WO2015182918A1 - 나노 갭을 갖는 바이오 센서 - Google Patents

나노 갭을 갖는 바이오 센서 Download PDF

Info

Publication number
WO2015182918A1
WO2015182918A1 PCT/KR2015/005070 KR2015005070W WO2015182918A1 WO 2015182918 A1 WO2015182918 A1 WO 2015182918A1 KR 2015005070 W KR2015005070 W KR 2015005070W WO 2015182918 A1 WO2015182918 A1 WO 2015182918A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
electrodes
biomaterial
nanoparticles
nanogap
Prior art date
Application number
PCT/KR2015/005070
Other languages
English (en)
French (fr)
Inventor
김도균
이지윤
함철호
박현규
Original Assignee
주식회사 미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미코 filed Critical 주식회사 미코
Publication of WO2015182918A1 publication Critical patent/WO2015182918A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a biosensor having a nanogap, and more particularly, to a biosensor for detecting a specific biomaterial present in an organism through the nanogap.
  • biosensors are instruments that detect specific biomaterials, such as antigen-antibodies of proteins, DNA or enzymes of microorganisms, through biological reactions between or with them.
  • biosensors are detected by chemical, optical, and electrical methods, and among them, electrical methods have recently been in the spotlight due to the advantages of simple configuration of equipment and low loss of detected signals.
  • the biosensor of the electrical method is connected to each of the electrodes with a connecting material that causes a biological reaction with the specific biomaterial between the pair of electrodes facing each other the connection material
  • the electrodes are connected to each other therebetween in response to the reaction, thereby sensing the specific biomaterial by electrical signals generated therefrom while a voltage is supplied from the outside.
  • the biosensor is the There is a need to form a very narrow gap between the electrodes so that the electrical signal is detected by a specific biomaterial.
  • the electrical signal is generated very weakly due to the material insulating property of the specific biomaterial.
  • the electrical signal is generated very weakly due to the material insulating property of the specific biomaterial.
  • it is difficult to distinguish substantially whether it is due to a bio material or an external factor such as other noise.
  • the present invention provides a biosensor having a nano gap capable of amplifying an electrical signal generated when sensing a biomaterial.
  • a biosensor includes a pair of electrodes, a connector and a nanoparticle.
  • the electrodes are supplied with a voltage with a nanogap in between.
  • the connector connects each of the adjacent electrodes with a first marker positioned at each of the electrodes in the nanogap and coupled with a biomaterial introduced from the outside into the nanogap.
  • the nanoparticles are located in the nanogap so that a second marker coupled to the biomaterial is connected to the surface.
  • the nanoparticles according to one embodiment may be made of an insulating material.
  • the nanoparticles may include metal oxides having a trivalent or tetravalent cation.
  • the size (W) of the nanoparticles may be included in a range of 0.1G ⁇ W ⁇ 25G when the nanogap is G.
  • the linking group may include any one selected from the group consisting of protein G, protein A, polyethylenimine, and carbonyldiimidazole. .
  • the linker may include an immobilized enzyme or a self assembled monolayer.
  • the linking group may include a carboxyl group or an amine group included in each of the electrodes.
  • each of the first and second markers and the biomaterial may include an antibody, and the other may include an antigen.
  • a biosensor includes a pair of electrodes, a connector and a nanoparticle.
  • the electrodes are supplied with a voltage with a nanogap in between.
  • the connector is connected to each of the electrodes in the nanogap, and is coupled with a biomaterial introduced into the nanogap from the outside.
  • the nanoparticles are located in the nanogap so that a reactor that reacts with the biomaterial is connected to the surface.
  • the linker includes any one selected from the group consisting of poly-L-lysine, probe oligonucleotide, oligopeptide, and carbonyldiimidazole. can do.
  • the linker may include a combination of nickel-nitrilotriacetic acid and gold or a self assembled monolayer.
  • the biomaterial according to one embodiment may include single stranded DNA, and the reactor may include complementary DNA (cDNA).
  • cDNA complementary DNA
  • the biomaterial includes a microorganism
  • the reactor may include a lectin
  • the biomaterial flowing into the nanogap between a pair of electrodes to which voltage is supplied is connected to each other by connecting the electrodes to each other through nanoparticles located in the nanogap. It can amplify the generated electrical signal. As a result, not only the biomaterial can be accurately detected and sensed through the amplified electric signal, but also the reproducibility thereof can be stably secured.
  • FIG. 1 is a block diagram conceptually illustrating a biosensor according to an exemplary embodiment of the present invention.
  • FIG. 2 is a graph illustrating an effect of electrical signal amplification when sensing a biomaterial through the biosensor illustrated in FIG. 1.
  • FIG. 3 is a block diagram conceptually illustrating a biosensor according to another exemplary embodiment of the present invention.
  • FIG. 4 is a block diagram conceptually showing a biosensor according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a block diagram conceptually illustrating a biosensor according to an exemplary embodiment of the present invention
  • FIG. 2 is a view illustrating an effect of electrical signal amplification when sensing a biomaterial through the biosensor shown in FIG. 1. It is a graph.
  • the biosensor 100 includes a pair of electrodes 110, a connector 120, and a nanoparticle 130.
  • the electrodes 110 are supplied with a voltage from the outside while having a nano gap 112 therebetween.
  • the nano gap 112 may have an interval between about 100 nm and 1000 nm.
  • the method for forming the nanogap 112 will be briefly described. First, an oxide film is formed on a substrate made of a single crystal silicon substrate through a thermal oxidation process or a chemical vapor deposition process. Subsequently, a first nitride film is formed on the oxide film through a chemical vapor deposition process. Subsequently, a pattern film having an opening having a micro size of about 1 to 2 ⁇ m to selectively expose the first nitride film is formed on the first nitride film.
  • the first nitride layer is etched through the pattern mask to form a first nitride layer pattern having a first gap.
  • the pattern film is removed through an ashing or strip process.
  • a second nitride film is formed through a chemical vapor deposition process or an atomic layer deposition process along an upper surface of the first nitride film pattern and sidewalls and a bottom surface of the first gap.
  • the second nitride film is anisotropically etched to form a second nitride film pattern having a second gap of about 100 to 1000 nm on the sidewall of the first gap.
  • the oxide layer is etched using the second nitride layer pattern as an etch mask to form an oxide layer pattern having a third gap having a nano size equal to that of the second gap.
  • electrodes 110 including a gate insulating layer and a gate conductive layer pattern are formed on the oxide layer pattern to have the second gap.
  • the electrodes 110 may be made of a noble metal material such as gold (Au) or silver (Ag) having excellent conductivity for electrical sensing of the biomaterial 10 having high insulating properties without forming an oxide film.
  • a noble metal material such as gold (Au) or silver (Ag) having excellent conductivity for electrical sensing of the biomaterial 10 having high insulating properties without forming an oxide film.
  • the connector 120 is connected to each of the electrodes 110 at the location of the nano gap 112 of the electrodes 110. Specifically, the connector 120 connects the first marker 122 coupled to the biomaterial 10 introduced into the nanogap 112 from the outside at the location of the nanogap 112 to the electrode 110 adjacent thereto. Thus, since the first marker 122 may not be directly connected to the electrode 110 due to a material property, in this case, the first marker 122 may be indirectly connected to the electrode 110 while being coupled to the connector 120.
  • the first marker 122 may be an antibody
  • the biomaterial 10 may be an antigen that is biologically bound to the antibody so that the biosensor 100 of the present embodiment can detect a protein type substance.
  • the first marker 122 is an antigen and the biomaterial 10 may be an antibody
  • the first marker 122 may be used as described above. It will be described only in the case of an antibody and the biomaterial 10 is an antigen.
  • the linker 120 is a protein G, protein A, polyethylenimine and carbonyldiiimi to connect the first marker 122, which is an antibody, to the electrode 110. It may include any one selected from the group consisting of carbonyldiimidazole.
  • the connector 120 includes polyethylenimine
  • the electrode 110 is coated with the polyethylenimine, and then a reactor 232 is made of glutaraldehyde to form the first marker 122. ) May be combined.
  • the linker 120 may include an immobilized enzyme or a self assembled monolayer.
  • the connector 120 when the connector 120 includes a self-assembled monolayer, it is treated with 11-mercaptoundecanoic acid (MUA) and then intermittently intervenes with the fixed activation reaction (EDC / NHS, zero linkers).
