CN108226258B - 一种检测羟基自由基的场效应传感器及其制备方法 - Google Patents

一种检测羟基自由基的场效应传感器及其制备方法 Download PDF

Info

Publication number
CN108226258B
CN108226258B CN201711277171.9A CN201711277171A CN108226258B CN 108226258 B CN108226258 B CN 108226258B CN 201711277171 A CN201711277171 A CN 201711277171A CN 108226258 B CN108226258 B CN 108226258B
Authority
CN
China
Prior art keywords
free radical
graphene
preparation
hydroxyl radical
protoporphyrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711277171.9A
Other languages
English (en)
Other versions
CN108226258A (zh
Inventor
魏大程
易孔阳
王振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201711277171.9A priority Critical patent/CN108226258B/zh
Publication of CN108226258A publication Critical patent/CN108226258A/zh
Application granted granted Critical
Publication of CN108226258B publication Critical patent/CN108226258B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明属于传感检测技术领域,具体公开了一种检测羟基自由基的场效应传感器的制备方法。本发明方法包括:首先,在绝缘衬底上制备导电石墨烯薄膜,并制备图案化电极以获得场效应器件;然后,在石墨烯膜表面镀上一层金膜,通过在惰性气体氛围中退火得到分布均匀的金纳米颗粒;最后,将原卟啉修饰到金纳米颗粒表面,得到原卟啉‑金纳米颗粒修饰的石墨烯薄膜。借助镉离子等可与原卟啉配位的金属离子作为电流变化指示剂,通过羟基自由基对所修饰卟啉的氧化断键作用,改变石墨烯表面电荷浓度,从而实现羟基自由基浓度的检测。本发明工艺简单,能实现高选择性、快速传感,为其在生命、环境、能源、安全等领域的应用奠定了基础。

