WO2013099912A1 - ケーブルシステム - Google Patents

ケーブルシステム Download PDF

Info

Publication number
WO2013099912A1
WO2013099912A1 PCT/JP2012/083585 JP2012083585W WO2013099912A1 WO 2013099912 A1 WO2013099912 A1 WO 2013099912A1 JP 2012083585 W JP2012083585 W JP 2012083585W WO 2013099912 A1 WO2013099912 A1 WO 2013099912A1
Authority
WO
WIPO (PCT)
Prior art keywords
reel
cable
traveling body
motor
speed
Prior art date
Application number
PCT/JP2012/083585
Other languages
English (en)
French (fr)
Inventor
津久井 慎吾
大村 誠司
岩城 秀和
Original Assignee
トピー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トピー工業株式会社 filed Critical トピー工業株式会社
Priority to US14/369,021 priority Critical patent/US9577418B2/en
Priority to EP12861812.1A priority patent/EP2800219B1/en
Priority to JP2013510428A priority patent/JP5432419B2/ja
Publication of WO2013099912A1 publication Critical patent/WO2013099912A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G11/00Arrangements of electric cables or lines between relatively-movable parts
    • H02G11/02Arrangements of electric cables or lines between relatively-movable parts using take-up reel or drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/40Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material mobile or transportable
    • B65H75/42Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material mobile or transportable attached to, or forming part of, mobile tools, machines or vehicles
    • B65H75/425Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material mobile or transportable attached to, or forming part of, mobile tools, machines or vehicles attached to, or forming part of a vehicle, e.g. truck, trailer, vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • B65H75/4481Arrangements or adaptations for driving the reel or the material
    • B65H75/4486Electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/34Handled filamentary material electric cords or electric power cables