  • the reactor 232 may be combined with the first marker 122.
  • the reactor 232 formed according to the fixed activation reaction (EDC / NHS) may include a carboxyl group or an amine group.
  • the electrode 110 is made of gold (Au)
  • the first marker 122 may be directly connected to the electrode 110 by a direct adsorption method.
  • the nanoparticles 130 are positioned having a nano size in the nano gap 112 of the electrodes 110.
  • the nanoparticle 130 is connected to a second marker 132, which is a material similar to the first marker 122 to which the biomaterial 10, which is an antigen, is bound to a surface.
  • the biosensor 100 has a nano gap (Bio material 10, which is an antigen flowing from the outside, coupled to the first and second markers 122 and 132 through the nanoparticles 130, respectively).
  • the electrodes 110 are connected to each other at 112
  • the biomaterial 10 is sensed through an electrical signal generated therefrom while a voltage is provided from the outside.
  • the electrical signal may include a current generated by the flow of electrons due to the connection of the electrodes (110).
  • the electrical signal may include all electrical data that can be measured such as resistance or impedance in addition to current.
  • the nanoparticles 130 need to be made of an insulating material so that electrical signals are generated only by the biomaterial 10 that is sensed, that is, the electrodes 110 are not shorted to each other.
  • the nanoparticles 130 may be made of a material of a metal oxide form that can be manufactured in nano size while having insulating properties. More specifically, the nanoparticles 130 may be made of a metal oxide having a trivalent or tetravalent cation.
  • the nanoparticles 130 may include alumina, bismuth oxide, cobalt oxide, copper oxide, dysprosium oxide, erbium oxide, Europium oxide, gadolinium oxide, holmium oxide, iron oxide, lanthanum oxide, manganese oxide, neodymium oxide, Nickel Oxide, Polystyrene, Antimony Oxide, Silicon Dioxide, Tin Oxide, Titanium Dioxide, Tungsten Trioxide, Zirconia ( It may include any one selected from the group consisting of zirconia, indium oxide (zinc oxide) and zinc oxide (zinc oxide).
  • the nanoparticles 130 when the nanoparticles 130 are supplied to the electrodes 110 of the biosensor 100 with increasing voltage while the nanoparticles 130 are located in the nanogap 112 between the electrodes 110, the nanoparticles 130 may be supplied to the nanoparticles 130. This results in a schottky effect that increases electron emission, resulting in the amplification of an electrical signal, such as a current, generated from the biomaterial 10.
  • the detected biomaterial 10 may be analyzed by calculating electrical characteristic values such as resistance, impedance, and dielectric constant using the current value amplified by the nanoparticle 130 of the present invention. Specifically, the detected biomaterial 10 may be quantitatively classified according to the concentration, and then the type of the biomaterial 10 may be analyzed through the difference in the electrical characteristic values. In this case, the biosensor 100 may detect the biomaterial 10 in a dry state because the current value measured when the biomaterial 10 is detected in a solution state is directly affected by the solution. Do.
  • the nanogap 112 between the electrodes 110 has about 100 to 1000 nm according to the manufacturing method described above, whereas the biomaterial 10, which is the antigen to be detected, is significantly smaller than the nanogap 112. Since the nanoparticles 130 have a size of about 2 to 10 nm, the nanoparticles 130 located in the nanogap 112 of the present invention may serve as a bridge therebetween so that the electrodes 110 are connected to each other by the biomaterial 10. Can be. Thus, when the nanoparticles 130 are referred to as the nano-gap 112 to perform the bridge role, the size (W) needs to be at least about 0.1G or more.
  • the size (W) is preferably at most about 25G or less in a range capable of stabilizing the bridge. Therefore, the size (W) of the nanoparticles 130 may be included in the range 0.1G ⁇ W ⁇ 25G.
  • the biomaterial 10 introduced into the nanogap 112 between the pair of electrodes 110 to which a voltage is supplied is connected to the electrode 110 through the nanoparticles 130 positioned in the nanogap 112.
  • the electrical signals generated for example current values. Accordingly, by increasing the resolution according to the concentration through the amplified current value, it is possible not only to accurately detect the detected biomaterial 10 from noise, but also to secure the reproducibility stably.
  • the detection limit can be increased by amplifying the sensed current value by using the nanoparticles 130, the effect of being able to sufficiently detect this even when the concentration of the biomaterial 10 to be detected is minute. You can expect more.
  • washing buffer for the abnormal reaction portion in the state in which the electrodes 110 are connected to the biomaterial 10 through the nanoparticles 130 and then measuring the amplified current value, more stable accuracy and Reproducibility can be secured.
  • FIG. 3 is a block diagram conceptually illustrating a biosensor according to another exemplary embodiment of the present invention.
  • the biosensor 200 has a nanogap 212 between the pair of electrodes 210 and the nanogap 212 to which a voltage is supplied from the outside.
  • the connector 220 and the nanogap 212 coupled to the outer strand DNA 20 to react with the outer strand DNA 20.
  • the reactor 232 includes nanoparticles 230 connected to the surface.
  • the electrodes 210 are substantially the same as the electrodes 110 described with reference to FIG. 1, detailed descriptions thereof will be omitted.
  • the linker 220 is composed of poly-L-lysine, probe oligonucleotide, oligopeptide, and carbonyldiimidazole so as to be combined with the outer strand DNA 20. It may include any one selected from the group.
  • the linker 220 may include a combination of nickel-nitrilotriacetic acid and gold or a self assembled monolayer.
  • the linker 220 when it includes a self assembled monolayer, it is treated with 3,3'-dithioldipropionic acid, followed by a fixed activation reaction (EDC / NHS), followed by a reaction with streptavidin (streptavidin). Is bound to the outer strand DNA 20.
  • the nanoparticles 230 are made of an insulating material that can be manufactured in a nano size so as not to short-circuit the electrodes 210 with each other in the nano gap 212.
  • the material of the nanoparticles 230 of the present embodiment is substantially the same as the nanoparticles described with reference to FIG. 1 (130 of FIG. 1), detailed description thereof will be omitted.
  • the reactor 232 includes complementary DNA (cDNA) to react with and bind with the outer strand DNA 20 at the surface of the nanoparticles 230.
  • cDNA complementary DNA
  • the electrodes 210 have a structure connected to each other in the nanogap 212 through the reaction. In a state where a voltage is supplied from the outside, an electrical signal, that is, a current value, is detected therefrom.
  • a schottky effect is performed through the nanoparticles 230 located in the nanogap 212.
  • the current value can be amplified and sensed.
  • FIG. 4 is a block diagram conceptually showing a biosensor according to another embodiment of the present invention.
  • the biosensor 300 has a nanogap 312 therebetween, and a pair of electrodes 310 and nanogap 312 to which a voltage is supplied from the outside.
  • the biomaterial 30 is connected to each of the electrodes 310 from the outside, specifically, the microorganism 30 and the microorganism 30 is located in the connector 320 and the nano gap 312 is coupled to the microorganism 30, such as enzyme
  • the reacting reactor 332 includes nanoparticles 330 connected to the surface.
  • the electrodes 310 are substantially the same as the electrodes 110 described with reference to FIG. 1, detailed descriptions thereof will be omitted.
  • the connector 320 includes a carrier that exists in the biofilm of the microorganism 30 and serves to mediate the transport of the microorganism 30.
  • the connector 320 may include various kinds of carriers according to the type of microorganism 30 to be detected.
  • the nanoparticles 330 are made of an insulating material that can be manufactured in nano size so that the electrodes 310 are not shorted to each other in the nano gap 312. Thus, since the material of the nanoparticles 330 of the present embodiment is substantially the same as the nanoparticles described with reference to FIG. 1 (130 of FIG. 1), detailed description thereof will be omitted.
  • the reactor 332 includes a lectin to react with and bind to the microorganism 30 at the surface of the nanoparticle 330.
  • the electrodes 310 have a structure connected to each other in the nanogap 312. In a state where a voltage is supplied from the outside, an electrical signal, that is, a current value, is detected therefrom.
  • the detection limit is increased so that even when the concentration of the microorganism 30 is minute, it can be sufficiently detected.
  • the biosensor of the present invention is characterized in that a specific biomaterial, such as an antigen-antibody of a protein, DNA or an enzyme of a microorganism, is introduced into the nanogap between a pair of electrodes to which voltage is supplied.
  • a specific biomaterial such as an antigen-antibody of a protein, DNA or an enzyme of a microorganism

