WO2013102432A1 - 定子及发电机 - Google Patents

定子及发电机 Download PDF

Info

Publication number
WO2013102432A1
WO2013102432A1 PCT/CN2013/000012 CN2013000012W WO2013102432A1 WO 2013102432 A1 WO2013102432 A1 WO 2013102432A1 CN 2013000012 W CN2013000012 W CN 2013000012W WO 2013102432 A1 WO2013102432 A1 WO 2013102432A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
conductive
coil unit
conductive layer
magnetic conductive
Prior art date
Application number
PCT/CN2013/000012
Other languages
English (en)
French (fr)
Inventor
刘刚
刘姿仪
Original Assignee
Liu Gang
Liu Ziyi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Gang, Liu Ziyi filed Critical Liu Gang
Publication of WO2013102432A1 publication Critical patent/WO2013102432A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/20Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the present invention relates to the field of electromechanical technologies, and in particular, to a stator and a generator. Background technique
  • the existing generator usually includes a rotor and a stator, and the rotor is rotated by the motive machine.
  • the magnet on the rotor magnetically cuts the magnetic induction coil on the stator and generates a current in the magnetic induction coil to convert the mechanical energy into electric energy.
  • the invention provides a stator and a generator for solving the problem of low energy conversion efficiency of the generator in the prior art.
  • the present invention provides a stator including a magnetic conductive frame, a magnetic guide shoe and at least one coil unit; the magnetic conductive frame is a circular or hollow regular polygon, and at least one slot is uniformly opened along a circumferential direction of the magnetic conductive frame ;
  • the coil unit is disposed on the tooth groove;
  • the magnetic conductive shoe is disposed on both sides of the magnetic conductive frame and encloses the coil unit in the magnetic conductive shoe;
  • the coil unit includes a conductive layer and a magnetic conductive layer laminated in this order.
  • the invention also provides a generator comprising a rotor and a stator as described above, the rotor comprising a rotating shaft;
  • At least one conductive disk is coaxially fixed on the rotating shaft, and a magnet is fixedly disposed on the guiding disk, and at least one magnetic pole of the magnet is disposed toward the coil unit of the stator.
  • the stator and the generator provided by the present invention, the coil unit disposed on the magnetic conductive frame is inductively generated by the magnetic line cutting of the magnet on the rotor, and the magnetic field lines generated by the current can be enclosed in the generator yoke, the magnetic yoke and the coil unit.
  • a magnetic line closed loop is formed, and the magnetic line closed loop and the magnetic line of the magnet pass through each other in the magnetic conductive layer, so that the generator
  • the rotor only needs to overcome its own friction force, overcome the attraction force to the magnetic conductive layer on the stator coil unit and the magnetic flux leakage in the casing. Under the motive force drag, the rotor rotates to make the conductive wire be induced by the magnetic flux to generate current. Improve the energy conversion efficiency of the generator.
  • FIG. 1 is a schematic structural view of a first embodiment of a stator provided by the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a cross-sectional view taken along line a-a of Figure 1;
  • Figure 4 is a schematic structural view of the coil unit of Figure 1;
  • FIG. 5 is a schematic structural view of a second embodiment of a stator according to the present invention.
  • Figure 6 is a cross-sectional view taken along line B-B of Figure 4.
  • Figure 7 is a cross-sectional view taken along line b-b of Figure 4.
  • FIG. 8 is a schematic structural view of a third embodiment of a stator provided by the present invention.
  • Figure 9 is a cross-sectional view taken along line C-C of Figure 8.
  • FIG. 10 is a schematic structural diagram of a first type of generator according to an embodiment of the present invention.
  • Figure 11 is a schematic view showing the magnetic field lines of the rotor of the generator provided in Figure 10;
  • Figure 12 is a schematic view showing the magnetic field lines of the stator of the generator provided in Figure 10;
  • FIG. 13 is a schematic structural diagram of a second generator according to an embodiment of the present invention.
  • Figure 14 is a schematic view showing the magnetic field lines of the rotor of the generator provided in Figure 13;
  • Figure 15 is a schematic view showing the magnetic field lines of the stator of the generator provided in Figure 13;
  • 16 is a schematic structural diagram of a third type of generator according to an embodiment of the present invention.
  • Figure 17 is a schematic view showing the magnetic field lines of the rotor of the generator provided in Figure 16;
  • Figure 18 is a schematic view showing the magnetic field lines of the stator of the generator provided in Figure 16;
  • FIG. 19 is a schematic structural diagram of a fourth type of generator according to an embodiment of the present invention.
  • Figure 20 is a schematic view showing the magnetic field lines of the rotor of the generator provided in Figure 19;
  • Figure 21 is a schematic view showing the magnetic field lines of the stator of the generator provided in Figure 19;
  • FIG. 22 is a schematic structural diagram of a fifth type of generator according to an embodiment of the present invention.
  • Figure 23 is a schematic view showing the magnetic field lines of the rotor of the generator provided in Figure 22;
  • FIG 24 is a schematic view of the stator magnetic lines of the generator provided in Figure 22. detailed description
  • FIG. 1 is a schematic structural view of a first embodiment of a stator according to the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. 1
  • FIG. 3 is a cross-sectional view taken along line aa of FIG. Schematic.
  • the stator provided in this embodiment includes a magnetic conducting frame 1, a magnetic guiding shoe 2, and at least one coil unit 3.
  • the body of the magnetic shield 1 is annular.
  • the magnetic conducting frame may also be a hollow regular polygon, such as a regular hexagon or a regular octagon, and accordingly, the hollow portion of the magnetic conducting frame may be a regular hexagonal hole or a regular octagonal hole or the like.
  • the coil unit 3 When the main body of the magnetic rack 1 is circular, at least one slot 11 is uniformly opened in the circumferential direction of the magnetic shield 1; the coil unit 3 is disposed on the slot 11; and the magnetic boot 2 is disposed on the magnetic shield 1 Both sides of the coil unit 3 are covered in the magnetic conductive shoe 2; the coil unit 3 includes a conductive layer 31 and a magnetic conductive layer 32 laminated in this order.
  • the number of the coil units 3 is the same as the number of the slots 11, and the number of the slots 11 may be six.
  • the number of the coil units 3 is also six, and the number of the slots 11 and the coil units 3 may be other. The number is not limited here.
  • the magnetic permeable frame 1 may be formed by laminating at least one layer of circular magnetic conductive sheets, and the outer circumference of the circular magnetic conductive sheet may be uniformly provided with six rectangular grooves, and the rectangular groove edges on the plurality of circular magnetic conductive sheets
  • the annular magnetic guide sheets correspond in the axial direction, and form six slots 11 and six external teeth.
  • the sum of the magnetic flux sections of the convex teeth of the magnetic trajectory 1 is greater than or equal to the magnetic permeability area through which the magnetic field lines generated by all the magnets on the rotor need to pass, and the magnetic trajectory 1 does not contain the annular guide of the external convex teeth.
  • the magnetic cross-section is greater than or equal to the magnetic field lines generated by the currents of all the coil units 3 and the magnetic permeability lines through which the magnetic field lines generated by all the magnets on the rotor are required to pass; wherein the circular magnetic conductive sheets may be formed by laminating a plurality of ferrosilicon sheets, each The thickness of the silicon steel sheets is greater than 0.1 mm.
  • the magnetic guiding shoe 2 includes a magnetic conductive layer and an insulating layer which are sequentially stacked; the cross section of the magnetic conductive shoe 2 and the coil unit 3 is an isosceles trapezoid, and the cross-sectional area is the magnetic permeability of the isosceles trapezoidal portion.
  • the inner surface of the boot 2 is in contact with the coil unit 3.
  • the magnetic conductive layer may be laminated with a magnetic conductive material such as a ferrosilicon plate.
  • the thickness of the ferrosilicon plate is greater than 0.01 mm, and the slit is disposed on the ferrosilicon plate with a width greater than 0.001 mm, and an insulating layer is disposed between the magnetic conductive layers, that is, magnetically conductive.
  • the shoe 2 is composed of an insulating layer, a plurality of sheets of silicon steel sheets stacked, and the last layer is an insulating layer to form a magnetic guiding shoe.
  • the cross section is an isosceles trapezoid or a fan shape, and the magnetic guiding shoe 2 can be fixed to the magnetic conductive shaft by screws. On the shelf 1.
  • the conductive layer 31 of the coil unit 3 in this embodiment is a circular conductive layer.
  • the toroidal conductive layer is composed of a plurality of electrically conductive wires having insulating layers arranged side by side in the circumferential direction of the toroidal magnetically permeable bottom plate 33 or a plurality of electrically conductive wires having an insulating layer wound in parallel in the circumferential direction of the toroidal magnetically permeable bottom plate 33.
  • the magnetic conductive layer 32 is a circular magnetic conductive sheet that is sleeved outside the toroidal conductive layer 31.
  • an insulating layer may be disposed between the conductive layer 31 and the magnetic conductive layer 32.
  • the outer surface of the toroidal magnetic conductive bottom plate 33 is coaxially provided with a plurality of circular conductive layers 31 (for the convenience of drawing, only one layer of the circular conductive layer is shown in detail in FIG. 4, and the remaining layers of the circular conductive layer are shown in FIG. 4
  • the dotted line indicates that the actual structure should be a multi-layered circular conductive layer coaxially inserted into the body).
  • the toroidal conductive layer comprises a plurality of annular conductive layers composed of a plurality of conductive lines having insulating layers arranged side by side in the circumferential direction of the circular magnetic conductive substrate, and the outer surface of the annular conductive layer is provided with a circular magnetic conductive sheet.
  • each layer of conductive lines can also be divided into multiple groups, and each of the conductive lines in each group is pressed.
  • the welding methods are connected in parallel, and the adjacent two sets of conductive wires are connected in series in an end-to-end manner.
  • different conductive layers are connected in series in an end-to-end manner.
  • the material of the circular magnetic conductive sheet may be a ferromagnetic material such as pure iron, ferrosilicon or an alloy of rare earth and iron.
  • the ferromagnetic components referred to in the following paragraphs can be used with the above-mentioned ferromagnetic materials.
  • the conductive wire in this embodiment is an enameled wire, and the enameled wire contains the outer insulating varnish having a diameter in line. ⁇ Using the enameled wire in the above diameter range can improve the power generation efficiency.
  • the number of conductive lines per layer of the toroidal conductive layer is generally not more than 20,000.
  • Each of the enameled wires in each of the conductive layers 31 may be connected in parallel with each other, and the parallel connection may be implemented in the following manner. Of course, the conductive connection of the ends of the wires may be performed only by pressing the fixed connection. It is also possible to perform soldering after pressurization and fixing to achieve a better conductive effect and prevent the occurrence of a resistive film at the conductive connection portion during use.
  • Each of the enamelled wires in each of the conductive layers 31 can also be connected in parallel and then in series.
  • the insulating layer 34 is disposed between the layers 32, and the insulating layer 34 has a thickness of less than 0.2 mm.
  • at least one elongated slit is disposed on the toroidal magnetic conductive bottom plate 33 and the circular magnetic conductive sheet, the width of the slit is less than 5 mm, and the length direction of the slit is guided.
  • the electrical layer 31 has the same axial direction. The slit is provided to effectively prevent the eddy current from being generated when the toroidal magnetic conductive bottom plate 33 and the circular magnetic conductive piece are cut by magnetic lines of force.
  • the coil unit 3 in the embodiment may be coated with an insulating layer 34 on the outer side surface of the annular magnetic conductive bottom plate 33, and then a conductive layer composed of a plurality of enameled wires is laid on the outer side of the insulating layer 34. Layer 31, and adjacent enameled wires are closely attached together. Then, an insulating layer is applied on the outer side of the conductive layer 31, and a circular magnetic conductive sheet is fastened on the outer side of the insulating layer, and then an outer layer of the outer surface of the circular magnetic conductive sheet is coated with an insulating layer.
  • Set a layer of conductive layer ⁇ apply a layer of insulating layer ⁇ buckle the circular magnetic conductive sheet, and cycle according to this, until the number of wire layers is set to meet the specified requirements.
  • the coil unit disposed on the magnetic permeable frame is inductively generated by the magnetic line cutting of the magnet on the rotor, and the magnetic field lines generated by the current can be enclosed in the generator yoke and the magnetic yoke and In the magnetic conductive layer of the coil unit, a magnetic line closed loop is formed, and the magnetic line closed loop and the magnetic field line of the magnet do not affect each other when passing through the magnetic conductive layer, so the rotor of the generator only needs to overcome the frictional force of the generator and overcome the coil unit.
  • the attraction force of the magnetic permeability layer and the force of magnetic leakage in the casing, under the motive drag, the rotation of the rotor causes the conductive wire to be induced by the magnetic flux to generate a current.
  • Figure 5 is a cross-sectional view of the second embodiment of the stator according to the present invention
  • Figure 6 is a cross-sectional view taken along line B-B of Figure 4
  • Figure 7 is a cross-sectional view taken along line b-b of Figure 4.
  • the conductive layer of the coil unit 3 is a U-shaped conductive layer
  • the U-shaped conductive layer comprises a plurality of U-shaped conductive sheets arranged in parallel.
  • the magnetic conductive layer of the coil unit 3 is a U-shaped magnetic conductive sheet disposed outside the U-shaped conductive sheet.
  • a plurality of conductive layers may be connected by wires 35 to realize series or parallel connection of the conductive layers.
  • At least one second slit is disposed on the U-shaped magnetic sheet, and a length direction of the second slit is perpendicular to a direction of the U-shaped conductive sheet in the U-shaped conductive layer.
  • FIG. 8 is a schematic structural view of a third embodiment of a stator according to the present invention.
  • FIG. 9 is a cross-sectional view taken along line CC of FIG.
  • the magnetic conductive layer of the ring unit 3 is a rectangular magnetic conductive sheet, and the rectangular conductive sheet and the rectangular magnetic conductive sheet are laminated in this order, and an insulating layer may be disposed between each of the rectangular conductive sheets and the rectangular magnetic conductive sheet.
  • the ends of the plurality of conductive layers may be connected by wires 35 to be connected in series or in parallel.
  • the main body of the magnetic permeable frame 1 in the embodiment has a disk shape, and the outer circular surface of the magnetic permeable frame 1 is uniformly provided with six slots, and the inner circumferential surface of the magnetic traverse frame 1 is uniformly opened and six external teeth are provided.
  • the six internal slots corresponding to the slots, the coil unit 3 is snapped into the internal slots.
  • the rectangular magnetic conductive sheet is provided with at least one third slit, and the longitudinal direction of the third slit coincides with the longitudinal direction of the rectangular magnetic conductive sheet.