Definitions

  • the present invention relates to a cable system equipped with a reel device.
  • a remote controller base device
  • a video camera is mounted on the crawler traveling body, and a video signal from the video camera is sent to the remote controller, and an operator operates the remote controller while watching a monitor display attached to the remote controller.
  • a remote control signal from the remote controller is sent to the crawler traveling body to move the crawler traveling body forward, backward, and turn.
  • Wired systems are mainly used to use crawlers in buildings or underwater with winding paths that are difficult for radio waves to reach.
  • the crawler traveling body and the remote controller are connected by a long cable.
  • a signal transmission line is incorporated in the cable, and a feeding line as a power line can be incorporated as necessary.
  • the site In the case of a rescue or exploration robot, the site is in a building, and the controller operator is not close to the site due to poison, radiation, explosion hazard, etc., more than 100 meters, and sometimes 1 km away There are times when it must be operated at the place. For such robots, a wired crawler traveling body is mostly applied.
  • the wired crawler traveling body there are a case where a reel for winding a cable is disposed at a base station where an operator is present and a case where the reel is disposed on the crawler traveling body.
  • a reel is arranged at a base station
  • the crawler traveling body heads for a long distance
  • the crawler traveling body needs to move while pulling a cable from the reel of the base station and pulling a long cable. Too big. Therefore, when the base station and the site are separated from each other by a long distance, it is appropriate to place the reel on the crawler traveling body. In this case, since the cable is fed out according to the movement of the crawler traveling body, the load is small.
  • the cable preferably has only a thin, light and durable signal transmission line, omitting heavy power lines.
  • a thin and long cable is wound around the reel, so that the cable slacks and is caught on a part of the crawler traveling body, or the cable is entangled and signal transmission can be performed. As a result, there was a problem that the crawler traveling body stopped moving.
  • Patent Document 1 discloses a reel device mounted on a crawler traveling body.
  • the reel device includes a reel around which the cable is wound, a motor connected to the reel, and a rotation sensor that detects the rotation of the reel.
  • the motor controller basically controls the motor as follows.
  • the motor is made free and the cable is smoothly fed from the reel device. This prevents the cable from becoming too tight and resisting the forward movement of the crawler runner.
  • the motor is driven to wind the cable around the reel, thereby preventing the cable from sagging.
  • the cable system includes: A cable that connects the base device and the traveling body and at least carries signal transmission; A reel device that is mounted on the traveling body and on which the cable is wound, a motor that drives the reel, and a rotation sensor that detects rotation of the reel; A motor controller for controlling the motor of the reel device; An acceleration sensor for detecting the vertical acceleration of the traveling body; With When the motor controller determines that the reel is rotating in the direction in which the cable is fed out based on the detection information from the rotation sensor, the motor controller basically opens the motor drive circuit or reduces the supply current to the motor to zero.
  • the motor When it is determined that the reel is rotating in the direction of winding the cable based on the detection information from the rotation sensor, basically the motor is driven to apply a rotational torque in the winding direction to the reel. Furthermore, the motor controller detects the end point of the sudden change in the posture of the traveling body based on the vertical acceleration information from the acceleration sensor even when the reel is rotating in the feeding direction. The motor is driven to apply a rotational torque in the winding direction to the reel.
  • the rotational torque in the winding direction can be applied to the reel immediately after the sudden change in the posture of the traveling body when the traveling body climbs up, starts, or descends a staircase or a large step.
  • the motor controller detects the end point of the sudden change in posture of the traveling body based on a differential value of the vertical acceleration from the acceleration sensor. According to this configuration, since the differential value of acceleration is used, the responsiveness can be further improved.
  • the motor controller determines whether or not the rotation speed in the reel feeding direction detected by the rotation sensor exceeds a set value. Only when an affirmative determination is made here, the motor is driven to apply a rotational torque in the winding direction to the reel.
  • the motor controller determines whether or not the rotation speed in the reel feeding direction detected by the rotation sensor exceeds a set value. Only when an affirmative determination is made here, the motor is driven to apply a rotational torque in the winding direction to the reel.
  • the reel device further includes a reel diameter detection unit that detects a diameter of the reel around which the cable is wound
  • the motor controller includes: (a) the reel diameter detected by the reel diameter detection unit and the rotation. The speed at which the cable is fed out from the reel is calculated from the rotational speed in the reel feeding direction detected by the sensor, and (b) the cable feeding speed when the end point of the sudden change in the posture of the traveling body is detected. Is determined to exceed the set value, and only when an affirmative determination is made here, the motor is driven to apply a rotational torque in the winding direction to the reel. Even in this configuration, similarly to the above, it is possible to reliably avoid the erroneous detection that occurs when depending only on the vertical acceleration information.
  • the reel device further includes a reel diameter detection unit that detects a diameter of the reel around which the cable is wound, and the motor controller is configured in the state where the reel rotates in the feeding direction. From the reel diameter detected by the reel diameter detection unit and the rotation speed in the reel feeding direction detected by the rotation sensor, the speed at which the cable is fed out from the reel is calculated, and (b) the cable feeding speed is When the traveling speed of the traveling body is smaller than the traveling speed of the traveling body, the motor driving circuit is opened to minimize the resistance of the motor. (C) When the cable feeding speed is larger than the traveling speed of the traveling body, the motor is driven. The circuit is closed and the rotation of the reel is limited by the resistance of the motor. According to this configuration, even when the reel is rotating in the feeding direction, if the cable feeding speed is higher than the moving speed of the traveling body, the cause of the cable slack can be eliminated by limiting the rotation of the reel. .
  • the cable system of the present invention it is possible to suppress the slack of the cable that occurs immediately after the sudden change in the posture of the traveling body when the traveling body climbs up or down the stairs or steps, starts to descend, or reduces the slack for a short time. As a result, the inconvenience that the slack portion of the cable randomly spreads in the vicinity of the reel can be solved.
  • the exploration system includes a remote controller 1 (base device), a crawler traveling body 2 (traveling body), and a long cable 3 that connects the remote controller 1 and the crawler traveling body 2.
  • the remote controller 1 has a monitor display 1a.
  • the crawler traveling body 2 includes a traveling motor and a battery (not shown).
  • the cable 3 contains an optical fiber and transmits a signal.
  • the crawler traveling body 2 is equipped with video cameras 4a and 4b (exploration devices).
  • the video camera 4a photographs the front of the crawler traveling body 2, and the video 4b photographs the rear of the crawler traveling body 2.
  • a sensor such as an infrared sensor, a chemical substance detection sensor, a temperature sensor, or a radiation sensor may be included.
  • the operator operates the remote controller 1 while viewing the image from the video camera 4a when the crawler traveling body 2 moves forward and the image from the video camera 4b when the crawler traveling body 2 moves backward on the monitor display 1a.
  • the crawler traveling body 2 is remotely controlled to move forward, backward, and turn.
  • the cable system A includes the above-described cable 3 and a reel device 10 that winds and unwinds the cable 3.
  • the reel device 10 is mounted on, for example, the rear portion of the crawler traveling body 2, and a pair of supports 11 (device main body) fixed to the upper surface of the body of the crawler traveling body 2 and rotatably supported by these supports 11.
  • a reel 12 and an alignment mechanism 13 The axis of the reel 12 extends horizontally perpendicular to the forward and backward directions of the crawler traveling body 2.
  • the alignment mechanism 13 is supported by the pair of supports 11 in the vicinity of the reel 12, and when the reel 12 rotates, the cable 3 is moved in the axial direction of the reel 12 and reaches the end position of the moving stroke.
  • the moving direction of the cable 3 is reversed, whereby the cable 3 is wound almost uniformly around the body 12a of the reel 12 in the axial direction.
  • One end of the cable 3 is connected to a converter built in the remote controller 1.
  • This converter converts a signal from the cable 3 to the remote controller 1 from an optical signal to an electrical signal, and converts a signal from the remote controller 1 to the cable 3 from an electrical signal to an optical signal.
  • the cable 3 is wound around the body 12a of the reel 12 through the alignment mechanism 13 of the reel device 10 as described above, and the other end of the cable 3 is a rotary joint (not shown) provided on the reel 12. ), And further connected to a plurality of electric signal lines via a converter and a hub.
  • the plurality of electric signal lines are provided for transmission of control signals to the motor driver of the traveling motor of the crawler traveling body 2, transmission of video signals (search signals) from the video cameras 4a and 4b, and the like.
  • the converter of the reel device 10 also converts between an optical signal and an electric signal.
  • the reel device 10 includes a reel motor 15 and a rotation sensor 16 including a rotary encoder and the like.
  • the motor 15 is a brushed DC motor, for example, is fixed to the side wall of the support 11 and is connected to the reel 12 via a built-in gear train.
  • the rotation sensor 16 detects the rotation direction of the motor 15 (and thus the reel 12), that is, the winding direction or the feeding direction, and also detects the rotation speed (the number of rotations per unit time).
  • the reel device 10 includes a reel diameter detection mechanism 20 (reel diameter detection unit) shown in FIGS.
  • the detection mechanism 20 has a contact arm 21 that is rotatably supported by the support 11.
  • the contact arm 21 is spanned between a rotary shaft 21a that is parallel to the axis of the reel 12, a pair of left and right arm portions 21b that are fixed to the rotary shaft 21a, and the other ends of the arm portions 21b.
  • the rotary shaft 21a and the reel 12 have a support shaft 21c parallel to the axis of the reel 12, and a rotary roller 21d (contact portion) rotatably supported by the support shaft 21c.
  • the detection mechanism 20 further includes a helical spring 23 (biasing member) and an angle sensor 24 formed of a potentiometer or the like.
  • the helical spring 23 is wound around one end of the rotary shaft 21 a, one end of which is locked to the rotary shaft 21 a, and the other end is locked to the support 11. Due to the elastic force of the helical spring 23, the rotating roller 21d of the contact arm 21 is biased downward, that is, toward the body 12a of the reel 12. Thus, the rotating roller 21d of the contact arm 21 is always in contact with the outermost cable 3 wound around the reel 12. In FIGS. 2 and 3, the cable 3 is omitted in order to avoid complexity.
  • the angle sensor 24 is disposed in the vicinity of the other end of the rotary shaft 21a, and is attached to the side wall of the support 11 via a bracket.
  • the angle sensor 24 is connected to the other end of the rotary shaft 21 a via gears 25 and 26 and detects the angle of the contact arm 21.
  • the contact arm 21 becomes closer to the horizontal as the remaining amount of the cable 3 wound around the reel 12 increases. Therefore, the angle of the contact arm 21 detected by the angle sensor 24 substantially represents the remaining amount of the cable 3 wound around the reel 12 and substantially represents the diameter of the reel 12 including the wound cable 3. Yes.
  • the cable system A further includes a motor driver 30, a motor controller 40 including a microprocessor and the like, and an acceleration sensor 50.
  • the motor driver 30 includes a drive circuit that supplies a drive current to the motor 15 and a current detection circuit 31 that detects a current flowing through the coil of the motor 15.
  • the acceleration sensor 50 is attached to the support 11, for example, and has at least two axes of acceleration, that is, acceleration in the front-rear direction of the crawler traveling body 2 (hereinafter, this acceleration information is referred to as acceleration A), Directional acceleration (hereinafter, this acceleration information is referred to as acceleration B) is detected.
  • the motor controller 40 is based on detection information from the rotation sensor 16, the angle sensor 24, the current detection circuit 31, the acceleration sensor 50, and the rotation sensor 60 that detects the rotation of the sprocket of the crawler traveling body 2.