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

바이오 센서는 한 쌍의 전극들, 연결기 및 나노 입자를 포함한다. 상기 전극들은 사이에 나노 갭을 가지면서 전압이 공급된다. 상기 연결기는 상기 나노 갭에서 상기 전극들 각각에 위치하여 외부로부터 상기 나노 갭으로 유입되는 바이오 물질과 결합되는 제1 마커를 인접한 상기 전극들 각각에 연결시킨다. 상기 나노 입자는 상기 나노 갭에 위치하여 상기 바이오 물질과 결합되는 제2 마커가 표면에 연결된다.

Description

나노 갭을 갖는 바이오 센서
본 발명은 나노 갭을 갖는 바이오 센서에 관한 것으로, 보다 상세하게는 생물체 내에 존재하는 특정 바이오 물질을 나노 갭을 통해서 감지하는 바이오 센서에 관한 것이다.
일반적으로, 바이오 센서는 단백질의 항원-항체, DNA 또는 미생물의 효소와 같은 특정 바이오 물질을 이들 사이 또는 이들과의 생물학적 반응을 통해 검출하는 기구이다. 이러한 바이오 센서는 화학적, 광학적 및 전기적인 방법으로 검출하는 방법이 있으며, 이들 중 장비의 구성이 간편하고, 감지되는 신호의 손실이 적다는 장점으로 인해 최근 전기적인 방법이 각광을 받고 있다.
구체적으로, 상기 전기적인 방법의 바이오 센서는 마주하는 한 쌍의 전극들 사이에서 상기 특정 바이오 물질과의 생물학적 반응을 일으키는 연결 물질을 상기 전극들 각각에 연결시킨 상태에서 상기 특정 바이오 물질이 상기 연결 물질과의 반응을 통해 상기 전극들이 그 사이에서 서로 연결되도록 함으로써, 외부로부터 전압이 제공된 상태에서 이로부터 발생되는 전기적인 신호에 의해 상기 특정 바이오 물질을 감지한다.
이때, 상기 전극들 사이는 실질적으로 모두 절연 특성이 강한 바이오 물질로 이루어져 있음에 따라 상기 전극들 사이의 간격이 마이크로 단위로 비교적 클 경우에는 상기 전기적인 신호가 발생되지 못하므로, 상기 바이오 센서는 상기 특정 바이오 물질에 의해서 상기 전기적인 신호가 감지되도록 상기 전극들 사이의 간격은 나노 사이즈로 매우 좁게 형성할 필요성이 있다.
하지만, 상기 전극들 사이의 간격을 나노 사이즈로 매우 좁게 형성할 경우에는 기본적으로 상기 특정 바이오 물질의 재질적인 절연 특성으로 인해 상기 전기적인 신호가 매우 약하게 발생되므로, 상기 발생된 전기적인 신호가 상기 특정 바이오 물질에 의한 것인지 아니면 다른 노이즈와 같은 외부 요인에 의한 것인지 실질적으로 구분하기 어려운 문제점이 있다.
본 발명은 바이오 물질을 감지할 때 발생되는 전기적인 신호를 증폭시킬 수 있는 나노 갭을 갖는 바이오 센서를 제공하는 것이다.
상술한 본 발명의 목적을 달성하기 위하여, 일 특징에 따른 바이오 센서는 한 쌍의 전극들, 연결기 및 나노 입자를 포함한다.
상기 전극들은 사이에 나노 갭을 가지면서 전압이 공급된다. 상기 연결기는 상기 나노 갭에서 상기 전극들 각각에 위치하여 외부로부터 상기 나노 갭으로 유입되는 바이오 물질과 결합되는 제1 마커를 인접한 상기 전극들 각각에 연결시킨다. 상기 나노 입자는 상기 나노 갭에 위치하여 상기 바이오 물질과 결합되는 제2 마커가 표면에 연결된다.
일 실시예에 따른 상기 나노 입자는 절연성 재질로 이루어질 수 있다. 구체적으로, 상기 나노 입자는 양이온이 3가 또는 4가인 금속 산화물을 포함할 수 있다.
일 실시예에 따른 상기 나노 입자의 크기(W)는 상기 나노 갭을 G라고 하였을 때, 0.1G≤W≤25G 범위에 포함될 수 있다.
일 실시예에 따른 상기 연결기는 프로타인 G(protein G), 프로타인 A(protein A), 폴리에틸렌이민(polyethylenimine) 및 카르보닐디이미다졸(carbonyldiimidazole)로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다.
다른 실시예에 따른 상기 연결기는 고정화 효소 또는 자기조립단분자막(self assembled monolayer) 형태를 포함할 수 있다.
또 다른 실시예에 따른 상기 연결기는 상기 전극들 각각에 포함된 카르복실기 또는 아민기를 포함할 수 있다.
일 실시예에 따른 상기 제1 및 제2 마커들 각각과 상기 바이오 물질 중 어느 하나는 항체를 포함하고, 다른 하나는 항원을 포함할 수 있다.
상술한 본 발명의 목적을 달성하기 위하여, 다른 특징에 따른 바이오 센서는 한 쌍의 전극들, 연결기 및 나노 입자를 포함한다.
상기 전극들은 사이에 나노 갭을 가지면서 전압이 공급된다. 상기 연결기는 상기 나노 갭에서 상기 전극들 각각에 연결되며, 외부로부터 상기 나노 갭으로 유입되는 바이오 물질과 결합된다. 상기 나노 입자는 상기 나노 갭에 위치하여 상기 바이오 물질과 반응하는 반응기가 표면에 연결된다.
일 실시예에 따른 상기 연결기는 폴리엘라이신(poly-L-lysine), 탐침 올리고 핵산(probe oligonucleotide), 올리고 펩타이드(oligopeptide) 및 카르보닐디이미다졸(carbonyldiimidazole)로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다.
다른 실시예에 따른 상기 연결기는 니켈-니트릴로트아세트산(nickel-nitrilotriacetic acid)과 금(gold)의 결합체 또는 자기조립단분자막(self assembled monolayer) 형태를 포함할 수 있다.
일 실시예에 따른 상기 바이오 물질은 외가닥 DNA를 포함하고, 상기 반응기는 상보 DNA(cDNA)를 포함할 수 있다.
다른 실시예에 따른 상기 바이오 물질은 미생물을 포함하고, 상기 반응기는 렉틴(lectin)을 포함할 수 있다.
본 발명의 나노 갭을 갖는 바이오 센서에 따르면, 전압이 공급되는 한 쌍의 전극들 사이의 나노 갭으로 유입되는 바이오 물질이 상기 나노 갭에 위치하는 나노 입자를 통해 상기 전극들을 서로 연결시킴으로써, 이를 통해 발생되는 전기적인 신호를 증폭시킬 수 있다. 이로써, 상기 증폭된 전기적인 신호를 통하여 상기 바이오 물질을 정확하게 구분하여 감지할 수 있을 뿐만 아니라, 그 재현성도 안정적으로 확보할 수 있다.
도 1은 본 발명의 일 실시예에 따른 바이오 센서를 개념적으로 나타낸 구성도이다.
도 2는 도 1에 도시된 바이오 센서를 통해서 바이오 물질을 감지할 때의 전기적 신호 증폭에 따른 효과를 설명하기 위한 그래프이다.