Description

一种检测羟基自由基的场效应传感器及其制备方法
技术领域
本发明属于传感检测技术领域,具体涉及一种检测羟基自由基场效应传感器及其制备方法。
背景技术
场效应晶体管是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件,基于场效应晶体管所制备的传感器可通过带电分子、离子等吸附-去吸附过程中引起材料电学性质的变化来实现痕量物质的检测。石墨烯是2004年英国曼彻斯特大学的安德烈·K·海姆(Andre K.Geim) 等发现的一种二维碳原子晶体,为单层或多层的极薄的碳材料。由于石墨烯自身具有很高的载流子迁移率,对外界环境的微量电荷干扰具有很高的灵敏度,因此基于石墨烯材料的场效应传感器受到了研究者的广泛关注。此类器件具有微型化、低能耗和快速响应等优点,成为一种常用的分析工具,并在pH、DNA、RNA、活细胞、气体和金属离子等检测方面具有广泛应用。
羟基自由基是活性氧中非常重要的一类物质,是生物体代谢过程中由O2获得三个电子后的还原产物。其独特生理功能性能,使其成为各学科领域的研究热点。但由于其活性高、寿命短和相互之间容易转化的特点,使其分析检测成为研究的一个难点。传统的分析方法,如电子自旋共振法、色谱法和荧光法等,存在仪器昂贵、样品前处理过程复杂和操作过程中可能引进其他污染的问题,在一定程度上限制了其在某些领域的应用。
发明内容
针对现有技术的不足,本发明的目的在于提供一种检测羟基自由基的新方法,通过将现有二维材料制备技术和传感技术相结合,实现高灵敏和选择性检测羟基自由基。
本发明提供的检测羟基自由基的场效应晶体管的制备方法,具体步骤为:
(1)在绝缘衬底上制备均匀的导电石墨烯薄膜;
(2)在步骤(1)得到石墨烯薄膜上镀上图案化的源漏电极,获得场效应器件;
(3)对步骤(2)所得的器件,在石墨烯薄膜表面镀上一层金膜,并通过在惰性气体氛围中退火,得到分布均匀的金纳米颗粒;
(4)对步骤(3)所得的金纳米颗粒,用化学法将原卟啉共价修饰到石墨烯薄膜表面的金纳米颗粒上,得到原卟啉修饰的石墨烯薄膜场效应器件;再用蒸馏水冲洗干净,高纯N2吹干,即得到所需的场效应晶体管。
该场效应晶体管检测羟基自由基的操作如下:
所制得的原卟啉修饰的石墨烯薄膜场效应器件,先络合固定镉离子等可与原卟啉配位的金属离子作为电流变化指示剂,通过加入不同浓度的羟基自由基,氧化断键降低石墨烯薄膜表面携带电荷的卟啉,从而改变石墨烯内部载流子浓度来实现羟基自由基的检测。
本发明中,所述导电石墨烯薄膜的制备方法包括化学气相沉积法、机械剥离法、电化学剥离法、氧化石墨烯还原法。
本发明中,绝缘衬底为二氧化硅、云母、绝缘玻璃、聚对苯二甲酸乙二醇酯(PET)或聚二甲基硅氧烷(PDMS)等聚合物薄膜。
本发明中,所镀金膜的厚度为 0.5 - 8.0 nm,管式炉退火温度为100℃ – 350℃,时间为0.2 –5.0小时;优选管式炉退火温度为170 ℃ – 230℃,时间为0.5 –2.0小时。
本发明中,所述原卟啉的浓度为1.0 – 10 μM,反应温度为20 ℃ – 40℃,反应时间为5 –15小时。
本发明中,所述羟基自由基的浓度为10−9–10−1 M;优选羟基自由基的浓度为10−7–10−4 M。
与现有羟基自由基的检测技术相比,本发明的优点在于:通过分子内切技术,利用带电荷离子在石墨烯二维材料表面的吸附-去吸附过程来掺杂改变石墨烯内部的载流子浓度,从而实现羟基自由基的定量分析。该场效应晶体管传感器具有快速响应,高选择性和易微型化等优点。本发明制备的场效应传感器在生物、环境、食品、医药等领域有广阔的应用前景。
附图说明
图1是实施例1中所得的扫描电镜图。
图2是实施例1中所得的场效应晶体传感器机理示意图。
图3是实施例1中所得的对1 × 10-4 M 羟基自由基的电流响应曲线。
图4是实施例1中所得的对1 × 10-6 M 羟基自由基的电流响应曲线。
图5是实施例1中所得的对1 × 10-7 M 羟基自由基的电流响应曲线。
具体实施方式
以下结合附图及下述实施方式进一步说明本发明,应理解为,下述实施方式仅用于说明本发明,而非限制本发明。
实施例1
首先,采用化学气相沉积法在25μm厚的铜箔上制备单层石墨烯膜,利用“湿法”将石墨烯转移到洁净的SiO2/Si衬底上。借助热蒸镀的方法制备Cr/Au (5/50 nm)源漏电极,然后管式炉中300℃下,Ar氛围中退火30分钟。其次,利用热蒸镀技术在石墨烯膜表面蒸镀一层8.0 nm金膜,通过管式炉中230℃下退火0.5小时得到分布均匀的金纳米颗粒(图1)。然后,将10 mM半胱胺借助Au-S键固定到金纳米颗粒表面。最后,10 μM原卟啉在EDC和NHS的催化作用下,反应温度为25 ℃,反应时间为15小时,通过形成酰胺键,共价固定到电极表面。二次蒸馏水冲洗干净,然后在高纯N2下吹干,即完成场效应晶体管生物传感器制备。先通过原卟啉有机络合固定10 μM镉离子作为电流变化指示剂,再加入羟基自由基,通过电流的变化来检测羟基自由基,如图2,3所示。
实施例2
首先,采用化学气相沉淀法在25μm厚的铜箔上制备单层石墨烯膜,利用“湿法”将石墨烯转移到洁净的SiO2/Si衬底上。借助热蒸镀的方法制备Cr/Au (5/50 nm)源漏电极,然后管式炉中300 ℃下,Ar氛围中退火30分钟。其次,利用热蒸镀技术在石墨烯膜表面蒸镀一层4.0 nm金膜,通过管式炉中200 ℃下退火0.5小时得到分布均匀的金纳米颗粒。然后,将10 mM半胱胺借助Au-S键固定到金纳米颗粒表面。最后, 10 μM原卟啉在EDC和NHS的催化作用下,反应温度为20 ℃,反应时间为10小时,通过形成酰胺键,共价固定到电极表面。二次蒸馏水冲洗干净,然后在高纯N2下吹干,即完成场效应晶体管生物传感器的制备。先通过原卟啉有机络合固定10 μM镉离子作为电流变化指示剂,再加入羟基自由基,通过电流的变化来检测羟基自由基,如图4所示。
实施例3
首先,采用化学气相沉淀法在25μm厚的铜箔上制备单层石墨烯膜,利用“湿法”将石墨烯转移到洁净的SiO2/Si衬底上。借助热蒸镀的方法制备Cr/Au (5/50 nm)源漏电极,然后管式炉中300 ℃下,Ar氛围中退火30分钟。其次,利用热蒸镀技术在石墨烯膜表面蒸镀一层2.0 nm金膜,通过管式炉中170 ℃下退火0.5小时得到分布均匀的金纳米颗粒。然后,将10 mM半胱胺借助Au-S键固定到金纳米颗粒表面。最后, 10 μM原卟啉在EDC和NHS的催化作用下,反应温度为25 ℃,反应时间为5小时,通过形成酰胺键,共价固定到电极表面。二次蒸馏水冲洗干净,然后在高纯N2下吹干,即完成场效应晶体管生物传感器的制备 。先通过原卟啉有机络合固定10 μM镉离子作为电流变化指示剂,再加入羟基自由基,通过电流的变化来检测羟基自由基的,如图5所示。
上述仅为本发明的实施例而已,对本领域的技术人员来说,本发明有多种更改和变化。凡在本发明的思想和原则内,作出任何修改、等同替换和改进等,均应包括在本发明的保护范围之内。

