WO2013104116A1 - 一种无线通信系统及方法 - Google Patents

一种无线通信系统及方法 Download PDF

Info

Publication number
WO2013104116A1
WO2013104116A1 PCT/CN2012/070203 CN2012070203W WO2013104116A1 WO 2013104116 A1 WO2013104116 A1 WO 2013104116A1 CN 2012070203 W CN2012070203 W CN 2012070203W WO 2013104116 A1 WO2013104116 A1 WO 2013104116A1
Authority
WO
WIPO (PCT)
Prior art keywords
specific
slave device
sequence code
polynomial
wireless communication
Prior art date
Application number
PCT/CN2012/070203
Other languages
English (en)
French (fr)
Inventor
雷兆军
Original Assignee
深圳市华奥通通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华奥通通信技术有限公司 filed Critical 深圳市华奥通通信技术有限公司
Priority to EP12865490.2A priority Critical patent/EP2690789A4/en
Priority to BR112014015981-5A priority patent/BR112014015981A2/pt
Priority to US14/113,580 priority patent/US9451541B2/en
Priority to RU2013150700/08A priority patent/RU2585992C2/ru
Priority to PCT/CN2012/070203 priority patent/WO2013104116A1/zh
Publication of WO2013104116A1 publication Critical patent/WO2013104116A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and more particularly to a wireless communication system and method. Background technique
  • Micro-power (short-range) wireless communication technology began to appear at the end of the last century. After more than ten years of development, it has been widely used in industrial control, home intelligence, wireless remote control, security alarm, environmental monitoring, intelligent meter reading, toxic and harmful gas monitoring, Logistics, RFID and other fields. In recent years, the Internet of Things has become a new growth point for future economic development after the financial crisis. Short-range wireless communication technology will be further developed in the Internet of Things (especially sensor network) applications.
  • the concept of the Internet of Things is almost accompanied by a low-carbon economy.
  • short-range wireless digital communication technology must conform to the development trend of low-carbon and low-energy, and develop toward low-power and micro-power consumption.
  • battery-powered products are becoming more and more demanding, and power consumption requirements are more demanding.
  • the current consumption in the sleep state only micro-ampere, or even a few microamps.
  • the current when the wireless communication device transmits is several tens of milliamperes or more, and the receiving current is also between ten to several tens of milliamps. Therefore, in a communication system that introduces a sleep mechanism, the longer the sleep time, the lower the average power consumption.
  • a process or method is required to enable a wireless communication device in a dormant state to sense and complete communication when other devices need to communicate with it, and to wake up the wireless communication device that is in a dormant state.
  • a timed wake-up communication method for example, a timed wake-up communication method, a signal strength wake-up method, and a shortest packet wake-up method
  • these wake-up methods require that all communication devices in the wireless communication system must Synchronization in time, either the anti-interference ability is poor, or the receiving window time is long, resulting in a large power consumption in the wake-up process.
  • a specific communication device is to be controlled, its communication protocol and communication process are also complicated and have a long duration, resulting in a large energy consumption after wakeup.
  • the technical problem to be solved by the present invention is to provide a wireless communication method and low power consumption, and the power consumption of the prior art is large, and the process of controlling a specific communication device according to actual communication requirements is relatively complicated. Specific communication devices can be controlled according to actual communication needs.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing a wireless communication method for transmitting information to a specific slave device when the master device has communication requirements, the wireless communication method includes:
  • the master device generates a sequence code by a specific encoder according to communication requirements, and continuously transmits the sequence code to each slave device within a preset time, wherein the specific encoder is a specific multiple a feedback shift register constructed, and the coefficients and orders of the specific polynomial are related to communication requirements, and the coefficients and initial values of the polynomial are not all 0, and the preset time is greater than or equal to the sleep period of the slave device. And the sum of the detection periods, the sum of the sleep period and the detection period constitutes a sleep wake-up period;
  • the specific slave device receives a consecutive segment of the sequence code during the probing period, and decodes the segment sequence code using a decoder corresponding to the encoder, and performs corresponding operations according to the decoding result.
  • the sequence code generated by the encoder is an m sequence
  • each slave device includes the encoder Corresponding decoder.
  • the specific polynomial coefficient is a binary group number of the specific group of slave devices and a preset decoding. Device.
  • the specific polynomial coefficient when the communication requirement is a single wake-up to a specific slave device, is at least a part of the binary ID number of the specific slave device or the specific At least a portion of the binary ID number of the slave device and the preset second fixed sequence.
  • the specific polynomial coefficient when the communication request is to send a control command to a specific slave device, is A combination of at least a portion of a binary ID number of a particular slave device and a binary sequence corresponding to the control command, and the particular slave device includes a decoder corresponding to the encoder.
  • the specific polynomial coefficient is at least a part of the binary ID number of the specific slave device and the pre- Set the combination of the binary sequence corresponding to the open or close valve command, and open the valve command and off
  • the binary sequences corresponding to the respective valve instructions are different, and the specific slave device includes a decoder corresponding to the encoder.
  • the phase sequence is extracted from the received sequence code. Counting the same number of symbols and initializing the specific feedback shift register of the particular slave device using the same initial value as the specific feedback shift register of the master device, and then calculating the master based on the baud rate of the current communication. The time at which the device starts transmitting the sequence code, and synchronizes with the master device in time according to the calculated time and/or calculates the time at which the master device ends the transmission of the sequence code within a preset time, and the specific slave device is in the Sleep is performed before the time at which the calculation ends the transmission of the sequence code.
  • the specific slave device when the specific slave device includes at least two decoders, the specific slave device sequentially uses the heuristic method after receiving the sequence code. At least two decoders decode the sequence code and perform corresponding operations according to the decoding result.
  • step S1 after generating the sequence code, performing Manchester coding, non-return-to-zero coding or return-to-zero coding for the logic 0 or 1 in the sequence code. Then, the Manchester-coded, non-return-to-zero-coded, or zero-recoded sequence code is continuously transmitted to each slave device within a preset time.
  • the step of performing the corresponding operation by the specific slave device in the step S2 according to the decoding result includes: counting the number of consecutive output 0 after decoding;
  • the corresponding demand operation is performed according to the order and coefficient of the polynomial of the decoder used;
  • the special code in step S2 is The steps of the slave device to perform corresponding operations according to the decoding result include:
  • the corresponding demand operation is performed in accordance with the order and coefficient of the polynomial of the decoder used.
  • the step is
  • the specific slave device in S2 is descrambled or de-merged first, then decoded, and the corresponding operation is performed according to the decoding result.
  • the present invention also constructs a wireless communication system, including a master device and at least one slave device, and the master device transmits information to the specific slave device when there is a communication demand, and the master device includes:
  • a coding unit configured to generate a sequence code according to a specific encoder, wherein the specific encoder is a feedback shift register constructed by a specific polynomial, and coefficients and orders of the specific polynomial are related to communication requirements
  • the coefficient of the polynomial and the initial value are not all 0;
  • the preset time is greater than or equal to the sum of the sleep period and the detection period of the slave device, and the sum of the sleep period and the detection period constitutes a sleep wake-up period;
  • the specific slave device includes:
  • a receiving unit configured to receive the sequence code during a probing period
  • a control unit configured to perform a corresponding operation according to the decoding result.
  • the technical solution of the present invention has the following beneficial effects: the wireless communication devices participating in the communication do not need to synchronize in time; the anti-interference ability is strong, the problem of identification and false wake-up is solved, and the reliability and confidentiality are improved; From the detection period of the device, reduce the window time from the device, thereby reducing The power consumption of the communication system is low.
  • Embodiment 1 is a flowchart of Embodiment 1 of a wireless communication method of the present invention
  • Embodiment 1 is a structural diagram of Embodiment 1 of a feedback shift register in a master device of the present invention
  • FIG. 3 is a structural diagram of Embodiment 1 of a feedback shift register in a specific slave device of the present invention
  • FIG. 4 is a timing chart of operation of Embodiment 1 of the wireless communication method of the present invention
  • FIG. 5 is a logic structural diagram of Embodiment 1 of the wireless communication system of the present invention.
  • the wireless communication method is used to send information to a specific slave device when the master device has a communication requirement, which specifically includes:
  • the master device generates a sequence code by a specific encoder according to communication requirements, and continuously transmits the sequence code to each slave device within a preset time, wherein the specific encoder is a feedback constructed by a specific polynomial a shift register, and the coefficients and orders of the specific polynomial are related to communication requirements, and the coefficients and initial values of the polynomial are not all 0, and the preset time is greater than or equal to the sleep period and the detection period of the slave device. And, the sum of the sleep period and the detection period constitutes a sleep wake-up period;
  • the particular slave device receives a consecutive segment of the sequence code during the probing period, and decodes the segment sequence code using a decoder corresponding to the encoder, and performs a corresponding operation according to the decoding result.