  • the U-shaped conductive sheet or the rectangular conductive sheet may be an iron sheet or a ferrosilicon sheet, and the iron sheet or the ferrosilicon sheet is plated or coated with a material having good conductivity such as copper, silver or gold.
  • the conductive layer of the coil unit 3 is a rectangular solenoid; the magnetic conductive layer of the coil unit 3 is a second U-shaped magnetic conductive sheet disposed outside the rectangular solenoid.
  • FIG. 10 is a schematic structural view of a first type of generator according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a magnetic line of a rotor of the generator provided in FIG. 10
  • FIG. 12 is a schematic diagram of a magnetic line of a stator of the generator provided in FIG.
  • the generator provided in this embodiment is a DC generator, and the generator includes the stator provided by the first embodiment of the present invention.
  • the generator further includes a base 19, a casing 18, an end cover 16, and a magnetic body.
  • the yoke 10 the rotor, the drive shaft 13, the drive wheel 14, and the fan 15.
  • the casing 18 is disposed on the frame 19, the yoke 10 is cylindrical, the end cap 16 is annular, the yoke 10 and the end cap 16 are disposed in the casing 18, and the two disc-shaped end caps 16 are respectively disposed
  • the two end caps 16 and the yoke 10 are formed by stacking a plurality of magnetic conductive sheets, and the two ends of the transmission shaft 13 are respectively connected to the two end covers 16 through bearings
  • the rotor includes Two guide disks and four magnets 4, two guide disks are respectively disposed on the drive shaft 13 near the inner sides of the two end covers 16, four magnets 4 are disposed on the guide disks, and two magnets 4 are disposed on each of the guide disks
  • the drive shaft 13 is slidably connected to the end cover 16.
  • One end of the drive shaft 13 extends outside the housing 18. The end is fixed with a fan 15. The other end of the drive shaft 13 is located inside the housing 18, and the end is fixed with input power.
  • Drive wheel 14 The same magnetic N-plane of the magnet 4 faces the coil unit 3 of the stator, and the magnetic shield 1 of the stator is fixedly integrated with the yoke 10.
  • the DC generator of the above structure is used to generate four closed magnetic circuits.
  • the magnetic lines of the magnets 4 on the rotor start from the N pole, and enter the magnetic shoes through the gap between the magnets 4 and the magnetic shoes. Then enters the coil unit 3, passes through the coil unit 3, enters the magnetic shield 1, passes through the yoke 3 into the end cover 16, and enters the S pole of the magnet 4 through the air between the end cover 16 and the conductive disk to form a rotor.
  • the magnetic field lines 20 generated by the current in the coil unit 3 are concentrated in the toroidal magnetic sheets in the magnetic field 1 and the coil unit 3, and the magnetic field lines 20 are formed in the magnetic field 1 and the toroidal magnetic sheet.
  • the closed loops of the above two magnetic lines of force do not affect each other, so the rotor only needs to overcome its own frictional force, overcome the attraction force to the magnetic conductive layer on the stator coil unit 3 and the magnetic leakage force in the casing, and the motive machine or drag motor drag
  • the rotor rotates, and the coil magnetic circuit closes the generator to generate current.
  • the coil unit disposed on the magnetically permeable frame is inductively generated by the magnetic line cutting of the magnet on the rotor, and the magnetic field lines generated by the current can be enclosed in the lead of the generator yoke, the magnetic yoke and the coil unit.
  • a magnetic line closed loop is formed, and the magnetic line closed loop and the magnetic line of the magnet do not affect each other when passing through the magnetic conductive sheet, so that the rotor of the generator only needs to overcome the frictional force of the generator and overcome the magnetic permeability on the stator coil unit.
  • the attraction of the layer and the force of magnetic leakage inside the casing, under the motive drag, the rotation of the rotor causes the conductive wire to be induced by the magnetic line to generate current.
  • FIG. 13 is a schematic structural view of a second generator according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of a magnetic field of a rotor of the generator provided in FIG. 13
  • FIG. 15 is a schematic diagram of a magnetic field of a stator of the generator provided in FIG.
  • the generator provided in this embodiment is an alternator, and the generator includes the stator provided by the first embodiment of the present invention, and the generator further includes a base 19, a casing 18, an end cover 16, and a magnetic body.
  • the casing 18 is disposed on the frame 19, the yoke 10 is cylindrical, the end cap 16 is annular, the yoke 10 and the end cap 16 are disposed in the casing 18, and the two disc-shaped end caps 16 are respectively disposed
  • the two end caps 16 and the yoke 10 are formed by stacking a plurality of magnetic conductive sheets, and the two ends of the transmission shaft 13 are respectively connected to the two end covers 16 through bearings
  • the rotor includes Two guide disks and four magnets 4, two guide disks are respectively disposed on the drive shaft 13 near the inner sides of the two end covers 16, four magnets 4 are disposed on the guide disks, and two magnets 4 are disposed on each of the guide disks , wherein the N poles of the two magnets 4 face the coil unit 3 of the stator, and the other two The S-stage of the magnets 4 faces the coil unit 3 of the stator, and the magnetic shield 1 of the stator is fixedly integrated with the yoke 10.
  • the alternator of the above structure generates two closed magnetic circuits, wherein the magnetic lines of the two magnets 4 start from the N pole and enter the magnetic field through the gap between the magnet 4 and the magnetic boot.
  • the shoe which enters the coil unit 3, passes through the coil unit 3 and enters the magnetic shield 1 and enters the S poles of the other two magnets 4 through the drive shaft 13 and the other coil unit 3.
  • the magnetic lines of the other two magnets 4 start from the N pole, enter the lead disk, and pass through the drive shaft 13 into the S poles of the first two magnets 4, forming a closed loop of magnetic lines of the magnets 4 on the rotor.
  • the magnetic field lines 20 generated by the current in the coil unit 3 are concentrated in the toroidal magnetic sheet in the magnetic field 1 and the coil unit 3, and the magnetic field lines 20 are formed in the magnetic field 1 and the toroidal magnetic sheet.
  • the closed loops of the above two magnetic lines of force do not affect each other, so the rotor only needs to overcome its own frictional force, overcome the attraction force to the magnetic permeability layer on the stator coil unit and the magnetic flux leakage in the casing, and the original power machine or the drag motor drags
  • the rotor rotates, and the coil magnetic circuit closes the generator to generate current.
  • FIG. 16 is a schematic structural view of a third type of generator according to an embodiment of the present invention
  • FIG. 17 is a schematic diagram of a magnetic line of a rotor of the generator provided in FIG. 16
  • FIG. 18 is a schematic diagram of a magnetic line of a stator of the generator provided in FIG.
  • the generator provided in this embodiment is a DC generator, and the generator includes the stator provided by the second embodiment of the present invention.
  • the generator further includes a base 19, a casing 18, an end cover 16, and a magnetic body.
  • the other structure and connection relationship of the generator are the same as those of the above embodiment.
  • the DC generator of the above structure is used, and four closed magnetic circuits are generated therein.
  • the magnetic lines of the magnet 4 start from the N pole, enter the magnetic boot through the gap between the magnet 4 and the magnetic guide, and then enter.
  • the coil unit 3 passes through the coil unit 3 and enters the magnetic shield 1 , enters the magnetic disk through the yoke 10 and the end cover 16 , and enters the S stage of the magnet 4 through the conductive disk to form a closed circuit of the magnetic lines of the magnet 4 on the rotor. .
