WO2013099842A1 - Modified polyrotaxane and method for producing same, and material formed using modified polyrotaxane - Google Patents

Modified polyrotaxane and method for producing same, and material formed using modified polyrotaxane Download PDF

Info

Publication number
WO2013099842A1
WO2013099842A1 PCT/JP2012/083421 JP2012083421W WO2013099842A1 WO 2013099842 A1 WO2013099842 A1 WO 2013099842A1 JP 2012083421 W JP2012083421 W JP 2012083421W WO 2013099842 A1 WO2013099842 A1 WO 2013099842A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
modified polyrotaxane
polyrotaxane
cyclodextrin
modified
Prior art date
Application number
PCT/JP2012/083421
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 林
成史 工藤
淳子 稲村
Original Assignee
アドバンスト・ソフトマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アドバンスト・ソフトマテリアルズ株式会社 filed Critical アドバンスト・ソフトマテリアルズ株式会社
Priority to CN201280064832.9A priority Critical patent/CN104024278B/en
Publication of WO2013099842A1 publication Critical patent/WO2013099842A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a modified polyrotaxane in which the cyclic molecule is a cyclodextrin and the hydroxyl group of the cyclodextrin is modified with a specific group.
  • the present invention also relates to a material formed with the modified polyrotaxane and a method for producing the modified polyrotaxane.
  • polyrotaxane consisting of polyethylene glycol as a linear molecule, cyclodextrin as a cyclic molecule, and adamantane group as a capping group is soluble only in dimethyl sulfoxide, strong alkaline water, dimethylacetamide / LiCl solution, and ionic liquid. It has become a big issue.
  • Patent Document 1 discloses that a part of the hydroxyl group of cyclodextrin, which is a cyclic molecule of polyrotaxane, is modified with various modifying groups to increase the water solubility of the modified polyrotaxane, thereby obtaining a hydrogel material.
  • Non-Patent Document 1 examines the solubility of polyrotaxane in organic solvents with various modifying groups.
  • Patent Document 2 discloses that the solubility of polyrotaxane in an organic solvent is further enhanced by a combination of an acyl group and a specific modifying group.
  • Patent Document 3 a caprolactone group is modified on a cyclodextrin via a hydroxypropyl group. Since the solubility of the polyrotaxane modified with a hydroxypropyl group is improved, it is disclosed that the polyrotaxane is used as an intermediate for modifying the caprolactone group.
  • the hydroxypropyl group has a hydroxyl group, so a sufficient hydroxyl group can be secured in the modified polyrotaxane, but the number of hydrocarbons to increase the affinity with a specific solvent is small, and the solubility is improved at a low modification degree. There is a problem that is insufficient.
  • An object of the present invention is to solve the above problems. Specifically, an object of the present invention is to provide a modified polyrotaxane having improved solubility and high industrial utility. Moreover, the objective of this invention is providing the material which has the said modified polyrotaxane other than the said objective or in addition to the said objective. Furthermore, the objective of this invention is providing the manufacturing method of the said modified polyrotaxane other than the said objective or in addition to the said objective.
  • At least a part of the hydroxyl groups of cyclodextrin is represented by the following formula (I) (wherein —R is —CH 2 —CH 3 , —CH 2 —O—CH 3 , —CH 2 —O—CH 2 —CH 3 , —CH 2 —O—CH 2 —CH 2 —CH 3 and —CH 2 —O—CH— (CH 3 ) 2 is at least one first group selected from the group consisting of The modified polyrotaxane is substituted with a first substituent.
  • ⁇ 2> at least a part of the hydroxyl group is further modified by the first substituent, and the following formula (II) (wherein X is a straight chain having 2 to 8 carbon atoms or From a branched alkylene group, a linear or branched alkylene group having 3 to 8 carbon atoms having an acetyl group branch, and a linear or branched alkylene group having 3 to 8 carbon atoms having an ether bond And at least one second group selected from the group consisting of n and 1 to 200).
  • formula (II) wherein X is a straight chain having 2 to 8 carbon atoms or From a branched alkylene group, a linear or branched alkylene group having 3 to 8 carbon atoms having an acetyl group branch, and a linear or branched alkylene group having 3 to 8 carbon atoms having an ether bond And at least one second group selected from the group consisting of n and 1 to 200).
  • the substitution rate of the first substituent is 0.10 to 0.60, preferably 0, when 1.0 is a state in which all of the hydroxyl groups of the cyclodextrin are substituted. 20 to 0.50, more preferably 0.25 to 0.45.
  • the hydroxyl value of the modified polyrotaxane according to JIS K0070 is 440 to 300 mgKOH / g, preferably 420 to 320 mgKOH / g, more preferably 400 to 330 mgKOH / g. Good.
  • —X— represents — (CH 2 ) 3 —, — (CH 2 ) 5 —, —CH (CH 3 ) —CH 2 —CH 2 — and — (CH 2 ) 2
  • At least one alkylene group selected from the group consisting of CH 2 —, more preferably — (CH 2 ) 5 — is preferred.
  • the molecular weight distribution of the modified polyrotaxane is 2.0 or less, preferably 1.8 or less, more preferably 1.6 or less.
  • a method for producing a modified polyrotaxane a) a step of preparing a polyrotaxane in which blocking groups are arranged so that cyclodextrin is not detached at both ends of a pseudopolyrotaxane in which an opening of a cyclodextrin is clasped with a linear molecule; and b) At least a part of the hydroxyl groups of cyclodextrin is represented by the following formula (I) (wherein —R is —CH 2 —CH 3 , —CH 2 —O—CH 3 , —CH 2 —O—CH 2 —CH 3 , —CH 2 —O—CH 2 —CH 2 —CH 3 and —CH 2 —O—CH— (CH 3 ) 2. Substituting with a group; The above method.
  • the substitution in step b) is selected from the group consisting of at least a part of a hydroxyl group and 1,2-butylene oxide, glycidyl methyl ether, glycidyl ethyl ether, glycidyl propyl ether, and glycidyl isopropyl ether.
  • the reaction is preferably performed by reacting with at least one first compound.
  • the substitution rate of the first substituent is 0.10 to 0.60 when 1.0 is a state in which all the hydroxyl groups of the cyclodextrin are substituted.
  • the hydroxyl value of the modified polyrotaxane according to JIS K0070 is 440 to 300 mgKOH / g, preferably 420 to 320 mgKOH / g, more preferably 400 to 330 mgKOH / g. There should be.
  • c) ring-opening polymerization of the lactone monomer starting from the first substituent, and at least a part of the hydroxyl group is represented by the following formula (II) (formula Wherein X is a linear or branched alkylene group having 2 to 8 carbon atoms, a linear or branched alkylene group having 3 to 8 carbon atoms having an acetyl group branch, and a carbon having an ether bond
  • the lactone monomer is at least one compound selected from the group consisting of ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -butyrolactone and ⁇ -butyrolactone.
  • ring-opening polymerization is preferably performed.
  • a modified polyrotaxane having improved solubility and high industrial utility.
  • a material having the modified polyrotaxane can be provided in addition to or in addition to the above effects.
  • a method for producing the modified polyrotaxane can be provided in addition to or in addition to the above effects.
  • the present application is a modified polyrotaxane obtained by modifying a polyrotaxane in which a blocking group is arranged so that cyclodextrin is not detached at both ends of a pseudopolyrotaxane in which an opening of a cyclodextrin is clasped with a linear molecule.
  • modified polyrotaxane is substituted with at least a part of the hydroxyl groups of the cyclodextrin with the first substituent represented by the above formula (I).
  • Modified polyrotaxane at least partially substituted with the first substituent represented by the above formula (I) may be simply abbreviated as “first modified polyrotaxane”.
  • —R represents —CH 2 —CH 3 , —CH 2 —O—CH 3 , —CH 2 —O—CH 2 —CH 3 , —CH 2 —O—CH 2 —CH 2 —.
  • a group consisting of CH 3 and —CH 2 —O—CH— (CH 3 ) 2 preferably —CH 2 —CH 3 , —CH 2 —O—CH 2 —CH 3 and —CH 2 —O—CH— ( CH 3 ) is at least one first group selected from the group consisting of 2 .
  • the substitution rate of the first substituent is 0.10 to 0.60, preferably 0.20 to 0.50, and more preferably, when 1.0 is a state in which all the hydroxyl groups of cyclodextrin are substituted. Is preferably 0.25 to 0.45. If it is the said range, it exists in the tendency for the solubility with respect to the solvent of a 1st modification polyrotaxane, and compatibility with another material to improve, and it exists in the tendency for the yield in manufacture of a 1st modification polyrotaxane to become high. .
  • the lower limit tends to be related to the solubility of the first modified polyrotaxane in the solvent and compatibility with other materials
  • the upper limit tends to be related to the yield in the production of the first modified polyrotaxane. is there.
  • the substitution rate of the first substituent can be obtained by measuring 1 H-NMR of the first modified polyrotaxane (and polyrotaxane before modification if necessary). Specifically, “C1 proton (—O—CH * —O—) and hydroxyl group (glucose of the first substituent and hydroxyl group derived from cyclodextrin) derived from glucose of the cyclodextrin in the first modified polyrotaxane” Measured integrated amount of 1 H peak derived from “proton derived” (A: abbreviated as “actual measured integrated amount of proton derived from hydroxyl group, etc.”) and measured integrated amount of 1 H peak derived from “proton unique to the first substituent” (B: “actual proton integration amount peculiar to the first substituent”).
  • ⁇ -cyclodextrin ⁇ -cyclodextrin (hereinafter sometimes abbreviated as “ ⁇ -CD”) and the first substituent R is an ethyl group (—CH 2 CH * 3 )
  • ⁇ -CD ⁇ -cyclodextrin
  • R ethyl group
  • “Proton peculiar to the first substituent” focuses on “the H * in which R of the first substituent is an ethyl group (—CH 2 CH * 3 )”. This “H * ” peak appears around 0.87 ppm.
  • the number of “H * ” is (18 ⁇ 3).
  • the number of “H * ” is (18 ⁇ 3 ⁇ replacement rate).
  • C1 proton derived from glucose (—O—CH * —O—) and hydroxyl group (hydroxyl group of the first substituent and hydroxyl group derived from cyclodextrin) in the first modified polyrotaxane” “Appears around 4 to 6 ppm. The number of protons is 24 regardless of the substitution rate of the first substituent.
  • the ratio of A: “actually accumulated amount of protons derived from hydroxyl group etc.” and B: “actually accumulated amount of protons unique to the first substituent” is ⁇ 24 / (18 ⁇ 3 ⁇ substitution rate) ⁇ .
  • a / B ⁇ 24 / (18 ⁇ 3 ⁇ replacement rate) ⁇ , from which the replacement rate can be obtained.
  • the first modified polyrotaxane may have a hydroxyl value according to JIS K0070 of 440 to 300 mgKOH / g, preferably 420 to 320 mgKOH / g, more preferably 400 to 330 mgKOH / g.
  • the hydroxyl value according to JIS K0070 is in the above range, the first modified polyrotaxane can be reacted with other materials, so that it becomes soluble in various solvents and at the same time, sufficient hydroxyl groups as reactive groups are secured. It tends to be advantageous in that it allows a wide range of material designs. Examples of reactions with other materials include, but are not limited to, curing reactions (crosslinking reactions) with other materials, new modifications by reaction with other functional functional groups, and the like. .
  • the cyclodextrin in the first modified polyrotaxane may have a substituent other than the first substituent.
  • Substituents other than the first substituent include -O-acyl groups such as -O-acetyl group and -O-propionyl group; alkyloxy groups such as methoxy group, ethoxy group and propyloxy group; butylcarbamoyl group and cyclohexyl Alkyl or arylcarbamoyl groups such as carbamoyl group, phenylethylcarbamoyl group, acryloyloxyethylcarbamoyl group, methacryloyloxyethylcarbamoyl group; polyalkyloxy groups such as polyoxyethylene group, polyoxypropylene group; carboxylic acid group, amino group, etc.
  • substituent which has this reactive group can be mentioned, it is not limited to these.
  • X represents a linear or branched alkylene group having 2 to 8 carbon atoms, a linear or branched alkylene group having 3 to 8 carbon atoms having an acetyl group branch, and ether It is at least one second group selected from the group consisting of a linear or branched alkylene group having 3 to 8 carbon atoms having a bond.
  • Examples of the linear or branched alkylene group having 2 to 8 carbon atoms include, for example, — (CH 2 ) 3 —, — (CH 2 ) 5 —, —CH (CH 3 ) —CH 2 —CH 2 —. , — (CH 2 ) 3 —CH (CH 3 ) —, but is not limited thereto.
  • Examples of the linear or branched alkylene group having 3 to 8 carbon atoms having an acetyl group branch include —CH (CH 3 CO) — (CH 2 ) 2 —, but are not limited thereto.
  • Examples of the linear or branched alkylene group having 3 to 8 carbon atoms having an ether bond include — (CH 2 ) 2 —O— (CH 2 ) 2 —, but are not limited thereto.
  • —X— represents — (CH 2 ) 3 —, — (CH 2 ) 5 —, —CH (CH 3 ) —CH 2 —CH 2 — and — (CH 2 ) 2 —O— (CH 2 ) 2 —
  • n is 1 to 200, preferably 2 to 100, more preferably 3 to 50. Note that n is an integer in terms of structure, but in practice, it is often produced by ring-opening polymerization described later. In this case, the ring-opening polymerization has dispersibility, and thus is not limited to an integer. n will be described in detail in the second method for producing a modified polyrotaxane.
  • the second modified polyrotaxane can also be obtained from the first modified polyrotaxane.
  • the second modified polyrotaxane can be obtained, for example, by directly replacing the second substituent with the hydroxyl group of cyclodextrin without passing through the first modified polyrotaxane.
  • the second modified polyrotaxane has only to have the second substituent, whether it has only the second substituent, the first and second substituents, You may have substituents other than a 2nd substituent.
  • substituents other than the first and second substituents include, but are not limited to, those described above as the substituent other than the first substituent.
  • the second modified polyrotaxane has a molecular weight distribution Mw / Mn of 2.0 or less, preferably 1.8 or less, more preferably 1.6 or less.
  • Mw / Mn can be measured by gel permeation chromatography (GPC).
  • the second modified polyrotaxane has a hydroxyl value according to JIS K0070 of 50 to 120 mgKOH / g, from the viewpoint of securing excellent viscoelastic properties after material processing. 60 to 100 mgKOH / g is preferable, and 65 to 90 mgKOH / g is more preferable.
  • cyclodextrin depends on the selection of the linear molecule, the properties required for the modified polyrotaxane, and the like, and examples thereof include ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin.
  • Cyclodextrin has a hydroxyl group, but may have other groups. Examples of the “other group” include, but are not limited to, the groups listed as “substituents other than the first substituent”.
  • the polyrotaxane linear molecule of the present invention is not particularly limited as long as it can be included in a skewered manner in the opening of the cyclodextrin used.
  • linear molecules polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylic acid, cellulosic resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyvinyl Polyolefin resins such as acetal resins, polyvinyl methyl ether, polyamines, polyethyleneimine, casein, gelatin, starch, and / or copolymers thereof, polyethylene, polypropylene, and copolymers of other olefin monomers; Polyester resins, polyvinyl chloride resins, polystyrene resins such as polystyrene and acrylonitrile
  • polyethylene glycol polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and polyvinyl methyl ether.
  • polyethylene glycol Particularly preferred is polyethylene glycol.
  • the linear molecule may have a weight average molecular weight of 3,000 or more, preferably 5,000 to 100,000, more preferably 10,000 to 50,000.
  • the combination of (cyclodextrin, linear molecule) is preferably (derived from ⁇ -cyclodextrin, derived from polyethylene glycol).
  • the blocking group of the modified polyrotaxane of the present application is not particularly limited as long as it is a group that is arranged at both ends of the pseudopolyrotaxane and acts so that the cyclodextrin used does not leave.
  • a blocking group dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, pyrenes, substituted benzenes (substituents are alkyl, alkyloxy, hydroxy, Examples include, but are not limited to, halogen, cyano, sulfonyl, carboxyl, amino, phenyl, etc.
  • substituents may be present), optionally substituted polynuclear aromatics (substituted) Examples of the group include, but are not limited to, the same as described above, and one or more substituents may be present.) And a group consisting of steroids. It is preferably selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, and pyrenes, more preferably adamantane groups or cyclodextrins. It should be similar.
  • the present application discloses a material formed with a second modified polyrotaxane, and a cross-linking material in which the second modified polyrotaxane is included in the cross-linking.
  • the material formed with the second modified polyrotaxane means that the material contains the second modified polyrotaxane.
  • the second modified polyrotaxane may or may not have bonds and / or crosslinks with other substances contained in the material.
  • the 2nd modification polyrotaxane can exhibit the characteristic of this 2nd modification polyrotaxane by couple
  • the crosslinking point is movable, the stretchability of the material can be maintained even when the crosslinking density is increased. Utilizing such characteristics, for example, it can be used for paint (coating) materials, actuator materials, organic dispersion type electroluminescent materials, binders for heat conducting materials, and the like. In addition, because of its excellent flexibility and strength, it can be expected to be applied particularly to low driving pressure actuator materials and other piezoelectric elements.
  • electrical insulation materials electrical / electronic component materials, optical materials, friction control materials, medical biomaterials, machinery / automotive materials, building materials, anti-vibration / vibration isolation materials, damping materials, adhesives / adhesives, Chip-shaped anti-vibration members, electric device vibration-damping pads, shoe soles, sports equipment, clothing and sports wear cushioning materials, architectural cushioning materials, soundproofing materials, automobiles, electrical appliances, furniture and other paints and coating materials
  • Electronic materials such as interior materials, printing plate materials, dental hygiene materials, friction materials such as machinery and automatic companies, sealing materials, waterproofing materials, insulating materials, sealing materials, heat transfer materials, conductive material binders, cosmetics Applications to materials, rheology control agents, fiber materials, medical biomaterials, rubber modifiers, etc. are also conceivable.
  • the cross-linking material in which the second modified polyrotaxane is included in the cross-linking includes not only the second modified polyrotaxane in the material but also the second modified polyrotaxane is cross-linked and / or It means a material in which a substance other than the second modified polyrotaxane and the second modified polyrotaxane are crosslinked.
  • the cross-linking method depends on the second modified polyrotaxane to be used and, if present, a substance other than the second modified polyrotaxane to be used. However, the cross-linking method is the same as the general thermosetting resin cross-linking method. can do.
  • a method of adding a cross-linking agent to a material, applying it on a substrate and heating and cross-linking, a method of injecting it into a mold and heating and cross-linking, a method of applying pressure and heating and cross-linking can be mentioned. It is not limited to.
  • crosslinking can be manufactured with the following method, it is not limited to this. That is, E- (1) providing a second modified polyrotaxane; E- (2) preparing a crosslinking agent; and E- (3) reacting the second modified polyrotaxane with the crosslinking agent; By having this, a cross-linking material can be obtained.
  • a polymer other than the second modified polyrotaxane may be mixed with the second modified polyrotaxane.
  • the second modified polyrotaxane or a polymer other than the second modified polyrotaxane and the second modified polyrotaxane may be dissolved in a solvent.
  • polyethers such as polyethylene glycol, polyethylene glycol monomethyl ether, polyethylene glycol dimethyl ether, polypropylene glycol, polypropylene glycol monobutyl ether, polytetramethylene glycol; polycaprolactone, hydroxylated polycaprolactone at one end
  • Polyesters such as polylactide; polysiloxanes such as polydimethylsiloxane and hydroxylated polydimethylsiloxane at one end; polycarbonates such as polycarbonate and hydroxylated polycarbonate at one end; polyacrylic acid, polymethylacrylate, polymethylmethacrylate, etc.
  • Polyenes such as polybutadiene and polyisoprene; polystyrene; Polyamide; polyimides; polyphenylene oxide; although their copolymers include, but are not limited to.
  • acetates such as toluene, xylene, ethyl acetate and butyl acetate; ketones such as methyl ethyl ketone and cyclohexanone; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; methyl cellosolve
  • Examples include, but are not limited to, cellosolves such as ethyl cellosolve and cellosolve acetate; dimethylacetamide, dimethylformamide, dimethylsulfoxide, and mixed solvents thereof.
  • step E- (2) As a crosslinking agent in step E- (2) (I) using an existing cross-linking agent (such as a polyfunctional isocyanate compound), (Ii) using a prepolymer, or (iii) using the above (i) and (ii) in combination, be able to.
  • an existing cross-linking agent such as a polyfunctional isocyanate compound
  • polyfunctional isocyanate is preferable.
  • examples include tolylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, xylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane isocyanate, tetramethylxylene diisocyanate.
  • a multimer of these isocyanates adduct, burette, isocyanurate, uretidinedione, and the like, but are not limited thereto.
  • the prepolymer (ii) can generally be produced by the following method.
  • a cross-linking agent (prepolymer) having as a main component a polymer having an isocyanate group can be produced by reacting a hydroxyl group of the polyol with an equivalent or more polyfunctional isocyanate compound.
  • This prepolymer may be blended with the second modified polyrotaxane and / or a polymer other than the second modified polyrotaxane as it is. Further, the isocyanate group may be protected (blocked) by reacting with a compound having active hydrogen in the isocyanate group of the prepolymer, and a block prepolymer may be obtained.
  • thermosetting polyrotaxane-containing composition having excellent storage stability can be provided.
  • the reaction temperature crosslinking temperature
  • a catalyst is preferably used for the deprotection reaction.
  • Examples of compounds having active hydrogen include ⁇ -caprolactam, 1,2-pyrazole, butanone oxime, 1,2,4-triazole, diisopropylamine, 3,5-dimethylpyrazole, diethyl malonate, dimethyl malonate, acetoacetic acid It may be selected from the group consisting of methyl, ethyl acetoacetate, and N, N′-diphenylformamidine.
  • amine salt catalysts include carboxylates such as magnesium naphthenate, lead naphthenate and potassium acetate; trialkylphosphines such as triethylphosphine and tribenzylphosphine; alkoxides of alkali metals such as sodium methoxide; zinc-based organic metals
  • carboxylates such as magnesium naphthenate, lead naphthenate and potassium acetate
  • trialkylphosphines such as triethylphosphine and tribenzylphosphine
  • alkoxides of alkali metals such as sodium methoxide
  • zinc-based organic metals Although a catalyst etc. can be mentioned, it is not limited to this.
