WO2013100540A1 - 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 - Google Patents

유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 Download PDF

Info

Publication number
WO2013100540A1
WO2013100540A1 PCT/KR2012/011433 KR2012011433W WO2013100540A1 WO 2013100540 A1 WO2013100540 A1 WO 2013100540A1 KR 2012011433 W KR2012011433 W KR 2012011433W WO 2013100540 A1 WO2013100540 A1 WO 2013100540A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
substituted
unsubstituted
group
compound
Prior art date
Application number
PCT/KR2012/011433
Other languages
English (en)
French (fr)
Inventor
이호재
김형선
민수현
박무진
유은선
채미영
천태규
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2013100540A1 publication Critical patent/WO2013100540A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound for an organic optoelectronic device capable of providing an organic optoelectronic device having excellent life, efficiency, electrochemical stability, and thermal stability, an organic light emitting device including the same, and a display device including the organic light emitting device.
  • An organic optoelectric device refers to a device requiring charge exchange between an electrode and an organic material using holes or electrons.
  • Organic optoelectronic devices can be divided into two types according to the operation principle.
  • excitons are formed in the organic material layer by photons introduced into the device from an external light source, and the excitons are separated into electrons and holes, and these electrons and holes are transferred to different electrodes to be used as current sources (voltage sources). It is an electronic device of the form.
  • the second is an electronic device in which holes or electrons are injected into an organic semiconductor forming an interface with the electrodes by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
  • Examples of an organic optoelectronic device include an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic photo conductor drum, and an organic transistor, all of which are used to inject or transport holes or electrons to drive the device. Injection or transport materials, or luminescent materials.
  • organic light emitting diodes are attracting attention as the demand for flat panel displays increases.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • Such an organic light emitting device converts electrical energy into light by applying a current to an organic light emitting material, and has a structure in which a functional organic material layer is inserted between an anode and a cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • the material used as the organic material layer in the organic light emitting device may be classified into a light emitting material and a charge transport material, such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to a function.
  • a charge transport material such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to a function.
  • the light emitting materials may be classified into blue, green, and red light emitting materials and yellow and orange light emitting materials required to realize better natural colors according to light emission colors.
  • the maximum emission wavelength is shifted to a long wavelength due to the intermolecular interaction, and the color purity decreases or the efficiency of the device decreases due to the emission attenuation effect.
  • the host / dopant system can be used as a light emitting material.
  • materials constituting the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or a dopant in the light emitting material, etc.
  • a hole injection material such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or a dopant in the light emitting material, etc.
  • a hole injection material such as a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or a dopant in the light emitting material, etc.
  • This stable and efficient material should be preceded, and development of a stable and efficient organic material layer for an organic light emitting device has not been made yet, and therefore, development of new materials is continuously required.
  • the necessity of such a material development is the same in the other organic optoelectronic devices described above.
  • the low molecular weight organic light emitting diode is manufactured in the form of a thin film by vacuum evaporation method, so the efficiency and lifespan performance is good, and the high molecular weight organic light emitting diode using the inkjet or spin coating method has low initial investment cost. Large area has an advantage.
  • Both low molecular weight organic light emitting diodes and high molecular weight organic light emitting diodes are attracting attention as next-generation displays because they have advantages such as self-luminous, high-speed response, wide viewing angle, ultra-thin, high definition, durability, and wide driving temperature range.
  • advantages such as self-luminous, high-speed response, wide viewing angle, ultra-thin, high definition, durability, and wide driving temperature range.
  • LCD liquid crystal display
  • the luminous efficiency In order to increase the size, the luminous efficiency must be increased and the life of the device must be accompanied. In this case, the light emitting efficiency of the device should be smoothly coupled to the holes and electrons in the light emitting layer.
  • the electron mobility of the organic material is generally slower than the hole mobility, in order to efficiently combine holes and electrons in the light emitting layer, an efficient electron transport layer is used to increase the electron injection and mobility from the cathode, It should be able to block the movement of holes.
  • a compound for an organic optoelectronic device which can play a role of hole injection and transport or electron injection and transport, and can act as a light emitting host with an appropriate dopant.
  • An organic light emitting diode having excellent lifespan, efficiency, driving voltage, electrochemical stability, and thermal stability and a display device including the same are provided.
  • a compound for an organic optoelectronic device represented by the following Chemical Formula 1 is provided.
  • L is any one of the following Formulas 2 to 4, L 2 and L 3 are independently a single bond, substituted or unsubstituted C2 to C10 alkenylene group, substituted or unsubstituted C2 to C10 alkynyl Ethylene group, substituted or unsubstituted C6 to C30 arylene group or substituted or unsubstituted C2 to C30 heteroarylene group, Ar 2 and Ar 3 is hydrogen, deuterium, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted A C6 to C36 aryl group or a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties, and at least one of Ar 2 and Ar 3 is a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties , n2 and n3 are any integers from 0 to 3, m2 and m3 are 1:
  • R 1 and R 2 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group.
  • L 1 is a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to A C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, or a substituted or unsubstituted C2 to C30 heteroarylene group
  • n1 is an integer of any one of 0 to 3
  • Ar 1 is hydrogen, deuterium, substituted or Unsubstituted C1 to C10 alkyl group, substituted or unsubstituted C6 to C
  • the compound for an organic optoelectronic device may be represented by the following formula (5).
  • L 2 and L 3 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group Or a substituted or unsubstituted C2 to C30 heteroarylene group
  • Ar 2 and Ar 3 are hydrogen, deuterium, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C36 aryl group, or a substitution having electronic properties Or an unsubstituted C2 to C30 heteroaryl group, at least one of Ar 2 and Ar 3 is a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties
  • n2 and n3 are any of integers from 0 to 3
  • the compound for an organic optoelectronic device may be represented by the following formula (6).
  • L 2 and L 3 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group Or a substituted or unsubstituted C2 to C30 heteroarylene group
  • Ar 2 and Ar 3 are hydrogen, deuterium, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C36 aryl group, or a substitution having electronic properties Or an unsubstituted C2 to C30 heteroaryl group, at least one of Ar 2 and Ar 3 is a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties
  • n2 and n3 are any of integers from 0 to 3
  • the compound for an organic optoelectronic device may be represented by the following formula (7).
  • L 2 and L 3 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group Or a substituted or unsubstituted C2 to C30 heteroarylene group
  • Ar 2 and Ar 3 are hydrogen, deuterium, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C36 aryl group, or a substitution having electronic properties Or an unsubstituted C2 to C30 heteroaryl group, at least one of Ar 2 and Ar 3 is a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties
  • n2 and n3 are any of integers from 0 to 3
  • M1 and n1 may be 0.
  • Ar 2 and Ar 3 may be a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties.
  • Substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties is substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted tetrazolyl group, substituted or unsubstituted carba Zolyl group, substituted or unsubstituted oxadiazolyl group, substituted or unsubstituted oxatriazolyl group, substituted or unsubstituted thiazazolyl group, substituted or unsubstituted benzimidazolyl group, substituted or unsubstituted Benzotriazolyl group, substituted or unsubstituted pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted pyrazinyl group, substituted or unsub
  • the substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties may be represented by any one of the following Chemical Formulas 8 to 12.
  • the compound for an organic optoelectronic device may be represented by any one of Formulas A-1 to A-48.
  • the compound for an organic optoelectronic device may be represented by any one of the following Formulas B-1 to B-48.
  • the compound for an organic optoelectronic device may be represented by any one of Formulas C-1 to C-48.
  • the compound for an organic optoelectronic device may be a triplet excitation energy (T1) 2.0 eV or more.
  • the organic optoelectronic device may be selected from the group consisting of an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photosensitive drum, and an organic memory device.
  • the organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode
  • at least one of the organic thin film layer is the above-described organic optoelectronic device It provides an organic light emitting device comprising a compound for.
  • the organic thin film layer may be selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer and a combination thereof.
  • the compound for an organic optoelectronic device may be included in a hole transport layer or a hole injection layer.
  • the compound for an organic optoelectronic device may be used as a phosphorescent or fluorescent host material in the light emitting layer.
  • a display device including the organic light emitting diode described above is provided.
  • Such a compound can be used as a hole injection / transport material, a host material, or an electron injection / transport material for the light emitting layer.
  • the organic optoelectronic device using the same has excellent electrochemical and thermal stability, and has excellent life characteristics, and may have high luminous efficiency even at a low driving voltage.
  • 1 to 5 are cross-sectional views illustrating various embodiments of an organic light emitting device that may be manufactured using a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • hole injection layer 230 light emitting layer + electron transport layer
  • substituted means that at least one hydrogen in a substituent or compound is a deuterium, a halogen group, a hydroxy group, an amino group, a substituted or unsubstituted C1 to C20 amine group, a nitro group, a substituted or unsubstituted C1 to C10 such as C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, fluoro group, trifluoromethyl group, etc. Mean substituted by a trifluoroalkyl group or a cyano group.
  • substituted halogen, hydroxy, amino, substituted or unsubstituted C1 to C20 amine group, nitro group, substituted or unsubstituted C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to Two adjacent substituents of C1 to C10 trifluoroalkyl group or cyano group such as C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, fluoro group and trifluoromethyl group may be fused to form a ring. .
  • hetero means containing 1 to 3 heteroatoms selected from the group consisting of N, O, S, and P in one functional group, and the remainder is carbon.
  • an "alkyl group” means an aliphatic hydrocarbon group.
  • the alkyl group may be a "saturated alkyl group” that does not contain any double or triple bonds.
  • Alkenylene group means a functional group consisting of at least two carbon atoms of at least one carbon-carbon double bond
  • alkynylene group means at least two carbon atoms of at least one carbon-carbon triplet. It means a functional group consisting of a bond.
  • the alkyl group, whether saturated or unsaturated, may be branched, straight chain or cyclic.
  • the alkyl group may be an alkyl group that is C1 to C20. More specifically, the alkyl group may be a C1 to C10 alkyl group or a C1 to C6 alkyl group.
  • a C1 to C4 alkyl group has 1 to 4 carbon atoms in the alkyl chain, i.e., the alkyl chain is methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and t-butyl Selected from the group consisting of:
  • the alkyl group is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohex It means a practical skill.
  • Aromatic group means a functional group in which all elements of the functional group in the ring form have p-orbitals, and these p-orbitals form conjugation. Specific examples include an aryl group and a heteroaryl group.
  • Heteroaryl group means containing 1 to 3 hetero atoms selected from the group consisting of N, O, S and P in the aryl group, and the rest are carbon. When the heteroaryl group is a fused ring, each ring may include 1 to 3 heteroatoms.
  • the carbazole derivative refers to a structure in which a nitrogen atom of a substituted or unsubstituted carbazolyl group is substituted with a hetero atom instead of nitrogen.
  • Specific examples thereof include dibenzofuran (dibenzofuranyl group) and dibenzothiophene (dibenzothiophenyl group).
  • the hole characteristic means a characteristic that has conductivity characteristics along the HOMO level to facilitate the injection of holes formed at the anode into the light emitting layer and movement in the light emitting layer.
  • an electronic characteristic means the characteristic which has electroconductive characteristic along LUMO level, and facilitates the injection of the electron formed in the cathode into the light emitting layer, and the movement in the light emitting layer.
  • Compound for an organic optoelectronic device includes a core comprising a carbazolyl group and at least one phenylenyl group bonded to the carbazolyl group and a substituent having at least one electronic property bonded to the phenylenyl group. can do.
  • the substituent having at least one electronic property bonded to the phenylenyl group may be a meta position.
  • the substituent is a meta position
  • the conjugation from the core including the carbazolyl group and the at least one phenylene group bonded to the carbazolyl group to the substituent having electronic properties is broken at the metasubstituent position.
  • the solubility of the compound is relatively improved as compared to the case connected to the para position, which has the advantage of facilitating material synthesis.
  • the carbazolyl group of the core may optionally include a substituent having hole characteristics.
  • the HOMO and LUMO levels of the entire compound can be appropriately adjusted as necessary, thereby preparing a compound for an organic optoelectronic device having various energy levels.
  • the core structure may be used as a light emitting material, a hole injection material or a hole transport material of an organic optoelectronic device because it includes a substituent having an electronic property of carbazolyl group having excellent hole properties. In particular, it may be suitable for the light emitting material.
  • the substituent having at least one electronic property bonded to the phenyl group of the core may be a meta position, the symmetry in the entire molecule may be reduced, and thus the crystallinity of the compound may be lowered, and thus recrystallization is suppressed in the device.
  • At least one of the substituents bonded to the core may be a substituent having electronic properties. Therefore, the compound may satisfy the conditions required in the light emitting layer by reinforcing the electronic properties in the carbazole structure having excellent hole properties. More specifically, it can be used as a host material of the light emitting layer.
  • the compound for an organic optoelectronic device may be a compound having various energy band gaps by introducing a variety of other substituents to the substituents substituted in the core portion and the core portion.
  • the hole transport ability or electron transfer ability is enhanced to have an excellent effect in terms of efficiency and driving voltage, and excellent in organic chemical and thermal stability It is possible to improve the life characteristics when driving the device.
  • the compound for an organic optoelectronic device may be a compound for an organic optoelectronic device represented by the formula (1).