  • the master device generates the sequence code by selecting an encoder composed of a polynomial of different coefficients or orders, and sends the sequence code to the slave device, which represents different meanings.
  • the master device In the master device, the master device generates a sequence code by a specific encoder according to communication requirements, the specific encoder is a feedback shift register constructed by a specific polynomial, and the coefficients of the specific polynomial are The order is related to the communication requirement. The coefficients of the polynomial are not all 0 and the initial values are not all 0. Equation (1) combined with the feedback shift register structure in the master device shown in Figure 2, can be characterized as:
  • a n cia n _i ⁇ c 2 a n _ 2 ® ... ® c n _iai ⁇ c n ao (2)
  • ten represents modulo 2 plus or exclusive OR
  • n is the order of the feedback shift register
  • the coefficient c of the polynomial. l, d, c 2 , ... c n cannot all be 0, and the initial values cannot be all 0.
  • the coefficients Cl , c 2 , ... c n and the order n of the polynomial are related to communication requirements. That is, the coefficients or orders of the feedback shift registers (encoders) used by different communication requirements are not the same.
  • a new feedback shift register with input can be obtained according to equation (3) , as shown in Figure 3, if The feedback shift register has a coefficient c of the characteristic polynomial of the feedback shift register shown in FIG. , c l5 c 2 , ...
  • the order n is also the same, when the feedback shift register inputs a n , regardless of its initial value is any value, when shifting n times, the feedback is shifted After all the extraneous initial values in the register are removed (the first n correct symbols received can also be used to initialize the shift register directly), the output is always 0 after the subsequent shift. In this way, after the slave device inputs a long enough sequence code to the decoder, after outputting a sufficient number of consecutive zero values, it can be determined that the received symbols have correlation and are transmitted by the master device. This process is called Determine the relevance.
  • the coefficients have 2 n -1 kinds of coefficients.
  • the coefficients are taken in sufficient numbers to provide more optional polynomials and encoders for the main equipment of the low-power wireless communication system.
  • a specific polynomial is selected according to the communication needs.
  • the coefficients and orders of the polynomial have been pre-agreed with the slave device.
  • the coefficient and the order can be judged as to the correlation of the received piece of information as long as it is used by the master device.
  • the master device uses only one polynomial, the slave device can decode using a corresponding decoder. If the master device adopts multiple polytypes, the slave device cannot know exactly which segment of the sequence code to be intercepted before starting the decoding. Which polynomial is used by the master device, it needs to be determined by heuristic method. The specific steps are as follows:
  • the master device may use M polynomials for a particular slave device.
  • M trials are required. Starting from the first polynomial, it is tested and decoded to the Mth polynomial. During the Nth (1 NM) trial decoding, the correlation is determined, and it is considered that the polynomial corresponding to the current transmission of the master device is found. The Nth polynomial, then the slave device wakes up and performs the corresponding operation according to the meaning represented by the Nth polynomial.
  • the slave device can continue to receive more consecutive symbols, and then Using the decoder corresponding to the Nth polynomial, the correlation is determined by decoding a plurality of times, and whether or not the operation is performed is determined based on the number of times the correlation is successfully determined and the total number of decodings. If the M trials do not determine the correlation, it means that the data received this time is noise or the communication has a bit error, and no operation is performed. The slave device enters the sleep period from the detector until the next detection period arrives.
  • M decoding parallel decoding can also be performed, and according to the decoding result, it is judged whether the information sent by the master device is received, and is decoded by that. Completed.
  • the number of polynomials employed by the master device may be much larger than M. Some polynomials are for all slave devices, such as broadcast wake-up or broadcast commands; some, only for a subset of slave devices, such as group wake-up or group commands; some are only for a particular slave device, such as a single slave device wake up or command , or an on/off valve command for a slave device. In practical applications, different types of communication requirements, polynomials with different coefficients or orders can be selected.
  • the m-sequence can be chosen to get the best pseudo-random sequence.
  • a non-zero binary group number can be directly used as a polynomial; or a group number can be associated with a polynomial correspondingly; or a fixed 0 or 1 can be inserted in the front or back of the binary group number, Its order value.
  • the coefficients of the resulting polynomial cannot be all zeros.
  • a non-zero binary slave device's identification number (ID) or part of the ID may be directly used as a polynomial; or the ID may be associated with the polynomial - or in the ID Insert one or more fixed zeros or 1s in the middle or before or after, as a polynomial, but the coefficients cannot all be zero.
  • a polynomial can be obtained by adding a fixed preset binary non-zero sequence, and the preset binary non-zero sequence corresponds to the control instruction; However, this sequence can also be inserted in the middle of the ID, or it can be inserted in the middle or before or after the ID number.
  • the command can be executed, such as opening or closing the valve.
  • the steps of the specific slave device in step S2 of the foregoing embodiment performing corresponding operations according to the decoding result include: Counting the number of consecutive output 1 after the code; determining whether the number of consecutive outputs 1 exceeds a preset limit, determining the correlation, and then performing the corresponding demand according to the order and coefficient of the polynomial of the decoder used. Operation.
  • the order, specific polynomial and specific of the feedback shift register used by the master device when there is a certain communication requirement The order of the feedback shift register in the slave device, the specific polynomial is the same, to ensure that the master device matches the encoding/decoding polynomial of the feedback shift register of the specific slave device, and can output a continuous 0, thereby being received by the receiver of the slave device. Identify and perform the corresponding operations to solve the identification problem. For the random code generated by noise, after substituting into equation (3), the output is not all 0, and the probability of continuous output 0 decreases as the number of inputs increases. When the order of the feedback shift register is appropriate and the number of consecutive output 0s is required to be sufficient, the probability that the decoder continuously outputs a plurality of zeros due to noise approaches 0, thus solving the noise interference (false wake-up). The problem.
  • the specific polynomial coefficient is a combination of the binary group number of the specific group of slave devices and the preset first fixed sequence, and the combined binary length is 19, that is, the order is 19.
  • the decoder corresponding to the encoder is included in the specific group of slave devices. It should be noted that the reason why the fixed number is added after the group number is because the group number is generally short, and the probability of false wake-up can be reduced by adding a fixed sequence.
  • the particular polynomial coefficient is at least a portion of the binary ID number of the particular slave device or the binary ID of the particular slave device A combination of at least a portion of the number and the preset second fixed sequence, and, for example, taking 16 bits of the ID number and inserting a 1 after a certain bit thereof, converting to a polynomial of order 17.
  • the particular polynomial coefficient of the encoder of the master device is at least a portion of the binary ID number of the particular slave device and the control a combination of binary sequences corresponding to the instructions
  • the specific slave device includes a decoder corresponding to the encoder, if at least a part of the ID number of the specific slave device is 16 bits, the valve opening command can be set 5 digits, a total of 21 people.
  • the particular polynomial coefficient of the master device's encoder is at least a portion of the binary number of the particular slave device and The combination of the binary sequence corresponding to the preset on or off valve command, and the binary sequence corresponding to the valve opening command and the valve closing command respectively are different, and the greater the difference, the better.
  • the specific slave device includes a decoder corresponding to the encoder. If at least one part of the ID number of a particular slave device is divided into 16 bits, the valve closing command can be set to 5 bits for a total of 21 bits.
  • the group number or ID number When at least a part of the group number or ID number is combined with a specific binary sequence to form a wake-up or control polynomial, those sequence codes having a long sequence code period generated after combining are preferred.
  • the master device has different communication requirements at different times, for example, a certain time point needs to perform a single wake-up to a specific slave device, and another time point needs to be directed to the specific slave device.
  • the specific slave device must contain two decoders, and the two decoders respectively generate two encoders for the serial code in the master device due to two different communication requirements. Corresponding.
  • the two decoders After receiving the sequence code sent by the master device at a certain time, the two decoders are used to decode the received sequence code in a heuristic manner, and the decoding is matched (ie, the preset number of outputs is continuously output).
  • the communication device of the master device can be judged according to the decoder used, and the corresponding operation is performed.
  • the number of decoders in the slave device of the present invention is not limited to two. As the communication demand increases, the number of decoders in the slave device can be any number. But the more the number, the greater the amount of calculation.
  • the decoding accuracy can be improved by setting the order of the polynomials corresponding to each decoder in the slave device to be different.
  • the corresponding encoders used by the master device have different polynomial orders.
  • the order of the polynomial of the encoder used is 20; When the device wakes up a group of slave devices, the order of the polynomial of the encoder used is 19; when the master device performs a single wake-up to a slave device, the order of the polynomial of the encoder used is 17; When the master sends a valve open or close command to a slave, the encoder has a polynomial order of 21.
  • the valve in order to improve the accuracy of opening or closing the valve from the device, taking the valve as an example, when a set of sequence codes is received from the device, and one of the decoders is used to decode and output a plurality of zeros, and