  • polyol examples include polyethers, polyesters, polysiloxanes, polycarbonates, poly (meth) acrylates or polyenes, copolymers thereof, or mixtures thereof. More specifically, polyethylene glycol diol, polyethylene glycol dicarboxylic acid terminal, polyethylene glycol dithiolic acid terminal, polypropylene diol, polytetrahydrofuran, poly (tetrahydrofuran) bis (3-aminopropyl) terminal, polypropylene glycol bis (2-aminopropyl ether) ), Glycerol propoxylate, glycerol tris [poly (propylene glycol) amino terminus], polyethers such as pentaerythritol ethoxylate, pentaerythritol propoxylate; poly (ethylene adipate), poly (1,3-propylene adipate) diol terminus Polyesters such as poly (1,4-butylene adipate) diol ends, polylac
  • polyfunctional isocyanate compound the same thing as the polyfunctional isocyanate of said (i) can be used.
  • an antioxidant an antibacterial / bacterial agent, a UV absorber, a viscosity modifier, a plasticizer, a surfactant, fine particles, and the like may be added.
  • antioxidants include phenolic antioxidants, polyphenolic antioxidants, sulfur antioxidants, phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, and phosphorus antioxidants. Although it can, it is not limited to these.
  • Antibacterial / bacterial agents include, but are not limited to, silver, zinc, copper compounds or complexes and their ions; organosilicon compounds; organophosphorus compounds.
  • UV absorbers 2-dimethylhexyl paradimethylaminobenzoate, 2-ethylhexyl salicylate, 2,4-dihydroxybenzophenone, 2-hydroxy-4-n-octylbenzophenone, 2- (2′-hydroxy-5′-t- Butylphenyl) benzotriazole, bis (2,2,6,6-tetramethyl-4-piperidyl) -sebacate, 2-ethylhexyl paramethoxycinnamate, isopropyl paramethoxycinnamate, ethylhexyl methoxycinnamate, methoxycinnamate
  • octyl acid etc. can be mentioned, it is not limited to these.
  • the viscosity modifier include, but are not limited to, carboxyvinyl polymer, propylene glycol alginate, ethyl cellulose, sodium carboxymethyl cellulose, sodium polyacrylate, and the like.
  • Nonionic surfactants such as polyoxyethylene (8) octylphenyl ether, sorbitan polyoxyethylene trioleate, sorbitan polyoxyethylene monostearate as surfactants: sodium dodecyl sulfate, sodium dodecyl sulfonate, dodecyl sulfate
  • Examples include, but are not limited to, ionic surfactants such as triethanolamine, dodecyltrimethylammonium salt, and dodecylpyridinium chloride.
  • fine particles examples include silica; alumina, magnesium oxide, zinc oxide, diamond, silicon nitride, titanium dioxide, barium titanate, strontium titanate, zeolite, talc, calcium carbonate, clay, polymer fine particles, and the like. It is not limited.
  • reaction conditions differ depending on the presence or absence of a solvent, the type of solvent, the type of crosslinking agent, and the like.
  • the reaction temperature can be from room temperature to 150 ° C. and normal pressure.
  • a block prepolymer it can be deblocked and performed at a temperature equal to or higher than the temperature at which the isocyanate group is regenerated, for example, 80 ° C. to 200 ° C., at normal pressure or under pressure.
  • Said 1st modified polyrotaxane can be manufactured as follows. That is, a) a step of preparing a polyrotaxane in which blocking groups are arranged so that cyclodextrin is not detached at both ends of a pseudopolyrotaxane in which an opening of a cyclodextrin is clasped with a linear molecule; and b) A step of substituting at least a part of the hydroxyl group of cyclodextrin with the first substituent represented by the above formula (I); By having this, the first modified polyrotaxane can be produced.
  • the terms such as cyclodextrin, linear molecule, blocking group, and first substituent have the same definitions as above.
  • the step b) is preferably provided after the step a).
  • the step a) is a step for preparing a polyrotaxane. This step can be obtained from WO2005 / 052026.
  • the step b) preferably has the following steps. b) -1) a step of dissolving polyrotaxane in a suitable solvent; b) -2) a step of adding a compound having an epoxy group to react and replacing with a first substituent; and b) -3) a step of purifying and separating the reaction product.
  • dimethyl sulfoxide dimethylacetamide
  • a solvent composed of dimethylformamide and a LiCl salt a sodium hydroxide aqueous solution, and the like can be mentioned, but not limited thereto.
  • Examples of the compound having an epoxy group in step b) -2) include, but are not limited to, 1,2-butylene oxide, glycidyl methyl ether, glycidyl ethyl ether, glycidyl propyl ether, and glycidyl isopropyl ether.
  • a catalyst for the step b) -2 a base such as triethylamine, diethylamine, pyridine, diisopropylethylamine, dimethylaminopyridine or the like can be used.
  • the conditions of the step b) -2) depend on the polyrotaxane used, the solvent used, the compound having an epoxy group used, and the like, and examples include conditions of room temperature to 150 ° C. for 1 hour to 24 hours. However, it is not limited to these.
  • Step b) -3) is a step for purifying and separating the reaction product.
  • Methods such as a reprecipitation method in which the reaction solution is poured into a poor solvent for precipitation and a method of removing impurities using a dialysis membrane can be used.
  • Centrifugation, shelf drying, spray drying eg, pressure nozzle, two-fluid nozzle, four-fluid nozzle, ultrasonic nozzle method, rotating disk method, etc.
  • thin-film drying of the purified first modified polyrotaxane It can be dried by a method such as freeze-drying (eg, a method using a drum dryer or a centrifugal thin film dryer).
  • the substitution rate of the first substituent and the hydroxyl value in accordance with JIS K0070 are preferably in the above-mentioned ranges.
  • the second modified polyrotaxane can be obtained by further modifying the first modified polyrotaxane obtained by the above production method. That is, after the a) step and b) step, c) ring-opening polymerization of the lactone monomer from the first substituent as a starting point, and further comprising the step of substituting at least part of the hydroxyl group with the second substituent represented by the above formula (II), A second modified polyrotaxane can be obtained.
  • n has the definition as described above.
  • n is an integer in structure, but is not limited to an integer because it is produced by ring-opening polymerization of a lactone monomer and the ring-opening polymerization has dispersibility.
  • the calculation method of n will be described by taking as an example the case where ⁇ -caprolactone monomer is used as the lactone monomer and hydroxybutyl group is used as the first substituent.
  • ⁇ -caprolactone monomer Using ⁇ -caprolactone monomer, ring-opening polymerization is performed on the hydroxyl group of the first substituent.
  • the consumption of the monomer used for the reaction is confirmed by gas chromatography (GC) (for example, GC-2014, Shimadzu Corporation, column CBP1-W12-100 used). Monomer consumption is almost identical to the supply (almost all reacts). Therefore, the value of [monomer] / [OH] in the polyrotaxane grafted with polycaprolactone, which is the second modified polyrotaxane, can be calculated, and the value is taken as an average n.
  • GC gas chromatography
  • [OH] is a calculated value of [OH] of the hydroxybutylated polyrotaxane, and the inclusion rate of polyrotaxane (0.25) calculated by 1 H-NMR measurement and the substitution rate of hydroxybutyl group (0 .26) (see Example 1 below).
  • the step c) preferably includes the following steps. c) -1) a step of dissolving the first modified polyrotaxane in the lactone monomer; and c) -2) a step of initiating and growing the polymerization reaction.
  • a solvent other than the lactone monomer may or may not be used.
  • the solvent include acetates such as toluene, xylene, ethyl acetate, and butyl acetate; ketones such as methyl ethyl ketone and cyclohexanone; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; dimethylacetamide, dimethylformamide , Dimethyl sulfoxide, a mixed solvent thereof and the like, but are not limited thereto.
  • Lactone monomers include 4-membered ring lactones such as ⁇ -propiolactone and ⁇ -methylpropiolactone; ⁇ -butyrolactone, ⁇ -hexanolactone, ⁇ -heptanolactone, ⁇ -octanolactone, ⁇ -heptyl- ⁇ 5-membered ring lactones such as -butyrolactone, ⁇ -methylene- ⁇ -butyrolactone, ⁇ , ⁇ -dimethyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methylene- ⁇ -butyrolactone; ⁇ - Examples thereof include 6-membered ring lactones such as valerolactone, ⁇ -hexanolactone, and ⁇ -octanolactone; 7-membered ring lactones such as ⁇ -caprolactone; lactide and 1,5-dioxepan-2-one.
  • the lactone monomer is preferably at least one compound selected from the group consisting of ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -butyrolactone, and ⁇ -butyrolactone.
  • step 1) dissolution may be performed by heating. Since moisture in the material may lower the purity in this step, there may be provided a step of removing residual moisture in the first modified polyrotaxane as necessary before or after step c) -1). Good. For example, a method of previously drying the first modified polyrotaxane to remove residual moisture, a method of drying the composition after dissolving in the monomer under a stream of dry air or nitrogen, and removing residual moisture, etc. It is not limited to these.
  • the step c) -2) depends on the first modified polyrotaxane used, the solvent used, and the monomer used, but can be carried out at 80 ° C. to 160 ° C.
  • the pressure in the reaction is not particularly limited, but it is usually good to carry out at atmospheric pressure.
  • Monomer polymerization is preferably carried out in the presence of a catalyst.
  • the catalyst include dibutyltin dilaurate, dioctyltin dilaurate, tri (acetate) butyltin, di (acetate) dibutyltin, acetate tributyltin, methoxytributyltin, tri (2-ethylhexanoate) butyltin, bis ( Tin such as 2-ethylhexanoate) dibutyltin, tri (laurate) butyltin, di (octanoate) dibutyltin, tri (octanoate) butyltin, dibutyltin oxide, monobutyltin hydroxide oxide, tin 2-ethylhexanoate
  • titanium catalysts such as titanium tetrachloride, titanium trichloride, titanium tetrabromide, and
  • the reaction product may be recovered without solvent. It may be dissolved in another resin and recovered as a mixture. You may melt
  • the inclusion rate was obtained by assuming that the amount of ⁇ -CD included to the maximum when ⁇ -CD was included in a skewered manner with polyethylene glycol (Macromolecules 1993, 26, 5698-5703). (Note that the entire contents of this document are incorporated herein).
  • the calculated hydroxyl amount of APR is 13.3 mmol / g.
  • hydroxybutylated APR1 (hereinafter, “hydroxybutylated APR” may be simply abbreviated as “BAPR”) obtained by lyophilization was 12 g.
  • BAPR hydroxybutylated APR1
  • Mw weight average molecular weight
  • Mn molecular weight distribution
  • the substitution rate of the hydroxybutyl group was measured and determined by the above-described method, specifically using 1 H-NMR.
  • the calculated [OH] is 10.8 mmol / g.
  • GPC was measured under the following conditions. Using TOSOH HLC-8220 GPC apparatus, column: TSK guard column Super AW-H and TSKgel Super AWM-H (two-linked), eluent: dimethyl sulfoxide / 0.01 M LiBr, column oven: 50 ° C., flow rate: 0 0.5 ml / min, sample concentration: about 0.2 wt / vol%, injection amount: 20 ⁇ l, pretreatment: filtration through a 0.2 ⁇ m filter, standard molecular weight: PEO (polyethylene oxide).
  • TOSOH HLC-8220 GPC apparatus column: TSK guard column Super AW-H and TSKgel Super AWM-H (two-linked), eluent: dimethyl sulfoxide / 0.01 M LiBr, column oven: 50 ° C., flow rate: 0 0.5 ml / min, sample concentration: about 0.2 wt / vol%, injection amount: 20 ⁇ l, pretreatment: filtration
  • Example 1 ⁇ Preparation of First Modified Polyrotaxane BAPR2>
  • 12.1 g of BAPR2 was synthesized in the same manner as in Example 1 except that the amount of butylene oxide was changed to 30 g (0.42 mol).
  • the weight average molecular weight Mw was 154,000, and the molecular weight distribution Mw / Mn was 1.2.
  • the substitution rate of the hydroxybutyl group was measured by 1 H-NMR by the above-described method, specifically in substantially the same manner as in Example 1, and found to be 0.33.
  • the calculated [OH] is 10.3 mmol / g.
  • the hydroxyl value according to JIS K0070 was 400 mgKOH / g.
  • Example 1 ⁇ Preparation of First Modified Polyrotaxane BAPR3>
  • 11.8 g of BAPR3 was synthesized in the same manner as in Example 1 except that the amount of butylene oxide was changed to 30 g (0.42 mol) and the amount of 1.5N NaOH aqueous solution was changed to 50 ml.
  • the weight average molecular weight Mw was 180,000, and the molecular weight distribution Mw / Mn was 1.2.
  • the substitution rate of hydroxybutyl group was measured by 1 H-NMR by the method described above and found to be 0.35.
  • the calculated [OH] is 10.1 mmol / g.
  • Example 2 ⁇ Preparation of First Modified Polyrotaxane BAPR4>
  • 12.0 g of BAPR4 was synthesized in the same manner as in Example 2 except that the reaction temperature was changed to 50 ° C. and the reaction time was changed to 5 hours.
  • the weight average molecular weight Mw was 185,000, and the molecular weight distribution Mw / Mn was 1.2.
  • the substitution rate of hydroxybutyl group was measured by 1 H-NMR and found to be 0.40.
  • the calculated [OH] is 9.8 mmol / g.
  • hydroxypropyl ethyl etherified APR1 (hereinafter, “hydroxypropyl ethyl etherified APR” may be simply abbreviated as “EGAPR”).
  • the yield of EGAPR1 was 12 g.
  • the weight average molecular weight Mw was 158,000, and the molecular weight distribution Mw / Mn was 1.3.
  • the substitution rate of the hydroxypropyl ethyl ether group was measured by 1 H-NMR and found to be 0.35.
  • the calculated [OH] is 9.1 mmol / g. 1 H-NMR, (DMSO-d 6 , 400 MHz), ⁇ (ppm) 1.10 (t, 18.8H), 3.0-4.0 (m, 157H), 4.0-6.0 (m, 24.0H).
  • Example 5 ⁇ Preparation of First Modified Polyrotaxane EGAPR2>
  • 11.0 g of EGAPR2 was synthesized in the same manner as in Example 5 except that the amount of glycidyl ethyl ether was changed to 30 g (0.30 mol).
  • the weight average molecular weight Mw was 203,000 and the molecular weight distribution Mw / Mn was 1.3.
  • the substitution rate of the hydroxypropylethyl ether group was measured by 1 H-NMR and found to be 0.44.
  • the calculated [OH] is 8.3 mmol / g.
  • the hydroxyl value according to JIS K0070 is 325 mgKOH / g. 1 H-NMR, (DMSO-d 6 , 400 MHz), ⁇ (ppm) 1.10 (t, 23.7 H), 3.0-4.0 (m, 173 H), 4.0-6.0 (m, 24.0 H).
  • hydroxypropyl isopropyl ether APR1 (hereinafter, “hydroxypropyl isopropyl ether APR” may be simply abbreviated as “IGAPR”).
  • the yield of IGAPR1 was 11.7 g.
  • the weight average molecular weight Mw was 154,000, and the molecular weight distribution Mw / Mn was 1.3.
  • the substitution rate of the hydroxypropyl isopropyl ether group was measured by 1 H-NMR and found to be 0.25. The calculated [OH] is 9.7 mmol / g. 1 H-NMR, (DMSO-d 6 , 400 MHz), ⁇ (ppm) 1.07 (d, 27.1H), 3.0-4.0 (m, 133H), 4.0-6.0 (m, 24.0H).
  • Example 7 ⁇ Preparation of first modified polyrotaxane IGAPR2>
  • 12.0 g of IGAPR2 was synthesized in the same manner as in Example 7 except that the amount of glycidyl isopropyl ether was changed to 30 g (0.26 mol).
  • the weight average molecular weight Mw was 168,000, and the molecular weight distribution Mw / Mn was 1.3.
  • the substitution rate of the hydroxypropyl isopropyl ether group was measured by 1 H-NMR and found to be 0.39.
  • the calculated [OH] is 8.4 mmol / g.
  • the hydroxyl value according to JIS K0070 was 330 mgKOH / g. 1 H-NMR, (DMSO-d 6 , 400 MHz), ⁇ (ppm) 1.07 (d, 42.1H), 3.0-4.0 (m, 154H), 4.0-6.0 (m, 24.0H).
  • the yield of HAPR1 was 55 g.
  • the weight average molecular weight Mw was 110,000, and the molecular weight distribution Mw / Mn was 1.3.
  • the substitution rate of the hydroxypropyl group was measured by 1 H-NMR and found to be 0.33.
  • the calculated [OH] is 10.8 mmol / g. 1 H-NMR, (DMSO-d 6 , 400 MHz) ⁇ (ppm) 1.0 (s, 17.8H), 3.0-4.0 (m, 94H), 4.0-6.0 (m, 24.0H).
  • HAPR2 was synthesized in the same manner as in Comparative Example 1 except that the amount of propylene oxide was changed to 110 g in Comparative Example 1.
  • the weight average molecular weight Mw was 120,000, and the molecular weight distribution Mw / Mn was 1.3.
  • the substitution rate of hydroxypropyl group was measured by 1 H-NMR and found to be 0.50.
  • the calculated [OH] is 9.7 mmol / g. 1 H-NMR, (DMSO-d 6 , 400 MHz) ⁇ (ppm) 1.0 (s, 27.1H), 3.0-4.0 (m, 105H), 4.0-6.0 (m, 24.0H).
  • the solubility of the first modified polyrotaxane of the present invention is improved compared to unmodified polyrotaxane (APR) and hydroxypropyl modified polyrotaxanes having the same substitution rate (HAPR1 and HAPR2).
  • APR unmodified polyrotaxane
  • HAPR1 and HAPR2 hydroxypropyl modified polyrotaxanes having the same substitution rate
  • Example 9 to Example 16 ⁇ Preparation of Second Modified Polyrotaxane> Using the first modified polyrotaxane obtained in Examples 1 to 8 as a raw material, the second modified polyrotaxane (Example 9: BAPR1-g-PCL; Example 10: BAPR2-g-PCL) Example 11: BAPR3-g-PCL; Example 12: BAPR4-g-PCL; Example 13: EGAPR1-g-PCL; Example 14: EGAPR2-g-PCL; Example 15: IGAPR1-g-PCL Example 16: IGAPR2-g-PCL) was prepared.
  • BAPR1-g-PCL BAPR2-g-PCL
  • Example 11 BAPR3-g-PCL
  • Example 12 BAPR4-g-PCL
  • Example 13 EGAPR1-g-PCL
  • Example 14 EGAPR2-g-PCL
  • Example 15 IGAPR1-g-PCL
  • Example 16 IGAPR2-g-PCL
  • ring-opening polymerization of a monomer such as ⁇ -caprolactone was carried out starting from the first substituent of the first modified polyrotaxane. More specifically, it was performed as follows. 5.0 g of the first modified polyrotaxane (Example Y (Y represents 1 to 8)) was placed in a three-necked flask, and 22.5 g of ⁇ -caprolactone was introduced while slowly flowing nitrogen. After stirring uniformly with a mechanical stirrer at 100 ° C.
  • reaction temperature was raised to 130 ° C., and 0.40 g of 2-ethylhexanoic acid tin (50 wt% solution) previously diluted with toluene was added and reacted for 6 hours.
  • the solvent was removed to obtain a reaction product.
  • IR infrared absorption spectrum
  • Nicolet 6700 FT-IR manufactured by Thermo Fisher
  • a peak derived from an ester at 1736 cm ⁇ 1 was observed.
  • gas chromatography GC-2014, manufactured by Shimadzu Corporation
  • the amount of unreacted ⁇ -caprolactone was 1.0 wt% or less with respect to the input amount.
  • the following physical properties weight average molecular weight, molecular weight distribution, purity (measured by GPC), hydroxyl value (in Table 2, “mgKOH / g” value), grind gauge test
  • the viscosity was measured.
  • the results are shown in Table 2.
  • the grind gauge test result and the viscosity were measured as follows. The viscosity was measured using a digital viscometer TVB-10 (manufactured by TOYO SANGYO).
  • the values in Table 2 are described as “mPa ⁇ s” when a 40 ° C., 35 wt% xylene solution is used.
  • Grind gauge test (abbreviated as “GG test” in Table 2): A 35 wt% xylene solution of the second modified polyrotaxane was prepared, and this solution was bladed using a grindometer GW-3098M (manufactured by Dazai Equipment Co., Ltd.). And visually confirmed the presence or absence of a foreign substance immediately after that, and evaluated as follows. ⁇ : No foreign matter. ⁇ : Slightly foreign matter is present. ⁇ : Obviously foreign matter is present.
  • Table 2 shows the following. That is, the second modified polyrotaxane (Examples 9 to 16) has a relatively high substitution rate of the first substituent of the first modified polyrotaxane as compared with the modified polyrotaxane of Comparative Example 3 and Comparative Example 4. Even if it is low, the viscosity of the obtained second modified polyrotaxane is low and an insoluble matter-free product can be produced.
  • Comparative Example 3 shows that the effects in Examples 9 to 16 are remarkable compared to Comparative Example 3 because there are many foreign substances and the viscosity measurement is not possible as a result of the grinding gauge test results.
  • thermosetting elastomer was produced by crosslinking with a polyol prepolymer.
  • a synthesis example of a prepolymer necessary for production is shown below.
  • Block Prepolymer BP1 >> P1 (7.78 kg) obtained above was placed in a reaction vessel and heated to 100 ° C. with stirring under a nitrogen stream. ⁇ -Caprolactam (2.04 kg) was added thereto and stirred for 6 hours to obtain block prepolymer 1 (BP1) in which the isocyanate groups at both ends of the polycarbonate were protected with ⁇ -caprolactam.
  • FT-IR Nicolet 6700 FT-IR
  • the stress at an elongation rate of 50% (hereinafter sometimes abbreviated as “50% modulus”), elongation
  • the stress at a rate of 100% (hereinafter sometimes abbreviated as “100% modulus”), maximum stress, elongation at break, and compression set were measured.
  • the results are also shown in Table 3.
  • Each measurement item was measured as follows. The 50% modulus, 100% modulus, maximum stress, and elongation at break were measured by using a dumbbell No. 3 test piece or a dumbbell No. 7 test piece at room temperature according to JIS K6251.
  • the compression set (100 ° C., 24 hours) was measured by a method according to JIS K6262 using a cross-linked product to be measured as a cylindrical test piece (radius 30 mm, thickness 15 mm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The present invention provides a modified polyrotaxane having improved solubility and high industrial applicability. The present invention provides a modified polyrotaxane produced by modifying a polyrotaxane, wherein the polyrotaxane is produced by arranging capping groups at both ends of a pseudo polyrotaxane that comprises cyclodextrin (CD) and a linear molecule included in a cavity of the CD in a skewer-like form so that the CD cannot be detached. In the modified polyrotaxane, each of at least some of hydroxy groups contained in the CD is substituted by a first substituent represented by formula (I) (wherein -R represents a group selected from the group consisting of -CH2-CH3, -CH2-O-CH3, -CH2-O-CH2-CH3, -CH2-O-CH2-CH2-CH3 and -CH2-O-CH-(CH3)2).