Claims (8)

1.一种检测羟基自由基的场效应传感器的制备方法,其特征在于,具体步骤为:
(1)在绝缘衬底上制备均匀的导电石墨烯薄膜;
(2)在步骤(1)得到石墨烯薄膜上镀上图案化的源漏电极,获得场效应器件;
(3)对步骤(2)所得的器件,在石墨烯薄膜表面镀上一层金膜,并通过在惰性气体氛围中退火,得到分布均匀的金纳米颗粒;
(4)对步骤(3)所得的金纳米颗粒,将半胱胺借助Au-S键固定到金纳米颗粒表面,再将原卟啉在EDC和NHS的催化作用下形成酰胺键,共价固定到电极表面;再用蒸馏水冲洗干净,高纯N2吹干。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述的导电石墨烯薄膜采用化学气相沉积法、机械剥离法、电化学剥离法或氧化石墨烯还原法制备得到。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述绝缘衬底为二氧化硅、云母、绝缘玻璃、聚对苯二甲酸乙二醇酯或聚二甲基硅氧烷聚合物薄膜。
4. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中所镀金膜的厚度为 0.5 -8.0 nm,管式炉退火温度为100 ℃ - 350 ℃,时间为0.2 - 5.0小时。
5. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中所述半胱胺的浓度为1 μM-100 mM,原卟啉的浓度为1.0 - 10 μM,共价修饰的反应温度为20 ℃- 40 ℃,反应时间为5 - 15小时。
6.由权利要求1-5之一所述制备方法得到的检测羟基自由基的场效应传感器。
7.由权利要求6所述的场效应传感器检测羟基自由基的方法,具体操作如下:
将原卟啉修饰的石墨烯薄膜场效应器件,先络合固定可与原卟啉配位的金属离子作为电流变化指示剂,通过加入不同浓度的羟基自由基,氧化断键降低石墨烯薄膜表面携带电荷的卟啉,改变石墨烯内部载流子浓度,从而实现羟基自由基的检测。
8. 根据权利要求7所述的方法,其特征在于,所述羟基自由基的浓度为10−9 - 10−1 M。
CN201711277171.9A 2017-12-06 2017-12-06 一种检测羟基自由基的场效应传感器及其制备方法 Active CN108226258B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711277171.9A CN108226258B (zh) 2017-12-06 2017-12-06 一种检测羟基自由基的场效应传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711277171.9A CN108226258B (zh) 2017-12-06 2017-12-06 一种检测羟基自由基的场效应传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN108226258A CN108226258A (zh) 2018-06-29
CN108226258B true CN108226258B (zh) 2019-11-12

