WO2013100264A1 - 바이오 센서 및 그 제조방법 - Google Patents

바이오 센서 및 그 제조방법 Download PDF

Info

Publication number
WO2013100264A1
WO2013100264A1 PCT/KR2012/002444 KR2012002444W WO2013100264A1 WO 2013100264 A1 WO2013100264 A1 WO 2013100264A1 KR 2012002444 W KR2012002444 W KR 2012002444W WO 2013100264 A1 WO2013100264 A1 WO 2013100264A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
carbon
wire
photoresist
electrode region
Prior art date
Application number
PCT/KR2012/002444
Other languages
English (en)
French (fr)
Inventor
신흥주
허정일
임영진
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Priority to US14/369,199 priority Critical patent/US9671360B2/en
Publication of WO2013100264A1 publication Critical patent/WO2013100264A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies

Definitions

  • the present invention relates to a biosensor and a method for manufacturing the same, and more particularly, to a biosensor for sensing a specific biomaterial through a superposed carbon micro / nanostructure and a method for manufacturing the same.
  • electrochemical sensors or optical sensors are mainly used for bio sensing.
  • the optical sensor has a disadvantage in that the reaction speed is faster than other sensors, and the sensitivity is high, but the size is large, so that space utilization is inferior and inconvenient to use.
  • the disadvantage of the optical sensor can be overcome by using an electrochemical sensor, which measures the current flowing to an external circuit by electrochemically oxidizing or reducing a target material, or a gas dissolved or ionized in an electrolyte solution or a solid. It uses the electromotive force generated by the ions of the phase acting on the ion electrode, which is small in size, but has a very slow reaction speed and low sensitivity.
  • an electrochemical sensor for measuring the concentration of an analyte is placed in a reaction zone in an electrochemical cell including two electrodes having an impedance for proper current measurement. Measure the concentration of the component to be analyzed.
  • the component to be analyzed reacts directly or indirectly with the redox agent to form an oxidizable or reducible substance in an amount corresponding to the concentration of the component to be analyzed.
  • the amount of oxidizable or reducible material present is then measured electrochemically.
  • the method requires sufficient isolation between the electrodes so that the electrolysis product does not touch other electrodes and does not interfere with the reaction at the next electrode while it is measurable, and the manufacturing cost is expensive and the manufacturing process is complicated.
  • An object of the present invention is to provide a biosensor and a method of manufacturing the same, by improving the structure of the biosensor, reducing its size and improving the sensing sensitivity of the sensor.
  • the present invention can freely control the shape, number, structure, etc. of the carbon micro / nanowires, the production cost of the nano-wire-based sensor is low, the production cost of the biosensor manufacturing method that can significantly increase productivity and significantly increase the productivity
  • the purpose is to provide a biosensor used.
  • a biosensor manufacturing method includes: (a) forming an insulating layer on an electrode region including a first electrode region and a plurality of second electrode regions on an upper side of a substrate; (b) coating a primary photoresist on the insulating layer; (c) first exposing the first electrode region through a first photomask; (d) developing and removing the remaining portions except the first electrode region; (e) coating a second photoresist on the first electrode region and the insulating layer after step (d); (f) secondarily exposing the second electrode region through a secondary photomask; (g) tertiary exposure of the photoresist between the second electrode regions in the form of a micro sized wire connecting the second electrode regions through a photomask in the form of a wire; (h) developing and removing the photoresist in the remaining portions except the portions exposed in the steps (c), (f) and (g); And (i) pyrolyzing the first and second electrode regions and the wire to form a carbon electrode
  • the method provides a biosensor with overlapping carbon nanostructures with improved sensitivity and reduced size and volume.
  • the first electrode region may be formed under the wire connecting the second electrode region.
  • the first electrode region thus formed may serve as an anode, and the second electrode region and carbon wire may serve as a cathode.
  • the first electrode region may serve as a reduction electrode, and the second electrode region and carbon wire may serve as an anode.
  • the carbon wire may be formed in a mesh shape or a honey comb shape. Since the oxidation and reduction reactions of the biomaterial repeatedly occur between the carbon wire and the secondary electrode and the primary electrode formed as described above, the sensitivity of the biosensor may be improved.
  • the width of the carbon wire may be 30 nm to 900 ⁇ m
  • the height from the substrate may be 100 nm to 900 ⁇ m
  • the length may be 1 ⁇ m to 900 ⁇ m.
  • the carbon wire may be formed through the pyrolysis process in step (i), and the volume of the photoresist is reduced through the pyrolysis process. Therefore, the photoresist wire structure in micro units is converted into carbon wires of various sizes according to the time, temperature, heating rate, cooling rate, gas, etc. of the pyrolysis process.
  • the biosensor manufacturing method comprises the steps of (a) preparing a substrate comprising a first electrode region, a plurality of second electrode regions, made of an insulating material; (b) coating a primary photoresist on the substrate; (c) first exposing the first electrode region through a first photomask; (d) developing and removing the remaining portions except the first electrode region; (e) coating a second photoresist on the first electrode region and the substrate after step (d); (f) secondarily exposing the second electrode region through a secondary photomask; (g) tertiary exposure of the photoresist between the second electrode regions in the form of a micro sized wire connecting the second electrode regions through a photomask in the form of a wire; (h) developing and removing the photoresist in the remaining portions except the portions exposed in the steps (c), (f) and (g); And (i) pyrolyzing the first and second electrode regions and the wire to form a carbon electrode and
  • the present invention is the first carbon electrode portion provided on the silicon substrate; A second carbon electrode part spaced apart from the first carbon electrode part by a predetermined interval and provided along an outer periphery of the first carbon electrode part; And a carbon wire connected to an upper portion of the second carbon electrode portion, and provided on an upper portion of the first carbon electrode portion.
  • the configuration reduces the size of the sensor and improves the sensing sensitivity.
  • the biosensor according to the present invention and its manufacturing method have the following effects.
  • the carbon wire and the carbon electrode in the overlapped form can be produced in a simple low-cost batch process through the first and second to third exposure and development removal process.
  • the carbon wire is formed in an overlapping type, the efficiency of the repeated reaction of the oxidation and reduction reactions of the biomaterial may be increased, thereby improving the sensitivity of the biosensor.
  • the redox material can be smoothly supplied to the electrode region through the empty space between the carbon wires.
  • the shape of the carbon wire is determined by the shape of the photomask, the amount of exposure energy, and the pyrolysis process, and the gap between the carbon wire and the substrate is determined by the height of the photoresist and the pyrolysis process.
  • the structure can be freely formed.
  • the carbon electrode-based sensor manufactured by the present method may be widely used for sensing not only biomaterials but also oxidizable and reducible materials.
