316 W EP 2013050316W WO 2013104679 A1 WO2013104679 A1 WO 2013104679A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
electrodes
marine environment
current
module
Prior art date
Application number
PCT/EP2013/050316
Other languages
English (en)
Inventor
Jean-François D'EU
Pascal Tarits
Fabien GASPARI
Original Assignee
Universite De Bretagne Occidentale - Ubo
Centre National De La Recherche Scientifique - Cnrs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Bretagne Occidentale - Ubo, Centre National De La Recherche Scientifique - Cnrs filed Critical Universite De Bretagne Occidentale - Ubo
Priority to EP13700639.1A priority Critical patent/EP2802906B1/fr
Priority to DK13700639.1T priority patent/DK2802906T3/da
Priority to JP2014550736A priority patent/JP2015506475A/ja
Priority to US14/371,295 priority patent/US20150153471A1/en
Publication of WO2013104679A1 publication Critical patent/WO2013104679A1/fr
Priority to US15/292,630 priority patent/US20170031052A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/083Controlled source electromagnetic [CSEM] surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current

Definitions

  • the present invention relates to an underwater electromagnetic prospecting system for collecting data representative of the electrical structure of the submarine soil at penetration depths of a few hundred meters. This system is more particularly used to collect resistivity data on the first meters or first tens of meters of the submarine soil.
  • Marine electromagnetic prospection techniques are known in basic research and also for the search for hydrocarbons or the search for gas hydrates, as described in the document entitled "A marine deep-towed DC resistivity survey in a methane hydrate area, Japan. Sea “of TN Goto, T.Kasaya, H.Machiyama, R.Takagi, R.Matsumoto, Y.Okuda, M.Satoh, T.Watanabe, N.Seama, H.Mikada, Y.Sanada, M.Noshita, in Geophysics Exploration, 2008, 39, 52-59; Butsuri-Tansa, 2008, 61, 52-59; Mulli-Tamsa, 2008, 11, 52-59.
  • Electromagnetic prospecting techniques are commonly used on land. They were then adapted to the marine domain to study the internal structure of the earth at depths between ten and a few hundred kilometers and for oil exploration with depths of the order of a few kilometers.
  • This adaptation to the marine domain for depths beyond the kilometer has mainly consisted of using systems comprising measurement sensors placed on the seabed, recording the injected or induced signal generated by a fixed source or pulled by a ship over the sea. sensors.
  • the systems used at sea are generally terrestrial devices, the latter being arranged on board the prospecting vessel, the means for injecting current and the means of measure being towed on the surface or on the seabed.
  • These prospecting systems typically include:
  • a current injection module comprising two injection electrodes remote from each other for injecting, into the submarine soil or in the marine environment close to this ground, a current under a predetermined voltage and a injection control unit,
  • a data acquisition module comprising at least two measurement sensors for measuring electrical data, generally electrical potentials, in at least two points of the submarine ground or the marine environment in the vicinity of this ground, the measured electrical data resulting from the current flow in the subsea soil, and means for storing and / or analyzing said electrical data;
  • the current injected into the marine environment is conventionally a low frequency alternating current having a peak-to-peak amplitude of the order of a few tens to a few hundred amperes, this current being injected into the ground at a voltage of the order of a few hundred volts peak to peak.
  • the intensity of this current is relatively strong to reach milestones depths.
  • This current is provided by the power module which is either disposed on board the ship or is arranged in a sealed compartment of the underwater vehicle, which power module is powered by an electric generator present on board the ship. operation and delivering an alternating voltage of the order of one kilovolt.
  • the power module is an AC / AC converter responsible for converting the high voltage produced by the electric generator into a lower voltage. It is very bulky because it must be able to deliver powers of several thousand watts. The system is therefore also very bulky and its implementation therefore generally requires the use of large vessels with a large electrical power and, if part of the system is deported to an underwater vehicle, large means for the launching of the underwater vehicle and its towing.
  • the injection electrodes are generally very long and are for example in the form of a hollow tube several tens of meters long.
  • the invention relates to a technical field other than oil prospecting or the search for gas hydrates. It concerns the analysis of the first meters or first tens of meters of the submarine soil, commonly called near surface, and aims more particularly at proposing an electromagnetic prospecting system. to collect electrical data from the near surface of the submarine soil.
  • the invention is also part of an approach to reduce the size of the electromagnetic prospecting system so as to obtain a compact and lightweight system that can be used by small vessels that do not necessarily have high electrical power.
  • the measurement accuracy of electromagnetic survey systems depends in part on the intensity of the current injected into the marine environment. Indeed, the marine environment being very conductive, the potentials measured by the system are very low.
  • the injection of a high current is therefore necessary to maintain the quality of the measured electrical data. It is therefore preferable not to reduce the intensity of the injected current to reduce the electrical power to be supplied.
  • the invention to reduce the volume of the electromagnetic prospecting system, it is proposed to reduce the electrical power required for current injection by decreasing the voltage under which the current is injected into the marine environment. Since the injection is carried out in seawater, the injected current I is proportional to the voltage U at the terminals of the injection electrodes, by applying the ohm law, where R is the overall electrical resistance of the injection module. injection of the system. For a given current I, a decrease in the voltage U can thus be obtained by decreasing the electrical resistance R of the injection module.
  • injection electrodes having a contact surface with the marine environment such that the electrical resistance of the injection electrodes is less than 0.5 ohms, preferably less than 0.2 ohms.
  • the subject of the invention is therefore a system for electromagnetic prospecting of an underwater ground situated under a marine environment, comprising:
  • a current injection module comprising two conductive electrodes remote from each other, called injection electrodes, capable of injecting a current under a predetermined voltage into the marine environment close to the submarine ground, and a injection control unit, said injection electrodes having a contact surface with the marine environment,
  • a data acquisition module comprising at least two measurement sensors for measuring electrical or magnetic data at at least two points of the marine environment near the submarine ground, said data resulting from the conduction or induction of the current in the underwater soil,
  • a power supply module for supplying power to the current injection module
  • each injection electrode comprises one or more separate conductive elements interconnected electrically arranged (s) so as to form a conductive network or a multilayer conductive assembly having a large surface contact with the marine environment.
  • the contact area of each of the injection electrodes is greater than or equal to 0.5 m 2 .
  • the contact surface of the two electrodes is dimensioned so that the electrical resistance of the injection electrodes is less than 0.5 ohm and preferably less than 0.2 ohm.
  • the multilayer or network arrangement of the electrode makes it possible to obtain a compact injection electrode.
  • a conductive network is understood to mean an assembly in which one or more conductive elements is or are arranged in a small area.
  • each injection electrode is included inside a volume whose greatest length is less than 1.5 meters.
  • the resistance of the injection electrodes is reduced in order to reduce the voltage under which the current is injected into the marine environment and to reduce the electrical power to be supplied by the power supply module.
  • injection electrodes having a relatively large area of contact with the marine environment greater than 0.5 m 2 are used to reduce the electrical resistance of the injection electrodes in contact with the marine environment to approximately 0, 1 ohm.
  • the size and number of the cables and the number of connectors will also be reduced as much as possible in the current injection module and low-resistive active components will be used. . According to a particular embodiment, this reduces the electrical resistance of the cables, connectors and active components of the control unit of the injection module to about 0.2 ohms.
  • a current of the order of 40A can then be injected under a reduced voltage, for example 12V.
  • the electrical power delivered by the power supply module is then reduced to about 500 W.
  • This feed module advantageously arranged in an underwater vehicle, can be supplied with energy by a small generator disposed on board the prospecting vessel delivering for example a common alternating voltage of between 100 and 230 V.
  • the voltage under which the current is injected into the marine environment is less than or equal to 60 volts.
  • This voltage is well below the tensions conventionally used for oil exploration.
  • each injection electrode comprises a plurality of conductive elements arranged next to each other and electrically interconnected so as to form a multilayer conductive assembly.
  • the conductive elements are metal plates arranged substantially parallel to each other.
  • the conductive elements are perforated and comprise, at least in a central portion, a plurality of holes passing through said plate so as to obtain an open system and so that the current lines extending from plates disposed between the two end plates are in contact with a maximum of liquid of the marine environment.
  • the use of grids is part of this embodiment.
  • the conductive elements are made of metal fabric or stainless steel straw.
  • the injection electrodes are made of a conductive material of brass, copper, stainless steel, graphite, titanium or platinum type. They are optionally plated with a stainless material such as gold.
  • the injection electrodes are made of a porous conductive material to further increase the contact surface of the electrodes without increasing their volume or their weight.
  • each injection electrode comprises a conductive element made of metal fabric or porous conductive material.
  • the contact surfaces of the two injection electrodes have substantially identical surfaces. Alternatively, they may be different.
  • the feed module is disposed in a sealed compartment of a subsea vehicle towed by a ship and able to move in the marine environment near the sea floor.
  • one of the two injection electrodes is mounted on said underwater vehicle and the other injection electrode is mounted at the end of a train towed by said underwater vehicle.
  • the weight in the water of the troll is offset by the addition of buoyancy.
  • the surface area of the contact surface of the injection electrode mounted on the underwater vehicle is less than that of the other electrode to make it as compact as possible and increase the resolution of the survey.
  • the troll can be instrumented with attitude sensors, an altimeter and pressure sensors to know its relative position in relation to to the underwater vehicle which can also be equipped with the same sensors.
  • the measurement sensors are arranged along a towed cable by the underwater vehicle.
  • FIG. 1 a schematic overview showing the system according to the invention in operating condition, said system comprising an underwater vehicle or fish towed by a ship and a cable carrying measuring sensors and pulling a tow a current injection electrode;