Description

修飾化ポリロタキサン及びその製造方法、並びに修飾化ポリロタキサンを有して形成される材料Modified polyrotaxane, method for producing the same, and material formed with modified polyrotaxane
 本発明は、環状分子がシクロデキストリンであって該シクロデキストリンの水酸基を特定の基で修飾した修飾化ポリロタキサンに関する。
 また、本発明は、該修飾化ポリロタキサンを有して形成される材料、該修飾化ポリロタキサンの製造方法に関する。
The present invention relates to a modified polyrotaxane in which the cyclic molecule is a cyclodextrin and the hydroxyl group of the cyclodextrin is modified with a specific group.
The present invention also relates to a material formed with the modified polyrotaxane and a method for producing the modified polyrotaxane.
 代表的な超分子であるポリロタキサンに関する研究開発が盛んに行われているが、具体的に製品用途に注力した開発がまだ少ない。
 特に、直鎖分子にポリエチレングリコール、環状分子にシクロデキストリン、キャッピング基にアダマンタン基からなるポリロタキサンは、ジメチルスルホキシド、強アルカリ水、ジメチルアセトアミド/LiCl溶液、イオン性液体にしか溶解しないため、用途開発の大きな課題になっている。
Research and development on polyrotaxane, a representative supramolecule, is actively underway, but there is still little development that specifically focuses on product applications.
In particular, polyrotaxane consisting of polyethylene glycol as a linear molecule, cyclodextrin as a cyclic molecule, and adamantane group as a capping group is soluble only in dimethyl sulfoxide, strong alkaline water, dimethylacetamide / LiCl solution, and ionic liquid. It has become a big issue.
 例えば、特許文献1は、ポリロタキサンの環状分子であるシクロデキストリンの水酸基の一部を種々な修飾基で修飾して、修飾ポリロタキサンの水溶性を高め、ハイドロゲルの材料とすることを開示する。
 また、非特許文献1は、種々な修飾基でポリロタキサンの有機溶媒に対する溶解性を検討している。
 特許文献2は、アシル基と特定の修飾基の組み合わせによって、ポリロタキサンの有機溶媒に対する溶解性がさらに高められることを開示する。
 特許文献3は、シクロデキストリン上にヒドロキシプロピル基を介してカプロラクトン基を修飾した。ヒドロキシプロピル基修飾したポリロタキサンは、溶解性が向上されているので、カプロラクトン基を修飾させるための中間体とすることを開示する。
For example, Patent Document 1 discloses that a part of the hydroxyl group of cyclodextrin, which is a cyclic molecule of polyrotaxane, is modified with various modifying groups to increase the water solubility of the modified polyrotaxane, thereby obtaining a hydrogel material.
Non-Patent Document 1 examines the solubility of polyrotaxane in organic solvents with various modifying groups.
Patent Document 2 discloses that the solubility of polyrotaxane in an organic solvent is further enhanced by a combination of an acyl group and a specific modifying group.
In Patent Document 3, a caprolactone group is modified on a cyclodextrin via a hydroxypropyl group. Since the solubility of the polyrotaxane modified with a hydroxypropyl group is improved, it is disclosed that the polyrotaxane is used as an intermediate for modifying the caprolactone group.
WO2005/080469号公報。WO2005 / 080469. WO2008/108411号公報。WO2008 / 108411. 特許第4521875号公報。Japanese Patent No. 4521875.
 しかしながら、シクロデキストリンの水酸基を修飾基で修飾することで、水酸基の一部がなくなり、残存する水酸基が少なくなる。一般的に、修飾度(全体の水酸基に対する修飾の割合)が高いほど、溶媒に対する溶解性が高まる傾向にある。修飾ポリロタキサンに残存する活性な水酸基が、架橋反応やさらなる化学構造の改変に重要であり、十分に確保する必要がある。上記特許文献及び非特許文献において、ヒドロキシプロピル基で修飾されたポリロタキサンを開示している。ヒドロキシプロピル基には水酸基を有するため、修飾後のポリロタキサンにおいて十分な水酸基を確保できるが、特定な溶媒との親和性を高めるための炭化水素の数が少なく、低修飾度において、溶解性の改良が不十分という課題がある。 However, by modifying the hydroxyl group of cyclodextrin with a modifying group, a part of the hydroxyl group disappears and the remaining hydroxyl group decreases. Generally, the higher the degree of modification (the ratio of modification to the entire hydroxyl group), the higher the solubility in the solvent. The active hydroxyl group remaining in the modified polyrotaxane is important for the crosslinking reaction and further modification of the chemical structure, and needs to be sufficiently secured. In the above patent documents and non-patent documents, polyrotaxanes modified with hydroxypropyl groups are disclosed. The hydroxypropyl group has a hydroxyl group, so a sufficient hydroxyl group can be secured in the modified polyrotaxane, but the number of hydrocarbons to increase the affinity with a specific solvent is small, and the solubility is improved at a low modification degree. There is a problem that is insufficient.
 また、工業利用上において、特許文献3に記載されているプロピレンオキシド(1,2-エポキシプロパン)を用いて、シクロデキストリンにヒドロキシプロピル基を修飾するには、以下のような問題が考えられる。例えば、1,2-エポキシプロパンが低沸点(34℃)であるため、反応時に反応熱により蒸発し、反応生成物の物性制御が困難になる。また、1,2-エポキシプロパンが高い揮発性、高毒性であり、大量生産において、扱いにくく保管において特別な貯蔵庫が必要となる。 In addition, for industrial use, the following problems can be considered to modify the hydroxypropyl group in cyclodextrin using propylene oxide (1,2-epoxypropane) described in Patent Document 3. For example, since 1,2-epoxypropane has a low boiling point (34 ° C.), it evaporates due to reaction heat during the reaction, making it difficult to control the physical properties of the reaction product. In addition, 1,2-epoxypropane is highly volatile and highly toxic, making it difficult to handle in mass production and requiring special storage for storage.
 本発明の目的は、上記の課題を解決することにある。
 具体的には、本発明の目的は、溶解性が向上した、高い工業利用性を有する修飾化ポリロタキサンを提供することにある。
 また、本発明の目的は、上記目的以外に、又は上記目的に加えて、上記修飾化ポリロタキサンを有する材料を提供することにある。
 さらに、本発明の目的は、上記目的以外に、又は上記目的に加えて、上記修飾化ポリロタキサンの製造方法を提供することにある。
An object of the present invention is to solve the above problems.
Specifically, an object of the present invention is to provide a modified polyrotaxane having improved solubility and high industrial utility.
Moreover, the objective of this invention is providing the material which has the said modified polyrotaxane other than the said objective or in addition to the said objective.
Furthermore, the objective of this invention is providing the manufacturing method of the said modified polyrotaxane other than the said objective or in addition to the said objective.
 本発明者らは、次の発明を見出した。
 <1> シクロデキストリンの開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端にシクロデキストリンが脱離しないように封鎖基を配置してなるポリロタキサンを修飾化した修飾化ポリロタキサンであって、
 シクロデキストリンが有する水酸基の少なくとも一部が以下の式(I)(式中、-Rは、-CH-CH、-CH-O-CH、-CH-O-CH-CH、-CH-O-CH-CH-CH及び-CH-O-CH-(CHからなる群から選ばれる少なくとも1種の第1の基である)で表される第1の置換基で置換される、上記修飾化ポリロタキサン。
The inventors have found the following invention.
<1> A modified polyrotaxane obtained by modifying a polyrotaxane in which a blocking group is arranged so that cyclodextrin is not detached at both ends of a pseudopolyrotaxane in which an opening of a cyclodextrin is included in a skewered manner by linear molecules Because
At least a part of the hydroxyl groups of cyclodextrin is represented by the following formula (I) (wherein —R is —CH 2 —CH 3 , —CH 2 —O—CH 3 , —CH 2 —O—CH 2 —CH 3 , —CH 2 —O—CH 2 —CH 2 —CH 3 and —CH 2 —O—CH— (CH 3 ) 2 is at least one first group selected from the group consisting of The modified polyrotaxane is substituted with a first substituent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 <2> 上記<1>において、水酸基の少なくとも一部が、第1の置換基をさらに修飾した、以下の式(II)(式中、Xは、炭素数が2~8の直鎖状又は分岐鎖状アルキレン基、アセチル基分岐を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基、及びエーテル結合を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基からなる群から選ばれる、少なくとも1種の第2の基であり、nは1~200である)で表される第2の置換基で置換されるのがよい。 <2> In the above <1>, at least a part of the hydroxyl group is further modified by the first substituent, and the following formula (II) (wherein X is a straight chain having 2 to 8 carbon atoms or From a branched alkylene group, a linear or branched alkylene group having 3 to 8 carbon atoms having an acetyl group branch, and a linear or branched alkylene group having 3 to 8 carbon atoms having an ether bond And at least one second group selected from the group consisting of n and 1 to 200).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 <3> 上記<1>において、第1の置換基の置換率は、シクロデキストリンが有する水酸基の全てが置換された状態を1.0とする場合、0.10~0.60、好ましくは0.20~0.50、より好ましくは0.25~0.45であるのがよい。
 <4> 上記<1>又は<3>において、修飾化ポリロタキサンのJIS K0070に準ずる水酸基価が440~300mgKOH/g、好ましくは420~320mgKOH/g、より好ましくは400~330mgKOH/gであるのがよい。
 <5> 上記<2>において、-X-は、-(CH-、-(CH-、-CH(CH)-CH-CH-及び-(CH-O-(CH-からなる群から選ばれる少なくとも1種のアルキレン基、好ましくは-(CH-、-(CH-、-CH(CH)-CH-CH-からなる群から選ばれる少なくとも1種のアルキレン基、より好ましくは-(CH-であるのがよい。
<3> In the above item <1>, the substitution rate of the first substituent is 0.10 to 0.60, preferably 0, when 1.0 is a state in which all of the hydroxyl groups of the cyclodextrin are substituted. 20 to 0.50, more preferably 0.25 to 0.45.
<4> In the above <1> or <3>, the hydroxyl value of the modified polyrotaxane according to JIS K0070 is 440 to 300 mgKOH / g, preferably 420 to 320 mgKOH / g, more preferably 400 to 330 mgKOH / g. Good.
<5> In the above item <2>, —X— represents — (CH 2 ) 3 —, — (CH 2 ) 5 —, —CH (CH 3 ) —CH 2 —CH 2 — and — (CH 2 ) 2 At least one alkylene group selected from the group consisting of —O— (CH 2 ) 2 —, preferably — (CH 2 ) 3 —, — (CH 2 ) 5 —, —CH (CH 3 ) —CH 2 — At least one alkylene group selected from the group consisting of CH 2 —, more preferably — (CH 2 ) 5 — is preferred.
 <6> 上記<2>又は<5>において、修飾化ポリロタキサンの分子量分布が2.0以下、好ましくは1.8以下、より好ましくは1.6以下であるのがよい。
 <7> 上記<2>、<5>又は<6>に記載される修飾化ポリロタキサンが架橋に含まれる架橋形成材料。
 <8> 上記<2>、<5>又は<6>に記載される修飾化ポリロタキサンを有して形成される材料。
<6> In the above item <2> or <5>, the molecular weight distribution of the modified polyrotaxane is 2.0 or less, preferably 1.8 or less, more preferably 1.6 or less.
<7> A cross-linking material in which the modified polyrotaxane described in <2>, <5> or <6> is included in the cross-linking.
<8> A material formed with the modified polyrotaxane described in <2>, <5> or <6> above.
 <9> 修飾化ポリロタキサンの製造方法であって、
 a)シクロデキストリンの開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端にシクロデキストリンが脱離しないように封鎖基を配置してなるポリロタキサンを準備する工程;及び
 b)シクロデキストリンが有する水酸基の少なくとも一部を以下の式(I)(式中、-Rは、-CH-CH、-CH-O-CH、-CH-O-CH-CH、-CH-O-CH-CH-CH及び-CH-O-CH-(CHからなる群から選ばれる少なくとも1種である)で表される第1の置換基で置換する工程;
を有する、上記方法。
<9> A method for producing a modified polyrotaxane,
a) a step of preparing a polyrotaxane in which blocking groups are arranged so that cyclodextrin is not detached at both ends of a pseudopolyrotaxane in which an opening of a cyclodextrin is clasped with a linear molecule; and b) At least a part of the hydroxyl groups of cyclodextrin is represented by the following formula (I) (wherein —R is —CH 2 —CH 3 , —CH 2 —O—CH 3 , —CH 2 —O—CH 2 —CH 3 , —CH 2 —O—CH 2 —CH 2 —CH 3 and —CH 2 —O—CH— (CH 3 ) 2. Substituting with a group;
The above method.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 <10> 上記<9>において、b)工程の置換は、水酸基の少なくとも一部と、1,2-ブチレンオキシド、グリシジルメチルエーテル、グリシジルエチルエーテル、グリシジルプロピルエーテル及びグリシジルイソプロピルエーテルからなる群から選ばれる少なくとも1種の第1の化合物とを反応させて行うのがよい。
 <11> 上記<9>又は<10>において、第1の置換基の置換率は、シクロデキストリンが有する水酸基の全てが置換された状態を1.0とする場合、0.10~0.60、好ましくは0.20~0.50、より好ましくは0.25~0.45であるのがよい。
 <12> 上記<9>~<11>のいずれかにおいて、修飾化ポリロタキサンのJIS K0070に準ずる水酸基価が440~300mgKOH/g、好ましくは420~320mgKOH/g、より好ましくは400~330mgKOH/gであるのがよい。
<10> In the above <9>, the substitution in step b) is selected from the group consisting of at least a part of a hydroxyl group and 1,2-butylene oxide, glycidyl methyl ether, glycidyl ethyl ether, glycidyl propyl ether, and glycidyl isopropyl ether. The reaction is preferably performed by reacting with at least one first compound.
<11> In the above <9> or <10>, the substitution rate of the first substituent is 0.10 to 0.60 when 1.0 is a state in which all the hydroxyl groups of the cyclodextrin are substituted. , Preferably 0.20 to 0.50, more preferably 0.25 to 0.45.
<12> In any one of the above items <9> to <11>, the hydroxyl value of the modified polyrotaxane according to JIS K0070 is 440 to 300 mgKOH / g, preferably 420 to 320 mgKOH / g, more preferably 400 to 330 mgKOH / g. There should be.
 <13> 上記<9>~<12>のいずれかにおいて、c)第1の置換基を基点として、ラクトンモノマーを開環重合し、水酸基の少なくとも一部が、以下の式(II)(式中、Xは、炭素数が2~8の直鎖状又は分岐鎖状アルキレン基、アセチル基分岐を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基、及びエーテル結合を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基からなる群から選ばれる、少なくとも1種の第2の基であり、nは1~200である)で表される第2の置換基で置換する工程をさらに有するのがよい。 <13> In any one of the above items <9> to <12>, c) ring-opening polymerization of the lactone monomer starting from the first substituent, and at least a part of the hydroxyl group is represented by the following formula (II) (formula Wherein X is a linear or branched alkylene group having 2 to 8 carbon atoms, a linear or branched alkylene group having 3 to 8 carbon atoms having an acetyl group branch, and a carbon having an ether bond A second substituent represented by the following formula: at least one second group selected from the group consisting of a linear or branched alkylene group having a number of 3 to 8 and n is 1 to 200) It is preferable to further include a step of substituting.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 <14> 上記<13>のc)工程において、ラクトンモノマーが、ε-カプロラクトン、γ-バレロラクトン、α-メチル-γ-ブチロラクトン及びγ-ブチロラクトンからなる群から選ばれる少なくとも1種の化合物を用いて、開環重合を行うのがよい。 <14> In step c) of <13> above, the lactone monomer is at least one compound selected from the group consisting of ε-caprolactone, γ-valerolactone, α-methyl-γ-butyrolactone and γ-butyrolactone. Thus, ring-opening polymerization is preferably performed.
 本発明により、溶解性が向上した、高い工業利用性を有する修飾化ポリロタキサンを提供することができる。
 また、本発明により、上記効果以外に、又は上記効果に加えて、上記修飾化ポリロタキサンを有する材料を提供することができる。
 さらに、本発明により、上記効果以外に、又は上記効果に加えて、上記修飾化ポリロタキサンの製造方法を提供することができる。
According to the present invention, it is possible to provide a modified polyrotaxane having improved solubility and high industrial utility.
Moreover, according to the present invention, a material having the modified polyrotaxane can be provided in addition to or in addition to the above effects.
Furthermore, according to the present invention, a method for producing the modified polyrotaxane can be provided in addition to or in addition to the above effects.
 以下、本願に記載する発明を詳細に説明する。
<シクロデキストリンが有する水酸基の少なくとも一部が上記式(I)で表される第1の置換基で置換される修飾化ポリロタキサン>
 本願は、シクロデキストリンの開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端にシクロデキストリンが脱離しないように封鎖基を配置してなるポリロタキサンを修飾化した修飾化ポリロタキサンであって、シクロデキストリンが有する水酸基の少なくとも一部が上記式(I)で表される第1の置換基で置換される、上記修飾化ポリロタキサン(なお、本願において、「シクロデキストリンが有する水酸基の少なくとも一部が上記式(I)で表される第1の置換基で置換される修飾化ポリロタキサン」を単に「第1の修飾化ポリロタキサン」と略記する場合がある)を開示する。
Hereinafter, the invention described in the present application will be described in detail.
<Modified polyrotaxane in which at least a part of the hydroxyl group of cyclodextrin is substituted with the first substituent represented by the above formula (I)>
The present application is a modified polyrotaxane obtained by modifying a polyrotaxane in which a blocking group is arranged so that cyclodextrin is not detached at both ends of a pseudopolyrotaxane in which an opening of a cyclodextrin is clasped with a linear molecule. Wherein the modified polyrotaxane is substituted with at least a part of the hydroxyl groups of the cyclodextrin with the first substituent represented by the above formula (I). “Modified polyrotaxane at least partially substituted with the first substituent represented by the above formula (I)” may be simply abbreviated as “first modified polyrotaxane”.
 式(I)中、-Rは、-CH-CH、-CH-O-CH、-CH-O-CH-CH、-CH-O-CH-CH-CH及び-CH-O-CH-(CHからなる群、好ましくは-CH-CH、-CH-O-CH-CH及び-CH-O-CH-(CHからなる群から選ばれる少なくとも1種の第1の基である。 In the formula (I), —R represents —CH 2 —CH 3 , —CH 2 —O—CH 3 , —CH 2 —O—CH 2 —CH 3 , —CH 2 —O—CH 2 —CH 2 —. A group consisting of CH 3 and —CH 2 —O—CH— (CH 3 ) 2 , preferably —CH 2 —CH 3 , —CH 2 —O—CH 2 —CH 3 and —CH 2 —O—CH— ( CH 3 ) is at least one first group selected from the group consisting of 2 .
 第1の置換基の置換率は、シクロデキストリンが有する水酸基の全てが置換された状態を1.0とする場合、0.10~0.60、好ましくは0.20~0.50、より好ましくは0.25~0.45であるのがよい。
 上記範囲であれば、第1の修飾化ポリロタキサンの溶媒に対する溶解性や他の材料との相溶性が向上する傾向にあり、かつ第1の修飾化ポリロタキサンの製造における収率が高くなる傾向にある。特に、上記下限が第1の修飾化ポリロタキサンの溶媒に対する溶解性や他の材料との相溶性と関連する傾向にあり、上記上限が第1の修飾化ポリロタキサンの製造における収率と関連する傾向にある。
The substitution rate of the first substituent is 0.10 to 0.60, preferably 0.20 to 0.50, and more preferably, when 1.0 is a state in which all the hydroxyl groups of cyclodextrin are substituted. Is preferably 0.25 to 0.45.
If it is the said range, it exists in the tendency for the solubility with respect to the solvent of a 1st modification polyrotaxane, and compatibility with another material to improve, and it exists in the tendency for the yield in manufacture of a 1st modification polyrotaxane to become high. . In particular, the lower limit tends to be related to the solubility of the first modified polyrotaxane in the solvent and compatibility with other materials, and the upper limit tends to be related to the yield in the production of the first modified polyrotaxane. is there.
 第1の置換基の置換率は、第1の修飾化ポリロタキサン(及び必要であれば修飾前のポリロタキサン)のH-NMRを測定することにより得ることができる。
 具体的には、「第1の修飾化ポリロタキサン中のシクロデキストリンのグルコース由来のC1のプロトン(-O-CH-O-)及び水酸基(第1の置換基の水酸基及びシクロデキストリン由来の水酸基)由来のプロトン」由来のHピークの実測積算量(A:「水酸基等由来のプロトン実測積算量」と略記する)と「第1の置換基特有のプロトン」由来のHピークの実測積算量(B:「第1の置換基特有のプロトン実測積算量」)との比から求めることができる。
The substitution rate of the first substituent can be obtained by measuring 1 H-NMR of the first modified polyrotaxane (and polyrotaxane before modification if necessary).
Specifically, “C1 proton (—O—CH * —O—) and hydroxyl group (glucose of the first substituent and hydroxyl group derived from cyclodextrin) derived from glucose of the cyclodextrin in the first modified polyrotaxane” Measured integrated amount of 1 H peak derived from “proton derived” (A: abbreviated as “actual measured integrated amount of proton derived from hydroxyl group, etc.”) and measured integrated amount of 1 H peak derived from “proton unique to the first substituent” (B: “actual proton integration amount peculiar to the first substituent”).
 シクロデキストリンがα-シクロデキストリン(以降、「α-CD」と略記する場合がある)であり、第1の置換基のRがエチル基(-CHCH )の場合を例として説明する。
 「第1の置換基特有のプロトン」は、「第1の置換基のRがエチル基(-CHCH )の該H」に注目する。この「H」のピークは、0.87ppm辺りに現れる。「α-CD」の18個の水酸基がすべて第1の置換基に置換されると、この「H」の数は、(18×3)となる。すべてではなく、ある置換率で置換されると、この「H」の数は、(18×3×置換率)個となる。
The case where the cyclodextrin is α-cyclodextrin (hereinafter sometimes abbreviated as “α-CD”) and the first substituent R is an ethyl group (—CH 2 CH * 3 ) will be described as an example. .
“Proton peculiar to the first substituent” focuses on “the H * in which R of the first substituent is an ethyl group (—CH 2 CH * 3 )”. This “H * ” peak appears around 0.87 ppm. When all 18 hydroxyl groups of “α-CD” are substituted with the first substituent, the number of “H * ” is (18 × 3). When replaced with a certain replacement rate instead of all, the number of “H * ” is (18 × 3 × replacement rate).
