WO2013103087A1 - Glass for molding electrode and electrode molding material using same - Google Patents

Glass for molding electrode and electrode molding material using same Download PDF

Info

Publication number
WO2013103087A1
WO2013103087A1 PCT/JP2012/082931 JP2012082931W WO2013103087A1 WO 2013103087 A1 WO2013103087 A1 WO 2013103087A1 JP 2012082931 W JP2012082931 W JP 2012082931W WO 2013103087 A1 WO2013103087 A1 WO 2013103087A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
electrode
content
mass
less
Prior art date
Application number
PCT/JP2012/082931
Other languages
French (fr)
Japanese (ja)
Inventor
石原 健太郎
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2013103087A1 publication Critical patent/WO2013103087A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • C03C3/074Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
    • C03C3/0745Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc containing more than 50% lead oxide, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • C03C8/12Frit compositions, i.e. in a powdered or comminuted form containing lead containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • H01B3/087Chemical composition of glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an electrode-forming glass and an electrode-forming material, and more particularly to electrode formation suitable for forming a light-receiving surface electrode of a silicon solar cell (including a single-crystal silicon solar cell and a polycrystalline silicon solar cell) having an antireflection film.
  • the present invention relates to glass and electrode forming materials.
  • the silicon solar cell includes a semiconductor substrate, a light-receiving surface electrode, a back electrode, and an antireflection film, and the semiconductor substrate has a p-type semiconductor layer and an n-type semiconductor layer.
  • the light-receiving surface electrode and the back electrode are formed by sintering an electrode forming material (including metal powder, glass powder, and vehicle). Generally, Ag powder is used for the light receiving surface electrode and Al powder is used for the back electrode.
  • the antireflection film a silicon nitride film, a silicon oxide film, a titanium oxide film, an aluminum oxide film, or the like is used. Currently, a silicon nitride film is mainly used.
  • the printing method is a method of forming a light-receiving surface electrode by applying an electrode forming material on an antireflection film or the like by screen printing and baking it at 650 to 950 ° C. for a short time.
  • fire-through In the case of the printing method, a phenomenon in which the electrode forming material penetrates the antireflection film at the time of firing is used, and this phenomenon electrically connects the light receiving surface electrode and the semiconductor layer. This phenomenon is generally called fire-through. Using fire-through eliminates the need to etch the antireflection film and eliminates the need to etch the antireflection film and align the electrode pattern when forming the light-receiving surface electrode, dramatically improving the production efficiency of silicon solar cells. To improve.
  • JP 2004-87951 A Japanese Patent Laying-Open No. 2005-56875 Special table 2008-527698
  • the degree to which the electrode forming material penetrates the antireflection film (hereinafter referred to as fire-through property) varies depending on the composition of the electrode forming material and the firing conditions, and is particularly influenced by the glass composition of the glass powder. This is because the fire-through mainly occurs when the glass powder dissolves the metal powder and the dissolved material erodes the antireflection film. Moreover, the photoelectric conversion efficiency of a silicon solar cell has a correlation with the fire-through property of the electrode forming material. If the fire-through property is insufficient, the photoelectric conversion efficiency of the silicon solar cell is lowered, and the basic performance of the silicon solar cell is lowered.
  • lead-based glass having a specific glass composition generally shows good fire-through properties, but even when such lead-based glass is used, the photoelectric conversion efficiency of the silicon solar cell is reduced during fire-through. There was a case where a malfunction occurred. For this reason, the lead-based glass still has room for improvement from the viewpoint of increasing the photoelectric conversion efficiency of the silicon solar cell.
  • the glass powder contained in the electrode forming material is required to have characteristics such as being sinterable at a low temperature.
  • the present invention has been developed by creating a lead-based glass that has good fire-through properties and that is difficult to reduce the photoelectric conversion efficiency of silicon solar cells during fire-through and that can be sintered at low temperatures.
  • a technical problem is to increase the photoelectric conversion efficiency of the battery.
  • the present inventor has found that the above technical problem can be solved by regulating the glass composition of lead-based glass to a predetermined range, in particular, regulating the contents of PbO and B 2 O 3 to a predetermined range.
  • the electrode-forming glass of the present invention is characterized by containing, as a glass composition, PbO 60 to 95%, B 2 O 3 0 to 10%, and SiO 2 + Al 2 O 3 1 to 30% by mass.
  • SiO 2 + Al 2 O 3 is the total amount of SiO 2 and Al 2 O 3 .
  • the content of PbO is regulated to 60% by mass or more. In this way, the reactivity of the glass powder is increased, the fire-through property is improved, the softening point is lowered, and the electrode forming material can be sintered at a low temperature. Note that if the electrode is formed at a low temperature, the productivity of the silicon solar cell is improved, and hydrogen at the crystal grain boundary of the semiconductor substrate is hardly released, so that the photoelectric conversion efficiency of the silicon solar cell is improved.
  • the content of PbO is regulated to 95% by mass or less. If it does in this way, since it becomes difficult to devitrify glass at the time of baking, while the reactivity of glass powder becomes difficult to fall, the sinterability of an electrode formation material becomes difficult to fall.
  • the content of B 2 O 3 is restricted to 10 wt% or less.
  • the present inventors have conducted extensive studies results, the B 2 O 3 in the glass composition, it is responsible for lowering the photoelectric conversion efficiency of the silicon solar cell during fire through, in particular the B 2 O 3 is fire through
  • a boron-containing heterogeneous layer is formed in the semiconductor layer on the light-receiving surface side to reduce the function of the p-type semiconductor layer or the n-type semiconductor layer of the semiconductor substrate, and the B 2 O 3 in the glass composition It has been found that such a problem can be suppressed if the content is restricted to 10% by mass or less.
  • the content of B 2 O 3 is regulated to 10% by mass or less, the softening point is lowered, the electrode forming material can be sintered at a low temperature, the water resistance is improved, and the long-term reliability of the silicon solar cell is improved. Can also be increased.
  • the content of SiO 2 + Al 2 O 3 is regulated to 1% by mass or more. If it does in this way, since it becomes difficult to devitrify glass at the time of baking, while the reactivity of glass powder becomes difficult to fall, the sinterability of an electrode formation material becomes difficult to fall.
  • the content of SiO 2 + Al 2 O 3 is regulated to 30% by mass or less. In this way, since an undue increase in the softening point can be suppressed, the electrode forming material can be sintered at a low temperature.
  • the glass for electrode formation of the present invention has a glass composition of PbO 76 to 95%, B 2 O 3 0 to 10%, SiO 2 1 to 17%, Al 2 O 3 0.1 by mass%. It is preferable to contain less than 10% and P 2 O 5 0-2.5%.
  • the content of SiO 2 is regulated to 1% by mass or more, the glass becomes difficult to devitrify at the time of firing, so that the reactivity of the glass powder is hardly lowered and the sinterability of the electrode forming material is hardly lowered. .
  • the content of SiO 2 is regulated to 17% by mass or less, an unreasonable increase in the softening point can be suppressed, so that the electrode forming material can be sintered at a low temperature.
  • Al 2 O 3 is a component that increases the photoelectric conversion efficiency of the silicon solar cell while increasing water resistance.
  • the content of Al 2 O 3 is preferably 0.1 to less than 10.0% by mass.
  • the reason why the photoelectric conversion efficiency of the silicon solar cell is improved by the addition of Al 2 O 3 is unknown.
  • the present inventor currently estimates that when Al 2 O 3 is added, it is difficult to form a heterogeneous layer in the semiconductor layer on the light-receiving surface side during fire-through. On the other hand, if the content of Al 2 O 3 is 10% by mass or more, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to decrease. is there.
  • P 2 O 5 is a component that suppresses the devitrification of the glass at the time of melting, but if the content is large, the glass is phase-separated at the time of melting. Therefore, the content of P 2 O 5 is preferably 2.5% by mass or less.
  • the electrode-forming glass of the present invention preferably has a B 2 O 3 content of less than 5.0% by mass.
  • the electrode forming glass of the present invention does not substantially contain B 2 O 3 .
  • “substantially does not contain B 2 O 3 ” refers to the case where the content of B 2 O 3 is less than 0.1% by mass.
  • the electrode forming glass of the present invention preferably has a mass ratio PbO / SiO 2 of 6 or more.
  • the electrode-forming glass of the present invention preferably has a PbO + SiO 2 content of 94% by mass or more.
  • PbO + SiO 2 is the total amount of PbO and SiO 2 .
  • the electrode forming glass of the present invention preferably has a mass ratio SiO 2 / B 2 O 3 of more than 1.0.
  • the electrode-forming glass of the present invention preferably has a ZrO 2 content of 0.1 to 15% by mass.
  • a silicon solar cell has a structure in which a solar cell is sandwiched between two glass substrates.
  • the two glass substrates are bonded with ethylene vinyl acetate (hereinafter, EVA).
  • EVA ethylene vinyl acetate
  • the unreacted substance (acetic acid) contained in the EVA erodes the electrode forming glass, resulting in damage to the electrode and deterioration of the battery characteristics. Problems arise.
  • the acetic acid resistance is improved, and it becomes difficult to be eroded by unreacted substances (acetic acid) contained in EVA, As a result, the long-term reliability of the silicon solar cell is improved.
  • the content of ZrO 2 is regulated to 15% by mass or less. If it does in this way, it will become easy to prevent the situation where glass devitrifies at the time of baking. TiO 2 can also enjoy the same effects as ZrO 2 .
  • the content of Nd 2 O 3 is preferably 0.01 to 15% by mass.
  • the electrode forming material of the present invention is characterized in that it contains a glass powder made of the above-mentioned electrode forming glass, a metal powder, and a vehicle. If it does in this way, since an electrode pattern can be formed with a printing method, the production efficiency of a silicon solar cell can be improved.
  • the “vehicle” generally refers to a resin dissolved in an organic solvent. In the present invention, in addition to this, a resin is not contained, and a highly viscous organic solvent (for example, isotriol is used). An embodiment composed only of a higher alcohol such as decyl alcohol) is also included.
  • the electrode forming material of the present invention preferably has an average particle diameter D 50 of the glass powder is less than 5.0 .mu.m. In this way, the reactivity of the glass powder is increased, the fire-through property is improved, the softening point of the glass powder is lowered, the electrode forming material can be sintered at a low temperature, and the electrode pattern is increased. It can be refined. If the electrode pattern is made highly precise, the amount of incident sunlight and the like increase, and the photoelectric conversion efficiency of the silicon solar cell is improved.
  • the “average particle diameter D 50 ” represents a particle diameter in which the accumulated amount is 50% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.
  • the electrode forming material of the present invention preferably has a softening point of glass powder of 550 ° C. or lower.
  • the softening point can be measured with a macro type differential thermal analysis (DTA) apparatus.
  • DTA differential thermal analysis
  • the measurement may be started from room temperature and the rate of temperature increase may be 10 ° C./min.
  • the softening point corresponds to the fourth bending point (Ts) shown in FIG.
  • the electrode forming material of the present invention preferably has a glass powder content of 0.2 to 10% by mass. In this way, the conductivity of the electrode can be increased while maintaining the sinterability of the electrode forming material.
  • metal powder is Ag or its alloy.
  • the lead-based glass according to the present invention has a good compatibility with Ag or its alloy powder, and has a property that the glass does not easily foam during firing.
  • the electrode forming material of the present invention is preferably used for an electrode of a silicon solar cell.
  • the electrode forming material of the present invention is preferably used for a light receiving surface electrode of a silicon solar cell having an antireflection film.
  • the glass for electrode formation according to the embodiment of the present invention contains, as a glass composition, PbO 60 to 95%, B 2 O 3 0 to 10%, and SiO 2 + Al 2 O 3 1 to 30% by mass.
  • PbO 60 to 95% PbO 60 to 95%
  • B 2 O 3 0 to 10% PbO 60 to 95%
  • SiO 2 + Al 2 O 3 1 to 30% by mass.
  • PbO is a component that enhances the fire-through property and a component that lowers the softening point.
  • the content of PbO is 60 to 95%, preferably 72 to 95%, 76 to 95%, 80 to 93%, 82 to 92%, particularly 84 to 89%. If the PbO content is too small, the fire-through property is lowered, and the softening point is too high, making it difficult to sinter the electrode forming material at a low temperature. On the other hand, if the content of PbO is too large, the glass tends to be devitrified during firing, and due to this devitrification, the reactivity of the glass powder and the sinterability of the electrode forming material tend to be reduced.
  • B 2 O 3 is a glass forming component, but is a component that lowers the photoelectric conversion efficiency of the silicon solar cell during fire-through.
  • the content of B 2 O 3 is 10% or less, preferably less than 5.0%, 3% or less, less than 2.0%, 1% or less, less than 1.0%, 0.5% or less, especially 0 It is desirable that it is not more than 3% and does not contain substantially.
  • boron is doped into the semiconductor layer on the light-receiving surface side at the time of fire-through, so that a boron-containing heterogeneous layer is formed and the p-type semiconductor layer or n of the semiconductor substrate is formed.
  • the photoelectric conversion efficiency of the silicon solar cell is likely to decrease.
  • the content of B 2 O 3 is too large, there is a tendency that the viscosity of the glass is high, in addition to being difficult to sinter the electrode forming material at a low temperature, water resistance tends to decrease, silicon solar The long-term reliability of the battery tends to decrease.
  • SiO 2 + Al 2 O 3 is a component that increases thermal stability and water resistance, and further increases the adhesive strength between the semiconductor substrate and the electrode.
  • the content of SiO 2 + Al 2 O 3 is 1 to 30%, preferably 1 to 17%, 3 to 14%, especially 7 to 11%.
  • the content of SiO 2 + Al 2 O 3 is too small, it becomes difficult to enjoy the effect (in particular the effect of enhancing the thermal stability).
  • the content of SiO 2 + Al 2 O 3 is too large, the softening point becomes too high and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to decrease.
  • the content of PbO + SiO 2 is preferably 94% or more, 94.5% or more, 95% or more, 96% or more, 96.4% or more, particularly 97% or more.
  • PbO + SiO 2 + Al 2 O 3 is preferably 96% or more, 96.5% or more, 97% or more, 97.4% or more, particularly 98% or more.
  • PbO + SiO 2 + Al 2 O 3 is the total amount of PbO, SiO 2 , and Al 2 O 3 .
  • SiO 2 is a glass skeleton component, a component that increases water resistance, and a component that increases the adhesive strength between the semiconductor substrate and the electrode.
  • the content of SiO 2 is preferably 1 to 17%, 3 to 14%, in particular 7 to 11%. When the content of SiO 2 is too small, it becomes difficult to enjoy the effect (in particular the effect of enhancing the thermal stability). On the other hand, if the content of SiO 2 is too large, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to decrease.
  • Al 2 O 3 is a component that increases water resistance and is a component that increases the photoelectric conversion efficiency of the silicon solar cell.