  • the carbon structure is formed by reducing the volume during the thermal decomposition of the photoresist, the volume of the upper end portion of the second carbon electrode may be reduced so that tension may be applied to the carbon wire connecting both ends of the second carbon electrode portion. This tension can prevent the carbon wire from collapsing or adhering to the substrate due to the surface tension that occurs when the carbon wire is used in the liquid phase.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a biosensor according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a process of manufacturing the biosensor of FIG. 1.
  • FIG. 3 is an enlarged view of the biosensor of FIG. 1.
  • FIG. 4 is a diagram illustrating a biosensor according to the thermal decomposition conditions of FIG. 1.
  • FIG. 1 is a flowchart illustrating a biosensor manufacturing method according to an exemplary embodiment of the present invention
  • FIG. 2 is a diagram illustrating a biosensor manufacturing method process of FIG. 1
  • FIG. 3 is a superposed carbon micro / nano structure of FIG. 1.
  • 4 is an enlarged view of a biosensor
  • FIG. 4 is a diagram illustrating before and after pyrolysis of a biosensor having a superposed carbon micro / nano structure.
  • an insulating layer is formed in an electrode region including a first electrode region and a plurality of second electrode regions on an upper side of a silicon substrate.
  • Step S110 coating a first photoresist on the insulating layer (S120), first exposing the first electrode region through a first photomask (S130), except for the first electrode region.
  • the primary insulating layer 120 is formed on the entire upper surface of the silicon substrate 110.
  • the primary insulating layer is made of an insulating material such as silicon dioxide or silicon nitride.
  • a substrate made of a silicon material is used, but as long as the material can form an insulating layer on the substrate, it is also possible to use a substrate formed of a material other than the silicon material.
  • the insulating layer is formed on the silicon substrate, but the step of forming the insulating layer may be omitted and the substrate material may be formed of an insulating material.
  • a first coating step (S120) is performed on the insulating side 120 using photoresist. Thereafter, the primary exposure is performed to form the first electrode region by exposing the photoresist 130 to ultraviolet rays through the primary photomask (S130).
  • the first electrode region 135 may be formed by curing the photoresist in the shape of an electrode on the primary insulation. In this case, the exposed light energy should be sufficient to allow the photoresist to cure from the top of the photoresist to just above the primary insulating layer.
  • the remaining portions except for the first electrode region may be developed and removed (S140).
  • the second photoresist 140 may be coated on the first electrode region and the second electrode region (S150).
  • the second electrode region is secondarily exposed through the secondary photomask to form a second electrode region (S160).
  • the energy of ultraviolet light absorbed by the photoresist in the second exposure step S160 should be sufficient to be cured from the top of the photoresist 140 to just above the primary insulating layer.
  • tertiary exposure of the upper photoresist between the second electrode regions in the form of a micro sized wire connecting the second electrode regions through a photomask in the form of a wire (S170).
  • Perform The third exposure allows only the top of the photoresist to be cured with less energy than the first and second exposures.
  • a portion of the photoresist connecting the second electrode region 145 is cured into a wire shape through the third exposure to form a micro photoresist wire 150 connecting the second electrode region.
  • the first electrode region 135 may be formed under the wire 150 connecting the second electrode region 145, and the first electrode region 135 and the wire 150 may be spaced apart from each other by a predetermined interval. Can be formed.
  • the step of developing and removing the photoresist except for the portion exposed in the first and second to third exposure step is performed (S180), and the first and second to third
  • the photoresist of the unexposed portion is developed and removed in the next exposure step
  • the photoresist is developed and removed in the region between the first electrode region and the wire 150 (S180).
  • the photoresist may be a negative photoresist including a SU-8 photoresist in the first and second to third exposure steps, and the present invention is limited or limited by the type of photoresist. It doesn't happen.
  • the first electrode region 135, the second electrode region 145, and the wire 150 may be formed of a carbon structure having a micro or nano size through pyrolysis (S190). To this end, it can be pyrolyzed at high temperatures of 800 ° C or higher in a vacuum or inert gas environment. Through the pyrolysis, the first electrode region 135, the second electrode region 145, and the wire 150 are formed of the carbon wire 250, the first carbon electrode portion 230, and the first carbon electrode portion ( The second carbon electrode unit 240 may accommodate the second carbon electrode unit 240.
  • the biosensor formed by the biosensor manufacturing method includes a first carbon electrode unit 230, a second carbon electrode unit 240, and a carbon wire 250.
  • the biosensor formed through pyrolysis may have a width of 30 nm to 10 ⁇ m, a height from a substrate of 100 nm to 10 ⁇ m, and a length of 1 ⁇ m to 900 ⁇ m.
  • the volume of the wire may be reduced, thereby reducing the size of the photoresist wire to nanometers.
  • the carbon wire 250 may be formed in a mesh shape or a honey comb shape. As the carbon wire 250 is formed in a mesh or honeycomb shape as described above, the supply of the biomaterial to the first carbon electrode part 230 and the second carbon electrode part is facilitated, and the area of the redox reaction is increased. Increasing the efficiency of the redox repeat reaction can increase the sensitivity of the biosensor.
  • the carbon wire 250 and the second carbon electrode portion 240 may act as an oxidation electrode for oxidizing the biomaterial, and the first carbon electrode portion 230 may serve as a reduction electrode for reducing the biomaterial. have.
  • the carbon wire 250 and the second carbon electrode unit 240 may serve as a reduction electrode for reducing the biomaterial, and the first carbon electrode unit 230 may also serve as an oxidation electrode for oxidizing the biomaterial. .
  • the carbon wire structure is formed due to the volume reduction through thermal decomposition of the micro-unit photoresist, it is possible to produce the nanostructure at low cost without expensive nanoprocessing equipment.
  • the shape of the carbon structure may be changed according to the thermal decomposition conditions in the pyrolysis process. That is, referring to FIG. 4, if the interval between the carbon wires 250 forming a diagonal line is 2 ⁇ , the shape of the final carbon wire may be changed according to the change of the interval of ⁇ according to the thermal decomposition condition.
  • may be between 10 ° and 70 °, and as the size of ⁇ increases, the shape of the mesh may be closer to a circle.
  • the oxidation and reduction of the biomaterial is controlled to adjust the sensitivity of the biosensor, and the oxidation and reduction are repeated by adjusting the gap between the carbon wire and the first carbon electrode part. You can choose to increase or decrease the number of repetitions of the reaction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 발명은, (a) 전극영역에 절연층을 형성하는 단계; (b) 상기 절연층 상에 1차 포토레지스트를 코팅하는 단계; (c) 1차 포토마스크를 통하여 상기 제1 전극영역을 1차 노광하는 단계; (d) 상기 제1 전극영역을 제외한 나머지 부분을 현상하여 제거하는 단계; (e) 상기 (d) 단계 후 상기 1차 전극영역 및 상기 절연층 상부에 2차 포토레지스트를 코팅하는 단계; (f) 상기 제2 전극영역을 2차 포토마스크를 통하여 2차 노광하는 단계; (g) 상기 제2 전극영역 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 제2 전극영역을 연결하는 마이크로 사이즈의 와이어 형태로 3차 노광하는 단계; (h) 상기 (c), (f) 및 (g) 단계에 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 제거하는 단계; 및 (i) 상기 1차 및 제2 전극영역 및 상기 와이어를 열분해하여 메시(mesh)형상으로 중첩된 탄소 전극과 탄소 와이어를 형성하는 단계를 포함하는 바이오 센서 제조 방법이 개시된다. 상기 방법에 의하여 감지성이 향상되고, 크기 및 부피가 감소된 중첩형 탄소 마이크로/나노구조의 바이오 센서가 제공된다.

