WO2013103201A1 - 간섭계형 광섬유 교란 감지 장치 및 그 감지 방법 - Google Patents

간섭계형 광섬유 교란 감지 장치 및 그 감지 방법 Download PDF

Info

Publication number
WO2013103201A1
WO2013103201A1 PCT/KR2012/010875 KR2012010875W WO2013103201A1 WO 2013103201 A1 WO2013103201 A1 WO 2013103201A1 KR 2012010875 W KR2012010875 W KR 2012010875W WO 2013103201 A1 WO2013103201 A1 WO 2013103201A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
optical fiber
sensing
pulse
Prior art date
Application number
PCT/KR2012/010875
Other languages
English (en)
French (fr)
Inventor
김효상
정호진
용재철
Original Assignee
(주)파이버프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파이버프로 filed Critical (주)파이버프로
Priority to CN201280065977.0A priority Critical patent/CN104040598B/zh
Priority to US14/360,921 priority patent/US20140376910A1/en
Publication of WO2013103201A1 publication Critical patent/WO2013103201A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/181Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
    • G08B13/183Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier
    • G08B13/186Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier using light guides, e.g. optical fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present invention relates to a sensing device using an optical fiber, and more particularly, to a sensing system capable of detecting a high sensitivity using an interferometer to external disturbance applied to the sensing optical fiber.
  • Intrusion monitoring by the optical fiber uses an OTDR instrument that can confirm the point of intrusion and the absence of reflection by Rayleigh scattering in the area after the cut when the optical fiber hypothesized by the intruder is cut by the intruder. To check for intrusion and point.
  • a sensing method using another type of optical fiber disturbance detection sensor is a method of monitoring the change in the intensity of reflected light when a pressure from an intruder is applied on a special optical fiber in which rare earth elements are added to the optical fiber, and a general optical fiber sensor element.
  • optical fiber installed as described above is easily cut by intruders, passers, natural factors such as wind, other animals, and the like, and there are many problems in actual operation, and there is a problem that requires huge costs and manpower for maintenance.
  • the optical fiber hypothesized in the air may be easily broken by a passing animal or a tree swaying in the wind because of its weak strength.
  • the use of coarse-strengthened fiber optics to compensate for this causes other problems in that proper intrusion detection is not achieved because it is not broken when it is easily exposed to intruders or vice versa.
  • the optical fiber once the optical fiber is broken, it can not be reused until the specialists are put in and repaired, and since there is no automatic alarm function or reporting function, there is no possibility of practical use.
  • the method of monitoring the intensity of the reflected light due to the pressure applied when the intruder passes through the special optical fiber can be buried in a safer ground, but in this case, the intensity of the reflected light is extremely small and difficult to be used as an efficient interpersonal sensor. Do.
  • the method of detecting the interference of the reflected light at the two refractive index interfaces due to the change in the refractive index of the optical fiber by using the OTDR or the like cannot be easily commercialized because the sensitivity of the sensor is low and the price of the sensor system is enormous.
  • the present invention is to provide a detection device that can more easily identify whether the intruder, the intrusion point, the intrusion target.
  • An interferometer optical fiber disturbance detection apparatus is a sensing optical fiber for detecting external disturbance, an optical signal generator for outputting a pulsed optical signal, and split the optical signal output from the optical signal generator
  • the sensing optical signal coupled to the optical paths of different lengths is output to the sensing optical fiber, and the sensing optical signal returned from the sensing optical fiber is divided into the optical paths of different lengths and then combined to detect the interference.
  • An optical interference unit for outputting an optical signal, an optical receiver for converting the interference sensing optical signal output from the optical interference unit into an electrical signal, and an external signal applied to the sensing optical fiber by analyzing the electrical signal output from the optical receiver; It includes a signal processing unit for identifying the position and type of disturbance.
  • the sensing optical fiber may include a reflection point using a connection point of a plurality of optical fiber cables connected to a face contact / physical contact connector (FC / PC) connector or may include a reflection point using an optical fiber grating.
  • FC / PC physical contact connector
  • the sensing optical fiber may include a polarization maintaining optical fiber or an optical fiber having enhanced Rayleigh backscattering.
  • the optical signal generation unit may use any one of a light source such as a laser diode (LD), a super luminescent diode (LDD), an AMP (amplified spontaneous emission) light source using an erbium doped fiber (EDF), and a light emitting diode (LED).
  • a light source such as a laser diode (LD), a super luminescent diode (LDD), an AMP (amplified spontaneous emission) light source using an erbium doped fiber (EDF), and a light emitting diode (LED).
  • a polarized light source can be used.
  • the light signal generating unit may be a light source of a short wavelength light source.
  • the optical interference unit divides an optical signal input from the optical signal generator and outputs the optical signals of different lengths, and combines optical signals input from the optical paths of different lengths.
  • a first optical coupler for outputting to an optical receiver and optical signals input from the optical paths of different lengths to be combined and output to the sensing optical fiber, and optical signals input from the sensing optical fiber are divided to divide the optical signals of different lengths And a second optical coupler output to the furnaces.
  • the first optical coupler is a 2X2 optical coupler or one center of which both ports of one side are connected to the optical signal generator and the optical receiver, and both ports of the other side are connected to the optical paths of different lengths.
  • a port is connected to the optical signal generator, and the upper and lower ports of one side are connected to the first and second optical receivers, and the upper and lower ports of the other side include a 3X3 optical coupler connected to the optical paths of different lengths.
  • the second optical coupler includes a 2X2 optical coupler, in which both ports of one side are connected to the optical paths of different lengths, and one port of the other side is connected to the sensing optical fiber.
  • the optical paths having different lengths are formed longer than the pulse length of the optical signal.
  • the interferometric optical fiber disturbance detection apparatus of the present invention may further include a depolarizer provided between one path of the optical interference unit or between the optical signal generator and the optical interference unit.
  • the interferometer optical fiber disturbance detection apparatus of the present invention may further include a phase modulator in one path of the optical interference.
  • the signal processor divides the distance of the sensing optical fiber into a plurality of sections, and scatters the signal values received from the optical receiver by back scattering in each section for each pulse sequence of the optical signal and stores the signal values in the memory.
  • the signal processing unit sequentially reads the signal values stored in the memory for each pulse for each distance of the sensing optical fiber and grasps the change in the backscattered signal due to external disturbance at a specific point to the plurality of sections. It is determined whether external disturbance is applied at the separated point.
  • the signal processor compares the signal values stored in the memory for each pulse string to determine frequency characteristics of external disturbances.
  • the signal processor detects the occurrence position and magnitude of external disturbance by comparing the signal values stored in the memory for each position divided into the plurality of sections.
  • the signal processing unit averages the signal values stored in the memory for a predetermined time.
  • the signal processor compares a value obtained by averaging the signal values stored in the memory for a predetermined time while there is no external disturbance, and a value averaging the signal values stored in the memory for a predetermined time while the external disturbance is applied. To determine whether external disturbances are authorized.
  • the signal processor determines whether the external disturbance is applied only when there is a change in the Fresnel reflection signal generated at the end of the sensing optical fiber, grasps the frequency characteristics of the external disturbance, or the location and magnitude of the external disturbance. The grasp can be performed.
  • an interferometric optical fiber disturbance detection method In an interferometric optical fiber disturbance detection method according to an embodiment of the present invention, a first step of dividing a pulsed optical signal and proceeding through optical paths having different lengths, and an optical signal of the optical paths having different lengths A second step of combining and outputting the sensed optical signal returned from the sensed optical fiber to the optical paths having different lengths; and detecting the optical paths having different lengths. And a fourth step of combining the optical signals to generate an interference sensing optical signal and a fifth step of analyzing the interference sensing optical signal to determine the location and type of external disturbance applied to the sensing optical fiber.
  • the first step divides the optical signal into two and then proceeds the divided optical signals to different optical paths having a path difference longer than the pulse length of the optical signal.
  • the third step divides the sensing optical signal returned from the sensing optical fiber into two and causes the divided sensing optical signals to advance in the different optical paths in the reverse direction.
  • the optical signal which advances the long optical path in the third step after the short optical path in the first step and the long optical path in the first step are performed.
  • the method may further include generating a predetermined constant phase difference to the optical signal that proceeds through the short optical path.
  • the distance of the sensing optical fiber is divided into a plurality of sections, and after sampling and storing signal values scattered back in each section for each pulse sequence number of the optical signal, the stored signal values of the sensing optical fiber By sequentially reading every pulse for each distance, it is determined whether the external disturbance is applied to the points divided into the plurality of sections by grasping the change in the magnitude of the backscattered signal due to the external disturbance at a specific point.
  • the distance of the sensing optical fiber is divided into a plurality of sections, and after sampling and storing signal values scattered back in each section for each pulse sequence number of the optical signal, the stored signal values are read for each pulse string. Compare and identify the frequency characteristics of external disturbances.
  • the fifth step divides the distance of the sensing optical fiber into a plurality of sections, samples and stores backscattered signal values in each section for each pulse sequence number of the optical signal, and reads the plurality of stored signal values.
  • the location and magnitude of external disturbances are identified by comparing the location of each section.
  • the sampled and stored signal values are averaged for a predetermined time.
  • the present invention can more easily determine whether the intruder intrusion, the intrusion point, the intrusion target, it is possible to perform a more sensitive monitoring or prediction of the destruction of the structure.
  • FIG. 1 is a block diagram showing the configuration of an interferometer optical fiber disturbance detection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the principle of operation of the optical fiber disturbance detection device of FIG. 1, (a) is a view illustrating a process of generating a sensing optical signal by the one pulse signal to the sensing optical fiber, (b) A diagram illustrating a process in which a sensing optical signal is reflected from a sensing optical fiber and returned.
  • 3 is a view showing the state of the interference detection optical signal by the pulse signal continuously output from the optical signal generator.
  • Figure 4 is a view showing in more detail the state of change in the signal observed in the optical receiver, when there is no external disturbance.
  • 5 is a view showing in more detail the state of the signal observed in the light receiving unit when external disturbance is applied to the x point.
  • FIG. 6 is a view showing in more detail the change of the signal observed in the optical receiver when external disturbances are applied simultaneously to the x point and the y point.
  • FIG. 7 is a view for explaining a signal processing method of the signal processing unit 50 in the sensing device of FIG.
  • FIG. 8 is a block diagram showing the configuration of an interferometer optical fiber disturbance detection apparatus according to another embodiment of the present invention.
  • FIG. 9 is a view showing the strength of the signal according to the phase difference of each signal in the interferometer of FIG.
  • An interferometer optical fiber disturbance detection apparatus is a sensing optical fiber for detecting external disturbance, an optical signal generator for outputting a pulsed optical signal, and split the optical signal output from the optical signal generator
  • the sensing optical signal coupled to the optical paths of different lengths is output to the sensing optical fiber, and the sensing optical signal returned from the sensing optical fiber is divided into the optical paths of different lengths and then combined to detect the interference.
  • An optical interference unit for outputting an optical signal, an optical receiver for converting the interference sensing optical signal output from the optical interference unit into an electrical signal, and an external signal applied to the sensing optical fiber by analyzing the electrical signal output from the optical receiver; It includes a signal processing unit for identifying the position and type of disturbance.
  • an interferometric optical fiber disturbance detection method In an interferometric optical fiber disturbance detection method according to an embodiment of the present invention, a first step of dividing a pulsed optical signal and proceeding through optical paths having different lengths, and an optical signal of the optical paths having different lengths A second step of combining and outputting the sensed optical signal returned from the sensed optical fiber to the optical paths having different lengths; and detecting the optical paths having different lengths. And a fourth step of combining the optical signals to generate an interference sensing optical signal and a fifth step of analyzing the interference sensing optical signal to determine the location and type of external disturbance applied to the sensing optical fiber.
  • FIG. 1 is a block diagram showing the configuration of an interferometer optical fiber disturbance detection apparatus according to an embodiment of the present invention.
  • the interferometer type optical fiber disturbance detection apparatus includes an optical signal generator 10, an optical interference unit 20, a sensing optical fiber 30, an optical receiver 40, and a signal processor 50.
  • the optical signal generator 10 periodically outputs an optical signal in the form of a pulse.
  • the optical signal generator 10 may include a light source for generating a light pulse and a driver for driving the light source.
  • a laser diode (LD), a super luminescent diode (LDD), an amplified spontaneous emission (ASE) light source using an erbium doped fiber (EDF), a light emitting diode (LED), or the like may be used as the light source.
  • the light source is a short wavelength (0.8 ⁇ m, 1.3 ⁇ m, etc.) light source is used, it is desirable to increase the magnitude of the reflected signal by causing more Rayleigh backscattering inversely proportional to the square of the wavelength in the sensing optical fiber 30. .
  • the optical interference unit 20 converts an optical pulse output from the optical signal generator 10 into a sensing optical signal having a plurality of consecutive pulses and outputs the detected optical signal to the sensing optical fiber 30. That is, the optical interference unit 20 divides the optical pulses output from the optical signal generator 10 into a plurality of optical pulses, advances the divided optical pulses in a path having different lengths, and then combines the plurality of continuous optical pulses. Generates a sensed optical signal with a pulse of. In addition, the optical interference unit 20 generates an interference sensing optical signal by overlapping some of the pulses of the sensing optical signal reflected by the sensing optical fiber 30 and outputs the interference sensing optical signal to the optical receiver 40.
  • the optical interference unit 20 splits the sensing optical signal reflected by the sensing optical fiber 30 into a plurality of sensing optical signals, advances the divided sensing optical signals to optical paths having different lengths, and then combines them again. As a result, an interference sensing optical signal in which pulses reflected at different times are superimposed at the same point (reflection point) is generated and output to the optical receiver 40.
  • the optical interference unit 20 is connected between the optical couplers 22 and 26 and the optical couplers 22 and 26 which split a single optical pulse into a plurality of optical pulse signals and combine the plurality of optical pulse signals.
  • Light paths 24S and 24L having different lengths L1 and L2.
  • the optical couplers 22 and 26 are directional couplers having a coupling ratio of 50%, and the length difference L1-L2 of the optical paths 24S and 24L is formed longer than the length of the light pulse.
  • the sensing optical fiber 30 is connected to the optical interference unit 20 to detect external disturbances.
  • the sensing optical fiber 30 preferably uses an optical fiber with enhanced Rayleigh backscattering to enhance the reflection signal caused by the backscattering. In this way, defects can be added to the optical core, or impurities can be added.
  • the reflection signal can be made by constructing a sensing fiber into multiple fiber cables and connecting each fiber cable with an FC / PC connector (face contact / physical contact connector) to create Fresnel reflections that occur artificially at the fiber cable connection points. Can be increased.
  • the reflection signal may be artificially increased by forming a reflection point by forming an optical fiber grating in the core of the sensing optical fiber 30.
  • the sensitivity can be improved by winding the spiral fiber or coil several times in a specific area to detect external disturbance without linearly installing the sensing optical fiber 30.
  • a polarization maintaining optical fiber is used as the sensing optical fiber 30 in order to remove a change in coherence according to the polarization state.
  • the optical receiver 40 converts the interference sensing optical signal received through the optical interference unit 20 into an electrical signal proportional to the intensity of the optical signal and outputs the electrical signal to the signal processor 50.
  • a photo detector may be used as the light receiver 40.
  • the signal processing unit 50 analyzes the electrical signal of the light receiving unit 40 to determine the location of external disturbance applied to the sensing optical fiber 30 and whether the type of disturbance is an invasion of an outsider or a natural phenomenon such as wind. Know your back. That is, the signal processing unit 50 measures the magnitude of backscattering at each position of the sensing optical fiber 30 over time, compares the signals by the order of the optical pulses, and grasps the frequency characteristics of the external disturbance, and the signals for each position. Compare and determine the location and magnitude of external disturbances.