 一方、「第1の修飾化ポリロタキサン中のシクロデキストリンのグルコース由来のC1のプロトン(-O-CH-O-)及び水酸基(第1の置換基の水酸基及びシクロデキストリン由来の水酸基)由来のプロトン」のピークは、4~6ppm辺りに現れる。このプロトンの数は、第1の置換基の置換率にかかわらず、24個である。 On the other hand, “C1 proton derived from glucose (—O—CH * —O—) and hydroxyl group (hydroxyl group of the first substituent and hydroxyl group derived from cyclodextrin) in the first modified polyrotaxane” "Appears around 4 to 6 ppm. The number of protons is 24 regardless of the substitution rate of the first substituent.
 これから、A:「水酸基等由来のプロトン実測積算量」とB:「第1の置換基特有のプロトン実測積算量」との比は、{24/(18×3×置換率)}となる。
 要するに、A/B={24/(18×3×置換率)}であり、ここから、置換率を求めることができる。
 なお、上記において、シクロデキストリンがα-CDであり、且つ第1の置換基のRがエチル基(-CHCH)の場合を説明したが、それ以外の場合についても、同様に、第1の置換基の置換率を求めることができる。
From this, the ratio of A: “actually accumulated amount of protons derived from hydroxyl group etc.” and B: “actually accumulated amount of protons unique to the first substituent” is {24 / (18 × 3 × substitution rate)}.
In short, A / B = {24 / (18 × 3 × replacement rate)}, from which the replacement rate can be obtained.
In the above description, the case where cyclodextrin is α-CD and R of the first substituent is an ethyl group (—CH 2 CH 3 ) has been described, but in other cases as well, The substitution rate of one substituent can be determined.
 第1の修飾化ポリロタキサンは、JIS K0070に準ずる水酸基価が440~300mgKOH/g、好ましくは420~320mgKOH/g、より好ましくは400~330mgKOH/gであるのがよい。
 JIS K0070に準ずる水酸基価が上記範囲にあると、第1の修飾化ポリロタキサンを用いて他の材料と反応させるのに、種々な溶媒に可溶になると同時に、反応基としての水酸基が十分に確保でき、幅広く材料の設計が可能になる点で有利となる傾向にある。なお、他の材料との反応の例として、他の材料との硬化反応(架橋反応)、他の機能性官能基との反応による新たな修飾化などを挙げることができるが、これらに限定されない。
The first modified polyrotaxane may have a hydroxyl value according to JIS K0070 of 440 to 300 mgKOH / g, preferably 420 to 320 mgKOH / g, more preferably 400 to 330 mgKOH / g.
When the hydroxyl value according to JIS K0070 is in the above range, the first modified polyrotaxane can be reacted with other materials, so that it becomes soluble in various solvents and at the same time, sufficient hydroxyl groups as reactive groups are secured. It tends to be advantageous in that it allows a wide range of material designs. Examples of reactions with other materials include, but are not limited to, curing reactions (crosslinking reactions) with other materials, new modifications by reaction with other functional functional groups, and the like. .
 なお、第1の修飾化ポリロタキサン中のシクロデキストリンは、第1の置換基以外の置換基を有してもよい。
 第1の置換基以外の置換基として、-O-アセチル基、-O-プロピオニル基などの-O-アシル基;メトキシ基、エトキシ基、プロピルオキシ基などのアルキルオキシ基;ブチルカルバモイル基、シクロヘキシルカルバモイル基、フェニルエチルカルバモイル基、アクリロイルオキシエチルカルバモイル基、メタクリロイルオキシエチルカルバモイル基などのアルキル又はアリールカルバモイル基;ポリオキシエチレン基、ポリオキシプロピレン基などのポリアルキルオキシ基;カルボン酸基、アミノ基などの反応性基を有する置換基を挙げることができるが、これらに限定されない。
The cyclodextrin in the first modified polyrotaxane may have a substituent other than the first substituent.
Substituents other than the first substituent include -O-acyl groups such as -O-acetyl group and -O-propionyl group; alkyloxy groups such as methoxy group, ethoxy group and propyloxy group; butylcarbamoyl group and cyclohexyl Alkyl or arylcarbamoyl groups such as carbamoyl group, phenylethylcarbamoyl group, acryloyloxyethylcarbamoyl group, methacryloyloxyethylcarbamoyl group; polyalkyloxy groups such as polyoxyethylene group, polyoxypropylene group; carboxylic acid group, amino group, etc. Although the substituent which has this reactive group can be mentioned, it is not limited to these.
<シクロデキストリンが有する水酸基の少なくとも一部が上記式(II)で表される第2の置換基で置換される修飾化ポリロタキサン>
 また、本願は、シクロデキストリンが有する水酸基の少なくとも一部が上記式(II)で表される第2の置換基で置換される修飾化ポリロタキサン(なお、本願において、「シクロデキストリンが有する水酸基の少なくとも一部が上記式(II)で表される第2の置換基で置換される修飾化ポリロタキサン」を単に「第2の修飾化ポリロタキサン」と略記する場合がある)を開示する。
<Modified polyrotaxane in which at least a part of the hydroxyl group of cyclodextrin is substituted with the second substituent represented by the above formula (II)>
Further, the present application relates to a modified polyrotaxane in which at least a part of hydroxyl groups of cyclodextrin is substituted with the second substituent represented by the above formula (II) (in the present application, “at least the hydroxyl groups of cyclodextrin have” “Modified polyrotaxane partially substituted with the second substituent represented by the above formula (II)” may be simply abbreviated as “second modified polyrotaxane”.
 式(II)中、Xは、炭素数が2~8の直鎖状又は分岐鎖状アルキレン基、アセチル基分岐を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基、及びエーテル結合を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基からなる群から選ばれる、少なくとも1種の第2の基である。 In the formula (II), X represents a linear or branched alkylene group having 2 to 8 carbon atoms, a linear or branched alkylene group having 3 to 8 carbon atoms having an acetyl group branch, and ether It is at least one second group selected from the group consisting of a linear or branched alkylene group having 3 to 8 carbon atoms having a bond.
 炭素数が2~8の直鎖状又は分岐鎖状アルキレン基とは、例えば、-(CH-、-(CH-、-CH(CH)-CH-CH-、-(CH‐CH(CH)-を挙げることができるが、これらに限定されない。
 アセチル基分岐を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基とは、例えば、-CH(CHCO)-(CH-を挙げることができるが、これらに限定されない。
 エーテル結合を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基とは、例えば、-(CH-O-(CH-を挙げることができるが、これらに限定されない。
Examples of the linear or branched alkylene group having 2 to 8 carbon atoms include, for example, — (CH 2 ) 3 —, — (CH 2 ) 5 —, —CH (CH 3 ) —CH 2 —CH 2 —. , — (CH 2 ) 3 —CH (CH 3 ) —, but is not limited thereto.
Examples of the linear or branched alkylene group having 3 to 8 carbon atoms having an acetyl group branch include —CH (CH 3 CO) — (CH 2 ) 2 —, but are not limited thereto. Not.
Examples of the linear or branched alkylene group having 3 to 8 carbon atoms having an ether bond include — (CH 2 ) 2 —O— (CH 2 ) 2 —, but are not limited thereto. Not.
 -X-は、-(CH-、-(CH-、-CH(CH)-CH-CH-及び-(CH-O-(CH-からなる群から選ばれる少なくとも1種のアルキレン基、好ましくは-(CH-、-(CH-、-CH(CH)-CH-CH-からなる群から選ばれる少なくとも1種のアルキレン基、より好ましくは-(CH-であるのがよい。 —X— represents — (CH 2 ) 3 —, — (CH 2 ) 5 —, —CH (CH 3 ) —CH 2 —CH 2 — and — (CH 2 ) 2 —O— (CH 2 ) 2 — At least one alkylene group selected from the group consisting of: preferably selected from the group consisting of — (CH 2 ) 3 —, — (CH 2 ) 5 —, —CH (CH 3 ) —CH 2 —CH 2 —. It may be at least one alkylene group, more preferably — (CH 2 ) 5 —.
 Rは、上述と同じ定義を有する。
 nは1~200、好ましくは2~100、より好ましくは3~50である。なお、nは、構造上、整数であるが、実際には、後述の開環重合により製造されることが多く、その場合、該開環重合が分散性を有するため、整数には限定されない。nについては、第2の修飾化ポリロタキサンの製造方法において詳述する。
R has the same definition as above.
n is 1 to 200, preferably 2 to 100, more preferably 3 to 50. Note that n is an integer in terms of structure, but in practice, it is often produced by ring-opening polymerization described later. In this case, the ring-opening polymerization has dispersibility, and thus is not limited to an integer. n will be described in detail in the second method for producing a modified polyrotaxane.
 式(II)で表される第2の置換基は、上記第1の置換基をさらに修飾した基であるため、第2の修飾化ポリロタキサンは、第1の修飾化ポリロタキサンから得ることもできる。または、第2の修飾化ポリロタキサンは、第1の修飾化ポリロタキサンを経ないで、例えば、第2の置換基を直接、シクロデキストリンの水酸基と置換することで得ることもできる。 Since the second substituent represented by the formula (II) is a group obtained by further modifying the first substituent, the second modified polyrotaxane can also be obtained from the first modified polyrotaxane. Alternatively, the second modified polyrotaxane can be obtained, for example, by directly replacing the second substituent with the hydroxyl group of cyclodextrin without passing through the first modified polyrotaxane.
 第2の修飾化ポリロタキサンは、第2の置換基を有していればよく、第2の置換基のみを有しても、第1及び第2の置換基を有しても、第1及び第2の置換基以外の置換基を有してもよい。
 第1及び第2の置換基以外の置換基として、第1の置換基以外の置換基として上述したものを挙げることができるが、それに限定されない。
The second modified polyrotaxane has only to have the second substituent, whether it has only the second substituent, the first and second substituents, You may have substituents other than a 2nd substituent.
Examples of the substituent other than the first and second substituents include, but are not limited to, those described above as the substituent other than the first substituent.
 第2の修飾化ポリロタキサンは、その分子量分布Mw/Mnが2.0以下、好ましくは1.8以下、より好ましくは1.6以下であるのがよい。
 なお、本願において、分子量分布Mw/Mnは、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography、GPC)によって測定することができる。
The second modified polyrotaxane has a molecular weight distribution Mw / Mn of 2.0 or less, preferably 1.8 or less, more preferably 1.6 or less.
In the present application, the molecular weight distribution Mw / Mn can be measured by gel permeation chromatography (GPC).
 第2の修飾化ポリロタキサンは、第1の修飾化ポリロタキサンと同様の理由に加えて、材料加工後における優れた粘弾特性の確保の観点から、JIS K0070に準ずる水酸基価が50~120mgKOH/g、好ましくは60~100mgKOH/g、より好ましくは65~90mgKOH/gであるのがよい。 In addition to the same reason as the first modified polyrotaxane, the second modified polyrotaxane has a hydroxyl value according to JIS K0070 of 50 to 120 mgKOH / g, from the viewpoint of securing excellent viscoelastic properties after material processing. 60 to 100 mgKOH / g is preferable, and 65 to 90 mgKOH / g is more preferable.
<修飾化ポリロタキサンの構成要素>
 以下、第1及び第2の修飾化ポリロタキサンに共通する構成要素について、説明する。
<<シクロデキストリン>> 
 本願において、シクロデキストリンは、直鎖状分子の選択、修飾化ポリロタキサンに求める特性などに依存するが、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリンなどを挙げることができる。
 なお、シクロデキストリンは水酸基を有するが、その他の基を有してもよい。なお、「その他の基」として、「第1の置換基以外の置換基」として挙げた基を挙げることができるが、これらに限定されない。
<Components of Modified Polyrotaxane>
Hereinafter, components common to the first and second modified polyrotaxanes will be described.
<< cyclodextrin >>
In the present application, the cyclodextrin depends on the selection of the linear molecule, the properties required for the modified polyrotaxane, and the like, and examples thereof include α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin.
Cyclodextrin has a hydroxyl group, but may have other groups. Examples of the “other group” include, but are not limited to, the groups listed as “substituents other than the first substituent”.
<<直鎖状分子>>
 本発明のポリロタキサンの直鎖状分子は、用いるシクロデキストリンの開口部に串刺し状に包接され得るものであれば、特に限定されない。
 例えば、直鎖状分子として、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリル酸、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等)、ポリアクリルアミド、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアセタール系樹脂、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん等及び/またはこれらの共重合体、ポリエチレン、ポリプロピレン、およびその他オレフィン系単量体との共重合樹脂などのポリオレフィン系樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレンやアクリロニトリル-スチレン共重合樹脂等のポリスチレン系樹脂、ポリメチルメタクリレートや(メタ)アクリル酸エステル共重合体、アクリロニトリル-メチルアクリレート共重合樹脂などのアクリル系樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルブチラール樹脂等;及びこれらの誘導体又は変性体、ポリイソブチレン、ポリテトラヒドロフラン、ポリアニリン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ナイロンなどのポリアミド類、ポリイミド類、ポリイソプレン、ポリブタジエンなどのポリジエン類、ポリジメチルシロキサンなどのポリシロキサン類、ポリスルホン類、ポリイミン類、ポリ無水酢酸類、ポリ尿素類、ポリスルフィド類、ポリフォスファゼン類、ポリケトン類、ポリフェニレン類、ポリハロオレフィン類、並びにこれらの誘導体からなる群から選ばれるのがよい。例えばポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコール及びポリビニルメチルエーテルからなる群から選ばれるのがよい。特にポリエチレングリコールであるのがよい。
<< Linear molecule >>
The polyrotaxane linear molecule of the present invention is not particularly limited as long as it can be included in a skewered manner in the opening of the cyclodextrin used.
For example, as linear molecules, polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylic acid, cellulosic resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyvinyl Polyolefin resins such as acetal resins, polyvinyl methyl ether, polyamines, polyethyleneimine, casein, gelatin, starch, and / or copolymers thereof, polyethylene, polypropylene, and copolymers of other olefin monomers; Polyester resins, polyvinyl chloride resins, polystyrene resins such as polystyrene and acrylonitrile-styrene copolymer resins, polymethyl Acrylic resin such as tacrylate, (meth) acrylic acid ester copolymer, acrylonitrile-methyl acrylate copolymer resin, polycarbonate resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, polyvinyl butyral resin, etc .; and derivatives or Modified products, polyisobutylene, polytetrahydrofuran, polyaniline, acrylonitrile-butadiene-styrene copolymer (ABS resin), polyamides such as nylon, polyimides, polydienes such as polyisoprene and polybutadiene, polysiloxanes such as polydimethylsiloxane , Polysulfones, polyimines, polyacetic anhydrides, polyureas, polysulfides, polyphosphazenes, polyketones, polyphenylenes, polyhaloolefins, and It may be selected from the group consisting of these derivatives. For example, it may be selected from the group consisting of polyethylene glycol, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and polyvinyl methyl ether. Particularly preferred is polyethylene glycol.
 直鎖状分子は、その重量平均分子量が3,000以上、好ましくは5,000~100,000、より好ましくは10,000~50,000であるのがよい。
 本願の、修飾化ポリロタキサンにおいて、(シクロデキストリン、直鎖状分子)の組合せが、(α-シクロデキストリン由来、ポリエチレングリコール由来)であるのがよい。
The linear molecule may have a weight average molecular weight of 3,000 or more, preferably 5,000 to 100,000, more preferably 10,000 to 50,000.
In the modified polyrotaxane of the present application, the combination of (cyclodextrin, linear molecule) is preferably (derived from α-cyclodextrin, derived from polyethylene glycol).
<<封鎖基>> 
 本願の、修飾化ポリロタキサンの封鎖基は、擬ポリロタキサンの両端に配置され、用いるシクロデキストリンが脱離しないように作用する基であれば、特に限定されない。
 例えば、封鎖基として、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、ピレン類、置換ベンゼン類(置換基として、アルキル、アルキルオキシ、ヒドロキシ、ハロゲン、シアノ、スルホニル、カルボキシル、アミノ、フェニルなどを挙げることができるがこれらに限定されない。置換基は1つ又は複数存在してもよい。)、置換されていてもよい多核芳香族類(置換基として、上記と同じものを挙げることができるがこれらに限定されない。置換基は1つ又は複数存在してもよい。)、及びステロイド類からなる群から選ばれるのがよい。なお、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、及びピレン類からなる群から選ばれるのが好ましく、より好ましくはアダマンタン基類又はシクロデキストリン類であるのがよい。
<< Blocking group >>
The blocking group of the modified polyrotaxane of the present application is not particularly limited as long as it is a group that is arranged at both ends of the pseudopolyrotaxane and acts so that the cyclodextrin used does not leave.
For example, as a blocking group, dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, pyrenes, substituted benzenes (substituents are alkyl, alkyloxy, hydroxy, Examples include, but are not limited to, halogen, cyano, sulfonyl, carboxyl, amino, phenyl, etc. One or more substituents may be present), optionally substituted polynuclear aromatics (substituted) Examples of the group include, but are not limited to, the same as described above, and one or more substituents may be present.) And a group consisting of steroids. It is preferably selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, and pyrenes, more preferably adamantane groups or cyclodextrins. It should be similar.
 本願は、第2の修飾化ポリロタキサンを有して形成される材料、及び第2の修飾化ポリロタキサンが架橋に含まれる架橋形成材料、を開示する。
 第2の修飾化ポリロタキサンを有して形成される材料とは、該材料に、第2の修飾化ポリロタキサンが含まれることを意味する。第2の修飾化ポリロタキサンが、材料に含まれる他の物質と結合及び/又は架橋を有しても、有していなくてもよい。なお、第2の修飾化ポリロタキサンは、材料中、他の物質と結合することにより、該第2の修飾化ポリロタキサンの特性を発揮することができる。結合(架橋)された第2の修飾化ポリロタキサンがシクロデキストリン分子に沿って移動可能であるため、応力を均一に分散することができる。架橋点が移動可能であるため、架橋密度を高くしても材料の伸縮性を保持できる。このような特性を利用し、例えば、塗料(コーティング)用材料、アクチュエータ材料、有機分散型エレクトロルミネッセンス材料、熱伝導材料のバインダー、などへの用途が考えられる。また、優れた柔軟性と強度のため、特に低駆動圧アクチュエータ材料やその他圧電素子への応用も大いに期待できる。その他に、電機絶縁材料、電気・電子部品材料、光学材料、摩擦制御材料、医療用生体材料、機械・自動車材料、建築材料、防振・免振材料、制振材料、粘着剤・接着剤、チップ状防振部材、電気機器制振パッド、靴底、スポーツ用品、衣料やスポーツウェアーのクッション材、建築用緩衝材、防音材料自動車、電化製品、家具などの塗料や塗装用材料、自動社の内装材料、印刷版の材料、歯科衛生材料、機械や自動社などの擦動部材、シーリング材、防水材、絶縁材、封止材、伝熱材、導電材のバインダーなどの電子電気材料、化粧品材料、レオロジー制御剤、繊維用材料、医療用生体材料、ゴムの改質剤、などへの応用も考えられる。
The present application discloses a material formed with a second modified polyrotaxane, and a cross-linking material in which the second modified polyrotaxane is included in the cross-linking.
The material formed with the second modified polyrotaxane means that the material contains the second modified polyrotaxane. The second modified polyrotaxane may or may not have bonds and / or crosslinks with other substances contained in the material. In addition, the 2nd modification polyrotaxane can exhibit the characteristic of this 2nd modification polyrotaxane by couple | bonding with another substance in a material. Since the second modified polyrotaxane bonded (crosslinked) can move along the cyclodextrin molecule, the stress can be uniformly distributed. Since the crosslinking point is movable, the stretchability of the material can be maintained even when the crosslinking density is increased. Utilizing such characteristics, for example, it can be used for paint (coating) materials, actuator materials, organic dispersion type electroluminescent materials, binders for heat conducting materials, and the like. In addition, because of its excellent flexibility and strength, it can be expected to be applied particularly to low driving pressure actuator materials and other piezoelectric elements. In addition, electrical insulation materials, electrical / electronic component materials, optical materials, friction control materials, medical biomaterials, machinery / automotive materials, building materials, anti-vibration / vibration isolation materials, damping materials, adhesives / adhesives, Chip-shaped anti-vibration members, electric device vibration-damping pads, shoe soles, sports equipment, clothing and sports wear cushioning materials, architectural cushioning materials, soundproofing materials, automobiles, electrical appliances, furniture and other paints and coating materials, Electronic materials such as interior materials, printing plate materials, dental hygiene materials, friction materials such as machinery and automatic companies, sealing materials, waterproofing materials, insulating materials, sealing materials, heat transfer materials, conductive material binders, cosmetics Applications to materials, rheology control agents, fiber materials, medical biomaterials, rubber modifiers, etc. are also conceivable.
 第2の修飾化ポリロタキサンが架橋に含まれる架橋形成材料とは、該材料中、第2の修飾化ポリロタキサンが含まれるだけでなく、第2の修飾化ポリロタキサン同士が架橋するか、及び/又は、第2の修飾化ポリロタキサン以外の物質と第2の修飾化ポリロタキサンとが架橋している材料を意味する。
 なお、架橋の方法は、用いる第2の修飾化ポリロタキサン、存在する場合、用いる第2の修飾化ポリロタキサン以外の物質、などに依存するが、一般的な熱硬化性樹脂の架橋と同じ方法で架橋することができる。例えば、材料に架橋剤を加えて、基材上に塗布して加熱し架橋する方法、モールドに注入し加熱し架橋する方法、加圧して加熱し架橋する方法などを挙げることができるが、これに限定されない。
The cross-linking material in which the second modified polyrotaxane is included in the cross-linking includes not only the second modified polyrotaxane in the material but also the second modified polyrotaxane is cross-linked and / or It means a material in which a substance other than the second modified polyrotaxane and the second modified polyrotaxane are crosslinked.
The cross-linking method depends on the second modified polyrotaxane to be used and, if present, a substance other than the second modified polyrotaxane to be used. However, the cross-linking method is the same as the general thermosetting resin cross-linking method. can do. For example, a method of adding a cross-linking agent to a material, applying it on a substrate and heating and cross-linking, a method of injecting it into a mold and heating and cross-linking, a method of applying pressure and heating and cross-linking can be mentioned. It is not limited to.
 また、第2の修飾化ポリロタキサンが架橋に含まれる架橋形成材料は、次の方法により製造することができるが、これに限定されない。
 即ち、E-(1)第2の修飾化ポリロタキサンを準備する工程;
 E-(2)架橋剤を準備する工程;及び
 E-(3)第2の修飾化ポリロタキサンと架橋剤とを反応させる工程;
を有することにより、架橋形成材料を得ることができる。
Moreover, although the bridge | crosslinking formation material in which a 2nd modification polyrotaxane is contained in bridge | crosslinking can be manufactured with the following method, it is not limited to this.