  • the magnetic field lines 20 generated by the current in the coil unit 3 are concentrated on the magnetic shield.
  • the magnetic field lines 20 form a closed loop of the magnetic field lines 20 in the magnetic field 1 and the toroidal magnetic sheet.
  • the closed loops of the above two magnetic lines of force do not affect each other, so the rotor only needs to overcome its own frictional force, overcome the attraction force to the magnetic conductive layer on the stator coil unit 3 and the magnetic leakage force in the casing, and the motive machine or drag motor drag
  • the rotor rotates, and the coil magnetic circuit closes the generator to generate current.
  • the N poles of the two magnets 4 are disposed toward the coil unit 3, and the S poles of the other two magnets 4 are disposed toward the coil unit 3, and the generator is converted into an alternator.
  • the other structure of the alternator and the magnetic line circuit are the same as those of the above embodiment, and are not described herein again.
  • FIG. 19 is a schematic structural view of a fourth type of generator according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a magnetic line of a rotor of the generator provided in FIG. 19; and
  • FIG. 21 is a schematic diagram of a magnetic line of a stator of the generator provided in FIG.
  • the generator provided in this embodiment is a DC generator, and the generator includes the stator provided by the third embodiment of the present invention.
  • the generator further includes a base 19, a casing 18, an end cover 16, and a magnetic body.
  • the casing 18 is disposed on the frame 19, the yoke 10 is cylindrical, the end cap 16 is annular, the yoke 10 and the end cap 16 are disposed in the casing 18, and the two disc-shaped end caps 16 are respectively disposed At both ends of the cylindrical yoke 10, the two end covers 16 and the yoke 10 are formed by stacking a plurality of magnetic conductive sheets, and the two ends of the drive shaft 13 are respectively connected to the two end covers 16 by bearings.
  • the transmission shaft 13 is fixedly sleeved with a magnetic conductive barrel, and the rotor comprises two magnets 4. Two magnets 4 are disposed on the outer wall of the magnetic conductive barrel, and each of the conductive disks is provided with two magnets 4, a transmission shaft 13 and an end cover. 16 Sliding, one end of the transmission shaft 13 extends outside the casing 18, and the end is fixed with a fan 15, and the other end of the transmission shaft 13 is disposed inside the casing 18, and the end is fixed with a transmission wheel 14 for inputting power.
  • the same magnetic properties of the magnet 4 face the coil unit 3 of the stator, and the magnetic shield 1 of the stator is fixedly integrated with the yoke 10.
  • the DC generator of the above structure is used, and four closed magnetic circuits are generated therein.
  • the magnetic lines of the magnets 4 on the rotor start from the N pole, and enter the magnetic conductive shoes through the gap between the magnet 4 and the magnetic guide shoe. , enters the coil unit 3, passes through the coil unit 3, enters the magnetic shield 1 , passes through the yoke 3 and enters the end cover 16 , and then enters the magnetic conductive barrel through the air between the end cover 16 and the magnetic conductive barrel, and then passes through the guide.
  • the magnetic barrel enters the S pole of the magnet 4, forming a closed loop of the magnetic field lines of the magnet 4 on the rotor.
  • the magnetic field lines 20 generated by the current in the coil unit 3 are concentrated on the magnetic shield.
  • the magnetic field line 20 forms a closed loop of the magnetic field lines 20 in the magnetic field 1 and the toroidal magnetic sheet.
  • the closed loops of the above two magnetic lines of force do not affect each other, so the rotor only needs to overcome its own friction force, overcome the attraction force to the magnetic conductive plate on the stator coil unit and the magnetic leakage force in the casing, and the original power machine or the drag motor drags The rotor rotates, and the coil magnetic circuit closes the generator to generate current.
  • FIG. 22 is a schematic structural view of a fifth type of generator according to an embodiment of the present invention
  • FIG. 23 is a schematic diagram of a magnetic line of a rotor of the generator provided in FIG. 22
  • FIG. 24 is a schematic diagram of a magnetic line of a stator of the generator provided in FIG.
  • the generator provided in this embodiment is an alternator, and the specific structure of the generator is basically the same as that of the generator in FIG. 19, except that the N pole of one of the magnets 4 faces the coil unit. 3, the S pole of the other magnet 4 faces the coil unit 3.
  • the prime mover drags the rotor to rotate, and the magnetic wire of the magnet 4 cuts the coil unit 3 of the induction stator to generate current, due to the conductive wire in the conductive layer of the coil unit 3 or
  • the conductive sheet is equivalent to a spiral coil, and the magnetic field lines generated by the current around the coil are concentrated inside the coil, and the magnetic lines of force are easily passed through a place with a high magnetic permeability, and the magnetic permeability of the magnetic conductive sheet and the silicon steel sheet is high, and the magnetic conductive frame 1 is guided.
  • the magnetic disk is composed, and the coil unit 3 is wound around the outer side of the magnetic conductive frame 1.
  • the magnetic field lines generated by the induced current of the coil unit are concentrated in the magnetic conductive frame 1 and easily passed through the magnetic conductive frame 1, and the magnetic field lines 20 on the stator are Enclosed in the magnetic trajectory 1 to form a loop, does not affect the rotational motion of the rotor, and the rotation of the rotor is only affected by the internal magnetic flux leakage resistance of the generator, and this resistance is only a small value for the power input by the primary power machine, so the embodiment of the present invention provides
  • the stator and generator have high working efficiency, high power conversion efficiency, and low energy consumption during generator operation, which solves the present problem. The low efficiency of the generator used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种定子及发电机,定子包括导磁架(1)、导磁靴(2)和至少一个线圈单元(3)。所述导磁架(1)的主体为圆环形或中空正多边形,沿所述导磁架(1)的周向上均匀开设有至少一个齿槽(11)。所述线圈单元(3)设置在齿槽(11)上,所述导磁靴(2)设置在所述导磁架(1)的两侧且将所述线圈单元(3)包覆在所述导磁靴(2)内,所述线圈单元(3)包括依次层叠导电层(31)和导磁层(32)。该定子和发电机能够减小转子的阻力、提高发电机的能量转换效率。

Description

定子及发电机 技术领域 本发明涉及机电技术领域, 尤其涉及一种定子及发电机。 背景技术
目前, 现有的发电机通常包括转子和定子, 通过原动力机带动转子转动, 转子上的磁体磁切割定子上的磁感应线圈, 并在磁感应线圈中产生电流, 实 现机械能转换为电能。
但是, 磁感应线圈的电流产生的感应磁场会阻碍转子的旋转, 转子转动 时需要克服磁感应线圈的磁场作用力, 因而导致发电机能量转换的效率低。 发明内容
本发明提供一种定子及发电机, 用以解决现有技术中发电机能量转换效 率低的问题。
本发明提供一种定子, 包括导磁架、 导磁靴和至少一个线圈单元; 所述 导磁架为圓环形或中空正多边形, 沿所述导磁架的周向上均匀开设有至少一 个齿槽;
所述线圈单元设置在所述齿槽上; 所述导磁靴设置在所述导磁架的两侧 且将所述线圈单元包覆在所述导磁靴内;
所述线圈单元包括依次层叠导电层和导磁层。
本发明还提供一种发电机, 包括转子和如上所述的定子, 所述转子包 括转动轴;
所述转动轴上同轴固定设置有至少一个导磁盘, 所述导磁盘上固定设 置有磁体, 所述磁体的至少一个磁极朝向所述定子的线圈单元设置。
本发明提供的定子及发电机, 设置在导磁架上的线圈单元被转子上磁 体的磁力线切割感应产生电流, 该电流产生的磁场磁力线可以封闭在发电 机磁轭、 导磁架及线圈单元的导磁层中, 形成磁力线封闭回路, 此磁力线 封闭回路与磁体的磁力线在导磁层中通过时相互不影响, 因此该发电机的 转子只需克服自身摩擦力、 克服对定子线圈单元上的导磁层的吸引力和机 壳内漏磁的作用力, 在原动力拖动下, 转子旋转使导电线被磁力线切割感 应产生电流, 可以提高发电机的能量转换效率。 附图说明
图 1为本发明提供的定子第一实施例的结构示意图;
图 2为沿图 1中 A-A线的剖视图;
图 3为沿图 1中 a-a线的剖视图;
图 4为图 1中的线圈单元的结构示意图;
图 5为本发明提供的定子第二实施例的结构示意图;
图 6为沿图 4中 B-B线的剖视图;
图 7为沿图 4中 b-b线的剖视图;
图 8为本发明提供的定子第三实施例的结构示意图;
图 9为沿图 8中 C-C线的剖视图;
图 10为本发明实施例提供的第一种发电机的结构示意图;
图 11为图 10提供的发电机的转子磁力线示意图;
图 12为图 10提供的发电机的定子磁力线示意图;
图 13为本发明实施例提供的第二种发电机的结构示意图;
图 14为图 13提供的发电机的转子磁力线示意图;
图 15为图 13提供的发电机的定子磁力线示意图;
图 16为本发明实施例提供的第三种发电机的结构示意图;
图 17为图 16提供的发电机的转子磁力线示意图;
图 18为图 16提供的发电机的定子磁力线示意图;
图 19为本发明实施例提供的第四种发电机的结构示意图;
图 20为图 19提供的发电机的转子磁力线示意图;
图 21为图 19提供的发电机的定子磁力线示意图;
图 22为本发明实施例提供的第五种发电机的结构示意图;
图 23为图 22提供的发电机的转子磁力线示意图;
图 24为图 22提供的发电机的定子磁力线示意图。 具体实施方式
图 1为本发明提供的定子第一实施例的结构示意图;图 2为沿图 1中 A-A 线的剖视图; 图 3为沿图 1中 a-a线的剖视图; 图 4为图 1中的线圈单元的 结构示意图。
如图 1和 2所示, 本实施例提供的定子包括导磁架 1、 导磁靴 2和至少 一个线圈单元 3。 优选地, 导磁架 1 的主体为圓环形。 当然, 导磁架也可以 中空正多边形, 例如正六边形或正八边形等, 相应地, 导磁架的中空部分可 以为正六边形孔或正八边形孔等。
导磁架 1的主体为圓环形时, 沿导磁架 1的圓周方向上均匀开设有至少 一个齿槽 11 ; 线圈单元 3设置在齿槽 11上; 导磁靴 2设置在导磁架 1的两 侧且将线圈单元 3包覆在导磁靴 2内;线圈单元 3包括依次层叠导电层 31和 导磁层 32。 线圈单元 3的数量与齿槽 11的数量相同, 齿槽 11的数量可以为 六个, 对应的, 线圈单元 3的数量也为六个, 齿槽 11和线圈单元 3的数量也 可以为其他个数, 在此不作限定。
具体地, 导磁架 1可以由至少一层以上圓环形导磁片层叠而成, 圓环形 导磁片的外圓周可以均匀开设有六个矩形槽, 多个圓环形导磁片上的矩形槽 沿圓环形导磁片轴线方向对应,形成六个齿槽 11和六个外凸齿。实际应用中, 导磁架 1的外凸齿的磁导截面总和大于或等于转子上所有磁体产生的磁场磁 力线所需要通过的磁导面积, 导磁架 1不含外凸齿部分的环状导磁截面大于 或等于所有线圈单元 3的电流产生的磁场磁力线和转子上所有磁体产生的磁 场磁力线所需要通过的磁导面积; 其中圓环形导磁片可以由多个硅铁片层叠 而成, 每个硅钢片的厚度大于 0.1毫米。
如图 3所示, 导磁靴 2包括依次层叠的导磁层和绝缘层; 导磁靴 2与线 圈单元 3对应位置的横截面为等腰梯形, 横截面积为等腰梯形部分的导磁靴 2的内表面与线圈单元 3接触。 导磁层可以釆用硅铁片等导磁材料层叠, 硅 铁片的厚度大于 0.01毫米, 硅铁片上设置有宽度大于 0.001毫米的缝隙, 导 磁层之间设置有绝缘层, 也就是导磁靴 2由一层绝缘层、 多片片硅钢片层层 叠加、 最后一层为绝缘层, 形成导磁靴, 其横截面为等腰梯形或扇形, 可以 螺钉将导磁靴 2固定在导磁架 1上。
如图 4所示, 本实施例中的线圈单元 3的导电层 31为圓环形导电层, 圓环形导电层为沿圓环形导磁底板 33 圓周方向并排设置的多根具有绝缘 层的导电线组成或沿圓环形导磁底板 33 圓周方向平行缠绕的多根具有绝 缘层的导电线组成。 导磁层 32为套设在圓环形导电层 31外侧的圓环形导 磁片。 另外, 导电层 31和导磁层 32之间还可以设置有绝缘层。
该圓环形导磁底板 33外侧同轴套装有多层圓环形的导电层 31 (为了 便于制图, 图 4中仅详细示出了一层圓环形导电层, 其余层圓环形导电层 均以图 4中的虚线表示, 其实际结构应该是多层圓环形导电层同轴插套于 一体) 。 其中, 圓环形导电层包括沿所述圓环形导磁底板圓周方向并排设 置的多根具有绝缘层的导电线组成的圓环形导电层, 圓环形导电层外侧套 装有圓环形导磁片。 每层中的导电线的相同端部釆用上述实施例的压焊方 式进行并联, 同时, 该实施例中每层导电线也可均分为多组, 每组内的各 条导电线以压焊方式进行并联, 并将相邻两组导电线以首尾相连的方式进 行串联。 还有, 该实施例中, 不同的导电层之间以首尾相连的方式进行串 联。
圓形导磁片材料可选用纯铁、 硅铁或者稀土与铁的合金等铁磁材料。 本文下述内容中所涉及到的导磁部件均可釆用上述几种铁磁材料。
本实施例中的导电线为漆包线, 该漆包线含外层绝缘漆的直径在 线。 釆用上述直径范围内的漆包线可以提高发电效率。 每层圓环形导电层 的导电线的根数一般不超过 20000根。 每层导电层 31中的各根漆包线可 以是相互并联的, 其并联可釆用下述方式实现, 当然, 将导线的端部进行 导电连接也可仅仅进行加压固定连接是其端部相连, 也可以在加压固定后 再进行焊接, 以达到更好的导电效果, 防止在使用过程中在导电连接部出 现电阻膜。 每层导电层 31中的各根漆包线还可以釆用先并联再串联的方 式连接。
优选地, 为了保证导电层 31与圓环形导磁底板 33及圓环形导磁片之 间具有良好的绝缘效果, 在导电层 31与圓环形导磁底板 33之间, 及导电 层 31与导磁层 32之间均设置了圓环形的绝缘层 34 , 该绝缘层 34的厚度 小于 0.2mm。 优选地, 在圓环形导磁底板 33及圓环形导磁片上均设置了 至少一条长条形的缝隙, 该缝隙的宽度小于 5mm, 且缝隙的长度方向与导 电层 31轴向方向相同。 设置该缝隙有效防止圓环形导磁底板 33及圓环形 形导磁片被磁力线切割时产生涡流。
本实施例中的线圈单元 3在制作时, 可以先在圓环导磁底板 33的外 侧面上涂刷一层绝缘层 34 , 然后在绝缘层 34外侧平布一层由多根漆包线 组成的导电层 31 , 且相邻漆包线紧密贴靠在一起。 之后在导电层 31外侧 涂刷一层绝缘层, 并在该绝缘层的外侧扣装一个圓环形导磁片, 随后在圓 环形导磁片的外侧按照上述步骤顺序, 即涂刷一层绝缘层→设置一层导电 层→涂刷一层绝缘层→扣装圓环形导磁片, 依此进行循环, 直至设置的导 线层的数量达到规定要求。
本实施例提供的定子, 在实际应用中, 设置在导磁架上的线圈单元被 转子上磁体的磁力线切割感应产生电流, 该电流产生的磁场磁力线可以封 闭在发电机磁轭、 导磁架及线圈单元的导磁层中, 形成磁力线封闭回路, 此磁力线封闭回路与磁体的磁力线在导磁层中通过时相互不影响, 因此该 发电机的转子只需克服自身摩擦力、 克服线圈单元上的导磁层的吸引力和 机壳内漏磁的作用力, 在原动力拖动下, 转子旋转使导电线被磁力线切割 感应产生电流。
图 5为本发明提供的定子第二实施例的结构示意图;图 6为沿图 4中 B-B 线的剖视图; 图 7为沿图 4中 b-b线的剖视图。 3的具体结构, 本实施例中, 线圈单元 3的导电层为 U形导电层, U形导电 层包括多个 U形导电片平行排列而成。
线圈单元 3的导磁层为设置在 U形导电片的外侧的 U形导磁片。 多个导电层之间可以通过导线 35连接, 实现导电层的串联或并联。 U形 导磁片上均设置有至少一条第二缝隙,第二缝隙的长度方向与所述 U形导 电层中 U形导电片的走向垂直。
本实施例提供的技术效果与上述实施例相同, 在此不再赘述。
图 8为本发明提供的定子第三实施例的结构示意图;图 9为沿图 8中 C-C 线的剖视图。 元 3的具体结构, 本实施例中, 线圈单元 3的导电层为长方形导电片, 线 圈单元 3的导磁层为长方形导磁片, 长方形导电片和长方形导磁片依次层 叠设置, 还可以在每个长方形导电片和长方形导磁片之间设置绝缘层。 多 个导电层的首尾之间可以通过导线 35连接, 实现串联或并联。
具体地, 本实施例中的导磁架 1的主体为圓盘形, 导磁架 1外圓面均 匀开设有六个齿槽, 导磁架 1的内圓周面上均匀开设与六个外齿槽对应的 六个内齿槽, 线圈单元 3卡设在内齿槽中。
长方形导磁片上设置有至少一条第三缝隙, 第三缝隙的长度方向与所 述长方形导磁片的长度方向一致。
本实施例提供的技术效果与上述实施例相同, 在此不再赘述。
在上述实施中, U形导电片或长方形导电片可以为铁片或硅铁片, 并在 铁片或硅铁片上镀覆或包覆铜、 银、 金等导电性较好的材料。
在上述实施例的基础上, 线圈单元 3的导电层为矩形螺线管; 线圈单 元 3的导磁层为设置在矩形螺线管的外侧的第二 U形导磁片。
图 10为本发明实施例提供的第一种发电机的结构示意图; 图 11为图 10 提供的发电机的转子磁力线示意图; 图 12为图 10提供的发电机的定子磁力 线示意图。
如图 10所示, 本实施例提供的发电机为直流发电机, 该发电机包括本发 明第一实施例提供的定子, 该发电机还包括机座 19、 机壳 18、 端盖 16、 磁 轭 10、 转子、 传动轴 13、 传动轮 14和风扇 15。 机壳 18设置在机座 19上, 磁轭 10为圓筒形, 端盖 16为圓环形, 磁轭 10和端盖 16设置在机壳 18内, 两个圓盘形的端盖 16分别设置在圓筒形磁轭 10的两端,两个端盖 16以及磁 轭 10具有多个导磁片堆叠固接而成, 传动轴 13两端通过轴承分别于两个端 盖 16连接, 转子包括两个导磁盘和四个磁铁 4, 两个导磁盘分别设置在传动 轴 13上靠近两个端盖 16内侧, 四个磁体 4设置在导磁盘上, 每个导磁盘上 设置有两个磁体 4, 传动轴 13与端盖 16滑接, 传动轴 13的一端伸出壳体 18 外部, 该端固接有风扇 15 , 传动轴 13另一端位于壳体 18内部, 该端固接有 输入动力的传动轮 14。 磁体 4的同磁性 N极面朝向定子的线圈单元 3 , 定子 的导磁架 1与磁轭 10固接为一体。
传动轴 13转动时 , 带动导磁盘和磁体 4转动 , 使得线圈单元 3被磁体 4 的磁力线切割, 产生感应电流。 如图 11所示,釆用上述结构的直流发电机,其内产生四条封闭的磁路, 转子上的磁体 4的磁力线从 N极出发,经磁体 4与导磁靴之间空隙进入导 磁靴, 再进入线圈单元 3 , 通过线圈单元 3后进入导磁架 1 , 经过磁轭 3 进入端盖 16, 再通过端盖 16与导磁盘之间的空气进入磁体 4的 S极中, 形成了转子上磁体 4的磁力线的一个封闭回路。
如图 12所示, 线圈单元 3中电流产生的磁场磁力线 20集中在导磁架 1及线圈单元 3中圓环形导磁片内,磁场磁力线 20在导磁架 1及圓环形导 磁片内形成磁场磁力线 20的封闭回路。 上述两个磁力线的封闭回路互不 影响, 因此转子只需克服自身摩擦力、 克服对定子线圈单元 3上导磁层的 吸引力和机壳内漏磁的作用力, 原动力机或拖动电机拖动转子旋转, 进而 线圈磁路封闭发电机就可产生电流。
本实施例提供的发电机, 设置在导磁架上的线圈单元被转子上磁体的 磁力线切割感应产生电流, 该电流产生的磁场磁力线可以封闭在发电机磁 轭、 导磁架及线圈单元的导磁片中, 形成磁力线封闭回路, 此磁力线封闭 回路与磁体的磁力线在导磁片中通过时相互不影响, 因此该发电机的转子 只需克服自身摩擦力、 克服对定子线圈单元上的导磁层的吸引力和机壳内 漏磁的作用力, 在原动力拖动下, 转子旋转使导电线被磁力线切割感应产 生电流。
图 13为本发明实施例提供的第二种发电机的结构示意图; 图 14为图 13 提供的发电机的转子磁力线示意图; 图 15为图 13提供的发电机的定子磁力 线示意图。
如图 13所示, 本实施例提供的发电机为交流发电机, 该发电机包括本发 明第一实施例提供的定子, 该发电机还包括机座 19、 机壳 18、 端盖 16、 磁 轭 10、 转子、 传动轴 13、 传动轮 14和风扇 15。 机壳 18设置在机座 19上, 磁轭 10为圓筒形, 端盖 16为圓环形, 磁轭 10和端盖 16设置在机壳 18内, 两个圓盘形的端盖 16分别设置在圓筒形磁轭 10的两端,两个端盖 16以及磁 轭 10具有多个导磁片堆叠固接而成, 传动轴 13两端通过轴承分别于两个端 盖 16连接, 转子包括两个导磁盘和四个磁铁 4, 两个导磁盘分别设置在传动 轴 13上靠近两个端盖 16内侧, 四个磁体 4设置在导磁盘上, 每个导磁盘上 设置有两个磁体 4, 其中两个磁铁 4的 N极朝向定子的线圈单元 3 , 另外两 个磁铁 4的 S级朝向定子的线圈单元 3 , 定子的导磁架 1与磁轭 10固接为一 体。
传动轴 13转动时 , 带动导磁盘和磁体 4转动 , 使得线圈单元 3被磁体 4 的磁力线切割, 产生感应电流。
如图 14所示,釆用上述结构的交流发电机,其内产生两条封闭的磁路, 其中两个磁体 4的磁力线从 N极出发,经磁体 4与导磁靴之间空隙进入导 磁靴, 再进入线圈单元 3 , 通过线圈单元 3后进入导磁架 1 , 通过传动轴 13及另一个线圈单元 3进入另外两个磁体 4的 S极。另外两个磁体 4的磁 力线从 N极出发, 进入导磁盘 , 再穿过传动轴 13进入前两个磁体 4的 S 极中, 形成了转子上磁体 4的磁力线的封闭回路。
如图 15所示, 线圈单元 3中电流产生的磁场磁力线 20集中在导磁架 1及线圈单元 3中圓环形导磁片内,磁场磁力线 20在导磁架 1及圓环形导 磁片内形成磁场磁力线 20的封闭回路。 上述两个磁力线的封闭回路互不 影响, 因此转子只需克服自身摩擦力、 克服对定子线圈单元上导磁层的吸 引力和机壳内漏磁的作用力, 原动力机或拖动电机拖动转子旋转, 进而线 圈磁路封闭发电机就可产生电流。
图 16为本发明实施例提供的第三种发电机的结构示意图; 图 17为图 16 提供的发电机的转子磁力线示意图; 图 18为图 16提供的发电机的定子磁力 线示意图。
如图 16所示, 本实施例提供的发电机为直流发电机, 该发电机包括本发 明第二实施例提供的定子, 该发电机还包括机座 19、 机壳 18、 端盖 16、 磁 轭 10、 转子、 传动轴 13、 传动轮 14和风扇 15。 该发电机的其他结构及连接 关系与上述实施例相同, 传动轴 13转动时, 带动导磁盘和磁体 4转动, 使得 线圈单元 3被磁体 4的磁力线切割, 产生感应电流。
如图 17所示,釆用上述结构的直流发电机,其内产生四条封闭的磁路, 磁体 4的磁力线从 N极出发, 经磁体 4与导磁靴之间空隙进入导磁靴, 再 进入线圈单元 3 , 通过线圈单元 3后进入导磁架 1 , 通过磁轭 10及端盖 16 进入导磁盘中, 再通过导磁盘进入磁体 4的 S级中, 形成了转子上磁体 4 磁力线的封闭回路。
如图 18所示, 线圈单元 3中电流产生的磁场磁力线 20集中在导磁架 1及线圈单元 3中圓环形导磁片内,磁场磁力线 20在导磁架 1及圓环形导 磁片内形成磁场磁力线 20的封闭回路。 上述两个磁力线的封闭回路互不 影响, 因此转子只需克服自身摩擦力、 克服对定子线圈单元 3上导磁层的 吸引力和机壳内漏磁的作用力, 原动力机或拖动电机拖动转子旋转, 进而 线圈磁路封闭发电机就可产生电流。
在该实施例的基础上,将其中两个磁体 4的 N极朝向线圈单元 3设置, 将另外两个磁体 4的 S极朝向线圈单元 3设置, 则该发电机就转变为了交 流发电机, 该交流发电机的其他结构和磁力线回路与上述实施例相同, 在 此不再赘述。
图 19为本发明实施例提供的第四种发电机的结构示意图; 图 20为图 19 提供的发电机的转子磁力线示意图; 图 21为图 19提供的发电机的定子磁力 线示意图。
如图 19所示, 本实施例提供的发电机为直流发电机, 该发电机包括本发 明第三实施例提供的定子, 该发电机还包括机座 19、 机壳 18、 端盖 16、 磁 轭 10、 转子、 传动轴 13、 传动轮 14和风扇 15。 机壳 18设置在机座 19上, 磁轭 10为圓筒形, 端盖 16为圓环形, 磁轭 10和端盖 16设置在机壳 18内, 两个圓盘形的端盖 16分别设置在圓筒形磁轭 10的两端,两个端盖 16以及磁 轭 10具有多个导磁片堆叠固接而成, 传动轴 13两端通过轴承分别于两个端 盖 16连接。
传动轴 13上固定套接有导磁桶, 转子包括两个磁铁 4, 两个磁体 4设置 在导磁桶的外壁上, 每个导磁盘上设置有两个磁体 4, 传动轴 13与端盖 16 滑接, 传动轴 13的一端伸出壳体 18外部, 该端固接有风扇 15 , 传动轴 13 另一端位置壳体 18内部, 该端固接有输入动力的传动轮 14。 磁体 4的同磁 性 N极面朝向定子的线圈单元 3 , 定子的导磁架 1与磁轭 10固接为一体。
传动轴 13转动时 , 带动导磁盘和磁体 4转动 , 使得线圈单元 3被磁体 4 的磁力线切割, 产生感应电流。
如图 20所示,釆用上述结构的直流发电机,其内产生四条封闭的磁路, 转子上的磁体 4的磁力线从 N极出发,经磁体 4与导磁靴之间空隙进入导 磁靴, 再进入线圈单元 3 , 通过线圈单元 3后进入导磁架 1 , 经过磁轭 3 进入端盖 16, 再通过端盖 16与导磁桶之间的空气进入导磁桶, 再通过导 磁桶进入磁体 4的 S极中, 形成了转子上磁体 4磁力线的一个封闭回路。 如图 21所示, 线圈单元 3中电流产生的磁场磁力线 20集中在导磁架
1及线圈单元 3中圓环形导磁片内,磁场磁力线 20在导磁架 1及圓环形导 磁片内形成磁场磁力线 20的封闭回路。 上述两个磁力线的封闭回路互不 影响, 因此转子只需克服自身摩擦力、 克服对定子线圈单元上导磁板的吸 引力和机壳内漏磁的作用力, 原动力机或拖动电机拖动转子旋转, 进而线 圈磁路封闭发电机就可产生电流。
图 22为本发明实施例提供的第五种发电机的结构示意图; 图 23为图 22 提供的发电机的转子磁力线示意图; 图 24为图 22提供的发电机的定子磁力 线示意图。
如图 22〜24所示, 本实施例提供的发电机为交流发电机, 该发电机具体 结构与图 19中的发电机结构基本相同, 不同点在于, 其中一个磁体 4的 N 极朝向线圈单元 3 , 另一个磁体 4的 S极朝向线圈单元 3。
综上所述, 本发明实施例提供的定子及发电机在工作时, 原动力机拖动 转子旋转, 磁体 4磁力线切割感应定子的线圈单元 3产生电流, 由于线圈单 元 3导电层中的导电线或导电片相当于螺绕线圈, 螺绕线圈电流产生的磁场 磁力线集中在线圈内部, 且磁力线较容易从导磁率高地方通过, 而导磁片及 硅钢片磁导率高, 导磁架 1由导磁片组成, 线圈单元 3环绕在导磁架 1的外 部, 那么线圈单元的感应电流产生的磁场磁力线集中在导磁架 1 内并 ^艮容易 在导磁架 1内通过, 定子上磁力线 20就封闭在导磁架 1内形成回路, 不影响 转子旋转运动, 转子旋转只受到发电机内部漏磁作用阻力影响, 而这个阻力 对于原动力机所输入的动力只是较小值, 所以本发明实施例提供的定子及发 电机工作效率高, 电能转换效率高, 发电机工作时能耗小, 解决了现在所使 用的发电机工作效率低的问题。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要求 书
1、 一种定子, 其特征在于, 包括导磁架、 导磁靴和至少一个线圈单元; 所述导磁架的主体为圓环形或中空正多边形, 沿所述导磁架的周向上均匀开 设有至少一个齿槽;
所述线圈单元设置在所述齿槽上; 所述导磁靴设置在所述导磁架的两侧 且将所述线圈单元包覆在所述导磁靴内;
所述线圈单元包括依次层叠导电层和导磁层。
2、 根据权利要求 1 所述的定子, 其特征在于, 所述导电层为圓环形导 电层, 所述圓环形导电层为沿圓环形导磁底板圓周方向并排设置的多根具 有绝缘层的导电线组成或沿圓环形导磁底板圓周方向平行缠绕的多根具 有绝缘层的导电线组成;
所述导磁层为套设在所述圓环形导电层外侧的圓环形导磁片。
3、 根据权利要求 1所述的定子, 其特征在于, 所述导电层为 U形导电 层, 所述 U形导电层包括多个 U形导电片平行排列而成;
所述导磁层为设置在所述 U形导电片的外侧的 U形导磁片。
4、 根据权利要求 1所述的定子, 其特征在于, 所述导电层为长方形 导电片;
所述导磁层为设置在所述长方形导电片的外侧的长方形导磁片。
5、 根据权利要求 1所述的定子, 其特征在于, 所述导电层为矩形螺 线管; 所述导磁层为所述导电层外侧设置的 U形导磁片。
6、 根据权利要求 2所述的定子, 其特征在于, 每个圓环形导电层的 的导电线依次均分为多组导线组, 所述导线组中各条导电线相互并联, 每 两组相邻所述导线组相互并联或串联。
7、 根据权利要求 1〜6任一项所述的定子, 其特征在于, 相邻的导电 层与导磁层之间设置有绝缘层。
8、 根据权利要求 1〜6任一项所述的定子, 其特征在于, 所述导磁靴 包括依次层叠的导磁层和绝缘层; 所述导磁靴与所述线圈单元对应位置的 横截面为等腰梯形, 横截面积为等腰梯形部分的导磁靴的内表面与所述线 圈单元接触。
9、 根据权利要求 1〜6任一项所述的定子, 其特征在于, 所述齿槽设 置在所述导磁架的外周面上, 或者所述齿槽设置在所述导磁架的外周面和 内周面上。
10、 根据权利要求 2所述的定子, 其特征在于, 所述圓环形导磁片上 设置有至少一条第一缝隙, 所述第一缝隙的长度方向与所述圓环形导磁片 的轴向一致。
11、 根据权利要求 3所述的定子, 其特征在于, 所述第一 U形导磁片 上均设置有至少一条第二缝隙,所述第二缝隙的长度方向与所述 U形导电 层中的 U形导电片的走向垂直。
12、 根据权利要求 4所述的定子, 其特征在于, 所述长方形导磁片上 设置有至少一条第三缝隙, 所述第三缝隙的长度方向与所述长方形导磁片 的长度方向一致。
13、 一种发电机, 其特征在于, 包括转子和权利要求 1〜12任一项所 述的定子, 所述转子包括转动轴;
所述转动轴上同轴固定设置有至少一个导磁盘, 所述导磁盘上固定设 置有磁体, 所述磁体的至少一个磁极朝向所述定子的线圈单元设置。
PCT/CN2013/000012 2012-01-06 2013-01-06 定子及发电机 WO2013102432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210002786.1 2012-01-06
CN201210002786 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013102432A1 true WO2013102432A1 (zh) 2013-07-11

Family

ID=48744985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000012 WO2013102432A1 (zh) 2012-01-06 2013-01-06 定子及发电机

Country Status (2)

Country Link
CN (1) CN103401327A (zh)
WO (1) WO2013102432A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767294B (zh) * 2014-01-06 2019-07-26 郑州泽正技术服务有限公司 直流发电的方法、制备的圆盘、电机及应用
JP2019161951A (ja) * 2018-03-15 2019-09-19 本田技研工業株式会社 回転電機のステータ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1213885A (zh) * 1998-08-07 1999-04-14 李健男 里环送节能发电机
US5994814A (en) * 1996-07-08 1999-11-30 Toyota Jidosha Kabushiki Kaisha Reluctance motor having magnetic poles formed by laminating steel plates in circumferential direction
CN101764492A (zh) * 2010-01-28 2010-06-30 南京航空航天大学 混合励磁分块定、转子开关磁阻电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994814A (en) * 1996-07-08 1999-11-30 Toyota Jidosha Kabushiki Kaisha Reluctance motor having magnetic poles formed by laminating steel plates in circumferential direction
CN1213885A (zh) * 1998-08-07 1999-04-14 李健男 里环送节能发电机
CN101764492A (zh) * 2010-01-28 2010-06-30 南京航空航天大学 混合励磁分块定、转子开关磁阻电机

Also Published As

Publication number Publication date
CN103401327A (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
US20200091786A1 (en) Electric motor with laminated sheet windings
JP5576246B2 (ja) アキシャルギャップ型ブラシレスモータ
US7973446B2 (en) Electrical devices having tape wound core laminate rotor or stator elements
JP6392252B2 (ja) 発電装置および発電装置用電機子構造並びに電機子の製造方法
GB2484163A (en) Dynamo-electric machine with rotor magnet adjustable shunt
JP5696694B2 (ja) 回転電機のステータ
JP2019075986A (ja) 金属リボンステータおよびそれを備えるモータ
WO2015051740A1 (zh) 盘式发电机
JP5742805B2 (ja) 回転電機の固定子
TW201141011A (en) Adjustable axial-flux thin-plate motor
JP2010041786A (ja) 固定子巻線及び回転電機
JP6003314B2 (ja) 回転電機用ステータ
JP5698715B2 (ja) アキシャルギャップ型ブラシレスモータ
WO2013102432A1 (zh) 定子及发电机
CN108141120A (zh) 电动机
WO1991009442A1 (en) Magnetic flux return path for an electrical device
TWI520465B (zh) 電動機
JP5874554B2 (ja) 回転電機用ステータ
JP2016220434A (ja) 回転電機の固定子
WO2009036666A1 (fr) Générateur
KR101758103B1 (ko) 그래핀 전동기
JP5958216B2 (ja) 回転電機の固定子
JP6223896B2 (ja) スイッチトリラクタンスモータ
JP2011004576A (ja) 発電機
TW201328127A (zh) 充磁座治具、充磁座繞線結構、充磁裝置,及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13733785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13733785

Country of ref document: EP

Kind code of ref document: A1