Description

바이오 센서 및 그 제조방법
본 발명은 바이오 센서 및 그 제조 방법에 관한 것으로서, 보다 자세하게는 중첩형 탄소 마이크로/나노구조를 통하여 특정 바이오 물질을 센싱하는 바이오 센서 및 그 제조 방법에 관한 것이다.
최근 환경문제에 대한 관심 증가와 정보통신 기기의 발전과 더불어 다양한 바이오 물질에 대한 센서가 개발되고 있는 가운데 반도체 기술을 접목함으로써 제조가 간편해지고 그 성능이 향상되고 있다. 모든 센서는 성능 향상을 위하여 감지도를 높이는 것이 최대 목표이며, 이러한 목표를 달성하기 위한 노력도 증가되고 있다.
한편, 바이오 센싱에는 전기화학적 센서 또는 광 센서가 주로 사용되어지고 있다.
상기 광 센서는, 여타의 센서에 비하여 반응 속도가 빠르고, 그 감지도도 높은 편이나 크기가 큰 편이어서 공간 활용성이 떨어지고 사용에 불편함에 있다는 단점이 있다.
상기 광 센서의 단점은 전기화학적 센서를 사용하여 극복할 수 있는데, 상기 전기화학적 센서는 대상 물질을 전기화학적으로 산화 또는 환원하여 외부 회로에 흐를 전류를 측정하거나 전해질 용액이나 고체에 용해 또는 이온화한 가스 상의 이온이 이온 전극에 작용하여 생기는 기전력을 이용하는 것으로 이는 그 크기는 작으나, 매우 느린 반응속도를 나타냄과 더불어 감도가 낮다는 단점이 있다.
즉 한국등록특허 제0741187호에 따르면, 분석물의 농도를 측정하는 전기화학 센서는 전류 측정을 적절하도록 하는 임피던스를 가진 두 개의 전극을 포함하는 전기화학 셀에서 반응영역에 샘플을 놓음으로써 수성 액체 샘플 중 분석하고자 하는 성분의 농도를 측정한다. 상기 분석하고자 하는 성분은 산화환원제와 직접 또는 간접적으로 반응하여 분석할 성분의 농도에 상응하는 양으로 산화 또는 환원 가능한 물질을 형성한다. 이어서, 존재하는 산화 또는 환원 가능한 물질의 양은 전기화학적으로 측정된다. 일반적으로 상기 방법은 전기분해 생성물이 다른 전극에 닿지 못하고 측정 가능한 동안에는 다음 전극에서 반응을 간섭하지 못하도록 전극간의 충분한 격리를 요구하고, 그 제조 원가가 고가인데다 제조 공정이 복잡하다는 문제점이 있다.
본 발명은 바이오 센서의 구조를 개선하여 크기를 감소시킴과 동시에 센서의 센싱 감도를 향상시킨 바이오 센서 및 그 제조 방법을 제공하는데 그 목적이 있다.
본 발명은 탄소 마이크로/나노 와이어의 위치, 개수, 구조 등의 형태를 자유롭게 제어할 수 있으며, 나노 와이어 기반의 센서의 생산 비용이 적으며 생산성을 획기적으로 높여 대량생산이 가능한 바이오 센서 제조 방법 및 이를 이용한 바이오 센서를 제공하는데 그 목적이 있다.
본 발명에 따른 바이오 센서 제조 방법은, (a) 기판 상측의 제1 전극영역 및 복수의 제2 전극영역을 포함하는 전극영역에 절연층을 형성하는 단계; (b) 상기 절연층 상에 1차 포토레지스트를 코팅하는 단계; (c) 1차 포토마스크를 통하여 상기 제1 전극영역을 1차 노광하는 단계; (d) 상기 제1 전극영역을 제외한 나머지 부분을 현상하여 제거하는 단계; (e) 상기 (d) 단계 후 상기 제1 전극영역 및 상기 절연층 상부에 2차 포토레지스트를 코팅하는 단계; (f) 상기 제2 전극영역을 2차 포토마스크를 통하여 2차 노광하는 단계; (g) 상기 제2 전극영역 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 제2 전극영역을 연결하는 마이크로 사이즈의 와이어 형태로 3차 노광하는 단계; (h) 상기 (c), (f) 및 (g) 단계에 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 제거하는 단계; 및 (i) 상기 제1 및 제2 전극영역 및 상기 와이어를 열분해하여 탄소 전극과 탄소 와이어를 형성하는 단계를 포함한다.
상기 방법에 의하여 감지성이 향상되고, 크기 및 부피가 감소된 중첩형 탄소 나노구조의 바이오 센서가 제공된다.
상기 (g) 단계는, 상기 제1 전극영역은 상기 제2 전극영역을 연결하는 상기 와이어 하부에 형성될 수 있다. 이렇게 형성된 제1 전극영역은 산화전극으로의 역할을 할 수 있으며, 제2 전극영역 및 탄소와이어는 환원전극으로의 역할을 할 수 있다. 또는 제 1 전극영역이 환원전극으로, 제 2 전극 영역 및 탄소와이어는 산화전극으로의 역할을 할 수도 있다.