That is, E- (1) providing a second modified polyrotaxane;
E- (2) preparing a crosslinking agent; and E- (3) reacting the second modified polyrotaxane with the crosslinking agent;
By having this, a cross-linking material can be obtained.
 上記E-(1)工程において、第2の修飾化ポリロタキサンに、第2の修飾化ポリロタキサン以外のポリマーを混合してもよい。また、第2の修飾化ポリロタキサンを、又は、第2の修飾化ポリロタキサン及び第2の修飾化ポリロタキサン以外のポリマーを、溶媒で溶解してもよい。 In step E- (1), a polymer other than the second modified polyrotaxane may be mixed with the second modified polyrotaxane. In addition, the second modified polyrotaxane or a polymer other than the second modified polyrotaxane and the second modified polyrotaxane may be dissolved in a solvent.
 第2の修飾化ポリロタキサン以外のポリマーとして、ポリエチレングリコール、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールジメチルエーテル、ポリプロピレングリコール、ポリプロピレングリコールモノブチルエーテル、ポリテトラメチレングリコールなどのポリエーテル類;ポリカプロラクトン、片末端水酸基化ポリカプロラクトン、ポリラクチドなどのポリエステル類;ポリジメチルシロキサン、片末端水酸基化ポリジメチルシロキサンなどのポリシロキサン類;ポリカーボネート、片末端水酸基化ポリカーボネートなどのポリカーボネート類;ポリアクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチルなどのポリアクリル類;ポリブタジエン、ポリイソプレンなどのポリエン類;ポリスチレン;ポリアミド;ポリイミド;ポリフェニレンオキシド;これらの共重合体などが挙げられるが、それらに限定されない。 As polymers other than the second modified polyrotaxane, polyethers such as polyethylene glycol, polyethylene glycol monomethyl ether, polyethylene glycol dimethyl ether, polypropylene glycol, polypropylene glycol monobutyl ether, polytetramethylene glycol; polycaprolactone, hydroxylated polycaprolactone at one end Polyesters such as polylactide; polysiloxanes such as polydimethylsiloxane and hydroxylated polydimethylsiloxane at one end; polycarbonates such as polycarbonate and hydroxylated polycarbonate at one end; polyacrylic acid, polymethylacrylate, polymethylmethacrylate, etc. Polyenes such as polybutadiene and polyisoprene; polystyrene; Polyamide; polyimides; polyphenylene oxide; although their copolymers include, but are not limited to.
 E-(1)工程に用いる溶媒として、トルエン、キシレン、酢酸エチル、酢酸ブチルなどの酢酸エステル類;メチルエチルケトン、シクロヘキサノンなどのケトン類;テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類;メチルセロソルブ、エチルセロソルブ、セロソルブアセテートなどのセロソルブ類;ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、これらの混合溶媒などを挙げることができるが、それらに限定されない。 As a solvent used in step E- (1), acetates such as toluene, xylene, ethyl acetate and butyl acetate; ketones such as methyl ethyl ketone and cyclohexanone; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; methyl cellosolve, Examples include, but are not limited to, cellosolves such as ethyl cellosolve and cellosolve acetate; dimethylacetamide, dimethylformamide, dimethylsulfoxide, and mixed solvents thereof.
 E-(2)工程の架橋剤として、
(i)既存の架橋剤(多官能イソシアネート化合物など)を使用するか、
(ii)プレポリマーを使用するか、又は
(iii)上記(i)と(ii)とを併用する、
ことができる。
As a crosslinking agent in step E- (2)
(I) using an existing cross-linking agent (such as a polyfunctional isocyanate compound),
(Ii) using a prepolymer, or (iii) using the above (i) and (ii) in combination,
be able to.
 上記(i)架橋剤の例として、多官能性イソシアネートが好ましい。例として、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、1、5-ナフタレンジイソシアネート、トリジンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、キシレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンイソシアネート、テトラメチルキシレンジイソシアネート、これらのイソシアネートの多量体:アダクト体、ビュレット体、イソシアヌレート体、ウレチジンジオン体などを挙げることができるが、これらに限定されない。 As an example of the above (i) crosslinking agent, polyfunctional isocyanate is preferable. Examples include tolylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, xylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane isocyanate, tetramethylxylene diisocyanate. And a multimer of these isocyanates: adduct, burette, isocyanurate, uretidinedione, and the like, but are not limited thereto.
 上記(ii)のプレポリマーは、一般的に、次のような方法で作製することができる。ポリオールの水酸基に対して、当量以上の多官能イソシアネート化合物を反応させ、イソシアネート基を有するポリマーを主成分とする架橋剤(プレポリマー)ができる。このプレポリマーをそのまま第2の修飾化ポリロタキサン、及び/又は、第2の修飾化ポリロタキサン以外のポリマーなどと配合してもよい。
 また、プレポリマーのイソシアネート基に活性水素を有する化合物と反応することでイソシアネート基を保護(ブロック)し、ブロックプレポリマーとしてもよい。ブロックプレポリマーにすることで、特定な温度に加熱すると脱保護し、イソシアネート基を再生できる。ブロックプレポリマーにすることによって保存性が優れた一液型の熱硬化性ポリロタキサン含有組成物を提供することができる。また、活性水素を有する化合物の種類によって、反応する温度(架橋温度)も制御できる。脱保護する反応に、触媒を使用するのがよい。
The prepolymer (ii) can generally be produced by the following method. A cross-linking agent (prepolymer) having as a main component a polymer having an isocyanate group can be produced by reacting a hydroxyl group of the polyol with an equivalent or more polyfunctional isocyanate compound. This prepolymer may be blended with the second modified polyrotaxane and / or a polymer other than the second modified polyrotaxane as it is.
Further, the isocyanate group may be protected (blocked) by reacting with a compound having active hydrogen in the isocyanate group of the prepolymer, and a block prepolymer may be obtained. By making it into a block prepolymer, it is deprotected when heated to a specific temperature, and an isocyanate group can be regenerated. By using a block prepolymer, a one-component thermosetting polyrotaxane-containing composition having excellent storage stability can be provided. The reaction temperature (crosslinking temperature) can also be controlled by the type of compound having active hydrogen. A catalyst is preferably used for the deprotection reaction.
 活性水素を有する化合物の例として、ε-カプロラクタム、1,2-ピラゾール、ブタノンオキシム、1,2,4-トリアゾール、ジイソプロピルアミン、3,5-ジメチルピラゾール、ジエチルマロネート、ジメチルマロネート、アセト酢酸メチル、アセト酢酸エチル、N,N’-ジフェニルホルムアミジンからなる群から選ばれるのがよい。好ましくはε-カプロラクタム、3,5-ジメチルピラゾール又はブタノンオキシムであるのがよく、より好ましくはε-カプロラクタム又は3,5-ジメチルピラゾールであるのがよい。 Examples of compounds having active hydrogen include ε-caprolactam, 1,2-pyrazole, butanone oxime, 1,2,4-triazole, diisopropylamine, 3,5-dimethylpyrazole, diethyl malonate, dimethyl malonate, acetoacetic acid It may be selected from the group consisting of methyl, ethyl acetoacetate, and N, N′-diphenylformamidine. Preferred is ε-caprolactam, 3,5-dimethylpyrazole or butanone oxime, and more preferred is ε-caprolactam or 3,5-dimethylpyrazole.
 脱保護する反応に使用する触媒としてジラウリン酸ジブチル錫、ジラウリン酸ジオクチル錫、トリ(アセテート)ブチル錫、ジ(アセテート)ジブチル錫、アセテートトリブチル錫、メトキシトリブチル錫、トリ(2-エチルヘキサノエート)ブチル錫、ビス(2-エチルヘキサノエート)ジブチル錫、トリ(ラウレート)ブチル錫、ジ(オクタノエート)ジブチル錫、トリ(オクタノエート)ブチル錫、ジブチル錫オキサイド、モノブチル錫ヒドロキサイドオキサイド、2-エチルヘキサン酸錫等の錫系触媒;トリエチレンジアミン、トリエチルアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N-メチルモルホリン、1,2-ジメチルイミダゾール、1,5-ジアザビシクロ(4,3,0)ノネン-5、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7(以下、DBUと略称)、これらアミン系触媒のボラン塩、DBUフェノール塩、DBUオクチル酸塩、DBU炭酸塩等の各種アミン塩系触媒;ナフテン酸マグネシウム、ナフテン酸鉛、酢酸カリウム等のカルボキシレート類;トリエチルホスフィン、トリベンジルホスフィン等のトリアルキルホスフィン類;ナトリウムメトキサイド等のアルカリ金属のアルコキシド類;亜鉛系有機金属触媒等を挙げることができるがこれに限定されない。 Dibutyltin dilaurate, dioctyltin dilaurate, tri (acetate) butyltin, di (acetate) dibutyltin, acetate tributyltin, methoxytributyltin, tri (2-ethylhexanoate) Butyltin, bis (2-ethylhexanoate) dibutyltin, tri (laurate) butyltin, di (octanoate) dibutyltin, tri (octanoate) butyltin, dibutyltin oxide, monobutyltin hydroxide oxide, 2-ethylhexane Tin-based catalysts such as tin oxide; triethylenediamine, triethylamine, N, N, N ', N'-tetramethylpropylenediamine, N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine, N-methyl Morpholine, 1,2-dimethylimidazole, 1,5-diazabicyclo (4,3,0) Nonene-5, 1,8-diazabicyclo (5,4,0) -undecene-7 (hereinafter abbreviated as DBU), borane salts of these amine catalysts, DBU phenol salts, DBU octylates, DBU carbonates, etc. Various amine salt catalysts; carboxylates such as magnesium naphthenate, lead naphthenate and potassium acetate; trialkylphosphines such as triethylphosphine and tribenzylphosphine; alkoxides of alkali metals such as sodium methoxide; zinc-based organic metals Although a catalyst etc. can be mentioned, it is not limited to this.
 ポリオールとして、ポリエーテル、ポリエステル、ポリシロキサン、ポリカーボネート、ポリ(メタ)アクリレート又はポリエン、もしくはそれらの共重合体、もしくはそれらの混合体を挙げることができる。より具体的には、ポリエチレングリコールジオール、ポリエチレングリコールジカルボン酸末端、ポリエチレングリコールジチオール酸末端、ポリプロピレンジオール、ポリテトラヒドロフラン、ポリ(テトラヒドロフラン)ビス(3-アミノプロピル)末端、ポリプロピレングリコールビス(2-アミノプロピルエーテル)、グリセロールプロポキシレート、グリセロールトリス[ポリ(プロピレングリコール)アミノ末端]、ペンタエリトリトールエトキシレート、ペンタエリトリトールプロポキシレートなどのポリエーテル類;ポリ(エチレンアジペート)、ポリ(1、3-プロピレンアジペート)ジオール末端、ポリ(1、4-ブチレンアジペート)ジオール末端、ポリラクトンなどのポリエステル類;変性ポリブタジエン、変性ポリイソプレンなどのポリエン類;ポリジメチルシロキサンジシラノール末端、ポリジメチルシロキサン水素化末端、ポリジメチルシロキサンビス(アミノプロピル)末端、ポリジメチルシロキサンジグリシジルエーテル末端、ポリジメチルシロキサンジカルビノール末端、ポリジメチルシロキサンジビニール末端、ポリジメチルシロキサンジカルボン酸末端などのシロキサン類;1,5-ペンタンジオール、1,6-ヘキサンジオールなどを成分とするポリアルキレンカーボネートジオール類;を挙げることができるが、これらに限定されない。特に、重合体部位は、ポリエーテル類又はポリカーボネート類であるのがよい。 Examples of the polyol include polyethers, polyesters, polysiloxanes, polycarbonates, poly (meth) acrylates or polyenes, copolymers thereof, or mixtures thereof. More specifically, polyethylene glycol diol, polyethylene glycol dicarboxylic acid terminal, polyethylene glycol dithiolic acid terminal, polypropylene diol, polytetrahydrofuran, poly (tetrahydrofuran) bis (3-aminopropyl) terminal, polypropylene glycol bis (2-aminopropyl ether) ), Glycerol propoxylate, glycerol tris [poly (propylene glycol) amino terminus], polyethers such as pentaerythritol ethoxylate, pentaerythritol propoxylate; poly (ethylene adipate), poly (1,3-propylene adipate) diol terminus Polyesters such as poly (1,4-butylene adipate) diol ends, polylactones; modified polybutadiene, modified polymers Polyenes such as isoprene; polydimethylsiloxane disilanol end, polydimethylsiloxane hydrogenated end, polydimethylsiloxane bis (aminopropyl) end, polydimethylsiloxane diglycidyl ether end, polydimethylsiloxane dicarbinol end, polydimethylsiloxane di Examples thereof include, but are not limited to, siloxanes having vinyl ends, polydimethylsiloxane dicarboxylic acid ends, and the like; polyalkylene carbonate diols having 1,5-pentanediol, 1,6-hexanediol, and the like as components. In particular, the polymer sites may be polyethers or polycarbonates.
 上記(ii)多官能イソシアネート化合物として、上記(i)の多官能イソシアネートと同一のものを使用することができる。
 E-(3)工程前に、酸化防止剤、抗菌剤/雑菌剤、UV吸収剤、粘度調整剤、可塑剤、界面活性剤、微粒子などを添加してもよい。
 酸化防止剤として、フェノール系酸化防止剤、ポリフェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤などを挙げることができるが、これらに限定されない。
 抗菌剤/雑菌剤として、銀、亜鉛、銅化合物または錯体及びそのイオン;有機ケイ素化合物;有機リン化合物などを挙げることができるが、これらに限定されない。
As said (ii) polyfunctional isocyanate compound, the same thing as the polyfunctional isocyanate of said (i) can be used.
Before the step E- (3), an antioxidant, an antibacterial / bacterial agent, a UV absorber, a viscosity modifier, a plasticizer, a surfactant, fine particles, and the like may be added.
Examples of antioxidants include phenolic antioxidants, polyphenolic antioxidants, sulfur antioxidants, phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, and phosphorus antioxidants. Although it can, it is not limited to these.
Antibacterial / bacterial agents include, but are not limited to, silver, zinc, copper compounds or complexes and their ions; organosilicon compounds; organophosphorus compounds.
 UV吸収剤として、パラジメチルアミノ安息香酸2-エチルヘキシル、サリチル酸2-エチルヘキシル、2、4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-n-オクチルベンゾフェノン、2-(2’-ヒドロキシ-5’-t-ブチルフェニル)ベンゾトリアゾール、ビス(2、2、6、6-テトラメチル-4-ピペリジル)-セバケート、パラメトキシケイ皮酸2エチルヘキシル、パラメトキシケイ皮酸イソプロピル、メトキシケイ皮酸エチルヘキシル、メトキシケイ皮酸オクチルなどを挙げることができるが、これらに限定されない。
 粘度調整剤として、カルボキシビニルポリマー、アルギン酸プロピレングリコール、エチルセルロース、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウムなどを挙げることができるが、これらに限定されない。
As UV absorbers, 2-dimethylhexyl paradimethylaminobenzoate, 2-ethylhexyl salicylate, 2,4-dihydroxybenzophenone, 2-hydroxy-4-n-octylbenzophenone, 2- (2′-hydroxy-5′-t- Butylphenyl) benzotriazole, bis (2,2,6,6-tetramethyl-4-piperidyl) -sebacate, 2-ethylhexyl paramethoxycinnamate, isopropyl paramethoxycinnamate, ethylhexyl methoxycinnamate, methoxycinnamate Although octyl acid etc. can be mentioned, it is not limited to these.
Examples of the viscosity modifier include, but are not limited to, carboxyvinyl polymer, propylene glycol alginate, ethyl cellulose, sodium carboxymethyl cellulose, sodium polyacrylate, and the like.
 界面活性剤として、ポリオキシエチレン(8)オクチルフェニルエーテル、ポリオキシエチレントリオレイン酸ソルビタン、ポリオキシエチレンモノステアリン酸ソルビタンなどの非イオン性界面活性剤;硫酸ドデシルナトリウム、ドデシルスルホン酸ナトリウム、ドデシル硫酸トリエタノールアミン、ドデシルトリメチルアンモニウム塩、ドデシルピリジニウムクロリド、などのイオン性界面活性剤などを挙げることができるが、これらに限定されない。
 微粒子として、シリカ;アルミナ、酸化マグネシウム、酸化亜鉛、ダイアモンド、窒化珪素、二酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、ゼオライト、タルク、炭酸カルシウム、クレイ、ポリマー微粒子などを挙げることができるが、これらに限定されない。
Nonionic surfactants such as polyoxyethylene (8) octylphenyl ether, sorbitan polyoxyethylene trioleate, sorbitan polyoxyethylene monostearate as surfactants: sodium dodecyl sulfate, sodium dodecyl sulfonate, dodecyl sulfate Examples include, but are not limited to, ionic surfactants such as triethanolamine, dodecyltrimethylammonium salt, and dodecylpyridinium chloride.
Examples of the fine particles include silica; alumina, magnesium oxide, zinc oxide, diamond, silicon nitride, titanium dioxide, barium titanate, strontium titanate, zeolite, talc, calcium carbonate, clay, polymer fine particles, and the like. It is not limited.
 E-(3)工程は、溶媒の有無、溶媒の種類、架橋剤の種類などによって反応条件が異なる。例えば、多官能イソシアネートやプレポリマーを使用する場合、反応温度が室温から150℃で、常圧で行うことができる。ブロックプレポリマーを使用する場合、脱ブロックして、イソシアネート基を再生する温度以上、例えば80℃から200℃で、常圧また加圧下で行うことができる。 In the step E- (3), reaction conditions differ depending on the presence or absence of a solvent, the type of solvent, the type of crosslinking agent, and the like. For example, when polyfunctional isocyanate or prepolymer is used, the reaction temperature can be from room temperature to 150 ° C. and normal pressure. When a block prepolymer is used, it can be deblocked and performed at a temperature equal to or higher than the temperature at which the isocyanate group is regenerated, for example, 80 ° C. to 200 ° C., at normal pressure or under pressure.
<第1の修飾化ポリロタキサンの製造方法>
 上記の第1の修飾化ポリロタキサンは、次のように製造することができる。
 即ち、
 a)シクロデキストリンの開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端にシクロデキストリンが脱離しないように封鎖基を配置してなるポリロタキサンを準備する工程;及び
 b)シクロデキストリンが有する水酸基の少なくとも一部を上記式(I)で表される第1の置換基で置換する工程;
を有することにより、第1の修飾化ポリロタキサンを製造することができる。
 なお、シクロデキストリン、直鎖状分子、封鎖基、第1の置換基などの語については、上記と同じ定義を有する。
<Method for producing first modified polyrotaxane>
Said 1st modified polyrotaxane can be manufactured as follows.
That is,
a) a step of preparing a polyrotaxane in which blocking groups are arranged so that cyclodextrin is not detached at both ends of a pseudopolyrotaxane in which an opening of a cyclodextrin is clasped with a linear molecule; and b) A step of substituting at least a part of the hydroxyl group of cyclodextrin with the first substituent represented by the above formula (I);
By having this, the first modified polyrotaxane can be produced.
The terms such as cyclodextrin, linear molecule, blocking group, and first substituent have the same definitions as above.
 上記方法は、a)工程後にb)工程を設けるのがよい。
 a)工程は、ポリロタキサンを準備する工程である。この工程は、WO2005/052026号公報などにより得ることができる。
In the above method, the step b) is preferably provided after the step a).
The step a) is a step for preparing a polyrotaxane. This step can be obtained from WO2005 / 052026.
 b)工程は、次の各工程を有するのがよい。
b)-1)ポリロタキサンを適当な溶媒に溶解させる工程;
b)-2)エポキシ基を有する化合物を添加して反応させて、第1の置換基で置換する工程;及び
b)-3)反応生成物の精製分離する工程。
The step b) preferably has the following steps.
b) -1) a step of dissolving polyrotaxane in a suitable solvent;
b) -2) a step of adding a compound having an epoxy group to react and replacing with a first substituent; and b) -3) a step of purifying and separating the reaction product.
 b)-1)工程の溶媒として、用いるポリロタキサンに依存するが、ジメチルスルホキシド、ジメチルアセトアミド又はジメチルホルムアミドとLiCl塩からなる溶媒、水酸化ナトリウム水溶液などを挙げることができるが、これらに限定されない。 Although depending on the polyrotaxane used as the solvent in step b) -1), dimethyl sulfoxide, dimethylacetamide, a solvent composed of dimethylformamide and a LiCl salt, a sodium hydroxide aqueous solution, and the like can be mentioned, but not limited thereto.
 b)-2)工程のエポキシ基を有する化合物として、1,2-ブチレンオキシド、グリシジルメチルエーテル、グリシジルエチルエーテル、グリシジルプロピルエーテル、グリシジルイソプロピルエーテルを挙げることができるが、これらに限定されない。
 なお、b)-2)工程の触媒として、トリエチルアミン、ジエチルアミン、ピリジン、ジイソプロピルエチルアミン、ジメチルアミノピリジンなどの塩基を用いることができる。
 b)-2)工程の条件は、用いるポリロタキサン、用いる溶媒、用いるエポキシ基を有する化合物などに依存するが、例えば、室温から150℃で、1時間から24時間、という条件を挙げることができるが、これらに限定されない。
Examples of the compound having an epoxy group in step b) -2) include, but are not limited to, 1,2-butylene oxide, glycidyl methyl ether, glycidyl ethyl ether, glycidyl propyl ether, and glycidyl isopropyl ether.
As a catalyst for the step b) -2), a base such as triethylamine, diethylamine, pyridine, diisopropylethylamine, dimethylaminopyridine or the like can be used.
The conditions of the step b) -2) depend on the polyrotaxane used, the solvent used, the compound having an epoxy group used, and the like, and examples include conditions of room temperature to 150 ° C. for 1 hour to 24 hours. However, it is not limited to these.
 b)-3)工程は、反応生成物を精製・分離する工程である。反応溶液を貧溶媒に投入し析出させる再沈方法、透析膜を利用し、不純物を除去する方法などの方法を使用することができる。精製した第1の修飾化ポリロタキサンを遠心分離、棚段乾燥、噴霧乾燥(例:圧力ノズル、二流体ノズル、四流体ノズル、超音波ノズルなどのノズルを用いる方法、回転ディスク法など)、薄膜乾燥(例:ドラムドライヤー、遠心薄膜乾燥機を用いる方法など)、凍結乾燥などの方法で乾燥することができる。 Step b) -3) is a step for purifying and separating the reaction product. Methods such as a reprecipitation method in which the reaction solution is poured into a poor solvent for precipitation and a method of removing impurities using a dialysis membrane can be used. Centrifugation, shelf drying, spray drying (eg, pressure nozzle, two-fluid nozzle, four-fluid nozzle, ultrasonic nozzle method, rotating disk method, etc.), thin-film drying of the purified first modified polyrotaxane It can be dried by a method such as freeze-drying (eg, a method using a drum dryer or a centrifugal thin film dryer).