도 3은 본 발명의 다른 실시예에 따른 바이오 센서를 개념적으로 나타낸 구성도이다.
도 4는 본 발명의 또 다른 실시예에 따른 바이오 센서를 개념적으로 나타낸 구성도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 바이오 센서에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 일 실시예에 따른 바이오 센서를 개념적으로 나타낸 구성도이며, 도 2는 도 1에 도시된 바이오 센서를 통해서 바이오 물질을 감지할 때의 전기적 신호 증폭에 따른 효과를 설명하기 위한 그래프이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 바이오 센서(100)는 한 쌍의 전극(110)들, 연결기(120) 및 나노 입자(130)를 포함한다.
전극(110)들은 사이에 나노 갭(112)을 가지면서 외부로부터 전압이 공급된다. 나노 갭(112)은 약 100~1000㎚의 사이 간격을 가질 수 있다. 이에, 상기 나노 갭(112)을 형성하는 방법을 간단하게 설명하면, 우선 단결정 실리콘 기판으로 이루어진 기판 상에 열산화 공정 또는 화학적 기상 증착 공정을 통해 산화막을 형성한다. 이어, 상기 산화막 상에 화학적 기상 증착 공정을 통해 제1 질화막을 형성한다. 이어, 상기 제1 질화막 상에 상기 제1 질화막을 선택적으로 노출시키는 약 1~2㎛의 마이크로 사이즈를 갖는 개구를 갖는 패턴막을 형성한다. 이어, 상기 패턴막을 식각 마스크를 통해 상기 제1 질화막을 식각하여 제1 갭을 갖는 제1 질화막 패턴을 형성한다. 이어, 상기 패턴막을 에싱 또는 스트립 공정을 통해 제거한다. 이어, 상기 제1 질화막 패턴의 상부면 및 상기 제1 갭의 측벽과 저면을 따라 화학적 기상 증착 공정 또는 원자층 증착 공정을 통해 제2 질화막을 형성한다. 이어, 상기 제2 질화막을 이방성 식각하여 상기 제1 갭의 측벽에 약 100~1000㎚의 제2 갭을 갖는 제2 질화막 패턴을 형성한다. 이어, 상기 제2 질화막 패턴을 식각 마스크로 하여 상기 산화막을 식각하여 상기 제2 갭과 동일한 나노 크기의 제3 갭을 갖는 산화막 패턴을 형성한다. 이어, 상기 산화막 패턴 상에 상기 제2 갭을 갖도록 게이트 절연막 및 게이트 도전막 패턴을 포함하는 전극(110)들을 형성한다.
이때, 전극(110)들은 산화막이 형성되지 않으면서 절연 특성이 강한 바이오 물질(10)의 전기적인 감지를 위하여 도전성이 매우 우수한 금(Au) 또는 은(Ag)과 같은 귀금속 물질로 이루어질 수 있다.
연결기(120)는 전극(110)들의 나노 갭(112) 위치에서 전극(110)들 각각에 연결된다. 구체적으로, 연결기(120)는 나노 갭(112) 위치에서 외부로부터 나노 갭(112)으로 유입되는 바이오 물질(10)과 결합되는 제1 마커(122)를 이와 인접한 전극(110)에 연결시킨다. 이에, 제1 마커(122)는 재질 특성 상 전극(110)에 직접 연결되지 못할 수 있으므로, 이 경우 연결기(120)에 결합된 상태로 간접적으로 전극(110)에 연결될 수 있다.
이때, 본 실시예의 바이오 센서(100)가 단백질 종류의 물질을 감지할 수 있도록 제1 마커(122)는 항체이고, 바이오 물질(10)은 상기의 항체와 생물학적으로 결합되는 항원일 수 있다. 물론, 제1 마커(122)가 항원이고, 바이오 물질(10)이 항체일 수도 있지만, 통상적으로 항체보다는 항원을 감지하는 경우가 일반적이므로 이하의 설명에서는 상기에서와 같이 제1 마커(122)가 항체이고, 바이오 물질(10)이 항원인 경우로 한정하여 설명하고자 한다.
이에, 연결기(120)는 항체인 제1 마커(122)를 전극(110)에 연결시키기 위하여 프로타인 G(protein G), 프로타인 A(protein A), 폴리에틸렌이민(polyethylenimine) 및 카르보닐디이미다졸(carbonyldiimidazole)로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다. 이때, 연결기(120)가 폴리에틸렌이민(polyethylenimine)을 포함할 경우에는 전극(110)을 상기 폴리에틸렌이민(polyethylenimine)으로 코팅한 후 글루타르알데히드(glutaraldehyde)로 반응기(232)를 만들어 제1 마커(122)와 결합될 수 있다.
또는, 연결기(120)는 고정화 효소 또는 자기조립단분자막(self assembled monolayer) 형태를 포함할 수 있다. 이때, 연결기(120)가 자기조립단분자막(self assembled monolayer) 형태를 포함할 경우에는 11-mercaptoundecanoic acid(MUA)로 처리한 후 고정 활성화 반응(EDC/NHS, 제로 링커들로써 반응 중간에 잠시 개입했다가 최종적으로는 떨어져서 제거되는 반응)으로 반응기(232)를 만들어 제1 마커(122)와 결합될 수 있다. 여기서, 상기 고정 활성화 반응(EDC/NHS)에 따라 형성된 반응기(232)는 카르복실기 또는 아민기를 포함할 수 있다. 한편, 제1 마커(122)는 전극(110)이 금(Au)으로 이루어져 있을 경우에는 직접적인 흡착 방식으로 전극(110)에 직접 연결될 수도 있다.
나노 입자(130)는 전극(110)들의 나노 갭(112)에 나노 사이즈를 가지면서 위치한다. 나노 입자(130)는 표면에 항원인 바이오 물질(10)이 결합되는 제1 마커(122)와 유사한 물질인 제2 마커(132)가 연결된다.
이와 같은 구성에 따라, 바이오 센서(100)는 외부로부터 유입되는 항원인 바이오 물질(10)이 나노 입자(130)를 사이로 제1 및 제2 마커(122, 132)들에 같이 결합되어 나노 갭(112)에서 전극(110)들이 서로 연결됨으로써, 외부로부터 전압이 제공된 상태에서 이로부터 발생되는 전기적인 신호를 통해 바이오 물질(10)을 감지하게 된다. 여기서, 상기 전기적인 신호는 전극(110)들의 연결로 인하여 전자가 흐르게 됨으로써 발생되는 전류를 포함할 수 있다. 이와 달리, 상기 전기적인 신호는 전류 외에 저항 또는 임피던스 등과 같은 측정이 가능한 모든 전기적인 데이터를 포함할 수 있다.