또한, 상기 (i) 단계에서 상기 탄소 와이어는 메시(mesh)형상 또는 허니콤(honey comb)형상으로 형성될 수 있다. 이와 같이 형성된 탄소와이어 및 2차 전극과 1차 전극 사이에서 바이오 물질의 산화 및 환원 반응이 반복해서 일어나기 때문에 바이오 센서의 감지도가 향상될 수 있다.
상기 (i) 단계에서 상기 탄소 와이어의 폭은 30nm ~ 900㎛이고, 기판으로부터의 높이는 100nm ~ 900㎛이며, 길이는 1 ㎛ ~ 900㎛으로 형성될 수 있다. 이때, 상기 (i) 단계에서 열분해 공정을 통해 상기 탄소 와이어가 형성될 수 있으며, 상기 열분해 공정을 통하여 포토레지스트의 부피가 감소하게 된다. 따라서 열분해 공정의 시간, 온도, 가열속도, 냉각속도, 가스 등의 조건에 따라 마이크로 단위의 포토레지스트 와이어 구조가 다양한 크기의 탄소 와이어로 변환되게 된다.
한편, 본 발명의 다른 실시예에 따른 바이오 센서 제조 방법은 (a) 제1 전극영역, 복수의 제2 전극영역을 포함하며, 절연 물질로 이루어진 기판을 준비하는 단계; (b) 상기 기판 상에 1차 포토레지스트를 코팅하는 단계; (c) 1차 포토마스크를 통하여 상기 제1 전극영역을 1차 노광하는 단계; (d) 상기 제1 전극영역을 제외한 나머지 부분을 현상하여 제거하는 단계; (e) 상기 (d) 단계 후 상기 제1 전극영역 및 상기 기판 상부에 2차 포토레지스트를 코팅하는 단계; (f) 상기 제2 전극영역을 2차 포토마스크를 통하여 2차 노광하는 단계; (g) 상기 제2 전극영역 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 제2 전극영역을 연결하는 마이크로 사이즈의 와이어 형태로 3차 노광하는 단계; (h) 상기 (c), (f) 및 (g) 단계에 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 제거하는 단계; 및 (i) 상기 제1 및 제2 전극영역 및 상기 와이어를 열분해하여 탄소 전극과 탄소 와이어를 형성하는 단계를 포함한다. 상기와 같이 기판을 절연 물질로 이루어짐에 따라 별도로 절연층을 형성하지 않아도 된다.
한편, 다른 한편으로 본 발명은 실리콘 기판 상측에 구비되는 제1탄소 전극부; 상기 제1탄소 전극부와 소정 간격 이격되되 제1탄소 전극부의 외주변을 따라 구비되는 제2탄소 전극부; 및 상기 제2탄소 전극부 상부를 연결하되 상기 제1탄소 전극부 상부에 구비되는 탄소 와이어를 포함한다. 상기 구성에 의하여 센서의 크기를 감소시키고 센싱 감도를 향상시키게 된다.
본 발명에 따른 바이오 센서 및 그 제조 방법은 다음과 같은 효과를 가진다.
첫째, 중첩 형태의 탄소 와이어 및 탄소 전극을 1차 및 2차 내지 3차 노광 공정과 현상 제거 과정을 통해 간단하게 저 비용의 일괄 공정으로 생산할 수 있다.
둘째, 탄소 와이어가 중첩형으로 형성되기 때문에 바이오 물질의 산화 및 환원 반응의 반복 반응의 효율이 증가하여 바이오 센서의 감도가 향상될 수 있다.
셋째, 탄소 와이어의 형태가 선형, 메시(mesh)형상 또는 허니콤(honey comb)을 띄고 있어 탄소 와이어 사이의 빈 공간을 통하여 산화환원이 가능한 물질이 전극 영역으로 원활하게 공급될 수 있다.
넷째, 탄소 와이어의 형태가 포토마스크의 모양과 노광 에너지의 양, 그리고 열분해 공정에 의하여 결정되며 탄소 와이어와 기판 사이의 간격은 포토레지스트의 높이와 열분해 공정에 의해 결정되므로 다양한 형태의 중첩형 탄소 와이어 구조를 자유롭게 형성할 수 있다.
다섯째, 탄소 와이어 구조가 마이크로 단위의 포토레지스트의 열분해를 통한 부피 감소로 인하여 형성되므로 고가의 나노공정 장비 없이 저비용으로 나노 구조체를 생산할 수 있다.
여섯째, 본 제조방법으로 제조되는 탄소 전극 기반 센서는 바이오 물질뿐만 아니라 산화 및 환원이 가능한 물질에 대한 센싱에 광범위하게 사용될 수 있다.
일곱째, 탄소 구조가 포토레지스트의 열분해 과정에서 부피가 감소되어 형성되므로 제2 탄소 전극의 상단부의 부피가 감소하여 제 2 탄소 전극부 양단을 연결하는 탄소 와이어에 장력이 작용할 수 있다. 이러한 장력은 탄소 와이어가 액상에서 사용될 때 발생하는 표면장력으로 인한 탄소 와이어의 기판으로의 붕괴 또는 접착을 방지할 수 있다.
도 1은 본 발명의 실시예에 따른 바이오 센서 제조 방법 순서도이다.