 なお、得られる第1の修飾化ポリロタキサンにおいて、第1の置換基の置換率、及びJIS K0070に準ずる水酸基価は、上述した範囲であるのがよい。 In the first modified polyrotaxane obtained, the substitution rate of the first substituent and the hydroxyl value in accordance with JIS K0070 are preferably in the above-mentioned ranges.
<第2の修飾化ポリロタキサンの製造方法>
 第2の修飾化ポリロタキサンは、上記製法で得られた第1の修飾化ポリロタキサンをさらに修飾することにより得ることができる。
 即ち、上記a)工程及びb)工程の後に、
 c)第1の置換基を基点として、ラクトンモノマーを開環重合し、水酸基の少なくとも一部が、上記式(II)で表される第2の置換基で置換する工程をさらに有することにより、第2の修飾化ポリロタキサンを得ることができる。
<Method for producing second modified polyrotaxane>
The second modified polyrotaxane can be obtained by further modifying the first modified polyrotaxane obtained by the above production method.
That is, after the a) step and b) step,
c) ring-opening polymerization of the lactone monomer from the first substituent as a starting point, and further comprising the step of substituting at least part of the hydroxyl group with the second substituent represented by the above formula (II), A second modified polyrotaxane can be obtained.
 第2の置換基は、上述と同じ定義を有する。
 なお、nは、上述した通りの定義を有する。nは、構造上、整数であるが、ラクトンモノマーの開環重合により製造され、該開環重合が分散性を有するため、整数には限定されない。次に、ラクトンモノマーとしてε-カプロラクトンモノマーを用い、第1の置換基としてヒドロキシブチル基を用いる場合を例として、nの算出方法を記載する。
The second substituent has the same definition as above.
Note that n has the definition as described above. n is an integer in structure, but is not limited to an integer because it is produced by ring-opening polymerization of a lactone monomer and the ring-opening polymerization has dispersibility. Next, the calculation method of n will be described by taking as an example the case where ε-caprolactone monomer is used as the lactone monomer and hydroxybutyl group is used as the first substituent.
 ε-カプロラクトンモノマーを用いて、第1の置換基の水酸基に開環重合を行う。反応に使用するモノマーの消費をガスクロマトグラフィー(GC)(例えば、GC-2014 株式会社島津製作所製、使用カラム CBP1-W12-100)で確認する。モノマーの消費量はほとんど供給量と一致する(ほぼ全て反応する)。従って、第2の修飾化ポリロタキサンである、ポリカプロラクトンでグラフトされたポリロタキサンにおける[モノマー]/[OH]の値が算出でき、その値を平均nとする。ここで、[OH]はヒドロキシブチル化ポリロタキサンの[OH]の計算値であって、H-NMR測定により算出されたポリロタキサンの包接率(0.25)とヒドロキシブチル基の置換率(0.26)から計算した(下記の実施例1を参照)。上記の例で、1gのヒドロキシブチル基修飾したポリロタキサンを用いて、4.5gのε-カプロラクトンを使用し、全てが消費された場合、n=(4.5/114.1*1000)/10.8=3.7になる。 Using ε-caprolactone monomer, ring-opening polymerization is performed on the hydroxyl group of the first substituent. The consumption of the monomer used for the reaction is confirmed by gas chromatography (GC) (for example, GC-2014, Shimadzu Corporation, column CBP1-W12-100 used). Monomer consumption is almost identical to the supply (almost all reacts). Therefore, the value of [monomer] / [OH] in the polyrotaxane grafted with polycaprolactone, which is the second modified polyrotaxane, can be calculated, and the value is taken as an average n. Here, [OH] is a calculated value of [OH] of the hydroxybutylated polyrotaxane, and the inclusion rate of polyrotaxane (0.25) calculated by 1 H-NMR measurement and the substitution rate of hydroxybutyl group (0 .26) (see Example 1 below). In the above example, if 1 g of hydroxybutyl group-modified polyrotaxane is used and 4.5 g of ε-caprolactone is used and all is consumed, n = (4.5 / 114.1 * 1000) / 10 .8 = 3.7.
 c)工程は、次の各工程を有するのがよい。
 c)-1)第1の修飾化ポリロタキサンをラクトンモノマーに溶解する工程;及び
 c)-2)重合反応を開始、成長する工程。
The step c) preferably includes the following steps.
c) -1) a step of dissolving the first modified polyrotaxane in the lactone monomer; and c) -2) a step of initiating and growing the polymerization reaction.
 c)-1)工程において、ラクトンモノマー以外に、溶媒を用いない場合であっても、用いる場合であってもよい。
 溶媒を用いる場合、該溶媒として、トルエン、キシレン、酢酸エチル、酢酸ブチルなどの酢酸エステル類;メチルエチルケトン、シクロヘキサノンなどのケトン類;テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類;ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、それらの混合溶媒などを挙げることができるが、これらに限定されない。
In step c) -1), a solvent other than the lactone monomer may or may not be used.
When a solvent is used, examples of the solvent include acetates such as toluene, xylene, ethyl acetate, and butyl acetate; ketones such as methyl ethyl ketone and cyclohexanone; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; dimethylacetamide, dimethylformamide , Dimethyl sulfoxide, a mixed solvent thereof and the like, but are not limited thereto.
 ラクトンモノマーとして、β-プロピオラクトン、β-メチルプロピオラクトンなどの4員環ラクトン;γ-ブチロラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、α-ヘプチル-γ-ブチロラクトン、α-メチレン-γ-ブチロラクトン、α, α-ジメチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、α-メチレン-γ-ブチロラクトンなどの5員環ラクトン;δ-バレロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトンなどの6員環ラクトン;ε-カプロラクトンなどの7員環ラクトン;ラクチド、1,5-ジオキセパン-2-オンを挙げることができるが、これらに限定されない。
 ラクトンモノマーとして、好ましくは、ε-カプロラクトン、γ-バレロラクトン、α-メチル-γ-ブチロラクトン、γ-ブチロラクトンからなる群から選ばれる少なくとも1種の化合物であるのがよい。
Lactone monomers include 4-membered ring lactones such as β-propiolactone and β-methylpropiolactone; γ-butyrolactone, γ-hexanolactone, γ-heptanolactone, γ-octanolactone, α-heptyl-γ 5-membered ring lactones such as -butyrolactone, α-methylene-γ-butyrolactone, α, α-dimethyl-γ-butyrolactone, α-methyl-γ-butyrolactone, γ-valerolactone, α-methylene-γ-butyrolactone; δ- Examples thereof include 6-membered ring lactones such as valerolactone, δ-hexanolactone, and δ-octanolactone; 7-membered ring lactones such as ε-caprolactone; lactide and 1,5-dioxepan-2-one. It is not limited to.
The lactone monomer is preferably at least one compound selected from the group consisting of ε-caprolactone, γ-valerolactone, α-methyl-γ-butyrolactone, and γ-butyrolactone.
 c)-1)工程において、加熱して溶解を行ってもよい。この工程において材料中の水分が純度を低下させる場合があるので、c)-1)工程前に又は後に、必要に応じて第1の修飾化ポリロタキサン中の残存水分を除去する工程を設けてもよい。例えば、第1の修飾化ポリロタキサンを予め乾燥し残存水分を除去する方法、モノマーに溶解した後の組成物を乾燥空気又は窒素の気流下で乾燥し残存水分を除去する方法などが挙げられるが、これらに限定されない。 C) In step 1), dissolution may be performed by heating. Since moisture in the material may lower the purity in this step, there may be provided a step of removing residual moisture in the first modified polyrotaxane as necessary before or after step c) -1). Good. For example, a method of previously drying the first modified polyrotaxane to remove residual moisture, a method of drying the composition after dissolving in the monomer under a stream of dry air or nitrogen, and removing residual moisture, etc. It is not limited to these.
 c)-2)工程は、用いる第1の修飾化ポリロタキサン、用いる溶媒、用いるモノマーに依存するが、80℃~160℃で行うことができる。
 反応における圧力は、特に限定されないが、通常、大気圧で行うのがよい。
The step c) -2) depends on the first modified polyrotaxane used, the solvent used, and the monomer used, but can be carried out at 80 ° C. to 160 ° C.
The pressure in the reaction is not particularly limited, but it is usually good to carry out at atmospheric pressure.
 モノマーの重合は触媒下で行うことが好ましい。該触媒として、ジラウリン酸ジブチル錫、ジラウリン酸ジオクチル錫、トリ(アセテート)ブチル錫、ジ(アセテート)ジブチル錫、アセテートトリブチル錫、メトキシトリブチル錫、トリ(2-エチルヘキサノエート)ブチル錫、ビス(2-エチルヘキサノエート)ジブチル錫、トリ(ラウレート)ブチル錫、ジ(オクタノエート)ジブチル錫、トリ(オクタノエート)ブチル錫、ジブチル錫オキサイド、モノブチル錫ヒドロキサイドオキサイド、2-エチルヘキサン酸錫等の錫系触媒、四塩化チタン、三塩化チタン、四臭化チタン、三臭化チタンなどのチタン触媒、酢酸モリブデン、酢酸ジルコニウム、酢酸タングステンなどを挙げることができるが、これらに限定されない。 Monomer polymerization is preferably carried out in the presence of a catalyst. Examples of the catalyst include dibutyltin dilaurate, dioctyltin dilaurate, tri (acetate) butyltin, di (acetate) dibutyltin, acetate tributyltin, methoxytributyltin, tri (2-ethylhexanoate) butyltin, bis ( Tin such as 2-ethylhexanoate) dibutyltin, tri (laurate) butyltin, di (octanoate) dibutyltin, tri (octanoate) butyltin, dibutyltin oxide, monobutyltin hydroxide oxide, tin 2-ethylhexanoate Examples thereof include, but are not limited to, system catalysts, titanium catalysts such as titanium tetrachloride, titanium trichloride, titanium tetrabromide, and titanium tribromide, molybdenum acetate, zirconium acetate, and tungsten acetate.
 反応生成物を溶媒無しで回収してもよい。他樹脂に相溶して混合物として回収してもよい。適当な溶媒に溶解して、溶液として回収してもよい。
 以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明は本実施例に限定されるものではない。
The reaction product may be recovered without solvent. It may be dissolved in another resin and recovered as a mixture. You may melt | dissolve in a suitable solvent and collect | recover as a solution.
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to a present Example.
<ポリロタキサンの調製>
 直鎖分子:ポリエチレングリコール(重量平均分子量3.5万)、環状分子:α-シクロデキストリン(以下、単に「α-CD」と略記する場合がある)、封鎖基:アダマンタンアミン基からなるポリロタキサン(以下、単に「APR」と略記する場合がある)をWO2005/052026号公報に記載されている方法で作製した。なお、H-NMR測定(400MHz JEOL JNM-AL400(日本電子株式会社製)。以降、H-NMR測定は、この装置による)によって計算されたAPRの包接率は0.25である。なお、包接率は、α-CDがポリエチレングリコールにより串刺し状に包接される際にα-CDが最大限に包接される量を1として得た(Macromolecules 1993, 26, 5698-5703を参照こと。なお、この文献の内容はすべて本明細書に組み込まれる)。計算されたAPRの水酸基の量は13.3mmol/gである。
<Preparation of polyrotaxane>
Linear molecule: polyethylene glycol (weight average molecular weight: 35,000), cyclic molecule: α-cyclodextrin (hereinafter sometimes simply referred to as “α-CD”), blocking group: polyrotaxane comprising an adamantaneamine group ( Hereinafter, it may be simply abbreviated as “APR”), and was produced by the method described in WO2005 / 052026. The inclusion ratio of APR calculated by 1 H-NMR measurement (400 MHz JEOL JNM-AL400 (manufactured by JEOL Ltd.). Hereinafter, 1 H-NMR measurement is by this apparatus) is 0.25. The inclusion rate was obtained by assuming that the amount of α-CD included to the maximum when α-CD was included in a skewered manner with polyethylene glycol (Macromolecules 1993, 26, 5698-5703). (Note that the entire contents of this document are incorporated herein). The calculated hydroxyl amount of APR is 13.3 mmol / g.
<第1の修飾化ポリロタキサンBAPR1の調製>
 1.5N NaOH水溶液100mlを反応容器に入れ、APR10gを溶解した。反応溶液を室温(約20℃)に保持しながら、ブチレンオキシド20g(0.28mol)を20分かけて滴下し、続いて20時間撹拌した。反応溶液を6N塩酸で中和した。この溶液を透析チューブ(分画分子量12,000)にて、48時間、水道水流水下で透析した。さらに、精製水中で3時間2回行った。凍結乾燥を行い、得られたヒドロキシブチル化APR1(以下、「ヒドロキシブチル化APR」を単に『BAPR』と略記する場合がある)の収量は12gであった。
 GPCにより、重量平均分子量Mwは150,000、分子量分布Mw/Mnは1.2であった。
<Preparation of First Modified Polyrotaxane BAPR1>
100 ml of 1.5N NaOH aqueous solution was put into the reaction vessel, and 10 g of APR was dissolved. While maintaining the reaction solution at room temperature (about 20 ° C.), 20 g (0.28 mol) of butylene oxide was added dropwise over 20 minutes, followed by stirring for 20 hours. The reaction solution was neutralized with 6N hydrochloric acid. This solution was dialyzed with a dialysis tube (fraction molecular weight: 12,000) for 48 hours under running tap water. Further, it was performed twice in purified water for 3 hours. The yield of hydroxybutylated APR1 (hereinafter, “hydroxybutylated APR” may be simply abbreviated as “BAPR”) obtained by lyophilization was 12 g.
By GPC, the weight average molecular weight Mw was 150,000, and the molecular weight distribution Mw / Mn was 1.2.
 ヒドロキシブチル基の置換率を、上述の方法により、具体的にはH-NMRを用いて測定、求めた。4~6ppmに現れるα-CDのグルコースのC1のプロトン及び修飾ポリロタキサンの水酸基(2-ヒドロキシブチル由来及びα-CD由来)のプロトン実測積算量は、24.0であり、0.87ppmに現れる2-ヒドロキシブチル基の-CH由来のピークの実測積算量は14.0であることから、(3×18×置換率)/24=14.0/24.0となる。このことから、置換率は0.26であった。計算上の[OH]は10.8mmol/gである。 The substitution rate of the hydroxybutyl group was measured and determined by the above-described method, specifically using 1 H-NMR. The C1 proton of α-CD glucose appearing at 4 to 6 ppm and the proton integrated amount of hydroxyl group (derived from 2-hydroxybutyl and α-CD) of the modified polyrotaxane were 24.0 and appeared at 0.87 ppm 2 Since the actual integrated amount of the peak derived from —CH 3 of the —hydroxybutyl group is 14.0, (3 × 18 × substitution rate) /24=14.0/24.0. From this, the substitution rate was 0.26. The calculated [OH] is 10.8 mmol / g.
 なお、本願において、GPCは、次の条件で測定した。TOSOH HLC-8220 GPC装置を用い、カラム:TSKガードカラム Super AW-HとTSKgel Super AWM-H(2本連結)、溶離液:ジメチルスルホキシド/0.01M LiBr、カラムオーブン:50℃、流速:0.5ml/min、試料濃度:約0.2wt/vol%、注入量:20μl、前処理:0.2μmフィルターでろ過、スタンダード分子量:PEO(ポリエチレンオキシド)、の条件下で測定した。
H-NMR、(DMSO-d、400MHz)、δ(ppm)0.87(t、14.0H)、1.27(broad、4.7H)、1.44(broad、4.7H)、3.0-4.0(m、115H)、4.0-6.0(m、24.0H)。
In the present application, GPC was measured under the following conditions. Using TOSOH HLC-8220 GPC apparatus, column: TSK guard column Super AW-H and TSKgel Super AWM-H (two-linked), eluent: dimethyl sulfoxide / 0.01 M LiBr, column oven: 50 ° C., flow rate: 0 0.5 ml / min, sample concentration: about 0.2 wt / vol%, injection amount: 20 μl, pretreatment: filtration through a 0.2 μm filter, standard molecular weight: PEO (polyethylene oxide).
1 H-NMR, (DMSO-d 6 , 400 MHz), δ (ppm) 0.87 (t, 14.0H), 1.27 (broad, 4.7H), 1.44 (broad, 4.7H), 3.0-4.0 (m, 115H) , 4.0-6.0 (m, 24.0H).
<第1の修飾化ポリロタキサンBAPR2の調製>
 実施例1において、ブチレンオキシドの量を30g(0.42mol)に変えた以外、実施例1と同様な方法により、BAPR2を12.1g合成した。
 GPCにより、重量平均分子量Mwは154,000、分子量分布Mw/Mnは1.2であった。 ヒドロキシブチル基の置換率を、上述の方法により、具体的には実施例1とほぼ同様に、H-NMRにより測定し求めたところ、0.33であった。計算上の[OH]は10.3mmol/gである。なお、JIS K0070に準ずる水酸基価は400mgKOH/gであった。
H-NMR、(DMSO-d、400MHz)、δ(ppm)0.87(t、17.8H)、1.27(broad、5.9H)、1.44(broad、5.9H)、3.0-4.0(m、120H)、4.0-6.0(m、24.0H)。
<Preparation of First Modified Polyrotaxane BAPR2>
In Example 1, 12.1 g of BAPR2 was synthesized in the same manner as in Example 1 except that the amount of butylene oxide was changed to 30 g (0.42 mol).
By GPC, the weight average molecular weight Mw was 154,000, and the molecular weight distribution Mw / Mn was 1.2. The substitution rate of the hydroxybutyl group was measured by 1 H-NMR by the above-described method, specifically in substantially the same manner as in Example 1, and found to be 0.33. The calculated [OH] is 10.3 mmol / g. In addition, the hydroxyl value according to JIS K0070 was 400 mgKOH / g.
1 H-NMR, (DMSO-d 6 , 400 MHz), δ (ppm) 0.87 (t, 17.8H), 1.27 (broad, 5.9H), 1.44 (broad, 5.9H), 3.0-4.0 (m, 120H) , 4.0-6.0 (m, 24.0H).
<第1の修飾化ポリロタキサンBAPR3の調製>
 実施例1において、ブチレンオキシドの量を30g(0.42mol)及び1.5N NaOH水溶液の量を50mlに変えた以外、実施例1と同様な方法により、BAPR3を11.8g合成した。
 GPCにより、重量平均分子量Mwは180,000、分子量分布Mw/Mnは1.2であった。ヒドロキシブチル基の置換率を上述の方法により、H-NMRにより測定し求めたところ、0.35であった。計算上の[OH]は10.1mmol/gである。
H-NMR、(DMSO-d、400MHz)、δ(ppm)0.87(t、18.9H)、1.27(broad、6.3H)、1.44(broad、6.3H)、3.0-4.0(m、122H)、4.0-6.0(m、24.0H)。
<Preparation of First Modified Polyrotaxane BAPR3>
In Example 1, 11.8 g of BAPR3 was synthesized in the same manner as in Example 1 except that the amount of butylene oxide was changed to 30 g (0.42 mol) and the amount of 1.5N NaOH aqueous solution was changed to 50 ml.
By GPC, the weight average molecular weight Mw was 180,000, and the molecular weight distribution Mw / Mn was 1.2. The substitution rate of hydroxybutyl group was measured by 1 H-NMR by the method described above and found to be 0.35. The calculated [OH] is 10.1 mmol / g.
1 H-NMR, (DMSO-d 6 , 400 MHz), δ (ppm) 0.87 (t, 18.9H), 1.27 (broad, 6.3H), 1.44 (broad, 6.3H), 3.0-4.0 (m, 122H) , 4.0-6.0 (m, 24.0H).
<第1の修飾化ポリロタキサンBAPR4の調製>
 実施例2において、反応温度を50℃、反応時間を5時間に変更した以外、実施例2と同様な方法により、BAPR4を12.0g合成した。
 GPCにより、重量平均分子量Mwは185,000、分子量分布Mw/Mnは1.2であった。なお、GPC測定において、3時間以上では変化がなくなるため、3.5時間を反応終点とした。ヒドロキシブチル基の置換率をH-NMRにより測定し求めたところ、0.40であった。計算上の[OH]は9.8mmol/gである。
H-NMR、(DMSO-d、400MHz)、δ(ppm)0.87(t、21.6H)、1.27(broad、7.2H)、1.44(broad、7.2H)、3.0-4.0(m、125H)、4.0-6.0(m、24.0H)。
<Preparation of First Modified Polyrotaxane BAPR4>
In Example 2, 12.0 g of BAPR4 was synthesized in the same manner as in Example 2 except that the reaction temperature was changed to 50 ° C. and the reaction time was changed to 5 hours.
By GPC, the weight average molecular weight Mw was 185,000, and the molecular weight distribution Mw / Mn was 1.2. In GPC measurement, since the change disappeared after 3 hours or more, 3.5 hours was set as the reaction end point. The substitution rate of hydroxybutyl group was measured by 1 H-NMR and found to be 0.40. The calculated [OH] is 9.8 mmol / g.
1 H-NMR, (DMSO-d 6 , 400 MHz), δ (ppm) 0.87 (t, 21.6 H), 1.27 (broad, 7.2 H), 1.44 (broad, 7.2 H), 3.0-4.0 (m, 125 H) , 4.0-6.0 (m, 24.0H).
<第1の修飾化ポリロタキサンEGAPR1の調製>
 1.5N NaOH水溶液50mlを反応容器に入れ、APR10gを溶解した。反応溶液を室温(20℃)に保持しながら、グリシジルエチルエーテル20g(0.20mol)を20分かけて滴下し、続いて20時間撹拌した。反応溶液を6N塩酸で中和した。この溶液を透析チューブ(分画分子量12,000)にて、48時間、水道水流水下で透析した。さらに、精製水中で3時間2回行った。凍結乾燥を行い、ヒドロキシプロピルエチルエーテル化APR1(以下、「ヒドロキシプロピルエチルエーテル化APR」を単に『EGAPR』と略記する場合がある)を得た。EGAPR1の収量は12gであった。
 GPCにより、重量平均分子量Mwは158,000、分子量分布Mw/Mnは1.3であった。ヒドロキシプロピルエチルエーテル基の置換率をH-NMRにより測定し求めたところ、0.35であった。計算上の[OH]は9.1mmol/gである。
H-NMR、(DMSO-d、400MHz)、δ(ppm)1.10(t、18.8H)、3.0-4.0(m、157H)、4.0-6.0(m、24.0H)。
<Preparation of First Modified Polyrotaxane EGAPR1>
50 ml of 1.5N NaOH aqueous solution was put into the reaction vessel, and 10 g of APR was dissolved. While maintaining the reaction solution at room temperature (20 ° C.), 20 g (0.20 mol) of glycidyl ethyl ether was added dropwise over 20 minutes, followed by stirring for 20 hours. The reaction solution was neutralized with 6N hydrochloric acid. This solution was dialyzed with a dialysis tube (fraction molecular weight: 12,000) for 48 hours under running tap water. Further, it was performed twice in purified water for 3 hours. Lyophilization was performed to obtain hydroxypropyl ethyl etherified APR1 (hereinafter, “hydroxypropyl ethyl etherified APR” may be simply abbreviated as “EGAPR”). The yield of EGAPR1 was 12 g.