  • FIG. 2 is a view for explaining the principle of operation of the optical fiber disturbance detection device of FIG. 1, (a) is a view illustrating a process of generating a sensing optical signal by the one pulse signal to the sensing optical fiber, (b) FIG. 4 is a diagram illustrating a process in which a sensing optical signal is reflected from a sensing optical fiber and returned.
  • One optical pulse 11 output from the optical signal generator 10 is divided into two identical pulses 12 and 13 in the optical coupler 22, and each of the divided pulses 12 and 13 has a different length.
  • the optical signals 30 are coupled to the sensing optical signal 14 through the optical coupler 26 to enter the sensing optical fiber 30.
  • the detection optical signal 14 is the two pulses (12, 13) completely spatially It enters the sensing optical fiber 30 in a separated form and proceeds.
  • the sensing optical signal 14 traveling through the sensing optical fiber 30 is partially reflected at the reflection points 31 and 32 by Rayleigh backscattering present in the sensing optical fiber 30. Return to the optical interference section 20.
  • the actual Rayleigh backscattering is distributed throughout the sensing optical fiber 30, but in the present embodiment, it is described that reflection is performed only at two points 31 and 32 for convenience of description.
  • the sensing light signals 15 and 16 reflected at the reflection points 31 and 32 are again divided by the optical coupler 26, proceed along different optical paths 24L and 24S, and then are combined in the optical coupler 22. It is received by the optical receiver 40.
  • the signals 17 and 18 received by the light receiver 40 are interference detection optical signals that are partially overlapped with each other through the different paths 24L and 24S. This results in a pulse signal containing three pulses per pulse.
  • the first pulse in the interference sensing optical signal 17 is the pulse 11 output from the optical signal generator 10 proceeds through the short path 24S of the optical interference unit 20 and then the The signal is reflected at one reflection point 31 and returned through the short path 24S of the optical interference unit 20 again.
  • this signal is referred to as SS pulse.
  • the third pulse in the interference sensing optical signal 17 is the pulse 11 output from the optical signal generator 10 proceeds through the long path 24L of the optical interference unit 20 and then the It is a signal that is reflected at one reflection point 31 and returned through the long path 24L of the optical interference unit 20 again.
  • this signal is referred to as an LL pulse.
  • the middle pulse of the interference sensing optical signal 17 is one of the sensing optical fibers 30 after the pulse 11 output from the optical signal generator 10 passes through the short path 24S of the optical interference unit 20.
  • the sensing optical fiber 30 After sensing through the long path 24L of the signal (SL pulse) reflected by the reflection point 31 and returned through the long path 24L of the optical interference unit 20, the sensing optical fiber 30
  • the signal (LS pulse) reflected at one reflection point 31 of and returned through the short path 24S of the optical interference unit 20 is a superimposed signal.
  • the superimposed signals are referred to as SL / LS pulses.
  • the optical path lengths of the two signals are the same to generate an interference signal having high coherence.
  • the coherence becomes high only when the polarization of the two lights is the same.
  • the polarization state of the SL pulse and the LS pulse can be changed by the birefringence of the optical fiber and the change of the birefringence with time. Can be. Therefore, it is preferable to remove the polarization dependence according to the surrounding environment by using the polarization maintaining optical fiber as the whole optical fiber.
  • a polarized light source may be used for the optical signal generator 10.
  • the two signals pass through the reflection point 31 of the sensing optical fiber 30 at the same time but at different times, but may experience different phases as they pass. If the two signals (SL pulse, LS pulse) experience different phases, the magnitude of the SL / LS pulses changes according to the phase difference of the two signals, so that the external disturbance can be detected by measuring the change.
  • the interference detection optical signal 18 reflected at the reflection point 32 is also generated through the same process as the interference detection optical signal 17. .
  • the detection light signal 15 reflected at the reflection point 31 does not proceed to the point where the disturbance has occurred and thus interference with the detection light signal 15.
  • the center pulse of the sensing light signal 17 is not affected by external disturbances.
  • the sensing optical signal 16 reflected at the reflection point 32 has progressed to the point where the disturbance has occurred, the magnitude of the center pulse of the interference sensing optical signal 18 is changed under the influence of external disturbance. Accordingly, by analyzing the magnitude change of the interference sensing optical signals 17 and 18 returned from the respective reflection points 31 and 32 using this principle, it is possible to detect the occurrence of disturbance and the position of the disturbance.
  • 3 is a view showing the state of the interference detection optical signal by the optical pulse that is continuously output from the optical signal generator.
  • the sensing optical signal is reflected at two independent reflection points 31 and 32 for convenience of description.
  • the detection light signal is reflected in a distributed reflection form, and thus the signal received by the light receiver 40 is shown in FIG. 2.
  • FIG. 2 As shown in (a) of FIG. 3 rather than an independent pulse train, continuous lines are shown.
  • the signal returned without reaching the position (event position) with external disturbance ( 51) shows that there is no change in the magnitude of the signal as shown in (b), but the signal 52 that has passed through the position where the external disturbance has returned has a change in the magnitude of the signal as shown in (c) due to external disturbance. do.
  • FIG. 4 to 6 is a view showing the change in the signal observed in the light receiving unit according to the external disturbance in more detail, Figure 4 when there is no external disturbance, Figure 5 when the external disturbance is applied to the x point and FIG. 6 shows the signal when external disturbances are applied to the x and y points at the same time.
  • t1 is the light propagation time in the short path 24S of the optical interference unit 20
  • t2 is the light propagation time in the long path 24L
  • the light propagation time is detected in the sensing optical fiber 30.
  • the length of each path is preferably set on the condition of t1 ⁇ t2 ⁇ t3.
  • the optical couplers 22 and 26 are 2X2 directional couplers having a coupling ratio of 50%.
  • the optical signals passing through the couplers 22 and 26 are divided into two arms, and the light is divided in half and then passes through as is.
  • the light coupled to the opposite arm Has a phase difference of.
  • the SS pulse starts from the optical signal generator 10 and enters the sensing optical fiber 30 through the short path 24S of the optical interference unit 20, and then is distributed and reflected from the whole sensing optical fiber 30 again.
  • the light incident portion 40 is incident on the light receiving portion 40 via the short path 24S of the optical interference portion 20.
  • the light intensity is reduced by half (3 dB decrease), and the Rayleigh backscattering is not only in the sensing optical fiber 30 but also in the optical fiber constituting the optical interference part 20. Also occurs in. Therefore, after the light pulse output from the optical signal generator 10 passes through the combiner 22, the light is scattered directly in the short path 24S, and then the light pulse incident through the combiner 22 is incident on the optical receiver 40.
  • the relative intensity is set to "1"
  • the magnitude of backscattering over time of the SS pulse is the same as the signal a) in FIG.
  • the coupler 26 passes through the coupler 26 two more times, so that its strength is reduced to 1/4 and becomes 0.25.
  • the strength decreases toward the back due to the backscatter accumulated in the front part.
  • the reflection peak may appear at 2 (t1 + t3) by the Fresnel reflection at the end of the sensing optical fiber 30. This is indicated by the arrow at 2 (t1 + t3).
  • the LL pulses are identical except that the LL pulses differ only in that they travel the long path 24L in the optical interference unit 20 as compared with the SS pulses. Therefore, after the light pulse output from the optical signal generator 10 passes through the combiner 22, the light is scattered directly in the long path 24L, and then, the light pulse incident through the combiner 22 and incident on the light receiver 40 is received.
  • the relative intensity is "1"
  • the magnitude of backscattering with time of the LL pulse is the same as the signal b) in FIG.
  • the SL / LS pulse is a superposition of the backscattering of the two pulses 12 and 13 which have traveled the same path in different order, and its magnitude changes due to the phase difference of the two pulses. Only the backscattering in the sensing optical fiber 30 contributes to the SL / LS pulse. Therefore, a signal is generated from t1 + t2, which is a time for the short path 24S and the long path 24L of the optical interference unit 20, and back scattering occurs at the end of the sensing optical fiber 30, t1 + t2 + 2t3. Lasts until. In this case, the reflection peak may appear at t1 + t2 + 2t3 due to Fresnel reflection at the end of the sensing optical fiber 30.
  • the magnitude of the interference signal of backscattering with time of the SL / LS pulse is the same as the signal c).
  • the dotted line indicates the magnitude of the maximum signal that can be caused by the interference, which also decreases as it goes backward due to backscatter accumulated at the front.
  • the magnitude of the signal can be changed from maximum to "0" due to external disturbance. In the absence of external disturbance, the SL and LS pulses Since they have a phase difference of 0, they cancel each other and cause a magnitude of "0".
  • the final signal in the optical receiver 40 is in the form of a combination of the SS pulse, LL pulse, SL / LS pulse, and typically these three signals are delayed by more than a coherence time to be combined so that d) signal and Likewise, the intensity of these three signals is summed together. Since there is no external disturbance, the SL / LS pulse becomes "0", so that the final signal at the optical receiver 40 becomes the sum of the SS pulse and the LL pulse as in the signal d).
  • the SS pulse and the LL pulse are signals of simple Rayleigh backscattering rather than interference signals, they are the same as those of no external disturbance. Accordingly, the shapes of the signals a) and b) of FIG. 5 are the same as those of a) and b) of FIG. 4. However, when the optical loss is largely generated at the disturbing point due to external disturbance, a step may occur at the disturbing point.
  • the light backscattered before point x does not experience external disturbance, so the light intensity is still " 0 ".
  • the constructive interference causes maximum intensity (four times the SS pulse or the LL pulse), and the shape of the signal is as shown in c).
  • the final signal in the optical receiver 40 is in the form of a) SS pulse, b) LL pulse, c) SL / LS pulse combined. Comparing this with the signal d) of FIG. 4, it can be seen that external disturbance is applied at the x point because a step is generated due to constructive interference at the x point. In addition, the magnitude of the external disturbance can also be inferred.
  • the SS pulse and the LL pulse are the same as those of FIGS. 4 and 5 described above. That is, the signal forms a) and b) are the same as the signal forms a) and b) of FIGS. 4 and 5.
  • the backscattered light prior to x does not experience external disturbance, so the light intensity is still "0", and from x to y Since the phase difference occurs, as shown in FIG. 5, constructive interference results in maximum intensity (four times the SS pulse or the LL pulse). And after point y Phase change of Since the signal form is c), it is of medium intensity (twice the SS pulse or LL pulse).
  • the final signal in the optical receiver 40 is in the form of a) SS pulse, b) LL pulse, c) SL / LS pulse combined. Comparing this with the signal d) of FIG. 4, it can be seen that an external disturbance is applied at the x and y points because a step is generated due to the change in the intensity of the interference signal at the x and y points. In addition, the magnitude of the external disturbance can also be inferred. That is, even when external disturbances are applied at several points at the same time, all positions where disturbances are applied can be known through analysis of the final signal.
  • the optical signal generator 10 continuously generates and outputs a pulse signal, and then analyzes the signal received by the optical receiver 40 every pulse to thereby position the disturbance. , The frequency and strength of the disturbance signal can be detected.
  • FIG. 7 is a diagram for describing a signal processing method of the signal processor 50 in the sensing device of FIG. 1.
  • the time axis is a value proportional to the distance (position) of the sensing optical fiber 30. Accordingly, when the optical signal generator 10 continuously generates and outputs a pulse signal, and continuously measures the signal received by the optical receiver 40, backscattering at each position of the sensing optical fiber 30 is performed according to time. The size of can be measured. In this case, the repetition rate of the optical pulse repeatedly output from the optical signal generator 10 corresponds to a sampling rate for measuring backscattering at each point. Therefore, as the repetition rate is faster, external disturbance of high frequency can be detected.
  • the magnitude of backscattering S (distance, Conceptually illustrating sweep) can be represented as shown in FIG.
  • the backscattering signal S for each pulse sequence sequence as shown in d) of FIG. 6 was briefly displayed in a straight line.
  • FIG. 7B is a diagram illustrating digitization of the measured signal S and storing it in a memory.
  • S (xi, n) of (b) xi denotes a digitized distance of a sensing optical fiber and n denotes a sequence of pulse trains ( sweep order).
  • the signal processing unit 50 divides the distance xi of the sensing optical fiber 30 into m sections, and samples the signal values S (xi, n) backscattered in each section by the sequence of pulse strings and stores them in the memory.
  • the distance interval may be generally about the spatial resolution of the sensing device. Spatial resolution is inversely proportional to the pulse width. Therefore, in the optical fiber for communication, it has a spatial resolution of 1 m for a pulse width of 10 mW and 10 m for a pulse width of 100 mW.
  • the difference between the long and short paths in the part is 20 m.
  • the signal processor 50 sequentially reads signal values for each pulse for each distance xi of the sensing optical fiber from the memory and analyzes them by time, as shown in (c) of FIG. 3, the post-scattering signal due to external disturbance at a specific point is shown. It is possible to grasp the change in size. Therefore, the signal processor 50 may simultaneously measure whether external disturbance is applied to m points in total.
  • the signal processor 50 may determine the frequency characteristics of the external disturbance by comparing the signal values read from the memory for each pulse string, and may determine the location and magnitude of the external disturbance by comparing the signal values for each position (xi). have.
  • the signal value of each pulse sequence sequence stored in the memory is averaged for a suitable time in order to improve the signal-to-noise ratio (SNR). If the average time is long, the change in high frequency cannot be measured, and if the average time is small, the signal-to-noise ratio becomes worse. This is determined by considering the magnitude and frequency of external disturbance.
  • the signal processor 50 compares a value obtained by averaging the signal values stored in the memory for a predetermined time while there is no external disturbance and a value averaging the signal values stored in the memory for a predetermined time while the external disturbance is applied. It may be determined whether disturbance is authorized.
  • FIG. 8 is a block diagram showing the configuration of an interferometer optical fiber disturbance detection apparatus according to another embodiment of the present invention.
  • the optical coupler 22 of the optical interference unit 20 of FIG. 1 is used to reduce the signal-to-noise ratio decrease due to the intensity noise of the optical pulse generated by the optical signal generator 10 and to improve the sensitivity.
  • the optical signal generator 10 is connected to the center port of the optical coupler 28, and the optical receivers 42 and 44 are connected to the upper and lower ports, respectively.
  • the upper and lower ports of the other end of the optical coupler 28 are connected to both ports of the optical coupler 26 through the long path 24L and the short path 24S, respectively, to form an optical interferometer.
  • the intensity change is as follows.
  • I 0 is an amount proportional to the intensity of backscattered light at the x point of the sensing optical fiber 30, Is the phase difference when the SL pulse and the LS pulse pass at the x point.
  • the light intensity of the three interfering signals A phase difference of 120 degrees occurs, and the signal intensity according to the phase difference of each signal is displayed as shown in FIG. 9.
  • the conventional OTDR signal (a) SS signal and b) LL signal, which are basically present, may be removed to reduce the influence of the intensity noise of the light source.
  • sensitivity (exactly, scale factor) is improved.
  • the signal-to-noise ratio can be improved by further including a phase modulator in one path of the optical interference unit 20 and changing the phases of the SL pulse and the LS pulse which advance the phase modulator at different times.
  • the signal-to-noise ratio can be improved by providing a sine wave phase modulation using a phase modulator and demodulating it again or analyzing the harmonic component of the phase modulation frequency. Or two signals at the moment the SL pulse and LS pulse pass By driving the phase modulator to produce a constant phase difference of, the sensitivity can be improved because the interference signal is in a quadrature phase.
  • the polarization dependence of the optical signal may be removed by additionally providing a depolarizer between one path of the optical interference unit 20 or between the optical signal generator 10 and the optical interference unit.
  • the signal processor 50 stores all the signals received by the optical receiver 40 in the memory and analyzes them at all times. However, in this case, unnecessary data storage and analysis are performed. It can be inefficient. Compared to the size of backscattering, the fresnel reflection at the end of the sensing fiber 30 is very large, and when the external disturbance is applied to the sensing fiber 30, the fresnel reflection signal at the end is easily changed. Can be measured. Therefore, the signal processor 50 may store the received interference signal or precisely analyze the corresponding signal only when there is a change in the Fresnel reflection signal at the end of the sensing optical fiber 30.
  • the fresnel reflection signal at the end of the sensing optical fiber 30 is trigger signal, event occurrence confirmation signal, alarm signal, event occurrence place and precise signal analysis start signal of nature. It is preferable to use such as.
  • the present invention can more easily determine whether the intruder intrusion, the intrusion point, the intrusion target, it is possible to perform a more sensitive monitoring or prediction of the destruction of the structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 발명은 광섬유를 이용한 간섭계형 교란 감지 장치 및 그 감지 방법에 관한 것으로, 광신호 발생부에서 출력되는 광신호를 분할하여 서로 다른 길이의 광경로들로 진행시킨 후 결합시킨 감지 광신호를 상기 감지 광섬유로 출력하고, 상기 감지 광섬유에서 되돌아온 감지 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 진행시킨 후 이를 결합시켜 간섭 감지 광신호를 생성함으로써 침입자의 침입 여부와 침입 지점, 침입 대상을 보다 용이하게 확인할 수 있다.