  • the polynomial coefficient of the decoder is a combination of at least a part of the ID number of the specific slave device and the valve closing command, indicating that the communication requirement represented by the sequence code is that the master device sends a valve closing command to the specific slave device, in order to avoid By mistake, the receiver can receive more consecutive symbols, and use the decoder to decode the newly received sequence code multiple times. If there are more than half (for example, 5 times) decoding, most of them (for example 3 times) is If it is correct, then the valve closing operation is performed according to the valve closing command. Similarly, opening the valve is the same.
  • the master device performs Manchester code, non-return-to-zero coding, or return-to-zero coding on the logical 0 or 1 in the sequence code after generating the sequence code.
  • Manchester encoding it is easy to quickly separate the bit sync signal from the receiver of the device, thus shortening the detection period.
  • any other form of wireless communication coding such as multi-ary modulation, different modulation methods, is within the scope of the present invention.
  • the sequence code may be scrambled or combined. Accordingly, after receiving the sequence code, the specific slave device first performs the sequence code. Interference or de-merge, then decode and perform corresponding operations according to the decoding result.
  • the scrambling is to XOR the generated sequence code with a pseudo-random sequence code and combine to convert the generated sequence code into a fixed sequence code. It should be understood that descrambling and de-merging are the same operations.
  • the serial code is generated by a specific encoder and is at a preset time!
  • the serial code is continuously transmitted by each slave device.
  • the specific encoder is a feedback shift register constructed by a specific polynomial.
  • the feedback shift register needs to be initialized before starting, but not all 0, the coefficient of the specific polynomial.
  • the order is related to communication requirements, and not all zeros.
  • the preset time is 1 ⁇ D + 1, where T is the sleep period of the slave device, t is the probe period, and the sum of the sleep period and the probe period constitutes a sleep wake-up period.
  • the specific slave device After the data exchange is completed, the specific slave device goes to sleep. If the master device does not need to continue to communicate with the slave device after the sequence code is sent, the slave device enters the sleep period after completing the corresponding operation, and no longer communicates with the master device. For example, the valve is closed from the device, the valve is automatically operated, and the operation is completed, and the sleep period is reached. Both are 0. For a slave device that fails communication, such as slave device 3, the master device needs to initiate an error handling mechanism for processing. The following describes the workflow of each slave device: The slave device alternately operates in sleep mode according to a fixed period T+t to receive a sleep state.
  • the slave device is dormant, does not receive any data, and the sleep current is extremely low, reaching a few microamps or less.
  • the slave is in the probe receive state.
  • processing is performed in two cases. If the processing speed of the processor is sufficiently high, parallel processing can be performed, that is, decoding of one or more decoders is performed while receiving. Otherwise, the received multiple consecutive symbols may be stored first, and then one or more decoding operations are performed after the reception is completed. If all the decoding results do not determine the correlation, it indicates that the received sequence is noise or an error occurs, and the slave device does not respond to the received signal and enters the sleep period.
  • a decoder determines the correlation, it indicates that the communication requirement represented by the sequence code transmitted by the master device is directed to the decoder of the slave device, and the coefficient of the polynomial according to the feature of the currently used decoder Judging specifically what communication needs, then, the slave enters waiting for a valid communication state, and the waiting time is T w . During 1 ⁇ , the slave device is still in the receiving state, but cannot communicate normally. Send a wake-up signal on the master device! At the end, the master and slave devices can perform scheduled normal communication until the communication ends. If there is a problem such as a communication error, the error processing flow is entered.
  • the slave device when it receives the wake-up bit stream, it generally requires the master device to first transmit a string of bit synchronization codes (also called training codes), and the slave device performs separation of the synchronized clocks according to the bit synchronization codes.
  • bit synchronization codes also called training codes
  • the pseudo-random sequence transmitted by the master device within a length of code length, the number of 0s and the number of ones are substantially equal, and there is no longer continuous 0 or continuous 1 case, which can be used as a bit. Synchronous use, but the effect is slightly worse than sending a regular 010101010...0101 code.
  • bit sync separation circuit If the bit sync separation circuit is required to transmit a higher quality bit sync training code from the receiving circuit of the slave device, then Manchester code can be used to solve this problem, enabling the receiver to separate higher quality bit sync.
  • the serial code sent by the master device has multiple functions of bit synchronization, wake-up and carrying information.
  • the serial code sent by the master device also carries an important time reference information, from After the device calculates this time reference information, it can complete the time synchronization with the master device.
  • the master device sends a sequence of broadcast wake-up or group wake-up
  • all the slave devices in the coverage of the master device, or a group of slave devices can be synchronized with the master device in time, thereby making The slaves also complete synchronization in time, preparing a time reference for the time-based communication after wakeup.
  • the time T w waiting for communication after wake-up can be calculated.
  • the slave device can also enter sleep during the waiting time of 1 ⁇ , which can further reduce power consumption.
  • the specific implementation method of calculating the time base is as follows:
  • n and the coefficient of the decoder are determined, and n received correct symbols are obtained, and n correct symbols are taken out therefrom.
  • L is n in length.
  • the sequence generated by the feedback shift register has a certain period.
  • the sequence generated by the linear feedback shift register has a longest period of 2 n -l , such as an m-sequence, and the period of the nonlinear feedback shift register is longer.
  • the sequence code generated by the feedback shift register in the master device is transmitted at a certain baud rate, in the sequence.
  • the time the code is sent in one cycle should be > T S , ie in! During the transmission time, only one sequence code can be sent at a time. Otherwise, an error may occur when calculating the time base.
  • the m-sequence is the best choice; if a nonlinear feedback shift register is used, the m-sequence can be used.
  • the baud rate of 19200 bps is taken as an example to calculate the value of the window (probing period) t in the system of the present invention.
  • the polynomial is preferably a primitive polynomial.
  • the master device first initializes the value of each register (not all 0), and then according to the synchronous clock of 19200 bps, the sequence code generated by the feedback shift register is sequentially transmitted after baseband coding and modulation, and continues.
  • the time is T s . !
  • the value is determined based on the requirements for power consumption and other requirements.
  • This time which is the window time t of the present invention, does not need to be doubled.
  • the value may be slightly longer, such as 3.5ms or 4ms.
  • Embodiment 1 of a wireless communication system of the present invention is a logical structural diagram of Embodiment 1 of a wireless communication system of the present invention, the wireless communication system including a master device 100 and at least one slave device (only a specific slave device 200 is shown in the figure), and the master device 100 is present Information is transmitted to the specific slave device 200 when communication is required.
  • the master device 100 includes a coding unit 110 and a transmitting unit 120 that are sequentially connected, and the specific slave device 200 includes receiving units that are sequentially connected. 210.
  • Decoding unit 220 and control unit 230 are examples of the specific slave device 200.
  • the encoding unit 110 is configured to generate a sequence code according to a specific encoder, wherein the specific encoder is a feedback shift register constructed by a specific polynomial, and coefficients and orders of the specific polynomial The number is not related to the communication requirement, and the coefficient and the initial value of the polynomial are not all 0; the sending unit 120 is configured to continuously send the sequence code to each slave device within a preset time, and the preset time is greater than or equal to the slave code.
  • the specific encoder is a feedback shift register constructed by a specific polynomial, and coefficients and orders of the specific polynomial The number is not related to the communication requirement, and the coefficient and the initial value of the polynomial are not all 0
  • the sending unit 120 is configured to continuously send the sequence code to each slave device within a preset time, and the preset time is greater than or equal to the slave code.
  • the sum of the sleep period and the detection period of the device, the sum of the sleep period and the detection period constitutes a sleep wake-up period;
  • the receiving unit 210 is configured to receive the sequence code during the sounding period; and
  • the decoding unit 220 is configured to use the code
  • the decoder corresponding to the decoder decodes the sequence code;
  • the control unit 230 is configured to perform corresponding operations according to the decoding result.
  • the logical structure of the other slave devices is similar to the logical structure of the particular slave device 200, except that the coefficients of the polynomials used by some or some of the coding units are different. Of course, it is also possible for multiple slave devices to use the same decoder.
  • the master device can use different encoders to generate different sequence codes according to different communication requirements, and only the specific decoder of the specific slave device can correctly decode the sequence code. Therefore, the specific slave device can be used according to the The specific decoder determines the communication requirements of the master device, thereby performing corresponding operations. It is important to note that the master and slave concepts in this article are only relative definitions. Any device in the system, when it needs to initiate communication, can wake up and control other devices according to the steps of the master device in this article. That is, the roles of the master and slave devices can be flexibly exchanged.
  • encoder and decoder referred to in the present invention may be implemented by hardware or by software.
  • Software implementation is preferred to reduce costs and gain greater flexibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