  • the content of Al 2 O 3 is preferably 0.1 to less than 10%, 0.5 to 9%, in particular 1 to 5%.
  • the content of Al 2 O 3 is too small, it becomes difficult enhance the photoelectric conversion efficiency of the silicon solar cell.
  • the content of Al 2 O 3 is too large, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to be lowered.
  • the mass ratio PbO / SiO 2 is preferably 6.0 to 20, 7.0 to 20, 7.6 to 20, 7.9 to 15, 8.0 to 12, 8.1 to 10, and 8.2 to 9.0, especially 8.3 to 8.7. If it does in this way, fire-through property can be improved exactly, suppressing a raise of a softening point.
  • the mass ratio PbO / (SiO 2 + Al 2 O 3 ) is preferably 6.4 or more, 6.42 or more, 6.43 or more, 6.44 or more, especially 6.45 to 7.0. If it does in this way, fire-through property can be improved exactly, suppressing a raise of a softening point.
  • the mass ratio B 2 O 3 / PbO is preferably 0 to 0.1, 0 to 0.05, 0 to 0.03, in particular 0 to 0.01. In this way, it is possible to suppress the formation of the boron-containing heterogeneous layer in the semiconductor while maintaining the fire-through property.
  • the mass ratio SiO 2 / B 2 O 3 is preferably greater than 1.0, greater than 3.0, greater than 5.0, greater than 7 and especially greater than 10.0. In this way, formation of a boron-containing heterogeneous layer in the semiconductor can be suppressed while maintaining thermal stability.
  • the mass ratio Al 2 O 3 / B 2 O 3 is preferably more than 1.0, more than 3.0, more than 5.0, more than 7 and especially more than 10.0. In this way, formation of the boron-containing heterogeneous layer in the semiconductor can be remarkably suppressed.
  • the following components may be added.
  • the components other than the above components are preferably 20% or less, 15% or less, 10% or less, 7% or less, 5% or less, particularly 3% or less in terms of the balance of various characteristics.
  • P 2 O 5 is a component that suppresses the devitrification of the glass at the time of melting, but if the content is large, the glass is likely to phase-separate at the time of melting. For this reason, the content of P 2 O 5 is preferably 2.5% or less, particularly preferably 1% or less.
  • ZrO 2 is a component that increases acetic acid resistance.
  • the content of ZrO 2 is preferably 0.1 to 15%, 0.01 to 15%, 0.1 to 8%, particularly 0.2 to 6%.
  • the content of ZrO 2 is too large, the devitrification resistance is liable to decrease.
  • the content of ZrO 2 is too small, it becomes difficult to enjoy the above-mentioned effects.
  • TiO 2 is a component that increases acetic acid resistance.
  • the content of TiO 2 is preferably 0 to 15%, 0.01 to 15%, 0.1 to 8%, in particular 0.2 to 6%.
  • the content of TiO 2 is too large, the devitrification resistance is liable to decrease. Incidentally, the content of TiO 2 is too small, it becomes difficult to enjoy the above-mentioned effects.
  • MgO is a component that enhances thermal stability.
  • the content of MgO is preferably 0-5%, in particular 0-2%. When there is too much content of MgO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.
  • CaO is a component that enhances thermal stability.
  • the CaO content is preferably 0-5%, in particular 0-2%. When there is too much content of CaO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.
  • SrO is a component that enhances thermal stability.
  • the SrO content is preferably 0-5%, in particular 0-2%. When there is too much content of SrO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.
  • BaO is a component that enhances thermal stability.
  • the content of BaO is preferably 0 to 5%, in particular 0 to 2%. When there is too much content of BaO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.
  • ZnO is a component that enhances thermal stability and a component that lowers the softening point without reducing the thermal expansion coefficient.
  • the content of ZnO is preferably 0 to 10%, 0 to 5%, particularly 0 to 2%. When there is too much content of ZnO, the component balance of a glass composition will be impaired and a crystal
  • CuO is a component that enhances thermal stability.
  • the CuO content is preferably 0-5%, in particular 0-2%.
  • the component balance of a glass composition will be impaired, conversely, the precipitation rate of a crystal
  • crystallization will become high, ie, there exists a tendency for thermal stability to fall.
  • Fe 2 O 3 is a component that enhances thermal stability.
  • the content of Fe 2 O 3 is preferably 0 to 5%, in particular 0 to 2%.
  • the content of Fe 2 O 3 is too large, is impaired balance of components glass composition, the deposition rate of the reverse in the crystal increases, i.e. thermal stability tends to decrease.
  • Nd 2 O 3 is a component that remarkably enhances thermal stability, and is a component that remarkably enhances thermal stability, particularly for low-B 2 O 3 PbO—SiO 2 glass.
  • the content of Nd 2 O 3 is preferably 0.01 to 15%, 0.1 to 10%, 0.5 to 8%, especially 1 to 5%.
  • the content of Nd 2 O 3 is too small, it becomes difficult to enjoy the above-mentioned effects.
  • the content of Nd 2 O 3 is too large, batch cost soars.
  • the mass ratio B 2 O 3 / Nd 2 O 3 is preferably 35 or less, 25 or less, 20 or less, 15 or less, 8 or less, 5 or less, 3 or less, 2 or less, 1 or less, 0.1 or less, especially 0. Is less than 10. In this way, it becomes possible to achieve both the function maintenance and the thermal stability of the semiconductor layer at a high level.
  • Li 2 O, Na 2 O, K 2 O, and Cs 2 O are components that lower the softening point, but have an action of promoting devitrification of the glass during melting. Therefore, the content of these components is preferably 1% or less.
  • Bi 2 O 3 is a component that improves water resistance.
  • the content of Bi 2 O 3 is preferably 0-5%, in particular 0-2%. If the content of Bi 2 O 3 is too large, batch cost soars.
  • Lanthanoid oxides such as La 2 O 3 and Nd 2 O 3 are components that enhance thermal stability.
  • the content of lanthanoid oxide is preferably 0-5%, in particular 0-2%.
  • the content of the lanthanoid oxide is too large, the component balance of the glass composition is impaired, and conversely, the crystal deposition rate increases, that is, the thermal stability tends to decrease.
  • a suitable glass composition range can be obtained by combining suitable ranges of the respective components.
  • particularly preferable glass composition ranges are as follows. (1) As a glass composition, PbO 76 to 95%, B 2 O 3 0 to 10%, SiO 2 1 to 17%, Al 2 O 3 0.1 to less than 10.0% by mass%, P 2 O 5 containing 0 to 2.5% (2) As a glass composition, PbO 76 to 95%, B 2 O 3 0 to 3%, SiO 2 3 to 17%, Al 2 O 3 0.1 to less than 10.0% by mass%, P 2 O 5 containing 0 to 2.5% (3) As a glass composition, by mass%, PbO 80 to 92%, B 2 O 3 0 to less than 1.0%, SiO 2 3 to 17%, Al 2 O 3 0.1 to less than 10.0%, Containing P 2 O 5 0-2.5%, mass ratio B 2 O 3 / PbO 0-0.05, (4) As a glass composition, PbO 76 to 95%, B 2 O 3 0
  • An electrode forming material includes a glass powder made of the above electrode forming glass, a metal powder, and a vehicle.
  • Glass powder is a component that causes the electrode-forming material to fire through by corroding the antireflection film during firing, and is a component that adheres the electrode and the semiconductor substrate.
  • the metal powder is a main component for forming the electrode and a component for ensuring conductivity.
  • the vehicle is a component for making a paste, and a component for imparting a viscosity suitable for printing.
  • the average particle diameter D 50 of the glass powder is preferably less than 5.0 .mu.m, 4 [mu] m or less, 3 [mu] m or less, 2 [mu] m or less, especially 1.5 ⁇ m or less.
  • the average particle diameter D 50 of the glass powder is 5 ⁇ m or more, due to the surface area of the glass powder is reduced, it reduces the reactivity of the glass powder, fire through resistance is liable to lower.
  • the average particle diameter D 50 of the glass powder is 5 ⁇ m or more, the softening point of the glass powder is increased, the temperature range is increased required to form the electrode.
  • the average particle diameter D 50 of the glass powder is 5 ⁇ m or more, it becomes difficult to form a fine electrode pattern, the photoelectric conversion efficiency of the silicon solar cells tends to decrease.
  • the lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, the average particle diameter D 50 of the glass powder is too small, decreases the handling of the glass powder is lowered material yield of the glass powder In addition, the glass powder tends to aggregate and the characteristics of the silicon solar cell are likely to fluctuate. In view of such situation, the average particle diameter D 50 of the glass powder is preferably at least 0.5 [mu] m.
  • the obtained glass powder is classified by air, or (2)
  • the glass film is coarsely pulverized with a ball mill or the like and then wet pulverized with a bead mill or the like. it is possible to obtain a glass powder having a D 50.
  • the maximum particle diameter Dmax of the glass powder is preferably 25 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, and particularly 10 ⁇ m or less.
  • the “maximum particle diameter D max ” represents a particle diameter in which the accumulated amount is 99% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.
  • the softening point of the glass powder is preferably 550 ° C. or lower, 530 ° C. or lower, 500 ° C. or lower, 480 ° C. or lower, particularly 380 to 460 ° C.
  • the temperature range necessary for forming the electrode increases. If the softening point of the glass powder is lower than 380 ° C., the reaction of the antireflection film proceeds excessively and the semiconductor substrate is also eroded, so that the depletion layer is damaged and the battery characteristics of the silicon solar cell may be deteriorated. is there.
  • the content of the glass powder is preferably 0.2 to 10% by mass, 1 to 6% by mass, particularly 1.5 to 4% by mass.
  • the content of the glass powder is less than 0.2% by mass, the sinterability of the electrode forming material tends to be lowered.
  • the content of the glass powder is more than 10% by mass, the conductivity of the formed electrode is likely to be lowered, and thus it is difficult to take out the generated electricity.
  • the content ratio of the glass powder and the metal powder is preferably 0.3: 99.7 to 13:87 and 1.5: 98.5 to 7.5 in terms of mass ratio for the same reason as described above. : 92.5, especially 2:98 to 5:95.
  • the content of the metal powder is preferably 50 to 94.8% by mass, 65 to 93% by mass, particularly 70 to 92% by mass.
  • content of metal powder is less than 50 mass%, the electroconductivity of the electrode formed will fall and the photoelectric conversion efficiency of a silicon solar cell will fall easily.
  • content of the metal powder is more than 94.8% by mass, the content of the glass powder is relatively lowered, so that the sinterability of the electrode forming material is easily lowered.
  • the metal powder is preferably one or more of Ag, Al, Au, Cu, Pd, Pt and alloys thereof, particularly Ag and alloys thereof, Al and alloys thereof, or Cu and The alloy is preferred.
  • These metal powders have good electrical conductivity and good compatibility with the glass powder according to the present invention. For this reason, when these metal powders are used, the glass is difficult to devitrify during firing and the glass is difficult to foam.
  • the mean particle diameter D 50 of the metal powder is preferably 2 ⁇ m or less, especially 1 ⁇ m or less.
  • the content of the vehicle is preferably 5 to 40% by mass, particularly 10 to 25% by mass.
  • the content of the vehicle is less than 5% by mass, it becomes difficult to form a paste, and it is difficult to form an electrode by a printing method.
  • the content of the vehicle is more than 40% by mass, the film thickness and film width are likely to fluctuate before and after firing, and as a result, it becomes difficult to form a desired electrode pattern.
  • a vehicle generally refers to a resin in which a resin is dissolved in an organic solvent.
  • a resin acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used.
  • acrylic acid ester, nitrocellulose, and ethylcellulose are preferable because of their good thermal decomposability.
  • Organic solvents include N, N′-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether , Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl Ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO) N- methyl-2-pyrrolidone and the like can be used.
  • DMSO dimethyl sulfoxide
  • DMSO dimethyl s
  • the electrode forming material of the present embodiment includes ceramic filler powder such as cordierite for adjusting the thermal expansion coefficient, oxide powder such as NiO for adjusting the electrode resistance, and paste characteristics.
  • ceramic filler powder such as cordierite for adjusting the thermal expansion coefficient
  • oxide powder such as NiO for adjusting the electrode resistance
  • paste characteristics In order to adjust, a surfactant, a thickener, a pigment or the like may be contained in order to adjust the appearance quality.
  • the electrode forming material of this embodiment has an appropriate reactivity with a silicon nitride film, a silicon oxide film, a titanium oxide film, and an aluminum oxide film, particularly a reactivity with a silicon nitride film, and is excellent in fire-through properties.
  • the antireflection film can be penetrated during firing, and the light-receiving surface electrode of the silicon solar cell can be efficiently formed.
  • boron doping to the semiconductor layer on the light receiving surface side can be suppressed during fire-through.
  • the electrode forming material of this embodiment can also be used to form the back electrode of a silicon solar cell.
  • the electrode forming material for forming the back electrode usually contains Al powder, glass powder, vehicle and the like. And a back surface electrode is normally formed by said printing method.
  • Tables 1 and 2 show examples (samples Nos. 1 to 14) and comparative examples (samples Nos. 15 and 16) of the present invention.
  • Each sample was prepared as follows. First, glass raw materials such as various oxides and carbonates were prepared so as to have the glass composition shown in the table, and a glass batch was prepared. Then, this glass batch was put in a platinum crucible and heated at 900 to 1100 ° C. for 1 Melted for ⁇ 2 hours. Next, the molten glass was formed into a film shape with a water-cooled roller, and the obtained glass film was pulverized with a ball mill, then passed through a sieve having a mesh size of 200 mesh, air-classified, and the average shown in the table to obtain a glass powder with a particle size D 50.
  • glass raw materials such as various oxides and carbonates were prepared so as to have the glass composition shown in the table, and a glass batch was prepared. Then, this glass batch was put in a platinum crucible and heated at 900 to 1100 ° C. for 1 Melted for ⁇ 2 hours. Next, the molten glass was formed into a film shape with a water-cooled roller, and
  • the softening point was measured for each sample.
  • the softening point is a value measured with a macro DTA apparatus.
  • the measurement temperature range was from room temperature to 700 ° C., and the rate of temperature increase was 10 ° C./min.
  • the fire-through property was evaluated as follows. A paste-like sample was linearly screen-printed on a SiN film (film thickness 100 nm) formed on a silicon semiconductor substrate to a length of 200 mm and a width of 100 ⁇ m, dried, and then subjected to 900 ° C. for 1 minute in an electric furnace. Baked. Next, the obtained fired substrate was immersed in a hydrochloric acid aqueous solution (10% by mass concentration) and subjected to an etching treatment by applying ultrasonic waves for 12 hours. Then, the fired board
  • indicates that the linear electrode pattern was formed on the fired substrate through the SiN film, and the linear electrode pattern was generally formed on the fired substrate, but did not penetrate the SiN film.
  • An evaluation was given as “ ⁇ ” when the location was present and the electrical connection was partially broken, and “X” when the location was not penetrating the SiN film.
  • the battery characteristics were evaluated as follows. Using the above paste-like sample, a light-receiving surface electrode was formed according to a conventional method, and then a single crystal silicon solar cell was produced. Next, according to a conventional method, the photoelectric conversion efficiency of the obtained single crystal silicon solar cell is measured, and the case where the photoelectric conversion efficiency is 17.8% or more is “ ⁇ ”, and is 15% or more and less than 17.8%. The case was evaluated as “ ⁇ ” and the case of less than 15% as “x”.
  • the electrode-forming glass and electrode-forming material of the present invention can be suitably used for electrodes of silicon solar cells, particularly for light-receiving surface electrodes of silicon solar cells having an antireflection film.
  • the glass for electrode formation and the electrode formation material of the present invention can also be applied to uses other than silicon solar cells, for example, ceramic electronic parts such as ceramic capacitors and optical parts such as photodiodes.