이에, 나노 입자(130)는 감지되는 바이오 물질(10)에 의해서만 전기적인 신호가 발생되도록, 즉 전극(110)들을 서로 단락시키지 않도록 반드시 절연성 재질로 이루어질 필요성이 있다. 구체적으로, 나노 입자(130)는 절연 특성을 가지면서 나노 사이즈로 제조가 가능한 금속 산화물 형태의 물질로 이루어질 수 있다. 더 구체적으로, 나노 입자(130)는 양이온이 3가 또는 4가인 금속 산화물로 이루어질 수 있다. 예를 들어, 나노 입자(130)는 알루미나(alumina), 산화비스무트(bismuth oxide), 산화코발트(cobalt oxide), 산화구리(copper oxide), 산화디스프로슘(dysprosium oxide), 산화어븀(erbium oxide), 산화유로퓸(europium oxide), 산화가돌리늄(gadolinium oxide), 산화휼뮴(holmium oxide), 산화철(iron oxide), 산화란타넘(lanthanum oxide), 산화망가니즈(manganese oxide), 산화네오디뮴(neodymium oxide), 산화니켈(nickel oxide), 폴리스타이렌(polystyrene), 산화안티모니(antimony oxide), 이산화규소(silicon dioxide), 산화주석(tin oxide), 이산화타이타늄(titanium dioxide), 산화텅스텐(tungsten trioxide), 지르코니아(zirconia), 산화인듐(indium oxide) 및 산화아연(zinc oxide)로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다.
이렇게, 나노 입자(130)가 전극(110)들 사이의 나노 갭(112)에 위치한 상태에서 바이오 센서(100)의 전극(110)들에 전압을 점차 상승시키면서 공급할 경우, 나노 입자(130)에 의해서 전자 방출을 증가시키는 쇼트키 현상(schottky effect)이 진행되어 바이오 물질(10)로부터 발생된 전기적인 신호, 예컨대 전류가 증폭되는 결과를 가져오게 된다.
이는, 전극(110)들 각각에 연결기(120)로써 프로타인 G(protein G)를 사용하여 항체인 제1 마커(122)를 배향이 좋게 연결시키고 나노 입자(130)로써 카르복실기를 갖는 이산화규소(silicon dioxide)를 사용하여 제2 마커(132)를 상기 고정 활성화 반응(EDC/NHS)을 통해 연결시킨 상태에서, 이 전극(110)들에 전압을 점차 상승시키면서 그 발생되는 전류값을 측정한 도 2의 그래프를 통해 확인할 수 있다.
구체적으로, 도 2의 그래프를 참조하면 나노 입자(130) 없이 전극(110)들에 전압을 상승시킬 경우에는 그래프 G1과 같이 그 변화량이 거의 없는데 반하여, 본 발명의 나노 입자(130)를 전극(110)들의 나노 갭(112)에 위치시켜 전극(110)들에 전압을 상승시킬 경우에는 그래프 G2와 같이 그 전류값이 급격하게 증가함을 확인할 수 있다. 특히, 본 발명의 나노 입자(130)가 나노 갭(112)에 위치한 상태에서 전극(110)들에 전압을 상승시킬 경우에는 그래프 G2의 어느 한 "P" 시점을 기점으로 그 전류값이 매우 급격하게 증가함을 확인할 수 있다. 이는, 그래프 G2의 "P" 시점이 바이오 물질(10)을 제외한 연결기(120), 나노 입자(130), 제1 및 제2 마커(122, 132)들과 같은 추가적인 연결 물질들의 전위 장벽이 형성된 전압으로써, 이보다 높은 전압이 인가되면 상기에서 설명한 쇼트키 현상(schottky effect)이 활발하게 진행되고 있다는 의미를 포함하고 있다.
이에, 본 발명의 나노 입자(130)를 통해 증폭된 전류값을 이용하여 저항, 임피던스 및 유전율 등과 같은 전기적인 특성값을 산출하여 감지된 바이오 물질(10)을 분석할 수 있다. 구체적으로, 감지된 바이오 물질(10)을 농도에 따라 정량 구분한 다음, 이에 따른 상기의 전기적인 특성값의 차이를 통해 이 바이오 물질(10)의 종류를 분석할 수 있다. 이때, 바이오 센서(100)는 바이오 물질(10)을 용액 상태에서 감지할 경우 측정되는 전류값이 상기 용액에 의해 직접적으로 영향을 받으므로, 반드시 건조 상태에서 바이오 물질(10)을 감지하는 것이 바람직하다.
한편, 전극(110)들 사이의 나노 갭(112)은 상기에서 설명한 제조 방법에 따라 약 100~1000㎚를 갖는데 반해, 감지 대상인 항원인 바이오 물질(10)은 나노 갭(112)보다 현저하게 작은 약 2~10㎚의 사이즈를 가지고 있으므로, 본 발명의 나노 갭(112)에 위치한 나노 입자(130)는 바이오 물질(10)에 의해 전극(110)들이 서로 연결되도록 그 사이에서 브릿지 역할을 수행할 수 있다. 이에, 나노 입자(130)는 상기 브릿지 역할을 수행할 수 있도록 나노 갭(112)을 G라고 하였을 때 그 크기(W)는 최소한 약0.1G 이상일 필요성이 있다. 반대로, 나노 입자(130)는 그 호 부분이 상기 브릿지 역할을 수행할 수도 있으므로, 그 크기(W)는 상기 브리지 역할을 안정하게 할 수 있는 범위에서 최대 약 25G 이하인 것이 바람직하다. 따라서, 나노 입자(130)의 크기(W)는 0.1G≤W≤25G 범위에 포함될 수 있다.
이와 같이, 전압이 공급되는 한 쌍의 전극(110)들 사이의 나노 갭(112)으로 유입되는 바이오 물질(10)이 나노 갭(112)에 위치하는 나노 입자(130)를 통해 전극(110)들을 서로 연결시킴으로써, 이를 통해 발생되는 전기적인 신호, 예컨대 전류값을 증폭시킬 수 있다. 이에 따라, 상기 증폭된 전류값을 통해 농도에 따라 커진 분해능을 확보함으로써, 감지되는 바이오 물질(10)을 노이즈와 정확하게 구분하여 감지할 수 있을 뿐만 아니라, 그 재현성도 안정적으로 확보할 수 있다.
또한, 나노 입자(130)를 이용하여 그 감지되는 전류값을 증폭시킴으로 인해 그 검출 한계를 증가시킬 수 있으므로, 감지 대상인 바이오 물질(10)의 농도가 미세할 경우에도 이를 충분히 감지할 수 있다는 효과도 추가로 기대할 수 있다.
또한, 나노 입자(130)를 통해 바이오 물질(10)로 전극(110)들을 연결한 상태에서 비정상적인 반응 부분에 대해 워싱 버퍼를 이용하여 세척한 후 그 증폭된 전류값을 측정함으로써, 더 안정적인 정확성과 재현성을 확보할 수 있다.
도 3은 본 발명의 다른 실시예에 따른 바이오 센서를 개념적으로 나타낸 구성도이다.