  • a control signal is sent to the driver 30 to control the motor 15.
  • step S 1 the rotation direction of the reel 12 detected by the rotation sensor 16, the information about the rotation speed R, the angle information of the contact arm 21 detected by the angle sensor 24, and the acceleration A detected by the acceleration sensor 50. , B, and the crawler sprocket rotation direction and rotation speed information detected by the rotation sensor 60 are read.
  • the reel diameter D (the diameter of the reel 12 including the cable 3 wound around the body 12a of the reel 12) is calculated from the angle information of the contact arm 21 detected by the angle sensor 24.
  • the reel diameter D also includes information on the remaining amount of the cable 3 wound around the reel 12.
  • step S3 it is determined whether or not the reel diameter D exceeds the threshold value D0.
  • This threshold value D0 corresponds to the reel diameter when the remaining amount of the cable wound around the reel 12 is small. If an affirmative determination is made here, the process proceeds to step S4, and a current correction coefficient k described later corresponding to the reel diameter D is calculated. In the present embodiment, the current correction coefficient k is increased in proportion to the reel diameter D (in proportion to the remaining amount of cable).
  • step S3 If a negative determination is made in step S3, the process proceeds to step S5 to output a warning signal indicating that there is no remaining cable, and then executes step S4.
  • This warning signal is sent to the remote controller 1 via the cable 3, and a warning is displayed by the monitor display 1a or voice. The operator can stop the forward movement of the crawler traveling body 2 by seeing the warning display.
  • next step S7 it is determined whether or not the rotation direction of the reel 12 is the feeding direction. In the case of an affirmative determination (that is, when it is determined that the reel 12 is rotating in the feeding direction), in principle, a motor-free feeding control described later is executed, and in the case of a negative determination (that is, the reel 12 is moved in the winding direction). If it is determined that the motor 15 is rotating or stopped, in principle, winding control by driving the motor 15 is executed.
  • step S7 When it is determined in step S7 that the reel 12 is rotating in the feeding direction, it is determined in step S8 whether or not the rotational speed R of the reel 12 is equal to or higher than the set rotational speed R0 .
  • This set rotational speed R0 is a much lower rotational speed (slow speed) than the rotational speed of the reel 12 in the normal forward state of the crawler traveling body 2, and the crawler traveling body 2 is in the normal forward state.
  • a positive determination is made in step S8.
  • step S8 If an affirmative determination is made in step S8 (that is, if it is determined that the reel 12 is rotating at a set rotational speed R0 or higher in the payout direction), the process proceeds to step S9 in principle to maintain the payout control. If a negative determination is made in step S8 (that is, if the reel 12 is rotating in the feeding direction but it is determined that the reel 12 is very slow), a winding described later is assumed assuming that the cable 3 is slack. Take control and prevent or eliminate sagging.
  • step S ⁇ b> 9 it is determined whether the feeding speed F of the cable 3 is greater than the forward speed V of the crawler traveling body 2.
  • the feeding speed F of the cable 3 is higher than the forward speed V of the crawler traveling body 2, sagging occurs in the cable 3.
  • step S9 the process proceeds to the next step S10 in order to maintain the payout control in principle.
  • step 11 the feeding speed of the cable 3 is limited. That is, not the motor free described later, but the drive circuit of the motor 15 is closed, and the rotation of the reel 12 in the feeding direction is suppressed by the resistance of the motor 15.
  • Step S10 After executing Step S9 or S11, in Step S10, it is determined whether or not the moving speed V of the crawler traveling body 2 is zero (that is, the crawler traveling body 2 is stopped). If the crawler traveling body 2 is stopped despite the reel 12 rotating in the feeding direction, the cable 3 may sag. Therefore, when an affirmative determination is made in step S10, the process shifts to winding control described later to prevent or eliminate sagging. When a negative determination is made in step S10, the process proceeds to the next step S12 in order to maintain the payout control in principle.
  • Step S12 is a step for detecting the end point of the sudden change in the posture of the crawler traveling body 2.
  • a case where the crawler traveling body 2 climbs up the stairs will be described as an example.
  • FIG. 5A when the crawler traveling body 2 is climbing the stairs, the crawler traveling body 2 is inclined.
  • the crawler traveling body 2 rotates so that the front side is lowered by gravity.
  • the horizontal posture shown in FIG. 5B is obtained.
  • the reel 12 is suddenly displaced upward (when the reel 12 is provided at the rear portion of the crawler traveling body 2 as in the present embodiment).
  • the reel 12 rotates at a high speed in the feeding direction and continues to rotate with its inertia.
  • the cable 3 is slack, and the slack portion is entangled or randomly spread around the reel 12.
  • Step S12 is executed in order to eliminate or prevent the sagging of the cable 3 at an early stage, and determines whether or not the differential value X of the vertical acceleration B is larger than the set value X0. .
  • the crawler traveling body 2 climbs up the stairs or steps as described above, more specifically, at the end of the sudden change in the posture of the crawler traveling body 2, the crawler traveling body 2 hits the floor at the upper end of the stairs, The differential value X of the acceleration B in the vertical direction increases and exceeds the set value X0.
  • step S12 of this embodiment the crawler travel is performed only when the two conditions that the differential value X exceeds the set value X0 and the rotational speed R in the reel-out direction of the reel 12 exceeds the set value R1 are satisfied. It is determined that the posture of body 2 is suddenly changed. When the crawler traveling body 2 vibrates on uneven terrain, there is a possibility that the differential value X exceeds the set value X0, and this is to avoid erroneously judging this vibration as rising up the stairs or the like. .
  • This set value R1 is larger than the set value R0 in step S8.
  • step S12 instead of comparing the rotation speed R of the reel 12 with the set value R1, the same result can be obtained by comparing the feeding speed F of the cable 3 with the set value F1.
  • step S12 If an affirmative determination is made in step S12, winding control described later is executed, and a rotational torque in the winding direction is applied to the reel 12. Thereby, the reel 12 is prevented from rotating at high speed in the feeding direction due to inertia, and the reel 12 is rotated in the reverse direction, that is, the winding direction in a short time. As a result, the sagging of the cable 3 is limited and the sagging is eliminated in a short time, so that the inconvenience that the sagging portion of the cable 3 spreads in the vicinity of the reel 12 can be avoided.
  • FIG. 6A and FIG. 6B when the crawler traveling body 2 starts moving down the stairs or a large step while moving forward, the crawler traveling body 2 suddenly changes from a horizontal posture to an inclined posture.
  • FIGS. 7A and 7B when the crawler traveling body 2 moves down the stairs or a large step while moving forward, the rear end of the crawler traveling body 2 falls from the last stage, so the crawler traveling body 2 suddenly changes from an inclined position to a horizontal position. Even in these cases, the cable 3 is pulled strongly and the reel 12 rotates at a high speed in the feeding direction as in the case of rising up the stairs.
  • the cable 3 may be strongly pulled due to a sudden change in the posture of the crawler traveling body 2, and the reel 12 may rotate at a high speed in the feeding direction.
  • the reel 12 may rotate at a high speed in the feeding direction.
  • FIG. 8A and FIG. 8B when the crawler traveling body 2 goes down the stairs while moving backward, it suddenly changes from an inclined posture to a horizontal posture. At this time, the cable 3 is pulled, and the reel 12 reverses from the winding direction to the feeding direction and rotates at a high speed in the feeding direction. Therefore, as in the case of sudden change in posture at the time of forward movement, an affirmative determination is made in steps S7 and S8, and a negative determination is made in step S9. To do).
  • the winding torque in the winding direction can be applied to the reel 12, and the slack of the cable 3 can be eliminated in a short time.
  • the winding control is executed when the following determination is made.
  • A When it is determined in step S7 that the reel 12 is rotating in the winding direction or stopped.
  • B Even when the reel 12 is rotating in the feeding direction, it is determined in step S8 that the rotation speed of the reel 12 is very low.
  • C When it is determined in step S10 that the crawler traveling body 2 is stopped even when the reel 12 is rotating in the feeding direction.
  • D Even when the reel 12 is rotating in the feeding direction, it is determined in step S12 that a sudden change in the posture of the crawler traveling body 2 has occurred, such as the stairs or steps rising up, starting down, or getting off.
  • step S13 it is determined whether or not the moving speed V of the crawler traveling body 2 is equal to or higher than the set moving speed V0 in the backward direction.
  • This set moving speed V0 is a speed (slow speed) far lower than the normal reverse speed. Therefore, in a situation where the crawler traveling body 2 is moving backward normally, a negative determination is made in step S7, an affirmative determination is made in step S13, and the process proceeds to step S14 so as to apply a rotational torque in the winding direction to the reel 12.
  • the current supplied to the motor 15 is duty-controlled so that the current detected by the current detection circuit 31 becomes the set current Iu. As a result, the cable 3 can be wound with a relatively large rotational torque.
  • step S13 If a negative decision in step S13, i.e., if it is determined that the crawler traveling body 2 is set lower than the moving velocity V 0 in either the backward direction is forward (speed including zero), the process proceeds to step S15, where The motor 15 is controlled so as to generate a rotational torque in the winding direction of the reel 12 and so that the current detected by the current detection circuit 31 becomes the set current Id.
  • This set current Id is smaller than the above-described set current Iu.
  • the rotational torque in step 15 is smaller than the rotational torque in step 14.
  • step S12 When a negative determination is made in step S12, the process proceeds to step S16 in order to maintain the feeding control in principle, and it is determined whether or not the acceleration A in the reverse direction is equal to or greater than the set value A0.
  • step S16 i.e., either the forward direction of the acceleration, or zero acceleration, if even acceleration of backward less than the set acceleration A 0, the process proceeds to step S17, the motor 15 in the free state. That is, a part of the drive circuit connected to the coil of the motor 15 is opened so that no current flows through the coil even when the reel 12 rotates. As a result, the cable 3 can be smoothly fed out.
  • step S16 If an affirmative determination is made in step S16, that is, if it is determined that the crawler traveling body 2 has stopped suddenly while moving forward, the process proceeds to step S18 without executing the feed-out control (motor-free) in step S17. Then, the motor 15 is driven so that the detected current becomes the set current Id ′, and a rotational torque in the winding direction is applied to the reel 12.
  • the set current Id ′ is smaller than the set current Iu in step S14.
  • the set current Id 'and the set current Id in step S15 may be equal or different.
  • the set current Iu is determined by multiplying the fixed current value Iu0 by the current correction coefficient k.
  • the set current Id in step S15 is determined by multiplying the fixed current value Id0 by the current correction coefficient k
  • the set current Id 'in step S18 is determined by multiplying the fixed current value Id'0 by the current correction coefficient k. Determined.
  • the rotational torque can be adjusted in response to a change in the remaining amount of the cable (that is, a change in the mass of the reel 11 including the wound cable 3).
  • the control mode of the present invention is not limited to the above embodiment and can be variously adopted.
  • the current supplied to the motor may be set to zero instead of opening the motor drive circuit in step S17.
  • the end point of the sudden change in the posture of the traveling body is detected based on the differential value of the vertical acceleration, but may be detected based on the vertical acceleration.
  • a motor controller that controls the motor of the reel device may be provided in the base device.
  • the cable may include an optical fiber that performs signal transmission and a feeder line.
  • the power source of the crawler traveling body and the reel device can be arranged in the vicinity of the base device.
  • a distance sensor such as a laser distance meter may be used as the reel diameter detection unit, and the remaining amount of the cable may be detected in a non-contact manner from the distance information to the outermost cable wound around the reel.
  • the acceleration sensor 50 is provided on the support 11 of the reel device 10 in the above embodiment, the installation location is not particularly limited, and may be provided on the front portion of the crawler traveling body.
  • the traveling body is not limited to the crawler traveling body, and may be a traveling body equipped with a plurality of wheels.