Abstract

This glass for molding an electrode is characterized by containing a glass composition that comprises, by mass%, 60 to 95% of PbO, 0 to 10% of B2O3, and 1 to 30% of SiO2 + Al2O3.

Description

電極形成用ガラス及びこれを用いた電極形成材料Electrode forming glass and electrode forming material using the same
 本発明は、電極形成用ガラス及び電極形成材料に関し、特に反射防止膜を有するシリコン太陽電池(単結晶シリコン太陽電池、多結晶シリコン太陽電池を含む)の受光面電極の形成に好適な電極形成用ガラス及び電極形成材料に関する。 The present invention relates to an electrode-forming glass and an electrode-forming material, and more particularly to electrode formation suitable for forming a light-receiving surface electrode of a silicon solar cell (including a single-crystal silicon solar cell and a polycrystalline silicon solar cell) having an antireflection film. The present invention relates to glass and electrode forming materials.
 シリコン太陽電池は、半導体基板、受光面電極、裏面電極、反射防止膜を備えており、半導体基板は、p型半導体層とn型半導体層を有している。受光面電極や裏面電極は、電極形成材料(金属粉末と、ガラス粉末と、ビークルとを含む)を焼結させることにより形成される。一般的に、受光面電極にはAg粉末、裏面電極にはAl粉末が使用される。反射防止膜は、窒化ケイ素膜、酸化シリコン膜、酸化チタン膜、酸化アルミニウム膜等が使用されており、現在では、主に窒化ケイ素膜が使用されている。 The silicon solar cell includes a semiconductor substrate, a light-receiving surface electrode, a back electrode, and an antireflection film, and the semiconductor substrate has a p-type semiconductor layer and an n-type semiconductor layer. The light-receiving surface electrode and the back electrode are formed by sintering an electrode forming material (including metal powder, glass powder, and vehicle). Generally, Ag powder is used for the light receiving surface electrode and Al powder is used for the back electrode. As the antireflection film, a silicon nitride film, a silicon oxide film, a titanium oxide film, an aluminum oxide film, or the like is used. Currently, a silicon nitride film is mainly used.
 シリコン太陽電池に受光面電極を形成する方法には、蒸着法、めっき法、印刷法等があるが、最近では、印刷法が主流になっている。印刷法は、スクリーン印刷により、電極形成材料を反射防止膜等の上に塗布した後、650~950℃で短時間焼成し、受光面電極を形成する方法である。 There are a vapor deposition method, a plating method, a printing method, and the like as a method for forming a light receiving surface electrode on a silicon solar cell. Recently, a printing method has become mainstream. The printing method is a method of forming a light-receiving surface electrode by applying an electrode forming material on an antireflection film or the like by screen printing and baking it at 650 to 950 ° C. for a short time.
 印刷法の場合、焼成時に電極形成材料が反射防止膜を貫通する現象が利用され、この現象により受光面電極と半導体層が電気的に接続される。この現象は、一般的にファイアスルーと称されている。ファイアスルーを利用すれば、受光面電極の形成に際し、反射防止膜のエッチングが不要になると共に、反射防止膜のエッチングと電極パターンの位置合わせが不要になり、シリコン太陽電池の生産効率が飛躍的に向上する。 In the case of the printing method, a phenomenon in which the electrode forming material penetrates the antireflection film at the time of firing is used, and this phenomenon electrically connects the light receiving surface electrode and the semiconductor layer. This phenomenon is generally called fire-through. Using fire-through eliminates the need to etch the antireflection film and eliminates the need to etch the antireflection film and align the electrode pattern when forming the light-receiving surface electrode, dramatically improving the production efficiency of silicon solar cells. To improve.
特開2004-87951号公報JP 2004-87951 A 特開2005-56875号公報Japanese Patent Laying-Open No. 2005-56875 特表2008-527698号公報Special table 2008-527698
 電極形成材料が反射防止膜を貫通する度合(以下、ファイアスルー性)は、電極形成材料の組成、焼成条件で変動し、特にガラス粉末のガラス組成の影響が最も大きい。これは、ファイアスルーが、主にガラス粉末が金属粉末を溶かし、その溶解物が反射防止膜を侵食することにより生じるからである。また、シリコン太陽電池の光電変換効率は、電極形成材料のファイアスルー性と相関がある。ファイアスルー性が不十分であると、シリコン太陽電池の光電変換効率が低下し、シリコン太陽電池の基本性能が低下する。 The degree to which the electrode forming material penetrates the antireflection film (hereinafter referred to as fire-through property) varies depending on the composition of the electrode forming material and the firing conditions, and is particularly influenced by the glass composition of the glass powder. This is because the fire-through mainly occurs when the glass powder dissolves the metal powder and the dissolved material erodes the antireflection film. Moreover, the photoelectric conversion efficiency of a silicon solar cell has a correlation with the fire-through property of the electrode forming material. If the fire-through property is insufficient, the photoelectric conversion efficiency of the silicon solar cell is lowered, and the basic performance of the silicon solar cell is lowered.
 また、特定のガラス組成を有する鉛系ガラスは、概ね、良好なファイアスルー性を示すが、このような鉛系ガラスを用いても、ファイアスルーの際に、シリコン太陽電池の光電変換効率を低下させる不具合が発生する場合があった。このため、鉛系ガラスは、シリコン太陽電池の光電変換効率を高める観点から、未だ改善の余地があった。 In addition, lead-based glass having a specific glass composition generally shows good fire-through properties, but even when such lead-based glass is used, the photoelectric conversion efficiency of the silicon solar cell is reduced during fire-through. There was a case where a malfunction occurred. For this reason, the lead-based glass still has room for improvement from the viewpoint of increasing the photoelectric conversion efficiency of the silicon solar cell.
 更に、電極形成材料に含まれるガラス粉末には、低温で焼結可能であること等の特性が要求される。 Furthermore, the glass powder contained in the electrode forming material is required to have characteristics such as being sinterable at a low temperature.
 そこで、本発明は、ファイアスルー性が良好であり、またファイアスルーの際にシリコン太陽電池の光電変換効率を低下させ難く、しかも低温で焼結可能な鉛系ガラスを創案することにより、シリコン太陽電池の光電変換効率を高めることを技術的課題とする。 Accordingly, the present invention has been developed by creating a lead-based glass that has good fire-through properties and that is difficult to reduce the photoelectric conversion efficiency of silicon solar cells during fire-through and that can be sintered at low temperatures. A technical problem is to increase the photoelectric conversion efficiency of the battery.
 本発明者は、鋭意検討の結果、鉛系ガラスのガラス組成を所定範囲に規制、特にPbOとBの含有量を所定範囲に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の電極形成用ガラスは、ガラス組成として、質量%で、PbO 60~95%、B 0~10%、SiO+Al 1~30%を含有することを特徴とする。ここで、「SiO+Al」は、SiOとAlの合量である。 As a result of intensive studies, the present inventor has found that the above technical problem can be solved by regulating the glass composition of lead-based glass to a predetermined range, in particular, regulating the contents of PbO and B 2 O 3 to a predetermined range. This is proposed as the present invention. That is, the electrode-forming glass of the present invention is characterized by containing, as a glass composition, PbO 60 to 95%, B 2 O 3 0 to 10%, and SiO 2 + Al 2 O 3 1 to 30% by mass. And Here, “SiO 2 + Al 2 O 3 ” is the total amount of SiO 2 and Al 2 O 3 .
 本発明の電極形成用ガラスでは、PbOの含有量が60質量%以上に規制されている。このようにすれば、ガラス粉末の反応性が高まり、ファイアスルー性が向上すると共に、軟化点が低下し、低温で電極形成材料の焼結が可能になる。なお、低温で電極を形成すれば、シリコン太陽電池の生産性が向上し、また半導体基板の結晶粒界の水素が放出され難くなり、シリコン太陽電池の光電変換効率が向上する。一方、本発明の電極形成用ガラスでは、PbOの含有量が95質量%以下に規制されている。このようにすれば、焼成時にガラスが失透し難くなるため、ガラス粉末の反応性が低下し難くなると共に、電極形成材料の焼結性が低下し難くなる。 In the electrode forming glass of the present invention, the content of PbO is regulated to 60% by mass or more. In this way, the reactivity of the glass powder is increased, the fire-through property is improved, the softening point is lowered, and the electrode forming material can be sintered at a low temperature. Note that if the electrode is formed at a low temperature, the productivity of the silicon solar cell is improved, and hydrogen at the crystal grain boundary of the semiconductor substrate is hardly released, so that the photoelectric conversion efficiency of the silicon solar cell is improved. On the other hand, in the electrode forming glass of the present invention, the content of PbO is regulated to 95% by mass or less. If it does in this way, since it becomes difficult to devitrify glass at the time of baking, while the reactivity of glass powder becomes difficult to fall, the sinterability of an electrode formation material becomes difficult to fall.
 また、本発明の電極形成用ガラスでは、Bの含有量が10質量%以下に規制されている。本発明者は、鋭意検討の結果、ガラス組成中のBが、ファイアスルーの際にシリコン太陽電池の光電変換効率を低下させる原因であること、特にこのBがファイアスルーの際に受光面側の半導体層中にホウ素含有異種層を形成させて、半導体基板のp型半導体層又はn型半導体層の機能を低下させることを見出すと共に、ガラス組成中のBの含有量を10質量%以下に規制すれば、このような不具合を抑制し得ることを見出した。また、Bの含有量を10質量%以下に規制すれば、軟化点が低下し、低温で電極形成材料を焼結できると共に、耐水性が向上して、シリコン太陽電池の長期信頼性も高めることができる。 Further, in the electrode forming glass of the present invention, the content of B 2 O 3 is restricted to 10 wt% or less. The present inventors have conducted extensive studies results, the B 2 O 3 in the glass composition, it is responsible for lowering the photoelectric conversion efficiency of the silicon solar cell during fire through, in particular the B 2 O 3 is fire through At the same time, it is found that a boron-containing heterogeneous layer is formed in the semiconductor layer on the light-receiving surface side to reduce the function of the p-type semiconductor layer or the n-type semiconductor layer of the semiconductor substrate, and the B 2 O 3 in the glass composition It has been found that such a problem can be suppressed if the content is restricted to 10% by mass or less. Further, if the content of B 2 O 3 is regulated to 10% by mass or less, the softening point is lowered, the electrode forming material can be sintered at a low temperature, the water resistance is improved, and the long-term reliability of the silicon solar cell is improved. Can also be increased.
 一方、上記のようにBの含有量を規制すれば、ガラス骨格成分の含有量が低下するため、焼成時にガラスが失透し易くなる。そこで、本発明の電極形成用ガラスでは、SiO+Alの含有量が1質量%以上に規制されている。このようにすれば、焼成時にガラスが失透し難くなるため、ガラス粉末の反応性が低下し難くなると共に、電極形成材料の焼結性が低下し難くなる。一方、本発明の電極形成用ガラスでは、SiO+Alの含有量が30質量%以下に規制されている。このようにすれば、軟化点の不当な上昇を抑制できるため、低温で電極形成材料の焼結が可能になる。 On the other hand, if the content of B 2 O 3 is regulated as described above, the content of the glass skeleton component decreases, and thus the glass is easily devitrified during firing. Therefore, in the electrode forming glass of the present invention, the content of SiO 2 + Al 2 O 3 is regulated to 1% by mass or more. If it does in this way, since it becomes difficult to devitrify glass at the time of baking, while the reactivity of glass powder becomes difficult to fall, the sinterability of an electrode formation material becomes difficult to fall. On the other hand, in the glass for electrode formation of the present invention, the content of SiO 2 + Al 2 O 3 is regulated to 30% by mass or less. In this way, since an undue increase in the softening point can be suppressed, the electrode forming material can be sintered at a low temperature.
 第二に、本発明の電極形成用ガラスは、ガラス組成として、質量%で、PbO 76~95%、B 0~10%、SiO 1~17%、Al 0.1~10%未満、P 0~2.5%を含有することが好ましい。 Secondly, the glass for electrode formation of the present invention has a glass composition of PbO 76 to 95%, B 2 O 3 0 to 10%, SiO 2 1 to 17%, Al 2 O 3 0.1 by mass%. It is preferable to contain less than 10% and P 2 O 5 0-2.5%.
 SiOの含有量を1質量%以上に規制すれば、焼成時にガラスが失透し難くなるため、ガラス粉末の反応性が低下し難くなると共に、電極形成材料の焼結性が低下し難くなる。一方、SiOの含有量を17質量%以下に規制すれば、軟化点の不当な上昇を抑制できるため、低温で電極形成材料の焼結が可能になる。 If the content of SiO 2 is regulated to 1% by mass or more, the glass becomes difficult to devitrify at the time of firing, so that the reactivity of the glass powder is hardly lowered and the sinterability of the electrode forming material is hardly lowered. . On the other hand, if the content of SiO 2 is regulated to 17% by mass or less, an unreasonable increase in the softening point can be suppressed, so that the electrode forming material can be sintered at a low temperature.
 Alは、耐水性を高めつつ、シリコン太陽電池の光電変換効率を高める成分である。Alの含有量は0.1~10.0質量%未満が好ましい。Alの添加により、シリコン太陽電池の光電変換効率が向上する理由は不明である。本発明者は、現時点では、Alを添加すると、ファイアスルーの際に受光面側の半導体層中に異種層が形成され難くなると推定している。一方、Alの含有量が10質量%以上であると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなることに加えて、ファイアスルー性が低下する傾向がある。 Al 2 O 3 is a component that increases the photoelectric conversion efficiency of the silicon solar cell while increasing water resistance. The content of Al 2 O 3 is preferably 0.1 to less than 10.0% by mass. The reason why the photoelectric conversion efficiency of the silicon solar cell is improved by the addition of Al 2 O 3 is unknown. The present inventor currently estimates that when Al 2 O 3 is added, it is difficult to form a heterogeneous layer in the semiconductor layer on the light-receiving surface side during fire-through. On the other hand, if the content of Al 2 O 3 is 10% by mass or more, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to decrease. is there.
 Pは、溶融時にガラスの失透を抑制する成分であるが、その含有量が多いと、溶融時にガラスが分相してしまう。よって、Pの含有量は2.5質量%以下が好ましい。 P 2 O 5 is a component that suppresses the devitrification of the glass at the time of melting, but if the content is large, the glass is phase-separated at the time of melting. Therefore, the content of P 2 O 5 is preferably 2.5% by mass or less.
 第三に、本発明の電極形成用ガラスは、Bの含有量が5.0質量%未満であることが好ましい。 Third, the electrode-forming glass of the present invention preferably has a B 2 O 3 content of less than 5.0% by mass.
 第四に、本発明の電極形成用ガラスは、実質的にBを含有しないことが好ましい。ここで、「実質的にBを含有しない」とは、Bの含有量が0.1質量%未満の場合を指す。 Fourthly, it is preferable that the electrode forming glass of the present invention does not substantially contain B 2 O 3 . Here, “substantially does not contain B 2 O 3 ” refers to the case where the content of B 2 O 3 is less than 0.1% by mass.
 第五に、本発明の電極形成用ガラスは、質量比PbO/SiOが6以上であることが好ましい。 Fifth, the electrode forming glass of the present invention preferably has a mass ratio PbO / SiO 2 of 6 or more.
 第六に、本発明の電極形成用ガラスは、PbO+SiOの含有量が94質量%以上であることが好ましい。ここで、「PbO+SiO」は、PbOとSiOの合量である。 Sixth, the electrode-forming glass of the present invention preferably has a PbO + SiO 2 content of 94% by mass or more. Here, “PbO + SiO 2 ” is the total amount of PbO and SiO 2 .
 第七に、本発明の電極形成用ガラスは、質量比SiO/Bが1.0超であることが好ましい。 Seventh, the electrode forming glass of the present invention preferably has a mass ratio SiO 2 / B 2 O 3 of more than 1.0.
 第八に、本発明の電極形成用ガラスは、ZrOの含有量が0.1~15質量%であることが好ましい。 Eighth, the electrode-forming glass of the present invention preferably has a ZrO 2 content of 0.1 to 15% by mass.
 シリコン太陽電池は、2枚のガラス基板で太陽電池セルを挟み込んだ構造を有している。そして、2枚のガラス基板は、エチレンビニルアセテート(以下、EVA)により接着されている。しかし、このようなシリコン太陽電池を長期間使用すると、EVA中に含まれる未反応物(酢酸)が、電極形成用ガラスを侵食し、結果として、電極が損傷されて、電池特性が低下するという問題が生じる。 A silicon solar cell has a structure in which a solar cell is sandwiched between two glass substrates. The two glass substrates are bonded with ethylene vinyl acetate (hereinafter, EVA). However, when such a silicon solar cell is used for a long time, the unreacted substance (acetic acid) contained in the EVA erodes the electrode forming glass, resulting in damage to the electrode and deterioration of the battery characteristics. Problems arise.
 本発明者の調査によると、ガラス組成中にZrOを0.01質量%以上添加すれば、耐酢酸性が向上して、EVA中に含まれる未反応物(酢酸)により侵食され難くなり、結果として、シリコン太陽電池の長期信頼性が向上する。一方、本発明の電極形成用ガラスでは、ZrOの含有量が15質量%以下に規制されている。このようにすれば、焼成時にガラスが失透する事態を防止し易くなる。なお、TiOもZrOと同様の効果を享受することができる。 According to the inventor's investigation, if ZrO 2 is added in an amount of 0.01% by mass or more in the glass composition, the acetic acid resistance is improved, and it becomes difficult to be eroded by unreacted substances (acetic acid) contained in EVA, As a result, the long-term reliability of the silicon solar cell is improved. On the other hand, in the glass for electrode formation of the present invention, the content of ZrO 2 is regulated to 15% by mass or less. If it does in this way, it will become easy to prevent the situation where glass devitrifies at the time of baking. TiO 2 can also enjoy the same effects as ZrO 2 .
 第九に、本発明の電極形成用ガラスは、Ndの含有量が0.01~15質量%であることが好ましい。 Ninthly, in the electrode forming glass of the present invention, the content of Nd 2 O 3 is preferably 0.01 to 15% by mass.
 第十に、本発明の電極形成材料は、上記の電極形成用ガラスからなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする。このようにすれば、印刷法により、電極パターンを形成できるため、シリコン太陽電池の生産効率を高めることができる。ここで、「ビークル」は、一般的に、有機溶媒中に樹脂を溶解させたものを指すが、本発明では、これに加え、樹脂を含有せず、高粘性の有機溶媒(例えば、イソトリデシルアルコール等の高級アルコール)のみで構成される態様も含む。 Tenthly, the electrode forming material of the present invention is characterized in that it contains a glass powder made of the above-mentioned electrode forming glass, a metal powder, and a vehicle. If it does in this way, since an electrode pattern can be formed with a printing method, the production efficiency of a silicon solar cell can be improved. Here, the “vehicle” generally refers to a resin dissolved in an organic solvent. In the present invention, in addition to this, a resin is not contained, and a highly viscous organic solvent (for example, isotriol is used). An embodiment composed only of a higher alcohol such as decyl alcohol) is also included.
 第十一に、本発明の電極形成材料は、ガラス粉末の平均粒子径D50が5.0μm未満であることが好ましい。このようにすれば、ガラス粉末の反応性が高まり、ファイアスルー性が向上すると共に、ガラス粉末の軟化点が低下して、低温で電極形成材料を焼結可能になり、更には電極パターンを高精細化することができる。なお、電極パターンを高精細化すれば、太陽光の入射量等が増加して、シリコン太陽電池の光電変換効率が向上する。ここで、「平均粒子径D50」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 Eleventh, the electrode forming material of the present invention preferably has an average particle diameter D 50 of the glass powder is less than 5.0 .mu.m. In this way, the reactivity of the glass powder is increased, the fire-through property is improved, the softening point of the glass powder is lowered, the electrode forming material can be sintered at a low temperature, and the electrode pattern is increased. It can be refined. If the electrode pattern is made highly precise, the amount of incident sunlight and the like increase, and the photoelectric conversion efficiency of the silicon solar cell is improved. Here, the “average particle diameter D 50 ” represents a particle diameter in which the accumulated amount is 50% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.
 第十二に、本発明の電極形成材料は、ガラス粉末の軟化点が550℃以下であることが好ましい。なお、軟化点は、マクロ型示差熱分析(DTA)装置で測定可能である。マクロ型DTAで軟化点を測定する場合、室温から測定を開始し、昇温速度を10℃/分とすればよい。なお、マクロ型DTAにおいて、軟化点は、図1に示す第四屈曲点(Ts)に相当する。 Twelfth, the electrode forming material of the present invention preferably has a softening point of glass powder of 550 ° C. or lower. The softening point can be measured with a macro type differential thermal analysis (DTA) apparatus. When measuring the softening point with a macro-type DTA, the measurement may be started from room temperature and the rate of temperature increase may be 10 ° C./min. In the macro DTA, the softening point corresponds to the fourth bending point (Ts) shown in FIG.
 第十三に、本発明の電極形成材料は、ガラス粉末の含有量が0.2~10質量%であることが好ましい。このようにすれば、電極形成材料の焼結性を維持した上で、電極の導電性を高めることができる。 Thirteenth, the electrode forming material of the present invention preferably has a glass powder content of 0.2 to 10% by mass. In this way, the conductivity of the electrode can be increased while maintaining the sinterability of the electrode forming material.
 第十四に、本発明の電極形成材料は、金属粉末がAg又はその合金であることが好ましい。本発明に係る鉛系ガラスは、Ag又はその合金粉末との適合性が良好であり、焼成時にガラスの発泡が生じ難い性質を有している。 14thly, as for the electrode forming material of this invention, it is preferable that metal powder is Ag or its alloy. The lead-based glass according to the present invention has a good compatibility with Ag or its alloy powder, and has a property that the glass does not easily foam during firing.
 第十五に、本発明の電極形成材料は、シリコン太陽電池の電極に用いることが好ましい。 Fifteenth, the electrode forming material of the present invention is preferably used for an electrode of a silicon solar cell.
 第十六に、本発明の電極形成材料は、反射防止膜を有するシリコン太陽電池の受光面電極に用いることが好ましい。 Sixteenth, the electrode forming material of the present invention is preferably used for a light receiving surface electrode of a silicon solar cell having an antireflection film.
マクロ型DTAで測定した際の軟化点Tsを示す模式図である。なお、図中のTgは、ガラス転移点を示している。It is a schematic diagram which shows the softening point Ts at the time of measuring with macro type | mold DTA. In addition, Tg in a figure has shown the glass transition point.
<電極形成用ガラス>
 本発明の実施形態に係る電極形成用ガラスは、ガラス組成として、質量%で、PbO 60~95%、B 0~10%、SiO+Al 1~30%を含有する。このように各成分の含有範囲を限定した理由を以下に説明する。なお、以下のガラス組成に関する説明において、%表示は質量%を指す。
<Glass for electrode formation>
The glass for electrode formation according to the embodiment of the present invention contains, as a glass composition, PbO 60 to 95%, B 2 O 3 0 to 10%, and SiO 2 + Al 2 O 3 1 to 30% by mass. The reason for limiting the content range of each component as described above will be described below. In addition, in the description regarding the following glass composition,% display points out the mass%.
 PbOは、ファイアスルー性を高める成分であると共に、軟化点を低下させる成分である。PbOの含有量は60~95%であり、好ましくは72~95%、76~95%、80~93%、82~92%、特に84~89%である。PbOの含有量が少な過ぎると、ファイアスルー性が低下することに加えて、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。一方、PbOの含有量が多過ぎると、焼成時にガラスが失透し易くなり、この失透に起因して、ガラス粉末の反応性及び電極形成材料の焼結性が低下し易くなる。 PbO is a component that enhances the fire-through property and a component that lowers the softening point. The content of PbO is 60 to 95%, preferably 72 to 95%, 76 to 95%, 80 to 93%, 82 to 92%, particularly 84 to 89%. If the PbO content is too small, the fire-through property is lowered, and the softening point is too high, making it difficult to sinter the electrode forming material at a low temperature. On the other hand, if the content of PbO is too large, the glass tends to be devitrified during firing, and due to this devitrification, the reactivity of the glass powder and the sinterability of the electrode forming material tend to be reduced.
 Bは、ガラス形成成分であるが、ファイアスルーの際にシリコン太陽電池の光電変換効率を低下させる成分である。Bの含有量は10%以下であり、好ましくは5.0%未満、3%以下、2.0%未満、1%以下、1.0%未満、0.5%以下、特に0.3%以下であり、実質的に含有しないことが望ましい。Bの含有量が多過ぎると、ファイアスルーの際に受光面側の半導体層にホウ素がドープされることにより、ホウ素含有異種層が形成されて、半導体基板のp型半導体層又はn型半導体層の機能が低下し易くなり、結果として、シリコン太陽電池の光電変換効率が低下し易くなる。また、Bの含有量が多過ぎると、ガラスの粘性が高くなる傾向があり、低温で電極形成材料を焼結し難くなることに加えて、耐水性が低下し易くなり、シリコン太陽電池の長期信頼性が低下し易くなる。なお、熱的安定性(耐失透性)の観点からは、Bを0.001質量%以上添加した方が良い場合もある。 B 2 O 3 is a glass forming component, but is a component that lowers the photoelectric conversion efficiency of the silicon solar cell during fire-through. The content of B 2 O 3 is 10% or less, preferably less than 5.0%, 3% or less, less than 2.0%, 1% or less, less than 1.0%, 0.5% or less, especially 0 It is desirable that it is not more than 3% and does not contain substantially. When the content of B 2 O 3 is too large, boron is doped into the semiconductor layer on the light-receiving surface side at the time of fire-through, so that a boron-containing heterogeneous layer is formed and the p-type semiconductor layer or n of the semiconductor substrate is formed. As a result, the photoelectric conversion efficiency of the silicon solar cell is likely to decrease. Further, when the content of B 2 O 3 is too large, there is a tendency that the viscosity of the glass is high, in addition to being difficult to sinter the electrode forming material at a low temperature, water resistance tends to decrease, silicon solar The long-term reliability of the battery tends to decrease. The thermal stability standpoint from the (devitrification resistance), in some cases the B 2 O 3 is better added 0.001 mass% or more.
 SiO+Alは、熱的安定性、耐水性を高める成分であり、更には半導体基板と電極の接着強度を高める成分である。SiO+Alの含有量は1~30%であり、好ましくは1~17%、3~14%、特に7~11%である。SiO+Alの含有量が少な過ぎると、上記効果(特に熱的安定性を高める効果)を享受し難くなる。一方、SiO+Alの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなることに加えて、ファイアスルー性が低下する傾向がある。 SiO 2 + Al 2 O 3 is a component that increases thermal stability and water resistance, and further increases the adhesive strength between the semiconductor substrate and the electrode. The content of SiO 2 + Al 2 O 3 is 1 to 30%, preferably 1 to 17%, 3 to 14%, especially 7 to 11%. When the content of SiO 2 + Al 2 O 3 is too small, it becomes difficult to enjoy the effect (in particular the effect of enhancing the thermal stability). On the other hand, if the content of SiO 2 + Al 2 O 3 is too large, the softening point becomes too high and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to decrease.
 PbOの含有量を増加させつつ、Bの含有量を低下させた上で、PbO+SiOの含有量を多くすれば、熱的安定性の低下を抑制しつつ、ファイアスルー性を的確に高めることができる。PbO+SiOの含有量は、好ましくは94%以上、94.5%以上、95%以上、96%以上、96.4%以上、特に97%以上である。 While increasing the content of PbO and decreasing the content of B 2 O 3 and increasing the content of PbO + SiO 2 , the fire-through property is accurately suppressed while suppressing the decrease in thermal stability. Can be increased. The content of PbO + SiO 2 is preferably 94% or more, 94.5% or more, 95% or more, 96% or more, 96.4% or more, particularly 97% or more.
 PbOの含有量を増加させつつ、Bの含有量を低下させた上で、PbO+SiO+Alの含有量を多くすれば、熱的安定性の低下を抑制しつつ、ファイアスルー性、耐水性、シリコン太陽電池の光電変換効率を的確に高めることができる。PbO+SiO+Alの含有量は、好ましくは96%以上、96.5%以上、97%以上、97.4%以上、特に98%以上である。ここで、「PbO+SiO+Al」は、PbO、SiO、及びAlの合量である。 While increasing the content of PbO and reducing the content of B 2 O 3 and increasing the content of PbO + SiO 2 + Al 2 O 3 , fire-through can be achieved while suppressing a decrease in thermal stability. Performance, water resistance, and photoelectric conversion efficiency of a silicon solar cell can be accurately increased. The content of PbO + SiO 2 + Al 2 O 3 is preferably 96% or more, 96.5% or more, 97% or more, 97.4% or more, particularly 98% or more. Here, “PbO + SiO 2 + Al 2 O 3 ” is the total amount of PbO, SiO 2 , and Al 2 O 3 .
 SiOは、ガラス骨格成分であり、また耐水性を高める成分であり、更には半導体基板と電極の接着強度を高める成分である。SiOの含有量は、好ましくは1~17%、3~14%、特に7~11%である。SiOの含有量が少な過ぎると、上記効果(特に熱的安定性を高める効果)を享受し難くなる。一方、SiOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなることに加えて、ファイアスルー性が低下する傾向がある。 SiO 2 is a glass skeleton component, a component that increases water resistance, and a component that increases the adhesive strength between the semiconductor substrate and the electrode. The content of SiO 2 is preferably 1 to 17%, 3 to 14%, in particular 7 to 11%. When the content of SiO 2 is too small, it becomes difficult to enjoy the effect (in particular the effect of enhancing the thermal stability). On the other hand, if the content of SiO 2 is too large, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to decrease.
 軟化点を低下させつつ、ファイアスルー性を高めるためには、ガラス組成中にPbOを多量に添加する必要があるが、PbOの含有量を増加させると、焼成時にガラスが失透し易くなり、この失透に起因して、ガラス粉末の反応性が低下し易くなる。特に、PbOの含有量が84%以上になると、その傾向が顕著になる。そこで、ガラス組成中にSiOを適量添加すれば、PbOの含有量が84%以上であっても、ガラスの失透を抑制することができる。 In order to increase the fire-through property while lowering the softening point, it is necessary to add a large amount of PbO in the glass composition. However, if the content of PbO is increased, the glass tends to devitrify during firing. Due to this devitrification, the reactivity of the glass powder tends to decrease. In particular, when the PbO content is 84% or more, the tendency becomes remarkable. Therefore, if an appropriate amount of SiO 2 is added to the glass composition, devitrification of the glass can be suppressed even if the PbO content is 84% or more.
 Alは、耐水性を高める成分であり、またシリコン太陽電池の光電変換効率を高める成分である。Alの含有量は、好ましくは0.1~10%未満、0.5~9%、特に1~5%である。Alの含有量が少な過ぎると、シリコン太陽電池の光電変換効率を高め難くなる。一方、Alの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなることに加えて、ファイアスルー性が低下する傾向がある。 Al 2 O 3 is a component that increases water resistance and is a component that increases the photoelectric conversion efficiency of the silicon solar cell. The content of Al 2 O 3 is preferably 0.1 to less than 10%, 0.5 to 9%, in particular 1 to 5%. When the content of Al 2 O 3 is too small, it becomes difficult enhance the photoelectric conversion efficiency of the silicon solar cell. On the other hand, when the content of Al 2 O 3 is too large, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to be lowered.
 質量比PbO/SiOは、好ましくは6.0~20、7.0~20、7.6~20、7.9~15、8.0~12、8.1~10、8.2~9.0、特に8.3~8.7である。このようにすれば、軟化点の上昇を抑制しつつ、ファイアスルー性を的確に高めることができる。 The mass ratio PbO / SiO 2 is preferably 6.0 to 20, 7.0 to 20, 7.6 to 20, 7.9 to 15, 8.0 to 12, 8.1 to 10, and 8.2 to 9.0, especially 8.3 to 8.7. If it does in this way, fire-through property can be improved exactly, suppressing a raise of a softening point.
 質量比PbO/(SiO+Al)は、好ましくは6.4以上、6.42以上、6.43以上、6.44以上、特に6.45~7.0である。このようにすれば、軟化点の上昇を抑制しつつ、ファイアスルー性を的確に高めることができる。 The mass ratio PbO / (SiO 2 + Al 2 O 3 ) is preferably 6.4 or more, 6.42 or more, 6.43 or more, 6.44 or more, especially 6.45 to 7.0. If it does in this way, fire-through property can be improved exactly, suppressing a raise of a softening point.
 質量比B/PbOは、好ましくは0~0.1、0~0.05、0~0.03、特に0~0.01である。このようにすれば、ファイアスルー性を維持した上で、半導体中のホウ素含有異種層の形成を抑制することができる。 The mass ratio B 2 O 3 / PbO is preferably 0 to 0.1, 0 to 0.05, 0 to 0.03, in particular 0 to 0.01. In this way, it is possible to suppress the formation of the boron-containing heterogeneous layer in the semiconductor while maintaining the fire-through property.
 質量比SiO/Bは、好ましくは1.0超、3.0超、5.0超、7以上、特に10.0超である。このようにすれば、熱的安定性を維持した上で、半導体中のホウ素含有異種層の形成を抑制することができる。 The mass ratio SiO 2 / B 2 O 3 is preferably greater than 1.0, greater than 3.0, greater than 5.0, greater than 7 and especially greater than 10.0. In this way, formation of a boron-containing heterogeneous layer in the semiconductor can be suppressed while maintaining thermal stability.
 質量比Al/Bは、好ましくは1.0超、3.0超、5.0超、7以上、特に10.0超である。このようにすれば、半導体中のホウ素含有異種層の形成を顕著に抑制することができる。 The mass ratio Al 2 O 3 / B 2 O 3 is preferably more than 1.0, more than 3.0, more than 5.0, more than 7 and especially more than 10.0. In this way, formation of the boron-containing heterogeneous layer in the semiconductor can be remarkably suppressed.
 上記成分以外にも、例えば、以下の成分を添加してもよい。なお、上記成分以外の成分は、種々の特性のバランスの関係上、合量で20%以下、15%以下、10%以下、7%以下、5%以下、特に3%以下が好ましい。 In addition to the above components, for example, the following components may be added. The components other than the above components are preferably 20% or less, 15% or less, 10% or less, 7% or less, 5% or less, particularly 3% or less in terms of the balance of various characteristics.
 Pは、溶融時にガラスの失透を抑制する成分であるが、その含有量が多いと、溶融時にガラスが分相し易くなる。このため、Pの含有量は2.5%以下、特に1%以下が好ましい。 P 2 O 5 is a component that suppresses the devitrification of the glass at the time of melting, but if the content is large, the glass is likely to phase-separate at the time of melting. For this reason, the content of P 2 O 5 is preferably 2.5% or less, particularly preferably 1% or less.
 ZrOは、耐酢酸性を高める成分である。ZrOの含有量は、好ましくは0.1~15%、0.01~15%、0.1~8%、特に0.2~6%である。ZrOの含有量が多過ぎると、耐失透性が低下し易くなる。なお、ZrOの含有量が少な過ぎると、上記効果を享受し難くなる。 ZrO 2 is a component that increases acetic acid resistance. The content of ZrO 2 is preferably 0.1 to 15%, 0.01 to 15%, 0.1 to 8%, particularly 0.2 to 6%. When the content of ZrO 2 is too large, the devitrification resistance is liable to decrease. Incidentally, the content of ZrO 2 is too small, it becomes difficult to enjoy the above-mentioned effects.
 TiOは、耐酢酸性を高める成分である。TiOの含有量は、好ましくは0~15%、0.01~15%、0.1~8%、特に0.2~6%である。TiOの含有量が多過ぎると、耐失透性が低下し易くなる。なお、TiOの含有量が少な過ぎると、上記効果を享受し難くなる。 TiO 2 is a component that increases acetic acid resistance. The content of TiO 2 is preferably 0 to 15%, 0.01 to 15%, 0.1 to 8%, in particular 0.2 to 6%. When the content of TiO 2 is too large, the devitrification resistance is liable to decrease. Incidentally, the content of TiO 2 is too small, it becomes difficult to enjoy the above-mentioned effects.
 MgOは、熱的安定性を高める成分である。MgOの含有量は、好ましくは0~5%、特に0~2%である。MgOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 MgO is a component that enhances thermal stability. The content of MgO is preferably 0-5%, in particular 0-2%. When there is too much content of MgO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.
 CaOは、熱的安定性を高める成分である。CaOの含有量は、好ましくは0~5%、特に0~2%である。CaOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 CaO is a component that enhances thermal stability. The CaO content is preferably 0-5%, in particular 0-2%. When there is too much content of CaO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.
 SrOは、熱的安定性を高める成分である。SrOの含有量は、好ましくは0~5%、特に0~2%である。SrOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 SrO is a component that enhances thermal stability. The SrO content is preferably 0-5%, in particular 0-2%. When there is too much content of SrO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.
 BaOは、熱的安定性を高める成分である。BaOの含有量は、好ましくは0~5%、特に0~2%である。BaOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 BaO is a component that enhances thermal stability. The content of BaO is preferably 0 to 5%, in particular 0 to 2%. When there is too much content of BaO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.
 ZnOは、熱的安定性を高める成分であると共に、熱膨張係数を低下させずに、軟化点を低下させる成分である。ZnOの含有量は、好ましくは0~10%、0~5%、特に0~2%である。ZnOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスに結晶が析出し易くなる。 ZnO is a component that enhances thermal stability and a component that lowers the softening point without reducing the thermal expansion coefficient. The content of ZnO is preferably 0 to 10%, 0 to 5%, particularly 0 to 2%. When there is too much content of ZnO, the component balance of a glass composition will be impaired and a crystal | crystallization will precipitate on glass conversely.
 CuOは、熱的安定性を高める成分である。CuOの含有量は、好ましくは0~5%、特に0~2%である。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に結晶の析出速度が速くなり、すなわち熱的安定性が低下する傾向がある。 CuO is a component that enhances thermal stability. The CuO content is preferably 0-5%, in particular 0-2%. When there is too much content of CuO, the component balance of a glass composition will be impaired, conversely, the precipitation rate of a crystal | crystallization will become high, ie, there exists a tendency for thermal stability to fall.
 Feは、熱的安定性を高める成分である。Feの含有量は、好ましくは0~5%、特に0~2%である。Feの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に結晶の析出速度が速くなり、すなわち熱的安定性が低下する傾向がある。 Fe 2 O 3 is a component that enhances thermal stability. The content of Fe 2 O 3 is preferably 0 to 5%, in particular 0 to 2%. When the content of Fe 2 O 3 is too large, is impaired balance of components glass composition, the deposition rate of the reverse in the crystal increases, i.e. thermal stability tends to decrease.
 Ndは、熱的安定性を顕著に高める成分であり、特に、低BのPbO-SiO系ガラスに対して、熱的安定性を顕著に高める成分である。Ndの含有量は、好ましくは0.01~15%、0.1~10%、0.5~8%、特に1~5%である。Ndの含有量が少な過ぎると、上記効果を享受し難くなる。一方、Ndの含有量が多過ぎると、バッチコストが高騰する。 Nd 2 O 3 is a component that remarkably enhances thermal stability, and is a component that remarkably enhances thermal stability, particularly for low-B 2 O 3 PbO—SiO 2 glass. The content of Nd 2 O 3 is preferably 0.01 to 15%, 0.1 to 10%, 0.5 to 8%, especially 1 to 5%. When the content of Nd 2 O 3 is too small, it becomes difficult to enjoy the above-mentioned effects. On the other hand, if the content of Nd 2 O 3 is too large, batch cost soars.
 質量比B/Ndは、好ましくは35以下、25以下、20以下、15以下、8以下、5以下、3以下、2以下、1以下、0.1以下、特に0.10未満である。このようにすれば、半導体層の機能維持と熱的安定性を高いレベルで両立することが可能になる。 The mass ratio B 2 O 3 / Nd 2 O 3 is preferably 35 or less, 25 or less, 20 or less, 15 or less, 8 or less, 5 or less, 3 or less, 2 or less, 1 or less, 0.1 or less, especially 0. Is less than 10. In this way, it becomes possible to achieve both the function maintenance and the thermal stability of the semiconductor layer at a high level.
 LiO、NaO、KO及びCsOは、軟化点を低下させる成分であるが、溶融時にガラスの失透を促進する作用を有する。そのため、これらの成分の含有量は、各々1%以下が好ましい。 Li 2 O, Na 2 O, K 2 O, and Cs 2 O are components that lower the softening point, but have an action of promoting devitrification of the glass during melting. Therefore, the content of these components is preferably 1% or less.
 Biは、耐水性を高める成分である。Biの含有量は、好ましくは0~5%、特に0~2%である。Biの含有量が多過ぎると、バッチコストが高騰する。 Bi 2 O 3 is a component that improves water resistance. The content of Bi 2 O 3 is preferably 0-5%, in particular 0-2%. If the content of Bi 2 O 3 is too large, batch cost soars.
 ランタノイド酸化物、例えばLaやNdは、熱的安定性を高める成分である。ランタノイド酸化物の含有量は、好ましくは0~5%、特に0~2%である。ランタノイド酸化物の含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に結晶の析出速度が速くなり、すなわち熱的安定性が低下する傾向がある。 Lanthanoid oxides such as La 2 O 3 and Nd 2 O 3 are components that enhance thermal stability. The content of lanthanoid oxide is preferably 0-5%, in particular 0-2%. When the content of the lanthanoid oxide is too large, the component balance of the glass composition is impaired, and conversely, the crystal deposition rate increases, that is, the thermal stability tends to decrease.
 本発明の電極形成用ガラスでは、各成分の好適な範囲を組み合わせて、好適なガラス組成範囲とすることができる。その中でも、特に好ましいガラス組成範囲は以下の通りである。
(1)ガラス組成として、質量%で、PbO 76~95%、B 0~10%、SiO 1~17%、Al 0.1~10.0%未満、P 0~2.5%を含有、
(2)ガラス組成として、質量%で、PbO 76~95%、B 0~3%、SiO 3~17%、Al 0.1~10.0%未満、P 0~2.5%を含有、
(3)ガラス組成として、質量%で、PbO 80~92%、B 0~1.0%未満、SiO 3~17%、Al 0.1~10.0%未満、P 0~2.5%を含有、質量比B/PbOが0~0.05、
(4)ガラス組成として、質量%で、PbO 80~92%、B 0~1.0%未満、SiO 3~14%、Al 1~5%、P 0~2.5%を含有、質量比B/PbOが0~0.03、質量比Al/B 5.0超、
(5)ガラス組成として、質量%で、PbO 82~89%、B 0~0.5%、SiO 7~14%、Al 1~5%、P 0~2.5%を含有、質量比B/PbOが0~0.01、質量比Al/B 7以上。
In the electrode forming glass of the present invention, a suitable glass composition range can be obtained by combining suitable ranges of the respective components. Among them, particularly preferable glass composition ranges are as follows.
(1) As a glass composition, PbO 76 to 95%, B 2 O 3 0 to 10%, SiO 2 1 to 17%, Al 2 O 3 0.1 to less than 10.0% by mass%, P 2 O 5 containing 0 to 2.5%
(2) As a glass composition, PbO 76 to 95%, B 2 O 3 0 to 3%, SiO 2 3 to 17%, Al 2 O 3 0.1 to less than 10.0% by mass%, P 2 O 5 containing 0 to 2.5%
(3) As a glass composition, by mass%, PbO 80 to 92%, B 2 O 3 0 to less than 1.0%, SiO 2 3 to 17%, Al 2 O 3 0.1 to less than 10.0%, Containing P 2 O 5 0-2.5%, mass ratio B 2 O 3 / PbO 0-0.05,
(4) As a glass composition, PbO 80 to 92%, B 2 O 3 0 to less than 1.0%, SiO 2 3 to 14%, Al 2 O 3 1 to 5%, P 2 O 5 0 by mass% Containing 2.5%, the mass ratio B 2 O 3 / PbO is 0 to 0.03, the mass ratio Al 2 O 3 / B 2 O 3 is over 5.0,
(5) As a glass composition, PbO 82-89%, B 2 O 3 0-0.5%, SiO 2 7-14%, Al 2 O 3 1-5%, P 2 O 5 0- Containing 2.5%, mass ratio B 2 O 3 / PbO is 0 to 0.01, and mass ratio Al 2 O 3 / B 2 O 3 is 7 or more.
<電極形成材料>
 本発明の実施形態に係る電極形成材料は、上記の電極形成用ガラスからなるガラス粉末と、金属粉末と、ビークルとを含む。ガラス粉末は、焼成時に、反射防止膜を侵食することにより、電極形成材料をファイアスルーさせる成分であると共に、電極と半導体基板を接着させる成分である。金属粉末は、電極を形成する主要成分であり、導電性を確保するための成分である。ビークルは、ペースト化するための成分であり、印刷に適した粘度を付与するための成分である。
<Electrode forming material>
An electrode forming material according to an embodiment of the present invention includes a glass powder made of the above electrode forming glass, a metal powder, and a vehicle. Glass powder is a component that causes the electrode-forming material to fire through by corroding the antireflection film during firing, and is a component that adheres the electrode and the semiconductor substrate. The metal powder is a main component for forming the electrode and a component for ensuring conductivity. The vehicle is a component for making a paste, and a component for imparting a viscosity suitable for printing.
 本実施形態の電極形成材料において、ガラス粉末の平均粒子径D50は、好ましくは5.0μm未満、4μm以下、3μm以下、2μm以下、特に1.5μm以下である。ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の表面積が小さくなることに起因して、ガラス粉末の反応性が低下し、ファイアスルー性が低下し易くなる。また、ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の軟化点が上昇し、電極の形成に必要な温度域が上昇する。さらに、ガラス粉末の平均粒子径D50が5μm以上であると、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下し易くなる。一方、ガラス粉末の平均粒子径D50の下限は特に限定されないが、ガラス粉末の平均粒子径D50が小さ過ぎると、ガラス粉末のハンドリング性が低下し、ガラス粉末の材料収率が低下することに加えて、ガラス粉末が凝集し易くなり、シリコン太陽電池の特性が変動し易くなる。このような状況を考慮すれば、ガラス粉末の平均粒子径D50は0.5μm以上が好ましい。なお、(1)ガラスフィルムをボールミルで粉砕した後、得られたガラス粉末を空気分級、或いは(2)ガラスフィルムをボールミル等で粗粉砕した後、ビーズミル等で湿式粉砕すれば、上記平均粒子径D50を有するガラス粉末を得ることができる。 In the electrode formation material of the present embodiment, the average particle diameter D 50 of the glass powder is preferably less than 5.0 .mu.m, 4 [mu] m or less, 3 [mu] m or less, 2 [mu] m or less, especially 1.5μm or less. When the average particle diameter D 50 of the glass powder is 5μm or more, due to the surface area of the glass powder is reduced, it reduces the reactivity of the glass powder, fire through resistance is liable to lower. When the average particle diameter D 50 of the glass powder is 5μm or more, the softening point of the glass powder is increased, the temperature range is increased required to form the electrode. Further, when the average particle diameter D 50 of the glass powder is 5μm or more, it becomes difficult to form a fine electrode pattern, the photoelectric conversion efficiency of the silicon solar cells tends to decrease. On the other hand, the lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, the average particle diameter D 50 of the glass powder is too small, decreases the handling of the glass powder is lowered material yield of the glass powder In addition, the glass powder tends to aggregate and the characteristics of the silicon solar cell are likely to fluctuate. In view of such situation, the average particle diameter D 50 of the glass powder is preferably at least 0.5 [mu] m. (1) After the glass film is pulverized with a ball mill, the obtained glass powder is classified by air, or (2) The glass film is coarsely pulverized with a ball mill or the like and then wet pulverized with a bead mill or the like. it is possible to obtain a glass powder having a D 50.
 本実施形態の電極形成材料において、ガラス粉末の最大粒子径Dmaxは、好ましくは25μm以下、20μm以下、15μm以下、特に10μm以下である。ガラス粉末の最大粒子径Dmaxが25μmより大きいと、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下し易くなる。ここで、「最大粒子径Dmax」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 In the electrode forming material of the present embodiment, the maximum particle diameter Dmax of the glass powder is preferably 25 μm or less, 20 μm or less, 15 μm or less, and particularly 10 μm or less. When the maximum particle diameter Dmax of the glass powder is larger than 25 μm, it becomes difficult to form a fine electrode pattern, and the photoelectric conversion efficiency of the silicon solar cell is likely to be lowered. Here, the “maximum particle diameter D max ” represents a particle diameter in which the accumulated amount is 99% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.
 本実施形態の電極形成材料において、ガラス粉末の軟化点は、好ましくは550℃以下、530℃以下、500℃以下、480℃以下、特に380~460℃である。ガラス粉末の軟化点が550℃より高いと、電極の形成に必要な温度域が上昇する。なお、ガラス粉末の軟化点が380℃より低いと、反射防止膜の反応が進行し過ぎて、半導体基板も侵食するため、空乏層が損傷されて、シリコン太陽電池の電池特性が低下するおそれがある。 In the electrode forming material of the present embodiment, the softening point of the glass powder is preferably 550 ° C. or lower, 530 ° C. or lower, 500 ° C. or lower, 480 ° C. or lower, particularly 380 to 460 ° C. When the softening point of the glass powder is higher than 550 ° C., the temperature range necessary for forming the electrode increases. If the softening point of the glass powder is lower than 380 ° C., the reaction of the antireflection film proceeds excessively and the semiconductor substrate is also eroded, so that the depletion layer is damaged and the battery characteristics of the silicon solar cell may be deteriorated. is there.
 本実施形態の電極形成材料において、ガラス粉末の含有量は、好ましくは0.2~10質量%、1~6質量%、特に1.5~4質量%である。ガラス粉末の含有量が0.2質量%より少ないと、電極形成材料の焼結性が低下し易くなる。一方、ガラス粉末の含有量が10質量%より多いと、形成される電極の導電性が低下し易くなるため、発生した電気を取り出し難くなる。また、ガラス粉末の含有量と金属粉末の含有比は、上記と同様の理由により、質量比で好ましくは0.3:99.7~13:87、1.5:98.5~7.5:92.5、特に2:98~5:95である。 In the electrode forming material of the present embodiment, the content of the glass powder is preferably 0.2 to 10% by mass, 1 to 6% by mass, particularly 1.5 to 4% by mass. When the content of the glass powder is less than 0.2% by mass, the sinterability of the electrode forming material tends to be lowered. On the other hand, when the content of the glass powder is more than 10% by mass, the conductivity of the formed electrode is likely to be lowered, and thus it is difficult to take out the generated electricity. Further, the content ratio of the glass powder and the metal powder is preferably 0.3: 99.7 to 13:87 and 1.5: 98.5 to 7.5 in terms of mass ratio for the same reason as described above. : 92.5, especially 2:98 to 5:95.
 本実施形態の電極形成材料において、金属粉末の含有量は、好ましくは50~94.8質量%、65~93質量%、特に70~92質量%である。金属粉末の含有量が50質量%より少ないと、形成される電極の導電性が低下して、シリコン太陽電池の光電変換効率が低下し易くなる。一方、金属粉末の含有量が94.8質量%より多いと、相対的にガラス粉末の含有量が低下するため、電極形成材料の焼結性が低下し易くなる。 In the electrode forming material of the present embodiment, the content of the metal powder is preferably 50 to 94.8% by mass, 65 to 93% by mass, particularly 70 to 92% by mass. When content of metal powder is less than 50 mass%, the electroconductivity of the electrode formed will fall and the photoelectric conversion efficiency of a silicon solar cell will fall easily. On the other hand, when the content of the metal powder is more than 94.8% by mass, the content of the glass powder is relatively lowered, so that the sinterability of the electrode forming material is easily lowered.
 本実施形態の電極形成材料において、金属粉末はAg、Al、Au、Cu、Pd、Pt及びこれらの合金の一種又は二種以上が好ましく、特にAg及びその合金、Al及びその合金、或いはCu及びその合金が好ましい。これらの金属粉末は、導電性が良好であると共に、本発明に係るガラス粉末と適合性が良好である。このため、これらの金属粉末を用いると、焼成時にガラスが失透し難くなると共に、ガラスが発泡し難くなる。また、微細な電極パターンを形成するために、金属粉末の平均粒子径D50は、好ましくは2μm以下、特に1μm以下である。 In the electrode forming material of the present embodiment, the metal powder is preferably one or more of Ag, Al, Au, Cu, Pd, Pt and alloys thereof, particularly Ag and alloys thereof, Al and alloys thereof, or Cu and The alloy is preferred. These metal powders have good electrical conductivity and good compatibility with the glass powder according to the present invention. For this reason, when these metal powders are used, the glass is difficult to devitrify during firing and the glass is difficult to foam. Further, in order to form a fine electrode pattern, the mean particle diameter D 50 of the metal powder is preferably 2μm or less, especially 1μm or less.
 本実施形態の電極形成材料において、ビークルの含有量は、好ましくは5~40質量%、特に10~25質量%である。ビークルの含有量が5質量%より少ないと、ペースト化が困難になり、印刷法で電極を形成し難くなる。一方、ビークルの含有量が40質量%より多いと、焼成前後で膜厚や膜幅が変動し易くなり、結果として、所望の電極パターンを形成し難くなる。 In the electrode forming material of this embodiment, the content of the vehicle is preferably 5 to 40% by mass, particularly 10 to 25% by mass. When the content of the vehicle is less than 5% by mass, it becomes difficult to form a paste, and it is difficult to form an electrode by a printing method. On the other hand, when the content of the vehicle is more than 40% by mass, the film thickness and film width are likely to fluctuate before and after firing, and as a result, it becomes difficult to form a desired electrode pattern.
 上記の通り、ビークルは、一般的に、有機溶媒中に樹脂を溶解させたものを指す。樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロース、エチルセルロースは、熱分解性が良好であるため、好ましい。有機溶媒としては、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、水、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。特に、α-ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。 As described above, a vehicle generally refers to a resin in which a resin is dissolved in an organic solvent. As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid ester, nitrocellulose, and ethylcellulose are preferable because of their good thermal decomposability. Organic solvents include N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether , Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl Ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO) N- methyl-2-pyrrolidone and the like can be used. In particular, α-terpineol is preferable because it is highly viscous and has good solubility in resins and the like.
 本実施形態の電極形成材料は、上記成分以外にも、熱膨張係数を調整するためにコーディエライト等のセラミックフィラー粉末、電極の抵抗を調整するためにNiO等の酸化物粉末、ペースト特性を調整するために界面活性剤や増粘剤、外観品位を調整するために顔料等を含有してもよい。 In addition to the above components, the electrode forming material of the present embodiment includes ceramic filler powder such as cordierite for adjusting the thermal expansion coefficient, oxide powder such as NiO for adjusting the electrode resistance, and paste characteristics. In order to adjust, a surfactant, a thickener, a pigment or the like may be contained in order to adjust the appearance quality.
 本実施形態の電極形成材料は、窒化ケイ素膜、酸化シリコン膜、酸化チタン膜、酸化アルミニウム膜との反応性、特に窒化ケイ素膜との反応性が適正であり、ファイアスルー性に優れている。その結果、焼成時に反射防止膜を貫通可能であり、シリコン太陽電池の受光面電極を効率良く形成することができる。また、本発明の電極形成材料を用いると、ファイアスルーの際に受光面側の半導体層へのホウ素のドープを抑制することができる。これにより、ホウ素含有異種層が形成されて、半導体基板のp型半導体層又はn型半導体層の機能が低下する事態を防止でき、結果として、シリコン太陽電池の光電変換効率が低下し難くなる。 The electrode forming material of this embodiment has an appropriate reactivity with a silicon nitride film, a silicon oxide film, a titanium oxide film, and an aluminum oxide film, particularly a reactivity with a silicon nitride film, and is excellent in fire-through properties. As a result, the antireflection film can be penetrated during firing, and the light-receiving surface electrode of the silicon solar cell can be efficiently formed. Further, when the electrode forming material of the present invention is used, boron doping to the semiconductor layer on the light receiving surface side can be suppressed during fire-through. Thereby, the situation where the boron-containing heterogeneous layer is formed and the function of the p-type semiconductor layer or the n-type semiconductor layer of the semiconductor substrate is lowered can be prevented, and as a result, the photoelectric conversion efficiency of the silicon solar cell is hardly lowered.
 本実施形態の電極形成材料は、シリコン太陽電池の裏面電極の形成にも使用可能である。裏面電極を形成するための電極形成材料は、通常、Al粉末と、ガラス粉末と、ビークル等とを含有している。そして裏面電極は、通常、上記の印刷法で形成される。 The electrode forming material of this embodiment can also be used to form the back electrode of a silicon solar cell. The electrode forming material for forming the back electrode usually contains Al powder, glass powder, vehicle and the like. And a back surface electrode is normally formed by said printing method.
 以下、本発明の実施例を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。 Hereinafter, embodiments of the present invention will be described in detail. The following examples are merely illustrative. The present invention is not limited to the following examples.
 表1、2は、本発明の実施例(試料No.1~14)及び比較例(試料No.15、16)を示している。 Tables 1 and 2 show examples (samples Nos. 1 to 14) and comparative examples (samples Nos. 15 and 16) of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次のようにして、各試料を調製した。まず、表中に示したガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、ガラスバッチを準備した後、このガラスバッチを白金坩堝に入れて、900~1100℃で1~2時間溶融した。次に、溶融ガラスを水冷ローラーでフィルム状に成形し、得られたガラスフィルムをボールミルで粉砕した後、目開き200メッシュの篩を通過させた上で、空気分級し、表中に記載の平均粒子径D50を有するガラス粉末を得た。 Each sample was prepared as follows. First, glass raw materials such as various oxides and carbonates were prepared so as to have the glass composition shown in the table, and a glass batch was prepared. Then, this glass batch was put in a platinum crucible and heated at 900 to 1100 ° C. for 1 Melted for ~ 2 hours. Next, the molten glass was formed into a film shape with a water-cooled roller, and the obtained glass film was pulverized with a ball mill, then passed through a sieve having a mesh size of 200 mesh, air-classified, and the average shown in the table to obtain a glass powder with a particle size D 50.
 各試料につき、軟化点を測定した。軟化点は、マクロ型DTA装置で測定した値である。なお、測定温度域を室温~700℃とし、昇温速度を10℃/分とした。 The softening point was measured for each sample. The softening point is a value measured with a macro DTA apparatus. The measurement temperature range was from room temperature to 700 ° C., and the rate of temperature increase was 10 ° C./min.
 得られたガラス粉末3質量%と、表中に示す金属粉末(平均粒子径D50=0.5μm)77質量%と、ビークル(α-ターピネオールにアクリル酸エステルを溶解させたもの)20質量%とを三本ローラーで混練し、ペースト状の試料を得た。この試料につき、ファイアスルー性と電池特性を評価した。 3% by mass of the obtained glass powder, 77% by mass of metal powder (average particle diameter D 50 = 0.5 μm) shown in the table, and 20% by mass of vehicle (a solution of acrylic acid ester dissolved in α-terpineol) Were kneaded with three rollers to obtain a paste-like sample. This sample was evaluated for fire-through properties and battery characteristics.
 次のようにして、ファイアスルー性を評価した。シリコン半導体基板に形成されたSiN膜(膜厚100nm)上に、長さ200mm、100μm幅になるようにペースト状の試料を線状にスクリーン印刷し、乾燥した後、電気炉で900℃1分間焼成した。次に、得られた焼成基板を塩酸水溶液(10質量%濃度)に浸漬し、12時間超音波にかけて、エッチング処理を行った。続いて、エッチング処理後の焼成基板を光学顕微鏡(100倍)で観察し、ファイアスルー性を評価した。SiN膜を貫通し、焼成基板上に線状の電極パターンが形成されていたものを「○」、焼成基板上に線状の電極パターンが概ね形成されていたが、SiN膜を貫通していない箇所が存在し、電気的接続が一部途切れていたものを「△」、SiN膜を貫通していなかったものを「×」として評価した。 The fire-through property was evaluated as follows. A paste-like sample was linearly screen-printed on a SiN film (film thickness 100 nm) formed on a silicon semiconductor substrate to a length of 200 mm and a width of 100 μm, dried, and then subjected to 900 ° C. for 1 minute in an electric furnace. Baked. Next, the obtained fired substrate was immersed in a hydrochloric acid aqueous solution (10% by mass concentration) and subjected to an etching treatment by applying ultrasonic waves for 12 hours. Then, the fired board | substrate after an etching process was observed with the optical microscope (100 time), and fire through property was evaluated. “○” indicates that the linear electrode pattern was formed on the fired substrate through the SiN film, and the linear electrode pattern was generally formed on the fired substrate, but did not penetrate the SiN film. An evaluation was given as “Δ” when the location was present and the electrical connection was partially broken, and “X” when the location was not penetrating the SiN film.
 次のようにして、電池特性を評価した。上記のペースト状の試料を用いて、常法に従い、受光面電極を形成した上で、単結晶シリコン太陽電池を作製した。次に、常法に従い、得られた単結晶シリコン太陽電池の光電変換効率を測定し、光電変換効率が17.8%以上である場合を「○」、15%以上17.8%未満である場合を「△」、15%未満である場合を「×」として、評価した。 The battery characteristics were evaluated as follows. Using the above paste-like sample, a light-receiving surface electrode was formed according to a conventional method, and then a single crystal silicon solar cell was produced. Next, according to a conventional method, the photoelectric conversion efficiency of the obtained single crystal silicon solar cell is measured, and the case where the photoelectric conversion efficiency is 17.8% or more is “◯”, and is 15% or more and less than 17.8%. The case was evaluated as “Δ” and the case of less than 15% as “x”.
 表1、2から明らかなように、試料No.1~14は、ファイアスルー性と電池特性の評価が良好であった。一方、試料No.15は、ガラス組成が所定範囲外であり、ファイアスルー性と電池特性の評価が不良であった。なお、試料No.16は、ファイアスルー性が良好であったものの、ガラス組成が所定範囲外であったため、電池特性の評価が不良であった。 As is clear from Tables 1 and 2, Sample No. For Nos. 1 to 14, the fire-through properties and battery characteristics were evaluated well. On the other hand, sample No. In No. 15, the glass composition was out of the predetermined range, and the evaluation of fire-through property and battery characteristics was poor. Sample No. Although the fire-through property of No. 16 was good, the glass composition was out of the predetermined range, so that the battery characteristics were poorly evaluated.
 本発明の電極形成用ガラス及び電極形成材料は、シリコン太陽電池の電極、特に反射防止膜を有するシリコン太陽電池の受光面電極に好適に使用可能である。また、本発明の電極形成用ガラス及び電極形成材料は、シリコン太陽電池以外の用途、例えばセラミックコンデンサ等のセラミック電子部品、フォトダイオード等の光学部品に応用することもできる。 The electrode-forming glass and electrode-forming material of the present invention can be suitably used for electrodes of silicon solar cells, particularly for light-receiving surface electrodes of silicon solar cells having an antireflection film. The glass for electrode formation and the electrode formation material of the present invention can also be applied to uses other than silicon solar cells, for example, ceramic electronic parts such as ceramic capacitors and optical parts such as photodiodes.

Claims (16)

  1.  ガラス組成として、質量%で、PbO 60~95%、B 0~10%、SiO+Al 1~30%を含有することを特徴とする電極形成用ガラス。 An electrode-forming glass comprising, as a glass composition, PbO 60 to 95% by mass, B 2 O 3 0 to 10%, and SiO 2 + Al 2 O 3 1 to 30% by mass.
  2.  ガラス組成として、質量%で、PbO 76~95%、B 0~10%、SiO 1~17%、Al 0.1~10.0%未満、P 0~2.5%を含有することを特徴とする請求項1に記載の電極形成用ガラス。 As a glass composition, PbO 76 to 95% by mass, B 2 O 3 0 to 10%, SiO 2 1 to 17%, Al 2 O 3 0.1 to less than 10.0%, P 2 O 5 0 to 2. The glass for forming an electrode according to claim 1, comprising 2.5%.
  3.  Bの含有量が5.0質量%未満であることを特徴とする請求項1又は2に記載の電極形成用ガラス。 The glass for electrode formation according to claim 1 or 2, wherein the content of B 2 O 3 is less than 5.0% by mass.
  4.  実質的にBを含有しないことを特徴とする請求項3に記載の電極形成用ガラス。 The glass for forming an electrode according to claim 3, which contains substantially no B 2 O 3 .
  5.  質量比PbO/SiOが6以上であることを特徴とする請求項1又は2に記載の電極形成用ガラス。 Mass ratio for electrode formation glass according to claim 1 or 2, characterized in that PbO / SiO 2 is at least 6.
  6.  PbO+SiOの含有量が94質量%以上であることを特徴とする請求項1又は2に記載の電極形成用ガラス。 The electrode forming glass according to claim 1, wherein the content of PbO + SiO 2 is 94% by mass or more.
  7.  質量比SiO/Bが1.0超であることを特徴とする請求項1又は2に記載の電極形成用ガラス。 The glass for electrode formation according to claim 1 or 2, wherein a mass ratio SiO 2 / B 2 O 3 is more than 1.0.
  8.  ZrOの含有量が0.1~15質量%であることを特徴とする請求項1又は2に記載の電極形成用ガラス。 3. The electrode forming glass according to claim 1, wherein the content of ZrO 2 is 0.1 to 15% by mass.
  9.  Ndの含有量が0.01~15質量%であることを特徴とする請求項1又は2に記載の電極形成用ガラス。 3. The electrode forming glass according to claim 1, wherein the Nd 2 O 3 content is 0.01 to 15% by mass.
  10.  請求項1又は2に記載の電極形成用ガラスからなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする電極形成材料。 3. An electrode forming material comprising glass powder made of the electrode forming glass according to claim 1, metal powder, and a vehicle.
  11.  ガラス粉末の平均粒子径D50が5.0μm未満であることを特徴とする請求項10に記載の電極形成材料。 The electrode forming material according to claim 10, wherein the glass powder has an average particle diameter D 50 of less than 5.0 μm.
  12.  ガラス粉末の軟化点が550℃以下であることを特徴とする請求項10に記載の電極形成材料。 The electrode forming material according to claim 10, wherein the softening point of the glass powder is 550 ° C. or less.
  13.  ガラス粉末の含有量が0.2~10質量%であることを特徴とする請求項10に記載の電極形成材料。 The electrode forming material according to claim 10, wherein the content of the glass powder is 0.2 to 10% by mass.
  14.  金属粉末がAg又はその合金であることを特徴とする請求項10に記載の電極形成材料。 The electrode forming material according to claim 10, wherein the metal powder is Ag or an alloy thereof.
  15.  シリコン太陽電池の電極に用いることを特徴とする請求項10に記載の電極形成材料。 It is used for the electrode of a silicon solar cell, The electrode formation material of Claim 10 characterized by the above-mentioned.
  16.  反射防止膜を有するシリコン太陽電池の受光面電極に用いることを特徴とする請求項10に記載の電極形成材料。 The electrode forming material according to claim 10, wherein the electrode forming material is used for a light-receiving surface electrode of a silicon solar cell having an antireflection film.
PCT/JP2012/082931 2012-01-06 2012-12-19 Glass for molding electrode and electrode molding material using same WO2013103087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-001315 2012-01-06
JP2012001315 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013103087A1 true WO2013103087A1 (en) 2013-07-11

Family

ID=48745150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082931 WO2013103087A1 (en) 2012-01-06 2012-12-19 Glass for molding electrode and electrode molding material using same

Country Status (3)

Country Link
JP (1) JP6090706B2 (en)
TW (1) TW201332926A (en)
WO (1) WO2013103087A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10407340B2 (en) 2017-11-08 2019-09-10 AGC Inc. Glass composition, glass powder, conductive paste, and solar cell
KR20210025483A (en) 2019-08-27 2021-03-09 에이지씨 가부시키가이샤 Glass composition, glass powder and conductive paste
KR20230099682A (en) 2021-12-27 2023-07-04 에이지씨 가부시키가이샤 Glass, conductive paste and solar cell
KR20230099683A (en) 2021-12-27 2023-07-04 에이지씨 가부시키가이샤 Glass, conductive paste and solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762848B2 (en) * 2016-11-02 2020-09-30 東洋アルミニウム株式会社 Paste composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582093A (en) * 1981-06-19 1983-01-07 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Screen printing paste
JPH07118060A (en) * 1993-08-24 1995-05-09 Nippon Electric Glass Co Ltd High-dielectric constant glass ceramic
JPH0817671A (en) * 1994-06-27 1996-01-19 Kyocera Corp Conductive paste
JPH1092224A (en) * 1996-05-15 1998-04-10 Asahi Glass Co Ltd Conductive paste
JP2010222238A (en) * 2009-02-24 2010-10-07 Nippon Electric Glass Co Ltd Glass composition for electrode formation and electrode-forming material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2315728B1 (en) * 2008-06-26 2013-04-24 E. I. du Pont de Nemours and Company Glass compositions used in conductors for photovoltaic cells
JP5137923B2 (en) * 2009-09-18 2013-02-06 株式会社ノリタケカンパニーリミテド Electrode paste composition for solar cell
JP5784004B2 (en) * 2010-03-04 2015-09-24 日本山村硝子株式会社 Lead glass composition and conductor-forming composition containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582093A (en) * 1981-06-19 1983-01-07 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Screen printing paste
JPH07118060A (en) * 1993-08-24 1995-05-09 Nippon Electric Glass Co Ltd High-dielectric constant glass ceramic
JPH0817671A (en) * 1994-06-27 1996-01-19 Kyocera Corp Conductive paste
JPH1092224A (en) * 1996-05-15 1998-04-10 Asahi Glass Co Ltd Conductive paste
JP2010222238A (en) * 2009-02-24 2010-10-07 Nippon Electric Glass Co Ltd Glass composition for electrode formation and electrode-forming material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10407340B2 (en) 2017-11-08 2019-09-10 AGC Inc. Glass composition, glass powder, conductive paste, and solar cell
KR20210025483A (en) 2019-08-27 2021-03-09 에이지씨 가부시키가이샤 Glass composition, glass powder and conductive paste
KR20230099682A (en) 2021-12-27 2023-07-04 에이지씨 가부시키가이샤 Glass, conductive paste and solar cell
KR20230099683A (en) 2021-12-27 2023-07-04 에이지씨 가부시키가이샤 Glass, conductive paste and solar cell

Also Published As

Publication number Publication date
JP2013155102A (en) 2013-08-15
JP6090706B2 (en) 2017-03-08
TW201332926A (en) 2013-08-16

Similar Documents

Publication Publication Date Title
JP5532512B2 (en) Electrode forming glass composition and electrode forming material
JP5717043B2 (en) Electrode forming glass composition and electrode forming material
WO2010026952A1 (en) Glass composition for electrode formation and electrode formation material
JP5796270B2 (en) Electrode forming material
WO2012023413A1 (en) Glass for use in forming electrodes, and electrode-forming material using same
KR101455019B1 (en) Electroconductive paste and solar cell element obtained using the electroconductive paste
TWI428303B (en) A low melting point glass composition and a conductive paste material using the same
JP6090706B2 (en) Electrode forming glass and electrode forming material using the same
JP6075601B2 (en) Electrode forming glass and electrode forming material using the same
JP5850388B2 (en) Electrode forming glass and electrode forming material using the same
JP5703539B2 (en) Glass composition
WO2011122369A1 (en) Low-melting-point glass composition, and electrically conductive paste material produced using same
TWI422547B (en) A conductive paste and a solar cell element using the conductive paste
JP2014007212A (en) Glass for electrode formation and electrode-formation material using the same
JP5541605B2 (en) Electrode forming glass composition and electrode forming material
JP5943295B2 (en) Electrode forming glass and electrode forming material using the same
JP6112384B2 (en) Electrode forming glass and electrode forming material using the same
JP5796281B2 (en) Electrode forming material
JP2014105153A (en) Bismuth-based glass composition and electrode formation material using the same
JP2010192480A (en) Glass composition for electrode formation, and electrode forming material
JP2013018666A (en) Electrode formation glass and electrode formation material
JP2013212949A (en) Glass for electrode formation and electrode forming material using the same
US10804003B2 (en) Conductive paste for forming solar cell electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864550

Country of ref document: EP

Kind code of ref document: A1