  • FIG. 3 a perspective view of a fish according to the invention.
  • FIG. 6 a perspective view of the train of the system of FIG. 1, and
  • Figure 7 is a schematic view of an alternative embodiment of the injection electrode of the system of the invention.
  • the invention proposes an electromagnetic survey system of small dimensions that can be implemented by small vessels having no large electric power available.
  • it comprises a current injection module having very low resistive losses to reduce the electrical power required for the injection of current in the marine environment.
  • To reduce the overall electrical resistance R of the current injection module it acts on both the resistance R c of the conductive cables and connectors of the module, the resistance R e i of the active components of the module and the resistance R e 2 of the injection electrodes of the module.
  • the resistance R then represents the sum of the resistances R c , R e i and R e 2 ⁇
  • the diameter of the conductive cables is increased and the size of the cables is reduced as much as possible.
  • the number of connectors is also reduced and connectors with good quality contacts are used. It is thus possible to reduce the resistance R c to a value of the order of 0.1 Ohm for a distance of 100 meters between the electrodes.
  • the contact surface of the electrodes with the marine environment is increased.
  • the resistance R e 2 includes the electrical resistance of the material used for the manufacture of the electrode and especially the contact resistance with the sea water. The latter is the most important and it is it that is necessary be careful to decrease.
  • the resistance of the injection module is generally dominated by the resistance of the water layer in contact with the electrodes.
  • the resistivity of the seawater is of the order of 0.3 Ohm. m, which, although very low compared to conventional terrestrial materials, is very high compared to the resistivity of the metal of the electrode. So it's the surface of the seawater in contact of the electrode which dimensions the resistance of the injection electrodes.
  • the overall resistance of the current injection module is 0.3 Ohms. If the electrical resistance (R c + R e i) of the cables and active components of the current injection module is equal to approximately 0.2 Ohms, a resistance R e 2 of the order of 0.1 ohms is required for the overall resistance R of the current injection module does not exceed 0.3 ohms.
  • the material used for the electrodes must of course be a good conductor.
  • the electrolysis that occurs when the direct or alternating current passes through the surface of the electrodes makes it possible to eliminate, at least in part, the possible oxide layer that would deposit on the surface of the electrodes. Copper, brass, stainless steel, graphite or more expensive metals such as titanium, platinum, gold or silver can be used to make the electrodes.
  • the calculation of the contact surface of the electrodes is described below in the context of spherical symmetry electrodes. This form allows a relatively simple calculation and tests have shown that this calculation is valid for electrodes of different shapes.
  • the resistance R e 2 is therefore equal to
  • a contact area of about 3 m 2 is therefore required to achieve the desired injection performance, namely 40 A at 12 volts.
  • each electrode advantageously comprises a plurality of conductive elements arranged next to each other and electrically interconnected.
  • these elements are preferably perforated and have for this purpose multiple holes for the electrode to be an open system and that the current lines extending from the plates arranged between the end plates are in contact with a maximum of liquid from the marine environment.
  • These elements can also be made of a porous material or in the form of metal fabric or metal grids.
  • FIGS 1 to 6 illustrate an electromagnetic prospecting system according to the invention.
  • the electromagnetic prospecting system comprises an underwater vehicle, called fish 1, towed by a ship 2 by means of a cable 30.
  • a power cable 31 for supplying power to energy fish and a data cable 32 for data transmission are arranged along the cable 30 or inside thereof.
  • the fish 1 is extended by a cable 40 for drawing a profiled train 5 for underwater navigation.
  • Current injection electrodes 6 and 7 are respectively disposed on the fish 1 and the troll 5 for injecting a current into the marine environment near the subsea ground 9.
  • the injection electrode 6 is directly mounted on the fish 1.
  • the injection electrode 7 disposed on the train 5 is connected to the fish via an injection return cable 41 arranged along the cable 40.
  • a measurement cable 42 provided with measurement sensors 8 is connected to the fish to measure the electrical potentials at different points of the marine environment.
  • the cable 42 is arranged along the cable 40. These cables are for example held along the cable 40 by means of a sock.
  • the length of the cable 41 which corresponds substantially to the distance d1 between the two injection electrodes 6 and 7, defines the investigation depth of the system while the distance d2 between the measurement sensors 8 of the cable 42 defines the lateral resolution. and the in-depth resolution of the system.
  • the electrode 7 is very far from the electrode 6 and the measurement sensors 8, it is considered to be a mass electrode arranged at infinity.
  • the system is therefore pole-dipole type well known to those skilled in the art. All other types of devices for relative organization of the sensors and the injection device with respect to each other are also possible without restriction and are within the scope of the invention.
  • the fish 1 is in the form of a cylindrical tube 11 provided with a head 10 and a tail 12 both ogival-shaped.
  • the cylindrical tube 10 is provided with five fins 13, three at the back angularly offset by about 120 ° and two at the front.
  • the two front fins are arranged in the longitudinal planes of the two rear fins present in the lower part of the fish.
  • the cable 30 is attached to the front of the fish and the cable 40 is attached to the rear three wings of the fish.
  • the injection electrode 6 is mounted on a support 14 fixed to the four wings 13 arranged in the lower part of the fish.
  • the electrode 6 comprises a plurality of substantially identical metal plates 60 mounted on the support 14. These plates are arranged vertically and separated from one another by spacers 61. The spacers are conductive and provide the electrical connection between the plates 60.
  • the plates 60 are preferably provided with holes 62 so that the current lines of the intermediate plates disposed between the two end plates are in contact with a maximum of liquid of the marine environment. This has the advantage of lightening the system without greatly reducing the contact area of the plates since the contact surface is recovered at each hole in the thickness of the plate.
  • each of the injection electrodes 80 of the system is in the form of a metal fabric made from one or more intertwined metal wires, the one or more wire (s) being arranged ( s) within a predefined volume.
  • the electrode 80 is of parallelepipedal shape. A metal plate having one end disposed within the parallelepiped is used to connect the tissue inside the parallelepiped to the remainder of the current injection module.
  • This electrode is for example made from one or more braided stainless steel wire (s) to form a parallelepiped.
  • s stainless steel wire
  • other forms of electrodes may be envisaged, for example a cylindrical shape.
  • Conductive materials other than stainless steel may also be used.
  • the electrode is made from a plurality of intermixed metal wires.
  • the fish comprises, inside the tube 11, a data transmission circuit 15, a power supply module 16, a data acquisition circuit 17 and a fuel injection circuit. current 18.
  • the data transmission circuit 15 is connected on the one hand to the data transmission cable 32 coming from the ship and to the data acquisition circuit 17.
  • the power supply module 16 is connected to the power supply cable 31 from the ship.
  • the data acquisition circuit 17 is connected to the measurement cable 42 and forms with it a data acquisition module.
  • the current injection circuit 18 is connected to the electrode 6 and the electrode 7 via the injection return cable 41, which elements together form a current injection module.
  • the fish is instrumented to move near the submarine soil 9.
  • the circuits 15, 17 and 18 are supplied with power by the power supply module 16.
  • the power supply module supplies the injection current to the current injection circuit 18.
  • the latter comprises the switching electronics (transistors ) for supplying the current delivered by the power supply module 16 to the marine medium via the electrodes 6 and 7.
  • the data acquisition circuit 17 comprises the control electronics of the measurement sensors, means for storing the measured signals and possibly means for analyzing or pre-analyzing the measured signals.
  • the data transmission circuit 15 transmits the measured signals to the ship.
  • the second injection electrode 7 mounted on the tail 5 is described with reference to FIG. 6.
  • the tail 5, of profiled shape for underwater navigation comprises a body 51 in the shape of an airplane carrying the electrode of FIG. injection 7.
  • the body 51 is provided at one of its ends with a ring 53 for fixing the cable 42 to the troll 5.
  • the electrode 7 comprises a plurality of substantially identical metal plates 70.
  • the plates are fixed by their upper edges to the body 51.
  • a protective arch 52 extending downwardly from the body 51 is provided to protect the plates in case the troll comes to touch the ground or an obstacle.
  • These plates are arranged vertically and separated from each other by spacers not shown. The electrical connection between the plates 70 is made by the spacers.
  • the system comprises nineteen measuring sensors 8 spaced approximately 1 meter from each other and the distance d1 between the injection electrodes is approximately 100 meters. This gives a depth of investigation of between 20 and 30 meters.
  • the fish is 1.50 m long and 20 cm in diameter.
  • the electrode 6 has 11 plates 60 of 1 mx 0.1 m.
  • the troll 5 is 1.10 m long and has 10 plates 70 of 1 mx 0.1 m. The plates are perforated in their central part. This gives a total contact surface of the order of 2 to 3 m 2 for injecting a current of 40 amps at 12 volts in the marine environment. This has been confirmed by tests carried out at sea.
  • the fish is powered by 220 volts AC and the power supply module 16 converts the AC voltage into a DC voltage and a DC current of 40 A.
  • the generator on board the ship therefore only needs to supply 220 volts AC and the power supply module 16 is AC / DC converter of small size.
  • the transmission of data can possibly be carried out by carrier current so that the cable 32 can be removed.
  • the electrode 7 is preferably disposed between the electrode 6 and the measurement sensors 8.
  • the data acquisition module 17 may advantageously perform a first treatment on the measured data and in particular generate electrical resistivity values of the ground from the measured electrical potentials.
  • the applications of this system are multiple. It can be used to provide electrical data to complement the geophysical data provided by another survey system, such as an acoustic survey system. It can also be used when acoustic prospecting systems are inoperative, for example when the ground is very reflective or in the presence of a pocket of dissolved gas. It can also be used for the detection of metal objects (highly conductive) or composite or plastic (highly resistant) in the ground, and more particularly for the detection and location, particularly in depth, of infrastructure such as pipelines. In all these applications, the voltage under which the current is injected into the marine environment is preferably less than 60 volts to maintain a compact power module.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