도 3을 참조하면, 본 발명의 다른 실시예에 따른 바이오 센서(200)는 사이에 나노 갭(212)을 가지면서 외부로부터 전압이 공급되는 한 쌍의 전극(210)들, 나노 갭(212)에서 전극(210)들 각각에 연결되어 외부로부터 유입되는 바이오 물질(20), 구체적으로 외가닥 DNA(20)와 결합되는 연결기(220) 및 나노 갭(212)에 위치하여 외가닥 DNA(20)와 반응하는 반응기(232)가 표면에 연결된 나노 입자(230)를 포함한다. 여기서, 전극(210)들은 도 1에서 설명한 전극(도 1의 110)들과 실질적으로 동일하므로, 이에 중복되는 상세한 설명은 생략하기로 한다.
연결기(220)는 외가닥 DNA(20)와 결합될 수 있도록 폴리엘라이신(poly-L-lysine), 탐침 올리고 핵산(probe oligonucleotide), 올리고 펩타이드(oligopeptide) 및 카르보닐디이미다졸(carbonyldiimidazole)로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다.
또는, 연결기(220)는 니켈-니트릴로트아세트산(nickel-nitrilotriacetic acid)과 금(gold)의 결합체 또는 자기조립단분자막(self assembled monolayer) 형태를 포함할 수 있다. 이때, 연결기(220)가 자기조립단분자막(self assembled monolayer) 형태를 포함할 경우에는 3,3'-dithioldipropionic acid로 처리하여 고정 활성화 반응(EDC/NHS) 후 스트렙타아비딘(streptavidin)과의 반응으로 외가닥 DNA(20)와 결합된다.
나노 입자(230)는 나노 갭(212)에서 전극(210)들을 서로 단락시키지 않도록 나노 사이즈로 제조가 가능한 절연성 재질로 이루어진다. 이에, 본 실시예의 나노 입자(230)의 재질은 실질적으로 도 1에서 설명한 나노 입자(도 1의 130)와 동일하므로, 이에 중복되는 상세한 설명은 생략하기로 한다. 또한, 반응기(232)는 나노 입자(230)의 표면에서 외가닥 DNA(20)와 반응하여 결합하도록 상보 DNA(cDNA)를 포함한다.
이에, 상보 DNA(cDNA)의 반응기(232)가 연결기(220)와 결합된 외가닥 DNA(20)와 반응하여 결합하면, 이를 통해 전극(210)들은 나노 갭(212)에서 서로 연결된 구조를 갖게 되므로, 외부로부터 전압이 공급된 상태에서 이로부터 전기적인 신호, 즉 전류값이 감지된다.
이러면, 도 1을 참조한 실시예에서 마찬가지로, 전극(210)들에 전압을 점차 상승시키면서 공급할 경우 나노 갭(212)에 위치한 나노 입자(230)를 통해 쇼트키 현상(schottky effect)이 진행됨으로써, 상기 전류값이 증폭되어 감지될 수 있다.
따라서, 도 1을 참조한 실시예서와 마찬가지로, 상기 증폭된 전류값을 통해 농도에 따라 커진 분해능을 확보함으로써, 감지되는 외가닥 DNA(20)를 노이즈와 정확하게 구분하여 감지할 수 있을 뿐만 아니라, 그 재현성도 안정적으로 확보할 수 있다. 또한, 나노 입자(230)를 이용하여 그 감지되는 전류값을 증폭시킴으로 인해 그 검출 한계를 증가시켜 외가닥 DNA(20)의 농도가 미세할 경우에도 이를 충분히 감지할 수 있다.
도 4는 본 발명의 또 다른 실시예에 따른 바이오 센서를 개념적으로 나타낸 구성도이다.
도 4를 참조하면, 본 발명의 다른 실시예에 따른 바이오 센서(300)는 사이에 나노 갭(312)을 가지면서 외부로부터 전압이 공급되는 한 쌍의 전극(310)들, 나노 갭(312)에서 전극(310)들 각각에 연결되어 외부로부터 유입되는 바이오 물질(30), 구체적으로 효소와 같은 미생물(30)이 결합되는 연결기(320) 및 나노 갭(312)에 위치하여 미생물(30)과 반응하는 반응기(332)가 표면에 연결된 나노 입자(330)를 포함한다. 여기서, 전극(310)들은 도 1에서 설명한 전극(도 1의 110)들과 실질적으로 동일하므로, 이에 중복되는 상세한 설명은 생략하기로 한다.
연결기(320)는 미생물(30)의 생체막에 존재하며 미생물(30)의 수송을 중개하는 역할을 수행하는 담체를 포함한다. 이에, 연결기(320)는 감지하고자 하는 미생물(30)의 종류에 따라 다양한 종류의 담체를 포함할 수 있다.
나노 입자(330)는 나노 갭(312)에서 전극(310)들을 서로 단락시키지 않도록 나노 사이즈로 제조가 가능한 절연성 재질로 이루어진다. 이에, 본 실시예의 나노 입자(330)의 재질은 실질적으로 도 1에서 설명한 나노 입자(도 1의 130)와 동일하므로, 이에 중복되는 상세한 설명은 생략하기로 한다. 또한, 반응기(332)는 나노 입자(330)의 표면에서 미생물(30)과 반응하여 결합하도록 렉틴(lectin)을 포함한다.
이에, 렉틴(lectin)의 반응기(332)가 담체인 연결기(320)와 결합된 미생물(30)과 반응하여 결합하면, 이를 통해 전극(310)들은 나노 갭(312)에서 서로 연결된 구조를 갖게 되므로, 외부로부터 전압이 공급된 상태에서 이로부터 전기적인 신호, 즉 전류값이 감지된다.
이러면, 도 1을 참조한 실시예에서 마찬가지로, 전극(310)들에 전압을 점차 상승시키면서 공급할 경우 나노 갭(312)에 위치한 나노 입자(330)를 통해 쇼트키 현상(schottky effect)이 진행됨으로써, 상기 전류값이 증폭되어 감지될 수 있다.
따라서, 도 1을 참조한 실시예서와 마찬가지로, 상기 증폭된 전류값을 통해 농도에 따라 커진 분해능을 확보함으로써, 감지되는 미생물(30)을 노이즈와 정확하게 구분하여 감지할 수 있을 뿐만 아니라, 그 재현성도 안정적으로 확보할 수 있다. 또한, 나노 입자(330)를 이용하여 그 감지되는 전류값을 증폭시킴으로 인해 그 검출 한계를 증가시켜 미생물(30)의 농도가 미세할 경우에도 이를 충분히 감지할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 통상의 기술자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
상술한 바와 같이, 본 발명의 바이오 센서는 전압이 공급되는 한 쌍의 전극들 사이의 나노 갭으로 유입되는 단백질의 항원-항체, DNA 또는 미생물의 효소와 같은 특정 바이오 물질이 상기 나노 갭에 위치하는 나노 입자를 통해 상기 전극들을 서로 연결시켜 이를 통해 발생되는 전기적인 신호를 증폭시킴으로써, 상기 특정 바이오 물질을 정확하고 안정적으로 감지하는데 활용될 수 있다.

Claims (15)

  1. 사이에 나노 갭을 가지면서 전압이 공급되는 한 쌍의 전극들;
    상기 나노 갭에서 상기 전극들 각각에 위치하여, 외부로부터 상기 나노 갭으로 유입되는 바이오 물질과 결합되는 제1 마커를 인접한 상기 전극들 각각에 연결시키는 연결기; 및
    상기 나노 갭에 위치하여, 상기 바이오 물질과 결합되는 제2 마커가 표면에 연결된 나노 입자를 포함하는 바이오 센서.
  2. 제1항에 있어서, 상기 나노 입자는 절연성 재질로 이루어진 것을 특징으로 하는 바이오 센서.
  3. 제1항에 있어서, 상기 나노 입자는 양이온이 3가 또는 4가인 금속 산화물을 포함하는 것을 특징으로 하는 바이오 센서.
  4. 제1항에 있어서, 상기 나노 입자의 크기(W)는 상기 나노 갭을 G라고 하였을 때, 0.1G≤W≤25G 범위에 포함되는 것을 특징으로 하는 바이오 센서.
  5. 제1항에 있어서, 상기 연결기는 프로타인 G(protein G), 프로타인 A(protein A), 폴리에틸렌이민(polyethylenimine) 및 카르보닐디이미다졸(carbonyldiimidazole)로 이루어진 군으로부터 선택된 어느 하나를 포함하는 것을 특징으로 하는 바이오 센서.
  6. 제1항에 있어서, 상기 연결기는 고정화 효소 또는 자기조립단분자막(self assembled monolayer) 형태를 포함하는 것을 특징으로 하는 바이오 센서.
  7. 제1항에 있어서, 상기 제1 및 제2 마커들 각각과 상기 바이오 물질 중 어느 하나는 항체를 포함하고, 다른 하나는 항원을 포함하는 것을 특징으로 하는 바이오 센서.
  8. 사이에 나노 갭을 가지면서 전압이 공급되는 한 쌍의 전극들;
    상기 나노 갭에서 상기 전극들 각각에 연결되며, 외부로부터 상기 나노 갭으로 유입되는 바이오 물질과 결합되는 연결기; 및
    상기 나노 갭에 위치하여, 상기 바이오 물질과 반응하는 반응기가 표면에 연결된 나노 입자를 포함하는 바이오 센서.
  9. 제8항에 있어서, 상기 나노 입자는 절연성 재질로 이루어진 것을 특징으로 하는 바이오 센서.
  10. 제8항에 있어서, 상기 나노 입자는 양이온이 3가 또는 4가인 금속 산화물을 포함하는 것을 특징으로 하는 바이오 센서.
  11. 제8항에 있어서, 상기 나노 입자의 크기(W)는 상기 나노 갭을 G라고 하였을 때, 0.1G≤W≤25G 범위에 포함되는 것을 특징으로 하는 바이오 센서.
  12. 제8항에 있어서, 상기 연결기는 폴리엘라이신(poly-L-lysine), 탐침 올리고 핵산(probe oligonucleotide), 올리고 펩타이드(oligopeptide) 및 카르보닐디이미다졸(carbonyldiimidazole)로 이루어진 군으로부터 선택된 어느 하나를 포함하는 것을 특징으로 하는 바이오 센서.
  13. 제8항에 있어서, 상기 연결기는 니켈-니트릴로트아세트산(nickel-nitrilotriacetic acid)과 금(gold)의 결합체 또는 자기조립단분자막(self assembled monolayer) 형태를 포함하는 것을 특징으로 하는 바이오 센서.
  14. 제8항에 있어서, 상기 바이오 물질은 외가닥 DNA를 포함하고, 상기 반응기는 상보 DNA(cDNA)를 포함하는 것을 특징으로 하는 바이오 센서.
  15. 제8항에 있어서, 상기 바이오 물질은 미생물을 포함하고, 상기 반응기는 렉틴(lectin)을 포함하는 것을 특징으로 하는 바이오 센서.
PCT/KR2015/005070 2014-05-28 2015-05-21 나노 갭을 갖는 바이오 센서 WO2015182918A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140064587A KR20150136899A (ko) 2014-05-28 2014-05-28 나노 갭을 갖는 바이오 센서
KR10-2014-0064587 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015182918A1 true WO2015182918A1 (ko) 2015-12-03

Family

ID=54699198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005070 WO2015182918A1 (ko) 2014-05-28 2015-05-21 나노 갭을 갖는 바이오 센서

Country Status (2)

Country Link
KR (1) KR20150136899A (ko)
WO (1) WO2015182918A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020150695A1 (en) * 2019-01-18 2020-07-23 Universal Sequencing Technology Corporation Devices, methods, and chemical reagents for biopolymer sequencing
EP3835785A4 (en) * 2018-08-09 2022-06-22 BBB Inc. BIOSENSOR USING MAGNETIC NANOPARTICLES, DETECTION DEVICE AND DETECTION METHOD USING SUCH BIOSENSOR

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880862B1 (ko) * 2017-11-10 2018-07-23 (주) 비비비 산화철계 나노입자 복합체 및 이를 이용한 바이오센서

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149249A2 (ko) * 2010-05-24 2011-12-01 한국생명공학연구원 극미량 시료 검출용 전기 바이오센서
US20120037515A1 (en) * 2009-04-15 2012-02-16 TheStateof Oregonactingbyand throughthestateBoard ofHigherEducationon behalf of thePortlandstateUniv Impedimetric sensors using dielectric nanoparticles
KR20120038804A (ko) * 2010-10-14 2012-04-24 한국생명공학연구원 나노 갭 전극 및 금속 나노입자를 이용한 바이러스 검출방법
US20120190130A1 (en) * 2011-01-20 2012-07-26 Kang Da Yeon Cartridge for detecting target antigen and method for detecting target antigen using the same
US20140080118A1 (en) * 2012-09-14 2014-03-20 International Business Machines Corporation Sample assembly with an electromagnetic field to accelerate the bonding of target antigens and nanoparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120037515A1 (en) * 2009-04-15 2012-02-16 TheStateof Oregonactingbyand throughthestateBoard ofHigherEducationon behalf of thePortlandstateUniv Impedimetric sensors using dielectric nanoparticles
WO2011149249A2 (ko) * 2010-05-24 2011-12-01 한국생명공학연구원 극미량 시료 검출용 전기 바이오센서
KR20120038804A (ko) * 2010-10-14 2012-04-24 한국생명공학연구원 나노 갭 전극 및 금속 나노입자를 이용한 바이러스 검출방법
US20120190130A1 (en) * 2011-01-20 2012-07-26 Kang Da Yeon Cartridge for detecting target antigen and method for detecting target antigen using the same
US20140080118A1 (en) * 2012-09-14 2014-03-20 International Business Machines Corporation Sample assembly with an electromagnetic field to accelerate the bonding of target antigens and nanoparticles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835785A4 (en) * 2018-08-09 2022-06-22 BBB Inc. BIOSENSOR USING MAGNETIC NANOPARTICLES, DETECTION DEVICE AND DETECTION METHOD USING SUCH BIOSENSOR
WO2020150695A1 (en) * 2019-01-18 2020-07-23 Universal Sequencing Technology Corporation Devices, methods, and chemical reagents for biopolymer sequencing

Also Published As

Publication number Publication date
KR20150136899A (ko) 2015-12-08

Similar Documents

Publication Publication Date Title
Odenthal et al. An introduction to electrochemical DNA biosensors
Wang et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization
RU2617535C2 (ru) Измерительные и контрольные электроды с аптамерным покрытием и способы их применения для распознавания биомаркеров
US6322963B1 (en) Sensor for analyte detection
Wang Nanoparticle‐based electrochemical bioassays of proteins
Wang Nanoparticle-based electrochemical DNA detection
Drummond et al. Electrochemical DNA sensors
Merkoçi Electrochemical biosensing with nanoparticles
US20040197821A1 (en) Rapid-detection biosensor
Saberi et al. Amplified electrochemical DNA sensor based on polyaniline film and gold nanoparticles
US20100260745A1 (en) Methods of using and constructing nanosensor platforms
US20030119208A1 (en) Electrochemical immunosensor and kit and method for detecting biochemical anylyte using the sensor
US20100270174A1 (en) Biosensor cell and biosensor array
CA2393766A1 (en) Column and row addressable high density biochip array
Malathi et al. Disposable biosensors based on metal nanoparticles
WO2015182918A1 (ko) 나노 갭을 갖는 바이오 센서
CN109642220B (zh) 葡萄糖传感器用试剂、葡萄糖传感器、葡萄糖传感器的制造方法及葡萄糖测量装置
Martín-Yerga et al. Biosensor array based on the in situ detection of quantum dots as electrochemical label
Shoaie et al. Highly sensitive electrochemical biosensor based on polyaniline and gold nanoparticles for DNA detection
Díaz‐González et al. Diagnostics using multiplexed electrochemical readout devices
Moeller et al. Chip-based electrical detection of DNA
Garcia et al. Impedimetric sensor for Leishmania infantum genome based on gold nanoparticles dispersed in polyaniline matrix
Weiß et al. Prototype digital lateral flow sensor using impact electrochemistry in a competitive binding assay
JP2009535637A (ja) バイオセンサ装置
El Aamri et al. Development of a novel electrochemical sensor based on functionalized carbon black for the detection of guanine released from DNA hydrolysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15798736

Country of ref document: EP

Kind code of ref document: A1