  • L is any one of the following Formulas 2 to 4, L 2 and L 3 are independently a single bond, substituted or unsubstituted C2 to C10 alkenylene group, substituted or unsubstituted C2 to C10 alkynyl Ethylene group, substituted or unsubstituted C6 to C30 arylene group or substituted or unsubstituted C2 to C30 heteroarylene group, Ar 2 and Ar 3 is hydrogen, deuterium, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted A C6 to C36 aryl group or a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties, and at least one of Ar 2 and Ar 3 is a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties , n2 and n3 are any integers from 0 to 3, m2 and m3 are 1:
  • R 1 and R 2 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group.
  • L 1 is a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to A C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, or a substituted or unsubstituted C2 to C30 heteroarylene group
  • n1 is an integer of any one of 0 to 3
  • Ar 1 is hydrogen, deuterium, substituted or Unsubstituted C1 to C10 alkyl group, substituted or unsubstituted C6 to C
  • the compound for an organic optoelectronic device may be a substituted or unsubstituted C2 to C30 heteroaryl group having at least one of Ar 2 and Ar 3 , and the compound for an organic optoelectronic device may emit light, holes or Electronic properties; Membrane stability; Thermal stability and high triplet excitation energy (T1).
  • the two substituents bonded to the phenylenyl group present in Formulas 2 to 4 may be a meta position.
  • a substituent exists in the meta position, a structure having an asymmetric bipolar characteristic can be manufactured, and the structure of the asymmetric bipolar characteristic can be expected to improve light emitting efficiency and performance of the device by improving hole and electron transfer capability.
  • the structure of the compound can be prepared in bulk by the control of the substituent, thereby lowering the crystallinity. If the crystallinity of the compound is lowered, the lifetime of the device may be longer.
  • the compound for an organic optoelectronic device may be represented by Formula 5 more specifically.
  • L 2 and L 3 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group Or a substituted or unsubstituted C2 to C30 heteroarylene group
  • Ar 2 and Ar 3 are hydrogen, deuterium, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C36 aryl group, or a substitution having electronic properties Or an unsubstituted C2 to C30 heteroaryl group, at least one of Ar 2 and Ar 3 is a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties
  • n2 and n3 are any of integers from 0 to 3
  • the compound for an organic optoelectronic device may be represented by Formula 6 more specifically.
  • L 2 and L 3 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group Or a substituted or unsubstituted C2 to C30 heteroarylene group
  • Ar 2 and Ar 3 are hydrogen, deuterium, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C36 aryl group, or a substitution having electronic properties Or an unsubstituted C2 to C30 heteroaryl group, at least one of Ar 2 and Ar 3 is a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties
  • n2 and n3 are any of integers from 0 to 3
  • the compound for an organic optoelectronic device may be represented by the following formula (7).
  • L 2 and L 3 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group Or a substituted or unsubstituted C2 to C30 heteroarylene group
  • Ar 2 and Ar 3 are hydrogen, deuterium, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C36 aryl group, or a substitution having electronic properties Or an unsubstituted C2 to C30 heteroaryl group, at least one of Ar 2 and Ar 3 is a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties
  • n2 and n3 are any of integers from 0 to 3
  • L 1 to L 3 are substituted or unsubstituted phenylene group, substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted naphthylene group, substituted or unsubstituted Anthracenylene group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted pyrenylene group, substituted or unsubstituted fluorenylene group and the like.
  • M1 and n1 may be 0.
  • Ar 2 and Ar 3 may be a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties.
  • the substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties is substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted tetrazolyl group, substituted or unsubstituted Substituted carbazolyl group, substituted or unsubstituted oxadiazolyl group, substituted or unsubstituted oxatriazolyl group, substituted or unsubstituted cythiazolyl group, substituted or unsubstituted benzimidazolyl group, substituted or unsubstituted A substituted benzotriazolyl group, a substituted or unsubstituted pyridinyl group, a substituted or unsubstituted pyrimidinyl group, a substituted or unsubstituted triazinyl group, a substituted or unsubstituted
  • substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties may be a substituent represented by any one of the following Formulas 8 to 12.
  • Ar 1 is hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C30 aryl group having a hole property, a substituted or unsubstituted C2 to C30 heteroaryl group having a hole property, a substitution Or an unsubstituted arylamine group or a substituted or unsubstituted heteroarylamine group.
  • the substituted or unsubstituted C6 to C30 aryl group having the above hole properties is substituted or unsubstituted phenyl group, substituted or unsubstituted naphthyl group, substituted or unsubstituted phenanthrenyl group, substituted or unsubstituted anthracenyl group , Substituted or unsubstituted fluorenyl group, substituted or unsubstituted triphenylenyl group, substituted or unsubstituted spiro-fluorenyl group, substituted or unsubstituted terphenyl group, substituted or unsubstituted pyrenyl group, substituted or It may be an unsubstituted perenyl group or a combination thereof.
  • substituted or unsubstituted C2 to C30 heteroaryl group having hole characteristics is substituted or unsubstituted carbazolyl group, substituted or unsubstituted dibenzofuranyl group, substituted or unsubstituted dibenzothiophenyl group, substituted or unsubstituted Ring indol carbazolyl group;
  • the aryl group or heteroaryl group which is a substituent bonded to the nitrogen of the substituted or unsubstituted arylamine group and substituted or unsubstituted heteroarylamine group is more specifically, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group , Substituted or unsubstituted anthracenyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted or unsubstituted p-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted chrysenyl group, substituted or unsubstituted triphenylenyl group, substituted or un
  • the compound for an organic optoelectronic device may be represented by any one of Formulas A-1 to A-48.
  • the compound for an organic optoelectronic device may be represented by any one of the following Formulas B-1 to B-48.
  • the compound for an organic optoelectronic device may be represented by any one of Formulas C-1 to C-48.
  • introducing a functional group having the electronic characteristics is effective for improving the lifespan and driving voltage of the organic light emitting diode.
  • nonlinear optical material since the compound for an organic optoelectronic device has photoactive and electrical activity, nonlinear optical material, electrode material, color change material, optical switch, sensor, module, wave guide, organic transistor, laser, light absorber, dielectric and separator It can also be very usefully applied to materials such as (membrane).
  • the compound for an organic optoelectronic device including the compound as described above has a glass transition temperature of 90 ° C. or higher, and a thermal decomposition temperature of 400 ° C. or higher, thereby providing excellent thermal stability. This makes it possible to implement a high efficiency organic photoelectric device.
  • the compound for an organic optoelectronic device including the compound as described above may serve as light emission, electron injection and / or transport, and may also serve as a light emitting host with an appropriate dopant. That is, the compound for an organic optoelectronic device may be used as a host material of phosphorescence or fluorescence, a blue dopant material, or an electron transport material.
  • Compound for an organic optoelectronic device according to an embodiment of the present invention is used in the organic thin film layer to improve the life characteristics, efficiency characteristics, electrochemical stability and thermal stability of the organic optoelectronic device, it is possible to lower the driving voltage.
  • one embodiment of the present invention provides an organic optoelectronic device comprising the compound for an organic optoelectronic device.
  • the organic optoelectronic device refers to an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photosensitive drum, an organic memory device, and the like.
  • a compound for an organic optoelectronic device according to an embodiment of the present invention is included in an electrode or an electrode buffer layer to increase quantum efficiency, and in the case of an organic transistor, a gate, a source-drain electrode, or the like may be used as an electrode material. Can be used.
  • Another embodiment of the present invention is an organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode, at least any one of the organic thin film layer is an embodiment of the present invention It provides an organic light emitting device comprising a compound for an organic optoelectronic device according to.
  • the organic thin film layer which may include the compound for an organic optoelectronic device may include a layer selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer and a combination thereof. At least one of the layers includes the compound for an organic optoelectronic device according to the present invention.
  • the hole transport layer or the hole injection layer may include a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • the compound for an organic optoelectronic device when included in a light emitting layer, the compound for an organic optoelectronic device may be included as a phosphorescent or fluorescent host, and in particular, may be included as a fluorescent blue dopant material.
  • FIG. 1 to 5 are cross-sectional views of an organic light emitting device including a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • the organic light emitting diodes 100, 200, 300, 400, and 500 according to the embodiment of the present invention are interposed between the anode 120, the cathode 110, and the anode and the cathode. It has a structure including at least one organic thin film layer 105.
  • the anode 120 includes a cathode material, and a material having a large work function is preferable as the anode material so that hole injection can be smoothly injected into the organic thin film layer.
  • the positive electrode material include metals such as nickel, platinum, vanadium, chromium, copper, zinc, and gold or alloys thereof, and include zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • metal oxides such as ZnO and Al, or combinations of metals and oxides such as SnO 2 and Sb, and poly (3-methylthiophene), poly [3,4- (ethylene-1, 2-dioxy) thiophene] (conductive polymers such as polyehtylenedioxythiophene (PEDT), polypyrrole and polyaniline, etc.), but is not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) may be used as the anode.
  • the negative electrode 110 includes a negative electrode material, and the negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic thin film layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or alloys thereof, and LiF / Al.
  • Multilayer structure materials such as LiO 2 / Al, LiF / Ca, LiF / Al, and BaF 2 / Ca, and the like, but are not limited thereto.
  • a metal electrode such as aluminum may be used as the cathode.
  • FIG. 1 illustrates an organic light emitting device 100 in which only a light emitting layer 130 exists as an organic thin film layer 105.
  • the organic thin film layer 105 may exist only as a light emitting layer 130.
  • FIG. 2 illustrates a two-layered organic light emitting diode 200 including an emission layer 230 and an hole transport layer 140 including an electron transport layer as the organic thin film layer 105, as shown in FIG. 2.
  • the organic thin film layer 105 may be a two-layer type including the light emitting layer 230 and the hole transport layer 140.
  • the light emitting layer 130 functions as an electron transporting layer
  • the hole transporting layer 140 functions to improve bonding and hole transporting properties with a transparent electrode such as ITO.
  • FIG. 3 is a three-layered organic light emitting device 300 having an electron transport layer 150, an emission layer 130, and a hole transport layer 140 as an organic thin film layer 105, and the organic thin film layer 105.
  • the light emitting layer 130 is in an independent form, and has a form in which a film (electron transport layer 150 and hole transport layer 140) having excellent electron transport properties or hole transport properties is stacked in separate layers.
  • FIG. 4 illustrates a four-layered organic light emitting diode 400 in which an electron injection layer 160, an emission layer 130, a hole transport layer 140, and a hole injection layer 170 exist as an organic thin film layer 105.
  • the hole injection layer 170 may improve adhesion to ITO used as an anode.
  • the electron transport layer 150, the electron injection layer 160, the light emitting layers 130 and 230, the hole transport layer 140, and the hole injection layer 170 forming the organic thin film layer 105 and their Any one selected from the group consisting of a combination includes the compound for an organic optoelectronic device.
  • the compound for an organic optoelectronic device may be used in the electron transport layer 150 including the electron transport layer 150 or the electron injection layer 160, and the hole blocking layer (not shown) is included in the electron transport layer. It is desirable to provide an organic light emitting device having a simplified structure because it does not need to be formed separately.
  • the compound for an organic optoelectronic device when included in the light emitting layers 130 and 230, the compound for an organic optoelectronic device may be included as a phosphorescent or fluorescent host, or may be included as a fluorescent blue dopant.
  • the above-described organic light emitting device includes a dry film method such as an evaporation, sputtering, plasma plating and ion plating after forming an anode on a substrate;
  • the organic thin film layer may be formed by a wet film method such as spin coating, dipping, flow coating, or the like, followed by forming a cathode thereon.
  • a display device including the organic light emitting diode is provided.
  • reaction solution was added to 2000 ml of MeOH, and the crystallized solid was filtered, and then dissolved in monochlorobenzene to separate silica gel / celite. After removing the appropriate amount of the organic solvent, and recrystallized in MeOH to give 57 g (71% yield) of the compound (L).
  • reaction solution was added to 2000 ml of MeOH, and the crystallized solid was filtered, and then dissolved in monochlorobenzene to separate silica gel / celite. After removing the appropriate amount of the organic solvent, and recrystallized in MeOH to give 35 g (66% yield) of compound (M).
  • the glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol and the like
  • HTM vacuum deposited on the ITO substrate to form a hole injection layer having a thickness of 1200 ⁇ .
  • Example 1 The material synthesized in Example 1 was used as a host on the hole transport layer, and a phosphorescent green dopant was doped with PhGD (see the following formula) at 7 wt% to form a light emitting layer having a thickness of 300 Pa by vacuum deposition.
  • PhGD see the following formula
  • BAlq (Bis (2-methyl-8-quinolinolato-N1, O8)-(1,1'-Biphenyl-4-olato) aluminum] 50um and Alq3 [Tris (8-hydroxyquinolinato) aluminium] 250 ⁇ Laminated sequentially to form an electron transport layer.
  • An organic light emitting device was manufactured by sequentially depositing LiF 5 ′ and Al 1000 ′ on the electron transport layer to form a cathode.
  • An organic light emitting diode was manufactured according to the same method as Example 7, except for using Examples 2 to 6 instead of Example 1 (A-6).
  • Example 7 an organic light emitting diode was manufactured according to the same method as Example 1 (A-6) 'except that Compound R1 was used as a host.
  • the current value flowing through the unit device was measured using a current-voltmeter (Keithley 2400) while increasing the voltage from 0 V to 10 V, and the measured current value was divided by the area to obtain a result.
  • the resulting organic light emitting device was measured using a luminance meter (Minolta Cs-1000A) while increasing the voltage from 0 V to 10 V to obtain a result.
  • the current efficiency (cd / A) of the same current density (10 mA / cm 2 ) was calculated using the brightness, current density, and voltage measured from (1) and (2) above.
  • Table 1 summarizes the device evaluation results.
  • Example 1 Classification Host Initial voltage (Vd) Current efficiency (cd / A) Power efficiency (lm / W) Luminance (cd / m 2 ) Color coordinates (CIEx) Color coordinates (CIEy) Comparative Example 1 R1 6.90 49.53 23.07 3000 0.333 0.623 Example 7 A-6 3.79 53.6 44.4 3000 0.358 0.615 Example 8 A-9 3.93 56.8 45.5 3000 0.366 0.609 Example 9 B-18 3.84 55.6 45.6 3000 0.346 0.618 Example 10 B-45 4.01 57.8 45.3 3000 0.357 0.611 Example 11 C-24 4.07 59.0 45.6 3000 0.356 0.615 Example 12 C-36 4.07 59.6 46.0 3000 0.368 0.607

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치에 관한 것으로, 하기 화학식 1로 표시되는 유기광전자소자용 화합물을 제공하여, 우수한 전기화학적 및 열적 안정성으로 수명 특성이 우수하고, 낮은 구동전압에서도 높은 발광효율을 가지는 유기발광소자를 제조할 수 있다.

Description

유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
수명, 효율, 전기화학적 안정성 및 열적 안정성이 우수한 유기광전자소자를 제공할 수 있는 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치에 관한 것이다.
유기광전자소자(organic optoelectric device)라 함은 정공 또는 전자를 이용한 전극과 유기물 사이에서의 전하 교류를 필요로 하는 소자를 의미한다.
유기광전자소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exciton)이 형성되고 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 전자소자이다.
둘째는 2 개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기물 반도체에 정공 또는 전자를 주입하고, 주입된 전자와 정공에 의하여 동작하는 형태의 전자소자이다.
유기광전자소자의 예로는 유기광전소자, 유기발광소자, 유기태양전지, 유기감광체 드럼(organic photo conductor drum), 유기트랜지스터 등이 있으며, 이들은 모두 소자의 구동을 위하여 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 또는 발광 물질을 필요로 한다.
특히, 유기발광소자(organic light emitting diode, OLED)는 최근 평판 디스플레이(flat panel display)의 수요가 증가함에 따라 주목받고 있다. 일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다.
이러한 유기발광소자는 유기발광재료에 전류를 가하여 전기에너지를 빛으로 전환시키는 소자로서 통상 양극(anode)과 음극(cathode) 사이에 기능성 유기물 층이 삽입된 구조로 이루어져 있다. 여기서 유기물층은 유기발광소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다.
이러한 유기발광소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공(hole)이, 음극에서는 전자(electron)가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만나 재결합(recombination)에 의해 에너지가 높은 여기자를 형성하게 된다. 이때 형성된 여기자가 다시 바닥상태(ground state)로 이동하면서 특정한 파장을 갖는 빛이 발생하게 된다.
최근에는, 형광 발광물질뿐 아니라 인광 발광물질도 유기발광소자의 발광물질로 사용될 수 있음이 알려졌으며, 이러한 인광 발광은 바닥상태(ground state)에서 여기상태(excited state)로 전자가 전이한 후, 계간 전이(intersystem crossing)를 통해 단일항 여기자가 삼중항 여기자로 비발광 전이된 다음, 삼중항 여기자가 바닥상태로 전이하면서 발광하는 메카니즘으로 이루어진다.
상기한 바와 같이 유기발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.
또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다.
한편, 발광 재료로서 하나의 물질만 사용하는 경우 분자간 상호 작용에 의하여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발광 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율과 안정성을 증가시키기 위하여 발광 재료로서 호스트/도판트 계를 사용할 수 있다.
유기발광소자가 전술한 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광 재료 중 호스트 및/또는 도판트 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하며, 아직까지 안정하고 효율적인 유기발광소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이며, 따라서 새로운 재료의 개발이 계속 요구되고 있다. 이와 같은 재료 개발의 필요성은 전술한 다른 유기광전자소자에서도 마찬가지이다.
또한, 저분자 유기발광소자는 진공 증착법에 의해 박막의 형태로 소자를 제조하므로 효율 및 수명성능이 좋으며, 고분자 유기 발광 소자는 잉크젯(Inkjet) 또는 스핀코팅(spin coating)법을 사용하여 초기 투자비가 적고 대면적화가 유리한 장점이 있다.
저분자 유기발광소자 및 고분자 유기발광소자는 모두 자체발광, 고속응답, 광시야각, 초박형, 고화질, 내구성, 넓은 구동온도범위 등의 장점을 가지고 있어 차세대 디스플레이로 주목을 받고 있다. 특히 기존의 LCD(liquid crystal display)와 비교하여 자체발광형으로서 어두운 곳이나 외부의 빛이 들어와도 시안성이 좋으며, 백라이트가 필요 없어 LCD의 1/3수준으로 두께 및 무게를 줄일 수 있다.
또한, 응답속도가 LCD에 비해 1000배 이상 빠른 마이크로 초 단위여서 잔상이 없는 완벽한 동영상을 구현할 수 있다. 따라서, 최근 본격적인 멀티미디어 시대에 맞춰 최적의 디스플레이로 각광받을 것으로 기대되며, 이러한 장점을 바탕으로 1980년대 후반 최초 개발 이후 효율 80배, 수명 100배 이상에 이르는 급격한 기술발전을 이루어 왔고, 최근에는 40인치 유기발광소자 패널이 발표되는 등 대형화가 급속히 진행되고 있다.
대형화를 위해서는 발광 효율의 증대 및 소자의 수명 향상이 수반되어야 한다. 이때, 소자의 발광 효율은 발광층 내의 정공과 전자의 결합이 원활히 이루어져야 한다. 그러나, 일반적으로 유기물의 전자 이동도는 정공 이동도에 비해 느리므로, 발광층 내의 정공과 전자의 결합이 효율적으로 이루어지기 위해서는, 효율적인 전자 수송층을 사용하여 음극으로부터의 전자 주입 및 이동도를 높이는 동시에, 정공의 이동을 차단할 수 있어야 한다.
또한, 수명 향상을 위해서는 소자의 구동시 발생하는 줄열(Joule heat)로 인해 재료가 결정화되는 것을 방지하여야 한다. 따라서, 전자의 주입 및 이동성이 우수하며, 전기화학적 안정성이 높은 유기 화합물에 대한 개발이 필요하다.
정공 주입 및 수송 역할 또는 전자 주입 및 수송역할을 할 수 있고, 적절한 도펀트와 함께 발광 호스트로서의 역할을 할 수 있는 유기광전자소자용 화합물을 제공한다.
수명, 효율, 구동전압, 전기화학적 안정성 및 열적 안정성이 우수한 유기발광소자 및 이를 포함하는 표시장치를 제공하고자 한다.
본 발명의 일 구현예에서는, 하기 화학식 1로 표시되는 유기광전자소자용 화합물을 제공한다.
[화학식 1]
Figure PCTKR2012011433-appb-I000001
상기 화학식 1에서, L은 하기 화학식 2 내지 4 중 어느 하나인고, L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, n2 및 n3은 0 내지 3의 정수 중 어느 하나이고, m2 및 m3는 1이다:
[화학식 2] [화학식 3] [화학식 4]
Figure PCTKR2012011433-appb-I000002
Figure PCTKR2012011433-appb-I000003
Figure PCTKR2012011433-appb-I000004
상기 화학식 2 내지 4에서, 양 말단의 *는 각각 상기 화학식 1에서 L2 및 L3과의 연결 위치를 나타내고, R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, n1은 0 내지 3 중 어느 하나의 정수이고, Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고, m1은 0 또는 1이다.
상기 유기광전자소자용 화합물은 하기 화학식 5로 표시될 수 있다.
[화학식 5]
Figure PCTKR2012011433-appb-I000005
상기 화학식 5에서, L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, n2 및 n3은 0 내지 3의 정수 중 어느 하나이고, m2 및 m3는 1이고, R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, n1은 0 내지 3 중 어느 하나의 정수이고, Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고, m1은 0 또는 1이다.
상기 유기광전자소자용 화합물은 하기 화학식 6으로 표시될 수 있다.
[화학식 6]
Figure PCTKR2012011433-appb-I000006
상기 화학식 6에서, L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, n2 및 n3은 0 내지 3의 정수 중 어느 하나이고, m2 및 m3는 1이고, R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, n1은 0 내지 3 중 어느 하나의 정수이고, Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고, m1은 0 또는 1이다.
상기 유기광전자소자용 화합물은 하기 화학식 7로 표시될 수 있다.
[화학식 7]
Figure PCTKR2012011433-appb-I000007
상기 화학식 7에서, L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, n2 및 n3은 0 내지 3의 정수 중 어느 하나이고, m2 및 m3는 1이고, R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, n1은 0 내지 3 중 어느 하나의 정수이고, Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고, m1은 0 또는 1이다.
상기 m1 및 n1은 0일 수 있다.
상기 Ar2 및 Ar3은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있다.
상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 치환 또는 비치환된 이미다졸릴기, 치환 또는 비치환된 트리아졸릴기, 치환 또는 비치환된 테트라졸릴기, 치환 또는 비치환된 카바졸릴기, 치환 또는 비치환된 옥사다이아졸릴기, 치환 또는 비치환된 옥사트리아졸릴기, 치환 또는 비치환된 싸이아트리아졸릴기, 치환 또는 비치환된 벤즈이미다졸릴기, 치환 또는 비치환된 벤조트리아졸릴기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 퓨리닐기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 프탈라지닐기, 치환 또는 비치환된 나프피리디닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 페나지닐기 또는 이들의 조합일 수 있다.
상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 하기 화학식 8 내지 12 중 어느 하나로 표시될 수 있다.
[화학식 8] [화학식 9]
Figure PCTKR2012011433-appb-I000008
Figure PCTKR2012011433-appb-I000009
[화학식 10] [화학식 11]
Figure PCTKR2012011433-appb-I000010
Figure PCTKR2012011433-appb-I000011
[화학식 12]
Figure PCTKR2012011433-appb-I000012
상기 유기광전자소자용 화합물은 하기 화학식 A-1 내지 A-48 중 어느 하나로 표시될 수 있다.
[화학식 A-1] [화학식 A-2] [화학식 A-3]
Figure PCTKR2012011433-appb-I000013
[화학식 A-4] [화학식 A-5] [화학식 A-6]
Figure PCTKR2012011433-appb-I000014
[화학식 A-7] [화학식 A-8] [화학식 A-9]
Figure PCTKR2012011433-appb-I000015
[화학식 A-10] [화학식 A-11] [화학식 A-12]
Figure PCTKR2012011433-appb-I000016
[화학식 A-10] [화학식 A-11] [화학식 A-12]
Figure PCTKR2012011433-appb-I000017
[화학식 A-13] [화학식 A-14] [화학식 A-15]
Figure PCTKR2012011433-appb-I000018
[화학식 A-16] [화학식 A-17] [화학식 A-18]
Figure PCTKR2012011433-appb-I000019
[화학식 A-19] [화학식 A-20] [화학식 A-21]
Figure PCTKR2012011433-appb-I000020
[화학식 A-22] [화학식 A-23] [화학식 A-24]
Figure PCTKR2012011433-appb-I000021
[화학식 A-25] [화학식 A-26] [화학식 A-27]
Figure PCTKR2012011433-appb-I000022
[화학식 A-28] [화학식 A-29] [화학식 A-30]
Figure PCTKR2012011433-appb-I000023
[화학식 A-31] [화학식 A-32] [화학식 A-33]
Figure PCTKR2012011433-appb-I000024
[화학식 A-34] [화학식 A-35] [화학식 A-36]
Figure PCTKR2012011433-appb-I000025
[화학식 A-37] [화학식 A-38] [화학식 A-39]
Figure PCTKR2012011433-appb-I000026
[화학식 A-40] [화학식 A-41] [화학식 A-42]
Figure PCTKR2012011433-appb-I000027
[화학식 A-43] [화학식 A-44] [화학식 A-45]
Figure PCTKR2012011433-appb-I000028
[화학식 A-46] [화학식 A-47] [화학식 A-48]
Figure PCTKR2012011433-appb-I000029
상기 유기광전자소자용 화합물은 하기 화학식 B-1 내지 B-48 중 어느 하나로 표시될 수 있다.
[화학식 B-1] [화학식 B-2] [화학식 B-3]
Figure PCTKR2012011433-appb-I000030
[화학식 B-4] [화학식 B-5] [화학식 B-6]
Figure PCTKR2012011433-appb-I000031
[화학식 B-7] [화학식 B-8] [화학식 B-9]
Figure PCTKR2012011433-appb-I000032
[화학식 B-10] [화학식 B-11] [화학식 B-12]
Figure PCTKR2012011433-appb-I000033
[화학식 B-13] [화학식 B-14] [화학식 B-15]
Figure PCTKR2012011433-appb-I000034
[화학식 B-16] [화학식 B-17] [화학식 B-18]
Figure PCTKR2012011433-appb-I000035
[화학식 B-19] [화학식 B-20] [화학식 B-21]
Figure PCTKR2012011433-appb-I000036
[화학식 B-22] [화학식 B-23] [화학식 B-24]
Figure PCTKR2012011433-appb-I000037
[화학식 B-25] [화학식 B-26] [화학식 B-27]
Figure PCTKR2012011433-appb-I000038
[화학식 B-28] [화학식 B-29] [화학식 B-30]
Figure PCTKR2012011433-appb-I000039
[화학식 B-31] [화학식 B-32] [화학식 B-33]
Figure PCTKR2012011433-appb-I000040
[화학식 B-34] [화학식 B-35] [화학식 B-36]
Figure PCTKR2012011433-appb-I000041
[화학식 B-37] [화학식 B-38] [화학식 B-39]
Figure PCTKR2012011433-appb-I000042
[화학식 B-40] [화학식 B-41] [화학식 B-42]
Figure PCTKR2012011433-appb-I000043
[화학식 B-43] [화학식 B-44] [화학식 B-45]
Figure PCTKR2012011433-appb-I000044
[화학식 B-46] [화학식 B-47] [화학식 B-48]
Figure PCTKR2012011433-appb-I000045
상기 유기광전자소자용 화합물은 하기 화학식 C-1 내지 C-48 중 어느 하나로 표시될 수 있다.
[화학식 C-1] [화학식 C-2] [화학식 C-3]
Figure PCTKR2012011433-appb-I000046
[화학식 C-4] [화학식 C-5] [화학식 C-6]
Figure PCTKR2012011433-appb-I000047
[화학식 C-7] [화학식 C-8] [화학식 C-9]
Figure PCTKR2012011433-appb-I000048
[화학식 C-10] [화학식 C-11] [화학식 C-12]
Figure PCTKR2012011433-appb-I000049
[화학식 C-13] [화학식 C-14] [화학식 C-15]
Figure PCTKR2012011433-appb-I000050
[화학식 C-16] [화학식 C-17] [화학식 C-18]
Figure PCTKR2012011433-appb-I000051
[화학식 C-19] [화학식 C-20] [화학식 C-21]
Figure PCTKR2012011433-appb-I000052
[화학식 C-22] [화학식 C-23] [화학식 C-24]
Figure PCTKR2012011433-appb-I000053
[화학식 C-25] [화학식 C-26] [화학식 C-27]
Figure PCTKR2012011433-appb-I000054
[화학식 C-28] [화학식 C-29] [화학식 C-30]
Figure PCTKR2012011433-appb-I000055
[화학식 C-31] [화학식 C-32] [화학식 C-33]
Figure PCTKR2012011433-appb-I000056
[화학식 C-34] [화학식 C-35] [화학식 C-36]
Figure PCTKR2012011433-appb-I000057
[화학식 C-37] [화학식 C-38] [화학식 C-39]
Figure PCTKR2012011433-appb-I000058
[화학식 C-40] [화학식 C-41] [화학식 C-42]
Figure PCTKR2012011433-appb-I000059
[화학식 C-43] [화학식 C-44] [화학식 C-45]
Figure PCTKR2012011433-appb-I000060
[화학식 C-46] [화학식 C-47] [화학식 C-48]
Figure PCTKR2012011433-appb-I000061
상기 유기광전자소자용 화합물은 3중항 여기에너지(T1) 2.0eV 이상일 수 있다.
상기 유기광전자소자는, 유기광전소자, 유기발광소자, 유기태양전지, 유기트랜지스터, 유기 감광체 드럼 및 유기메모리소자로 이루어진 군에서 선택될 수 있다.
본 발명의 다른 일 구현예에서는, 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서, 상기 유기박막층 중 적어도 어느 한 층은 전술한 유기광전자소자용 화합물을 포함하는 것인 유기발광소자를 제공한다.
상기 유기박막층은 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 유기광전자소자용 화합물은 정공수송층 또는 정공주입층 내에 포함될 수 있다.
상기 유기광전자소자용 화합물은 발광층 내에 포함될 수 있다.
상기 유기광전자소자용 화합물은 발광층 내에 인광 또는 형광 호스트 재료로서 사용될 수 있다.
본 발명의 또 다른 일 구현예에서는, 전술한 유기발광소자를 포함하는 표시장치를 제공한다.
높은 정공 또는 전자 수송성, 막 안정성 열적 안정성 및 높은 3중항 여기에너지를 가지는 화합물을 제공할 수 있다.
이러한 화합물은 발광층의 정공 주입/수송 재료, 호스트 재료, 또는 전자 주입/수송 재료로 이용될 수 있다. 이를 이용한 유기광전자소자는 우수한 전기화학적 및 열적 안정성을 가지게 되어 수명 특성이 우수하고, 낮은 구동전압에서도 높은 발광효율을 가질 수 있다.
도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 이용하여 제조될 수 있는 유기발광소자에 대한 다양한 구현예들을 나타내는 단면도이다.
100 : 유기발광소자 110 : 음극
120 : 양극 105 : 유기박막층
130 : 발광층 140 : 정공 수송층
150 : 전자수송층 160 : 전자주입층
170 : 정공주입층 230 : 발광층 + 전자수송층
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환"이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기로 치환된 것을 의미한다.
또한 상기 치환된 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기 중 인접한 두 개의 치환기가 융합되어 고리를 형성할 수도 있다.
본 명세서에서 "헤테로"란 별도의 정의가 없는 한, 하나의 작용기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다.
본 명세서에서 "이들의 조합"이란 별도의 정의가 없는 한, 둘 이상의 치환기가 연결기로 결합되어 있거나, 둘 이상의 치환기가 축합하여 결합되어 있는 것을 의미한다.
본 명세서에서 "알킬(alkyl)기"이란 별도의 정의가 없는 한, 지방족 탄화수소기를 의미한다. 알킬기는 어떠한 이중결합이나 삼중결합을 포함하고 있지 않은 "포화 알킬(saturated alkyl)기"일 수 있다.
"알케닐렌(alkenylene)기"는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 이중 결합으로 이루어진 작용기를 의미하며, "알키닐렌(alkynylene)기" 는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 삼중 결합으로 이루어진 작용기를 의미한다. 포화이든 불포화이든 간에 알킬기는 분지형, 직쇄형 또는 환형일 수 있다.
알킬기는 C1 내지 C20인 알킬기일 수 있다. 보다 구체적으로 알킬기는 C1 내지 C10 알킬기 또는 C1 내지 C6 알킬기일 수도 있다.
예를 들어, C1 내지 C4 알킬기는 알킬쇄에 1 내지 4 개의 탄소원자, 즉, 알킬쇄는 메틸, 에틸, 프로필, 이소-프로필, n-부틸, 이소-부틸, sec-부틸 및 t-부틸로 이루어진 군에서 선택됨을 나타낸다.
구체적인 예를 들어 상기 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, t-부틸기, 펜틸기, 헥실기, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기 등을 의미한다.
"방향족기"는 고리 형태인 작용기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 p-오비탈이 공액(conjugation)을 형성하고 있는 작용기를 의미한다. 구체적인 예로 아릴기와 헤테로아릴기가 있다.
"아릴(aryl)기"는 모노시클릭 또는 융합 고리 폴리시클릭(즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 고리) 작용기를 포함한다.
"헤테로아릴(heteroaryl)기"는 아릴기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다. 상기 헤테로아릴기가 융합고리인 경우, 각각의 고리마다 상기 헤테로 원자를 1 내지 3개 포함할 수 있다.
본 명세서에서 카바졸계 유도체라함은 치환 또는 비치환된 카바졸릴기의 질소원자가 질소가 아닌 헤테로 원자로 치환된 구조를 의미한다. 구체적인 예를 들어, 디벤조퓨란(디벤조퓨라닐기), 디벤조티오펜(디벤조티오페닐기) 등 이다.
본 명세서에서, 정공 특성이란, HOMO 준위를 따라 전도 특성을 가져 양극에서 형성된 정공의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
또한 전자 특성이란, LUMO 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
본 발명의 일 구현예에 따른 유기광전자소자용 화합물은 카바졸릴기 및 상기 카바졸릴기에 결합된 적어도 하나의 페닐레닐기를 포함하는 코어와 상기 페닐레닐기에 결합된 적어도 하나의 전자 특성을 가지는 치환기를 포함할 수 있다.
상기 페닐레닐기에 결합된 적어도 하나의 전자 특성을 가지는 치환기는 메타 위치일 수 있다.
상기 치환기가 메타위치일 경우, 카바졸릴기 및 카바졸릴기에 결합된 적어도 하나의 페닐렌기를 포함하는 코어로부터 전자특성을 가지는 치환기로 이어지는 공액(conjugation)을 메타치환기 위치에서 끊어주게 된다.
이는 공액(conjugation)이 파라위치로 연결되어 이어져있을 경우에 발생하게 되는 HOMO 준위와 LUMO 준위의 밴드갭(band gap)이 줄어들어 화합물의 발광파장이 장파장으로 이동 (Red shift)하는 현상을 방지할 수 있다.
또한 코어로부터 치환기가 메타위치로 연결되어 있는 경우, 파라위치로 연결되어 있는 경우에 비하여 화합물의 용해도가 상대적으로 좋아지게 되는데, 이는 물질 합성이 용이하게 해주는 이점이 있다.
또한 상기 코어의 카바졸릴기에는 정공 특성을 가지는 치환기를 선택적으로 포함할 수 있다. 이러한 경우, 전체 화합물의 HOMO 및 LUMO 레벨을 필요에 따라 적절히 조절할 수 있어, 다양한 에너지 레벨을 가지는 유기광전자소자용 화합물을 제조할 수 있다.
상기 코어 구조는 정공 특성이 뛰어난 카바졸릴기에 전자 특성을 가지는 치환기를 포함하기 때문에 유기광전자소자의 발광 재료, 정공주입재료 또는 정공수송재료로 이용될 수 있다. 특히 발광 재료에 적합할 수 있다.
또한, 상기 코어의 페닐기에 결합된 적어도 하나의 전자 특성을 가지는 치환기는 메타 위치일 수 있기 때문에 전체 분자 내 대칭성이 감소되어 화합물의 결정화도가 낮아질 수 있고 따라서 소자 내에서 재결정화가 억제되는 장점이 있다.
상기 코어에 결합된 치환기 중 적어도 하나는 전자 특성을 가지는 치환기일 수 있다. 따라서, 상기 화합물은 정공 특성이 우수한 카바졸 구조에 전자 특성을 보강하여 발광층에서 요구되는 조건을 만족시킬 수 있다. 보다 구체적으로 발광층의 호스트 재료로 이용이 가능하다.
또한, 상기 유기광전자소자용 화합물은 코어 부분과 코어 부분에 치환된 치환기에 다양한 또 다른 치환기를 도입함으로써 다양한 에너지 밴드 갭을 갖는 화합물이 될 수 있다.
상기 화합물의 치환기에 따라 적절한 에너지 준위를 가지는 화합물을 유기광전자소자에 사용함으로써, 정공전달 능력 또는 전자전달 능력이 강화되어 효율 및 구동전압 면에서 우수한 효과를 가지고, 전기화학적 및 열적 안정성이 뛰어나 유기광전자소자 구동시 수명 특성을 향상시킬 수 있다.
이러한 본 발명의 일 구현예에 따르면, 상기 유기광전자소자용 화합물은 하기 화학식 1로 표시되는 유기광전자소자용 화합물일 수 있다.
[화학식 1]
Figure PCTKR2012011433-appb-I000062
상기 화학식 1에서, L은 하기 화학식 2 내지 4 중 어느 하나인고, L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, n2 및 n3은 0 내지 3의 정수 중 어느 하나이고, m2 및 m3는 1이다:
[화학식 2] [화학식 3] [화학식 4]
Figure PCTKR2012011433-appb-I000063
Figure PCTKR2012011433-appb-I000064
Figure PCTKR2012011433-appb-I000065
상기 화학식 2 내지 4에서, 양 말단의 *는 각각 상기 화학식 1에서 L2 및 L3과의 연결 위치를 나타내고, R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, n1은 0 내지 3 중 어느 하나의 정수이고, Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고, m1은 0 또는 1이다.
상기 유기광전자소자용 화합물은 Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있으며, 상기 치환기로 인해 상기 유기광전자소자용 화합물은 발광, 정공 또는 전자 특성; 막 안정성; 열적 안정성 및 높은 3중항 여기에너지(T1)를 가질 수 있다.
상기 화학식 2 내지 4와 내 존재하느 페닐레닐기에 결합된 두 개의 치환기는 메타 위치일 수 있다. 상기 메타 위치로 치환기가 존재하는 경우 비대칭 바이폴라(bipolar)특성의 구조를 제조할 수 있으며, 상기 비대칭 바이폴라특성의 구조는 정공과 전자 전달 능력을 향상시켜 소자의 발광효율과 성능 향상을 기대할 수 있다.
또한, 상기 치환기의 조절로 화합물의 구조를 벌크하게 제조할 수 있으며, 이로 인해 결정화도를 낮출 수 있다. 화합물의 결정화도가 낮아지게 되면 소자의 수명이 길어질 수 있다.
상기 유기광전자소자용 화합물은 보다 구체적으로 하기 화학식 5로 표시될 수 있다.
[화학식 5]
Figure PCTKR2012011433-appb-I000066
상기 화학식 5에서, L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, n2 및 n3은 0 내지 3의 정수 중 어느 하나이고, m2 및 m3는 1이고, R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, n1은 0 내지 3 중 어느 하나의 정수이고, Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고, m1은 0 또는 1이다.
상기 유기광전자소자용 화합물은 보다 구체적으로 하기 화학식 6으로 표시될 수 있다.
[화학식 6]
Figure PCTKR2012011433-appb-I000067
상기 화학식 6에서, L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, n2 및 n3은 0 내지 3의 정수 중 어느 하나이고, m2 및 m3는 1이고, R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, n1은 0 내지 3 중 어느 하나의 정수이고, Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고, m1은 0 또는 1이다.
상기 유기광전자소자용 화합물은 하기 화학식 7로 표시될 수 있다.
[화학식 7]
Figure PCTKR2012011433-appb-I000068
상기 화학식 7에서, L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, n2 및 n3은 0 내지 3의 정수 중 어느 하나이고, m2 및 m3는 1이고, R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, n1은 0 내지 3 중 어느 하나의 정수이고, Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고, m1은 0 또는 1이다.
상기 L1 내지 L3을 선택적으로 조절하여 화합물 전체의 공액(conjugation) 길이를 결정할 수 있으며, 이로부터 HOMO-LUMO 밴드갭을 조절할 수 있다. 이를 통하여 블루(Blue), 그린(Green), 레드(Red) 등에 각각 적용할 수 있는 적당한 밴드갭 및 파장을 가지는 화합물을 개발할 수 있다.
상기 L1 내지 L3의 구체적인 예로는 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 나프틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트릴렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기 등이다.
상기 m1 및 n1은 0일 수 있다.
상기 Ar2 및 Ar3은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있다.
보다 구체적으로 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 치환 또는 비치환된 이미다졸릴기, 치환 또는 비치환된 트리아졸릴기, 치환 또는 비치환된 테트라졸릴기, 치환 또는 비치환된 카바졸릴기, 치환 또는 비치환된 옥사다이아졸릴기, 치환 또는 비치환된 옥사트리아졸릴기, 치환 또는 비치환된 싸이아트리아졸릴기, 치환 또는 비치환된 벤즈이미다졸릴기, 치환 또는 비치환된 벤조트리아졸릴기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 퓨리닐기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 프탈라지닐기, 치환 또는 비치환된 나프피리디닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 페나지닐기 또는 이들의 조합일 수 있으며, 이에 제한되지 않는다.
보다 구체적으로, 상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 하기 화학식 8 내지 12 중 어느 하나로 표시되는 치환기일 수 있다.
[화학식 8] [화학식 9]
Figure PCTKR2012011433-appb-I000069
Figure PCTKR2012011433-appb-I000070
[화학식 10] [화학식 11]
Figure PCTKR2012011433-appb-I000071
Figure PCTKR2012011433-appb-I000072
[화학식 12]
Figure PCTKR2012011433-appb-I000073
상기 Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기일 수 있다.
보다 구체적으로 상기 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기는 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 페난트레닐기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 스피로-플루오레닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 파이레닐기, 치환 또는 비치환된 페릴레닐기 또는 이들의 조합일 수 있다.
보다 구체적으로 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 치환 또는 비치환된 카바졸릴기, 치환 또는 비치환된 디벤조퓨라닐기, 치환 또는 비치환된 디벤조티오페닐기, 치환 또는 비치환된 인돌카바졸릴기 등이다.
상기 치환 또는 비치환된 아릴아민기 및 치환 또는 비치환된 헤테로아릴아민기의 질소에 결합된 치환기인 아릴기 또는 헤테로아릴기는 보다 구체적으로, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐일기, 치환 또는 비치환된 p-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기 또는 이들의 조합일 수 있다.
상기 유기광전자소자용 화합물은 하기 화학식 A-1 내지 A-48 중 어느 하나로 표시될 수 있다.
[화학식 A-1] [화학식 A-2] [화학식 A-3]
Figure PCTKR2012011433-appb-I000074
[화학식 A-4] [화학식 A-5] [화학식 A-6]
Figure PCTKR2012011433-appb-I000075
[화학식 A-7] [화학식 A-8] [화학식 A-9]
Figure PCTKR2012011433-appb-I000076
[화학식 A-10] [화학식 A-11] [화학식 A-12]
Figure PCTKR2012011433-appb-I000077
[화학식 A-10] [화학식 A-11] [화학식 A-12]
Figure PCTKR2012011433-appb-I000078
[화학식 A-13] [화학식 A-14] [화학식 A-15]
Figure PCTKR2012011433-appb-I000079
[화학식 A-16] [화학식 A-17] [화학식 A-18]
Figure PCTKR2012011433-appb-I000080
[화학식 A-19] [화학식 A-20] [화학식 A-21]
Figure PCTKR2012011433-appb-I000081
[화학식 A-22] [화학식 A-23] [화학식 A-24]
Figure PCTKR2012011433-appb-I000082
[화학식 A-25] [화학식 A-26] [화학식 A-27]
Figure PCTKR2012011433-appb-I000083
[화학식 A-28] [화학식 A-29] [화학식 A-30]
Figure PCTKR2012011433-appb-I000084
[화학식 A-31] [화학식 A-32] [화학식 A-33]
Figure PCTKR2012011433-appb-I000085
[화학식 A-34] [화학식 A-35] [화학식 A-36]
Figure PCTKR2012011433-appb-I000086
[화학식 A-37] [화학식 A-38] [화학식 A-39]
Figure PCTKR2012011433-appb-I000087
[화학식 A-40] [화학식 A-41] [화학식 A-42]
Figure PCTKR2012011433-appb-I000088
[화학식 A-43] [화학식 A-44] [화학식 A-45]
Figure PCTKR2012011433-appb-I000089
[화학식 A-46] [화학식 A-47] [화학식 A-48]
Figure PCTKR2012011433-appb-I000090
상기 유기광전자소자용 화합물은 하기 화학식 B-1 내지 B-48 중 어느 하나로 표시될 수 있다.
[화학식 B-1] [화학식 B-2] [화학식 B-3]
Figure PCTKR2012011433-appb-I000091
[화학식 B-4] [화학식 B-5] [화학식 B-6]
Figure PCTKR2012011433-appb-I000092
[화학식 B-7] [화학식 B-8] [화학식 B-9]
Figure PCTKR2012011433-appb-I000093
[화학식 B-10] [화학식 B-11] [화학식 B-12]
Figure PCTKR2012011433-appb-I000094
[화학식 B-13] [화학식 B-14] [화학식 B-15]
Figure PCTKR2012011433-appb-I000095
[화학식 B-16] [화학식 B-17] [화학식 B-18]
Figure PCTKR2012011433-appb-I000096
[화학식 B-19] [화학식 B-20] [화학식 B-21]
Figure PCTKR2012011433-appb-I000097
[화학식 B-22] [화학식 B-23] [화학식 B-24]
Figure PCTKR2012011433-appb-I000098
[화학식 B-25] [화학식 B-26] [화학식 B-27]
Figure PCTKR2012011433-appb-I000099
[화학식 B-28] [화학식 B-29] [화학식 B-30]
Figure PCTKR2012011433-appb-I000100
[화학식 B-31] [화학식 B-32] [화학식 B-33]
Figure PCTKR2012011433-appb-I000101
[화학식 B-34] [화학식 B-35] [화학식 B-36]
Figure PCTKR2012011433-appb-I000102
[화학식 B-37] [화학식 B-38] [화학식 B-39]
Figure PCTKR2012011433-appb-I000103
[화학식 B-40] [화학식 B-41] [화학식 B-42]
Figure PCTKR2012011433-appb-I000104
[화학식 B-43] [화학식 B-44] [화학식 B-45]
Figure PCTKR2012011433-appb-I000105
[화학식 B-46] [화학식 B-47] [화학식 B-48]
Figure PCTKR2012011433-appb-I000106
상기 유기광전자소자용 화합물은 하기 화학식 C-1 내지 C-48 중 어느 하나로 표시될 수 있다.
[화학식 C-1] [화학식 C-2] [화학식 C-3]
Figure PCTKR2012011433-appb-I000107
[화학식 C-4] [화학식 C-5] [화학식 C-6]
Figure PCTKR2012011433-appb-I000108
[화학식 C-7] [화학식 C-8] [화학식 C-9]
Figure PCTKR2012011433-appb-I000109
[화학식 C-10] [화학식 C-11] [화학식 C-12]
Figure PCTKR2012011433-appb-I000110
[화학식 C-13] [화학식 C-14] [화학식 C-15]
Figure PCTKR2012011433-appb-I000111
[화학식 C-16] [화학식 C-17] [화학식 C-18]
Figure PCTKR2012011433-appb-I000112
[화학식 C-19] [화학식 C-20] [화학식 C-21]
Figure PCTKR2012011433-appb-I000113
[화학식 C-22] [화학식 C-23] [화학식 C-24]
Figure PCTKR2012011433-appb-I000114
[화학식 C-25] [화학식 C-26] [화학식 C-27]
Figure PCTKR2012011433-appb-I000115
[화학식 C-28] [화학식 C-29] [화학식 C-30]
Figure PCTKR2012011433-appb-I000116
[화학식 C-31] [화학식 C-32] [화학식 C-33]
Figure PCTKR2012011433-appb-I000117
[화학식 C-34] [화학식 C-35] [화학식 C-36]
Figure PCTKR2012011433-appb-I000118
[화학식 C-37] [화학식 C-38] [화학식 C-39]
Figure PCTKR2012011433-appb-I000119
[화학식 C-40] [화학식 C-41] [화학식 C-42]
Figure PCTKR2012011433-appb-I000120
[화학식 C-43] [화학식 C-44] [화학식 C-45]
Figure PCTKR2012011433-appb-I000121
[화학식 C-46] [화학식 C-47] [화학식 C-48]
Figure PCTKR2012011433-appb-I000122
전술한 본 발명의 일 구현예에 따른 화합물이 전자특성, 정공특성 양쪽을 모두 요구하는 경우에는 상기 전자 특성을 가지는 작용기를 도입하는 것이 유기발광소자의 수명 향상 및 구동 전압 감소에 효과적이다.
전술한 본 발명의 일 구현예에 따른 유기광전자소자용 화합물은 최대 발광 파장이 약 320 내지 500 nm 범위를 나타내고, 3중항 여기에너지(T1)가 2.0 eV 이상, 보다 구체적으로 2.0 내지 4.0 eV 범위인 것으로, 높은 3중항 여기 에너지를 가지는 호스트의 전하가 도판트에 잘 전달되어 도판트의 발광효율을 높일 수 있고, 재료의 호모(HOMO)와 루모(LUMO) 에너지 준위를 자유롭게 조절하여 구동전압을 낮출 수 있는 이점이 있기 때문에 호스트 재료 또는 전하수송재료로 매우 유용하게 사용될 수 있다.
뿐만 아니라, 상기 유기광전자소자용 화합물은 광활성 및 전기적인 활성을 갖고 있으므로, 비선형 광학소재, 전극 재료, 변색재료, 광 스위치, 센서, 모듈, 웨이브 가이드, 유기 트렌지스터, 레이저, 광 흡수체, 유전체 및 분리막(membrane) 등의 재료로도 매우 유용하게 적용될 수 있다.
상기와 같은 화합물을 포함하는 유기광전자소자용 화합물은 유리전이온도가 90℃ 이상이며, 열분해온도가 400℃이상으로 열적 안정성이 우수하다. 이로 인해 고효율의 유기광전소자의 구현이 가능하다.
상기와 같은 화합물을 포함하는 유기광전자소자용 화합물은 발광, 또는 전자 주입 및/또는 수송역할을 할 수 있으며, 적절한 도판트와 함께 발광 호스트로서의 역할도 할 수 있다. 즉, 상기 유기광전자소자용 화합물은 인광 또는 형광의 호스트 재료, 청색의 발광도펀트 재료, 또는 전자수송 재료로 사용될 수 있다.
본 발명의 일 구현예에 따른 유기광전자소자용 화합물은 유기박막층에 사용되어 유기광전자소자의 수명 특성, 효율 특성, 전기화학적 안정성 및 열적 안정성을 향상시키며, 구동전압을 낮출 수 있다.
이에 따라 본 발명의 일 구현예는 상기 유기광전자소자용 화합물을 포함하는 유기광전자소자를 제공한다. 이 때, 상기 유기광전자소자라 함은 유기광전소자, 유기발광소자, 유기 태양 전지, 유기 트랜지스터, 유기 감광체 드럼, 유기 메모리 소자 등을 의미한다. 특히, 유기 태양 전지의 경우에는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물이 전극이나 전극 버퍼층에 포함되어 양자 효율을 증가시키며, 유기 트랜지스터의 경우에는 게이트, 소스-드레인 전극 등에서 전극 물질로 사용될 수 있다.
이하에서는 유기발광소자에 대하여 구체적으로 설명한다.
본 발명의 다른 일 구현예는 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서, 상기 유기박막층 중 적어도 어느 한 층은 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함하는 유기발광소자를 제공한다.
상기 유기광전자소자용 화합물을 포함할 수 있는 유기박막층으로는 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택되는 층을 포함할 수 있는 바, 이 중에서 적어도 어느 하나의 층은 본 발명에 따른 유기광전자소자용 화합물을 포함한다. 특히, 정공수송층 또는 정공주입층에 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함할 수 있다. 또한, 상기 유기광전자소자용 화합물이 발광층 내에 포함되는 경우 상기 유기광전자소자용 화합물은 인광 또는 형광호스트로서 포함될 수 있고, 특히, 형광 청색 도펀트 재료로서 포함될 수 있다.
도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함하는 유기발광소자의 단면도이다.
도 1 내지 도 5를 참조하면, 본 발명의 일 구현예에 따른 유기발광소자(100, 200, 300, 400 및 500)는 양극(120), 음극(110) 및 이 양극과 음극 사이에 개재된 적어도 1층의 유기박막층(105)을 포함하는 구조를 갖는다.
상기 양극(120)은 양극 물질을 포함하며, 이 양극 물질로는 통상 유기박막층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 니켈, 백금, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금을 들 수 있고, 아연산화물, 인듐산화물, 인듐주석산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물을 들 수 있고, ZnO와 Al 또는 SnO2와 Sb와 같은 금속과 산화물의 조합을 들 수 있고, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](polyehtylenedioxythiophene: PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등을 들 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 상기 양극으로 ITO(indium tin oxide)를 포함하는 투명전극을 사용할 수 있다.
상기 음극(110)은 음극 물질을 포함하여, 이 음극 물질로는 통상 유기박막층으로 전자주입이 용이하도록 일 함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금을 들 수 있고, LiF/Al, LiO2/Al, LiF/Ca, LiF/Al 및 BaF2/Ca과 같은 다층 구조 물질 등을 들 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 상기 음극으로 알루미늄 등과 같은 금속전극을 사용할 수 있다.
먼저 도 1을 참조하면, 도 1은 유기박막층(105)으로서 발광층(130)만이 존재하는 유기발광소자(100)를 나타낸 것으로, 상기 유기박막층(105)은 발광층(130)만으로 존재할 수 있다.
도 2를 참조하면, 도 2는 유기박막층(105)으로서 전자수송층을 포함하는 발광층(230)과 정공수송층(140)이 존재하는 2층형 유기발광소자(200)를 나타낸 것으로, 도 2에 나타난 바와 같이, 유기박막층(105)은 발광층(230) 및 정공 수송층(140)을 포함하는 2층형일 수 있다. 이 경우 발광층(130)은 전자 수송층의 기능을 하며, 정공 수송층(140)은 ITO와 같은 투명전극과의 접합성 및 정공수송성을 향상시키는 기능을 한다.
도 3을 참조하면, 도 3은 유기박막층(105)으로서 전자수송층(150), 발광층(130) 및 정공수송층(140)이 존재하는 3층형 유기발광소자(300)로서, 상기 유기박막층(105)에서 발광층(130)은 독립된 형태로 되어 있고, 전자수송성이나 정공수송성이 우수한 막(전자수송층(150) 및 정공수송층(140))을 별도의 층으로 쌓은 형태를 나타내고 있다.
도 4를 참조하면, 도 4는 유기박막층(105)으로서 전자주입층(160), 발광층(130), 정공수송층(140) 및 정공주입층(170)이 존재하는 4층형 유기발광소자(400)로서, 상기 정공주입층(170)은 양극으로 사용되는 ITO와의 접합성을 향상시킬 수 있다.
도 5를 참조하면, 도 5는 유기박막층(105)으로서 전자주입층(160), 전자수송층(150), 발광층(130), 정공수송층(140) 및 정공주입층(170)과 같은 각기 다른 기능을 하는 5개의 층이 존재하는 5층형 유기발광소자(500)를 나타내고 있으며, 상기 유기발광소자(500)는 전자주입층(160)을 별도로 형성하여 저전압화에 효과적이다.
상기 도 1 내지 도 5에서 상기 유기박막층(105)을 이루는 전자 수송층(150), 전자 주입층(160), 발광층(130, 230), 정공 수송층(140), 정공 주입층(170) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나는 상기 유기광전자소자용 화합물을 포함한다. 이 때 상기 유기광전자소자용 화합물은 상기 전자 수송층(150) 또는 전자주입층(160)을 포함하는 전자수송층(150)에 사용될 수 있으며, 그중에서도 전자수송층에 포함될 경우 정공 차단층(도시하지 않음)을 별도로 형성할 필요가 없어 보다 단순화된 구조의 유기발광소자를 제공할 수 있어 바람직하다.
또한, 상기 유기광전자소자용 화합물이 발광층(130, 230) 내에 포함되는 경우 상기 유기광전자소자용 화합물은 인광 또는 형광호스트로서 포함될 수 있으며, 또는 형광 청색 도펀트로서 포함될 수 있다.
상기에서 설명한 유기발광소자는, 기판에 양극을 형성한 후, 진공증착법(evaporation), 스퍼터링(sputtering), 플라즈마 도금 및 이온도금과 같은 건식성막법; 또는 스핀코팅(spin coating), 침지법(dipping), 유동코팅법(flow coating)과 같은 습식성막법 등으로 유기박막층을 형성한 후, 그 위에 음극을 형성하여 제조할 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기 유기발광소자를 포함하는 표시장치를 제공한다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
(유기광전자소자용 화합물의 제조)
실시예 1: 화합물 A-6의 제조
[반응식 1]
Figure PCTKR2012011433-appb-I000123
제 1 단계: 화합물 (A)의 합성
2000 mL의 둥근 플라스크에서 3-브로모카바졸 77.49 g(314.88 mmol), 2-클로로-4,6-디비페닐-피리미딘 100.78 g(377.86 mmol), NaH 18.89g을 다이메틸포름아마이드 1200ml 에 상온에서 8시간 교반하였다. 반응 용액을 물 2500ml에 넣어 교반 후, 석출된 고형분을 메탄올로 씻어주며 감압필터하였다. 고형분을 클로로벤젠에 녹여 실리카겔로 분리하여 중간체 화합물 (A) 135 g (수율 90%)을 수득하였다.
LC-Mass로 합성된 A의 [M+H]+ 분자량 476.37을 확인하였다.
제 2 단계: 화합물 (B)의 합성
화합물 (A)로 표시되는 화합물 39.93 g(83.8 mmol), 테트라메틸다이옥사보롤란 31.93 g(125.7 mmol), 팔라듐다이페닐피리디노페로센다이클로라이드 2.7g (3.35 mmol) 및 포타슘 아세테이트 24.68 g(251.5 mmol) 을 다이메틸설폭사이드 400 ml에 110도에서 8시간 동안 가열하여 교반하였다. 반응용액을 물 2000 ml에 천천히 적가하여 고형분화 하였고, 이를 필터하여 살색의 고형분을 얻어내었다. 고형분을 다이클로로메탄 500 ml에 녹인 후, 무수황산마그네슘으로 수분을 제거한 후, 필터하여 유기용액층을 얻어내었다. 유기용매를 적당량 제거한 후, 다시 톨루엔에 녹여 실리카겔로 분리하였다. 용매를 적당량 제거하여 MeOH에 재결정하여 중간체 화합물 (B) 32g (수율 73%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 523.43을 확인하였다.
제 3 단계 : 화학식 A-6 의 합성
2-(3-브로모페닐)-4,6-다이페틸트리아진 22.0 g(56.7 mmol), 화합물 (B)로 표시되는 화합물 32.6 g(62.4 mmol) 및 테트라키스트라이페닐포스피노팔라듐 3.3 (2.8 mmol) 을 2M 탄산칼륨 수용액 250 ml와 테트라하이드로퓨란 300ml에 현탁하여, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 1000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 분리하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 A-6 25g (수율 63%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 704.82를 확인하였다.
실시예 2: 화학식 A-9의 제조
[반응식 2]
Figure PCTKR2012011433-appb-I000124
제 1 단계: 화합물 (C)의 합성
1000 mL의 둥근 플라스크에서 3-브로모-6-페닐카바졸 43.6 g(135.5 mmol), 2-클로로-4,6-디비페닐-트리아진 43.53 g(162.6 mmol), NaH 8.1g을 다이메틸포름아마이드 600 ml 에 상온에서 8시간 교반하였다. 반응 용액을 물 1200ml에 넣어 교반 후, 석출된 고형분을 메탄올로 씻어주며 감압필터하였다. 고형분을 클로로벤젠에 녹여 실리카겔로 분리하여 중간체 화합물 (C)를 70 g (수율 93%)을 수득하였다.
LC-Mass로 합성된 A의 [M+H]+ 분자량 553.45 를 확인하였다.
제 2 단계: 화합물 (D)의 합성
화합물 (C)로 표시되는 화합물 38.3 g(69.3 mmol), 테트라메틸다이옥사보롤란 26.4 g(104.4 mmol), 팔라듐다이페닐피리디노페로센다이클로라이드 2.3g (2.8 mmol) 및 포타슘 아세테이트 20.4 g(251.5 mmol) 을 다이메틸설폭사이드 400 ml에 110도에서 8시간 동안 가열하여 교반하였다. 반응용액을 물 2000 ml에 천천히 적가하여 고형분화 하였고, 이를 필터하여 살색의 고형분을 얻어내었다. 고형분을 다이클로로메탄 500 ml에 녹인 후, 무수황산마그네슘으로 수분을 제거한 후, 필터하여 유기용액층을 얻어내었다. 유기용매를 적당량 제거한 후, 다시 톨루엔에 녹여 실리카겔로 분리하였다. 용매를 적당량 제거하여 MeOH에 재결정하여 중간체 화합물 (B) 29g (수율 70%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 599.53 을 확인하였다.
제 3 단계 : 화학식 A-9 의 합성
2-(3-브로모페닐)-4,6-다이페틸트리아진 19.8 g(51.1 mmol), 화합물 (D)로 표시되는 화합물 33.7 g(56.2 mmol) 및 테트라키스트라이페닐포스피노팔라듐 2.95 (2.6 mmol) 을 2M 탄산칼륨 수용액 250 ml와 테트라하이드로퓨란 300ml에 현탁하여, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 1000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 분리하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 A-6 27 g (수율 68%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 781.90을 확인하였다.
실시예 3: 화학식 B-18의 제조
[반응식 3]
Figure PCTKR2012011433-appb-I000125
Figure PCTKR2012011433-appb-I000126
제 1 단계 : 화학식 (E) 의 합성
3,6-다이브로모카바졸 31.1 g(95.7 mmol), N-페닐카바졸-3-테트라메틸피나콜에스터 38.8 g(105.3 mmol) 및 테트라키스트라이페닐포스피노팔라듐 5.53 (4.8 mmol) 을 2M 탄산칼륨 수용액 400 ml와 테트라하이드로퓨란 550ml에 현탁하여, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 분리하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (E) 27 g (수율 58%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 487.39을 확인하였다.
제 2 단계: 화합물 (F)의 합성
화합물 (E)로 표시되는 화합물 26.24 g(53.8 mmol), 테트라메틸다이옥사보롤란 20.5 g(80.7 mmol), 팔라듐다이페닐피리디노페로센다이클로라이드 1.8g (2.15 mmol) 및 포타슘 아세테이트 15.8 g(161.5 mmol) 을 다이메틸설폭사이드 300 ml에 110도에서 8시간 동안 가열하여 교반하였다. 반응용액을 물 2000 ml에 천천히 적가하여 고형분화 하였고, 이를 필터하여 살색의 고형분을 얻어내었다. 고형분을 다이클로로메탄 500 ml에 녹인 후, 무수황산마그네슘으로 수분을 제거한 후, 필터하여 유기용액층을 얻어내었다. 유기용매를 적당량 제거한 후, 다시 톨루엔에 녹여 실리카겔로 분리하였다. 용매를 적당량 제거하여 MeOH에 재결정하여 중간체 화합물 (F) 22g (수율 76%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 534.45을 확인하였다.
제 3 단계 : 화학식 (G) 의 합성
2-클로로-4,6-다이페닐트리아진 21.4 g(80.24 mmol), 화합물 (F) 38.9 g(72.9 mmol) 및 테트라키스트라이페닐포스피노팔라듐 4.21 (3.65 mmol) 을 2M 탄산칼륨 수용액 300 ml와 테트라하이드로퓨란 400ml에 현탁하여, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 분리하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (G) 32 g (수율 69%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 639.75을 확인하였다.
제 4 단계 : 화학식 B-18 의 합성
질소 분위기의 교반기가 부착된 1000 mL 둥근바닥 플라스크에서 화합물 (G)로 표시되는 화합물 29.7 g(46.5 mmol), 2-(3-브로모페닐)-4,6-다이페틸피리미딘 16.37 g(42.28 mmol) 및 터셔리부톡시나트륨 8.12 g (84.5 mmol)을 톨루엔 500ml 녹인 후, 팔라듐 다이벤질리덴아세톤 1.93 g (2.11 mmol) 과 터셔리부틸인 1.8ml 를 적가한다. 반응용액을 질소기류하에서 12 시간 동안 110도로 가열하여 교반하였다. 반응 종결 후 반응물에 메탄올을 부어 생기는 고형물을 필터 한 다음, 고형물을 다시 클로로벤젠에 녹여 활성탄과 무수황산마그네슘을 넣어 교반한다. 용액을 필터한 다음 클로로벤젠과 메탄올을 이용해 재결정 하여 화합물 B-18을 26 g (수율 65%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 946.11을 확인하였다.
실시예 4: 화학식 B-45의 제조
[반응식 4]
Figure PCTKR2012011433-appb-I000127
Figure PCTKR2012011433-appb-I000128
제 1 단계 : 화학식 (H) 의 합성
3,6-다이브로모카바졸 52.2 g(163.8 mmol), 2-[4-(4,4,5,5-테트라메틸-[1,3,2]다이옥사보롤란-2-일)-페닐]-다이벤조퓨란 66.7 g(180.1 mmol) 및 테트라키스트라이페닐포스피노팔라듐 9.46 (8.2 mmol) 을 2M 탄산칼륨 수용액 300 ml와 테트라하이드로퓨란 500ml에 현탁하여, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 분리하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (E) 58 g (수율 73%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 488.37을 확인하였다.
제 2 단계: 화합물 (I)의 합성
화합물 (H)로 표시되는 화합물 52.5 g(107.5 mmol), 테트라메틸다이옥사보롤란 40.9 g(161.2 mmol), 팔라듐다이페닐피리디노페로센다이클로라이드 3.5 g (4.3 mmol) 및 포타슘 아세테이트 31.6 g(322.4 mmol) 을 다이메틸설폭사이드 540 ml에 110도에서 8시간 동안 가열하여 교반하였다. 반응용액을 물 2000 ml에 천천히 적가하여 고형분화 하였고, 이를 필터하여 살색의 고형분을 얻어내었다. 고형분을 다이클로로메탄 500 ml에 녹인 후, 무수황산마그네슘으로 수분을 제거한 후, 필터하여 유기용액층을 얻어내었다. 유기용매를 적당량 제거한 후, 다시 톨루엔에 녹여 실리카겔로 분리하였다. 용매를 적당량 제거하여 MeOH에 재결정하여 중간체 화합물 (I) 42g (수율 73%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 535.44을 확인하였다.
제 3 단계 : 화학식 (J) 의 합성
2-클로로-4,6-다이페닐트리아진 21.4 g(80.1 mmol), 화합물 (I) 38.9 g(72.8 mmol) 및 테트라키스트라이페닐포스피노팔라듐 4.21 (3.65 mmol) 을 2M 탄산칼륨 수용액 300 ml와 테트라하이드로퓨란 400ml에 현탁하여, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 분리하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (G) 32 g (수율 69%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 640.73을 확인하였다.
제 4 단계 : 화학식 B-45 의 합성
질소 분위기의 교반기가 부착된 1000 mL 둥근바닥 플라스크에서 화합물 (G)로 표시되는 화합물 31.86 g(49.7 mmol), 2-(3-브로모페닐)-4,6-다이페틸피리미딘 17.5 g(45.2 mmol) 및 터셔리부톡시나트륨 8.68 g (90.4 mmol)을 톨루엔 500ml 녹인 후, 팔라듐 다이벤질리덴아세톤 2.07 g (2.26 mmol) 과 터셔리부틸인 1.9ml 를 적가한다. 반응용액을 질소기류하에서 12 시간 동안 110도로 가열하여 교반하였다. 반응 종결 후 반응물에 메탄올을 부어 생기는 고형물을 필터 한 다음, 고형물을 다시 클로로벤젠에 녹여 활성탄 과 무수황산마그네슘을 넣어 교반한다. 용액을 필터한 다음 클로로벤젠과 메탄올을 이용해 재결정 하여 화합물 B-18을 29 g (수율 68%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 948.08을 확인하였다.
실시예 5: 화학식 C-24의 제조
[반응식 5]
Figure PCTKR2012011433-appb-I000129
Figure PCTKR2012011433-appb-I000130
제 1 단계 : 화학식 (K) 의 합성
3-브로모-6-페닐카바졸 46.7 g(145.2 mmol), 2,4-다이페닐-6-[3-(4,4,5,5-테트라메틸-[1,3,2]다이옥사보롤란-2-일)-페닐]-[1,3,5]-트리아진 69.5 g(159.8 mmol) 및 테트라키스트라이페닐포스피노팔라듐 8.4 (7.26 mmol) 을 2M 탄산칼륨 수용액 300 ml와 테트라하이드로퓨란 400ml에 현탁하여, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 분리하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (K) 58 g (수율 73%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 550.65 를 확인하였다.
제 2 단계 : 화학식 C-24 의 합성
질소 분위기의 교반기가 부착된 1000 mL 둥근바닥 플라스크에서 화합물 (K)로 표시되는 화합물 36.74 g(66.68 mmol), 4-(3-브로모페닐)-2,6-다이페틸피리미딘 28.40 g(73.34 mmol) 및 터셔리부톡시나트륨 12.81 g (133.35 mmol)을 톨루엔 670ml 녹인 후, 팔라듐 다이벤질리덴아세톤 3.05 g (3.33 mmol) 과 터셔리부틸인 2.7ml 를 적가한다. 반응용액을 질소기류하에서 12 시간 동안 110도로 가열하여 교반하였다. 반응 종결 후 반응물에 메탄올을 부어 생기는 고형물을 필터 한 다음, 고형물을 다시 클로로벤젠에 녹여 활성탄 과 무수황산마그네슘을 넣어 교반한다. 용액을 필터한 다음 클로로벤젠과 메탄올을 이용해 재결정 하여 화합물 C-24을 38 g (수율 67%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 857.01 을 확인하였다.
실시예 6: 화학식 C-36의 제조
[반응식 6]
Figure PCTKR2012011433-appb-I000131
Figure PCTKR2012011433-appb-I000132
제 1 단계 : 화학식 (L) 의 합성
3,6-다이브로모카바졸 60.74 g(186.9 mmol), 2-(4,4,5,5-테트라메틸-[1,3,2]다이옥사보롤란-2-일)-디벤조티오펜 63.73 g(205.6 mmol) 및 테트라키스트라이페닐포스피노팔라듐 10.8 (9.35 mmol) 을 2M 탄산칼륨 수용액 400 ml와 테트라하이드로퓨란 500ml에 현탁하여, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 분리하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (L) 57 g (수율 71%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 428.34 를 확인하였다.
제 2 단계 : 화학식 (M) 의 합성
화학식 (L) 34.78 g(81.2 mmol), 2,4-다이페닐-6-[3-(4,4,5,5-테트라메틸-[1,3,2]다이옥사보롤란-2-일)-페닐]-[1,3,5]-트리아진 38.88 g(89.3 mmol) 및 테트라키스트라이페닐포스피노팔라듐 4.7 (4.06 mmol) 을 2M 탄산칼륨 수용액 150 ml와 테트라하이드로퓨란 250ml에 현탁하여, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 분리하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (M) 35 g (수율 66%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 656.80 을 확인하였다.
제 3 단계 : 화학식 C-36 의 합성
질소 분위기의 교반기가 부착된 1000 mL 둥근바닥 플라스크에서 화합물 (M)으로 표시되는 화합물 32.14 g(48.95 mmol), 4-(3-브로모페닐)-2,6-다이페틸피리미딘 17.23 g(44.5 mmol) 및 터셔리부톡시나트륨 8.55 g (88.99 mmol)을 톨루엔 450ml에 녹인 후, 팔라듐 다이벤질리덴아세톤 2.03 g (2.22 mmol) 과 터셔리부틸인 1.8 ml 를 적가한다. 반응용액을 질소기류하에서 12 시간 동안 110도로 가열하여 교반하였다. 반응 종결 후 반응물에 메탄올을 부어 생기는 고형물을 필터 한 다음, 고형물을 다시 클로로벤젠에 녹여 활성탄 과 무수황산마그네슘을 넣어 교반한다. 용액을 필터한 다음 클로로벤젠과 메탄올을 이용해 재결정 하여 화합물 C-39를 31 g (수율 72%)을 수득하였다.
LC-Mass로 합성된 A1의 [M+H]+ 분자량 963.16 을 확인하였다.
(유기발광소자의 제조)
실시예 7: 유기광정소자의 제조
ITO (Indium tin oxide)가 1500Å의 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송 시킨 다음 산소 플라즈마를 이용하여 상기 기판을 5분간 세정 한 후 진공 층착기로 기판을 이송하였다. 이렇게 준비된 ITO 투명 전극을 양극으로 사용하여 ITO 기판 상부에 HTM (하기 화학식 참조) 을 진공 증착하여 1200Å두께의 정공 주입층을 형성하였다.
[HTM]
Figure PCTKR2012011433-appb-I000133
……
상기 정공 수송층 상부에 실시예 1에서 합성된 물질을 호스트로 사용하고 인광 Green 도판트로 PhGD (하기 화학식 참조)를 7중량%로 도핑하여 진공 증착으로 300Å 두께의 발광층을 형성하였다.
[PhGD]
Figure PCTKR2012011433-appb-I000134
그 후 상기 발광층 상부에 BAlq [Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum] 50Å 및 Alq3 [Tris(8-hydroxyquinolinato)aluminium] 250Å 를 순차적으로 적층하여 전자수송층을 형성하였다. 상기 전자수송층 상부에 LiF 5Å과 Al 1000Å을 순차적으로 진공 증착하여 음극을 형성함으로써 유기발광소자를 제조하였다.
[Balq] [Alq3]
Figure PCTKR2012011433-appb-I000135
실시예 8 내지 실시예 12
상기 실시예 7에서, 실시예 1(A-6) 대신 실시예 2 내지 실시예 6을 각각 사용한 점을 제외하고는 동일한 방법으로 유기발광소자를 제조하였다.
비교예 1
상기 실시예 7에서, 실시예 1(A-6) 대신 화합물 R1을 호스트로 사용한 점을 제외하고는 동일한 방법으로 유기발광소자를 제조하였다.
[R-1]
Figure PCTKR2012011433-appb-I000136
(유기발광소자의 성능 측정)
상기 실시예 7 내지 12 및 비교예 1에서 제조된 각각의 유기발광소자에 대하여 전압에 따른 전류밀도 변화, 휘도변화 및 발광효율을 측정하였다.
(1) 전압변화에 따른 전류밀도의 변화 측정
제조된 유기발광소자에 대해, 전압을 0 V 부터 10 V까지 상승시키면서 전류-전압계(Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압변화에 따른 휘도변화 측정
제조된 유기발광소자에 대해, 전압을 0 V 부터 10 V까지 상승시키면서 휘도계(Minolta Cs-1000A)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기(1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류밀도(10 mA/cm2)의 전류 효율(cd/A) 을 계산하였다.
아래 표 1 에 소자평가 결과를 정리하였다.
표 1
분 류 호스트 초기전압(Vd) 전류효율(cd/A) 전력효율(lm/W) 휘도(cd/m2) 색좌표(CIEx) 색좌표(CIEy)
비교예 1 R1 6.90 49.53 23.07 3000 0.333 0.623
실시예 7 A-6 3.79 53.6 44.4 3000 0.358 0.615
실시예 8 A-9 3.93 56.8 45.5 3000 0.366 0.609
실시예 9 B-18 3.84 55.6 45.6 3000 0.346 0.618
실시예 10 B-45 4.01 57.8 45.3 3000 0.357 0.611
실시예 11 C-24 4.07 59.0 45.6 3000 0.356 0.615
실시예 12 C-36 4.07 59.6 46.0 3000 0.368 0.607
비교물질인 R1을 발광층의 호스트로 적용했을 때에 비하여, A-6, A-9, B-18, B-45, C-24 및 C-36 을 호스트로 사용했을 때, 소자의 효율이 향상되고 구동전압이 낮아지는 것을 확인하였다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (18)

  1. 하기 화학식 1로 표시되는 유기광전자소자용 화합물:
    [화학식 1]
    Figure PCTKR2012011433-appb-I000137
    상기 화학식 1에서,
    L은 하기 화학식 2 내지 4 중 어느 하나인고,
    L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    n2 및 n3은 0 내지 3의 정수 중 어느 하나이고,
    m2 및 m3는 1이다:
    [화학식 2] [화학식 3] [화학식 4]
    Figure PCTKR2012011433-appb-I000138
    Figure PCTKR2012011433-appb-I000139
    Figure PCTKR2012011433-appb-I000140
    상기 화학식 2 내지 4에서,
    양 말단의 *는 각각 상기 화학식 1에서 L2 및 L3과의 연결 위치를 나타내고,
    R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    n1은 0 내지 3 중 어느 하나의 정수이고,
    Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고,
    m1은 0 또는 1이다.
  2. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 하기 화학식 5로 표시되는 것인 유기광전자소자용 화합물:
    [화학식 5]
    Figure PCTKR2012011433-appb-I000141
    상기 화학식 5에서,
    L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    n2 및 n3은 0 내지 3의 정수 중 어느 하나이고,
    m2 및 m3는 1이고,
    R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    n1은 0 내지 3 중 어느 하나의 정수이고,
    Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고,
    m1은 0 또는 1이다.
  3. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 하기 화학식 6으로 표시되는 것인 유기광전자소자용 화합물:
    [화학식 6]
    Figure PCTKR2012011433-appb-I000142
    상기 화학식 6에서,
    L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    n2 및 n3은 0 내지 3의 정수 중 어느 하나이고,
    m2 및 m3는 1이고,
    R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    n1은 0 내지 3 중 어느 하나의 정수이고,
    Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고,
    m1은 0 또는 1이다.
  4. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 하기 화학식 7로 표시되는 것인 유기광전자소자용 화합물:
    [화학식 7]
    Figure PCTKR2012011433-appb-I000143
    상기 화학식 7에서,
    L2 및 L3은 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    Ar2 및 Ar3은 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C36 아릴기 또는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    Ar2 및 Ar3 중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    n2 및 n3은 0 내지 3의 정수 중 어느 하나이고,
    m2 및 m3는 1이고,
    R1 및 R2는 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    L1 은 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    n1은 0 내지 3 중 어느 하나의 정수이고,
    Ar1은 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C30 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기이고,
    m1은 0 또는 1이다.
  5. 제1항에 있어서,
    상기 m1 및 n1은 0인 것인 유기광전자소자용 화합물.
  6. 제1항에 있어서,
    상기 Ar2 및 Ar3은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기인 것인 유기광전자소자용 화합물.
  7. 제1항에 있어서,
    상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 치환 또는 비치환된 이미다졸릴기, 치환 또는 비치환된 트리아졸릴기, 치환 또는 비치환된 테트라졸릴기, 치환 또는 비치환된 카바졸릴기, 치환 또는 비치환된 옥사다이아졸릴기, 치환 또는 비치환된 옥사트리아졸릴기, 치환 또는 비치환된 싸이아트리아졸릴기, 치환 또는 비치환된 벤즈이미다졸릴기, 치환 또는 비치환된 벤조트리아졸릴기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 퓨리닐기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 프탈라지닐기, 치환 또는 비치환된 나프피리디닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 페나지닐기 또는 이들의 조합인 것은 유기광전자소자용 화합물.
  8. 제1항에 있어서,
    상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 하기 화학식 8 내지 12 중 어느 하나로 표시되는 치환기인 것인 유기광전자소자용 화합물.
    [화학식 8] [화학식 9]
    Figure PCTKR2012011433-appb-I000144
    Figure PCTKR2012011433-appb-I000145
    [화학식 10] [화학식 11]
    Figure PCTKR2012011433-appb-I000146
    Figure PCTKR2012011433-appb-I000147
    [화학식 12]
    Figure PCTKR2012011433-appb-I000148
  9. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 하기 화학식 A-1 내지 A-48 중 어느 하나로 표시되는 것인 유기광전자소자용 화합물.
    [화학식 A-1] [화학식 A-2] [화학식 A-3]
    Figure PCTKR2012011433-appb-I000149
    [화학식 A-4] [화학식 A-5] [화학식 A-6]
    Figure PCTKR2012011433-appb-I000150
    [화학식 A-7] [화학식 A-8] [화학식 A-9]
    Figure PCTKR2012011433-appb-I000151
    [화학식 A-10] [화학식 A-11] [화학식 A-12]
    Figure PCTKR2012011433-appb-I000152
    [화학식 A-10] [화학식 A-11] [화학식 A-12]
    Figure PCTKR2012011433-appb-I000153
    [화학식 A-13] [화학식 A-14] [화학식 A-15]
    Figure PCTKR2012011433-appb-I000154
    [화학식 A-16] [화학식 A-17] [화학식 A-18]
    Figure PCTKR2012011433-appb-I000155
    [화학식 A-19] [화학식 A-20] [화학식 A-21]
    Figure PCTKR2012011433-appb-I000156
    [화학식 A-22] [화학식 A-23] [화학식 A-24]
    Figure PCTKR2012011433-appb-I000157
    [화학식 A-25] [화학식 A-26] [화학식 A-27]
    Figure PCTKR2012011433-appb-I000158
    [화학식 A-28] [화학식 A-29] [화학식 A-30]
    Figure PCTKR2012011433-appb-I000159
    [화학식 A-31] [화학식 A-32] [화학식 A-33]
    Figure PCTKR2012011433-appb-I000160
    [화학식 A-34] [화학식 A-35] [화학식 A-36]
    Figure PCTKR2012011433-appb-I000161
    [화학식 A-37] [화학식 A-38] [화학식 A-39]
    Figure PCTKR2012011433-appb-I000162
    [화학식 A-40] [화학식 A-41] [화학식 A-42]
    Figure PCTKR2012011433-appb-I000163
    [화학식 A-43] [화학식 A-44] [화학식 A-45]
    Figure PCTKR2012011433-appb-I000164
    [화학식 A-46] [화학식 A-47] [화학식 A-48]
    Figure PCTKR2012011433-appb-I000165
  10. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 하기 화학식 B-1 내지 B-48 중 어느 하나로 표시되는 것인 유기광전자소자용 화합물.
    [화학식 B-1] [화학식 B-2] [화학식 B-3]
    Figure PCTKR2012011433-appb-I000166
    [화학식 B-4] [화학식 B-5] [화학식 B-6]
    Figure PCTKR2012011433-appb-I000167
    [화학식 B-7] [화학식 B-8] [화학식 B-9]
    Figure PCTKR2012011433-appb-I000168
    [화학식 B-10] [화학식 B-11] [화학식 B-12]
    Figure PCTKR2012011433-appb-I000169
    [화학식 B-13] [화학식 B-14] [화학식 B-15]
    Figure PCTKR2012011433-appb-I000170
    [화학식 B-16] [화학식 B-17] [화학식 B-18]
    Figure PCTKR2012011433-appb-I000171
    [화학식 B-19] [화학식 B-20] [화학식 B-21]
    Figure PCTKR2012011433-appb-I000172
    [화학식 B-22] [화학식 B-23] [화학식 B-24]
    Figure PCTKR2012011433-appb-I000173
    [화학식 B-25] [화학식 B-26] [화학식 B-27]
    Figure PCTKR2012011433-appb-I000174
    [화학식 B-28] [화학식 B-29] [화학식 B-30]
    Figure PCTKR2012011433-appb-I000175
    [화학식 B-31] [화학식 B-32] [화학식 B-33]
    Figure PCTKR2012011433-appb-I000176
    [화학식 B-34] [화학식 B-35] [화학식 B-36]
    Figure PCTKR2012011433-appb-I000177
    [화학식 B-37] [화학식 B-38] [화학식 B-39]
    Figure PCTKR2012011433-appb-I000178
    [화학식 B-40] [화학식 B-41] [화학식 B-42]
    Figure PCTKR2012011433-appb-I000179
    [화학식 B-43] [화학식 B-44] [화학식 B-45]
    Figure PCTKR2012011433-appb-I000180
    [화학식 B-46] [화학식 B-47] [화학식 B-48]
    Figure PCTKR2012011433-appb-I000181
  11. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 하기 화학식 C-1 내지 C-48 중 어느 하나로 표시되는 것인 유기광전자소자용 화합물.
    [화학식 C-1] [화학식 C-2] [화학식 C-3]
    Figure PCTKR2012011433-appb-I000182
    [화학식 C-4] [화학식 C-5] [화학식 C-6]
    Figure PCTKR2012011433-appb-I000183
    [화학식 C-7] [화학식 C-8] [화학식 C-9]
    Figure PCTKR2012011433-appb-I000184
    [화학식 C-10] [화학식 C-11] [화학식 C-12]
    Figure PCTKR2012011433-appb-I000185
    [화학식 C-13] [화학식 C-14] [화학식 C-15]
    Figure PCTKR2012011433-appb-I000186
    [화학식 C-16] [화학식 C-17] [화학식 C-18]
    Figure PCTKR2012011433-appb-I000187
    [화학식 C-19] [화학식 C-20] [화학식 C-21]
    Figure PCTKR2012011433-appb-I000188
    [화학식 C-22] [화학식 C-23] [화학식 C-24]
    Figure PCTKR2012011433-appb-I000189
    [화학식 C-25] [화학식 C-26] [화학식 C-27]
    Figure PCTKR2012011433-appb-I000190
    [화학식 C-28] [화학식 C-29] [화학식 C-30]
    Figure PCTKR2012011433-appb-I000191
    [화학식 C-31] [화학식 C-32] [화학식 C-33]
    Figure PCTKR2012011433-appb-I000192
    [화학식 C-34] [화학식 C-35] [화학식 C-36]
    Figure PCTKR2012011433-appb-I000193
    [화학식 C-37] [화학식 C-38] [화학식 C-39]
    Figure PCTKR2012011433-appb-I000194
    [화학식 C-40] [화학식 C-41] [화학식 C-42]
    Figure PCTKR2012011433-appb-I000195
    [화학식 C-43] [화학식 C-44] [화학식 C-45]
    Figure PCTKR2012011433-appb-I000196
    [화학식 C-46] [화학식 C-47] [화학식 C-48]
    Figure PCTKR2012011433-appb-I000197
  12. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 3중항 여기에너지(T1) 2.0eV 이상인 것인 유기광전자소자용 화합물.
  13. 제1항에 있어서,
    상기 유기광전자소자는, 유기광전소자, 유기발광소자, 유기태양전지, 유기트랜지스터, 유기 감광체 드럼 및 유기메모리소자로 이루어진 군에서 선택되는 것인 유기광전자소자용 화합물.
  14. 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서,
    상기 유기박막층 중 적어도 어느 한 층은 상기 제1항 내지 제13항 중 어느 한 항에 따른 유기광전자소자용 화합물을 포함하는 것인 유기발광소자.
  15. 제14항에 있어서,
    상기 유기박막층은 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택되는 것인 유기발광소자.
  16. 제15항에 있어서,
    상기 유기광전자소자용 화합물은 발광층 내에 포함되는 것인 유기발광소자.
  17. 제16항에 있어서,
    상기 유기광전자소자용 화합물은 발광층 내에 인광 또는 형광 호스트 재료로서 사용되는 것인 유기발광소자.
  18. 제14항의 유기발광소자를 포함하는 표시장치.
PCT/KR2012/011433 2011-12-30 2012-12-26 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 WO2013100540A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0147389 2011-12-30
KR1020110147389A KR20130078437A (ko) 2011-12-30 2011-12-30 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Publications (1)