L'invention concerne un système de prospection électromagnétique d'un sol situé sous un milieu marin, comprenant un module d'injection de courant comprenant deux électrodes (6) distantes l'une de l'autre, dites électrodes d'injection, aptes à injecter un courant sous une tension prédéterminée dans le milieu marin à proximité du sol sous-marin, lesdites électrodes d'injection présentant une surface de contact avec le milieu marin, un module d'acquisition de données comprenant au moins deux capteurs de mesure pour mesurer des données électriques ou magnétiques en au moins deux points du milieu marin à proximité du sol sous-marin, un module d'alimentation pour alimenter en énergie le module d'injection de courant. Selon l'invention, chaque électrode comporte un ou plusieurs éléments conducteurs distincts reliés entre eux électriquement agencé (s) de manière à former un réseau conducteur ou un ensemble conducteur multicouche présentant une grande surface de contact avec le milieu marin.

Description

SYSTEME DE PROSPECTION ELECTROMAGNETIQUE
DU SOL SOUS-MARIN
La présente invention concerne un système de prospection électromagnétique sous-marine permettant de recueillir des données représentatives de la structure électrique du sol sous-marin sur des profondeurs de pénétration de quelques centaines de mètres. Ce système est plus particulièrement utilisé pour recueillir des données de résistivité sur les premiers mètres ou premières dizaines de mètres du sol sous-marin.
Les techniques de prospection électromagnétique marines sont connues en recherche fondamentale et également pour la recherche d'hydrocarbures ou la recherche d'hydrates de gaz, comme décrit dans le document intitulé "A marine deep-towed DC resistivity survey in a méthane hydrate area, Japan Sea" of T. N. Goto, T.Kasaya, H.Machiyama, R.Takagi, R.Matsumoto, Y.Okuda, M.Satoh, T.Watanabe, N.Seama, H.Mikada, Y.Sanada, M.Noshita, in Exploration Geophysics, 2008, 39, 52-59; Butsuri-Tansa, 2008, 61, 52-59; Mulli-Tamsa, 2008, 11, 52-59. Ces techniques consistent à mesurer les propriétés électriques des matériaux formant le sol sous-marin, c'est-à-dire leur propension à laisser ou non passer un courant électrique. En pratique, on injecte ou on induit des courants dans le milieu à analyser et on mesure en différents points de ce milieu les potentiels électriques ou les champs magnétiques résultant de l'excitation électrique ou électromagnétique provoquée par la circulation du courant dans ce milieu pour, après inversion des données, en déduire le profil de résistivité électrique du sol. Les techniques de prospection électromagnétique sont couramment utilisées à terre. Elles ont ensuite été adaptées au domaine marin pour étudier la structure interne de la terre à des profondeurs comprises entre une dizaine et quelques centaines de kilomètres et pour la prospection pétrolière avec des profondeurs de l'ordre de quelques kilomètres. Cette adaptation au domaine marin pour des profondeurs au-delà du kilomètre a essentiellement consisté à utiliser des systèmes comportant des capteurs de mesure posés sur le fond marin, enregistrant le signal injecté ou induit généré par une source fixe ou tirée par un navire au dessus des capteurs. Lorsque la profondeur d'eau de mer est faible (inférieure à quelques mètres) , les systèmes utilisés en mer sont généralement des dispositifs terrestres, ces derniers étant disposés à bord du navire de prospection, les moyens d'injection de courant et les moyens de mesure étant tractés en surface ou sur le fond marin.
Ces systèmes de prospection comprennent classiquement :
- un module d'injection de courant comprenant deux électrodes d'injection distantes l'une de l'autre pour injecter, dans le sol sous-marin ou dans le milieu marin à proximité de ce sol, un courant sous une tension prédéterminée et une unité de commande de l'injection,
- un module d'acquisition de données comprenant au moins deux capteurs de mesure pour mesurer des données électriques, généralement des potentiels électriques, en au moins deux points du sol sous-marin ou du milieu marin à proximité de ce sol, les données électriques mesurées résultant de la circulation du courant dans le sol sous- marin, et des moyens de stockage et/ou d'analyse desdites données électriques; et
- un module d'alimentation pour alimenter en énergie le module d'injection de courant. Dans les systèmes marins destinés à l'exploration pour les hydrocarbures, le courant injecté dans le milieu marin est classiquement un courant alternatif basse fréquence ayant une amplitude crête à crête de l'ordre de quelques dizaines à quelques centaines d'ampères, ce courant étant injecté dans le sol sous une tension de l'ordre de quelques centaines de volts crête à crête. L'intensité de ce courant est relativement forte pour pouvoir atteindre des profondeurs kilométriques. Ce courant est fourni par le module d'alimentation qui est soit disposé à bord du navire, soit disposé dans un compartiment étanche de l'engin sous-marin, lequel module d'alimentation est alimenté par un générateur électrique présent à bord du navire en opération et délivrant une tension alternative de l'ordre du kilovolt. En pratique, le module d'alimentation est un convertisseur AC/AC chargé de convertir la haute tension produite par le générateur électrique en une tension plus faible. Il est très volumineux car il doit être capable de délivrer des puissances de plusieurs milliers de watts. Le système est donc lui aussi très volumineux et sa mise en œuvre nécessite donc généralement l'utilisation de navires de grande taille disposant d'une grande puissance électrique et, si une partie du système est déporté sur un engin sous-marin, de gros moyens pour la mise à l'eau de l'engin sous-marin et son tractage. Les électrodes d'injection sont généralement très longues et se présentent par exemple sous la forme d'un tube creux de plusieurs dizaines de mètres de long.
L'invention concerne un domaine technique autre que la prospection pétrolière ou la recherche d'hydrates de gaz. Elle concerne l'analyse des premiers mètres ou premières dizaines de mètres du sol sous-marin, appelés communément proche surface, et vise plus particulièrement à proposer un système de prospection électromagnétique permettant de recueillir des données électriques de la proche surface du sol sous-marin.
L'invention s'inscrit par ailleurs dans une démarche de réduction de la taille du système de prospection électromagnétique de manière à obtenir un système compact et léger qui puisse être employé par des navires de petite taille ne disposant pas nécessairement de grande puissance électrique.
Cependant, la précision de mesure des systèmes de prospection électromagnétique dépend en partie de l'intensité du courant injecté dans le milieu marin. En effet, le milieu marin étant très conducteur, les potentiels mesurés par le système sont très faibles.
L'injection d'un courant élevé est donc nécessaire pour maintenir la qualité des données électriques mesurées. Il est donc préférable de ne pas diminuer l'intensité du courant injecté pour diminuer la puissance électrique à fournir .
Selon l'invention, pour diminuer le volume du système de prospection électromagnétique, il est proposé de diminuer la puissance électrique nécessaire à l'injection de courant en diminuant la tension sous laquelle le courant est injecté dans le milieu marin. L'injection étant effectuée dans de l'eau de mer, le courant injecté I est proportionnel à la tension U aux bornes des électrodes d'injection, par application de la loi d'ohm, R étant la résistance électrique globale du module d'injection du système. Pour un courant I donné, une diminution de la tension U peut donc être obtenue en diminuant la résistance électrique R du module d ' inj ection .
Pour diminuer la puissance électrique nécessaire au module d'injection, on propose de diminuer la résistance électrique du module d'injection en augmentant la surface des électrodes d'injection qui est en contact avec le milieu marin tout en augmentant la compacité du système.
Plus particulièrement, il est proposé d'utiliser des électrodes d'injection ayant une surface de contact avec le milieu marin telle que la résistance électrique des électrodes d'injection soit inférieure à 0,5 ohms, de préférence inférieure à 0,2 ohms.
L'invention a donc pour objet un système de prospection électromagnétique d'un sol sous-marin situé sous un milieu marin, comprenant:
- un module d'injection de courant comprenant deux électrodes conductrices distantes l'une de l'autre, dites électrodes d'injection, aptes à injecter un courant sous une tension prédéterminée dans le milieu marin à proximité du sol sous-marin, et une unité de commande de l'injection, lesdites électrodes d'injection présentant une surface de contact avec le milieu marin,
- un module d'acquisition de données comprenant au moins deux capteurs de mesure pour mesurer des données électriques ou magnétiques en au moins deux points du milieu marin à proximité du sol sous-marin, lesdites données résultant de la conduction ou de 1 ' induction du courant dans le sol sous-marin,
- un module d'alimentation pour alimenter en énergie le module d'injection de courant,
remarquable en ce que chaque électrode d'injection comporte un ou plusieurs éléments conducteurs distincts reliés entre eux électriquement agencé (s) de manière à former un réseau conducteur ou un ensemble conducteur multicouche présentant une grande surface de contact avec le milieu marin.
Avantageusement, la surface de contact de chacune des électrodes d'injection est supérieure ou égale à 0,5 m2. Avantageusement, la surface de contact des deux électrodes est dimensionnée pour que la résistance électrique des électrodes d'injection soit inférieure à 0,5 ohm et de préférence inférieure à 0,2 ohm.
L'agencement multicouche ou en réseau de l'électrode permet d'obtenir une électrode d'injection compacte .
On entend par réseau conducteur un ensemble dans lequel un ou plusieurs éléments conducteurs est ou sont agencés dans un espace peu étendu.
Avantageusement, chaque électrode d'injection est comprise à l'intérieur d'un volume dont la plus grande longueur est inférieure à 1,5 mètre.
Selon l'invention, la résistance des électrodes d'injection est réduite pour diminuer la tension sous laquelle le courant est injecté dans le milieu marin et diminuer la puissance électrique à fournir par le module d'alimentation. A cet effet, on utilise des électrodes d'injection ayant une surface de contact avec le milieu marin qui est relativement étendue, supérieure à 0,5 m2 pour réduire la résistance électrique des électrodes d'injection en contact avec le milieu marin à environ 0 , 1 ohm.
Pour réduire encore la résistance globale du module d'injection de courant, on réduira également autant que possible, dans le module d'injection de courant, la taille et le nombre des câbles et le nombre de connecteurs et on utilisera des composants actifs peu résistifs. Selon un mode de réalisation particulier, on réduit ainsi la résistance électrique des câbles, des connecteurs et des composants actifs de l'unité de commande du module d'injection à environ 0,2 ohms.
Toutes ces dispositions peuvent permettre de réduire la résistance globale du module d'injection de courant à environ 0,3 ohms voire moins. Selon l'invention, un courant de l'ordre de 40A peut alors être injecté sous une tension réduite, par exemple 12V. La puissance électrique délivrée par le module d'alimentation est alors être réduite à environ 500 W.
Ce module d'alimentation, avantageusement disposé dans un engin sous-marin, peut être alimenté en énergie par un générateur de petite taille disposé à bord du navire de prospection délivrant par exemple une tension alternative usuelle comprise entre 100 et 230 V.
Avantageusement, la tension sous laquelle le courant est injecté dans le milieu marin est inférieure ou égale à 60 volts. Cette tension est bien en deçà des tensions classiquement employées pour la prospection pétrolière. Pour cette valeur de tension, il est possible d'injecter dans le milieu marin un courant plus fort par exemple 200 A pour une résistance des électrodes d'injection de 0,1 ohm ou environ 85 A pour une résistance des électrodes d'injection de 0,5 ohm.
Selon un mode de réalisation avantageux, chaque électrode d'injection comporte une pluralité d'éléments conducteurs disposés les uns à côté des autres et reliés entre eux électriquement de manière à former un ensemble conducteur multicouche. Selon un mode de réalisation particulier, les éléments conducteurs sont des plaques métalliques disposées sensiblement parallèlement les unes aux autres .
Selon un mode de réalisation, les éléments conducteurs sont perforés et comportent, au moins dans une portion centrale, une pluralité de trous traversant ladite plaque de manière à obtenir un système ouvert et de manière à ce que les lignes de courant s 'étendant à partir des plaques disposées entre les deux plaques d'extrémité soient en contact avec un maximum de liquide du milieu marin. L'utilisation de grilles entre dans le cadre de ce mode de réalisation. En variante, les éléments conducteurs sont fabriqués en tissu métallique ou en paille d'inox.
Selon un mode de réalisation, les électrodes d'injection sont réalisées dans un matériau conducteur de type laiton, cuivre, inox, graphite, titane ou platine. Elles sont éventuellement plaquées par un matériau inoxydable tel que de l'or.
Avantageusement, les électrodes d'injection sont réalisées dans un matériau conducteur poreux pour augmenter encore la surface de contact des électrodes sans augmenter leur volume ou leur poids.
Selon un autre mode de réalisation, chaque électrode d'injection comprend un élément conducteur en tissu métallique ou en matériau conducteur poreux.
Selon un mode de réalisation, les surfaces de contact des deux électrodes d'injection ont des superficies sensiblement identiques. En variante, elles peuvent être différentes.
Selon un mode de réalisation, le module d'alimentation est disposé dans un compartiment étanche d'un engin sous-marin tracté par un navire et apte à se déplacer dans le milieu marin à proximité du sol marin.
Selon un mode de réalisation, l'une des deux électrodes d'injection est montée sur ledit engin sous- marin et l'autre électrode d'injection est montée au bout d'une traîne tractée par ledit engin sous-marin. Le poids dans l'eau de la traîne est compensé par l'ajout de flottabilité .
Avantageusement, la superficie de la surface de contact de l'électrode d'injection montée sur l'engin sous-marin est inférieure à celle de l'autre électrode pour la rendre la plus compacte possible et augmenter la résolution de la prospection.
La traîne peut être instrumentée avec des capteurs d'attitude, un altimètre et des capteurs de pression pour connaître sa position relative par rapport à l'engin sous-marin qui peut lui aussi être équipé des mêmes capteurs.
Selon un mode de réalisation, les capteurs de mesure sont disposés le long d'un câble tracté par l'engin sous-marin.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, en se référant ci-dessus aux dessins annexés, lesquels représentent:
- la figure 1, une vue schématique d'ensemble montrant le système selon 1 ' invention en condition de fonctionnement, ledit système comprenant un engin sous- marin ou poisson tracté par un navire et un câble portant des capteurs de mesure et tirant une traîne portant une électrode d'injection de courant;
- la figure 2, une vue agrandie d'un détail A de la figure 1 montrant plus particulièrement le poisson;
- la figure 3, une vue en perspective d'un poisson conforme à l'invention;
- la figure 4, une vue en coupe longitudinale du poisson de la figure 3;
- la figure 5, une vue de l'arrière du poisson de la figure 3;