도 2는 도 1의 바이오 센서 제조 방법공정 도시한 도면이다.
도 3은 도 1의 바이오 센서를 확대 도시한 도면이다.
도 4는 도 1의 열분해 조건에 따른 바이오 센서를 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 균등한 변형 예들이 있을 수 있음을 이해하여야 한다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 바이오 센서 제조 방법을 도시한 순서도이고, 도 2는 도 1의 바이오 센서 제조 방법 공정을 도시한 도면이며, 도 3은 도 1의 중첩형 탄소 마이크로/나노구조의 바이오 센서를 확대 도시한 도면이고, 도 4는 도 중첩형 탄소 마이크로/나노구조의 바이오 센서의 열분해 전, 후를 도시한 도면이다.
우선, 도 1 및 도 2를 참고하면, 본 발명의 실시예에 따른 바이오 센서 제조 방법은, 실리콘 기판 상측의 제1 전극영역 및 복수의 제2 전극영역을 포함하는 전극영역에 절연층을 형성하는 단계(S110), 상기 절연층 상에 1차 포토레지스트를 코팅하는 단계(S120), 1차 포토마스크를 통하여 상기 제1 전극영역을 1차 노광하는 단계(S130), 상기 제1 전극영역을 제외한 나머지 부분을 현상하여 제거하는 단계(S140), 상기 제1 전극영역 및 나머지 영역 상에 2차 포토레지스트를 코팅하는 단계(S150), 상기 제2 전극영역을 2차 포토마스크로 2차 노광하는 단계(S160), 상기 제2 전극영역 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 제2 전극영역을 연결하는 마이크로 사이즈의 와이어 형태로 3차 노광하는 단계(S170), 상기 1차, 2차 및 3차 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 제거하는 단계(S180) 및 상기 1차 및 제2 전극영역 및 상기 와이어를 열분해하여 중첩된 형태의 탄소 전극과 탄소 와이어를 형성하는 단계(S190)로 이루어진다.
상기 실리콘 기판 상측의 제1 전극영역 및 복수의 제2 전극영역을 포함하는 전극영역에 절연층을 형성하는 단계(S110)는 우선, 실리콘 기판(110) 상면 전체에 1차 절연층(120)을 형성한다. 상기 1차 절연층은 이산화규소, 또는 실리콘 나이트라이드 (silicon nitride) 등의 절연 물질로 이루어진다.
본 실시예에서는 실리콘 재질로 이루어진 기판을 사용하였으나, 기판 상에 절연층을 형성할 수 있는 재질이라면 실리콘 재질 이외의 다른 재질로 형성된 기판을 사용하는 것도 물론 가능하다.
그리고 본 실시예에서는 실리콘 기판 상측에 절연층을 형성하였으나, 절연층을 형성하는 단계를 생략하고 기판 재질을 절연 재질로 형성하는 것도 가능하다.
상기 절연층(120)을 형성하면, 상기 절연측(120) 상에 포토레지스트를 이용하여 1차 코팅하는 단계(S120)가 진행된다. 이후, 1차 포토마스크를 통하여포토레지스트(130)를 자외선에 노출시켜 제1 전극영역을 형성하기 위한 1차 노광이 수행된다(S130). 상기 1차 노광이 완료되면 1차 절연부 상부에는 전극 모양으로 포토레지스트가 경화되어 제1 전극영역(135)이 형성될 수 있다. 이때, 노광된 광 에너지는 포토레지스트가 포토레지스트 최상부부터 1차 절연층 바로 위까지 경화될 수 있을 만큼 충분하여야 한다.
1차 노광이 완료되면, 제1 전극영역을 제외한 나머지 부분을 현상하여 제거할 수 있다(S140). 상기 제1 전극영역을 제외한 나머지 부분을 현상하여 제거하면, 상기 제1 전극영역 및 상기 제2 전극영역 상부에 2차 포토레지스트(140)를 코팅할 수 있다(S150).
이후, 상기 제2 전극영역을 2차 포토마스크를 통하여 2차 노광하여 제2 전극영역을 형성하는 단계를 수행한다(S160). 상기 2차 노광 단계(S160)에서 포토레지스트가 흡수할 수 있는 자외선의 에너지는 포토레지스트(140) 최상부부터 1차 절연층 바로 위까지 경화될 수 있을 만큼 충분하여야 한다.
상기와 같이 2차 노광이 완료되면, 상기 제2 전극영역 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 제2 전극영역을 연결하는 마이크로 사이즈의 와이어 형태로 3차 노광하는 단계(S170)를 수행한다. 상기 3차 노광은 1차 및 2차 노광보다 적은 에너지로 포토레지스트 상단만을 경화할 수 있도록 한다. 상기 3차 노광을 통하여 제2 전극영역(145)을 연결하는 포토레지스트 일부가 와이어 형상으로 경화되어 상기 제2 전극영역을 연결하는 마이크로 포토레지스트 와이어(150)를 형성한다. 이때, 제1 전극영역(135)은 제2 전극영역(145)을 연결하는 상기 와이어(150) 하부에 형성될 수 있으며, 상기 제1 전극영역(135)과 와이어(150)는 소정 간격 이격되도록 형성될 수 있다.
3차 노광 단계를 완료한 후, 상기 1차 및 2차 내지 3차 노광 단계에서 노광된 부분을 제외한 부분의 포토레지스트를 현상 제거하는 단계를 수행한다(S180), 상기 1차 및 2차 내지 3차 노광 단계에서 노광되지 않은 부분의 포토레지스트를 현상 제거할 때, 상기 제1 전극영역과 상기 와이어(150) 사이의 영역을 포토레지스트를 현상 제거하게 된다(S180). 이 과정을 통해 제1 전극영역(135), 제2 전극영역(145) 및 마이크로 포토레지스트 와이어(150)만이 남는다.
한편, 본 발명의 실시예에서는 1차 및 2차 내지 3차 노광 단계에서 상기 포토레지스트는 SU-8 포토레지스트를 포함한 네가티브 포토레지스트를 이용할 수 있으며, 포토레지스트의 종류에 의하여 본 발명이 제한되거나 한정되는 것은 아니다.
상기 제1 전극영역(135), 제2 전극영역(145) 및 와이어(150)는 열분해를 통해 마이크로 또는 나노 크기의 탄소 구조체로 형성될 수 있다(S190). 이를 위하여 진공 상태나 불활성 가스 환경에서 800ㅀC 이상의 고열에서 열분해할 수 있다. 상기 열분해를 통해, 제1 전극영역(135), 제2 전극영역(145) 및 와이어(150)는 탄소 와이어(250)와 내부의 제1 탄소 전극부(230) 및 상기 제1 탄소 전극부(230)를 수용하는 제2 탄소 전극부(240)로 변환될 수 있다.
즉, 도 3을 참고하면, 상기 바이오 센서 제조 방법에 의해 형성된 바이오 센서는 제1 탄소 전극부(230), 제2 탄소 전극부(240) 및 탄소 와이어(250)을 포함한다.
열분해를 통하여 형성된 상기 바이오 센서는 폭이 30nm ~ 10㎛이고, 기판으로부터의 높이는 100nm ~ 10㎛이며, 길이는 1 ㎛ ~ 900㎛가 될 수 있다. 상기 열분해 과정에서 와이어의 부피가 감소하여 포토레지스트 와이어의 크기가 나노 미터까지 감소될 수 있다.
이때, 상기 탄소 와이어(250)는 메시(mesh)형상 또는 허니콤(honey comb)형상으로 형성될 수 있다. 상기와 같이 탄소 와이어(250)가 메시 또는 허니콤 형상으로 형성됨에 따라 바이오 물질의 제 1차 탄소 전극부(230) 및 제 2차 탄소 전극부로의 공급이 원활해지며, 산화 환원 반응의 면적이 증가하고 산화환원 반복 반응의 효율이 증대되어 바이오 센서의 감지도를 높일 수 있다. 여기서, 상기 탄소 와이어 (250)과 제2 탄소 전극부(240)는 바이오 물질을 산화시키는 산화전극으로 작용하고, 상기 제1 탄소 전극부(230)는 상기 바이오 물질을 환원시키는 환원전극으로 작용할 수 있다. 또는 탄소 와이어 (250)과 제2 탄소 전극부(240)는 바이오 물질을 환원시키는 환원전극으로 작용하고, 상기 제1 탄소 전극부(230)는 상기 바이오 물질을 산화시키는 산화전극으로도 작용할 수 있다.
또한, 탄소 와이어 구조가 마이크로 단위의 포토레지스트의 열분해를 통한 부피 감소로 인하여 형성되므로 고가의 나노공정 장비 없이 저비용으로 나노 구조체를 생산할 수 있게 된다.
한편, 열분해 과정에서 열분해조건에 따라 탄소 구조체의 형태가 변경될 수 있다. 즉, 도 4를 참고하면, 탄소 와이어(250)가 대각선을 이루고 있는 사이의 간격을 2θ라고 가정할 경우 열분해의 조건에 따라 θ의 간격의 변화에 따라 최종 탄소 와이어의 형태를 변경시킬 수 있다. 예시적으로 θ는 10˚~70˚ 사이가 될 수 있으며, θ의 크기가 커질수록 메시의 형태가 원형에 가까워짐을 알 수 있다.
상기 탄소 와이어(250) 형태가 변경됨에 따라 바이오 물질의 산화 및 환원 반응의 효율을 조절하여 바이오 센서의 감지도를 조절하고, 탄소 와이어와 제1 탄소 전극부 사이의 간격을 조절하여 산화, 환원 반복 반응의 반복 수의 증감을 선택할 수 있게 된다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (7)