一种无线通讯方法和系统被公开:该无线通讯方法包括:(S1)主设备根据通信需求,由特定的编码器生成序列码,并在预定时间内向每个从设备连续发送所述序列码,其中,所述特定的编码器为由特定的多项式构建的反馈移位寄存器,且所述特定的多项式的系数和阶数与通信需求相关,多项式的系数及初始值均不全为0,所述预设时间大于或等于所述从设备的休眠期和探测期之和,所述休眠期和探测期之和构成一个休眠唤醒周期;(S2)特定从设备在探测期接收所述序列码中连续的一段,并使用与所述编码器对应的译码器对该段序列码进行译码,并根据译码结果进行相应的操作。本方案抗干扰能力强,提高了可靠性和通信效率,并降低了通信系统的功耗。

Description

一种无线通信系统及方法 技术领域
本发明涉及通信技术领域, 更具体地说, 涉及一种无线通信系统及方法。 背景技术
微功率(短距离)无线通信技术在上世纪末开始出现, 经过十几年的发展, 已经广泛应用于工业控制、 家庭智能、 无线遥控、 安防报警、 环境监测、 智能 抄表、 有毒有害气体监测、 物流、 RFID 等领域。 近年来, 国内国际上又将物 联网作为金融危机后, 未来经济发展新的增长点。 而短距离无线通信技术, 将 在物联网(尤其是传感网)应用中得到更大的发展。
物联网概念几乎是伴随着低碳经济同时到来的。作为物联网的主要通信方 式之一的短距离无线数字通信技术, 必然要顺应低碳、 低能耗的发展潮流, 向 低功耗、 微功耗方向发展。 另外, 随着移动通信设备应用越来越广, 电池供电 的产品也越来越多, 对功耗的要求更加苛刻。
那么,如何降低无线通信设备的总体功耗? 显然,只降低发射机的发射功 率, 或者只降低接收机的电流消耗是不现实的。 这种方法的效果不但不明显, 而且会带来通信质量下降的恶劣后果。 只有采用空闲时通信设备休眠的方式, 才能大大地降低通信设备的平均功耗, 达到降耗的目的。 同时, 用电池供电的 设备, 可以数倍甚至数千倍地延长电池的使用寿命。 信系统或网络, 其中的某一个设备真正工作于发射或接收的时间是很少的。 当 通信设备不工作于发射, 也不工作于接收时, 使其进入休眠状态, 则可大大降 低平均功耗。 因为休眠状态的电流消耗, 只有微安级, 甚至几个微安。 而无线 通信设备发射时的电流是数十毫安以上, 接收电流也在十几到数十毫安之间。 因此, 引入休眠机制的通信系统, 休眠时间越长, 则平均能耗越低。
当某个或某组无线通信设备处于休眠状态时,其不接收也不发射,处于非 工作状态, 但是, 当其它通信设备需要和其进行通信时, 通信是不会成功的。 这样, 就需要一套流程或方法, 使处于休眠状态的无线通信设备, 在其它设备 需要和它进行通信时, 能感知并完成通信, 即将处于休眠状态的无线通信设备 唤醒。 当前, 将无线通信设备从休眠状态下唤醒的方法有多种, 例如, 定时唤 醒通信法、信号强度唤醒法、 最短数据包唤醒法, 但这些唤醒方法要么要求无 线通信系统中的所有通信设备必须在时间上同步,要么抗干扰能力差,要么接 收窗口时间长,从而导致唤醒过程功耗大。如果要对特定的通信设备进行控制 , 其通信协议和通信过程也比较复杂,持续时间也长,导致唤醒后的能量消耗也 大。 发明内容
本发明要解决的技术问题在于,针对现有技术的上述功耗大,且根据实际 通信需求对特定的通信设备进行控制的过程比较复杂的缺陷,提供一种无线通 讯方法、 功耗小, 且能根据实际通信需求对特定的通信设备进行控制。
本发明解决其技术问题所采用的技术方案是: 构造一种无线通讯方法,用 于在主设备有通信需求时向特定从设备发送信息, 该无线通讯方法包括:
S1.主设备根据通信需求, 由特定的编码器生成序列码, 并在预设时间内 向每个从设备连续发送所述序列码, 其中, 所述特定的编码器为由特定的多项 式构建的反馈移位寄存器, 且所述特定的多项式的系数和阶数与通信需求相 关, 多项式的系数及初始值均不全为 0 , 所述预设时间大于或等于所述从设备 的休眠期和探测期之和, 所述休眠期和探测期之和构成一个休眠唤醒周期;
S2.特定从设备在探测期接收所述序列码中连续的一段, 并使用与所述编 码器对应的译码器对该段序列码进行译码, 并根据译码结果进行相应的操作。
在本发明所述的无线通讯方法中,在通信需求为对所有从设备进行广播唤 醒时, 所述编码器所产生的序列码为 m序列,且每个从设备均包含与所述编码 器所对应的译码器。
在本发明所述的无线通讯方法中,在通信需求为对特定组的从设备进行组 唤醒时,所述特定的多项式系数为所述特定组的从设备的二进制组号与预设的 译码器。
在本发明所述的无线通讯方法中,在通信需求为对特定的从设备进行单个 唤醒时, 所述特定的多项式系数为所述特定的从设备的二进制 ID号的至少一 部分或者所述特定的从设备的二进制 I D号的至少一部分与预设的第二固定序 在本发明所述的无线通讯方法中,在通信需求为向特定的从设备发送控制 指令时, 所述特定的多项式系数为所述特定的从设备的二进制 ID号的至少一 部分与所述控制指令所对应的二进制序列的组合,且所述特定的从设备中包含 与所述编码器所对应的译码器。
在本发明所述的无线通讯方法中,在通信需求为向特定的从设备发送开或 关阀指令时, 所述特定的多项式系数为所述特定的从设备的二进制 ID号的至 少一部分与预设的开或关阀指令所对应的二进制序列的组合,且开阀指令与关 阀指令分别所对应的二进制序列不同,同时所述特定的从设备中包含与所述编 码器所对应的译码器。
在本发明所述的无线通讯方法中,当特定的从设备在使用由特定的反馈移 位寄存器构成的译码器对该段序列码进行译码后,从所接收的序列码中取出与 阶数相同数量的码元,并使用与主设备的特定的反馈移位寄存器相同的初始值 来初始化所述特定的从设备的特定的反馈移位寄存器,再根据当前通信的波特 率计算出主设备开始发射所述序列码的时间,并根据所计算的时间与主设备在 时间上同步和 /或再计算出主设备在预设时间内结束发送序列码的时间, 且特 定的从设备在所计算的结束发送序列码的时间之前进行休眠。
在本发明所述的无线通讯方法中,在所述特定的从设备包含至少两个译码 器时, 所述特定的从设备在接收到所述序列码后, 采用试探的方法依次使用所 述至少两个译码器对所述序列码进行译码, 并根据译码结果进行相应的操作。
在本发明所述的无线通讯方法中, 在所述步骤 S 1中, 在产生序列码后, 对序列码中的逻辑 0或 1 , 进行曼切斯特编码、 不归零编码或归零编码, 然后 在预设时间内向每个从设备连续发送进行曼切斯特编码、不归零编码或归零编 码后的序列码。
在本发明所述的无线通讯方法中,
所述步骤 S2中的特定从设备根据译码结果进行相应操作的步骤包括: 对译码后连续输出 0的个数进行计数;
在判断连续输出 0的个数是否超过预设的限值时,则根据所使用的译码器 的多项式的阶数和系数进行相应需求的操作;
或者
在主设备产生所述序列码后对所述序列码取反时, 则所述步骤 S2中的特 定从设备根据译码结果进行相应操作的步骤包括:
对译码后连续输出 1的个数进行计数;
在判断连续输出 1的个数是否超过预设的限值时,则根据所使用的译码器 的多项式的阶数和系数进行相应需求的操作。
在本发明所述的无线通讯方法中,
在主设备产生所述序列码后对所述序列码进行加扰或合并时,则所述步骤
S2 中的特定从设备先去扰或去合并, 再进行译码并根据译码结果进行相应的 操作。
本发明还构造一种无线通讯系统, 包括主设备和至少一个从设备,且主设 备在有通信需求时向特定从设备发送信息, 所述主设备包括:
编码单元, 用于 ^据特定的编码器生成序列码, 其中, 所述特定的编码器 为由特定的多项式构建的反馈移位寄存器,且所述特定的多项式的系数和阶数 与通信需求相关, 多项式的系数及初始值均不全为 0; 预设时间大于或等于所述从设备的休眠期和探测期之和,所述休眠期和探测期 之和构成一个休眠唤醒周期;
所述特定从设备包括:
接收单元, 用于在探测期接收所述序列码; 控制单元, 用于根据译码结果进行相应的操作。
实施本发明的技术方案,具有以下有益效果: 参与通信的无线通信设备间 无需在时间上同步; 抗干扰能力强, 解决了身份识别和误唤醒的问题, 提高了 可靠性和保密性; 可缩短从设备的探测期, 减少从设备接收窗口时间, 从而降 低了通信系统的功耗。
附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是本发明无线通讯方法实施例一的流程图;
图 2是本发明主设备中反馈移位寄存器实施例一的结构图;
图 3是本发明特定从设备中反馈移位寄存器实施例一的结构图; 图 4是本发明无线通讯方法实施例一的工作时序图;
图 5是本发明无线通讯系统实施例一的逻辑结构图。
具体实施方式 如图 1所示的本发明无线通讯方法实施例一的流程图中,该无线通讯方法 用于在主设备有通信需求时向特定从设备发送信息, 其具体包括:
51.主设备根据通信需求, 由特定的编码器生成序列码, 并在预设时间内 向每个从设备连续发送所述序列码, 其中, 所述特定的编码器为由特定的多项 式构建的反馈移位寄存器, 且所述特定的多项式的系数和阶数与通信需求相 关, 多项式的系数及初始值均不全为 0 , 所述预设时间大于或等于所述从设备 的休眠期和探测期之和, 所述休眠期和探测期之和构成一个休眠唤醒周期;
52.特定从设备在探测期接收所述序列码中连续的一段, 并使用与所述编 码器对应的译码器对该段序列码进行译码, 并根据译码结果进行相应的操作。
下面以线性反馈移位寄存器作为编码器和译码器为例,具体说明该无线通 讯方法的工作原理, 需要申明的是,使用非线性反馈移位寄存器作为编码器和 译码器, 也属于本发明的范围之内。 通常, 一个阶数为 n的多项式表示如下:
f(x) = Co+CiX+C2X2+. . . + CnX° (1)
式中 x1仅指明其系数 (1或 0)代表 Cl的值, X本身并无实际意义, 也不需要计 算。 而其系数和阶数则非常重要, 是完成本发明的重要参数。
主设备通过选用不同系数或阶数的多项式构成的编码器, 生成的序列码, 发送到从设备, 其代表不同含义。从设备在探测期接收所述序列码中连续的一 段, 并使用一个或多个有关的译码器对所述序列码进行一次或多次译码,如果 使用某个译码器后判定相关,则从设备被唤醒,并根据该译码器的系数和阶数, 进行相应的操作。 即主设备生成的序列码, 在唤醒从设备的同时, 也携带有信 息。 根据这些信息, 从设备可以完成相应的操作。 这样, 不但降低了功耗, 且 提高了通信效率。
首先, 在主设备中, 主设备^^据通信需求, 由特定的编码器生成序列码, 该特定的编码器为由特定的多项式构建的反馈移位寄存器,且所述特定的多项 式的系数和阶数与通信需求相关,多项式的系数不全为 0且初始值也不全为 0。 式(1)结合图 2所示的主设备中反馈移位寄存器结构, 可表征为:
an = cian_i ω c2an_2 ® ... ® cn_iai ω cnao (2)
式中: ㊉表示模 2加或异或, n为反馈移位寄存器的阶, 且该多项式的系 数 c。=l, d, c2, ...cn不能全部为 0, 及 的初始值不能全部为 0, 该多 项式的系数 Cl, c2, ...cn和阶数 n与通信需求相关, 也即, 不同的通信需求所使 用的反馈移位寄存器(编码器) 的系数或阶数不相同。
另外, 将式(2 )等号的右边部分全部移到左边, 变形可得:
an ® Cian_i ® c2an_2 © - .. © cn-1ai ® cna0 = 0 ( 3 ) 根据式(3 )可得到一个新的带输入的反馈移位寄存器, 如图 3所示, 若 该反馈移位寄存器与图 2 所示的反馈移位寄存器的特征多项式的系数 c。, cl5 c2, ...cn相同, 阶数 n也相同, 则当该反馈移位寄存器输入 an时, 不管其初始 值为任何值, 当移位 n次,使该反馈移位寄存器中的所有无关的初始值移除以 后 (也可使用接收到的前 n个正确码元, 直接初始化移位寄存器), 则以后的移 位, 其输出恒为 0。 这样, 从设备将接收的一段足够长的序列码, 输入到译码 器后, 当输出足够多的连续 0值以后, 可判定接收的码元具有相关性, 是主设 备发射的, 这个过程叫判定相关性。
因此, 从式 (2)中可以看出, 对于阶数为 n的反馈移位寄存器, 其系数有 2n-l种取法。 当 n值足够大时, 其系数的取法则足够多, 这样, 就为低功耗无 线通信系统的主设备提供更多的可选多项式和编码器。 主设备在发起通信前, 根据通信需要, 选择特定多项式, 当然, 该多项式的系数和阶数与从设备已经 有预先的约定。
对于从设备中采用式 (3)的译码器, 其系数和阶数只要和主设备使用的一 样, 就可以判断出接收的一段信息的相关性。 但是, 如果主设备只采用一种多 项式, 则从设备可以使用对应的一种译码器译码即可。如果主设备采用多个多 项式, 则从设备因为开始译码前, 并不能确切知道本次截取的一段序列码, 主 设备是用哪个多项式产生的, 则需要采用试探法确定, 具体步骤如下:
主设备针对某个特定从设备, 可能采用 M种多项式。 从设备在进行译码 时, 则需要进行 M次试探。 其从第 1种多项式开始, 一直试探译码到第 M个 多项式, 期间, 如果第 N(1 N M)次试探解码, 判定了相关性, 则认为找到 了与主设备本次发射的多项式匹配的第 N个多项式, 则从设备被唤醒并根据 第 N个多项式代表的意义, 完成相应的操作。 优选地, 如果该操作是不可被 误操作的指令 (比如关闭阀门), 从设备可以继续再接收更多的连续码元, 再采 用第 N个多项式所对应的译码器, 多次解码判定其相关性, 并根据成功判定 相关性的次数和解码总次数, 决定是否执行该操作。 如果 M次试探都没有判 定相关性, 则说明本次接收的数据是噪声或通信发生了误码, 不做任何操作, 从设备从探测器进入休眠期, 直到下一个探测期的到来。 当然, 如果从设备中 采用高速的处理器来完成译码工作, 也可进行 M个译码并行译码, 根据译码 结果, 判断是否收到主设备发来的信息, 并且是由那个译码器完成的。
基于本发明的无线通信系统中, 由于主设备可能针对多个从设备, 并完成 不同的通信需求, 则主设备采用的多项式数目可能远远大于 M个。 其中, 有 些多项式是针对所有从设备的, 比如广播唤醒或广播命令; 有些, 只针对一部 分从设备, 比如组唤醒或组命令; 有些只针对某个特定的从设备, 比如单个从 设备唤醒或者命令, 或者针对某一个从设备的开 /关阀门命令。 实际应用中, 不同类型的通信需求, 可以选用系数或阶数不同的多项式。
对于广播唤醒或命令, 由于需要的多项式比较少, 可以选用 m序列, 以 得到最佳的伪随机序列。
对于组唤醒或者组命令,可以将非零的二进制组号直接作为多项式; 或者 组号与多项式——对应地关联;或者将二进制组号中或前或后插入一些固定的 0或 1 , 增大其阶数值。 但得到的多项式的系数不能全为 0。
对于单个从设备唤醒, 可以将非零的二进制从设备的身份识别号 (ID)或者 ID的一部分 (以下统称 ID), 直接作为多项式; 或者将 ID与多项式——对应的 关联; 或者在 ID的中间或前或后面插入一个或多个固定的 0或 1 , 作为多项 式, 但其系数不能全部为 0。
对于单个从设备的控制指令, 可以采用 ID加一个固定的预设二进制非零 序列的方式, 得到多项式, 该预设的二进制非零序列与该控制指令相对应; 当 然, 这个序列也可以插入在 ID中间, 也可分散插入 ID号的中间或前或后。从 设备利用这个多项式译码, 判定相关性后, 则可以执行这个命令, 比如开阀或 关阀。
当然,在另一个实施例中,若主设备产生所述序列码后对所述序列码取反, 则上述实施例步骤 S2 中的特定从设备根据译码结果进行相应操作的步骤包 括: 对译码后连续输出 1的个数进行计数; 在判断连续输出 1的个数是否超过 预设的限值时, 判定相关性, 然后根据所使用的译码器的多项式的阶数和系数 进行相应需求的操作。
关于上述实施例中的根据译码结果进行相应的操作的步骤,还应当说明的 是, 由于主设备在有某个通信需求时, 其所使用的反馈移位寄存器的阶数、 特 定多项式与特定从设备中的反馈移位寄存器的阶数、特定多项式相同, 以保证 主设备与特定从设备的反馈移位寄存器的编 /解码多项式匹配, 才能输出连续 的 0 , 从而被从设备的接收机所识别, 进行相应的操作, 解决了身份识别问题。 对于因噪声产生的随机码, 代入式(3)后, 其输出的不全为 0 , 而且, 连续输出 0的概率随输入次数的增加而成级数下降。 当反馈移位寄存器的阶数适当, 又 要求连续输出 0的个数足够多时,因为噪声而让译码器连续输出多个 0的概率趋 近于 0 , 这样就解决了噪声干扰 (误唤醒)的问题。
在一个具体实施例中,若通信需求为对所有从设备进行广播唤醒,则主设 备中的编码器所产生的序列码可为 m序列, 该 m序列可选 20阶, 即 n=20,且 可为其它序列,只要保证所有从设备中均包含有与主设备的编码器相匹配的译 码器即可。
在另一个具体实施例中,若通信需求为对特定组的从设备进行组唤醒, 则 特定的多项式系数为该特定组的从设备的二进制组号与预设的第一固定序列 的组合, 组合后的二进制长度为 19 , 即阶数为 19。 且该特定组的从设备中均 包含与所述编码器所对应的译码器。应当说明的是,之所以在组号后面加一固 定序列,是因为考虑到组号一般较短,添加一固定序列后可减少误唤醒的几率。
在另一个具体实施例中,若通信需求为对特定的从设备进行单个唤醒, 则 特定的多项式系数为所述特定的从设备的二进制 ID号的至少一部分或者所述 特定的从设备的二进制 ID号的至少一部分与预设的第二固定序列的组合, 且 中, 比如, 取 ID号中的 16位并在其某位后插入一个 1 , 变换为阶数为 17的 一个多项式。
在另一个具体实施例中,若通信需求为向特定的从设备发送控制指令, 则 主设备的编码器的该特定的多项式系数为该特定的从设备的二进制 ID号的至 少一部分与所述控制指令所对应的二进制序列的组合,且所述特定的从设备中 包含与所述编码器所对应的译码器, 若特定从设备的 ID号的至少一部分为 16 位, 则开阀指令可设置 5位, 总共 21位。
在另一个具体实施例中, 若通信需求为向特定的从设备发送开或关阀指 令, 则主设备的编码器的特定的多项式系数为所述特定的从设备的二进制 ID 号的至少一部分与预设的开或关阀指令所对应的二进制序列的组合,且开阀指 令与关阀指令分别所对应的二进制序列不同, 差异越大越好。且所述特定的从 设备中包含与所述编码器所对应的译码器。 若特定从设备的 ID号的至少一部 分为 16位, 则关阀指令可设置 5位, 总共 21位。
以上使用组号或 ID号的至少一部分与一个特定二进制序列进行组合形成 唤醒或控制多项式时, 优选那些组合后产生的序列码周期长的序列码。 在另一个具体实施例中, 当主设备在不同的时刻有不同的通信需求时,例 如某个时间点需要向某个特定的从设备进行单个唤醒,另一个时间点又需要向 该特定的从设备发送关阀指令, 则该特定的从设备中必然会包含两个译码器, 且这两个译码器分别与主设备中因两个不同的通信需求而分别产生序列码的 两个编码器相对应。 当某个时刻接收到主设备所发送的序列码后, 采用试探的 方法依次使用这两个译码器对所接收的序列码进行译码,在译码匹配(即连续 输出预设个数的 0或 1 )时, 根据所使用的译码器即可判断出主设备的通信需 求, 进而进行相应的操作。 当然, 本发明的从设备中的译码器的数量并不限定 两个, 随着通信需求的增多, 从设备中的译码器的数量可为任意数量。 但数量 越多, 计算量就越大。 另外, 还应当说明的是, 如果特定的从设备中包含至少 两个译码器时,可通过设置该从设备中每个译码器所对应的多项式的阶数不相 同来提高译码的准确性,相应地, 主设备所使用的相应的编码器的多项式阶数 也不相同, 例如, 主设备在对所有从设备进行广播唤醒时, 所使用的编码器的 多项式的阶数为 20; 主设备在对某一组从设备进行组唤醒时, 所使用的编码 器的多项式的阶数为 19 ; 主设备在对某一个从设备进行单个唤醒时, 所使用 的编码器的多项式的阶数为 17 ; 主设备在向某一个从设备发送开阀或关阀指 令时, 所使用的编码器的多项式的阶数为 21。
另外, 为了提高从设备开阀或关阀的准确率, 以关阀为例, 当从设备接收 到一组序列码后,且使用其中的某个译码器解码后输出多个 0时,且该译码器 的多项式系数为该特定从设备的 ID号的至少一部分与关阀指令的组合, 则说 明该序列码所代表的通信需求为主设备向该特定从设备发送关阀指令,为避免 误操作, 可让接收机再接收更多的连续码元,使用该译码器多次对新接收的序 列码进行译码, 若在这多次(例如 5次)译码中, 其中有大半(例如 3次)是 正确的, 则再根据该关阀指令进行关阀操作。 同样地, 开阀也一样。
在另一个优选实施例中, 主设备在产生序列码后, 对序列码中的逻辑 0 或 1 , 进行曼切斯特编码, 不归零编码或归零编码。 采用曼彻斯特编码, 从设 备的接收机, 容易快速分离出位同步信号, 从而可以缩短探测期。 需要强调的 是, 其它任何的形式的无线通信编码方式, 比如多进制调制, 不同调制方式, 都属于本发明的范围之内。
在另一个优选实施例中,在主设备产生序列码后还可对所述序列码进行加 扰或合并, 相应地, 特定从设备在接收到所述序列码后, 先对该序列码进行去 扰或去合并, 再进行译码并根据译码结果进行相应的操作。 在一个例子中, 加 扰为将所产生的序列码与一伪随机序列码进行异或运算,合并为将所产生的序 列码与一固定序列码进行异或运算。 应理解, 去扰与去合并也是同样的运算。
下面结合图 4分别说明主设备和从设备的工作流程:
首先说明主设备的工作流程: 主设备在有通信需求时, 由特定的编码器生 成序列码, 并在预设时间!内向每个从设备连续发送该序列码, 该特定的编码 器为由特定的多项式构建的反馈移位寄存器,反馈移位寄存器在启动前需要初 始化, 但不能全为 0, 该特定的多项式的系数和阶数与通信需求相关, 且不全 为 0。 预设时间1 ^丁 + 1, 其中 T为从设备的休眠期, t为探测期, 休眠期和探 测期之和构成一个休眠唤醒周期。主设备发送完序列码后, 即可与特定的从设 备进入正常通信, 持续时间为 Tc。 数据交换完毕, 特定从设备进入休眠。 如果 主设备发送的完序列码后, 不需要继续与从设备进行通信, 则从设备完成相应 的操作后进入休眠期, 不再与主设备继续通信。 比如从设备得到关阀命令, 自 动执行关阀操作, 操作完毕进入休眠期, 此时 和!都为 0。 对于通信失败的 从设备, 如从设备 3 , 主设备需要启动差错处理机制进行处理。 下面说明每个从设备的工作流程: 从设备按照固定的周期 T+t交替工作于 休眠 ~ 收一休眠~ 收的状态。 在时间 T内, 从设备是休眠的, 不接收任何 数据, 休眠电流极低, 达到数微安以下。 在时间 t内, 从设备处于探测接收状 态。此时,分两种情况进行处理,如果处理器处理速度足够高,则可并行处理, 即一边接收一边进行一个或多个译码器的译码工作。 否则, 可将接收的多个连 续码元先存储下来,接收完毕后再进行一次或多次译码运算。如果所有的译码 结果都没有判定相关性, 则说明收到的序列是噪声或者发生错误, 该从设备对 所接收到的信号不做任何响应并进入休眠期。如果某个译码器判定相关性, 则 表示主设备所发送的序列码所代表的通信需求是指向该从设备的这个译码器 的, 且根据当前所使用的译码器的特征多项式的系数判断具体是什么通信需 求, 接着, 从设备进入等待有效通信状态, 等待时间为 Tw。 在 1^期间, 从设 备仍处于接收状态, 但不能正常通信。 在主设备发送唤醒信号!结束时, 主从 设备即可进行预定的正常通信, 直到通信结束。 如果发生通信出错的等问题, 则进入错误处理流程。
需要特别说明是,从设备在接收唤醒比特流时, 一般要求主设备首先发送 一串位同步码 (又称训练码), 从设备根据位同步码进行同步时钟的分离。 由于 本发明中, 主设备发送的伪随机序列, 在一段码长内, 0的个数和 1的个数基本 相等, 而且不会出现较长的连续 0或连续 1的情况, 其可以作为位同步使用, 只 是效果稍差于发送有规律的 01010101010...0101码。如果从设备的接收电路中, 位同步分离电路要求发送较高质量的位同步训练码,则可采用曼切斯特编码解 决这个问题, 使接收机能分离出较高质量的位同步。 这样, 主设备所发送的序 列码, 具备位同步, 唤醒和携带信息的多重功能。
另外, 主设备所发送的序列码中, 还携带有一个重要的时间基准信息, 从 设备计算出这个时间基准信息后, 可以与主设备完成时间上的同步。尤其是在 主设备发送的是广播唤醒或者组唤醒的序列时的情况下,则可以使主设备覆盖 范围内的所有从设备, 或者一组从设备, 在时间上与主设备同步, 从而使多个 从设备之间在时间上也完成同步, 为唤醒后的基于时间的通信准备时间基准。 计算出这个时间后, 就能计算出唤醒后等待通信的时间 Tw, 如图 4所示, 那么 在 1^等待的时间里, 从设备也可以进入休眠, 这样能进一步降低功耗。 计算时 间基准的具体实现方法如下:
当从设备的某个译码器, 判定相关性后, 则确定了该译码器的阶数 n和系 数, 并得到了大于等于 n个接收到的正确码元, 从中取出 n个正确码元, 这里命 名为序列 L, L的长度为 n。 从设备使用这些系数, 产生一个与主设备相同的编 码器,并使用与主设备的反馈移位寄存器相同的初始化值来初始化从设备中的 反馈移位寄存器, 并设变量 k=0。 然后进行与主设备相同的编码运算, 移位寄 存器每移动一位, k加 1 , 同时寄存器内的值会发生变化, 将寄存器内的值与 L 比较, 不等, 则继续移位并 k加 1 , 直到寄存器内的值与 L相等为止, 这时, 得 到非零值 k,如果波特率为 b, 则从设备的窗口期与主设备开始发送唤醒信号的 时刻之间的时间差值为: k/b。 如果处理器运算和处理的时间比较长, 因时间 基准精度的要求不能忽略, 则需要对计算时间进行补偿 (处理器的计算时间可 以使用处理器中的定时器或其它方法得到)。 那么在不考虑计算时间补偿的情 况下, 主机开始发送唤醒信号的时刻位于接收到序列 L的时刻之前 k/b。 而 Tw = Ts - k/b。 需要说明的是, 反馈移位寄存器产生的序列, 都是有一定周期的。 线 性反馈移位寄存器产生的序列, 最长周期为 2n-l , 比如 m序列, 非线性反馈移 位寄存器的周期会更长。 实际运用中,如果系统需要计算 Tw或设备需要时间同 步, 则主设备中反馈移位寄存器产生的序列码, 以一定的波特率传送, 在序列 码一个周期内发送的时间应该 > TS, 即在!的发送时间内, 最多只能发送一个 周期内的序列码, 否则, 计算时间基准时, 可能会出错。 那么, 如果采用线性 反馈移位寄存器, 则 m序列是最好的选择; 如果采用非线性反馈移位寄存器, 则可选用 m序列。
下面举例说明该无线通讯方法, 这里以波特率 19200bps为例, 计算采用本 发明的系统中, 窗口 (探测期) t的取值。 假设采用阶 n=20的反馈移位寄存器, 其多项式最好选用本原多项式。 则主设备在有通信需求时, 首先初始化每个寄 存器的值 (不能全部为 0), 然后根据 19200bps的同步时钟,将反馈移位寄存器产 生的序列码, 经过基带编码和调制以后依次发射, 持续时间为 Ts。 !的取值根 据对功耗的要求和其它要求综合确定。从设备从休眠到接收状态, 目前的技术 条件下, 一般要等待 3个字节的时间, 接收机的同步分离机制, 才能分离出稳 定的位同步。 同时, 开始向译码器输入接收到的正确码元, 当移位输入 n个比 特后 (此处 n=20), 译码器的每一位寄存器都被接收到的正确数据刷新, 旧的不 正确的数据被移出。 这时, 反馈移位寄存器开始输出 0, 当连续输出 K个 0后 (K 可以等于 n, 也可以稍大于, 或稍小于 n, 不同应用中决定, 此处采用 K=n), 就找到了与通信需求相关的信号。 则在探测器 t找到唤醒信号花费的时间为: t = (3*8+n+K)/19200 = (3*8+20+20)/19200 « 0.00333s = 3.33ms
这个时间, 就是本发明的窗口时间 t, 不需要加倍, 为了更加可靠, 取值稍长 一点也可以, 比如 3.5ms或 4ms。
图 5示出了本发明无线通讯系统实施例一的逻辑结构图,该无线通讯系统 包括主设备 100和至少一个从设备 (图中仅示出了特定从设备 200 ), 且主设 备 100在有通信需求时向特定从设备 200发送信息。主设备 100包括依次连接 的编码单元 110和发送单元 120 , 特定从设备 200 包括依次连接的接收单元 210、 译码单元 220和控制单元 230。 在该实施例中, 编码单元 110用于根据 特定的编码器生成序列码, 其中, 所述特定的编码器为由特定的多项式构建的 反馈移位寄存器,且所述特定的多项式的系数和阶数与通信需求相关, 多项式 的系数及初始值均不全为 0; 发送单元 120用于在预设时间内向每个从设备连 续发送所述序列码,且所述预设时间大于或等于所述从设备的休眠期和探测期 之和, 所述休眠期和探测期之和构成一个休眠唤醒周期;接收单元 210用于在 探测期接收所述序列码;译码单元 220用于使用与所述编码器对应的译码器对 所述序列码进行译码; 控制单元 230用于根据译码结果进行相应的操作。应当 理解, 其它从设备的逻辑结构与该特定从设备 200的逻辑结构相似, 所不同的 仅是某个或某些译码单元所使用的多项式的系数不同。 当然, 多个从设备也有 可能使用相同的译码器。从而可以使主设备根据不同的通信需求使用不同的编 码器产生不同的序列码,只有特定从设备的特定译码器才能对该序列码进行正 确的解码, 因此,特定从设备可根据所使用的特定译码器判断出主设备的通信 需求, 从而进行相应的操作。 需要特别说明的是, 本文中的主设备和从设备概 念, 只是相对的定义。 系统中的任何设备, 需要主动发起通信时, 其都可以按 照本文中的主设备的步骤,去唤醒和控制其它设备。 即主从设备的角色可灵活 互换。
应当说明的是,本发明所提及的编码器和译码器可由硬件来实现也可由软 件来实现。 优先采用软件实现, 以降低成本并得到更好的灵活性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领 域的技术人员来说, 本发明可以有各种更改和变化。凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求范 围之内。

Claims

权 利 要 求
1、 一种无线通讯方法, 用于在主设备有通信需求时向特定从设备发送信 息, 其特征在于, 该无线通讯方法包括:
51.主设备根据通信需求, 由特定的编码器生成序列码, 并在预设时间内 向每个从设备连续发送所述序列码, 其中, 所述特定的编码器为由特定的多项 式构建的反馈移位寄存器, 且所述特定的多项式的系数和阶数与通信需求相 关, 多项式的系数及初始值均不全为 0 , 所述预设时间大于或等于所述从设备 的休眠期和探测期之和, 所述休眠期和探测期之和构成一个休眠唤醒周期;
52.特定从设备在探测期接收所述序列码中连续的一段, 并使用与所述编 码器对应的译码器对该段序列码进行译码, 并根据译码结果进行相应的操作。
2、 根据权利要求 1所述的无线通讯方法, 其特征在于, 在通信需求为对 所有从设备进行广播唤醒时, 所述编码器所产生的序列码为 m序列,且每个从 设备均包含与所述编码器所对应的译码器。
3、 根据权利要求 1所述的无线通讯方法, 其特征在于, 在通信需求为对 特定组的从设备进行组唤醒时,所述特定的多项式系数为所述特定组的从设备 的二进制组号与预设的第一固定序列的组合,且所述特定组的从设备中均包含 与所述编码器所对应的译码器。
4、 根据权利要求 1所述的无线通讯方法, 其特征在于, 在通信需求为对 特定的从设备进行单个唤醒时,所述特定的多项式系数为所述特定的从设备的 二进制 ID号的至少一部分或者所述特定的从设备的二进制 ID号的至少一部分 与预设的第二固定序列的组合,且所述特定的从设备中包含与所述编码器所对 应的译码器。
5、 根据权利要求 1所述的无线通讯方法, 其特征在于, 在通信需求为向 特定的从设备发送控制指令时,所述特定的多项式系数为所述特定的从设备的 二进制 ID号的至少一部分与所述控制指令所对应的二进制序列的组合, 且所
6、 根据权利要求 5所述的无线通讯方法, 其特征在于, 在通信需求为向 特定的从设备发送开或关阀指令时,所述特定的多项式系数为所述特定的从设 备的二进制 ID号的至少一部分与预设的开或关阀指令所对应的二进制序列的 组合,且开阀指令与关阀指令分别所对应的二进制序列不同, 同时所述特定的 从设备中包含与所述编码器所对应的译码器。
7、 根据权利要求 2-6任一项所述的无线通讯方法, 其特征在于, 当特定 的从设备在使用由特定的反馈移位寄存器构成的译码器对该段序列码进行译 码后,从所接收的序列码中取出与阶数相同数量的码元, 并使用与主设备的特 移位寄存器,再根据当前通信的波特率计算出主设备开始发射所述序列码的时 间, 并根据所计算的时间与主设备在时间上同步和 /或再计算出主设备在预设 时间内结束发送序列码的时间,且特定的从设备在所计算的结束发送序列码的 时间之前进行休眠。
8、 根据权利要求 2-6任一项所述的无线通讯方法, 其特征在于, 在所述 特定的从设备包含至少两个译码器时,所述特定的从设备在接收到所述序列码 根据译码结果进行相应的操作。
9、 根据权利要求 1 所述的无线通讯方法, 其特征在于, 在所述步骤 S1 中, 在产生序列码后, 对序列码中的逻辑 0或 1 , 进行曼切斯特编码、 不归零 编码或归零编码, 然后在预设时间内向每个从设备连续发送进行曼切斯特编 码、 不归零编码或归零编码后的序列码。
10、 根据权利要求 1所述的无线通讯方法, 其特征在于,
所述步骤 S2中的特定从设备根据译码结果进行相应操作的步骤包括: 对译码后连续输出 0的个数进行计数;
在判断连续输出 0的个数是否超过预设的限值时,则根据所使用的译码器 的多项式的阶数和系数进行相应需求的操作;
或者
在主设备产生所述序列码后对所述序列码取反时, 则所述步骤 S2中的特 定从设备根据译码结果进行相应操作的步骤包括:
对译码后连续输出 1的个数进行计数;
在判断连续输出 1的个数是否超过预设的限值时,则根据所使用的译码器 的多项式的阶数和系数进行相应需求的操作。
11、 根据权利要求 1所述的无线通讯方法, 其特征在于,
在主设备产生所述序列码后对所述序列码进行加扰或合并时,则所述步骤 S2 中的特定从设备先去扰或去合并, 再进行译码并根据译码结果进行相应的 操作。
12、 一种无线通讯系统, 包括主设备和至少一个从设备, 且主设备在有通 信需求时向特定从设备发送信息, 其特征在于, 所述主设备包括:
编码单元, 用于 ^据特定的编码器生成序列码, 其中, 所述特定的编码器 为由特定的多项式构建的反馈移位寄存器,且所述特定的多项式的系数和阶数 与通信需求相关, 多项式的系数及初始值均不全为 0; 预设时间大于或等于所述从设备的休眠期和探测期之和,所述休眠期和探测期 之和构成一个休眠唤醒周期;
所述特定从设备包括:
接收单元, 用于在探测期接收所述序列码; 控制单元, 用于根据译码结果进行相应的操作。
PCT/CN2012/070203 2012-01-11 2012-01-11 一种无线通信系统及方法 WO2013104116A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12865490.2A EP2690789A4 (en) 2012-01-11 2012-01-11 SYSTEM AND METHOD FOR WIRELESS COMMUNICATION
BR112014015981-5A BR112014015981A2 (pt) 2012-01-11 2012-01-11 sistema e método para comunicação sem fio
US14/113,580 US9451541B2 (en) 2012-01-11 2012-01-11 System and method for wireless communication
RU2013150700/08A RU2585992C2 (ru) 2012-01-11 2012-01-11 Система и способ для беспроводной связи
PCT/CN2012/070203 WO2013104116A1 (zh) 2012-01-11 2012-01-11 一种无线通信系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/070203 WO2013104116A1 (zh) 2012-01-11 2012-01-11 一种无线通信系统及方法

Publications (1)

Publication Number Publication Date
WO2013104116A1 true WO2013104116A1 (zh) 2013-07-18

Family

ID=48781030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070203 WO2013104116A1 (zh) 2012-01-11 2012-01-11 一种无线通信系统及方法

Country Status (5)

Country Link
US (1) US9451541B2 (zh)
EP (1) EP2690789A4 (zh)
BR (1) BR112014015981A2 (zh)
RU (1) RU2585992C2 (zh)
WO (1) WO2013104116A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664017C2 (ru) * 2013-11-04 2018-08-14 Сосьедад Эспаньола Пара Эль Интернет Де Лас Косас, С.Л. Система записи данных для мониторинга и отслеживания отгрузки и транспортировки товаров, требующих поддержания конкретных значений параметров, и способ осуществления указанного мониторинга и отслеживания

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9628177B1 (en) * 2015-09-30 2017-04-18 Osram Sylvania Inc. Adaptive baud rate in light-based communication
DE112018007296B4 (de) * 2018-04-25 2022-01-27 Mitsubishi Electric Corporation Informationsverarbeitungseinrichtung, Informationsverarbeitungsverfahren und Informationsverarbeitungsprogramm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290428A (zh) * 1998-12-10 2001-04-04 三星电子株式会社 通信系统中具有串行级联结构的编码器/解码器
US20040081250A1 (en) * 2002-10-25 2004-04-29 Ying-Heng Shih Branch metric generator for Viterbi decoder
CN101442313A (zh) * 2007-11-20 2009-05-27 华为技术有限公司 编解码方法以及编码器、解码器、乘积项装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3782265T2 (de) * 1986-04-05 1993-05-19 Nippon Electric Co Vielfach-zugriff-kommunikationssystem mit schaltungseinrichtung zur schleifenpruefung fuer das durchschalten von lokalen verbindungen.
US5059836A (en) * 1988-12-09 1991-10-22 Dallas Semiconductor Corporation Differential-time-constant bandpass filter using the analog properties of digital circuits
US5297142A (en) * 1991-07-18 1994-03-22 Motorola, Inc. Data transfer method and apparatus for communication between a peripheral and a master
CA2135856A1 (en) * 1993-12-10 1995-06-11 Steven Peter Allen Low power, addressable data communication device and method
US5625882A (en) * 1994-03-01 1997-04-29 Motorola, Inc. Power management technique for determining a device mode of operation
US5991635A (en) * 1996-12-18 1999-11-23 Ericsson, Inc. Reduced power sleep modes for mobile telephones
GB9723743D0 (en) * 1997-11-12 1998-01-07 Philips Electronics Nv Battery economising in a communications system
US6185265B1 (en) * 1998-04-07 2001-02-06 Worldspace Management Corp. System for time division multiplexing broadcast channels with R-1/2 or R-3/4 convolutional coding for satellite transmission via on-board baseband processing payload or transparent payload
GB0022632D0 (en) * 2000-09-15 2000-11-01 Koninkl Philips Electronics Nv Method of, and signalling system for, transferring data
US6763492B1 (en) * 2000-09-26 2004-07-13 Qualcomm Incorporated Method and apparatus for encoding of linear block codes
US7193986B2 (en) * 2002-05-30 2007-03-20 Nortel Networks Limited Wireless network medium access control protocol
DE602004017468D1 (de) * 2003-06-25 2008-12-11 Nxp Bv Dekodierer für rahmenformat und trainingssequenzgenerator für drahtlose lokalbereichsnetzwerke
EP1545069A1 (en) * 2003-12-19 2005-06-22 Sony International (Europe) GmbH Remote polling and control system
ATE332056T1 (de) * 2004-03-17 2006-07-15 Cit Alcatel Verfahren zum steuern des schlafmodus eines endgerätes, dazugehöriges mobiles endgerät und funkzugriffsknoten
FR2871967B1 (fr) * 2004-06-18 2006-09-22 Valeo Electronique Sys Liaison Module d'echange d'informations par courants porteurs et procede de gestion du fonctionnement de ce module
US7805652B1 (en) * 2006-02-10 2010-09-28 Marvell International Ltd. Methods for generating and implementing quasi-cyclic irregular low-density parity check codes
US20070243851A1 (en) * 2006-04-18 2007-10-18 Radiofy Llc Methods and systems for utilizing backscattering techniques in wireless applications
RU2340088C2 (ru) * 2006-11-23 2008-11-27 Андрей Николаевич Хмельков Способ синдромного декодирования циклического кода (варианты)
US8712483B2 (en) * 2007-12-11 2014-04-29 Sony Corporation Wake-up radio system
WO2009140669A2 (en) * 2008-05-16 2009-11-19 Terahop Networks, Inc. Securing, monitoring and tracking shipping containers
US8483242B2 (en) * 2009-11-11 2013-07-09 Lg Electronics Inc. Method and apparatus for processing inter-rat measurement in dual modem device
US20110158212A1 (en) * 2009-12-28 2011-06-30 Kabushiki Kaisha Toshiba Communication device and wireless communication connection method
US8457097B2 (en) * 2010-04-30 2013-06-04 Broadcom Corporation Communicating with two nodes with overlapping frames
ITVR20100163A1 (it) * 2010-08-05 2012-02-06 Nice Spa Rete wireless per l'automazione domestica

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290428A (zh) * 1998-12-10 2001-04-04 三星电子株式会社 通信系统中具有串行级联结构的编码器/解码器
US20040081250A1 (en) * 2002-10-25 2004-04-29 Ying-Heng Shih Branch metric generator for Viterbi decoder
CN101442313A (zh) * 2007-11-20 2009-05-27 华为技术有限公司 编解码方法以及编码器、解码器、乘积项装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690789A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664017C2 (ru) * 2013-11-04 2018-08-14 Сосьедад Эспаньола Пара Эль Интернет Де Лас Косас, С.Л. Система записи данных для мониторинга и отслеживания отгрузки и транспортировки товаров, требующих поддержания конкретных значений параметров, и способ осуществления указанного мониторинга и отслеживания

Also Published As

Publication number Publication date
US9451541B2 (en) 2016-09-20
EP2690789A1 (en) 2014-01-29
EP2690789A4 (en) 2015-04-08
BR112014015981A8 (pt) 2017-07-04
RU2013150700A (ru) 2016-02-27
RU2585992C2 (ru) 2016-06-10
BR112014015981A2 (pt) 2021-05-25
US20140044032A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2012119394A1 (zh) 一种无线通信系统及其唤醒方法
WO2013170436A1 (zh) 一种无线通信系统及方法
CN103428830B (zh) 一种无线通信系统及方法
CN102438301B (zh) 一种无线通信系统及方法
CN101843150B (zh) 无线通信装置、终端、系统、程序
US8762760B2 (en) Method and apparatus for adaptive power control in a multi-lane communication channel
JP5541234B2 (ja) トランシーバ
CN104365057B (zh) 三相极性安全反向链路关闭
CN107690096B (zh) 一种双向唤醒方法
CN102761389B (zh) 非同步主从式串行通信系统、数据传输方法与控制模块
US10256941B1 (en) Power saving in a communication network for a motor vehicle
CN105337744A (zh) 一种自定义唤醒序列的极低功耗两级唤醒接收机系统
CN111683399A (zh) 设备唤醒电路、电子设备、唤醒系统以及设备唤醒方法
KR20130016110A (ko) 송수신기
JP2013030932A (ja) 通信システム及び、当該通信システムに用いられるサブマスタノード
WO2013104116A1 (zh) 一种无线通信系统及方法
CN103997376A (zh) 用于人体通信的数据通信系统及方法
US8031746B2 (en) Synchronized receiver
Stecklina et al. A secure wake-up scheme for low power wireless sensor nodes
CN101764672B (zh) 一种应用于电磁炉数据通信的校验系统及其应用方法
US11652651B1 (en) Energy efficient ethernet (EEE) link recovery from low SNR
CN111459069B (zh) 第一控制模块、第二控制模块、数据传输系统及控制方法
Milankovich et al. Wakeup signal length optimization combined with payload aggregation and FEC in WSNs
US20200076929A1 (en) Method for transmitting information
JP4626256B2 (ja) 受信装置およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012865490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14113580

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013150700

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014015981

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014015981

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140627

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014015981

Country of ref document: BR

Kind code of ref document: A8

Free format text: REGULARIZE A PROCURACAO, UMA VEZ QUE O DOCUMENTO APRESENTADO NAO CONCEDE AO PROCURADOR PODERES DE REPRESENTACAO JUDICIAL PARA RECEBER CITACOES EM NOME DO OUTORGANTE, CONFORME O DISPOSTO NO ART. 217 DA LEI NO 9.279/96.

ENP Entry into the national phase

Ref document number: 112014015981

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140627