- la figure 6, une vue en perspective de la traîne du système de la figure 1, et
la figure 7 est une vue schématique d'une variante de réalisation de l'électrode d'injection du système de l'invention.
L'invention propose un système de prospection électromagnétique de dimensions réduites qui puisse être mis en œuvre par des navires de petite taille n'ayant pas de grande puissance électrique disponible. Pour cela, il comporte un module d'injection de courant ayant des pertes résistives très réduites permettant de diminuer la puissance électrique nécessaire pour l'injection de courant dans le milieu marin. Pour diminuer la résistance électrique globale R du module d'injection de courant, on agit à la fois sur la résistance Rc des câbles conducteurs et connecteurs du module, la résistance Rei des composants actifs du module et la résistance Re2 des électrodes d'injection du module. La résistance R représente alors la somme des résistances Rc, Rei et Re2 ·
Pour diminuer la résistance Rc, on augmente le diamètre des câbles conducteurs et on réduit la taille des câbles autant que cela est possible. On diminue également le nombre de connecteurs et on utilise des connecteurs ayant des contacts de bonne qualité. Il est ainsi possible de réduire la résistance Rc à une valeur de l'ordre de 0.1 Ohm pour une distance de 100 mètres entre les électrodes.
Pour diminuer la résistance Rei, on utilise des composants actifs (transistors) ayant une faible résistance électrique, de l'ordre de quelques milli-ohms. Il est ainsi possible de réduire également la résistance Rei à une valeur inférieure à 0.1 Ohm.
Enfin, pour diminuer la résistance Re2, on augmente la surface de contact des électrodes avec le milieu marin. En effet, la résistance Re2 comprend la résistance électrique du matériau employé pour la fabrication de l'électrode et surtout la résistance de contact avec l'eau de mer. Cette dernière est la plus importante et c'est elle qu'il faut veiller à diminuer.
En effet, la résistance du module d'injection est généralement dominée par la résistance de la couche d'eau en contact avec les électrodes. La résistivité de l'eau de mer est de l'ordre de 0.3 Ohm. m, ce qui, quoique très faible par rapport aux matériaux terrestres usuels, est très élevée en comparaison de la résistivité du métal de l'électrode. C'est donc la surface de l'eau de mer en contact de l'électrode qui dimensionne la résistance des électrodes d'injection. Ainsi, en augmentant la surface des électrodes en contact avec le milieu marin, on parvient à diminuer la résistance Re2 ·
Ainsi, si l'on souhaite injecter un courant de
40 Ampères sous une tension de 12V, il faut que la résistance globale du module d'injection de courant soit de 0.3 Ohms. Si la résistance électrique (Rc+Rei) des câbles et des composants actifs du module d'injection de courant est égale à environ 0.2 Ohms, il faut une résistance Re2 de l'ordre de 0,1 ohms pour que la résistance globale R du module d'injection de courant ne dépasse pas 0,3 ohms.
Nous allons détailler ci-après comment déterminer la surface de contact nécessaire pour obtenir une résistance Re2 égale à 0,1 ohms. Le matériau employé pour les électrodes doit bien entendu être bon conducteur. L ' électrolyse qui se produit au passage du courant continu ou alternatif à la surface des électrodes permet d'éliminer au moins en partie l'éventuelle couche d'oxyde qui viendrait se déposer sur la surface des électrodes. Le cuivre, le laiton, l'inox, le graphite ou bien des métaux plus coûteux tels que le titane, le platine, l'or ou l'argent peuvent être employés pour fabriquer les électrodes. Le calcul de la surface de contact des électrodes est décrit ci-après dans le cadre d'électrodes à symétrie sphérique. Cette forme permet un calcul relativement simple et des tests ont montré que ce calcul est valable pour des électrodes de formes différentes.
Pour ce calcul, on considère deux électrodes d'injection sphériques, notées El et E2, ayant un rayon r. Pour chacune de ces électrodes, la variation de potentiel AVest nulle, d'où 1 d dV
Δν = (r2 ) = 0 (Equation de Laplace)
r2 dr dr
dV B
On a alors = ou B est une constante dr r2
d'intégration.
Or si on considère les équations suivantes définissant le champ électrique Ë, la densité de courant j et l'intensité de courant I
dV _
- grad(V) = r
dr
j = σ · Ë
I = f j · dS = 47tr: On obtient alors : V
^Or
Si on désigne le potentiel de l'électrode El et le potentiel de l'électrode E2 respectivement par Vi et V2, on a la tension Ue résultante de la résistance électrique Re2 des électrodes qui est égale aux bornes des électrodes à
I I
Ue = V1 - V2 = Re2 · I avec Vx = et V2 = .
^Gr ^Gr
La résistance Re2 est donc égale à
V2 - V-, 1
R
2πσr
La surface S des électrodes étant égale on a alors
S =
^e2
Soit S = 2.86 m2 pour Re2=0,l ohm σ =
0,3 ohm.m
Une surface de contact d'environ 3 m2 est donc requise pour atteindre les performances d'injection souhaitées, à savoir 40 A sous 12 volts. Selon un autre exemple, pour un courant de 30A sous 12 volts, il faut une résistance globale R du module d'injection de 0,4 ohm. Si on conserve les valeurs RC=0,1 ohm et Rei= 0,1 ohm, il faut Re2 = 0,2 ohm, soit une surface de contact S de l'ordre de 0,7 m2.
Selon l'invention, cette importante surface de contact est obtenue en utilisant des électrodes se présentant sous la forme d'éléments conducteurs tels des plaques métalliques. Pour que le système reste compact, chaque électrode comprend avantageusement une pluralité d'éléments conducteurs disposés les uns à côté des autres et reliés entre eux électriquement. Selon l'invention, ces éléments sont de préférence perforés et comportent à cet effet de multiples trous pour que l'électrode soit un système ouvert et que les lignes de courant s 'étendant à partir des plaques disposées entre les plaques d'extrémité soient en contact avec un maximum de liquide du milieu marin. Ces éléments peuvent également être réalisés en un matériau poreux ou sous forme de tissu métallique ou de grilles métalliques.
Les figures 1 à 6 illustrent un système de prospection électromagnétique conforme à l'invention.
En référence aux figures 1 et 2, le système de prospection électromagnétique selon 1 ' invention comporte un engin sous-marin, appelé poisson 1, tracté par un navire 2 au moyen d'un câble 30. Un câble d'alimentation 31 pour alimenter en énergie le poisson et un câble de données 32 pour la transmission de données sont disposés le long du câble 30 ou à l'intérieur de ce dernier. Le poisson 1 est prolongé par un câble 40 destiné à tirer une traine 5 profilée pour la navigation sous-marine. Des électrodes d'injection de courant 6 et 7 sont disposées respectivement sur Le poisson 1 et la traîne 5 pour injecter un courant dans le milieu marin à proximité du sol sous-marin 9. L'électrode d'injection 6 est directement montée sur le poisson 1. L'électrode d'injection 7 disposée sur la traîne 5 est connectée au poisson via un câble de retour d'injection 41 disposé le long du câble 40.
Un câble de mesure 42 muni de capteurs de mesure 8 est connecté au poisson pour mesurer les potentiels électriques en différents points du milieu marin. Tout comme le câble 41, le câble 42 est disposé le long du câble 40. Ces câbles sont par exemple maintenus le long du câble 40 au moyen d'une chaussette. La longueur du câble 41, qui correspond sensiblement à la distance dl entre les deux électrodes d'injection 6 et 7, définit la profondeur d'investigation du système alors que la distance d2 entre les capteurs de mesure 8 du câble 42 définit la résolution latérale et la résolution en profondeur du système.
L'électrode 7 étant ici très éloignée de l'électrode 6 et des capteurs de mesure 8, elle est considérée comme une électrode de masse disposée à l'infini. Le système est donc de type pôle - dipôle bien connu de l'homme du métier. Tous les autres types de dispositifs d'organisation relative des capteurs et du dispositif d'injection les uns par rapport aux autres sont également possibles sans restriction et entrent dans le cadre de l'invention.