  1. (a) 기판 상측의 제1 전극영역 및 복수의 제2 전극영역을 포함하는 전극영역에 절연층을 형성하는 단계;
    (b) 상기 절연층 상에 1차 포토레지스트를 코팅하는 단계;
    (c) 1차 포토마스크를 통하여 상기 제1 전극영역을 1차 노광하는 단계;
    (d) 상기 제1 전극영역을 제외한 나머지 부분을 현상하여 제거하는 단계;
    (e) 상기 (d) 단계 후 상기 제1 전극영역 및 상기 절연층 상부에 2차 포토레지스트를 코팅하는 단계;
    (f) 상기 제2 전극영역을 2차 포토마스크를 통하여 2차 노광하는 단계;
    (g) 상기 제2 전극영역 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 제2 전극영역을 연결하는 마이크로 사이즈의 와이어 형태로 3차 노광하는 단계;
    (h) 상기 (c), (f) 및 (g) 단계에 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 제거하는 단계; 및
    (i) 상기 제1 및 제2 전극영역 및 상기 와이어를 열분해하여 탄소 전극과 탄소 와이어를 형성하는 단계를 포함하는 바이오 센서 제조 방법.
  2. 청구항 1에 있어서,
    상기 (g) 단계는,
    상기 제1 전극영역은 상기 제2 전극영역을 연결하는 상기 와이어 하부에 형성되는 바이오 센서 제조 방법.
  3. 청구항 1에 있어서,
    상기 (i) 단계에서 상기 탄소 와이어는 메시(mesh)형상 또는 허니콤(honey comb)형상인 바이오 센서 제조 방법.
  4. 청구항 1에 있어서,
    상기 포토레지스트는, SU-8 인 바이오 센서 제조 방법.
  5. 청구항 1에 있어서,
    상기 (i) 단계에서 상기 탄소 와이어의 폭은 30nm ~ 10㎛이고, 상기 기판으로부터의 높이는 100nm ~ 10㎛이며, 길이는 1㎛ ~ 900㎛으로 형성되는 것을 특징으로 하는 바이오 센서 제조 방법.
  6. (a) 제1 전극영역, 복수의 제2 전극영역을 포함하며, 절연 물질로 이루어진 기판을 준비하는 단계;
    (b) 상기 기판 상에 1차 포토레지스트를 코팅하는 단계;
    (c) 1차 포토마스크를 통하여 상기 제1 전극영역을 1차 노광하는 단계;
    (d) 상기 제1 전극영역을 제외한 나머지 부분을 현상하여 제거하는 단계;
    (e) 상기 (d) 단계 후 상기 제1 전극영역 및 상기 기판 상부에 2차 포토레지스트를 코팅하는 단계;
    (f) 상기 제2 전극영역을 2차 포토마스크를 통하여 2차 노광하는 단계;
    (g) 상기 제2 전극영역 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 제2 전극영역을 연결하는 마이크로 사이즈의 와이어 형태로 3차 노광하는 단계;
    (h) 상기 (c), (f) 및 (g) 단계에 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 제거하는 단계; 및
    (i) 상기 제1 및 제2 전극영역 및 상기 와이어를 열분해하여 탄소 전극과 탄소 와이어를 형성하는 단계를 포함하는 바이오 센서 제조 방법.
  7. 절연층을 포함하는 기판 상측에 구비되는 제1 탄소 전극부;
    상기 제1 탄소 전극부와 소정 간격 이격되되 상기 제1 탄소 전극부의 외주변을 따라 구비되는 제2 탄소 전극부; 및
    상기 제2 탄소 전극부 상부를 연결하되 상기 제1 탄소 전극부 상부에 구비되는 탄소 와이어를 포함하는 바이오 센서.
PCT/KR2012/002444 2011-12-29 2012-04-02 바이오 센서 및 그 제조방법 WO2013100264A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/369,199 US9671360B2 (en) 2011-12-29 2012-04-02 Biosensor and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0146152 2011-12-29
KR1020110146152A KR101371824B1 (ko) 2011-12-29 2011-12-29 바이오 센서 제조방법