Description

간섭계형 광섬유 교란 감지 장치 및 그 감지 방법
본 발명은 광섬유를 이용한 감지 장치에 관한 것으로, 보다 상세하게는 감지용 광섬유에 인가되는 외부 교란을 간섭계를 이용하여 고감도로 감지할 수 있는 감지 시스템에 관한 것이다.
일반적으로, 침입이나 파괴 또는 노후화나 충격에 의한 파괴 등을 감시하는데 있어서 인력을 이용하는 것은 많은 수의 인원과 비용을 필요로 한다. 또한, 감시자가 잠시 동안 부주의하거나 자리를 비울 때 경계에 실패를 초래할 수도 있으며, 악천후나 시계가 불완전한 야간의 경우 인력에 의한 침입의 감시는 불가능할 수 있다.
따라서, 이러한 군사경계나 중요 시설물의 인력에 의한 감시의 보조 수단 또는 이보다는 덜 주요한 시설물에 대한 무인 감시를 목적으로 센서를 이용한 자동감시 시스템의 필요성이 대두되었으며, 이를 위해 적외선 카메라나 폐쇠회로 텔레비젼(TV) 등이 등장하였다. 그러나, 이러한 경우에는 감시점의 수에 비례하여 카메라와 모니터의 수가 증가하게 되므로 감시점의 수에 절대적인 한계가 뒤따르고, 이 또한 모니터 요원의 상주를 필요로 하기 때문에 잠시 동안의 자리 비움이나 부주의로 인해 침입감시에 실패할 수 있는 문제점을 갖는다.
이러한 전자감시의 문제점을 해결하기 위해 경계선의 공중에 적절한 높이로 가설된 광섬유와 OTDR(Optical Time Domain Reflectometry) 계측기를 이용한 자동 침입 감시가 시도된 바가 있었다.
이러한 광섬유에 의한 침입 감시는 경계선의 공중에 가설된 광섬유가 침입자에 의해 절단될 때 절단부 이후의 영역에서 레일레이(Rayleigh) 산란에 의한 반사가 없다는 점과 침입지점을 확인해줄 수 있는 OTDR 계측기를 이용하여 침입 여부와 지점을 확인하였었다.
한편, 또 다른 형태의 광섬유 교란 감지 센서를 이용한 감지 방법으로는 광섬유내에 희토류 원소가 첨가된 특수한 광섬유 상에 침입자에 의한 압력이 가해질 때의 반사광의 세기 변화를 모니터하는 방식, 그리고 일반 광섬유를 센서소자로 이용하되 가간섭 길이가 일반 레이저 다이오드보다 훨씬 긴 고출력 레이저 시스템을 이용하여 침입자에 의해 압력을 받는 부분의 광섬유의 굴절률 변화에 의한 두 굴절률 경계면에서의 반사광의 간섭을 OTDR 등을 이용하여 침입 위치를 확인하고 자동 경보를 발생시키는 방식 등이 있다.
그러나, 전술한 바와 같이 설치된 광섬유는 침입자나 통과자, 바람 등의 자연요인, 기타 짐승 등에 의해 쉽게 절단되어 실제 운용상 많은 문제점이 있으며, 유지 보수에 막대한 비용과 인력을 요하는 문제가 있다.
일반적으로, 광섬유와 OTDR을 이용한 침입 감지 시스템의 경우에 공중에 가설된 광섬유는 그 강도가 약하기 때문에 지나가는 동물이나 바람에 흔들리는 나무 등에 의해 쉽게 끊어질 수 있다. 그렇다고 이를 보완하기 위해 강도가 보강된 굵은 광섬유를 사용할 경우에는 쉽게 침입자에 노출되거나 반대로 끊어져야 할 시점에 끊어지지 않으므로 적절한 침입 감지가 이루어지지 않는 다른 문제를 야기하게 된다. 또한, 일단 광섬유가 끊어지게 되면 전문 인력이 투입되어 보수되기 전에는 재사용이 불가능하며, 자동 경보기능이나 보고기능이 주어져 있지 않으므로 실용화 가능성이 전혀 없다.
한편, 침입자가 특수 광섬유를 지나갈 때 가해지는 압력에 의한 반사광의 세기를 모니터하는 방식은 보다 안전한 땅속에 매설되어 사용될 수가 있으나, 이러한 경우에 반사광의 세기 변화는 극히 미미하여 효율적인 대인 감지 센서로서 사용되기 곤란하다. 또한, 광섬유의 굴절률 변화에 의한 두 굴절률 경계면에서의 반사광의 간섭을 OTDR 등을 이용하여 감지하는 방식은 센서의 감도가 떨어지며 센서 시스템의 가격이 엄청나므로 쉽게 상용화될 수 없다.
따라서, 침입자의 침입 여부와 침입 지점, 침입 대상을 보다 용이하게 확인할 수 있는 감지 장치의 필요성이 대두되고 있다.
본 발명은 침입자의 침입 여부와 침입 지점, 침입 대상을 보다 용이하게 확인할 수 있는 감지 장치를 제공하고자 한다.
본 발명의 일 실시 예에 따른 간섭계형 광섬유 교란 감지 장치는 외부 교란을 감지하는 감지 광섬유, 펄스 형태의 광신호를 출력하는 광신호 발생부, 상기 광신호 발생부에서 출력되는 광신호를 분할하여 서로 다른 길이의 광경로들로 진행시킨 후 결합시킨 감지 광신호를 상기 감지 광섬유로 출력하고, 상기 감지 광섬유에서 되돌아온 감지 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 진행시킨 후 결합시킨 간섭 감지 광신호를 출력하는 광간섭부, 상기 광간섭부에서 출력되는 상기 간섭 감지 광신호를 전기 신호로 변환하여 출력하는 광수신부 및 상기 광수신부에서 출력되는 전기 신호를 분석하여 상기 감지 광섬유에 인가된 외부 교란의 위치 및 종류를 파악하는 신호처리부를 포함한다.
바람직하게는, 상기 감지 광섬유는 FC/PC(face contact/physical contact connector) 커넥터로 연결된 복수의 광섬유 케이블의 연결점을 이용한 반사점을 포함하거나 광섬유 격자를 이용한 반사점을 포함할 수 있다.
또한, 감지 광섬유는 편광유지 광섬유를 포함하거나 레일라이(Rayleigh) 후방산란이 강화된 광섬유를 포함한다.
바람직하게는, 상기 광신호 발생부는 LD(Laser Diode), SLD(Super Luminescent Diode), EDF(Erbium Doped Fiber)를 이용한 ASE(Amplified Spontaneous Emission) 광원, LED(Light Emitting Diode) 중 어느 하나의 광원을 사용할 수 있으며, 무편광 광원이 사용될 수 있다. 또한, 광신호 발생부는 광원이 단파장 광원일 수 있다.
바람직하게는, 상기 광간섭부는 상기 광신호 발생부로부터 입력되는 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 출력하고, 상기 서로 다른 길이의 광경로들로부터 입력되는 광신호들을 결합하여 상기 광수신부로 출력하는 제 1 광결합기 및 상기 서로 다른 길이의 광경로들로부터 입력되는 광신호들을 결합하여 상기 감지 광섬유로 출력하고, 상기 감지 광섬유로부터 입력되는 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 출력하는 제 2 광결합기를 포함한다.
바람직하게는, 상기 제 1 광결합기는 일측의 양 포트가 상기 광신호 발생부 및 상기 광수신부와 연결되며, 타측의 양 포트가 상기 서로 다른 길이의 광경로와 연결되는 2X2 광결합기 또는 일측의 가운데 포트는 상기 광신호 발생부와 연결되고 상기 일측의 상하단 포트는 제 1 및 제 2 광수신부와 연결되며, 타측의 상하단 포트가 상기 서로 다른 길이의 광경로와 연결되는 3X3 광결합기를 포함한다.
그리고, 상기 제 2 광결합기는 일측의 양 포트가 상기 서로 다른 길이의 광경로와 연결되며, 타측의 일 포트가 상기 감지 광섬유와 연결되는 2X2 광결합기를 포함한다.
이때, 상기 서로 다른 길이의 광경로는 그 경로차가 상기 광신호의 펄스 길이보다 길게 형성된다.
바람직하게는, 본 발명의 간섭계형 광섬유 교란 감지 장치는 상기 광간섭부의 일 경로 또는 상기 광신호 발생부와 광간섭부 사이에 구비되는 디폴라라이저(depolarizer)를 더 포함할 수 있다. 또한, 본 발명의 간섭계형 광섬유 교란 감지 장치는 상기 광간섭부의 일 경로에 위상변조기를 더 구비할 수 있다.
바람직하게는, 상기 신호처리부는 상기 감지 광섬유의 거리를 복수의 구간으로 구분한 후 광신호의 펄스 순번 별로 각 구간에서 후방산란되어 상기 광수신부에 수신된 신호값을 샘플링하여 메모리에 저장한다.
바람직하게는, 상기 신호처리부는 상기 메모리에 저장된 신호값들을 상기 감지 광섬유의 거리 별로 매 펄스 마다 순차적으로 읽어 들여 특정 지점에서의 외부 교란에 의한 후방산란 신호의 크기 변화를 파악함으로써 상기 복수의 구간으로 구분된 지점에 외부 교란이 인가되었는지 여부를 판단한다.
바람직하게는, 상기 신호처리부는 상기 메모리에 저장된 신호값들을 펄스 열 별로 비교하여 외부 교란의 주파수 특성을 파악한다.
바람직하게는, 상기 신호처리부는 상기 메모리에 저장된 신호값들을 상기 복수의 구간으로 구분된 위치 별로 비교함으로써 외부 교란의 발생 위치와 크기를 파악한다.
바람직하게는, 상기 신호처리부는 상기 메모리에 저장된 신호값들을 기 설정된 시간동안 평균화하여 사용한다.
바람직하게는, 상기 신호처리부는 외부 교란이 없는 동안에 상기 메모리에 저장된 신호값들을 기 설정된 시간동안 평균화 한 값과 외부 교란이 인가 된 동안에 상기 메모리에 저장된 신호값들을 기 설정된 시간동안 평균화 한 값을 비교하여 외부 교란이 인가되었는지 여부를 판단한다.
바람직하게는, 상기 신호처리부는 상기 감지 광섬유의 끝단에서 생성되는 프레넬(Fresnel) 반사 신호에 변화가 있는 경우에만 외부 교란의 인가 여부 판단, 외부 교란의 주파수 특성 파악 또는 외부 교란의 발생 위치와 크기 파악을 수행할 수 있다.
본 발명의 일 실시 예에 따른 간섭계형 광섬유 교란 감지 방법은 펄스 형태의 광신호를 분할하여 서로 다른 길이를 갖는 광경로들을 통해 진행시키는 제 1 단계, 상기 서로 다른 길이의 광경로들을 진행한 광신호들을 결합시켜 감지 광섬유로 출력하는 제 2 단계, 상기 감지 광섬유에서 되돌아온 감지 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 진행시키는 제 3 단계, 상기 서로 다른 길이의 광경로들을 진행한 상기 감지 광신호들을 결합시켜 간섭 감지 광신호를 생성하는 제 4 단계 및 상기 간섭 감지 광신호를 분석하여 상기 감지 광섬유에 인가된 외부 교란의 위치 및 종류를 파악하는 제 5 단계를 포함한다.
바람직하게는, 상기 제 1 단계는 상기 광신호를 2 분할한 후 분할된 광신호들을 상기 광신호의 펄스 길이보다 긴 경로차를 갖는 서로 다른 광경로로 진행시킨다.
바람직하게는, 상기 제 3 단계는 상기 감지 광섬유에서 되돌아온 상기 감지 광신호를 2 분할한 후 분할된 감지 광신호들이 상기 서로 다른 광경로를 역방향으로 진행하도록 한다.
본 발명의 간섭계형 광섬유 교란 감지 방법은 상기 제 1 단계에서 짧은 광경로를 진행한 후 상기 제 3 단계에서 긴 광경로를 진행하는 광신호와 상기 제 1 단계에서 긴 광경로를 진행한 후 상기 제 3 단계에서 짧은 광경로를 진행하는 광신호에 기 설정된 일정한 위상차를 추가로 발생시키는 단계를 포함할 수 있다.
바람직하게는, 상기 제 5 단계는 상기 감지 광섬유의 거리를 복수의 구간으로 구분한 후 광신호의 펄스 순번 별로 각 구간에서 후방산란된 신호값들을 샘플링하여 저장한 후 저장된 신호값들을 상기 감지 광섬유의 거리 별로 매 펄스 마다 순차적으로 읽어 특정 지점에서의 외부 교란에 의한 후방산란 신호의 크기 변화를 파악함으로써 상기 복수의 구간으로 구분된 지점에 외부 교란이 인가되었는지 여부를 판단한다.
바람직하게는, 상기 제 5 단계는 상기 감지 광섬유의 거리를 복수의 구간으로 구분한 후 광신호의 펄스 순번 별로 각 구간에서 후방산란된 신호값들을 샘플링하여 저장한 후 저장된 신호값들을 읽어 펄스 열 별로 비교하여 외부 교란의 주파수 특성을 파악한다.