Landscapes

  • Storing, Repeated Paying-Out, And Re-Storing Of Elongated Articles (AREA)
  • Electric Cable Arrangement Between Relatively Moving Parts (AREA)
  • Unwinding Of Filamentary Materials (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)

Abstract

 走行体2が階段や段差等を昇り切る際や降り始める際や降り切る際に、ケーブル3のたるみを防止できるケーブルシステムAを提供する。ケーブルシステムAは、基地装置1と走行体2とを繋ぐケーブル3と、走行体2に搭載されたリール装置10と、リール装置10のモータ15を制御するモータコントローラ40と、走行体2の上下方向の加速度を検出する加速度センサ50とを備えている。モータコントローラ40は、リール12が繰り出し方向に回転している時には、基本的にモータフリーにし、リール12が巻き取り方向に回転している時には、基本的にリール12に巻き取り方向の回転トルクを付与する。さらに、リール12が繰り出し方向に回転している状況にあっても、加速度センサ50からの上下方向の加速度情報に基づき、上記走行体30の前後一方が急に下降するような走行体の姿勢急変の終了時点を検出した場合には、リール12に巻き取り方向の回転トルクを付与する。

Description

ケーブルシステム
 本発明は、リール装置を装備したケーブルシステムに関する。
 クローラ走行体をリモートコントローラ(基地装置)の遠隔操縦により走行させることは周知である。クローラ走行体にはビデオカメラが搭載されており、このビデオカメラからの映像信号がリモートコントローラに送られ、操作者はリモートコントローラに付随するモニタディスプレイを見ながらリモートコントローラを操作する。このリモートコントローラからの遠隔操縦信号がクローラ走行体に送られ、クローラ走行体を前進、後退、旋回させる。
 これら映像信号および遠隔操縦信号を伝送する方式として無線方式と有線方式がある。電波の届きにくい曲がりくねった通路を持つ建築物内や水中でクローラ走行体を利用するには主に有線方式が適用される。有線方式ではクローラ走行体とリモートコントローラは長いケーブルで繋がっている。ケーブルには信号伝送線が組み込まれており、必要に応じて動力線としての給電線を組み込むことも可能である。
 レスキューまたは探査用のロボットの場合、現場が建造物内であり、且つコントローラの操作者が毒や放射線や爆発危険などのため現場に近づけず、百メートル以上、場合に依っては1Kmも離れた所で操作せざるを得ないことがある。このようなロボットには、殆ど有線方式のクローラ走行体が適用される。
 上記有線方式のクローラ走行体において、ケーブルを巻くリールを操作者が居る基地局に配置する場合と、クローラ走行体に設置する場合がある。
 基地局にリールを配置する場合、クローラ走行体が長い距離離れた現場に向かう際に、クローラ走行体は、基地局のリールからケーブルを引き出し、長いケーブルを引きながら移動する必要があり、負荷が大きすぎる。
 そのため、基地局と現場が長い距離離れている場合には、リールをクローラ走行体に載せるのが適当である。この場合、クローラ走行体の移動にしたがってケーブルを繰り出すので、負荷が小さい。また、ケーブルは、重たい動力線を省いて、細くて軽く丈夫な信号伝送線のみを有することが好ましい。
 しかし、上記のようにリールをクローラ走行体に載せる方式を採った場合、細く長いケーブルをリールに巻き付けるため、ケーブルがたるんでクローラ走行体の一部に引っ掛かったり、ケーブルが絡んで信号伝送ができなくなり、その結果としてクローラ走行体が動かなくなるという問題があった。
 特許文献1は、クローラ走行体に搭載されたリール装置を開示している。このリール装置は、上記ケーブルを巻くリールと、このリールに連結されたモータと、このリールの回転を検出する回転センサとを備えている。
 上記特許文献1では、モータコントローラは、基本的に上記モータを次のように制御する。クローラ走行体がリモートコントローラ(基地局)から離れる方向に移動し(前進し)、回転センサがリールの繰り出し方向の回転を検出している時には、モータフリーにしてケーブルがリール装置から円滑に繰り出されるのを許容し、これにより、ケーブルが張り過ぎてクローラ走行体の前進の抵抗にならないようにする。
 また、クローラ走行体がリモートコントローラに近づく方向に移動する(後退する)場合には、モータを駆動してケーブルをリールに巻き取り、これによりケーブルがたるまないようにする。
 上記基本制御だけでは不都合が生じる。例えばクローラ走行体が前進している状態ではモータフリーとなってケーブルが繰り出されるが、この状況でクローラ走行体が急停止した場合には、慣性によりリールが回り続けるため、ケーブルが必要以上に繰り出され、ケーブルにたるみが生じる。
 そこで、上記特許文献1では、クローラ走行体に前後方向の加速度を検出する加速度センサを設置し、上記のようにクローラ走行体が前進中に急停止した時には、加速度センサにより検出された後退方向の加速度に応答して、モータを駆動しリールを巻き取り方向に回転させ、ケーブルを巻き取るようにしている。
特開2008-254927号公報
 上記特許文献1では、まだ課題が残されている。以下、詳述する。
 上記クローラ走行体が階段を昇り切った時に、クローラ走行体は重力により前側が急激に下降し、傾いた姿勢から水平な姿勢に急激に変化する。それから、クローラ走行体は階段の最上段に位置する床面に激しく当たって着地する(姿勢急変の終了)。上記リールはクローラ走行体の姿勢急変に伴い、ケーブルに引っ張られるためリールが高速で回転し、ケーブルを高速で繰り出す。クローラ走行体が着地した後もリールは慣性により高速で回転し続ける。その結果、ケーブルにたるみが生じ、このたるみ部分が、繰り出し方向に回転しているリールに絡まったり、リールの近傍に無秩序に広がったり、クローラ走行体の一部に引っ掛かったりし、クローラ走行体が動かなくなって回収ができなくなる原因となっている。
 上記特許文献1では、加速度センサによる前後方向の加速度情報に基づき、上記のような階段昇り切りを検出し、リールの巻き取り制御を実行しようと図ったが、実際には満足できる結果は得られなかった。
 特にケーブルが百メートル以上もある場合は、上記のような昇り切りのみならず降り始めや降り切り時でも同様の不都合が生じていた。
 本発明は上記課題を解決するためになされたもので、ケーブルシステムは、
 基地装置と走行体とを繋ぎ少なくとも信号伝送を担うケーブルと、
 上記走行体に搭載され、上記ケーブルが巻かれるリールと、このリールを駆動するモータと、このリールの回転を検出する回転センサを有するリール装置と、
 上記リール装置のモータを制御するモータコントローラと、
 上記走行体の上下方向の加速度を検出する加速度センサと、
 を備え、
 上記モータコントローラは、上記回転センサからの検出情報に基づき上記リールが上記ケーブルを繰り出す方向に回転していると判断した時には、基本的に上記モータの駆動回路を開くかモータへの供給電流を零にし、上記回転センサからの検出情報に基づき上記リールがケーブルを巻き取る方向に回転していると判断した時には、基本的に上記モータを駆動させて上記リールに巻き取り方向の回転トルクを付与し、さらに上記モータコントローラは、上記リールが繰り出し方向に回転している状況にあっても、上記加速度センサからの上下方向の加速度情報に基づき、走行体の姿勢急変の終了時点を検出した場合には、上記モータを駆動させて上記リールに巻き取り方向の回転トルクを付与することを特徴とする。
 上記構成によれば、走行体が階段や大きな段差を昇り切ったり、降り始めたり、降り切ったりする際の走行体の姿勢急変直後に、リールに巻き取り方向の回転トルクを付与できるので、リールが慣性により繰り出し方向に高速回転するのを抑制でき、さらに短時間でリールを逆方向すなわち巻き取り方向に回転させることができるので、ケーブルのたるみ量を低減できるとともに、このたるみを短時間で解消できる。
 好ましくは、上記モータコントローラは、上記加速度センサからの上下方向の加速度の微分値に基づき、上記走行体の姿勢急変の終了時点を検出する。
 この構成によれば、加速度の微分値を用いるので、応答性をより一層高めることができる。
 好ましくは、上記モータコントローラは、上記走行体の姿勢急変の終了時点を検出した時に、上記回転センサで検出される上記リールの繰り出し方向の回転速度が設定値を超えているか否かを判断し、ここで肯定判断した場合にのみ、上記モータを駆動させて上記リールに巻き取り方向の回転トルクを付与する。
 この構成によれば、上下の加速度情報にのみ依存した場合に生じる誤検出を確実に回避できる。すなわち不整地を走行中に上下方向の振動を受けた時に、階段の昇り切りや降り始めと誤って判断するのを回避できる。その結果、不必要にリールに巻き取り方向の回転トルクを付与して走行体の前進を妨げないで済む。
 好ましくは、上記リール装置はさらに、上記ケーブルを巻いた上記リールの径を検出するリール径検出部を備え、上記モータコントローラは、(a)上記リール径検出部で検出されたリール径と上記回転センサで検出されたリールの繰り出し方向の回転速度とから、上記ケーブルが上記リールから繰り出される速度を演算し、(b)上記走行体の姿勢急変の終了時点を検出した時に、上記ケーブルの繰り出し速度が設定値を超えているか否かを判断し、ここで肯定判断した場合にのみ、上記モータを駆動させて上記リールに巻き取り方向の回転トルクを付与する。
 この構成でも、上記と同様に、上下の加速度情報にのみ依存した場合に生じる誤検出を確実に回避できる。
 好ましくは、上記リール装置はさらに、上記ケーブルを巻いた上記リールの径を検出するリール径検出部を備え、上記モータコントローラは、上記リールが繰り出し方向に回転している状況において、(a)上記リール径検出部で検出されたリール径と上記回転センサで検出されたリールの繰り出し方向の回転速度とから、上記ケーブルが上記リールから繰り出される速度を演算し、(b)上記ケーブル繰り出し速度が上記走行体の移動速度より小さい場合には、モータ駆動回路を開いて上記モータによる抵抗を最小限にし、(c)上記ケーブル繰り出し速度が上記走行体の移動速度より大きい場合には、上記モータの駆動回路を閉じてこのモータの抵抗により上記リールの回転を制限する。
 この構成によれば、リールが繰り出し方向に回転している状況でも、ケーブル繰り出し速度が走行体の移動速度より大きい場合には、リールの回転を制限することにより、ケーブルのたるみの原因を解消できる。
 本発明のケーブルシステムによれば、走行体が階段や段差を昇り切ったり、降り始めたり、降り切ったりする際の走行体の姿勢急変直後に生じるケーブルのたるみを抑制し、このたるみを短時間で解消でき、その結果、ケーブルのたるみ部分がリール近傍に無秩序に広がるような不都合を解消できる。
本発明の一実施形態をなすケーブルシステムを備えた探査システムの概略側面図である。 同ケーブルシステムのリール装置の平断面図であり、リール装置のモータを制御するための構成をブロックで付加して示す。 同リール装置のリール径検出機構を一部断面にして示す正面図である。 同リール装置のモータを制御するためのフローチャートである。 上記探査システムのクローラ走行体が前進時に階段を昇り切る直前の状態を示す概略図である。 同クローラ走行体が階段を昇り切って傾斜姿勢から水平姿勢に変わった直後の状態を示す概略図である。 同クローラ走行体が前進時に階段を降りる直前の状態を示す概略図である。 同クローラ走行体が階段を降り始めて水平姿勢から傾斜姿勢に変わった直後の状態を示す概略図である。 同クローラ走行体が前進時に階段を降り切る直前の状態を示す概略図である。 同クローラ走行体が階段を降り切って傾斜姿勢から水平姿勢に変わった直後の状態を示す概略図である。 同クローラ走行体が後退時に階段を降り切る直前の状態を示す概略図である。 同クローラ走行体が階段を降り切って傾斜姿勢から水平姿勢に変わった直後の状態を示す概略図である。
 以下、本発明の一実施形態をなすケーブルシステムAを含む探査システムについて、図面を参照しながら説明する。図1に示すように、探査システムは、リモートコントローラ1(基地装置)と、クローラ走行体2(走行体)と、これらリモートコントローラ1とクローラ走行体2を繋ぐ長いケーブル3を備えている。
 上記リモートコントローラ1は、モニタディスプレイ1aを有している。上記クローラ走行体2は、走行用のモータおよびバッテリ(図示しない)を備えている。上記ケーブル3は光ファイバを内蔵し信号を伝送する。
 上記クローラ走行体2にはビデオカメラ4a,4b(探査装置)が搭載されている。ビデオカメラ4aはクローラ走行体2の前方を撮影し、ビデオ4bはクローラ走行体2の後方を撮影する。探査装置として、このビデオカメラに加えて、あるいはビデオカメラの代わりに赤外線センサ、化学物質検出センサ、温度センサ、放射線センサ等のセンサを含んでもよい。
 操作者は、クローラ走行体2の前進時にはビデオカメラ4aからの映像を、クローラ走行体2の後退時にはビデオカメラ4bからの映像を、モニタディスプレイ1aで見ながら、リモートコントローラ1を操作して、クローラ走行体2の走行用モータを制御することにより、クローラ走行体2の前進、後退、旋回の遠隔操縦を行う。
 ケーブルシステムAは、上述したケーブル3と、このケーブル3を巻き取ったり繰り出したりするリール装置10とを備えている。このリール装置10は、例えば上記クローラ走行体2の後部に搭載されており、クローラ走行体2のボデイ上面に固定された一対のサポート11(装置本体)と、これらサポート11に回転可能に支持されたリール12と、整列機構13とを備えている。このリール12の軸芯は、クローラ走行体2の前進、後退方向と直交して水平に延びている。
 上記整列機構13は、上記リール12の近傍において上記一対のサポート11に支持されており、リール12の回転に伴いケーブル3をリール12の軸方向に移動させ、その移動行程の終端位置に達したらケーブル3の移動方向を逆転させ、これにより、ケーブル3をリール12の胴部12aに、その軸芯方向にほぼ均一に巻くようになっている。
 上記ケーブル3の一端はリモートコントローラ1に内蔵されたコンバータに接続されている。このコンバータは、ケーブル3からリモートコントローラ1への信号を、光信号から電気信号に変換し、リモートコントローラ1からケーブル3への信号を電気信号から光信号に変換する。
 上記ケーブル3は、上述したように上記リール装置10の整列機構13を通ってリール12の胴部12aに巻かれており、このケーブル3の他端はリール12に設けられたロータリージョイント(図示しない)に接続され、さらにコンバータ、ハブを介して複数系統の電気信号線に接続されている。
 上記複数系統の電気信号線は、クローラ走行体2の走行用モータのモータドライバへの制御信号の伝送、ビデオカメラ4a,4bからの映像信号(探査信号)の伝送等のために提供される。上記リール装置10のコンバータでも、光信号と電気信号との間の変換を行う。
 上記リール装置10は、図2に示すように、リール用モータ15と、ロータリーエンコーダ等からなる回転センサ16を備えている。
 上記モータ15は例えばブラシ付きDCモータであり、サポート11の側壁に固定され、内蔵のギアトレインを介して上記リール12に連結されている。
 上記回転センサ16は、上記モータ15(ひいては上記リール12)の回転方向すなわち巻き取り方向か繰り出し方向かを検出するとともに、その回転速度(単位時間当たりの回転数)を検出するものである。
 さらにリール装置10は、図1、図3に示すリール径検出機構20(リール径検出部)を備えている。この検出機構20はサポート11に回転可能に支持された接触アーム21を有している。この接触アーム21は、リール12の軸芯と平行をなす回転シャフト21aと、一端がこの回転シャフト21aに固定された左右一対のアーム部21bと、これらアーム部21bの他端に掛け渡され、回転シャフト21aおよびリール12の軸芯と平行をなす支持シャフト21cと,この支持シャフト21cに回転可能に支持された回転ローラ21d(接触部)とを有している。
 上記検出機構20は、さらに、つるまきバネ23(付勢部材)と、ポテンショメータ等からなる角度センサ24とを備えている。
 つるまきバネ23は、上記回転シャフト21aの一端部に巻かれ、その一端が回転シャフト21aに係止され、他端がサポート11に係止されている。このつるまきバネ23の弾性力により、接触アーム21の回転ローラ21dは下方に、すなわちリール12の胴部12aに向かって付勢されている。これにより接触アーム21の回転ローラ21dは常時リール12に巻かれた最外周のケーブル3に接するようになっている。なお、図2、図3では煩雑さを回避するためにケーブル3を省いて示す。
 上記角度センサ24は、上記回転シャフト21aの他端部近傍に配置され、ブラケットを介してサポート11の側壁に取り付けられている。この角度センサ24は、ギア25,26を介して回転シャフト21aの他端部に連結され、接触アーム21の角度を検出する。上記接触アーム21は、リール12に巻かれたケーブル3の残量が多いほど水平に近い角度になる。したがって、角度センサ24で検出される接触アーム21の角度は、リール12に巻かれたケーブル3の残量を実質的に表し、巻かれたケーブル3を含むリール12の径を実質的に表している。
 図2に示すように、ケーブルシステムAはさらに、モータドライバ30と、マイクロプロセッサ等を含むモータコントローラ40と、加速度センサ50とを備えている。
 上記モータドライバ30は、モータ15への駆動電流を供給する駆動回路を含むとともに、モータ15のコイルを流れる電流を検出する電流検出回路31を含んでいる。
 上記加速度センサ50は、例えば上記サポート11に取り付けられ、少なくとも2軸の加速度、すなわちクローラ走行体2の前後方向の加速度(以下、この加速度情報を加速度Aと称する)と、クローラ走行体2の上下方向の加速度(以下、この加速度情報を加速度Bと称する)を検出する。
 上記モータコントローラ40は、上記回転センサ16、上記角度センサ24、上記電流検出回路31、上記加速度センサ50、およびクローラ走行体2のスプロケットの回転を検出する回転センサ60からの検出情報に基づき、モータドライバ30に制御信号を送り、モータ15を制御する。
 以下、上記モータコントローラ40によるモータ15の制御について、図4のフローチャートを参照しながら説明する。
 まず、ステップS1で、上記回転センサ16で検出されたリール12の回転方向、回転速度Rの情報、上記角度センサ24で検出された接触アーム21の角度情報、加速度センサ50で検出された加速度A,Bの情報、回転センサ60で検出されたクローラスプロケットの回転方向、回転速度の情報を読み込む。
 次のステップS2で、上記角度センサ24で検出された接触アーム21の角度情報からリール径D(リール12の胴部12aに巻きつけられたケーブル3を含むリール12の径)を演算する。このリール径Dはリール12に巻き取られたケーブル3の残量の情報をも含んでいる。
 次のステップS3で、リール径Dが閾値D0を超えているか否かを判断する。この閾値D0は、リール12に巻かれたケーブルの残量が僅かな場合のリール径に相当する。ここで肯定判断した場合には、ステップS4に進み、リール径Dに対応した後述の電流補正係数kを算出する。本実施形態では、リール径Dに比例して(ケーブル残量に比例して)電流補正係数kを増大させる。
 上記ステップS3で否定判断した場合には、ステップS5に進んでケーブル残量無しの警告信号を出力した後で、上記ステップS4を実行する。この警告信号は、ケーブル3を介してリモートコントローラ1に送られ、モニタディスプレイ1aや音声で警告表示される。操作者はこの警告表示を見てクローラ走行体2の前進を中止することができる。
 次のステップS6で、回転センサ16からのリール12の回転速度Rと、上記リール径Dから、下記演算によりリール12からケーブル3が繰り出される速度F(単位時間当たりに繰り出されるケーブル3の長さ)を演算する。
 F=πD・R
 さらにステップS6では、回転センサ60からの検出情報に基づき、クローラ走行体2の移動速度Vを演算するとともに、加速度センサ50からの加速度Bの微分値Xを演算する。
 次のステップS7で、上記リール12の回転方向が繰り出し方向か否かを判断する。肯定判断の場合(すなわちリール12が繰り出し方向に回転していると判断した場合)には、原則として後述のモータフリーによる繰り出し制御を実行し、否定判断の場合(すなわちリール12が巻き取り方向に回転しているか停止していると判断した場合)には、原則としてモータ15の駆動による巻き取り制御を実行する。
 上記制御の原則は、種々の条件により変更される。以下詳述する。
 上記ステップS7でリール12が繰り出し方向に回転していると判断した時には、ステップS8で、リール12の回転速度Rが設定回転速度R以上か否かを判断する。この設定回転速度Rは、クローラ走行体2の通常の前進状態でのリール12の回転速度に比較して遥かに低い回転速度(微速)であり、クローラ走行体2が通常の前進状態にある時には、このステップS8では肯定判断される。
 上記ステップS8で肯定判断した場合(すなわちリール12が繰り出し方向に設定回転速度R以上で回転していると判断した場合)には、原則的に繰り出し制御を維持すべく、ステップS9に進む。
 上記ステップS8で、否定判断した場合(すなわちリール12が繰り出し方向に回転しているものの、非常に低速であると判断した場合)には、ケーブル3にたるみが生じる事態を想定して後述の巻き取り制御を行い、たるみを予防ないしは解消する。
 上記ステップS9では、ケーブル3の繰り出し速度Fがクローラ走行体2の前進速度Vより大きいか否かを判断する。ケーブル3の繰り出し速度Fがクローラ走行体2の前進速度Vより大きいと、ケーブル3にたるみが生じる。
 ステップS9で否定判断した時には、原則的に繰り出し制御を維持すべく、次のステップS10に進む。ステップS9で肯定判断した時には、ステップ11に進み、ここでケーブル3の繰り出し速度を制限する。すなわち、後述するモータフリーではなく、モータ15の駆動回路を閉じ、モータ15での抵抗によりリール12の繰り出し方向の回転を抑制する。
 ステップS9またはS11を実行した後、ステップS10では、クローラ走行体2の移動速度Vが零(すなわちクローラ走行体2停止中)か否かを判断する。リール12が繰り出し方向に回転しているにも拘わらずクローラ走行体2が停止しているとケーブル3がたるむ可能性がある。そこでステップS10で肯定判断した場合には、後述の巻き取り制御に移行し、たるみを予防ないしは解消する。
 ステップS10で否定判断した時には、原則的に繰り出し制御を維持すべく、次のステップS12に進む。
 ステップS12は、クローラ走行体2の姿勢急変の終了時点を検出するための工程である。
 クローラ走行体2が階段を昇り切る場合を例にとって説明する。図5Aに示すように、クローラ走行体2が階段を昇っている時にはクローラ走行体2は傾斜しており、階段を昇りきった時に、重力により前側が下降するようにクローラ走行体2が回転し、図5Bに示す水平姿勢になる。このクローラ走行体2の姿勢の急変の過程で、リール12が急に上方へ変位する(本実施形態のようにリール12がクローラ走行体2の後部に設けられている場合)ため、ケーブル3の引っ張り力で、リール12は繰り出し方向に高速で回転し、その慣性で回転し続ける。その結果、本実施形態のような改良が無い場合には、ケーブル3はたるんで、たるんだ部分が絡んだり無秩序にリール12近傍に広がってしまう。
 ステップS12は、上記のようなケーブル3のたるみを早期に解消ないしは予防するために、実行されるものであり、上下方向の加速度Bの微分値Xが設定値X0より大きいか否かを判断する。上記のようにクローラ走行体2が階段や段差を昇り切る際、より具体的にはクローラ走行体2の姿勢急変の終了時点で、クローラ走行体2は階段の上端の床面に勢い良く当たり、上下方向の加速度Bの微分値Xが増大し、設定値X0を超える。
 本実施形態のステップS12では、上記微分値Xが設定値X0を超えることと、リール12の繰り出し方向の回転速度Rが設定値R1を超えることの2つの条件を満足した場合にのみ、クローラ走行体2の姿勢急変の終了時点と判断する。クローラ走行体2が不整地を走行して振動した場合、微分値Xが設定値X0を超える可能性があり、この振動を上記階段の昇り切り等と誤って判断するのを回避するためである。なお、この設定値R1は上記ステップS8の設定値R0より大きい。
 上記ステップS12において、リール12の回転速度Rと設定値R1を比較する代わりに、上記ケーブル3の繰り出し速度Fを設定値F1と比較しても、同様の結果が得られる。
 上記ステップS12で肯定判断した場合には、後述の巻き取り制御を実行し、リール12に巻き取り方向の回転トルクを付与する。これにより、リール12が慣性により繰り出し方向に高速回転するのを抑制し、リール12を短時間で逆方向すなわち巻き取り方向に回転させる。その結果、ケーブル3のたるみを制限し、短時間でたるみを解消するので、ケーブル3のたるみ部分がリール12の近傍に広がるような不都合を回避することができる。
 ここで、クローラ走行体2の姿勢が急変する他の態様について説明する。図6A,図6Bに示すように、クローラ走行体2が前進しながら階段や大きな段差を降り始める時は、クローラ走行体2が水平姿勢から傾斜姿勢に急変する。また、図7A,図7Bに示すように、クローラ走行体2が前進しながら階段や大きな段差を降り切る時は、クローラ走行体2の後端が最後の段から落下するため、クローラ走行体2が傾斜姿勢から水平姿勢に急変する。これらの場合でも、階段の昇り切りの場合と同様にケーブル3が強く引っ張られ、リール12が繰り出し方向に高速回転する。しかし、ステップ12で上下方向の加速度Bの微分値Xに基づき姿勢急変終了時点を検出し、リール12に巻き取り方向の回転トルクを付与することができ、ケーブル3のたるみを短時間で解消できる。
 クローラ走行体2の前進時のみならず後退時にも、クローラ走行体2の姿勢急変に伴いケーブル3が強く引っ張られてリール12が繰り出し方向に高速回転する状況が生じることがある。例えば図8A,図8Bに示すように、クローラ走行体2が後退しながら階段を降り切る場合、傾斜姿勢から水平姿勢に急変する。この際、ケーブル3が引っ張られ、リール12は巻き取り方向から繰り出し方向に逆転し、繰り出し方向に高速回転する。そのため、前進時の姿勢急変と同様に、ステップS7,S8で肯定判断し、ステップS9で否定判断することにより、ステップS12に至り、ここで肯定判断する(すなわち、上記姿勢急変の終了時点を検出する)。その結果、リール12に巻き取り方向の回転トルクを付与することができ、ケーブル3のたるみを短時間で解消できる。
 上述したように、巻き取り制御は以下の判断をした場合に実行される。
 (a)上記ステップS7でリール12が巻き取り方向に回転しているか停止していると判断した場合。
 (b)リール12が繰り出し方向に回転している状況でも、ステップS8でリール12の回転速度が微速であると判断した場合。
 (c)リール12が繰り出し方向に回転している状況でも、ステップS10でクローラ走行体2が停止中であると判断した場合。
 (d)リール12が繰り出し方向に回転している状況でも、ステップS12で階段や段差の昇り切り、降り始めや降り切りのようなクローラ走行体2の姿勢急変が生じたと判断した場合。
 次に、巻き取り制御について詳述する。ステップS13で、クローラ走行体2の移動速度Vが後退方向に設定移動速度V0以上であるか否かを判断する。この設定移動速度V0は、通常の後退速度より遥かに低い速度(微速)である。したがって、クローラ走行体2が通常の後退をしている状況では、ステップS7で否定判断した後ステップS13で肯定判断し、ステップS14に進み、リール12に巻き取り方向の回転トルクを付与するように、かつ上記電流検出回路31での検出電流が設定電流Iuになるように、モータ15への供給電流をデューティ制御する。これにより比較的大きな回転トルクでケーブル3を巻き取ることができる。
 上記ステップS13で否定判断した場合、すなわちクローラ走行体2が前進しているか後退方向に設定移動速度V未満(速度ゼロも含む)であると判断した場合には、ステップS15に進み、ここでリール12の巻き取り方向に回転トルクを発生させるように、かつ上記電流検出回路31での検出電流が設定電流Idになるようにモータ15を制御する。この設定電流Idは上述した設定電流Iuより小さい。ステップ15の回転トルクはステップ14の回転トルクより小さい。
 ステップS7での否定判断,ステップS8での否定判断,ステップS10での肯定判断,またはステップS12での肯定判断に基づき巻き取り制御を実行する場合には、ステップS14,S15の巻き取り制御を実行することになる。
 ステップS12で否定判断した時には、原則的に繰り出し制御を維持すべく、ステップS16に進み、ここで、後退方向の加速度Aが設定値A0以上か否かを判断する。ステップS16で否定判断した時、すなわち前進方向の加速度か、加速度ゼロか、後退方向の加速度であっても設定加速度A未満の場合には、ステップS17に進み、モータ15をフリー状態にする。すなわち、モータ15のコイルに接続される駆動回路の一部を開き、リール12が回転してもコイルに電流が流れないようにする。これにより、ケーブル3の繰り出しを円滑に行える。
 上記ステップS16で肯定判断した場合、すなわちクローラ走行体2が前進中に急停止したと判断した場合には、ステップS17の繰り出し制御(モータフリー)を実行せずに、ステップS18に進み、ここで、検出電流が設定電流Id’になるように、モータ15を駆動し、リール12に巻き取り方向の回転トルクを付与する。なお、この設定電流Id’は、ステップS14の設定電流Iuより小さい。この設定電流Id’とステップS15の設定電流Idは等しくてもよいし、異なっていてもよい。
 ステップS14でのモータ電流制御において、設定電流Iuは、固定電流値Iu0に上記電流補正係数kを乗じて決定される。同様に、ステップS15の設定電流Idは、固定電流値Id0に上記電流補正係数kを乗じて決定され、ステップS18の設定電流Id’は、固定電流値Id'0に上記電流補正係数kを乗じて決定される。これにより、ケーブル残量の変化(すなわち巻かれたケーブル3を含むリール11の質量の変化)に対応して回転トルクを調節することができる。
 本発明の制御態様は上記実施形態に制約されず、種々採用可能である。例えば、繰り出し制御において、ステップS17でモータの駆動回路を開く代わりに、モータへの供給電流をゼロにしてもよい。
 本実施形態では、走行体の姿勢急変の終了時点を上下方向の加速度の微分値に基づいて検出したが、上下方向の加速度に基づいて検出してもよい。
 走行体に設けた傾斜センサを上下方向の加速度センサとして用いてもよい。この傾斜センサの傾斜情報は走行体の上下方向の加速度の情報を含んでいるからである。
 リール装置のモータを制御するモータコントローラを基地装置に設けてもよい。
 ケーブルは信号伝送を行う光ファイバと給電線を含んでいてもよい。この場合、クローラ走行体、リール装置の電源を、基地装置近傍に配置することができる。
 リール径検出部としてレーザー距離計等の距離センサを用い、リールに巻かれた最外周のケーブルまでの距離情報から、ケーブル残量を非接触式で検出するようにしてもよい。
 上記実施形態では加速度センサ50をリール装置10のサポート11に設けたが、設置場所は特に制約されず、クローラ走行体の前部に設けてもよい。
 走行体はクローラ走行体に限らず、複数の車輪を装備した走行体であってもよい。

Claims (5)

  1.  基地装置(1)と走行体(2)とを繋ぎ少なくとも信号伝送を担うケーブル(3)と、
     上記走行体に搭載され、上記ケーブルが巻かれるリール(12)と、このリールを駆動するモータ(15)と、このリールの回転を検出する回転センサ(16)を有するリール装置(10)と、
     上記リール装置のモータを制御するモータコントローラ(40)と、
     上記走行体の上下方向の加速度を検出する加速度センサ(50)と、
     を備え、
     上記モータコントローラ(40)は、上記回転センサ(16)からの検出情報に基づき上記リール(12)が上記ケーブル(3)を繰り出す方向に回転していると判断した時には、基本的に上記モータ(15)の駆動回路を開くかモータへの供給電流を零にし、上記回転センサ(16)からの検出情報に基づき上記リールがケーブルを巻き取る方向に回転していると判断した時には、基本的に上記モータを駆動させて上記リールに巻き取り方向の回転トルクを付与し、
     さらに上記モータコントローラ(40)は、上記リール(12)が繰り出し方向に回転している状況にあっても、上記加速度センサ(50)からの上下方向の加速度情報に基づき、走行体(2)の姿勢急変の終了時点を検出した場合には、上記モータ(15)を駆動させて上記リール(12)に巻き取り方向の回転トルクを付与することを特徴とするケーブルシステム。
  2.  上記モータコントローラ(40)は、上記加速度センサ(50)からの上下方向の加速度の微分値に基づき、上記走行体(2)の姿勢急変の終了時点を検出することを特徴とする請求項1に記載のケーブルシステム。
  3.  上記モータコントローラ(40)は、上記走行体(2)の姿勢急変の終了時点を検出した時に、上記回転センサ(16)で検出される上記リールの繰り出し方向の回転速度が設定値を超えているか否かを判断し、ここで肯定判断した場合にのみ、上記モータ(15)を駆動させて上記リールに巻き取り方向の回転トルクを付与することを特徴とする請求項1または2に記載のケーブルシステム。
  4.  上記リール装置(10)はさらに、上記ケーブル(3)を巻いた上記リール(12)の径を検出するリール径検出部(20)を備え、
     上記モータコントローラ(40)は、
     a.上記リール径検出部(20)で検出されたリール径と上記回転センサ(16)で検出されたリール(12)の繰り出し方向の回転速度とから、上記ケーブル(3)が上記リール(12)から繰り出される速度を演算し、
     b.上記走行体(2)の姿勢急変の終了時点を検出した時に、上記ケーブル(3)の繰り出し速度が設定値を超えているか否かを判断し、ここで肯定判断した場合にのみ、上記モータ(15)を駆動させて上記リール(12)に巻き取り方向の回転トルクを付与することを特徴とする請求項1または2に記載のケーブルシステム。
  5.  上記リール装置(10)はさらに、上記ケーブル(3)を巻いた上記リール(12)の径を検出するリール径検出部(20)を備え、
     上記モータコントローラ(40)は、上記リール(12)が繰り出し方向に回転している状況において、
     a.上記リール径検出部(20)で検出されたリール径と上記回転センサ(16)で検出されたリール(12)の繰り出し方向の回転速度とから、上記ケーブル(3)が上記リール(12)から繰り出される速度を演算し、
     b.上記ケーブル繰り出し速度が上記走行体(2)の移動速度より小さい場合には、モータ駆動回路を開いて上記モータ(15)による抵抗を最小限にし、
     c.上記ケーブル繰り出し速度が上記走行体(2)の移動速度より大きい場合には、上記モータ(15)の駆動回路を閉じてこのモータの抵抗により上記リール(12)の回転を制限することを特徴とする請求項1~3のいずれかに記載のケーブルシステム。
PCT/JP2012/083585 2011-12-27 2012-12-26 ケーブルシステム WO2013099912A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/369,021 US9577418B2 (en) 2011-12-27 2012-12-26 Cable system
EP12861812.1A EP2800219B1 (en) 2011-12-27 2012-12-26 Cable system
JP2013510428A JP5432419B2 (ja) 2011-12-27 2012-12-26 ケーブルシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011286004 2011-12-27
JP2011-286004 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099912A1 true WO2013099912A1 (ja) 2013-07-04

Family

ID=48697396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083585 WO2013099912A1 (ja) 2011-12-27 2012-12-26 ケーブルシステム

Country Status (4)

Country Link
US (1) US9577418B2 (ja)
EP (1) EP2800219B1 (ja)
JP (2) JP5432419B2 (ja)
WO (1) WO2013099912A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719978B1 (ja) * 2014-06-26 2015-05-20 トピー工業株式会社 ケーブルシステム
JP2016199382A (ja) * 2015-04-14 2016-12-01 トピー工業株式会社 ケーブルシステム
CN113277377A (zh) * 2021-07-12 2021-08-20 常州京江源纺织有限公司 一种涤纶丝线弯曲定型装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024459B1 (en) * 2015-04-02 2018-07-17 Ag Leader Technology, Inc. Tile feed wheel control
US10046944B2 (en) * 2016-01-06 2018-08-14 Caterpillar Global Mining Equipment Llc Underground mining machine
CN106976763B (zh) * 2017-06-02 2018-07-20 吉林省金昇机械制造有限公司 一种移动式煤矿监测用电缆卷收装置
CN107915095B (zh) * 2017-11-03 2020-03-10 中国神华能源股份有限公司 用于控制堆取料机的卷盘执行卷缆操作的方法和装置
JP6561104B2 (ja) * 2017-11-22 2019-08-14 大容基功工業株式会社 場所打ち杭工法におけるスライム処理方法
KR102292920B1 (ko) * 2019-12-31 2021-08-24 (주)에이원전기 이동거리의 정밀 조절과 꼬임방지 기능을 겸비한 요비선 이동장치
CN111232767A (zh) * 2020-03-26 2020-06-05 秦皇岛港股份有限公司 港口机械设备行走定位装置
CN112061893B (zh) * 2020-08-04 2022-09-09 北京国电富通科技发展有限责任公司 基于变频器的水管电缆同步收放机控制系统及方法
US20220126404A1 (en) * 2020-10-28 2022-04-28 Illinois Tool Works Inc. Tracking welding torches using retractable cords
CN113173463B (zh) * 2021-03-25 2023-04-07 寰易(广东)应急安全科技集团有限公司 一种水带机器人的水带收纳方法及其水带机器人
CN113479726B (zh) * 2021-09-08 2021-11-12 江苏华源节水股份有限公司 一种卷盘水管的固定装置
CN113998547B (zh) * 2021-11-15 2024-06-07 广东天凛高新科技有限公司 一种可移动的智能对接电缆盘

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188255A (ja) * 1982-04-23 1983-11-02 Yaskawa Electric Mfg Co Ltd 移動機械のケ−ブルリ−ル制御装置
JP2006023287A (ja) * 2004-06-08 2006-01-26 Shinshu Univ 圧電体を用いたジャーク(加加速度)の測定方法
JP2008254927A (ja) 2007-03-13 2008-10-23 Topy Ind Ltd ケーブルシステム
JP2008278644A (ja) * 2007-04-27 2008-11-13 Yazaki Corp ケーブル導出装置及び電力供給システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071116A1 (en) * 2004-09-27 2006-04-06 Quenneville Steven R Cable dispensing and retrieval

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188255A (ja) * 1982-04-23 1983-11-02 Yaskawa Electric Mfg Co Ltd 移動機械のケ−ブルリ−ル制御装置
JP2006023287A (ja) * 2004-06-08 2006-01-26 Shinshu Univ 圧電体を用いたジャーク(加加速度)の測定方法
JP2008254927A (ja) 2007-03-13 2008-10-23 Topy Ind Ltd ケーブルシステム
JP2008278644A (ja) * 2007-04-27 2008-11-13 Yazaki Corp ケーブル導出装置及び電力供給システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719978B1 (ja) * 2014-06-26 2015-05-20 トピー工業株式会社 ケーブルシステム
WO2015198452A1 (ja) * 2014-06-26 2015-12-30 トピー工業株式会社 ケーブルシステム
EP3001522A4 (en) * 2014-06-26 2017-04-26 Topy Kogyo Kabushiki Kaisha Cable system
US10259680B2 (en) 2014-06-26 2019-04-16 Topy Kogyo Kabushiki Kaisha Cable system
JP2016199382A (ja) * 2015-04-14 2016-12-01 トピー工業株式会社 ケーブルシステム
CN113277377A (zh) * 2021-07-12 2021-08-20 常州京江源纺织有限公司 一种涤纶丝线弯曲定型装置

Also Published As

Publication number Publication date
JP5432419B2 (ja) 2014-03-05
EP2800219A4 (en) 2015-10-14
US9577418B2 (en) 2017-02-21
JP2014064456A (ja) 2014-04-10
EP2800219A1 (en) 2014-11-05
EP2800219B1 (en) 2018-10-10
JPWO2013099912A1 (ja) 2015-05-07
JP5426049B1 (ja) 2014-02-26
US20150028146A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5426049B1 (ja) ケーブルシステム
JP5719978B1 (ja) ケーブルシステム
JP4630908B2 (ja) ケーブルシステム
JP6630486B2 (ja) ケーブルシステム
US9056746B2 (en) Adaptable vehicle
CN106081968A (zh) 绞车排缆乱绳自动检测装置
JP6393647B2 (ja) 検査装置及び検査方法
WO2015141238A1 (ja) 架空電線検査装置
WO2006007582B1 (en) Systems and methods for controlling spooling of linear material
CN103889281A (zh) 用于控制建筑开口覆盖物总成的方法和装置
CN107724662B (zh) 高空作业机器人及其使用方法
CN107974996B (zh) 一种自动行走设备及其控制方法以及自动收线电缆盘
EP3186139B1 (en) Shipboard winch with computer-controlled motor
JPH0740779A (ja) 車両用ケーブル巻取/繰出装置
CN117085982A (zh) 清洁机器人防掉落方法及系统
KR20130074143A (ko) 옴니인 휠을 구비한 라이더 로봇
JP2015139867A (ja) ロボット
CN216053134U (zh) 一种自动调节的行车记录装置
CN115202273A (zh) 一种感应拉线车辆控制器及其控制方法
JP2020010523A (ja) 自走式架空線検査装置
JP2015120418A (ja) 移動装置および移動方法
JP2012140029A (ja) 探索装置と方法
KR20100004733U (ko) 고소작업용 자동이동형 안전윈치장치
CN115489731B (zh) 一种弧垂检测用无人机牵引装置
KR102704351B1 (ko) 스튜디오 무대 장치용 다중 카메라 설치 구조

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013510428

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14369021

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012861812

Country of ref document: EP