Publication Number Publication Date
WO2013100540A1 true WO2013100540A1 (ko) 2013-07-04

Family

ID=48697907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011433 WO2013100540A1 (ko) 2011-12-30 2012-12-26 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Country Status (2)

Country Link
KR (1) KR20130078437A (ko)
WO (1) WO2013100540A1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191177A1 (ja) * 2012-06-18 2013-12-27 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
JP2015006995A (ja) * 2012-06-18 2015-01-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
EP3015465A4 (en) * 2013-07-29 2016-11-23 Lg Chemical Ltd Heterocyclic compound and organic light-emitting device with it
EP3184522A1 (en) * 2015-12-22 2017-06-28 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the condensed cyclic compound, organic light-emitting device including the condensed cyclic compound, and method of manufacturing the organic light-emitting device
US9847501B2 (en) 2011-11-22 2017-12-19 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
EP3290411A1 (de) * 2016-08-29 2018-03-07 Cynora Gmbh Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
WO2018145995A3 (de) * 2017-02-07 2018-11-29 Cynora Gmbh Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
US10217954B2 (en) 2013-11-13 2019-02-26 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
WO2020099259A1 (de) * 2018-11-16 2020-05-22 Cynora Gmbh Carbazolderivate zur verwendung in optoelektronischen vorrichtungen
US10784446B2 (en) 2014-11-28 2020-09-22 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, organic electroluminescence element and electronic device
CN111808076A (zh) * 2019-04-12 2020-10-23 冠能光电材料(深圳)有限责任公司 一种电子传输空穴阻挡有机材料及其在薄膜发光二极管应用
US10991892B2 (en) 2012-07-23 2021-04-27 Merck Patent Gmbh Materials for organic electroluminescent devices
US11795161B2 (en) 2018-11-16 2023-10-24 Lg Chem, Ltd. Compound and organic light emitting device comprising same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101788094B1 (ko) 2014-01-09 2017-10-19 제일모직 주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
KR102587380B1 (ko) * 2015-12-10 2023-10-12 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020101439A1 (ko) * 2018-11-16 2020-05-22 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102555501B1 (ko) * 2020-05-11 2023-07-12 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057706A2 (de) * 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
KR20110066494A (ko) * 2009-12-11 2011-06-17 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20110075690A (ko) * 2009-12-28 2011-07-06 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011132683A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057706A2 (de) * 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
KR20110066494A (ko) * 2009-12-11 2011-06-17 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20110075690A (ko) * 2009-12-28 2011-07-06 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011132683A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847501B2 (en) 2011-11-22 2017-12-19 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
JP2015006995A (ja) * 2012-06-18 2015-01-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
WO2013191177A1 (ja) * 2012-06-18 2013-12-27 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
US12022732B2 (en) 2012-07-23 2024-06-25 Merck Patent Gmbh Materials for organic electroluminescent devices
US10991892B2 (en) 2012-07-23 2021-04-27 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3015465A4 (en) * 2013-07-29 2016-11-23 Lg Chemical Ltd Heterocyclic compound and organic light-emitting device with it
US10253016B2 (en) 2013-07-29 2019-04-09 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting device comprising same
US11111231B2 (en) 2013-07-29 2021-09-07 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting device comprising same
US10217954B2 (en) 2013-11-13 2019-02-26 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US10784446B2 (en) 2014-11-28 2020-09-22 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, organic electroluminescence element and electronic device
EP3184522A1 (en) * 2015-12-22 2017-06-28 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the condensed cyclic compound, organic light-emitting device including the condensed cyclic compound, and method of manufacturing the organic light-emitting device
US10597403B2 (en) 2015-12-22 2020-03-24 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the condensed cyclic compound, organic light-emitting device including the condensed cyclic compound, and method of manufacturing the organic light-emitting device
EP3290411A1 (de) * 2016-08-29 2018-03-07 Cynora Gmbh Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
CN110249031A (zh) * 2017-02-07 2019-09-17 辛诺拉有限公司 特别用于有机光电器件的有机分子
US11456426B2 (en) 2017-02-07 2022-09-27 Samsung Display Co., Ltd. Organic molecules for use in organic optoelectronic devices
CN110249031B (zh) * 2017-02-07 2023-12-05 三星显示有限公司 特别用于有机光电器件的有机分子
WO2018145995A3 (de) * 2017-02-07 2018-11-29 Cynora Gmbh Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
WO2020099259A1 (de) * 2018-11-16 2020-05-22 Cynora Gmbh Carbazolderivate zur verwendung in optoelektronischen vorrichtungen
CN113015727A (zh) * 2018-11-16 2021-06-22 辛诺拉有限公司 用于光电器件的咔唑衍生物
US11795161B2 (en) 2018-11-16 2023-10-24 Lg Chem, Ltd. Compound and organic light emitting device comprising same
CN111808076A (zh) * 2019-04-12 2020-10-23 冠能光电材料(深圳)有限责任公司 一种电子传输空穴阻挡有机材料及其在薄膜发光二极管应用

Also Published As

Publication number Publication date
KR20130078437A (ko) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2013100540A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2011139055A2 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013100538A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012077902A2 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014058124A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013100539A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013094951A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013100467A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2019164327A1 (ko) 유기 발광 소자
WO2019168367A1 (ko) 유기 발광 소자
WO2013100465A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013089424A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014058123A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013095039A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012091225A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012074195A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2019135665A1 (ko) 유기 발광 소자
WO2013191429A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2013022145A1 (ko) 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
EP2663609A1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2011081290A4 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2020166873A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2013027906A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2020166875A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020022771A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861309

Country of ref document: EP

Kind code of ref document: A1