바람직하게는, 상기 제 5 단계는 상기 감지 광섬유의 거리를 복수의 구간으로 구분한 후 광신호의 펄스 순번 별로 각 구간에서 후방산란된 신호값들을 샘플링하여 저장한 후 저장된 신호값들을 읽어 상기 복수의 구간으로 구분된 위치 별로 비교함으로써 외부 교란의 발생 위치와 크기를 파악한다.
바람직하게는, 상기 제 5 단계는 상기 샘플링하여 저장한 신호값들을 기 설정된 시간동안 평균화하여 사용한다.
본 발명은 침입자의 침입 여부와 침입 지점, 침입 대상을 보다 용이하게 확인할 수 있으며, 구조물의 파괴 감시 또는 예측을 보다 고감도로 수행할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 간섭계형 광섬유 교란 감지 장치의 구성을 나타내는 구성도.
도 2는 도 1의 광섬유 교란 감지 장치의 동작 원리를 설명하기 위한 도면으로, (a)는 하나의 펄스 신호에 의해 감지 광신호가 생성되어 감지 광섬유로 나가는 과정을 설명하는 도면이며, (b)는 감지 광신호가 감지 광섬유에서 반사되어 되돌아오는 과정을 설명하는 도면.
도 3은 광신호 발생부에서 연속적으로 출력된 펄스신호에 의한 간섭 감지 광신호의 모습을 보여주는 도면.
도 4는 외부 교란이 없는 경우, 광수신부에서 관측되는 신호의 변화 모습을 보다 구체적으로 나타낸 도면.
도 5는 x 지점에 외부 교란이 인가된 경우, 광수신부에서 관측되는 신호의 변화 모습을 보다 구체적으로 나타낸 도면.
도 6은 x 지점과 y 지점에 외부 교란이 동시에 인가된 경우, 광수신부에서 관측되는 신호의 변화 모습을 보다 구체적으로 나타낸 도면.
도 7은 도 1의 감지 장치에서 신호처리부(50)의 신호처리 방법을 설명하기 위한 도면.
도 8은 본 발명의 다른 실시 예에 따른 간섭계형 광섬유 교란 감지 장치의 구성을 나타내는 구성도.
도 9는 도 8의 간섭계에서 각 신호의 위상차에 따른 신호의 세기를 나타낸 도면.
본 발명의 일 실시 예에 따른 간섭계형 광섬유 교란 감지 장치는 외부 교란을 감지하는 감지 광섬유, 펄스 형태의 광신호를 출력하는 광신호 발생부, 상기 광신호 발생부에서 출력되는 광신호를 분할하여 서로 다른 길이의 광경로들로 진행시킨 후 결합시킨 감지 광신호를 상기 감지 광섬유로 출력하고, 상기 감지 광섬유에서 되돌아온 감지 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 진행시킨 후 결합시킨 간섭 감지 광신호를 출력하는 광간섭부, 상기 광간섭부에서 출력되는 상기 간섭 감지 광신호를 전기 신호로 변환하여 출력하는 광수신부 및 상기 광수신부에서 출력되는 전기 신호를 분석하여 상기 감지 광섬유에 인가된 외부 교란의 위치 및 종류를 파악하는 신호처리부를 포함한다.
본 발명의 일 실시 예에 따른 간섭계형 광섬유 교란 감지 방법은 펄스 형태의 광신호를 분할하여 서로 다른 길이를 갖는 광경로들을 통해 진행시키는 제 1 단계, 상기 서로 다른 길이의 광경로들을 진행한 광신호들을 결합시켜 감지 광섬유로 출력하는 제 2 단계, 상기 감지 광섬유에서 되돌아온 감지 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 진행시키는 제 3 단계, 상기 서로 다른 길이의 광경로들을 진행한 상기 감지 광신호들을 결합시켜 간섭 감지 광신호를 생성하는 제 4 단계 및 상기 간섭 감지 광신호를 분석하여 상기 감지 광섬유에 인가된 외부 교란의 위치 및 종류를 파악하는 제 5 단계를 포함한다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 보다 상세하게 설명한다.
도 1은 본 발명의 일 실시 예에 따른 간섭계형 광섬유 교란 감지 장치의 구성을 나타내는 구성도이다.
본 실시 예에 따른 간섭계형 광섬유 교란 감지 장치는 광신호 발생부(10), 광간섭부(20), 감지 광섬유(30), 광수신부(40) 및 신호처리부(50)를 포함한다.
광신호 발생부(10)는 펄스 형태의 광신호를 주기적으로 출력한다. 이러한 광신호 발생부(10)는 광 펄스를 발생시키기 위한 광원 및 광원을 구동시키기 위한 구동부를 포함할 수 있다. 이때, 광원으로는 LD(Laser Diode), SLD(Super Luminescent Diode), EDF(Erbium Doped Fiber)를 이용한 ASE(Amplified Spontaneous Emission) 광원, LED(Light Emitting Diode) 등이 사용될 수 있다. 특히 광원은 단파장(0.8 ㎛, 1.3 ㎛ 등)의 광원이 사용됨으로써 감지 광섬유(30)에서 파장의 4승에 반비례하는 레일라이(Rayleigh) 후방산란을 더 많이 일으켜 반사신호의 크기를 증가시키는 것이 바람직하다.
광간섭부(20)는 광신호 발생부(10)에서 출력되는 광 펄스를 연속된 복수의 펄스를 갖는 감지 광신호로 변환시켜 감지 광섬유(30)에 출력한다. 즉, 광간섭부(20)는 광신호 발생부(10)에서 출력되는 광 펄스를 복수의 광 펄스로 분할하고 분할된 광 펄스들을 서로 다른 길이의 경로로 진행시킨 후 이들을 다시 결합시킴으로써 연속된 복수의 펄스를 갖는 감지 광신호를 생성한다. 또한, 광간섭부(20)는 감지 광섬유(30)에서 반사되어 되돌아오는 감지 광신호의 펄스들 중 일부를 중첩시켜 간섭 감지 광신호를 생성하고 이를 광수신부(40)에 출력한다. 즉, 광간섭부(20)는 감지 광섬유(30)에서 반사되어 되돌아오는 감지 광신호를 복수의 감지 광신호로 분할하고 분할된 감지 광신호들을 서로 다른 길이의 광경로로 진행시킨 후 이들을 다시 결합시킴으로써 동일 지점(반사점)에서 서로 다른 시간에 반사된 펄스를 중첩시킨 간섭 감지 광신호를 생성하여 광수신부(40)에 출력한다. 이러한 광간섭부(20)는 입력되는 단일 광 펄스를 복수의 광 펄스 신호로 분할하고 입력되는 복수의 광 펄스 신호를 결합하는 광결합기(22, 26) 및 광결합기(22, 26) 사이에 연결된 서로 다른 길이(L1, L2)를 갖는 광경로(24S, 24L)를 포함한다. 이때, 광결합기(22, 26)는 50%의 결합비를 갖는 방향성 결합기이며, 광경로(24S, 24L)의 길이 차이(L1 - L2)는 광 펄스의 길이보다 길게 형성된다.
감지 광섬유(30)는 광간섭부(20)에 연결되어 외부 교란을 감지한다. 이때, 감지 광섬유(30)는 후방산란에 의한 반사 신호를 강화하기 위해 레일라이 후방산란이 강화된 광섬유를 사용하는 것이 바람직하다. 이러한 방법으로는 광 코아에 디펙트(defect)를 많게 하거나 불순물을 첨가할 수 있다. 또는, 감지 광섬유를 다수의 광섬유 케이블로 구성하고 각 광섬유 케이블을 FC/PC 커넥터(face contact/physical contact connector)로 연결하여 인위적으로 광섬유 케이블 연결점에서 발생하는 프레넬(Fresnel) 반사를 생성시킴으로써 반사 신호를 증가시킬 수 있다. 또는 감지 광섬유(30)의 코아에 광섬유 격자를 형성시켜 반사점을 형성함으로써 인위적으로 반사 신호를 증가시킬 수 있다. 또한, 감지 광섬유(30)를 선형적으로 포설하지 않고 외부 교란을 감지하고자 하는 특정 지역에는 나선모양 또는 코일모양으로 여러 번 감아놓음으로써 민감도를 향상시킬 수 있다. 또한, 감지 광섬유(30)로는 편광상태에 따른 가간섭성의 변화를 제거하기 위해 편광유지 광섬유가 사용되는 것이 바람직하다.
광수신부(40)는 광간섭부(20)를 통해 수신된 간섭 감지 광신호를 광신호의 세기에 비례하는 전기적 신호로 변환하여 신호처리부(50)에 출력한다. 이러한 광수신부(40)로는 광검출기(photo detector)가 사용될 수 있다.
신호처리부(50)는 광수신부(40)의 전기 신호를 분석하여 감지 광섬유(30)에 인가된 외부 교란의 위치를 파악하고 교란의 종류 예컨대 외부인의 침입인지 또는 바람과 같은 자연현상에 의한 교란인지 등을 파악한다. 즉, 신호처리부(50)는 시간에 따른 감지 광섬유(30)의 각 위치에서의 후방산란의 크기를 측정하고 광 펄스의 순번 별로 신호를 비교하여 외부교란의 주파수 특성을 파악하고, 각 위치별 신호를 비교하여 외부 교란의 발생위치 및 크기를 파악한다.
도 2는 도 1의 광섬유 교란 감지 장치의 동작 원리를 설명하기 위한 도면으로, (a)는 하나의 펄스 신호에 의해 감지 광신호가 생성되어 감지 광섬유로 나가는 과정을 설명하는 도면이며, (b)는 감지 광신호가 감지 광섬유에서 반사되어 되돌아오는 과정을 설명하는 도면이다.
도 2에서는 설명의 편의를 위해 광신호 발생부(10)에서 하나의 광 펄스 신호를 출력하는 경우에 대해 설명한다.
광신호 발생부(10)에서 출력된 하나의 광 펄스(11)는 광결합기(22)에서 동일한 두 개의 펄스(12, 13)로 분할되며, 분할된 각 펄스(12, 13)는 서로 다른 길이(L1, L2)를 갖는 광경로(24L, 24S)를 따라 각각 진행한 후 광결합기(26)를 통해 감지 광신호(14)로 결합되어 감지 광섬유(30)에 진입한다. 이때, 두 펄스(12, 13)가 진행한 광경로의 길이차이(L1 - L2)가 광 펄스의 길이보다 길게 설정되면, 감지 광신호(14)는 두 펄스(12, 13)가 공간적으로 완전히 분리된 형태로 감지 광섬유(30)에 진입하여 진행하게 된다.
감지 광섬유(30)를 진행하는 감지 광신호(14)는 감지 광섬유(30)에 존재하는 레일라이 후방산란(Rayleigh backscattering)에 의하여 감지 광신호(14)의 일부는 반사점(31, 32)에서 반사되어 광간섭부(20)로 되돌아간다. 실제 레일라이 후방산란은 감지 광섬유(30) 전체에서 분포적으로 발생하지만 본 실시 예에서는 설명의 편의를 위해 2개의 지점(31, 32)에서만 반사가 이루어지는 것으로 설명하였다.
반사점(31, 32)에서 반사된 감지 광신호(15, 16)는 다시 광결합기(26)에 의해 분할되어 서로 다른 광경로(24L, 24S)를 따라 진행한 후 광결합기(22)에서 결합되어 광수신부(40)에 수신된다. 이때, 광수신부(40)에 수신된 신호(17, 18)는 서로 다른 경로(24L, 24S)를 진행한 감지 광신호의 일부가 중첩되어 간섭된 간섭 감지 광신호로서, 각 반사점(31, 32) 당 3개의 펄스를 포함하는 펄스 신호가 된다.
간섭 감지 광신호(17)에서 첫 번째 펄스는 광신호 발생부(10)에서 출력된 펄스(11)가 광간섭부(20)의 짧은 경로(24S)를 통해 진행한 후 감지 광섬유(30)의 일 반사점(31)에서 반사되어 다시 광간섭부(20)의 짧은 경로(24S)를 통해 되돌아온 신호이다. 이하에서는 설명의 편의를 위해 이 신호를 SS 펄스라 칭한다.
간섭 감지 광신호(17)에서 세 번째 펄스는 광신호 발생부(10)에서 출력된 펄스(11)가 광간섭부(20)의 긴 경로(24L)를 통해 진행한 후 감지 광섬유(30)의 일 반사점(31)에서 반사되어 다시 광간섭부(20)의 긴 경로(24L)를 통해 되돌아온 신호이다. 이하에서는 설명의 편의를 위해 이 신호를 LL 펄스라 칭한다.
간섭 감지 광신호(17)에서 가운데 펄스는 광신호 발생부(10)에서 출력된 펄스(11)가 광간섭부(20)의 짧은 경로(24S)를 통해 진행한 후 감지 광섬유(30)의 일 반사점(31)에서 반사되어 광간섭부(20)의 긴 경로(24L)를 통해 되돌아온 신호(SL 펄스)와 광간섭부(20)의 긴 경로(24L)를 통해 진행한 후 감지 광섬유(30)의 일 반사점(31)에서 반사되어 광간섭부(20)의 짧은 경로(24S)를 통해 되돌아온 신호(LS 펄스)가 중첩된 신호이다. 이하에서는 설명의 편의를 위해 이처럼 중첩된 신호를 SL/LS 펄스라 칭한다. 이때, SL 펄스와 LS 펄스는 순서만 바뀌었을 뿐 동일한 광경로를 진행하게 되므로 두 신호의 광경로 길이가 동일하게 되어 가간섭성이 높은 간섭신호를 생성하게 된다. 일반적으로 가간섭성은 두 빛의 편광이 동일해야 높게 된다. SL/LS 펄스의 경우, 광섬유에 존재하는 복굴절과 시간에 따른 그 복굴절의 변화에 의해서 SL 펄스와 LS 펄스의 편광상태가 달라질 수 있으므로, 주위의 환경변화에 따라 간섭신호의 가간섭성이 변화될 수 있다. 따라서, 전체 광섬유를 편광유지 광섬유를 사용함으로써 주위 환경에 따른 편광의존성을 제거하는 것이 바람직하다. 또는 광신호 발생부(10)에 무편광 광원을 사용할 수도 있다.
두 신호(SL 펄스, LS 펄스)는 경유하는 광경로의 길이는 동일하나 서로 다른 시간에 감지 광섬유(30)의 반사점(31)을 통과하기 때문에 통과시에 서로 다른 위상을 경험할 수 있게 된다. 만약 두 신호(SL 펄스, LS 펄스)가 서로 다른 위상을 경험하게 되면, 두 신호의 위상차에 따라 SL/LS 펄스의 크기가 변화하게 되므로 그 변화를 측정하면 외부 교란을 감지할 수 있게 된다.
위에서는 반사점(31)에서 반사된 간섭 감지 광신호(17)에 대해서만 설명하였으나, 반사점(32)에서 반사된 간섭 감지 광신호(18)도 간섭 감지 광신호(17)와 동일한 과정을 통해 생성된다.
만일, 외부 교란이 두 반사점(31, 32) 사이에서 발생하게 되면, 반사점(31)에서 반사된 감지 광신호(15)는 교란이 발생한 지점을 진행하지 않았으므로 감지 광신호(15)에 대한 간섭 감지 광신호(17)의 가운데 펄스는 외부 교란에 영향을 받지 않는다. 그러나, 반사점(32)에서 반사된 감지 광신호(16)는 교란이 발생한 지점을 진행하였기 때문에 외부 교란의 영향을 받아 간섭 감지 광신호(18)의 가운데 펄스의 크기가 변화하게 된다. 따라서, 이러한 원리를 이용하여 각 반사점(31, 32)에서 되돌아온 간섭 감지 광신호들(17, 18)의 크기 변화를 분석함으로써 교란의 발생 여부와 그 교란의 위치를 감지할 수 있다.
도 3은 광신호 발생부에서 연속적으로 출력된 광 펄스에 의한 간섭 감지 광신호의 모습을 보여주는 도면이다.
도 2에서는 설명의 편의를 위해 독립된 2개의 반사점(31, 32)에서 감지 광신호가 반사되는 경우를 예로 들었었다. 그러나, 실제로 교란 위치를 감지하기 위하여 레일라이 후방산란을 이용하는 경우, 반사점들이 매우 가깝게 연속적으로 존재하기 때문에 감지 광신호는 분포된 반사형태로 반사되며 따라서 광수신부(40)에 수신되는 신호는 도 2에서와 같이 독립된 펄스열이 아닌 도 3의 (a)와 같이 연속된 선으로 나타나게 된다.
이때, 광신호 발생부(10)에서 광 펄스를 연속적으로 출력하면서, 광수신부(40)에 되돌아오는 신호를 시간에 따라 계속 관찰하면 외부 교란이 있는 위치(event 위치)에 미치지 못하고 되돌아 온 신호(51)는 (b) 도면과 같이 신호의 크기에 변화가 없으나, 외부 교란이 있는 위치를 통과하였다가 되돌아 온 신호(52)는 외부 교란에 의해 (c) 도면과 같이 신호의 크기에 변화가 있게 된다.
도 4 내지 도 6은 외부 교란에 따라 광수신부에서 관측되는 신호의 변화 모습을 보다 구체적으로 보여주는 도면으로, 도 4는 외부 교란이 없는 경우, 도 5는 x 지점에 외부 교란이 인가된 경우 그리고 도 6은 x 지점과 y 지점에 외부 교란이 동시에 인가된 경우의 신호 모습을 보여준다.
여기에서, 광간섭부(20)의 짧은 경로(24S)에서의 빛의 진행시간을 t1, 긴 경로(24L)에서의 빛의 진행시간을 t2, 감지 광섬유(30)에서의 빛의 진행시간을 t3라 가정한다. 각 경로의 길이는 t1 < t2 << t3의 조건으로 설정되는 것이 바람직하다. 그리고, 광결합기(22, 26)는 50%의 결합비를 가지는 2X2 방향성 결합기로써, 결합기(22, 26)를 통과한 광 신호가 양팔로 분할되어 빛이 반반씩 나뉘어지며, 그대로 통과하는 경우와 대비해서 반대편 팔로 커플링된 빛은
Figure PCTKR2012010875-appb-I000001
의 위상차를 가진다.
먼저, 도 4를 참조하여 외부 교란이 전혀 없는 경우를 설명하면 다음과 같다.
SS 펄스는 광신호 발생부(10)에서 출발하여 광간섭부(20)의 짧은 경로(24S)를 거쳐 감지 광섬유(30)에 입사된 후 감지 광섬유(30)의 전체에서 분포적으로 반사되어 다시 광간섭부(20)의 짧은 경로(24S)를 거쳐 광수신부(40)에 입사된다.
이때, 방향성 결합기(22, 26)를 통과할 때 마다 빛의 세기는 반으로 감소(3dB 감소)하게 되며, 레일라이 후방산란은 감지 광섬유(30)에서 뿐만 아니라 광간섭부(20)를 구성하는 광섬유에서도 발생한다. 따라서, 광신호 발생부(10)에서 출력된 광 펄스가 결합기(22)를 통과한 후 짧은 경로(24S)에서 바로 후방산란되어 다시 결합기(22)를 거쳐 광수신부(40)에 입사되는 빛의 상대세기를 "1"로 하는 경우, SS 펄스의 시간에 따른 후방산란의 크기는 도 4에서 a) 신호와 같다. 즉, 광 펄스가 짧은 경로(24S) 내에서 후방산란되어 되돌아가는 시간 동안( ~ 2t1)에는 그 세기가 "1"이 되며, 결합기(26)를 거쳐 감지 광섬유(30)에 입사된 후 감지 광섬유(30)에서 후방산란되어 되돌아가는 시간 동안(2t1 ~ 2(t1+t3))에는 결합기(26)를 왕복하여 2번 더 통과하기 때문에 그 세기가 1/4로 줄어 0.25가 된다. 특히, 감지 광섬유(30)를 진행하는 동안에는 앞부분에서 축적된 후방산란으로 인해서 뒤로 갈수록 그 세기가 감소한다. 그리고, 감지 광섬유(30)의 끝단에서의 프레넬(Fresnel) 반사에 의해서 2(t1+t3)에서 반사피크가 나타날 수 있다. 이를 2(t1+t3)에서 화살표로 표시하였다. a) 신호에서, 광간섭부(20)에 의한 2t1 까지의 신호를 제외하고는 통상의 OTDR 신호와 유사하다.
LL 펄스는 SS 펄스와 비교하여 광간섭부(20) 내에서 긴 경로(24L)를 진행한다는 점에서만 차이가 있을 뿐 동일하다. 따라서, 광신호 발생부(10)에서 출력된 광 펄스가 결합기(22)를 통과한 후 긴 경로(24L)에서 바로 후방산란되어 다시 결합기(22)를 거쳐 광수신부(40)에 입사되는 빛의 상대세기를 "1"로 하는 경우, LL 펄스의 시간에 따른 후방산란의 크기는 도 4에서 b) 신호와 같다.
SL/LS 펄스는 같은 경로를 서로 다른 순서로 진행한 두 펄스(12, 13)의 후방산란의 중첩이며, 두 펄스의 위상차에 의해서 그 크기가 변화하게 된다. SL/LS 펄스에는 감지 광섬유(30)에서의 후방산란만 기여하게 된다. 따라서, 광간섭부(20)의 짧은 경로(24S)와 긴 경로(24L)를 진행하는 시간인 t1+t2 에서부터 신호가 생성되며 감지 광섬유(30)의 끝단에서 후방산란이 일어나는 t1+t2+2t3 까지 지속된다. 이때에도, 감지 광섬유(30)의 끝단에서의 프레넬(Fresnel) 반사에 의해서 t1+t2+2t3에서 반사피크가 나타날 수 있다. 이러한 SL/LS 펄스의 시간에 따른 후방산란의 간섭신호의 크기는 c) 신호와 같다. 점선은 간섭으로 인해서 발생할 수 있는 최대신호의 크기를 나타내며, 이 역시 앞부분에서 축적된 후방산란으로 인해서 뒤로 갈수록 그 세기가 감소한다. 외부 교란에 의해서 신호의 크기는 최대값에서 "0" 까지 변화될 수 있으며, 외부 교란이 전혀 없는 경우에는 SL 펄스와 LS 펄스가 서로
Figure PCTKR2012010875-appb-I000002
의 위상차를 가지기 때문에 서로 상쇄간섭을 일으켜 그 크기가 "0"이 된다.
광수신부(40)에서의 최종 신호는 SS 펄스, LL 펄스, SL/LS 펄스가 결합된 형태가 되며, 통상적으로 이 세 신호는 가간섭 시간(coherence time) 이상 지연되어 합쳐지게 되므로 d) 신호와 같이 이 세 신호의 광세기(intensity)를 합한 형태가 된다. 외부 교란이 전혀 없는 경우 SL/LS 펄스는 "0"이 되므로, 광수신부(40)에서의 최종 신호는 d) 신호와 같이 SS 펄스와 LL 펄스의 합이 된다.
다음에, 도 5를 참조하여 외부 교란이 x 지점에 가해지고 그 위상차가
Figure PCTKR2012010875-appb-I000003
인 경우를 설명하면 다음과 같다. 이때는 SL 펄스가 진행하는 동안
Figure PCTKR2012010875-appb-I000004
의 위상차가 외부 교란에 의해서 가해지고, LS 펄스가 진행하는 동안에는 교란이 없는 경우이다.
먼저, SS 펄스와 LL 펄스의 경우에는 간섭신호가 아닌 단순한 레일라이 후방산란의 신호이므로 외부 교란이 전혀 없는 경우의 신호와 동일하다. 따라서, 도 5의 a), b) 신호의 형태는 도 4의 a), b)와 같다. 다만, 외부 교란에 의해 교란 지점에서 광손실이 크게 발생된 경우에는 교란 지점에서 단차가 발생할 수 있다.
SL/LS 펄스의 경우에는 x 지점 이전에서 후방산란된 빛은 외부 교란을 경험하지 않으므로 광세기는 여전히 "0"이 된다. 반면에 x 지점 이후에는 모두
Figure PCTKR2012010875-appb-I000005
의 위상차가 추가로 발생하므로 보강 간섭하여 최대 세기(SS 펄스 또는 LL 펄스의 4배)가 되며, 그 신호의 형태는 c)에 도시된 것과 같다.
광수신부(40)에서의 최종 신호는 a) SS 펄스, b) LL 펄스, c) SL/LS 펄스가 결합된 d)와 같은 형태가 된다. 이를 도 4의 d) 신호와 비교하면, x 지점에서 보강 간섭으로 인한 단차가 생겼으므로 x 지점에서 외부 교란이 인가되었음을 알 수 있다. 또한, 그 외부 교란의 크기도 유추할 수 있다.
다음에 도 6을 참조하여 외부 교란이 x 지점 및 y 지점에서 가해지는 경우를 설명한다. 이때는 y 지점에서 SL 펄스가 진행하는 동안에
Figure PCTKR2012010875-appb-I000006
의 위상차가 추가로 인가되고, LS 펄스가 진행하는 동안에는 교란이 없는 경우이다.
이때에도 SS 펄스와 LL 펄스의 경우에는 상술한 도 4 및 도 5와 동일하다. 즉, a), b)의 신호 형태는 도 4 및 도 5의 a), b) 신호 형태와 동일하다.
SS/LS 펄스의 경우에는 x 지점 이전에서 후방산란된 빛은 외부 교란을 경험하지 않으므로 광세기는 여전히 "0"이 되고, x 지점부터 y 지점까지는 모두
Figure PCTKR2012010875-appb-I000007
의 위상차가 발생하므로 도 5에서와 같이 보강간섭하여 최대 세기(SS 펄스 또는 LL 펄스의 4배)가 된다. 그리고, y 지점 이후부터는