By GPC, the weight average molecular weight Mw was 158,000, and the molecular weight distribution Mw / Mn was 1.3. The substitution rate of the hydroxypropyl ethyl ether group was measured by 1 H-NMR and found to be 0.35. The calculated [OH] is 9.1 mmol / g.
1 H-NMR, (DMSO-d 6 , 400 MHz), δ (ppm) 1.10 (t, 18.8H), 3.0-4.0 (m, 157H), 4.0-6.0 (m, 24.0H).
<第1の修飾化ポリロタキサンEGAPR2の調製>
 実施例5において、グリシジルエチルエーテルの量を30g(0.30mol)に変更した以外、実施例5と同様な方法により、EGAPR2を11.0g合成した。
 GPCにより、重量平均分子量Mwは203,000、分子量分布Mw/Mnは1.3であった。ヒドロキシプロピルエチルエーテル基の置換率をH-NMRにより測定し求めたところ、0.44であった。計算上の[OH]は8.3mmol/gである。なお、JIS K0070に準ずる水酸基価は325mgKOH/gである。
H-NMR、(DMSO-d、400MHz)、δ(ppm)1.10(t、23.7H)、3.0-4.0(m、173H)、4.0-6.0(m、24.0H)。
<Preparation of First Modified Polyrotaxane EGAPR2>
In Example 5, 11.0 g of EGAPR2 was synthesized in the same manner as in Example 5 except that the amount of glycidyl ethyl ether was changed to 30 g (0.30 mol).
By GPC, the weight average molecular weight Mw was 203,000 and the molecular weight distribution Mw / Mn was 1.3. The substitution rate of the hydroxypropylethyl ether group was measured by 1 H-NMR and found to be 0.44. The calculated [OH] is 8.3 mmol / g. In addition, the hydroxyl value according to JIS K0070 is 325 mgKOH / g.
1 H-NMR, (DMSO-d 6 , 400 MHz), δ (ppm) 1.10 (t, 23.7 H), 3.0-4.0 (m, 173 H), 4.0-6.0 (m, 24.0 H).
<第1の修飾化ポリロタキサンIGAPR1の調製>
 1.5N NaOH水溶液50mlを反応容器に入れ、APR10gを溶解した。反応溶液を室温(20℃)に保持しながら、グリシジルイソプロピルエーテル20g(0.17mol)を20分かけて滴下し、続いて20時間撹拌した。反応溶液を6N塩酸で中和した。この溶液を透析チューブ(分画分子量12,000)にて、48時間、水道水流水下で透析した。さらに、精製水中で3時間2回行った。凍結乾燥を行い、ヒドロキシプロピルイソプロピルエーテル化APR1(以下、「ヒドロキシプロピルイソプロピルエーテル化APR」を単に『IGAPR』と略記する場合がある)を得た。IGAPR1の収量は11.7gであった。
 GPCにより、重量平均分子量Mwは154,000、分子量分布Mw/Mnは1.3であった。ヒドロキシプロピルイソプロピルエーテル基の置換率をH-NMRにより測定し求めたところ、0.25であった。計算上の[OH]は9.7mmol/gである。
H-NMR、(DMSO-d、400MHz)、δ(ppm)1.07(d、27.1H)、3.0-4.0(m、133H)、4.0-6.0(m、24.0H)。
<Preparation of first modified polyrotaxane IGAPR1>
50 ml of 1.5N NaOH aqueous solution was put into the reaction vessel, and 10 g of APR was dissolved. While maintaining the reaction solution at room temperature (20 ° C.), 20 g (0.17 mol) of glycidyl isopropyl ether was added dropwise over 20 minutes, followed by stirring for 20 hours. The reaction solution was neutralized with 6N hydrochloric acid. This solution was dialyzed with a dialysis tube (fraction molecular weight: 12,000) for 48 hours under running tap water. Further, it was performed twice in purified water for 3 hours. Lyophilization was performed to obtain hydroxypropyl isopropyl ether APR1 (hereinafter, “hydroxypropyl isopropyl ether APR” may be simply abbreviated as “IGAPR”). The yield of IGAPR1 was 11.7 g.
By GPC, the weight average molecular weight Mw was 154,000, and the molecular weight distribution Mw / Mn was 1.3. The substitution rate of the hydroxypropyl isopropyl ether group was measured by 1 H-NMR and found to be 0.25. The calculated [OH] is 9.7 mmol / g.
1 H-NMR, (DMSO-d 6 , 400 MHz), δ (ppm) 1.07 (d, 27.1H), 3.0-4.0 (m, 133H), 4.0-6.0 (m, 24.0H).
<第1の修飾化ポリロタキサンIGAPR2の調製>
 実施例7において、グリシジルイソプロピルエーテルの量を30g(0.26mol)に変更した以外、実施例7と同様な方法により、IGAPR2を12.0g合成した。
 GPCにより、重量平均分子量Mwは168,000、分子量分布Mw/Mnは1.3であった。ヒドロキシプロピルイソプロピルエーテル基の置換率をH-NMRにより測定し求めたところ、0.39であった。計算上の[OH]は8.4mmol/gである。なお、JIS K0070に準ずる水酸基価は330mgKOH/gであった。
H-NMR、(DMSO-d、400MHz)、δ(ppm)1.07(d、42.1H)、3.0-4.0(m、154H)、4.0-6.0(m、24.0H)。
<Preparation of first modified polyrotaxane IGAPR2>
In Example 7, 12.0 g of IGAPR2 was synthesized in the same manner as in Example 7 except that the amount of glycidyl isopropyl ether was changed to 30 g (0.26 mol).
By GPC, the weight average molecular weight Mw was 168,000, and the molecular weight distribution Mw / Mn was 1.3. The substitution rate of the hydroxypropyl isopropyl ether group was measured by 1 H-NMR and found to be 0.39. The calculated [OH] is 8.4 mmol / g. The hydroxyl value according to JIS K0070 was 330 mgKOH / g.
1 H-NMR, (DMSO-d 6 , 400 MHz), δ (ppm) 1.07 (d, 42.1H), 3.0-4.0 (m, 154H), 4.0-6.0 (m, 24.0H).
(比較例1)
<HAPR1の調製>
 1.5N NaOH水溶液250mlを反応容器に入れ、APR50gを溶解した。反応溶液を5℃に保持しながら、プロピレンオキシド65g(1.12mol)を50分かけて滴下し、続いて20時間撹拌した。反応溶液を6N塩酸で中和した。この溶液を透析チューブ(分画分子量12,000)にて、48時間、水道水流水下で透析した。さらに、精製水中で3時間2回行った。凍結乾燥を行い、ヒドロキシプロピル化APR1(以下、ヒドロキシプロピル化APR」を単に『HAPR』と略記する場合がある)を得た。HAPR1の収量は55gであった。
 GPCにより、重量平均分子量Mwは110,000、分子量分布Mw/Mnは1.3であった。ヒドロキシプロピル基の置換率をH-NMRにより測定し求めたところ、0.33であった。計算上の[OH]は10.8mmol/gである。
H-NMR、(DMSO-d、400MHz)δ(ppm)1.0(s、17.8H)、3.0-4.0(m、94H)、4.0-6.0(m、24.0H)。
(Comparative Example 1)
<Preparation of HAPR1>
250 ml of 1.5N NaOH aqueous solution was put into the reaction vessel, and 50 g of APR was dissolved. While maintaining the reaction solution at 5 ° C., 65 g (1.12 mol) of propylene oxide was added dropwise over 50 minutes, followed by stirring for 20 hours. The reaction solution was neutralized with 6N hydrochloric acid. This solution was dialyzed with a dialysis tube (fraction molecular weight: 12,000) for 48 hours under running tap water. Further, it was performed twice in purified water for 3 hours. Lyophilization was performed to obtain hydroxypropylated APR1 (hereinafter, hydroxypropylated APR may be simply abbreviated as “HAPR”). The yield of HAPR1 was 55 g.
By GPC, the weight average molecular weight Mw was 110,000, and the molecular weight distribution Mw / Mn was 1.3. The substitution rate of the hydroxypropyl group was measured by 1 H-NMR and found to be 0.33. The calculated [OH] is 10.8 mmol / g.
1 H-NMR, (DMSO-d 6 , 400 MHz) δ (ppm) 1.0 (s, 17.8H), 3.0-4.0 (m, 94H), 4.0-6.0 (m, 24.0H).
(比較例2)
<HAPR2の調製>
 比較例1において、プロピレンオキシドの量を110gに変えた以外、比較例1と同様な方法でHAPR2を合成した。
 GPCにより、重量平均分子量Mwは120,000、分子量分布Mw/Mnは1.3であった。ヒドロキシプロピル基の置換率をH-NMRにより測定し求めたところ、0.50であった。計算上の[OH]は9.7mmol/gである。
H-NMR、(DMSO-d、400MHz)δ(ppm)1.0(s、27.1H)、3.0-4.0(m、105H)、4.0-6.0(m、24.0H)。
(Comparative Example 2)
<Preparation of HAPR2>
HAPR2 was synthesized in the same manner as in Comparative Example 1 except that the amount of propylene oxide was changed to 110 g in Comparative Example 1.
By GPC, the weight average molecular weight Mw was 120,000, and the molecular weight distribution Mw / Mn was 1.3. The substitution rate of hydroxypropyl group was measured by 1 H-NMR and found to be 0.50. The calculated [OH] is 9.7 mmol / g.
1 H-NMR, (DMSO-d 6 , 400 MHz) δ (ppm) 1.0 (s, 27.1H), 3.0-4.0 (m, 105H), 4.0-6.0 (m, 24.0H).
<第1の修飾化ポリロタキサンの溶解性・親和性>
 実施例1~8の第1の修飾化ポリロタキサン、並びに比較例1~2のHAPR1及びHAPR2の各溶媒への溶解性/親和性を評価した。
 溶解性/親和性の評価は、次のように行った。各試料である固体ポリロタキサンを、各種溶媒に0.5wt%となるように添加し、室温で撹拌子により激しく撹拌し、溶解性を評価した。評価において、次の指標を用いた。
○:溶解する。
△:溶け残りが少しある。
×:溶けない。
 これらの結果を表1に示す。
<Solubility and affinity of the first modified polyrotaxane>
The solubility / affinity of the first modified polyrotaxane of Examples 1 to 8 and the HAPR1 and HAPR2 of Comparative Examples 1 and 2 in each solvent was evaluated.
Evaluation of solubility / affinity was performed as follows. The solid polyrotaxane as each sample was added to various solvents so as to be 0.5 wt%, and vigorously stirred with a stir bar at room temperature to evaluate the solubility. In the evaluation, the following indicators were used.
○: Dissolved.
Δ: There is a little unmelted residue.
X: It does not melt.
These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1から、本発明の第1の修飾化ポリロタキサン(実施例1~8)が未修飾ポリロタキサン(APR)や同置換率のヒドロキシプロピル修飾ポリロタキサン(HAPR1及びHAPR2)に比べて、溶解性が改善されていることがわかる。特に、工業利用価値が高いアルコール類やラクトンモノマーに対しての改善効果が顕著であることがわかる。
 また、本発明の材料の合成において、実施例4に示したように、加熱により、反応時間を短縮できるとともに置換率が少し向上することを確認した。
From Table 1, the solubility of the first modified polyrotaxane of the present invention (Examples 1 to 8) is improved compared to unmodified polyrotaxane (APR) and hydroxypropyl modified polyrotaxanes having the same substitution rate (HAPR1 and HAPR2). You can see that In particular, it can be seen that the improvement effect on alcohols and lactone monomers having high industrial utility value is remarkable.
Moreover, in the synthesis | combination of the material of this invention, as shown in Example 4, it was confirmed by heating that the reaction time can be shortened and the substitution rate is slightly improved.
(実施例9~実施例16)
<第2の修飾化ポリロタキサンの調製>
 実施例1~実施例8で得られた第1の修飾化ポリロタキサンを原料として用いて、それぞれ第2の修飾化ポリロタキサン(実施例9:BAPR1-g-PCL;実施例10:BAPR2-g-PCL;実施例11:BAPR3-g-PCL;実施例12:BAPR4-g-PCL;実施例13:EGAPR1-g-PCL;実施例14:EGAPR2-g-PCL;実施例15:IGAPR1-g-PCL;実施例16:IGAPR2-g-PCL)を調製した。
(Example 9 to Example 16)
<Preparation of Second Modified Polyrotaxane>
Using the first modified polyrotaxane obtained in Examples 1 to 8 as a raw material, the second modified polyrotaxane (Example 9: BAPR1-g-PCL; Example 10: BAPR2-g-PCL) Example 11: BAPR3-g-PCL; Example 12: BAPR4-g-PCL; Example 13: EGAPR1-g-PCL; Example 14: EGAPR2-g-PCL; Example 15: IGAPR1-g-PCL Example 16: IGAPR2-g-PCL) was prepared.
 具体的には、第1の修飾化ポリロタキサンの第1の置換基の起点とし、ε-カプロラクトンなどのモノマーの開環重合を行った。より具体的には、次のように行った。
 第1の修飾化ポリロタキサン(実施例Y(Yは1~8を表す))5.0gを三口フラスコに入れ、窒素をゆっくり流しながら、ε-カプロラクトン22.5gを導入した。100℃、30分間メカニカル撹拌機によって均一に撹拌した後、反応温度を130℃まで上げ、予めトルエンで薄めた2-エチルヘキサン酸スズ(50wt%溶液)0.40gを添加し、6時間反応させ、溶媒を除去し、反応生成物を得た。赤外線吸収スペクトル(IR、Nicolet6700 FT-IR(サーモフィッシャー製))を測定した結果、1736cm-1のエステル由来のピークが見られた。また、ガスクロマトグラフィー(GC-2014 株式会社島津製作所製)による分析結果、未反応のε-カプロラクトンの量は投入量に対して1.0wt%以下であった。
Specifically, ring-opening polymerization of a monomer such as ε-caprolactone was carried out starting from the first substituent of the first modified polyrotaxane. More specifically, it was performed as follows.
5.0 g of the first modified polyrotaxane (Example Y (Y represents 1 to 8)) was placed in a three-necked flask, and 22.5 g of ε-caprolactone was introduced while slowly flowing nitrogen. After stirring uniformly with a mechanical stirrer at 100 ° C. for 30 minutes, the reaction temperature was raised to 130 ° C., and 0.40 g of 2-ethylhexanoic acid tin (50 wt% solution) previously diluted with toluene was added and reacted for 6 hours. The solvent was removed to obtain a reaction product. As a result of measuring an infrared absorption spectrum (IR, Nicolet 6700 FT-IR (manufactured by Thermo Fisher)), a peak derived from an ester at 1736 cm −1 was observed. As a result of analysis by gas chromatography (GC-2014, manufactured by Shimadzu Corporation), the amount of unreacted ε-caprolactone was 1.0 wt% or less with respect to the input amount.
 得られた第2の修飾化ポリロタキサンについて、次の物性:重量平均分子量、分子量分布、純度(GPCにより測定)、水酸基価(表2中、「mgKOH/g」の値である)、グラインドゲージ試験結果、粘度を測定した。その結果を表2に示す。なお、グラインドゲージ試験結果、及び粘度は、次のように測定した。
 粘度は、デジタル粘度計TVB-10(TOYO SANGYO製)を用いて測定した。表2における値は、40℃、35wt%キシレン溶液を用いたときの「mPa・s」として記載する。
 グラインドゲージ試験(表2中、「GG試験」と略記する):第2の修飾化ポリロタキサンの35wt%のキシレン溶液を準備し、グラインドメータGW-3098M(太佑機材製)を用いて該溶液をブレードで引き、その直後の異物の有無を目視で確認し、以下のように評価した。
 ○:異物無し。
 △:僅かに異物あり。
 ×:明らかに異物あり。
Regarding the obtained second modified polyrotaxane, the following physical properties: weight average molecular weight, molecular weight distribution, purity (measured by GPC), hydroxyl value (in Table 2, “mgKOH / g” value), grind gauge test As a result, the viscosity was measured. The results are shown in Table 2. In addition, the grind gauge test result and the viscosity were measured as follows.
The viscosity was measured using a digital viscometer TVB-10 (manufactured by TOYO SANGYO). The values in Table 2 are described as “mPa · s” when a 40 ° C., 35 wt% xylene solution is used.
Grind gauge test (abbreviated as “GG test” in Table 2): A 35 wt% xylene solution of the second modified polyrotaxane was prepared, and this solution was bladed using a grindometer GW-3098M (manufactured by Dazai Equipment Co., Ltd.). And visually confirmed the presence or absence of a foreign substance immediately after that, and evaluated as follows.
○: No foreign matter.
Δ: Slightly foreign matter is present.
×: Obviously foreign matter is present.
(比較例3及び比較例4)
 比較例1のHAPR1、比較例2のHAPR2を用いて、実施例9~16と同様な方法により、ε-カプロラクトンの開環グラフト重合を行い、ポリカプロラクトンでグラフト化したグラフトポリロタキサン(比較例3:HAPR1-g-PCL;及び比較例4:HAPR2-g-PCL)を得た。これの物性についても表2に示す。
(Comparative Example 3 and Comparative Example 4)
Using the HAPR1 of Comparative Example 1 and the HAPR2 of Comparative Example 2, a graft polyrotaxane grafted with polycaprolactone by ring-opening graft polymerization of ε-caprolactone by the same method as in Examples 9 to 16 (Comparative Example 3: HAPR1-g-PCL; and Comparative Example 4: HAPR2-g-PCL). These physical properties are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2から次のことがわかる。即ち、第2の修飾化ポリロタキサン(実施例9~16)は、比較例3及び比較例4の修飾化ポリロタキサンと比較すると、第1の修飾化ポリロタキサンの第1の置換基の置換率が比較的に低くても、得られた第2の修飾化ポリロタキサンの粘性が低く、不溶物がないものを製造することができる。特に、比較例3ではグラインドゲージ試験結果から異物が多く存在し且つその結果、粘度測定もできないことから、比較例3と比べると、実施例9~16における効果が顕著であることがわかった。 Table 2 shows the following. That is, the second modified polyrotaxane (Examples 9 to 16) has a relatively high substitution rate of the first substituent of the first modified polyrotaxane as compared with the modified polyrotaxane of Comparative Example 3 and Comparative Example 4. Even if it is low, the viscosity of the obtained second modified polyrotaxane is low and an insoluble matter-free product can be produced. In particular, Comparative Example 3 shows that the effects in Examples 9 to 16 are remarkable compared to Comparative Example 3 because there are many foreign substances and the viscosity measurement is not possible as a result of the grinding gauge test results.
(実施例17)
<第2の修飾化ポリロタキサンを有して形成される架橋体>
 第2の修飾化ポリロタキサンを用いて、ポリオールのプレポリマーによる架橋で熱硬化エラストマーを作製した。作製に必要なプレポリマーの合成例を以下に示す。
(Example 17)
<Crosslinked product formed with second modified polyrotaxane>
Using the second modified polyrotaxane, a thermosetting elastomer was produced by crosslinking with a polyol prepolymer. A synthesis example of a prepolymer necessary for production is shown below.
<<プレポリマーP1の合成>>
 1,3-ビス(イソシアナトメチル)シクロヘキサン(三井化学社製タケネート600)2.80kgを反応槽に入れ、窒素気流下で攪拌しながら80℃に昇温した。ポリカーボネートジオール(ポリアルキレンカーボネートジオール、デュラノール(登録商標)T-5650J(旭化成ケミカルズ株式会社製、Mn:800;1,5-ペンタンジオール及び/又は1,6-ヘキサンジオールを繰返し単位とする。以降、単に「ポリカーボネートジオール デュラノール(登録商標)T5650J」と略記する)4.98kgを70℃に温め、上記反応槽へ、4時間かけてゆっくりと滴下した後、更に3時間攪拌して、両末端にイソシアネート基変性したポリカーボネートジオール及び1,3-ビス(イソシアナトメチル)シクロヘキサンを有するプレポリマー1(P1)(7.78kg)を得た。
<< Synthesis of Prepolymer P1 >>
2.80 kg of 1,3-bis (isocyanatomethyl) cyclohexane (Takenate 600 manufactured by Mitsui Chemicals, Inc.) was placed in the reaction vessel and heated to 80 ° C. with stirring under a nitrogen stream. Polycarbonate diol (polyalkylene carbonate diol, Duranol (registered trademark) T-5650J (manufactured by Asahi Kasei Chemicals Corporation, Mn: 800; 1,5-pentanediol and / or 1,6-hexanediol as repeating units. 4.98 kg (simply abbreviated as “polycarbonate diol Duranol (registered trademark) T5650J”) was warmed to 70 ° C., slowly dropped into the reaction vessel over 4 hours, and further stirred for 3 hours. Prepolymer 1 (P1) (7.78 kg) having a group-modified polycarbonate diol and 1,3-bis (isocyanatomethyl) cyclohexane was obtained.
<<ブロックプレポリマーBP1の合成>>
 上記で得たP1(7.78kg)を反応槽に入れ、窒素気流下で攪拌しながら100℃に昇温した。これにε-カプロラクタム(2.04kg)を入れて6時間攪拌して、ポリカーボネートの両末端のイソシアネート基をε-カプロラクタムで保護したブロックプレポリマー1(BP1)を得た。FT-IR(Nicolet6700 FT-IR)で測定した結果、2250cm-1付近におけるイソシアネート基由来のピークが消失していることから、イソシアネート基が保護されたことを確認した。
<< Synthesis of Block Prepolymer BP1 >>
P1 (7.78 kg) obtained above was placed in a reaction vessel and heated to 100 ° C. with stirring under a nitrogen stream. Ε-Caprolactam (2.04 kg) was added thereto and stirred for 6 hours to obtain block prepolymer 1 (BP1) in which the isocyanate groups at both ends of the polycarbonate were protected with ε-caprolactam. As a result of measurement by FT-IR (Nicolet 6700 FT-IR), the peak derived from the isocyanate group in the vicinity of 2250 cm −1 disappeared, so that it was confirmed that the isocyanate group was protected.