En référence aux figures 2 à 5, le poisson 1 se présente sous la forme d'un tube cylindrique 11 muni d'une tête 10 et d'une queue 12 toutes deux en forme d'ogive. Le tube cylindrique 10 est muni de cinq ailettes 13, dont trois à l'arrière décalés angulairement d'environ 120° et deux à l'avant. Les deux ailettes avant sont disposées dans les plans longitudinaux des deux ailettes arrière présentes dans la partie inférieure du poisson .
Le câble 30 est fixé à l'avant du poisson et le câble 40 est fixé aux trois ailettes arrière du poisson. L'électrode d'injection 6 est montée sur un support 14 fixé aux quatre ailes 13 disposées dans la partie inférieure du poisson. L'électrode 6 comprend une pluralité de plaques métalliques 60 sensiblement identiques montées sur le support 14. Ces plaques sont disposées verticalement et séparées les unes des autres par des entretoises 61. Les entretoises sont conductrices et réalisent la liaison électrique entre les plaques 60.
Comme montré plus particulièrement aux figures 3 et 4, les plaques 60 sont de préférence munies de trous 62 pour que les lignes de courant des plaques intermédiaires disposées entre les 2 plaques d'extrémité soient en contact avec un maximum de liquide du milieu marin. Ceci a pour avantage d'alléger le système sans diminuer énormément la surface de contact des plaques puisque de la surface de contact est récupérée au niveau de chaque trou dans l'épaisseur de la plaque.
Selon une variante illustrée par la figure 7, chacune des électrodes d'injection 80 du système se présente sous la forme d'un tissu métallique réalisé à partir d'un ou plusieurs fils métalliques entremêlés, le ou lesdits fil (s) étant disposé (s) à l'intérieur d'un volume prédéfini. Dans cette figure, l'électrode 80 est de forme parallélépipédique . Une plaque métallique dont une extrémité est disposée à l'intérieur du parallélépipède est utilisée pour connecter le tissu à l'intérieur du parallélépipède au reste du module d'injection de courant.
Cette électrode est par exemple réalisée à partir d'un ou plusieurs fil (s) en inox tressé (s) pour former un parallélépipède. Bien entendu, d'autres formes d'électrodes peuvent être envisagées, par exemple une forme cylindrique. Des matériaux conducteurs autres que l'inox peuvent aussi être utilisés. Dans l'exemple de la figure 7, l'électrode est réalisée à partir d'une pluralité de fils métalliques entremêlés. Le parallélépipède présente les dimensions suivantes: longueur = 0,4 m; largeur = 0,3 m et hauteur = 0,1 m. Il permet d'obtenir une surface de contact comprise entre 4 et 5 m2.
Comme illustré schématiquement sur la figure 4, le poisson comporte, à l'intérieur du tube 11, un circuit de transmission de données 15, un module d'alimentation 16, un circuit d'acquisition de données 17 et un circuit d'injection de courant 18. Le circuit de transmission de données 15 est connectée d'une part au câble de transmission de données 32 provenant du navire et au circuit d'acquisition de données 17. Le module d'alimentation 16 est connecté au câble d'alimentation 31 provenant du navire. Le circuit d'acquisition de données 17 est connecté au câble de mesure 42 et forme avec celui-ci un module d'acquisition de données. De même, le circuit d'injection de courant 18 est connecté à l'électrode 6 et à l'électrode 7 via le câble de retour d'injection 41, lesquels éléments forment ensemble un module d'injection de courant. Le poisson est instrumenté pour se déplacer à proximité du sol sous-marin 9.
Les circuits 15, 17 et 18 sont alimentés en énergie par le module d'alimentation 16. Le module d'alimentation fournit notamment le courant d'injection au circuit d'injection de courant 18. Ce dernier comprend l'électronique de commutation (transistors) permettant de fournir le courant délivré par le module d'alimentation 16 au milieu marin via les électrodes 6 et 7. Le circuit d'acquisition de données 17 comprend l'électronique de commande des capteurs de mesure, des moyens de stockage des signaux mesurés, et éventuellement des moyens d'analyse ou de pré-analyse des signaux mesurés. Enfin, le circuit de transmission de données 15 transmet les signaux mesurés au navire. La deuxième électrode d'injection 7 montée sur la traîne 5 est décrite en référence à la figure 6. La traîne 5, de forme profilée pour la navigation sous- marine, comprend un corps 51 en forme d'avion portant l'électrode d'injection 7. Le corps 51 est muni, à l'une de ses extrémités, d'un anneau 53 pour fixer le câble 42 à la traîne 5 II est également équipé de moyens, tel qu'une enceinte remplie d'air ou de mousse, lui conférant une flottabilité nulle dans l'eau de mer. Par ailleurs, comme pour l'électrode 6, l'électrode 7 comprend une pluralité de plaques métalliques 70 sensiblement identiques. Les plaques sont fixées par leurs bords supérieurs au corps 51. Un arceau de protection 52 s 'étendant vers le bas à partir du corps 51 est prévu pour protéger les plaques au cas où la traîne viendrait à toucher le sol ou un obstacle. Ces plaques sont disposées verticalement et séparées les unes des autres par des entretoises non représentées. La liaison électrique entre les plaques 70 est réalisée par les entretoises.
Dans le mode de réalisation présenté au figures
3 à 6, le système comporte dix-neuf capteurs de mesure 8 distants d'environ 1 mètre les uns des autres et la distance dl entre les électrodes d'injection est d'environ 100 mètres. On obtient ainsi une profondeur d'investigation comprise entre 20 et 30 mètres. Le poisson mesure 1,50 m de long pour un diamètre de 20 cm. L'électrode 6 comporte 11 plaques 60 de 1 m x 0,1 m. La traîne 5 mesure 1,10 m de long et comporte 10 plaques 70 de 1 m x 0,1 m. Les plaques sont perforées dans leur partie centrale. On obtient alors une surface de contact totale de l'ordre de 2 à 3 m2 permettant d'injecter un courant de 40 ampères sous 12 volts dans le milieu marin. Ceci a été confirmé par des tests effectués en mer.
Dans le système testé, le poisson est alimenté en 220 volts alternatif et le module d'alimentation 16 convertit la tension alternative en une tension continue et un courant continu de 40 A. Le générateur à bord du navire n'a donc besoin de fournir que du 220 volts alternatif et le module d'alimentation 16 est convertisseur AC/DC de petite taille.
La transmission de données peut éventuellement être réalisée par courant porteur de sorte que le câble 32 puisse être supprimé.
Dans ce mode de réalisation, l'électrode 7 est de préférence disposée entre l'électrode 6 et les capteurs de mesure 8.
Le module d'acquisition de données 17 peut avantageusement effectuer un premier traitement sur les données mesurées et notamment générer des valeurs de résistivité électriques du sol à partir des potentiels électriques mesurés.
Les applications de ce système sont multiples. Il peut être utilisé pour fournir des données électriques venant compléter les données géophysiques fournies par un autre système de prospection, par exemple un système de prospection acoustique. Il peut être aussi utilisé lorsque les systèmes de prospection acoustique sont inopérants, par exemple lorsque le sol est très réfléchissant ou en présence d'une poche de gaz dissous. Il peut également être utilisé pour la détection d'objets métalliques (fortement conducteurs) ou composites ou plastiques (fortement résistants) dans le sol, et plus particulièrement pour la détection et la localisation, notamment en profondeur, d'infrastructures comme des pipelines. Dans toutes ces applications, la tension sous laquelle le courant est injecté dans le milieu marin est de préférence inférieure à 60 volts pour conserver un module d'alimentation compact.