Figure PCTKR2012010875-appb-I000008
의 위상변화가 추가로 인가되어 위상차가
Figure PCTKR2012010875-appb-I000009
가 되므로 그 신호 형태는 c)와 같이 중간 세기(SS 펄스 또는 LL 펄스의 2배)가 된다.
광수신부(40)에서의 최종 신호는 a) SS 펄스, b) LL 펄스, c) SL/LS 펄스가 결합된 d)와 같은 형태가 된다. 이를 도 4의 d) 신호와 비교하면, x 지점과 y 지점에서 간섭신호의 세기 변화로 단차가 생겼으므로 x 지점 및 y 지점에서 외부 교란이 인가되었음을 알 수 있다. 또한, 그 외부 교란의 크기도 유추할 수 있다. 즉, 동시에 여러 지점에서 외부 교란이 인가되는 경우에도 최종 신호의 분석을 통하여 교란이 인가된 모든 위치를 알 수 있다.
이처럼 교란이 여러 곳에서 계속적으로 발생하는 경우에도, 광신호 발생부(10)에서 펄스 신호를 계속적으로 반복 생성하여 출력한 후 광수신부(40)에 수신되는 신호를 매 펄스 마다 분석함으로써 교란의 위치, 교란신호의 주파수 및 세기 등을 검출할 수 있다.
도 7은 도 1의 감지 장치에서 신호처리부(50)의 신호처리 방법을 설명하기 위한 도면이다.
도 7을 참조하여, 도 6과 같이 감지 광섬유(30)의 여러 지점에서 외부 교란이 인가되는 경우 광수신기(40)에 수신된 최종 신호로부터 외부 교란의 발생위치를 찾아내고 외부 교란의 크기 및 주파수 특성 등을 분석하여 외부 교란의 종류(외부인의 침입 또는 자연현상 등)를 구별하는 방법을 보다 상세하게 설명한다.
상술한 바와 같이, 광신호 발생부(10)에서 출력된 하나의 광 펄스가 감지 광섬유(30)에서 후방산란되어 광수신부(40)에 도달할 때 마다 도 6의 d)와 같은 신호가 생성된다. 이때, 도 6에서 시간축은 감지 광섬유(30)의 거리(위치)와 비례하는 값이다. 따라서, 광신호 발생부(10)에서 펄스 신호를 계속적으로 반복 생성하여 출력하고, 계속적으로 광수신부(40)에 수신되는 신호를 측정하면 시간에 따라서 감지 광섬유(30)의 각 위치에서의 후방산란의 크기를 측정할 수 있다. 이때, 광신호 발생부(10)에서 반복적으로 출력되는 광 펄스의 반복율은 각 지점에서의 후방산란을 측정하는 샘플링 속도(sampling rate)에 해당한다. 따라서, 반복율이 빠를수록 고주파의 외부 교란을 감지할 수 있다. 이는 가장 긴 경로를 진행한 빛이 되돌아오는 시간인 2(t2+t3)에 의해 제한된다. 즉, 광간섭부(20)의 긴 경로(24L)와 감지 광섬유(30)의 총 길이가 20 ㎞인 경우에 2(t2+t3)는 200 ㎲가 되므로 펄스 반복율은 5 ㎑로 제한되며, 이로써 측정 가능한 외부 교란의 최대 주파수는 2.5 ㎑로 제한된다. 따라서 최대 측정거리(감지 광섬유의 길이)가 커질수록 측정 속도는 느려지는 관계에 있다.
감지 광섬유(30)의 거리(distance=xi)를 x축으로 하고 반복 펄스열의 시간(순번)(sweep(n))을 y축으로 하여 (x, y)에서의 후방산란의 크기 S(distance, sweep)를 개념적으로 도시화하면 도 7의 (a)와 같이 나타낼 수 있다. 이때, 도 6의 d)와 같은 매 펄스열 순번마다의 후방산란 신호 S를 간략히 직선으로 표시했다.
도 7의 (b)는 측정된 신호 S를 디지털화하여 메모리에 저장하는 것을 나타내는 도면으로, (b)의 S(xi, n)에서 xi는 감지 광섬유의 디지털화된 거리를 나타내며 n은 펄스열의 순번(sweep 순번)을 나타낸다.
즉, 신호처리부(50)는 감지 광섬유(30)의 거리(xi)를 m개의 구간으로 나눈 후 펄스열의 순번 별로 각 구간에서 후방산란된 신호값 S(xi, n)을 샘플링하여 메모리에 저장한다. 이때, 거리 구간 간격은 통상적으로 감지 장치의 공간분해능(spatial resolution) 정도로 하면 된다. 공간분해능은 펄스폭에 반비례한다. 따라서, 통신용 광섬유에서 10 ㎱의 펄스폭인 경우 1 m, 100 ㎱의 펄스폭인 경우 10 m의 공간분해능을 갖는다.
100 ㎱의 펄스폭을 갖는 광 펄스가 사용되는 경우 20 km의 감지 광섬유(30)는 2000개(m=2000)의 구간으로 구분되며, 펄스폭에 의해서 결정되는 최소 지연길이(delay line: 광간섭부에서 긴 경로와 짧은 경로의 차이)는 20 m가 되도록 한다. 지연길이가 길수록 간섭하는 두 펄스의 시간차가 많이 나므로 오디오 주파수 대역의 외부 교란을 측정하기 위해서는 수 백 m에서 1 ㎞의 지연길이가 요구될 수 있다.
신호처리부(50)는 메모리에서 감지 광섬유의 거리(xi) 별로 매 펄스 마다 순차적으로 신호값들을 읽어 들여 이들을 시간별로 분석하면 도 3의 (c)와 같이 특정 지점에서의 외부 교란에 의한 후반산란 신호의 크기 변화를 파악할 수 있게 된다. 따라서, 신호처리부(50)는 총 m개의 지점에 대해 외부 교란이 인가되었는지 여부를 동시에 측정할 수 있다.
또한, 신호처리부(50)는 메모리에서 읽어 들인 신호값들을 펄스열 별로 비교함으로써 외부 교란의 주파수 특성을 파악할 수 있으며, 각 위치(xi) 별로 신호값을 비교함으로써 외부 교란의 발생 위치와 크기를 알 수 있다.
그런데, 일반적으로 후방산란된 빛의 간섭 펄스의 외부 교란에 의한 크기 변화는 작기 때문에 신호대잡음비(SNR)를 향상하기 위해서 메모리에 저장된 매 펄스열 순번의 신호값들을 적정 시간동안 평균화하여 신호를 분석한다. 평균시간이 긴 경우에는 고주파 변화를 측정할 수 없고, 평균시간이 작은 경우에는 신호대잡음비가 나빠지므로, 이는 외부 교란의 크기와 주파수를 고려하여 결정한다.
또한, 신호처리부(50)는 외부 교란이 없는 동안에 메모리에 저장된 신호값들을 기 설정된 시간동안 평균화 한 값과 외부 교란이 인가 된 동안에 메모리에 저장된 신호값들을 기 설정된 시간동안 평균화 한 값을 비교하여 외부 교란이 인가되었는지 여부를 판단할 수 있다.
도 8은 본 발명의 다른 실시 예에 따른 간섭계형 광섬유 교란 감지 장치의 구성을 나타내는 구성도이다.
도 8에서는 광신호 발생부(10)에서 생성된 광 펄스의 세기(intensity) 노이즈에 의한 신호대잡음비 저하를 줄이고 감도(sensitivity)를 향상시키기 위해 도 1의 광간섭부(20)에서 광결합기(22)를 3X3 광결합기(28)로 대체한다. 이에 따라, 광결합기(28)의 가운데 포트에 광신호 발생부(10)가 연결되고 상하단 포트에 각각 광수신부(42, 44)가 연결된다. 그리고, 광결합기(28)의 타단의 상하단 포트가 각각 긴 경로(24L) 및 짧은 경로(24S)를 통해 광결합기(26)의 양 포트에 연결됨으로써 광간섭계를 구성한다.
도 8과 같은 광간섭계를 구성시 신호대잡음비 및 감도가 향상되는 원리를 설명하면 다음과 같다.
감지 광섬유(30)의 임의의 점(x 지점)에서 후방산란된 빛에 의한 간섭신호를 가운데 포트(s) 및 상하단 포트(p1, p2)에서 관측하는 경우 그 세기 변화는 아래의 식과 같다.
Figure PCTKR2012010875-appb-I000010
Figure PCTKR2012010875-appb-I000011
Figure PCTKR2012010875-appb-I000012
여기에서, I0는 감지 광섬유(30)의 x 지점에서 후방산란된 빛의 세기와 비례하는 양이며,
Figure PCTKR2012010875-appb-I000013
는 x 지점에서 SL 펄스와 LS 펄스가 지나갈 때의 위상차이다.
세 간섭신호의 광세기는 서로 간에
Figure PCTKR2012010875-appb-I000014
(120도)의 위상차가 생기며, 각 신호의 위상차에 따른 신호의 세기는 도 9와 같이 표시된다.
상하단 포트에 연결된 광수신부(42, 44)에서 관측되는 신호의 차와 합을 구하면 아래의 식과 같다.
Figure PCTKR2012010875-appb-I000015
Figure PCTKR2012010875-appb-I000016
광수신부(42, 44)에서 관측되는 신호의 차를 이용하여 위상차
Figure PCTKR2012010875-appb-I000017
를 구하게 되면, 기본적으로 존재하는 통상적인 OTDR 신호(도 4에서 a) SS 신호, b) LL 신호)가 제거되어 광원의 세기 노이즈에 의한 영향을 줄일 수 있다. 또한, Ip1, Ip2는 위상차에 따라 그 세기가 반대 방향으로 변화되므로 감도(정확히는 scale factor)가 향상되는 효과도 있게 된다.
신호의 차(
Figure PCTKR2012010875-appb-I000018
)를 신호의 합(
Figure PCTKR2012010875-appb-I000019
)으로 나누어서 신호를 규격화하면 빛의 세기 I0와 무관한 위상차에 대한 식을 구할 수 있다.
상술한 본 발명의 바람직한 실시 예는 예시의 목적을 위한 것으로, 당업자라면 첨부된 특허청구범위의 기술적 사상과 범위를 통해 다양한 수정, 변경, 대체 및 부가가 가능할 것이며, 이러한 수정 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.
상술한 실시 예에서, 광간섭부(20)의 일 경로에 위상변조기를 더 구비하여 서로 다른 시간에 위상 변조기를 진행하는 SL 펄스와 LS 펄스의 위상을 다르게 함으로써 신호대잡음비를 향상시킬 수 있다.
즉, 위상변조기를 사용하여 정현파 형태의 위상변조를 주고 이를 다시 복조하거나 위상변조 주파수의 하모닉(harmonic) 성분을 분석함으로써 신호대잡음비를 향상시킬 수 있다. 또는 SL 펄스와 LS 펄스가 지나가는 순간에 두 신호에
Figure PCTKR2012010875-appb-I000020
의 일정한 위상차가 발생하도록 위상변조기를 구동하면 간섭신호가 직각 위상(quadrature phase)에 있기 때문에 민감도를 향상시킬 수 있다.
또한, 광간섭부(20)의 어느 한 경로 또는 광신호 발생부(10)와 광간섭부 사이에 디폴라라이저(depolarizer)를 추가로 구비함으로써 광신호의 편광의존성을 제거할 수 있다.
또한, 상술한 실시 예에서는 신호처리부(50)가 광수신부(40)에 수신되는 신호를 모두 메모리에 저장하고 이를 상시적으로 분석하는 경우를 설명하고 있으나, 이러한 경우 불필요한 데이터 저장 및 분석이 수행되므로 비효율적일 수 있다. 후방산란의 크기에 비해서 감지 광섬유(30) 끝단의 프레넬(Fresnel) 반사 크기는 매우 커서, 감지 광섬유(30)에 외부 교란이 인가된 경우 끝단의 프레넬(Fresnel) 반사 신호의 변화는 용이하게 측정될 수 있다. 따라서, 신호처리부(50)가 감지 광섬유(30) 끝단의 프레넬(Fresnel) 반사 신호에 변화가 있는 경우에만 수신되는 간섭신호를 저장하거나 해당 신호를 정밀분석 하도록 할 수 있다. 즉, 효율적인 측정결과 관리 및 상세신호 분석을 위하여 감지 광섬유(30) 끝단의 프레넬(Fresnel) 반사 신호를 트리거 신호, 이벤트 발생여부 확인신호, 알람신호, 이벤트 발생장소 및 성격의 정밀 신호분석 개시신호 등으로 사용하는 것이 바람직하다.
본 발명은 침입자의 침입 여부와 침입 지점, 침입 대상을 보다 용이하게 확인할 수 있으며, 구조물의 파괴 감시 또는 예측을 보다 고감도로 수행할 수 있다.

Claims (30)

  1. 외부 교란을 감지하는 감지 광섬유;
    펄스 형태의 광신호를 출력하는 광신호 발생부;
    상기 광신호 발생부에서 출력되는 광신호를 분할하여 서로 다른 길이의 광경로들로 진행시킨 후 결합시킨 감지 광신호를 상기 감지 광섬유로 출력하고, 상기 감지 광섬유에서 되돌아온 감지 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 진행시킨 후 결합시킨 간섭 감지 광신호를 출력하는 광간섭부;
    상기 광간섭부에서 출력되는 상기 간섭 감지 광신호를 전기 신호로 변환하여 출력하는 광수신부; 및
    상기 광수신부에서 출력되는 전기 신호를 분석하여 상기 감지 광섬유에 인가된 외부 교란의 위치 및 종류를 파악하는 신호처리부를 포함하는 간섭계형 광섬유 교란 감지 장치.
  2. 제 1항에 있어서, 상기 감지 광섬유는
    레일라이(Rayleigh) 후방산란이 강화된 광섬유인 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  3. 제 1항에 있어서, 상기 감지 광섬유는
    FC/PC(face contact/physical contact connector) 커넥터로 연결된 복수의 광섬유 케이블을 포함하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  4. 제 1항에 있어서, 상기 감지 광섬유는
    광섬유 격자를 이용한 반사점을 포함하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  5. 제 1항에 있어서, 상기 감지 광섬유는
    편광유지 광섬유인 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  6. 제 1항에 있어서, 상기 광신호 발생부는
    무편광 광원을 포함하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  7. 제 1항에 있어서, 상기 광신호 발생부는
    LD(Laser Diode), SLD(Super Luminescent Diode), EDF(Erbium Doped Fiber)를 이용한 ASE(Amplified Spontaneous Emission) 광원, LED(Light Emitting Diode) 중 어느 하나의 광원을 포함하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  8. 제 1항에 있어서, 상기 광신호 발생부는
    광원이 단파장 광원인 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  9. 제 1항에 있어서, 상기 광간섭부는
    상기 광신호 발생부로부터 입력되는 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 출력하고, 상기 서로 다른 길이의 광경로들로부터 입력되는 광신호들을 결합하여 상기 광수신부로 출력하는 제 1 광결합기; 및
    상기 서로 다른 길이의 광경로들로부터 입력되는 광신호들을 결합하여 상기 감지 광섬유로 출력하고, 상기 감지 광섬유로부터 입력되는 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 출력하는 제 2 광결합기를 포함하는 간섭계형 광섬유 교란 감지 장치.
  10. 제 9항에 있어서, 상기 제 1 광결합기는
    일측의 양 포트가 상기 광신호 발생부 및 상기 광수신부와 연결되며, 타측의 양 포트가 상기 서로 다른 길이의 광경로와 연결되는 2X2 광결합기인 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  11. 제 9항에 있어서, 상기 제 1 광결합기는
    일측의 가운데 포트는 상기 광신호 발생부와 연결되고 상기 일측의 상하단 포트는 제 1 및 제 2 광수신부와 연결되며, 타측의 상하단 포트가 상기 서로 다른 길이의 광경로와 연결되는 3X3 광결합기인 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  12. 제 10항 또는 제 11항에 있어서, 상기 제 2 광결합기는
    일측의 양 포트가 상기 서로 다른 길이의 광경로와 연결되며, 타측의 일 포트가 상기 감지 광섬유와 연결되는 2X2 광결합기인 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  13. 제 1항에 있어서, 상기 서로 다른 길이의 광경로는
    경로차가 상기 광신호의 펄스 길이보다 긴 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  14. 제 1항에 있어서,
    상기 광간섭부의 일 경로 또는 상기 광신호 발생부와 상기 광간섭부 사이에 구비되는 디폴라라이저(depolarizer)를 더 포함하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  15. 제 1항에 있어서,
    상기 광간섭부의 일 경로에 위상변조기를 더 구비하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  16. 제 1항에 있어서, 상기 신호처리부는
    상기 감지 광섬유의 거리를 복수의 구간으로 구분한 후 광신호의 펄스 순번 별로 각 구간에서 후방산란되어 상기 광수신부에 수신된 신호값을 샘플링하여 메모리에 저장하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  17. 제 16항에 있어서, 상기 신호처리부는
    상기 메모리에 저장된 신호값들을 상기 감지 광섬유의 거리 별로 매 펄스 마다 순차적으로 읽어 들여 특정 지점에서의 외부 교란에 의한 후방산란 신호의 크기 변화를 파악함으로써 상기 복수의 구간으로 구분된 지점에 외부 교란이 인가되었는지 여부를 판단하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  18. 제 16항에 있어서, 상기 신호처리부는
    상기 메모리에 저장된 신호값들을 펄스 열 별로 비교하여 외부 교란의 주파수 특성을 파악하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  19. 제 16항에 있어서, 상기 신호처리부는
    상기 메모리에 저장된 신호값들을 상기 복수의 구간으로 구분된 위치 별로 비교함으로써 외부 교란의 발생 위치와 크기를 파악하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  20. 제 17항 내지 제 19항 중 어느 한 항에 있어서, 상기 신호처리부는
    상기 메모리에 저장된 신호값들을 기 설정된 시간동안 평균화하여 사용하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  21. 제 20항에 있어서, 상기 신호처리부는
    외부 교란이 없는 동안에 상기 메모리에 저장된 신호값들을 기 설정된 시간동안 평균화 한 값과 외부 교란이 인가 된 동안에 상기 메모리에 저장된 신호값들을 기 설정된 시간동안 평균화 한 값을 비교하여 외부 교란이 인가되었는지 여부를 판단하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  22. 제 17항 내지 제 19항 중 어느 한 항에 있어서, 상기 신호처리부는
    상기 감지 광섬유의 끝단에서 생성되는 프레넬(Fresnel) 반사 신호에 변화가 있는 경우에만 외부 교란의 인가 여부 판단, 외부 교란의 주파수 특성 파악 또는 외부 교란의 발생 위치와 크기 파악을 수행하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 장치.
  23. 펄스 형태의 광신호를 분할하여 서로 다른 길이를 갖는 광경로들을 통해 진행시키는 제 1 단계;
    상기 서로 다른 길이의 광경로들을 진행한 광신호들을 결합시켜 감지 광섬유로 출력하는 제 2 단계;
    상기 감지 광섬유에서 되돌아온 감지 광신호를 분할하여 상기 서로 다른 길이의 광경로들로 진행시키는 제 3 단계;
    상기 서로 다른 길이의 광경로들을 진행한 상기 감지 광신호들을 결합시켜 간섭 감지 광신호를 생성하는 제 4 단계; 및
    상기 간섭 감지 광신호를 분석하여 상기 감지 광섬유에 인가된 외부 교란의 위치 및 종류를 파악하는 제 5 단계를 포함하는 간섭계형 광섬유 교란 감지 방법.
  24. 제 23항에 있어서, 상기 제 1 단계는
    상기 광신호를 2 분할한 후 분할된 광신호들을 상기 광신호의 펄스 길이보다 긴 경로차를 갖는 서로 다른 광경로로 진행시키는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 방법.
  25. 제 23항 또는 제 24항에 있어서, 상기 제 3 단계는
    상기 감지 광섬유에서 되돌아온 상기 감지 광신호를 2 분할한 후 분할된 감지 광신호들이 상기 서로 다른 광경로를 역방향으로 진행하도록 하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 방법.
  26. 제 23항에 있어서,
    상기 제 1 단계에서 짧은 광경로를 진행한 후 상기 제 3 단계에서 긴 광경로를 진행하는 광신호와 상기 제 1 단계에서 긴 광경로를 진행한 후 상기 제 3 단계에서 짧은 광경로를 진행하는 광신호에 기 설정된 일정한 위상차를 추가로 발생시키는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 방법.
  27. 제 23항에 있어서, 상기 제 5 단계는
    상기 감지 광섬유의 거리를 복수의 구간으로 구분한 후 광신호의 펄스 순번 별로 각 구간에서 후방산란된 신호값들을 샘플링하여 저장한 후 저장된 신호값들을 상기 감지 광섬유의 거리 별로 매 펄스 마다 순차적으로 읽어 특정 지점에서의 외부 교란에 의한 후방산란 신호의 크기 변화를 파악함으로써 상기 복수의 구간으로 구분된 지점에 외부 교란이 인가되었는지 여부를 판단하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 방법.
  28. 제 23항에 있어서, 상기 제 5 단계는
    상기 감지 광섬유의 거리를 복수의 구간으로 구분한 후 광신호의 펄스 순번 별로 각 구간에서 후방산란된 신호값들을 샘플링하여 저장한 후 저장된 신호값들을 읽어 펄스열 별로 비교하여 외부 교란의 주파수 특성을 파악하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 방법.
  29. 제 23항에 있어서, 상기 제 5 단계는
    상기 감지 광섬유의 거리를 복수의 구간으로 구분한 후 광신호의 펄스 순번 별로 각 구간에서 후방산란된 신호값들을 샘플링하여 저장한 후 저장된 신호값들을 읽어 상기 복수의 구간으로 구분된 위치 별로 비교함으로써 외부 교란의 발생 위치와 크기를 파악하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 방법.
  30. 제 27항 내지 제 29항 중 어느 한 항에 있어서, 상기 제 5 단계는
    상기 샘플링하여 저장한 신호값들을 기 설정된 시간동안 평균화하여 사용하는 것을 특징으로 하는 간섭계형 광섬유 교란 감지 방법.
PCT/KR2012/010875 2012-01-06 2012-12-14 간섭계형 광섬유 교란 감지 장치 및 그 감지 방법 WO2013103201A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280065977.0A CN104040598B (zh) 2012-01-06 2012-12-14 干涉仪型光纤干扰检测装置及其检测方法
US14/360,921 US20140376910A1 (en) 2012-01-06 2012-12-14 Apparatus for fiber optic perturbation sensing and method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120002029A KR101297268B1 (ko) 2012-01-06 2012-01-06 간섭계형 광섬유 교란 감지 장치 및 그 감지 방법
KR10-2012-0002029 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013103201A1 true WO2013103201A1 (ko) 2013-07-11

Family

ID=48745243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010875 WO2013103201A1 (ko) 2012-01-06 2012-12-14 간섭계형 광섬유 교란 감지 장치 및 그 감지 방법

Country Status (4)

Country Link
US (1) US20140376910A1 (ko)
KR (1) KR101297268B1 (ko)
CN (1) CN104040598B (ko)
WO (1) WO2013103201A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200004667A1 (it) 2022-03-11 2022-06-11 Sestosensor S R L Rivelatore di fase e polarizzazione per sensori acustici distribuiti a fibre ottiche ed interrogatore basato sullo stesso
CN115346357A (zh) * 2022-10-18 2022-11-15 高勘(广州)技术有限公司 光缆防外破预警方法、装置、设备及存储介质
CN116015428A (zh) * 2022-12-27 2023-04-25 高勘(广州)技术有限公司 基于dvs的光纤长度确定方法、装置及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9733120B2 (en) 2013-08-12 2017-08-15 Halliburton Energy Services, Inc. Systems and methods for spread spectrum distributed acoustic sensor monitoring
US10139268B2 (en) 2014-01-21 2018-11-27 Halliburton Energy Services, Inc. Systems and methods for multiple-code continuous-wave distributed acoustic sensing
WO2016033192A1 (en) 2014-08-28 2016-03-03 Adelos, Inc. Noise management for optical time delay interferometry
CN105182435A (zh) * 2015-08-31 2015-12-23 中国科学院半导体研究所 基于保偏光纤的分布式多点入侵检测系统
WO2017070443A1 (en) * 2015-10-23 2017-04-27 Davis Mark F Maintaining network connectivity during network upgrade
JP7070540B2 (ja) * 2017-03-02 2022-05-18 日本電気株式会社 計測時間特定装置、検知装置、計測時間特定方法及びプログラム
CN106953230B (zh) * 2017-04-07 2019-04-23 北京大学深圳研究生院 一种光脉冲产生装置
CN111157102B (zh) * 2020-01-02 2022-03-08 河海大学常州校区 一种分布式光纤传感系统中消除频率干扰的定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202155A (ja) * 2001-01-05 2002-07-19 Fujikura Ltd 光ループ干渉計を用いた衝撃・振動位置検知方法及びその装置
KR20080091640A (ko) * 2007-04-09 2008-10-14 주식회사 파이버프로 광케이블 식별 장치 및 그 방법
JP2010127705A (ja) * 2008-11-26 2010-06-10 Furukawa Electric Co Ltd:The 光ファイバセンサ
JP2010237083A (ja) * 2009-03-31 2010-10-21 Hitachi Cable Ltd 侵入者検知装置および侵入者検知方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194847A (en) * 1991-07-29 1993-03-16 Texas A & M University System Apparatus and method for fiber optic intrusion sensing
US5402231A (en) * 1992-08-24 1995-03-28 Mcdonnell Douglas Corporation Distributed sagnac sensor systems
US5848204A (en) * 1995-09-08 1998-12-08 California State University-Fullerton Fiber devices and sensors based on multimode fiber Bragg gratings
US5680494A (en) * 1996-05-16 1997-10-21 Bell Atlantic Network Services, Inc. FC-type optical fiber connector adapter
EP1729096A1 (en) * 2005-06-02 2006-12-06 BRITISH TELECOMMUNICATIONS public limited company Method and apparatus for determining the position of a disturbance in an optical fibre
EP1757966A3 (en) * 2005-08-23 2007-12-19 KT Corporation Apparatus and method for identification of optical cable
US7947945B2 (en) * 2008-02-29 2011-05-24 Corning Incorporated Fiber optic sensing system, method of using such and sensor fiber
GB0820658D0 (en) * 2008-11-12 2008-12-17 Rogers Alan J Directionality for distributed event location (del)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202155A (ja) * 2001-01-05 2002-07-19 Fujikura Ltd 光ループ干渉計を用いた衝撃・振動位置検知方法及びその装置
KR20080091640A (ko) * 2007-04-09 2008-10-14 주식회사 파이버프로 광케이블 식별 장치 및 그 방법
JP2010127705A (ja) * 2008-11-26 2010-06-10 Furukawa Electric Co Ltd:The 光ファイバセンサ
JP2010237083A (ja) * 2009-03-31 2010-10-21 Hitachi Cable Ltd 侵入者検知装置および侵入者検知方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200004667A1 (it) 2022-03-11 2022-06-11 Sestosensor S R L Rivelatore di fase e polarizzazione per sensori acustici distribuiti a fibre ottiche ed interrogatore basato sullo stesso
CN115346357A (zh) * 2022-10-18 2022-11-15 高勘(广州)技术有限公司 光缆防外破预警方法、装置、设备及存储介质
CN116015428A (zh) * 2022-12-27 2023-04-25 高勘(广州)技术有限公司 基于dvs的光纤长度确定方法、装置及系统
CN116015428B (zh) * 2022-12-27 2024-03-08 高勘(广州)技术有限公司 基于dvs的光纤长度确定方法、装置及系统

Also Published As

Publication number Publication date
KR101297268B1 (ko) 2013-08-19
CN104040598A (zh) 2014-09-10
KR20130081062A (ko) 2013-07-16
US20140376910A1 (en) 2014-12-25
CN104040598B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2013103201A1 (ko) 간섭계형 광섬유 교란 감지 장치 및 그 감지 방법
CN105806465B (zh) 一种基于固定反射点的新型φ-otdr探测装置及其探测方法
US7173690B2 (en) Method and apparatus using polarisation optical time domain reflectometry for security applications
CN107917738A (zh) 一种同时测量温度、应变和振动的分布式光纤传感系统
Sun et al. Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer
US8947232B2 (en) Fault-tolerant distributed fiber optic intrusion detection
CN107101658B (zh) 相位敏感光时域反射分布式光纤传感系统快速定位方法
CN1908505B (zh) 分布式光纤输油气管线警戒传感系统
CN105067103A (zh) 基于光频域反射计的振动检测装置及其方法
CN102506904A (zh) 一种基于超导纳米线单光子探测器的自发布里渊散射光时域反射仪
JP5242098B2 (ja) 光ファイバセンサ及び変動位置検出方法
JP2020510269A (ja) 埋設電力ケーブルが間違って掘削されることを防止する警報装置
JP3147616B2 (ja) 分布型導波路センサ
RU2530244C2 (ru) Распределенная когерентная рефлектометрическая система с фазовой демодуляцией (варианты)
KR20090120032A (ko) 광섬유를 이용한 화재 정보 검출 장치
CN105928634A (zh) 单端布里渊光相干域分析的高压电缆测温装置及方法
Kumagai et al. Fiber-optic vibration sensor for physical security system
CN111710118A (zh) 在不改变现有线路下变电站之间用高敏光缆哨兵监控线路入侵系统
CN104021637A (zh) 一种基于分布式光缆传感的电缆防盗方法及装置
Mohanan et al. Studies on merged Sagnac-Michelson interferometer for detecting phase sensitive events on fiber optic cables
CN206649621U (zh) 光纤周界安防系统
CN111508173A (zh) 一种高压电缆通道防破坏预警系统
CN111897026A (zh) 一种分布式多防区光纤周界安防系统
Sun et al. Distributed fiber-optic sensor with a ring Mach-Zehnder interferometer
Nagel et al. Long-term monitoring of local temperature and stress changes in a buried fiber-optic cable using a BOTDA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14360921

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864449

Country of ref document: EP

Kind code of ref document: A1