Publications (1)

Publication Number Publication Date
WO2013100264A1 true WO2013100264A1 (ko) 2013-07-04

Family

ID=48697709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002444 WO2013100264A1 (ko) 2011-12-29 2012-04-02 바이오 센서 및 그 제조방법

Country Status (3)

Country Link
US (1) US9671360B2 (ko)
KR (1) KR101371824B1 (ko)
WO (1) WO2013100264A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513555B2 (en) * 2013-03-29 2016-12-06 Sk Innovation Co., Ltd. Method for manufacturing a suspended single carbon nanowire and piled nano-electrode pairs
KR102131412B1 (ko) * 2013-08-30 2020-08-05 에스케이이노베이션 주식회사 가스센서 및 그 제조방법
KR102125278B1 (ko) * 2013-09-02 2020-06-22 에스케이이노베이션 주식회사 가스센서 및 그 제조방법
KR102347669B1 (ko) * 2014-03-28 2022-01-07 에스케이이노베이션 주식회사 이중 전극쌍을 이용한 전기화학 바이오 센서
KR101927975B1 (ko) * 2016-05-17 2019-02-26 주식회사 아이센스 와이어 전극 제조방법 및 와이어 전극 제조용 포토마스크
KR102616229B1 (ko) * 2021-08-02 2023-12-20 서울대학교산학협력단 샘플 고정용 장치 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632085A (en) * 1994-11-09 1997-05-27 Pacesetter Ab Method for making an electrical contact for a vitreous carbon electrode
US20020179434A1 (en) * 1998-08-14 2002-12-05 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US20040100269A1 (en) * 2002-11-26 2004-05-27 Honeywell International Inc. Nanotube sensor
JP2009288080A (ja) * 2008-05-29 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> 細胞外マイクロ電極及びその製造方法
US7682659B1 (en) * 2006-04-10 2010-03-23 The Regents Of The University Of California Fabrication of suspended carbon micro and nanoscale structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632085A (en) * 1994-11-09 1997-05-27 Pacesetter Ab Method for making an electrical contact for a vitreous carbon electrode
US20020179434A1 (en) * 1998-08-14 2002-12-05 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US20040100269A1 (en) * 2002-11-26 2004-05-27 Honeywell International Inc. Nanotube sensor
US7682659B1 (en) * 2006-04-10 2010-03-23 The Regents Of The University Of California Fabrication of suspended carbon micro and nanoscale structures
JP2009288080A (ja) * 2008-05-29 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> 細胞外マイクロ電極及びその製造方法

Also Published As

Publication number Publication date
US20140353152A1 (en) 2014-12-04
KR20130077440A (ko) 2013-07-09
KR101371824B1 (ko) 2014-03-11
US9671360B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
WO2013100264A1 (ko) 바이오 센서 및 그 제조방법
WO2012141431A2 (ko) 네트워크 구조의 나노선을 구비한 나노선 센서
US9513555B2 (en) Method for manufacturing a suspended single carbon nanowire and piled nano-electrode pairs
CN103901089B (zh) 检测神经细胞电生理信号的传感器及制作方法和检测方法
CN108226258B (zh) 一种检测羟基自由基的场效应传感器及其制备方法
KR20130033939A (ko) 공중부유형 탄소 나노와이어 기반 가스센서 및 온도센서 제조방법
CN104237357A (zh) 传感元件及其制备方法和传感器
Mantis et al. Suspended highly 3D interdigitated carbon microelectrodes
Tang et al. An optimized process for fabrication of high-aspect-ratio photoresist-derived carbon microelectrode array on silicon substrate
WO2014200206A1 (ko) 혈당측정용 센서 스트립과 그 제조방법 및 이를 이용하는 모니터링 장치
Mohan et al. Microfluidic Device Integrated with PDMS Microchannel and unmodified ITO glass Electrodes for Highly Sensitive, Specific and Point-of Care Detection of Copper and Mercury
WO2009151219A1 (ko) 복수의 금속 판들을 갖는 생체분자 센서 및 그 제조 방법
WO2018159899A1 (ko) 듀얼 히터 가스센서 모듈
KR102024913B1 (ko) 센서 및 그 제조방법
WO2015182918A1 (ko) 나노 갭을 갖는 바이오 센서
KR101295399B1 (ko) 바이오 센서 및 그 제조 방법
KR101372172B1 (ko) 바이오센서의 제조 방법
KR20120126977A (ko) 탄소나노튜브 기반 3전극 시스템, 그 제조방법 및 이를 이용한 전기화학 바이오센서
KR102651194B1 (ko) 공중 부유형 탄소 나노와이어를 이용한 3ω 방법 기반 가스센서 및 그 제조 방법
Lee et al. Asymmetric interdigitated electrodes for amperometric detection of soluble products
KR101371844B1 (ko) 바이오 센서 및 그 바이오 센서 제조 방법
WO2014200306A1 (ko) 중첩형 나노 전극쌍 제조방법 및 이를 이용한 공중부유형 센서
WO2017026827A1 (ko) 광위치 검출기 및 이의 제조 방법
KR102024916B1 (ko) 센서 및 그 제조방법
WO2013168835A1 (ko) 전기화학적 검출을 위한 전기영동칩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14369199

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.10.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12863943

Country of ref document: EP

Kind code of ref document: A1