Family

ID=62653939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711277171.9A Active CN108226258B (zh) 2017-12-06 2017-12-06 一种检测羟基自由基的场效应传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN108226258B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613083B (zh) * 2018-12-11 2021-05-25 河南中医药大学 纳米金-原卟啉铜(ⅱ)高灵敏检测h2o2电化学传感器的构建及其应用
CN109613084B (zh) * 2018-12-11 2021-04-27 河南中医药大学 纳米金-原卟啉锌(ⅱ)高灵敏检测h2o2电化学传感器的构建及应用
CN109613082B (zh) * 2018-12-11 2021-04-27 河南中医药大学 纳米金-原卟啉钴(ⅱ)高灵敏检测h2o2电化学传感器的构建及应用
CN111239226B (zh) * 2020-02-21 2022-03-29 扬州大学 一种在线测定大气中羟基自由基的电化学方法
CN111272851B (zh) * 2020-02-25 2021-07-27 华东师范大学 一种检测·oh的玻璃纳米孔传感器及其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311276A (zh) * 2013-06-07 2013-09-18 中国科学院微电子研究所 一种自对准石墨烯场效应晶体管及其制备方法
CN106024901A (zh) * 2016-07-22 2016-10-12 中国科学技术大学先进技术研究院 调控材料载流子浓度的方法、场效应晶体管和制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311276A (zh) * 2013-06-07 2013-09-18 中国科学院微电子研究所 一种自对准石墨烯场效应晶体管及其制备方法
CN106024901A (zh) * 2016-07-22 2016-10-12 中国科学技术大学先进技术研究院 调控材料载流子浓度的方法、场效应晶体管和制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hydroxyl radical-induced etching of glutathione capped thiolate complexes;Tzu-Heng Chen;《RSC Advances》;20150511;第5卷;全文 *
Real-Time Monitoring of Nitric Oxide at Single-Cell Level with Porphyrin-Functionalized Graphene Field-Effect Transistor Biosensor;Hui Xie等;《Analytical Chemistry》;20161025;第88卷;全文 *
Real-Time, Selective Detection of Pb2+ in Water Using a Reduced Graphene Oxide/Gold Nanoparticle Field-Effect Transistor Device;Guihua Zhou等;《ACS Applied Materials and Interfaces》;20141009;第6卷;全文 *

Also Published As

Publication number Publication date
CN108226258A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN108226258B (zh) 一种检测羟基自由基的场效应传感器及其制备方法
Fathi-Hafshejani et al. Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2)
Huang et al. High sensitivity, humidity-independent, flexible NO2 and NH3 gas sensors based on SnS2 hybrid functional graphene ink
Tripathy et al. Metal oxide modified ZnO nanomaterials for biosensor applications
Shahdeo et al. Graphene based sensors
Ramadan et al. Carbon-dot-enhanced graphene field-effect transistors for ultrasensitive detection of exosomes
Wang et al. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules
Hahn et al. Chemical and biological sensors based on metal oxide nanostructures
Afsarimanesh et al. Interdigital sensors: Biomedical, environmental and industrial applications
Kumar et al. A solution processed carbon nanotube modified conducting paper sensor for cancer detection
Chauhan et al. Zinc oxide tetrapods based biohybrid interface for voltammetric sensing of helicobacter pylori
Han et al. Graphene biodevices for early disease diagnosis based on biomarker detection
Huang et al. Pressure-based immunoassays with versatile electronic sensors for carcinoembryonic antigen detection
Sadique et al. Rapid detection of SARS-CoV-2 using graphene-based IoT integrated advanced electrochemical biosensor
Cao et al. ISFET‐based sensors for (bio) chemical applications: A review
Jalil et al. Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid
Verma et al. Non-invasive oral cancer detection from saliva using zinc oxide–reduced graphene oxide nanocomposite based bioelectrode
Majd et al. The development of radio frequency magnetron sputtered p-type nickel oxide thin film field-effect transistor device combined with nucleic acid probe for ultrasensitive label-free HIV-1 gene detection
Zhou et al. Recent advances in the construction of flexible sensors for biomedical applications
Li et al. Dual-functional cubic cuprous oxide for non-enzymatic and oxygen-sensitive photoelectrochemical sensing of glucose
Aydın et al. New impedimetric sandwich immunosensor for ultrasensitive and highly specific detection of spike receptor binding domain protein of SARS-CoV-2
CN111965231A (zh) 一种用于病毒检测的半导体传感器及其制备方法与应用
Shahdeo et al. Graphene-based field-effect transistor for ultrasensitive immunosensing of SARS-CoV-2 spike S1 antigen
Mazhabi et al. A label-free aptamer-based cytosensor for specific cervical cancer HeLa cell recognition through a gC 3 N 4–AgI/ITO photoelectrode
Nirbhaya et al. Multiwalled carbon nanotube nanofiller-polyindole polymer matrix-based efficient biosensor for the rapid detection of swine flu

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant