WO2013102718A1 - Procede de fabrication d'une cellule photovoltaique - Google Patents

Procede de fabrication d'une cellule photovoltaique Download PDF

Info

Publication number
WO2013102718A1
WO2013102718A1 PCT/FR2012/052985 FR2012052985W WO2013102718A1 WO 2013102718 A1 WO2013102718 A1 WO 2013102718A1 FR 2012052985 W FR2012052985 W FR 2012052985W WO 2013102718 A1 WO2013102718 A1 WO 2013102718A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photovoltaic cell
manufacturing
face
doped
Prior art date
Application number
PCT/FR2012/052985
Other languages
English (en)
Inventor
Bertrand PAVIET-SALOMON
Samuel Gall
Adeline LANTERNE
Sylvain MANUEL
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to BR112014015691A priority Critical patent/BR112014015691A2/pt
Priority to KR1020147017762A priority patent/KR20140115306A/ko
Priority to EP12819097.2A priority patent/EP2801118B1/fr
Priority to US14/368,637 priority patent/US20140357009A1/en
Priority to JP2014550743A priority patent/JP2015508573A/ja
Priority to CN201280065246.6A priority patent/CN104115287A/zh
Publication of WO2013102718A1 publication Critical patent/WO2013102718A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of the manufacture of semiconductor microcomponents comprising two zones doped by implantation of dopants and thermal activations.
  • the invention is particularly applicable to photovoltaic cells.
  • a photovoltaic cell comprises a semiconductor substrate, usually made of doped silicon, for example doped p, covered on one of its faces, usually the front face intended to receive the radiation, a doped doped layer opposite, for example an n-doped layer, thus forming a pn junction for the collection of photo-carriers generated by the illumination of the cell.
  • the layer n is also covered with an antireflection layer to ensure good photon absorption, and electrical contacts are provided in the n layer for the collection of the generated current.
  • a highly doped zone of the same type of doping as the substrate, for example a layer called “p + " because of its high concentration of p-type dopants, is produced on the other side of the substrate.
  • This zone is usually called “BSF” zone (for the acronym "Back Surface Field”).
  • the layer n is for example made by means of a POCI3 gas diffusion step at a temperature of 850 ° -950 ° C. for several tens of minutes, as described, for example, in the document by JCC Tsai, "Shallow Phosphorus Diffusion Profiles". in Silicon ", Proc. of the IEEE 57 (9), 1969, pp. 1499-1506, or by means of an ion implantation of phosphorus atoms, followed by a step of thermal activation of the implanted atoms, as described for example in the document by DL Meier et al, "N-type , ion implanted silicon solar cells and modules ", Proc.
  • the "BSF” layer is produced for example by depositing an aluminum-containing screen printing paste on the entire rear face of the substrate.
  • Such an “BSF” layer called “Al-BSF”
  • Al-BSF is then activated by annealing, for example in a passage oven at a temperature of 885 ° C. and with a belt speed of 6500 mm / min, as this is for example described in B. Sopori et al, "Fundamental mechanisms in the fire-through contact metallization of Si solar cells: a review", 17 th Workshop on Crystalline Silicone Solar Cells & Modules: Materials and Process, Vail, Colorado, USA, August 5-8 2007
  • the "Al-BSF” layer poses two problems.
  • a commonly employed method is thus to use a boron-based "BSF” layer, commonly referred to as "B-BSF", in place of the "Al-BSF” layer.
  • B-BSF boron-based “BSF” layer
  • a “B-BSF” layer can be produced in a manner similar to the zone n on the front face of the substrate, for example by means of a gas diffusion of BC1 3 or BBr3 type, but also by means of an implantation of atoms. boron, followed by a step of thermal activation of the implanted atoms.
  • a photovoltaic cell using an ion implantation of phosphorus for the n-layer, and an ion implantation of boron for the "B-BSF".
  • the problem of such a cell is that the temperatures of the thermal annealing necessary for activation of the implanted atoms are very different for boron and phosphorus.
  • temperatures below 850 ° C are required, while boron requires temperatures above 1000 ° C to be activated.
  • the two ionic implantations and their respective two thermal anneals are made separately.
  • boron is implanted on the rear face of the substrate to obtain the BSF layer, then the assembly thus obtained is annealed at 1000 ° C. Then, the phosphor is implanted on the front face and the assembly obtained is then annealed at 850 ° C., the boron being little or not impacted by this "low temperature" stage. For example, see the aforementioned DL Meier document for more details.
  • the implementation of separate implantation and thermal annealing steps has a number of disadvantages.
  • the ion implantation steps generally require to be performed under vacuum and in a clean room in order to limit the risks of contamination.
  • This separate implementation induced by the incompatibility of the temperature of the thermal activations, therefore involves breaking the vacuum at least once and imposes to multiply the manipulations of the photovoltaic cells during the most critical phases of their manufacture in terms of contamination. .
  • thermal annealing at very high temperature (above 1000 ° C as required for the activation of boron) applies to the entire substrate and causes a degradation of the overall volume lifetime of the substrate.
  • One of the aims of the present invention is to propose a method of manufacturing a photovoltaic cell having its two faces doped by ion implantation and thermal activation, which minimizes the manufacturing constraints induced by the different thermal activation temperatures, and in particular, which makes it possible not to have totally separate implantations and activations in the event of incompatibility of temperatures.
  • Another object of the invention is to provide a method which does not degrade the lifetime of the substrate.
  • the subject of the invention is a method of manufacturing a photovoltaic cell consisting of:
  • to produce a semiconductor substrate having a first opposite face and a second face; ⁇ performing, on the first face of the substrate, a first doped semiconductor zone by implantation of first doping elements in the thickness of the substrate and by thermal activation of the first doping elements implanted at a first activation temperature;
  • the substrate has a thickness greater than 50 microns, and at least the thermal activation of the first doping elements is carried out by laser irradiation, the irradiation parameters being chosen so that the radiation is absorbed as much as possible. a depth corresponding to the first micrometer of the substrate.
  • the laser irradiation allows an intense and localized temperature rise of the irradiated face (over a depth of the order of the depth of absorption of the radiation in the substrate, that is to say from micrometer order), thereby causing the thermal activation of the doping elements implanted in the irradiated face.
  • the irradiation is localized and the substrate dissipates heat, so that the face opposite the irradiated face does not undergo or very little heating. It is thus possible to implant in this other face doping elements without the latter undergo too much heating.
  • the thermal activations are carried out once the ion implantation has been completed.
  • the ion implantations are performed in the same vacuum chamber, so that the vacuum is not broken between the realization thereof.
  • the ionic implantations are not performed prior to the thermal activations.
  • the ion implantation of elements can for example be followed directly by their thermal activation.
  • the thermal activation of the second doping elements is carried out by thermal annealing.
  • this thermal activation can also be carried out by laser irradiation, in particular an irradiation step distinct from the irradiation step activating the first elements.
  • the first doping elements are boron atoms
  • the second doping elements are phosphorus atoms.
  • the laser irradiation of the first face is performed with a pulsed laser whose wavelength is between 150 nm and 600 nm, and whose pfd is between 1 and 7 J / cm 2 with a duration of power of between 10 nanoseconds and 1 microsecond.
  • a pulsed laser whose wavelength is between 150 nm and 600 nm, and whose pfd is between 1 and 7 J / cm 2 with a duration of power of between 10 nanoseconds and 1 microsecond.
  • the laser irradiation of the first face comprising implanted boron atoms is an irradiation using a pulse fluence laser of the order of 3 J / cm 2 and of duration of the order of 150 nanoseconds.
  • a pulse fluence laser of the order of 3 J / cm 2 and of duration of the order of 150 nanoseconds.
  • Such laser irradiation makes it possible in particular to obtain a heating greater than 1000 ° C. for the thermal activation of the boron atoms implanted in one of the faces of the substrate.
  • the substrate in particular silicon, has a thickness of between 50 micrometers and 300 micrometers, and preferably a thickness of 180 microns.
  • the substrate is a p-doped semiconductor substrate, the first semiconductor zone being an n-doped zone, and the second semiconductor zone being a p-doped zone.
  • the substrate is an n-doped semiconductor substrate, the first semiconductor zone being an n-doped zone, and the second semiconductor zone being a p-doped zone.
  • FIGS. 1 to 6 are schematic sectional views illustrating a method of manufacturing a photovoltaic cell according to the invention.
  • a method for manufacturing a photovoltaic cell starts with the production of a p-doped silicon substrate 10 (FIG. 1), with a thickness greater than 50 micrometers, in particular a thickness between 50 micrometers and 300 micrometers, for example 180 micrometers, optionally followed by the chemical texturing of one of its faces, for example by application of a 1% KOH solution at a temperature of 80.degree. min.
  • the face 12 is intended to receive the radiation to be converted into current, this face is hereinafter referred to as the "front" face.
  • the process is continued by the ion implantation of phosphorus atoms in the front face 12 (FIG. 2), for example a POCI 3 type implantation with an energy of between 5 and 50 keV, for example 30 keV and a dose. between 10 14 at / cm 2 and 6.10 15 at / cm 2 , for example 4.10 15 at / cm 2 or plasma immersion, as is known per se from the state of the art, so as to obtain a zone implanted in phosphorus 14 on the front face 12 of typical thickness less than 100 nanometers. Then, an ion implantation of boron atoms is carried out within the face 16 or "rear" face, opposite to the front face 12 (FIG.
  • boron implanted zone 18 on the rear face 16 of a typical thickness of less than 100 nanometers for example an implantation of the BCI 3 or BBr 3 type with an energy included between 5 and 30 keV, for example 10 keV and a dose of between 10 14 at / cm 2 and 5.10 15 at / cm 2 , for example 3.10 15 at / cm 2 or plasma immersion, as is known per se of the state of the art, so as to obtain a boron implanted zone 18 on the rear face 16 of a typical thickness of less than 100 nanometers.
  • the ionic implantations of phosphorus and boron are carried out in the same vacuum chamber of an ion implantation device, which makes it possible not to break the vacuum between these two implantations and thus minimizes the risk of contamination.
  • the process then continues by irradiating all or part of the rear face 16 with a laser in order to thermally activate and diffuse in depth (typically less than 500 nanometers, for example of the order of 200 nanometers) the boron atoms implanted therein, thus producing a layer "B-BSF" without damaging the front face 12 and the phosphorus atoms therein ( Figure 4).
  • the thermal activation of the first elements is advantageously carried out by irradiating the entire face back 16 with a laser allowing such irradiation, especially for a very short time.
  • the thermal activation of the backside boron atoms is carried out by means of an excimer laser pulsed at 308 nanometers, having a duration of pulses equal to 150 nanoseconds, pulsed at 200 kHz and of energy density or fluence equal to at 3 J / cm 2 , which makes it possible to reach locally a temperature higher than 1000 ° C.
  • the skilled person will be able to adapt the irradiation parameters according to the laser at his disposal, it is sufficient that the radiation is absorbed in a thickness or depth less than one micrometer, and preferably less than 500 or 300 nanometers, and that warming remains of the order of 1000 ° C (and in any case does not deteriorate the material).
  • the laser irradiation may be performed with a pulsed laser whose wavelength is between 150 nanometers and 600 nanometers, and whose pfd is between 1 and 7 J / cm 2 with a duration of power between 10 nanoseconds and 1 microsecond and a pulse rate between 1 kHz and 1 GHz.
  • the thermal activation of the phosphor atoms implanted in front face 12 is then performed (FIG. 5), preferably by thermal annealing at 840 ° C. in an oxidation tube, or by laser irradiation, or by rapid annealing (or annealing).
  • RTP for the English acronym "RAPID THERMAL PROCESSING”
  • PECVD Pullasma Enhanced Chemical Vapor Deposition
  • a passivation layer 22 is also deposited on the rear face 16, for example a 15 nanometer thick layer of SiN x deposited by PECVD with a frequency of 440 kHz at a temperature of 450 ° C.
  • contacts on the front face 24 and contacts on the rear face 26, advantageously made in the form of grids, are formed on the front 12 and rear 16 faces of the cell, and then annealing of said contacts 24, 26 is carried out (FIG. 6).
  • screen-printing metallization of the front face is carried out with a silver paste deposited on a mask comprising a network of openings of 70 micrometers with a pitch of 2.1 millimeters
  • a metallization of the rear face is carried out with a aluminum paste deposited on a mask comprising openings of 70 micrometers with a pitch of 1 millimeter
  • the annealing of the contacts on the front face and on the rear face is carried out in an infrared oven of the Centrotherm type, with a temperature of between 850 and 1050 ° C and at a speed of between 2000 and 6500 mm / min.
  • the invention also applies to the production of a standard n-type structure, that is to say comprising p-type emitters on the front face, made by means of a boron implantation followed by a thermal activation. by laser irradiation as described above, and composting a phosphor layer "BSF" implanted on the rear face, obtained by conventional thermal implantation and activation, or conventional implantation and activation by laser irradiation.
  • a standard n-type structure that is to say comprising p-type emitters on the front face, made by means of a boron implantation followed by a thermal activation. by laser irradiation as described above, and composting a phosphor layer "BSF" implanted on the rear face, obtained by conventional thermal implantation and activation, or conventional implantation and activation by laser irradiation.
  • the method according to the invention also applies to the production of selective emitter on the front face for p-type substrate photovoltaic cells, or to a selective FSF layer in the case of inverted n-type cells), and / or a BSF layer located on the rear face of photovoltaic cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Ce procédé de fabrication d'une cellule photovoltaïque consiste: à réaliser un substrat semi-conducteur (10) comportant une première face (12) et une deuxième face (16) opposées; à réaliser, sur la première face (12) du substrat (10), une première zone semi-conductrice (14) dopée par l'implantation de premiers éléments dopants dans l'épaisseur du substrat et par l'activation thermique des premiers éléments dopants implantés à une première température d'activation; à réaliser, sur la deuxième face (16) du substrat (10), une seconde zone semi-conductrice (18) par l'implantation de seconds éléments dopants dans l'épaisseur du substrat et par l'activation thermique des seconds éléments dopants implantés à une seconde température d'activation inférieure à la première température d'activation. Le substrat présente une épaisseur supérieure à 50 micromètres et aumoins l'activation thermique des premiers éléments dopants est réalisée par une irradiation laser, les paramètres d'irradiation étant choisis afin que le rayonnement soit absorbé au plus dans une profondeur du premier micromètre du substrat.

Description

PROCEDE DE FABRICATION D'UNE CELLULE PHOTOVOLTAIQUE
DOMAINE DE L'INVENTION L'invention a trait au domaine de la fabrication de microcomposants semi-conducteur comportant deux zones dopées par implantation de dopants et activations thermiques. L'invention s'applique tout particulièrement aux cellules photovoltaïques.
ETAT DE LA TECHNIQUE
Schématiquement, une cellule photovoltaïque comporte un substrat semi- conducteur, usuellement réalisé en silicium dopé, par exemple dopé p, recouvert sur l'une de ses faces, usuellement la face avant destinée à recevoir le rayonnement, d'une couche dopée avec un dopage opposé, par exemple une couche dopée n, formant ainsi une jonction pn pour la collecte des photo -porteurs générés par l'illumination de la cellule. La couche n est par ailleurs recouverte d'une couche antireflet pour assurer une bonne absorption des photons, et des contacts électriques sont prévus dans la couche n pour la collecte du courant généré. Afin d'améliorer le rendement de la cellule, une zone fortement dopée, du même type de dopage que le substrat, par exemple une couche dite « p+ » en raison de sa forte concentration en dopants de type p, est réalisée sur l'autre face du substrat. Cette zone est usuellement dénommée zone « BSF » (pour l'acronyme anglo-saxon « Back Surface Field »).
La couche n est par exemple réalisée au moyen d'une étape de diffusion gazeuse POCI3 à une température de 850 - 950°C pendant plusieurs dizaines de minutes, comme cela est par exemple décrit dans le document de J. C.C. Tsai, "Shallow Phosphorus Diffusion Profiles in Silicon", Proc. of the IEEE 57 (9), 1969, pp. 1499-1506, ou au moyen d'un implantation ionique d'atomes de phosphore, suivie d'une étape d'activation thermique des atomes implantés, comme cela est par exemple décrit dans le document de D. L. Meier et al, "N-type, ion implanted silicon solar cells and modules", Proc. 37th PVSC, La couche « BSF » est réalisée par exemple en déposant une pâte de sérigraphie contenant de l'aluminium sur toute la face arrière du substrat. Une telle couche « BSF », dénommée « Al-BSF », est alors activée en procédant à son recuit, par exemple dans un four à passage à une température de 885 °C et avec une vitesse de tapis de 6500 mm/min, comme cela est par exemple décrit dans le document B. Sopori et al, "Fundamental mechanisms in the fire-through contact metallization of Si solar cells: a review", 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Process, Vail, Colorado, USA, August 5-8 2007 La couche « Al-BSF » pose cependant deux problèmes. Tout d'abord, le dépôt d'une pâte de sérigraphie sur toute la face arrière du substrat provoque une importante courbure de ce dernier lors du recuit nécessaire à l'activation de la couche « Al-BSF », en raison des coefficients de dilatation thermique différents entre le silicium et la pâte de sérigraphie. Cet effet est d'autant plus marqué que les différentes couches en présence sont minces, ce qui est extrêmement préjudiciable à une bonne mise en module de cellules photovoltaïques fabriquées de cette manière, comme cela est par exemple décrit dans le document de F. Huster, "Aluminium-Back surface field: bow investigation and élimination", Proc. 20th EUPVSEC, 2005. Ensuite, en raison de la faible solubilité de l'aluminium dans le silicium, l'effet de champ recherché qui motive la réalisation d'une couche « BSF » est faible, ce qui limite donc le gain en rendement procuré par P« Al- BSF ».
Diverses alternatives à l'« Al-BSF » ont donc été étudiées afin de résoudre ces problèmes. Une méthode couramment employée consiste ainsi à utiliser une couche « BSF » à base de bore, communément nommée « B-BSF », en lieu et place de la couche d'« Al-BSF ». Une couche « B-BSF » peut être réalisée de manière similaire à la zone n en face avant du substrat, par exemple au moyen d'une diffusion gazeuse de type BC13 ou BBr3, mais également au moyen d'une implantation d'atomes de bore, suivie d'une étape d'activation thermique des atomes implantés.
Ainsi donc, il peut être envisagé de réaliser une cellule photovoltaïque en utilisant une implantation ionique de phosphore pour la couche n, et une implantation ionique de bore pour le « B-BSF ». Le problème d'une telle cellule est que les températures du recuit thermique nécessaire à l'activation des atomes implantés sont très différentes pour le bore et le phosphore. Ainsi, pour le phosphore, des températures inférieures à 850 °C sont nécessaires, alors que le bore nécessite des températures supérieures à 1000 °C pour être activé. Afin de contourner cette difficulté, les deux implantations ioniques et leurs deux recuits thermiques respectifs sont réalisés de manière séparée. Tout d'abord, du bore est implanté sur la face arrière du substrat pour obtenir la couche BSF, puis l'ensemble ainsi obtenu est recuit à 1000 °C. Ensuite, le phosphore est implanté en face avant et l'ensemble obtenu est ensuite recuit à 850 °C, le bore n'étant pas ou peu impacté par cette étape « basse température ». On pourra par exemple consulter le document de D. L. Meier susmentionné pour plus de détails.
La mise en œuvre d'étapes d'implantation et de recuits thermiques séparées présente cependant un certain nombre de désavantages. Notamment, les étapes d'implantation ionique nécessitent généralement d'être réalisées sous vide et en salle blanche afin de limiter les risques de contamination. Cette mise en œuvre séparée, induite par l'incompatibilité des températures des activations thermiques, implique donc de briser le vide au moins une fois et impose de multiplier les manipulations des cellules photovoltaïques au cours des phases les plus critiques de leur fabrication en termes de contamination.
En outre, la mise en œuvre de recuit thermique à très haute température (supérieure à 1000°C comme requis pour l'activation du bore) s'applique à tout le substrat et engendre une dégradation de la durée de vie volumique globale du substrat. EXPOSE DE L'INVENTION
L'un des buts de la présente invention est de proposer un procédé de fabrication d'une cellule photovoltaïque ayant ses deux faces dopées par implantation ionique et activation thermique, qui minimise les contraintes de fabrication induites par les températures d'activation thermique différentes, et notamment qui permette de ne pas avoir des implantations et des activations totalement séparées en cas d'incompatibilité des températures.
Un autre de but de l'invention est de proposer un procédé qui ne dégrade pas la durée de vie du substrat.
A cet effet, l'invention a pour objet un procédé de fabrication d'une cellule photovoltaïque consistant :
à réaliser un substrat semi-conducteur comportant une première face et une deuxième face opposées ; à réaliser, sur la première face du substrat, une première zone semi-conductrice dopée par implantation de premiers éléments dopants dans l'épaisseur du substrat et par activation thermique des premiers éléments dopants implantés à une première température d' activation ;
■ à réaliser, sur la deuxième face du substrat, une seconde zone semi-conductrice par implantation de seconds éléments dopants dans l'épaisseur du substrat et par activation thermique des seconds éléments dopants implantés à une seconde température d' activation inférieure à la première température d' activation. Selon l'invention, le substrat présente une épaisseur supérieure à 50 micromètres, et au moins l'activation thermique des premiers éléments dopants est réalisée par une irradiation laser, les paramètres d'irradiation étant choisis de sorte que le rayonnement soit absorbé au maximum sur une profondeur correspondant au premier micromètre du substrat.
En d'autres termes, l'irradiation laser permet une élévation de température intense et localisée de la face irradiée (sur une profondeur de l'ordre de la profondeur d'absorption du rayonnement dans le substrat c'est-à- dire de l'ordre du micromètre), provoquant ainsi l'activation thermique des éléments dopants implantés dans la face irradiée. Par ailleurs, l'irradiation est localisée et le substrat dissipe la chaleur, de sorte que la face opposée à la face irradiée ne subit pas ou très peu de chauffage. Il est ainsi possible d'implanter dans cette autre face des éléments dopants sans que ces derniers subissent un chauffage trop important. Ainsi, il est possible d'implanter des atomes de bore sur une face du substrat et des atomes de phosphore sur l'autre face du substrat, et d'irradier au laser la face implantée en atomes de bore sans que la face implantée en atomes de phosphore ne subisse un chauffage trop excessif.
Selon un mode de réalisation, les activations thermiques sont réalisées une fois achevées les implantations ioniques. Notamment, les implantations ioniques sont réalisées dans une même enceinte sous vide, de sorte que le vide n'est pas brisé entre la réalisation de celles- ci. En variante, les implantations ioniques ne sont réalisées préalablement aux activations thermiques. L'implantation ionique d'éléments peut par exemple est suivie directement de leur activation thermique. Selon un mode de réalisation, l'activation thermique des seconds éléments dopants est réalisée par un recuit thermique. En variante, cette activation thermique peut également être réalisée par une irradiation laser, notamment une étape d'irradiation distincte de l'étape d'irradiation activant les premiers éléments. Selon un mode de réalisation, les premiers éléments dopant sont des atomes de bore, et les seconds éléments dopants sont des atomes de phosphore.
Selon un mode de réalisation, l'irradiation laser de la première face est réalisée avec un laser puisé dont la longueur d'onde est comprise entre 150 nm et 600 nm, et dont la puissance surfacique est comprise entre 1 et 7 J/cm2 avec une durée de puise comprise entre 10 nanosecondes et 1 microseconde. Une telle irradiation permet d'obtenir une température élevée (de l'ordre de 1000 °C et au-delà) sur une profondeur inférieure au micromètre.
Notamment, l'irradiation laser de la première face comportant des atomes de bore implantés est une irradiation au moyen d'un laser puisé de fluence de l'ordre de 3 J/cm2 et de durée de l'ordre de 150 nanosecondes. Une telle irradiation laser permet notamment d'obtenir un chauffage supérieur à 1000 °C pour l'activation thermique des atomes de bore implantés dans l'une des faces du substrat.
Selon un mode de réalisation, le substrat, notamment en silicium, présente une épaisseur comprise entre 50 micromètres et 300 micromètres, et de préférence une épaisseur de 180 micromètres.
Selon un mode de réalisation, le substrat est un substrat semi-conducteur dopé p, la première zone semi-conductrice étant une zone dopée n, et la seconde zone semi- conductrice étant une zone dopée p. En variante, le substrat est un substrat semi-conducteur dopé n, la première zone semi- conductrice étant une zone dopée n, et la seconde zone semi-conductrice étant une zone dopée p.
BRÈVE DESCRIPTION DES FIGURES
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et réalisée en relation avec les dessins annexés dans lesquels des références identiques désignent des éléments identiques et dans lesquels les figures 1 à 6 sont des vues schématiques en coupe illustrant un procédé de fabrication d'une cellule photovoltaïque conforme à l'invention. DESCRIPTION DÉTAILLÉE DE L'INVENTION
En se référant aux figures 1 à 6, un procédé de fabrication d'une cellule photovoltaïque selon l'invention débute par la réalisation d'un substrat en silicium dopé p 10 (figure 1), d'épaisseur supérieure à 50 micromètres, notamment une épaisseur comprise entre 50 micromètres et 300 micromètres, par exemple 180 micromètres, optionnellement suivi de la texturation chimique de l'une 12 de ses faces, par exemple par application d'une solution de KOH à 1% à une température 80 °C pendant 40 min. La face 12 est destinée à recevoir le rayonnement à convertir en courant, cette face est ci- après dénommée face « avant ».
Le procédé se poursuit par l'implantation ionique d'atomes de phosphore dans la face avant 12 (figure 2), par exemple une implantation de type POCI3 avec une énergie comprise entre 5 et 50 keV, par exemple de 30 keV et une dose comprise entre 1014 at/cm2 et 6.1015 at/cm2, par exemple de 4.1015 at/cm2 ou une immersion plasma, comme cela est connu en soi de l'état de la technique, de manière à obtenir une zone implantée en phosphore 14 sur la face avant 12 d'épaisseur typique inférieure à 100 nanomètres. Ensuite, une implantation ionique d'atomes de bore est réalisée au sein de la face 16 ou face « arrière », opposée à la face avant 12 (figure 3), par exemple une implantation de type BCI3 ou BBr3 avec une énergie comprise entre 5 et 30 keV, par exemple de 10 keV et une dose comprise entre 1014 at/cm2 et 5.1015 at/cm2, par exemple de 3.1015 at/cm2 ou une immersion plasma, comme cela est connu en soi de l'état de la technique, de manière à obtenir une zone implantée en bore 18 sur la face arrière 16 d'épaisseur typique inférieure à 100 nanomètres.
De préférence, les implantations ioniques de phosphore et de bore sont réalisées dans la même enceinte sous vide d'un dispositif d'implantation ionique, ce qui permet de ne pas briser le vide entre ces deux implantations et minimise ainsi le risque de contamination.
Le procédé se poursuit alors par l'irradiation de tout ou partie de la face arrière 16 avec un laser afin d'activer thermiquement et de faire diffuser en profondeur (typiquement inférieur à 500 nanomètres, par exemple de l'ordre de 200 nanomètres) les atomes de bore qui y sont implantés, réalisant ainsi une couche « B-BSF » sans endommager la face avant 12 et les atomes de phosphore qui s'y trouvent (figure 4). L'activation thermique des premiers éléments est réalisée avantageusement en irradiant la totalité de la face arrière 16 à l'aide d'un laser permettant une telle irradiation, notamment pendant une durée très courte.
Plus particulièrement, l'activation thermique des atomes de bore en face arrière est réalisée au moyen d'un laser excimer puisé à 308 nanomètres, de durée des puises égale à 150 nanosecondes, puisé à 200 kHz et de densité d'énergie ou fluence égale à 3 J/cm2, ce qui permet d'atteindre localement une température supérieure à 1000 °C. L'homme du métier saura adapter les paramètres d'irradiation en fonction du laser à sa disposition, il suffit que le rayonnement soit absorbé dans une épaisseur ou profondeur inférieure à un micromètre, et avantageusement inférieure à 500 ou 300 nanomètres, et que réchauffement reste de l'ordre de 1000 °C (et en tout cas ne détériore pas le matériau).
Typiquement, l'irradiation laser pourra être réalisée avec un laser puisé dont la longueur d'onde est comprise entre 150 nanomètres et 600 nanomètres, et dont la puissance surfacique est comprise entre 1 et 7 J/cm2 avec une durée de puise comprise entre 10 nanosecondes et 1 microseconde et une cadence de puise comprise entre 1 kHz et 1 GHz.
L'activation thermique des atomes de phosphore implantés en face avant 12 est alors réalisée (figure 5), préférentiellement par recuit thermique à 840 °C dans un tube d'oxydation, ou par une irradiation laser, ou par un recuit rapide (ou recuit « RTP » pour l'acronyme anglo-saxon « RAPID THERMAL PROCESSING »).
Une couche anti-reflet 20, ayant également une fonction de passivation, est ensuite déposée sur la face avant 12 de la cellule, par exemple une couche de 75 nanomètres d'épaisseur de SiNx déposé par PECVD (« Plasma Enhanced Chemical Vapor Déposition ») de fréquence 440 kHz à une température de 450°C.
Une couche de passivation 22 est également déposée sur la face arrière 16, par exemple une couche de 15 nanomètres d'épaisseur de SiNx déposée par PECVD de fréquence 440 kHz à une température de 450 °C.
Enfin, des contacts en face avant 24 et des contacts en face arrière 26, avantageusement réalisés sous la forme de grilles, sont réalisés sur les faces avant 12 et arrière 16 de la cellule, puis un recuit desdits contacts 24, 26 est réalisé (figure 6).
Par exemple, une métallisation par sérigraphie de la face avant est réalisée avec une pâte d'argent déposée sur un masque comprenant un réseau d'ouvertures de 70 micromètres avec un pas de 2,1 millimètres, et une métallisation de la face arrière est réalisée avec une pâte d'aluminium déposée sur un masque comprenant des ouvertures de 70 micromètres avec un pas de 1 millimètre, puis le recuit des contacts en face avant et en face arrière est réalisé dans un four infrarouge de type Centrotherm, avec une température comprise entre 850 et 1050 °C et à une vitesse comprise entre 2000 et 6500 mm/min.
Il a été décrit une application de l'invention à la réalisation d'une cellule photovoltaïque ayant un substrat de type p. Le procédé s'applique également à une cellule photovoltaïque ayant un substrat de type n pour la fabrication d'une cellule dite « type n inversé ». Dans ce cas, la zone semi-conductrice dopée située en face arrière, et contenant du bore, joue le rôle d'émetteur, tandis que la zone semi-conductrice dopée en face avant, et contenant du phosphore, est une couche dite « FSF » (acronyme de l'expression anglaise « Front Surface Field ») qui joue, pour la face avant, un rôle équivalent à celui d'une couche « BSF » en face arrière. L'invention s'applique également à la réalisation d'une structure de type n standard, c'est-à-dire comportant des émetteurs de type p en face avant, réalisés au moyen d'une implantation bore suivie d'une activation thermique par une irradiation laser telle que décrite précédemment, et compostant une couche « BSF » au phosphore implantée en face arrière, obtenue par implantation et activation thermique classiques, ou une implantation classique et une activation par irradiation laser.
Le procédé selon l'invention s'applique également à la réalisation d'émetteur sélectif en face avant pour les cellules photovoltaïques à substrat de type p, ou à une couche FSF sélectif dans le cas des cellules de type n inversé), et/ou une couche BSF localisé en face arrière de cellules photovoltaïques.

Claims

REVENDICATIONS
Procédé de fabrication d'une cellule photovoltaïque consistant :
à réaliser un substrat semi- conducteur (10) comportant une première face (12) et une deuxième face (16) opposées;
à réaliser, sur la première face (12) du substrat (10), une première zone semi- conductrice (14) dopée par l'implantation de premiers éléments dopants dans l'épaisseur du substrat et par l'activation thermique des premiers éléments dopants implantés à une première température d'activation ;
à réaliser, sur la deuxième face (16) du substrat (10), une seconde zone semi- conductrice (18) par l'implantation de seconds éléments dopants dans l'épaisseur du substrat et par l'activation thermique des seconds éléments dopants implantés à une seconde température d'activation inférieure à la première température d'activation;
caractérisé en ce que le substrat présente une épaisseur supérieure à 50 micromètres, et en ce qu'au moins l'activation thermique des premiers éléments dopants est réalisée par une irradiation laser, les paramètres d'irradiation étant choisis afin que le rayonnement soit absorbé au plus dans une profondeur du premier micromètre du substrat.
Procédé de fabrication d'une cellule photovoltaïque selon la revendication 1, caractérisé en ce que les activations thermiques sont réalisées une fois achevées les implantations ioniques.
Procédé de fabrication d'une cellule photovoltaïque selon la revendication 1 ou 2, caractérisé en ce que l'activation thermique des seconds éléments dopants est réalisée par un recuit thermique ou par une irradiation laser.
Procédé de fabrication d'une cellule photovoltaïque selon l'une quelconque des revendications précédentes, caractérisé en ce que les premiers éléments dopants sont des atomes de bore, et en ce que les seconds éléments dopants sont des atomes de phosphore.
Procédé de fabrication d'une cellule photovoltaïque selon l'une quelconque des revendications précédentes, caractérisé en ce que l'irradiation laser de la première face est une irradiation laser, dont la longueur d'onde est comprise entre 150 nanomètres et 600 nanomètres.
6. Procédé de fabrication d'une cellule photovoltaïque selon l'une quelconque des revendications précédentes, caractérisé en ce que l'irradiation laser de la première face comportant des atomes de bore implantés est une irradiation par laser puisé de fluence comprise entre 1 et 7 J/cm2 avec une durée de puise comprise entre 10 nanosecondes et 1 microseconde.
7. Procédé de fabrication d'une cellule photovoltaïque selon l'une quelconque des revendications précédentes, caractérisé en ce que le substrat, notamment en silicium, présente une épaisseur comprise entre 50 micromètres et 300 micromètres, de préférence une épaisseur de 180 micromètres.
8. Procédé de fabrication d'une cellule photovoltaïque selon l'une quelconque des revendications précédentes, caractérisé en ce que le substrat est un substrat semiconducteur dopé p, en ce que la première zone semi-conductrice est une zone dopée n, et en ce que la seconde zone semi-conductrice est une zone dopée p.
9. Procédé de fabrication d'une cellule photovoltaïque selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le substrat est un substrat semiconducteur dopé n, en ce que la première zone semi-conductrice est une zone dopée n, et en ce que la seconde zone semi-conductrice est une zone dopée p.
PCT/FR2012/052985 2012-01-05 2012-12-19 Procede de fabrication d'une cellule photovoltaique WO2013102718A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112014015691A BR112014015691A2 (pt) 2012-01-05 2012-12-19 processo de fabricação de uma célula fotovoltaica
KR1020147017762A KR20140115306A (ko) 2012-01-05 2012-12-19 광전지 제조 프로세스
EP12819097.2A EP2801118B1 (fr) 2012-01-05 2012-12-19 Procédé de fabrication d'une cellule photovoltaïque
US14/368,637 US20140357009A1 (en) 2012-01-05 2012-12-19 Process For Manufacturing A Photovoltaic Cell
JP2014550743A JP2015508573A (ja) 2012-01-05 2012-12-19 太陽電池の製造方法
CN201280065246.6A CN104115287A (zh) 2012-01-05 2012-12-19 光伏电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1250105A FR2985605B1 (fr) 2012-01-05 2012-01-05 Procede de fabrication de composant microelectronique
FR1250105 2012-01-05

Publications (1)

Publication Number Publication Date
WO2013102718A1 true WO2013102718A1 (fr) 2013-07-11

Family

ID=47628314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052985 WO2013102718A1 (fr) 2012-01-05 2012-12-19 Procede de fabrication d'une cellule photovoltaique

Country Status (8)

Country Link
US (1) US20140357009A1 (fr)
EP (1) EP2801118B1 (fr)
JP (1) JP2015508573A (fr)
KR (1) KR20140115306A (fr)
CN (1) CN104115287A (fr)
BR (1) BR112014015691A2 (fr)
FR (1) FR2985605B1 (fr)
WO (1) WO2013102718A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027733A1 (fr) * 2014-10-27 2016-04-29 Commissariat Energie Atomique Procede de fabrication d'une cellule photovoltaique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3103636B1 (fr) * 2019-11-21 2021-12-03 Commissariat Energie Atomique Procédé de fabrication d’une cellule photovoltaïque

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090227094A1 (en) * 2008-03-05 2009-09-10 Nicholas Bateman Use of chained implants in solar cells
US20110177652A1 (en) * 2010-01-20 2011-07-21 Varian Semiconductor Equipment Associates, Inc. Bifacial solar cell using ion implantation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE551719T1 (de) * 2009-12-09 2012-04-15 Abb Technology Ag Verfahren zur herstellung von halbleiterbauelementen mittels laserglühen zur selektiven aktivierung von implantierten dotiersubstanzen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090227094A1 (en) * 2008-03-05 2009-09-10 Nicholas Bateman Use of chained implants in solar cells
US20110177652A1 (en) * 2010-01-20 2011-07-21 Varian Semiconductor Equipment Associates, Inc. Bifacial solar cell using ion implantation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AJEET ROHATGI ET AL: "High-Throughput Ion-Implantation for Low-Cost High-Efficiency Silicon Solar Cells", ENERGY PROCEDIA, vol. 15, 1 January 2012 (2012-01-01), pages 10 - 19, XP055043120, ISSN: 1876-6102, DOI: 10.1016/j.egypro.2012.02.002 *
B. SOPORI ET AL.: "Fundamental mechanisms in the fire-through contact metallization of Si solar cells: a review", 17 TH WORKSHOP ON CRYSTALLINE SILICON SOLAR CELLS & MODULES: MATERIALS AND PROCESS, 5 August 2007 (2007-08-05)
D. L. MEIER ET AL.: "N-type, ion implanted silicon solar cells and modules", PROC. 37 TH PVSC, 2011
DANIEL L MEIER ET AL: "N-Type, Ion-Implanted Silicon Solar Cells and Modules", IEEE JOURNAL OF PHOTOVOLTAICS, I E E E, US, vol. 1, no. 2, 1 October 2011 (2011-10-01), pages 123 - 129, XP011390839, ISSN: 2156-3381, DOI: 10.1109/JPHOTOV.2011.2169944 *
J. C.C. TSAI: "Shallow Phosphorus Diffusion Profiles in Silicon", PROC. OF THE IEEE, vol. 57, no. 9, 1969, pages 1499 - 1506, XP055018506, DOI: doi:10.1109/PROC.1969.7325
R. T. YOUNG: "Laser processing for high-efficiency Si solar cells", JOURNAL OF APPLIED PHYSICS, vol. 53, no. 2, 1 January 1982 (1982-01-01), pages 1178 - 1189, XP055043130, ISSN: 0021-8979, DOI: 10.1063/1.330568 *
YOUGN R T ET AL: "HIGH-EFFICIENCY SI SOLAR CELLS BY BEAM PROCESSING", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 43, no. 7, 1 October 1983 (1983-10-01), pages 666 - 668, XP000816497, ISSN: 0003-6951, DOI: 10.1063/1.94439 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027733A1 (fr) * 2014-10-27 2016-04-29 Commissariat Energie Atomique Procede de fabrication d'une cellule photovoltaique
WO2016066570A1 (fr) 2014-10-27 2016-05-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'une cellule photovoltaïque

Also Published As

Publication number Publication date
BR112014015691A2 (pt) 2017-07-18
JP2015508573A (ja) 2015-03-19
EP2801118B1 (fr) 2015-09-16
FR2985605A1 (fr) 2013-07-12
US20140357009A1 (en) 2014-12-04
KR20140115306A (ko) 2014-09-30
FR2985605B1 (fr) 2014-10-17
CN104115287A (zh) 2014-10-22
EP2801118A1 (fr) 2014-11-12

Similar Documents

Publication Publication Date Title
US8257995B2 (en) Microwave anneal of a thin lamina for use in a photovoltaic cell
EP2257991B1 (fr) Pile solaire à contact arrière et son procédé de fabrication
US8822262B2 (en) Fabricating solar cells with silicon nanoparticles
EP2834857B1 (fr) Procede de fabrication d'une cellule photovoltaique a contacts interdigites en face arriere
US20150017747A1 (en) Method for forming a solar cell with a selective emitter
US20120048376A1 (en) Silicon-based photovoltaic device produced by essentially electrical means
CN110943143A (zh) 用于制造具有异质结和发射极扩散区的光伏太阳能电池的方法
EP2721650B1 (fr) Procédé de réalisation d'une cellule photovoltaïque a émetteur sélectif
EP2801118B1 (fr) Procédé de fabrication d'une cellule photovoltaïque
FR3003085A1 (fr) Substrat semi-conducteur monolithique a base de silicium, divise en sous-cellules
EP3660928B1 (fr) Procédé de fabrication de cellules photovoltaiques
FR3003089A1 (fr) Plaquette de silicium monolithique a multi-jonctions p/n verticales.
EP3841618B1 (fr) Realisation de zones dopees n+ et n++ pour cellule solaire
EP3242335B1 (fr) Procédé de fabrication d'une cellule photovoltaïque à hétérojonction
EP3213352B1 (fr) Procede de fabrication d'une cellule photovoltaïque
FR2964252A1 (fr) Procede de realisation d'une structure a emetteur selectif
FR2971627A1 (fr) Procédé de réalisation d'une structure a émetteur sélectif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14368637

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147017762

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2014550743

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012819097

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014015691

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014015691

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140624