Claims

REVENDICATIONS
1. Système de prospection électromagnétique d'un sol sous-marin situé sous un milieu marin, comprenant :
- un module d'injection de courant comprenant deux électrodes conductrices (6,7) distantes l'une de l'autre, dites électrodes d'injection, aptes à injecter un courant sous une tension prédéterminée dans le milieu marin à proximité du sol sous-marin (9), lesdites électrodes d'injection présentant une surface de contact avec le milieu marin,
- un module d'acquisition de données comprenant au moins deux capteurs de mesure (8) pour mesurer des données électriques ou magnétiques en au moins deux points du milieu marin à proximité du sol sous-marin, lesdites données résultant de la conduction ou de l'induction du courant dans le sol sous-marin,
- un module d'alimentation (16) pour alimenter en énergie le module d'injection de courant,
caractérisé en ce que chaque électrode d'injection comporte un (80) ou plusieurs éléments conducteurs distincts (60,70) reliés entre eux électriquement agencé (s) de manière à former un réseau conducteur ou un ensemble conducteur multicouche présentant une grande surface de contact avec le milieu marin .
2. Système selon la revendication 1, caractérisé en ce que la surface de contact de chacune des électrodes d'injection est supérieure ou égale à 0,5 m2.
3. Système selon la revendication 1 ou 2, caractérisé en ce que la surface de contact des deux électrodes est dimensionnée pour que la résistance électrique des deux électrodes d'injection soit inférieure à 0,5 ohm.
4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce que chaque électrode d'injection est comprise dans un volume dont la plus grande longueur est inférieure ou égale à 1,5 mètre.
5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la tension sous laquelle le courant est injecté dans le milieu marin est inférieure ou égale à 60 volts.
6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chaque électrode d'injection (6,7) comporte une pluralité d'éléments conducteurs (60,70) disposés les uns à côté des autres et reliés entre eux électriquement de manière à former ledit ensemble multicouche d'éléments conducteurs .
7. Système selon la revendication 6, caractérisé en ce que les éléments conducteurs sont des plaques métalliques disposées sensiblement parallèlement les unes aux autres .
8. Système selon la revendication 6 ou 7, caractérisé en ce que les éléments conducteurs (60, 70) sont perforés et comportent une pluralité de trous.
9. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que les électrodes d'injection sont réalisées dans un matériau conducteur du type laiton, cuivre, inox, graphite, titane ou platine.
10. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que les électrodes d'injection sont réalisées dans un matériau conducteur poreux.
11. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chaque électrode d'injection comprend un élément conducteur (80) réalisé en tissu métallique ou en matériau conducteur poreux .
12. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que les surfaces de contact des deux électrodes d'injection ont des superficies sensiblement identiques.
13. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le module d'alimentation est disposé dans un compartiment étanche d'un engin sous-marin (1) tracté par un navire et apte à se déplacer dans le milieu marin à proximité du sol marin.
14. Système selon la revendication 11, caractérisé en ce que l'une (6) des deux électrodes d'injection est montée sur ledit engin sous-marin et l'autre (7) électrode d'injection est montée au bout d'une traine (5) tractée par ledit engin sous-marin.
PCT/EP2013/050316 2012-01-09 2013-01-09 Systeme de prospection electromagnetique du sol sous-marin WO2013104679A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13700639.1A EP2802906B1 (fr) 2012-01-09 2013-01-09 Systeme de prospection electromagnetique du sol sous-marin
DK13700639.1T DK2802906T3 (da) 2012-01-09 2013-01-09 Elektromagnetisk system til udforskning af havbunden
JP2014550736A JP2015506475A (ja) 2012-01-09 2013-01-09 海底を探査する電磁システム
US14/371,295 US20150153471A1 (en) 2012-01-09 2013-01-09 Electromagnetic System For Exploring The Seabed
US15/292,630 US20170031052A1 (en) 2012-01-09 2016-10-13 Electromagnetic System for Exploring the Seabed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1250221 2012-01-09
FR1250221A FR2985575B1 (fr) 2012-01-09 2012-01-09 Systeme de prospection electromagnetique du sol sous-marin

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/371,295 A-371-Of-International US20150153471A1 (en) 2012-01-09 2013-01-09 Electromagnetic System For Exploring The Seabed
US15/292,630 Continuation US20170031052A1 (en) 2012-01-09 2016-10-13 Electromagnetic System for Exploring the Seabed

Publications (1)

Publication Number Publication Date
WO2013104679A1 true WO2013104679A1 (fr) 2013-07-18

Family

ID=47594656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/050316 WO2013104679A1 (fr) 2012-01-09 2013-01-09 Systeme de prospection electromagnetique du sol sous-marin

Country Status (6)

Country Link
US (2) US20150153471A1 (fr)
EP (1) EP2802906B1 (fr)
JP (1) JP2015506475A (fr)
DK (1) DK2802906T3 (fr)
FR (1) FR2985575B1 (fr)
WO (1) WO2013104679A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147591B2 (ja) * 2019-01-25 2022-10-05 株式会社島津製作所 海底構造物検出装置、海底構造物検出システム、および、海底構造物検出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573704A1 (fr) * 1992-06-11 1993-12-15 Gregory Randall Greenwell Procédé et dispositif pour générer des ondes sismiques
US20060202697A1 (en) * 2003-07-28 2006-09-14 Audun Sodal Transmitter antenna
US7805249B2 (en) * 2005-09-19 2010-09-28 Exxonmobil Upstream Research Co. Method for performing controlled source electromagnetic surveying with multiple transmitters

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295096A (en) * 1978-12-20 1981-10-13 Conoco, Inc. Electrode prospecting method providing calculable electromagnetic coupling for the indirect detection of hydrocarbon reservoirs
US4617518A (en) * 1983-11-21 1986-10-14 Exxon Production Research Co. Method and apparatus for offshore electromagnetic sounding utilizing wavelength effects to determine optimum source and detector positions
US5357202A (en) * 1991-12-19 1994-10-18 Henderson Michael E Plural electrode method for measuring subsurface changes in conductivity as an indication of fluid migration
JP4648539B2 (ja) * 2000-11-30 2011-03-09 日本特殊陶業株式会社 センサの端子接続構造
JP4088129B2 (ja) * 2002-09-30 2008-05-21 東電工業株式会社 漏水探査装置
WO2006026361A1 (fr) * 2004-08-25 2006-03-09 The Regents Of The University Of California Capteur de champ electrique marin triaxial permettant de mesurer la resistivite electrique du plancher oceanique
FR2896044B1 (fr) * 2006-01-09 2008-10-31 Univ Bretagne Occidentale Etab Dispositif de mesure geophysique pour l'exploration des ressources naturelles du sol en domaine aquatique.
US7652479B2 (en) * 2007-08-06 2010-01-26 Scribner Associates, Inc. Electrolyte measurement device and measurement procedure
US8633700B1 (en) * 2013-03-05 2014-01-21 Hunt Energy Enterprises, Llc Sensors for passive electroseismic and seismoelectric surveying

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573704A1 (fr) * 1992-06-11 1993-12-15 Gregory Randall Greenwell Procédé et dispositif pour générer des ondes sismiques
US20060202697A1 (en) * 2003-07-28 2006-09-14 Audun Sodal Transmitter antenna
US7805249B2 (en) * 2005-09-19 2010-09-28 Exxonmobil Upstream Research Co. Method for performing controlled source electromagnetic surveying with multiple transmitters

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BUTSURI-TANSA, vol. 61, 2008, pages 52 - 59
MULLI-TAMSA, vol. 11, 2008, pages 52 - 59
T.N.GOTO; T.KASAYA; H.MACHIYAMA; R.TAKAGI; R.MATSUMOTO; Y.OKUDA; M.SATOH; T.WATANABE; N.SEAMA; H.MIKADA: "A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea", EXPLORATION GEOPHYSICS, vol. 39, 2008, pages 52 - 59

Also Published As

Publication number Publication date
FR2985575B1 (fr) 2014-12-12
EP2802906B1 (fr) 2021-12-29
EP2802906A1 (fr) 2014-11-19
DK2802906T3 (da) 2022-03-21
US20170031052A1 (en) 2017-02-02
FR2985575A1 (fr) 2013-07-12
US20150153471A1 (en) 2015-06-04
JP2015506475A (ja) 2015-03-02

Similar Documents

Publication Publication Date Title
EP0722095B1 (fr) Détermination de la porosité et de la perméabilité d'une formation géologique à partir du phénomène d'électrofiltration
US7834632B2 (en) Receiver streamer system and method for marine electromagnetic surveying
FR2555322A1 (fr) Procede et systeme de prospection et de caracterisation d'une formation de terrain recouverte d'une masse d'eau
CA2343430C (fr) Methode et dispositif d'emission d'ondes sismiques radiales dans un milieu materiel par induction electromagnetique
US20110255368A1 (en) Method for 2D and 3D electromagnetic field measurements using a towed marine electromagnetic survey system
FR2980299A1 (fr) Cable de capteur electromagnetique et configuration electrique de celui-ci
FR2990520A1 (fr) Systeme et procede d'acquisition pour un cable de capteur electromagnetique et une source remorques
EP2156201B1 (fr) Système d'émission d'impulsion électrique et dispositif de découplage capacitif pour un tel système
CA2349396A1 (fr) Dispositif de connexion electrique etanche d'electrodes par cable blinde et systeme pour mesures petrophysiques utilisant le dispositif
WO2009115747A2 (fr) Procedes, dispositif et installation de localisation d'un defaut sur une liaison electrique
EP1971882B1 (fr) Dispositif de mesure géophysique pour l'exploration des ressources naturelles du sol en domaine aquatique.
EP2802906B1 (fr) Systeme de prospection electromagnetique du sol sous-marin
EP1058132A1 (fr) Procédé de détection électromagnétique d'objets conducteurs utilisant une base de signaux stockés
FR2740169A1 (fr) Procedes et dispositifs de mesure de caracteristiques d'une formation traversee par un trou de forage
WO2010037937A1 (fr) Antennes laterales d'emission acoustique pour prospection sismique sous marine
WO1994014087A1 (fr) Dispositif et methode pour mesurer la conductivite des formations geologiques autour d'un puits
EP1452840A1 (fr) Jauge de mesure de niveau de carburant dans un réservoir et système de mesure de la masse de combustible dans ce réservoir
EP0597014A1 (fr) Station portable de mesure et de reglage de la signature magnetique d'un batiment naval.
CA2925509A1 (fr) Eclateur d'un dispositif de generation d'arc electrique et dispositif de generation d'arc electrique correspondant
FR2836557A1 (fr) Procede et dispositif de prospection geophysique d'une formation geologique poreuse contenant au moins un fluide electrolyque
FR2621072A1 (fr) Systeme de transmission electromagnetique d'information depuis le fond au cours d'un forage et emetteur pour ce systeme
FR2779533A1 (fr) Dispositif d'acquisition sismique a haute resolution
FR3115953A1 (fr) Dispositif de réception d'ondes acoustiques
FR3034862A1 (fr) Dispositif de controle a nœuds electroniques aptes a s'alimenter electriquement entre eux et a communiquer entre eux
FR3015042A1 (fr) Dispositif de mesure de differences de potentiels electriques pour structure metallique sous-marine equipee d'un systeme de protection cathodique, et procede associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13700639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013700639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14371295

Country of ref document: US