<<架橋体E-1の合成>>
 実施例10のBAPR2-g-PCLを用いて、表3に示した組成比で各成分を混合し、80℃で脱泡した後、半径30mm、高さ15mmの円柱のモールドに入れて150℃のオーブン内で5時間、反応を行い、架橋体E-1を得た。赤外分光法により、BAPR2-g-PCLのOH基に由来する3450cm-1付近でのピークの減少から、BP1のイソシアネート基とBAPR2-g-PCLのOH基とが反応し、架橋が形成されたことを確認した。
<< Synthesis of crosslinked E-1 >>
Using BAPR2-g-PCL of Example 10, each component was mixed at the composition ratio shown in Table 3, defoamed at 80 ° C., and then placed in a cylindrical mold having a radius of 30 mm and a height of 15 mm at 150 ° C. The reaction was carried out in the oven for 5 hours to obtain a crosslinked product E-1. By infrared spectroscopy, from the decrease of the peak around 3450 cm −1 derived from the OH group of BAPR2-g-PCL, the isocyanate group of BP1 reacts with the OH group of BAPR2-g-PCL to form a bridge. I confirmed that.
(実施例18)
<<架橋体E-2の合成>>
 実施例16のIGAPR2-g-PCLを用いて、表3に示した組成比で各成分を混合し、室温で脱泡した後、テフロン(登録商標)モールドに入れて50℃で1日放置した。モールドから取り出し、80℃で減圧乾燥を行い、架橋体E-2を得た。
(Example 18)
<< Synthesis of crosslinked product E-2 >>
Using the IGAPR2-g-PCL of Example 16, each component was mixed at the composition ratio shown in Table 3, defoamed at room temperature, then placed in a Teflon (registered trademark) mold and left at 50 ° C. for 1 day. . The product was taken out from the mold and dried under reduced pressure at 80 ° C. to obtain a crosslinked product E-2.
(比較例5)
<<架橋体H-1の合成>>
 比較例4のHAPR2-g-PCLを用いて、実施例17と同様な方法で反応を行い、架橋体H-1を得た。
(Comparative Example 5)
<< Synthesis of crosslinked product H-1 >>
Using HAPR2-g-PCL of Comparative Example 4, a reaction was carried out in the same manner as in Example 17 to obtain a crosslinked product H-1.
(比較例6)
<<架橋体H-2の合成>>
 比較例4のHAPR2-g-PCLを用いて、実施例18と同様な方法で反応を行い、架橋体H-2を得た。
(Comparative Example 6)
<< Synthesis of crosslinked product H-2 >>
Using HAPR2-g-PCL of Comparative Example 4, a reaction was carried out in the same manner as in Example 18 to obtain a crosslinked product H-2.
 得られた架橋体E-1及びE-2、並びに架橋体H-1及びH-2について、伸長率が50%での応力(以下、「50%モジュラス」と略記する場合がある)、伸長率が100%での応力(以下、「100%モジュラス」と略記する場合がある)、最大応力、破断伸張、及び圧縮永久歪を測定した。その結果についても表3に示す。
 なお、それぞれの測定項目は、次のように測定した。
 50%モジュラス、100%モジュラス、最大応力、破断伸張の測定は、測定する架橋体をダンベル3号形試験片又はダンベル7号形試験片とし、室温でJIS K6251に準じた方法で測定した。
 圧縮永久歪(100℃、24時間)は、測定する架橋体を円柱試験片(半径30mm、厚み15mm)とし、JIS K6262に準じた方法で測定した。
For the obtained crosslinked products E-1 and E-2 and crosslinked products H-1 and H-2, the stress at an elongation rate of 50% (hereinafter sometimes abbreviated as “50% modulus”), elongation The stress at a rate of 100% (hereinafter sometimes abbreviated as “100% modulus”), maximum stress, elongation at break, and compression set were measured. The results are also shown in Table 3.
Each measurement item was measured as follows.
The 50% modulus, 100% modulus, maximum stress, and elongation at break were measured by using a dumbbell No. 3 test piece or a dumbbell No. 7 test piece at room temperature according to JIS K6251.
The compression set (100 ° C., 24 hours) was measured by a method according to JIS K6262 using a cross-linked product to be measured as a cylindrical test piece (radius 30 mm, thickness 15 mm).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表3から分かるように、本願の第2の修飾化ポリロタキサンを用いることにより、柔軟性が優れたエラストマー(低モジュラス、高い破断伸張)を提供することができる。さらに、架橋体E-1(実施例17)と架橋体H-1(比較例5)とを比較すると、本願の第2の修飾化ポリロタキサンを用いるか否か以外については同一な組成物で架橋体を作製しているが、本願の第2の修飾化ポリロタキサンを用いると、圧縮永久歪がかなり小さくなり、へたりが少ない材料を提供できることがわかる。 As can be seen from Table 3, by using the second modified polyrotaxane of the present application, it is possible to provide an elastomer (low modulus, high elongation at break) with excellent flexibility. Further, when the crosslinked product E-1 (Example 17) and the crosslinked product H-1 (Comparative Example 5) are compared, it is crosslinked with the same composition except for whether or not the second modified polyrotaxane of the present application is used. Although the body is made, it can be seen that when the second modified polyrotaxane of the present application is used, a compression set is considerably reduced, and a material with less sag can be provided.

Claims (11)

  1.  シクロデキストリンの開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に前記シクロデキストリンが脱離しないように封鎖基を配置してなるポリロタキサンを修飾化した修飾化ポリロタキサンであって、
     前記シクロデキストリンが有する水酸基の少なくとも一部が以下の式(I)(式中、-Rは、-CH-CH、-CH-O-CH、-CH-O-CH-CH、-CH-O-CH-CH-CH及び-CH-O-CH-(CHからなる群から選ばれる少なくとも1種の第1の基である)で表される第1の置換基で置換される、上記修飾化ポリロタキサン。
    Figure JPOXMLDOC01-appb-C000001
    This is a modified polyrotaxane modified with a polyrotaxane in which a blocking group is arranged so that the cyclodextrin is not detached at both ends of a pseudopolyrotaxane in which the opening of the cyclodextrin is clasped with a linear molecule. And
    At least a part of the hydroxyl groups of the cyclodextrin is represented by the following formula (I) (wherein —R represents —CH 2 —CH 3 , —CH 2 —O—CH 3 , —CH 2 —O—CH 2 —). And at least one first group selected from the group consisting of CH 3 , —CH 2 —O—CH 2 —CH 2 —CH 3 and —CH 2 —O—CH— (CH 3 ) 2 ) The modified polyrotaxane is substituted with the first substituent.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記水酸基の少なくとも一部が、前記第1の置換基をさらに修飾した、以下の式(II)(式中、Xは、炭素数が2~8の直鎖状又は分岐鎖状アルキレン基、アセチル基分岐を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基、及びエーテル結合を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基からなる群から選ばれる、少なくとも1種の第2の基であり、nは1~200である)で表される第2の置換基で置換される請求項1記載の修飾化ポリロタキサン。
    Figure JPOXMLDOC01-appb-C000002
    The following formula (II) wherein at least a part of the hydroxyl group further modifies the first substituent (wherein X is a linear or branched alkylene group having 2 to 8 carbon atoms, acetyl At least selected from the group consisting of a linear or branched alkylene group having 3 to 8 carbon atoms having a group branch and a linear or branched alkylene group having 3 to 8 carbon atoms having an ether bond, The modified polyrotaxane according to claim 1, wherein the modified polyrotaxane is substituted with a second substituent represented by the following formula: one kind of second group, and n is 1 to 200.
    Figure JPOXMLDOC01-appb-C000002
  3.  前記第1の置換基の置換率は、前記シクロデキストリンが有する水酸基の全てが置換された状態を1.0とする場合、0.10~0.60である請求項1記載の修飾化ポリロタキサン。 The modified polyrotaxane according to claim 1, wherein the substitution rate of the first substituent is 0.10 to 0.60, where 1.0 is a state in which all of the hydroxyl groups of the cyclodextrin are substituted.
  4.  前記-X-は、-(CH-、-(CH-、-CH(CH)-CH-CH-及び-(CH-O-(CH-からなる群から選ばれる少なくとも1種のアルキレン基である請求項2記載の修飾化ポリロタキサン。 The —X— is — (CH 2 ) 3 —, — (CH 2 ) 5 —, —CH (CH 3 ) —CH 2 —CH 2 — and — (CH 2 ) 2 —O— (CH 2 ) 2 The modified polyrotaxane according to claim 2, which is at least one alkylene group selected from the group consisting of-.
  5.  前記修飾化ポリロタキサンの分子量分布が2.0以下である請求項2又は4記載の修飾化ポリロタキサン。 The modified polyrotaxane according to claim 2 or 4, wherein the molecular weight distribution of the modified polyrotaxane is 2.0 or less.
  6.  請求項2、4又は5記載の修飾化ポリロタキサンが架橋に含まれる架橋形成材料。 A cross-linking material in which the modified polyrotaxane according to claim 2, 4 or 5 is included in the cross-linking.
  7.  請求項2、4又は5記載の修飾化ポリロタキサンを有して形成される材料。 A material formed with the modified polyrotaxane according to claim 2, 4 or 5.
  8.  修飾化ポリロタキサンの製造方法であって、
     a)シクロデキストリンの開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に前記シクロデキストリンが脱離しないように封鎖基を配置してなるポリロタキサンを準備する工程;及び
     b)前記シクロデキストリンが有する水酸基の少なくとも一部を以下の式(I)(式中、-Rは、-CH-CH、-CH-O-CH、-CH-O-CH-CH、-CH-O-CH-CH-CH及び-CH-O-CH-(CHからなる群から選ばれる少なくとも1種である)で表される第1の置換基で置換する工程;
    を有する、上記方法。
    Figure JPOXMLDOC01-appb-C000003
    A method for producing a modified polyrotaxane comprising the steps of:
    a) preparing a polyrotaxane in which blocking groups are arranged so that the cyclodextrin is not detached at both ends of the pseudopolyrotaxane in which the opening of the cyclodextrin is clasped by linear molecules; and b ) At least part of the hydroxyl groups of the cyclodextrin is represented by the following formula (I) (wherein —R represents —CH 2 —CH 3 , —CH 2 —O—CH 3 , —CH 2 —O—CH 2). A first group represented by the formula: —CH 3 , —CH 2 —O—CH 2 —CH 2 —CH 3 and —CH 2 —O—CH— (CH 3 ) 2 . Substituting with a substituent of
    The above method.
    Figure JPOXMLDOC01-appb-C000003
  9.  前記b)工程の置換は、前記水酸基の少なくとも一部と、1,2-ブチレンオキシド、グリシジルメチルエーテル、グリシジルエチルエーテル、グリシジルプロピルエーテル及びグリシジルイソプロピルエーテルからなる群から選ばれる少なくとも1種の第1の化合物とを反応させて行う請求項8記載の方法。 The substitution in the step b) includes at least a part of the hydroxyl group and at least one first selected from the group consisting of 1,2-butylene oxide, glycidyl methyl ether, glycidyl ethyl ether, glycidyl propyl ether, and glycidyl isopropyl ether. The method of Claim 8 performed by making it react with the compound of this.
  10.  c)前記第1の置換基を基点として、ラクトンモノマーを開環重合し、前記水酸基の少なくとも一部が、以下の式(II)(式中、Xは、炭素数が2~8の直鎖状又は分岐鎖状アルキレン基、アセチル基分岐を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基、及びエーテル結合を有する炭素数が3~8の直鎖状又は分岐鎖状アルキレン基からなる群から選ばれる、少なくとも1種の第2の基であり、nは1~200である)で表される第2の置換基で置換する工程をさらに有する、請求項8又は9記載の方法。
    Figure JPOXMLDOC01-appb-C000004
    c) ring-opening polymerization of a lactone monomer starting from the first substituent, and at least a part of the hydroxyl group is represented by the following formula (II) (wherein X is a straight chain having 2 to 8 carbon atoms) Linear or branched alkylene group having 3 to 8 carbon atoms having branched or acetyl groups, and straight chain or branched alkylene having 3 to 8 carbon atoms having an ether bond 10. The method according to claim 8, further comprising a step of substitution with a second substituent represented by: at least one second group selected from the group consisting of groups, wherein n is 1 to 200. the method of.
    Figure JPOXMLDOC01-appb-C000004
  11.  前記c)工程において、ラクトンモノマーが、ε-カプロラクトン、γ-バレロラクトン、α-メチル-γ-ブチロラクトン及びγ-ブチロラクトンからなる群から選ばれる少なくとも1種の化合物を用いて、前記開環重合を行う請求項10記載の方法。 In the step c), the ring-opening polymerization is performed using at least one compound selected from the group consisting of ε-caprolactone, γ-valerolactone, α-methyl-γ-butyrolactone and γ-butyrolactone in the step c). The method according to claim 10 to be performed.
PCT/JP2012/083421 2011-12-26 2012-12-25 Modified polyrotaxane and method for producing same, and material formed using modified polyrotaxane WO2013099842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280064832.9A CN104024278B (en) 2011-12-26 2012-12-25 Modificationization polyrotaxane and manufacture method thereof and there is modificationization polyrotaxane and the material that formed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-284003 2011-12-26
JP2011284003 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099842A1 true WO2013099842A1 (en) 2013-07-04

Family

ID=48697327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083421 WO2013099842A1 (en) 2011-12-26 2012-12-25 Modified polyrotaxane and method for producing same, and material formed using modified polyrotaxane

Country Status (3)

Country Link
JP (1) JPWO2013099842A1 (en)
CN (1) CN104024278B (en)
WO (1) WO2013099842A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041322A1 (en) * 2013-09-19 2015-03-26 国立大学法人 東京大学 Polyrotaxane in which cyclic molecules have polymer chains, and method for producing same
WO2015159875A1 (en) * 2014-04-15 2015-10-22 宇部興産株式会社 Cast-molded heat-curable polyurethane elastomer
WO2015174187A1 (en) * 2014-05-12 2015-11-19 宇部興産株式会社 Polyurethane resin
WO2016114243A1 (en) * 2015-01-13 2016-07-21 アドバンスト・ソフトマテリアルズ株式会社 Thermoplastic elastomer composition, thermoplastic elastomer, and method for producing thermoplastic elastomer
JP2016194026A (en) * 2015-04-02 2016-11-17 株式会社トクヤマ Method for producing photochromic composition
JP2016204435A (en) * 2015-04-17 2016-12-08 東洋ゴム工業株式会社 Polyol composition for manufacturing soft polyurethane foam and soft polyurethane foam and manufacturing method of soft polyurethane foam
WO2017038865A1 (en) * 2015-09-03 2017-03-09 株式会社トクヤマ Polyrotaxane, production method therefor, and optical composition containing said polyrotaxane
WO2017057521A1 (en) * 2015-09-29 2017-04-06 三菱化学株式会社 Polycarbonate resin composition and molded article of same
JP2017075301A (en) * 2015-10-14 2017-04-20 宇部興産株式会社 Cast thermosetting type polyurethane elastomer
JPWO2016031664A1 (en) * 2014-08-25 2017-06-22 住友精化株式会社 Polyester resin composition and molded body
WO2017130998A1 (en) * 2016-01-26 2017-08-03 アドバンスト・ソフトマテリアルズ株式会社 Composition for polyurethane foam containing polyrotaxane, polyurethane foam derived from composition, and method for producing polyurethane foam
JP2017535662A (en) * 2014-08-20 2017-11-30 レジネート マテリアルズ グループ、インコーポレイテッド Polyester polyols from recycled polymers and waste
JP2018024838A (en) * 2016-07-29 2018-02-15 東レ株式会社 Resin composition and molded article thereof
JP2018062588A (en) * 2016-10-14 2018-04-19 アドバンスト・ソフトマテリアルズ株式会社 Polyurethane foam derived from polyrotaxane-containing composition
WO2018092826A1 (en) * 2016-11-17 2018-05-24 株式会社トクヤマ Urethane resin using polyrotaxane, and polishing pad
WO2018225704A1 (en) 2017-06-06 2018-12-13 アドバンスト・ソフトマテリアルズ株式会社 Polyrotaxane having substituent having polyalkylene oxide chain or derivative thereof in cyclic molecule, and method for producing said polyrotaxane
WO2018235771A1 (en) 2017-06-20 2018-12-27 株式会社トクヤマ Photochromic polyrotaxane compound, and curable composition containing said photochromic polyrotaxane compound
WO2020045325A1 (en) 2018-08-27 2020-03-05 アドバンスト・ソフトマテリアルズ株式会社 Polyrotaxane, thermally curable composition including said polyrotaxane, thermally cured crosslinked object, production method for polyrotaxane, and production method for thermally cured crosslinked object
CN114008142A (en) * 2019-06-19 2022-02-01 株式会社Asm Polyrotaxane having long-chain alkyl group in cyclic molecule, composition having the same, and method for producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153909B (en) * 2015-09-23 2017-07-25 上海贻赛新材料科技有限公司 A kind of high-flexibility PU coating and preparation method thereof
JP2021178909A (en) * 2020-05-13 2021-11-18 株式会社Asm Polyrotaxane having group with chain formed to have propyleneoxy repeating unit in circular molecule
CN113197872B (en) * 2021-06-16 2022-07-26 奥信阳光(北京)药业科技有限公司 Butylphthalide oral lyophilized powder with improved stability and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080469A1 (en) * 2004-01-08 2005-09-01 The University Of Tokyo Compound having crosslinked polyrotaxane and process for producing the same
JP2007063412A (en) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd Hydrophilic modified polyrotaxane and crosslinked polyrotaxane
WO2010092948A1 (en) * 2009-02-16 2010-08-19 日産自動車株式会社 Microparticle/polyrotaxane-containing coating, microparticle/polyrotaxane-containing coating film and coated article
JP2011178931A (en) * 2010-03-02 2011-09-15 Nissan Motor Co Ltd Modified polyrotaxane, method for producing the same and solution, solvent-type coating material and solvent-type coating film produced by using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663968A (en) * 2005-02-21 2005-09-07 山东大学 Hydroxy butyl cyclodextrin derivatives and method for preparing same
JP5051491B2 (en) * 2005-08-31 2012-10-17 日産自動車株式会社 Method for producing cyclic molecular weight loss polyrotaxane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080469A1 (en) * 2004-01-08 2005-09-01 The University Of Tokyo Compound having crosslinked polyrotaxane and process for producing the same
JP2007063412A (en) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd Hydrophilic modified polyrotaxane and crosslinked polyrotaxane
WO2010092948A1 (en) * 2009-02-16 2010-08-19 日産自動車株式会社 Microparticle/polyrotaxane-containing coating, microparticle/polyrotaxane-containing coating film and coated article
JP2011178931A (en) * 2010-03-02 2011-09-15 Nissan Motor Co Ltd Modified polyrotaxane, method for producing the same and solution, solvent-type coating material and solvent-type coating film produced by using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISHIGURO,T. ET AL.: "Some pharmaceutical and inclusion properties of 2-hydroxybutyl-p- cyclodextrin derivative", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 419, no. 1-2, 2011, pages 161 - 169, XP028306625 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041322A1 (en) * 2013-09-19 2015-03-26 国立大学法人 東京大学 Polyrotaxane in which cyclic molecules have polymer chains, and method for producing same
JPWO2015041322A1 (en) * 2013-09-19 2017-03-02 国立大学法人 東京大学 Polyrotaxane in which cyclic molecule has polymer chain and method for producing the same
WO2015159875A1 (en) * 2014-04-15 2015-10-22 宇部興産株式会社 Cast-molded heat-curable polyurethane elastomer
CN106164119A (en) * 2014-04-15 2016-11-23 宇部兴产株式会社 Injection heat curable polyurethane elastomer
JPWO2015159875A1 (en) * 2014-04-15 2017-04-13 宇部興産株式会社 Cast thermosetting polyurethane elastomer
WO2015174187A1 (en) * 2014-05-12 2015-11-19 宇部興産株式会社 Polyurethane resin
JPWO2015174187A1 (en) * 2014-05-12 2017-04-20 宇部興産株式会社 Polyurethane resin
JP2017535662A (en) * 2014-08-20 2017-11-30 レジネート マテリアルズ グループ、インコーポレイテッド Polyester polyols from recycled polymers and waste
JPWO2016031664A1 (en) * 2014-08-25 2017-06-22 住友精化株式会社 Polyester resin composition and molded body
WO2016114243A1 (en) * 2015-01-13 2016-07-21 アドバンスト・ソフトマテリアルズ株式会社 Thermoplastic elastomer composition, thermoplastic elastomer, and method for producing thermoplastic elastomer
US10259940B2 (en) 2015-01-13 2019-04-16 Advanced Softmaterials Inc. Thermoplastic elastomer composition, thermoplastic elastomer, and method for producing thermoplastic elastomer
JPWO2016114243A1 (en) * 2015-01-13 2017-10-19 アドバンスト・ソフトマテリアルズ株式会社 Composition for thermoplastic elastomer, thermoplastic elastomer, and method for producing thermoplastic elastomer
JP2016194026A (en) * 2015-04-02 2016-11-17 株式会社トクヤマ Method for producing photochromic composition
JP2016204435A (en) * 2015-04-17 2016-12-08 東洋ゴム工業株式会社 Polyol composition for manufacturing soft polyurethane foam and soft polyurethane foam and manufacturing method of soft polyurethane foam
JPWO2017038865A1 (en) * 2015-09-03 2018-06-21 株式会社トクヤマ Polyrotaxane, process for producing the same, and optical composition containing the polyrotaxane
US11578174B2 (en) 2015-09-03 2023-02-14 Tokuyama Corporation Polyrotaxane, production method therefor, and optical composition containing said polyrotaxane
WO2017038865A1 (en) * 2015-09-03 2017-03-09 株式会社トクヤマ Polyrotaxane, production method therefor, and optical composition containing said polyrotaxane
US10494488B2 (en) 2015-09-03 2019-12-03 Tokuyama Corporation Polyrotaxane, production method therefor, and optical composition containing said polyrotaxane
WO2017057521A1 (en) * 2015-09-29 2017-04-06 三菱化学株式会社 Polycarbonate resin composition and molded article of same
JPWO2017057521A1 (en) * 2015-09-29 2018-07-19 三菱ケミカル株式会社 Polycarbonate resin composition and molded body thereof
US10703902B2 (en) 2015-09-29 2020-07-07 Mitsubishi Chemical Corporation Polycarbonate resin composition and molded body thereof
JP2017075301A (en) * 2015-10-14 2017-04-20 宇部興産株式会社 Cast thermosetting type polyurethane elastomer
WO2017130998A1 (en) * 2016-01-26 2017-08-03 アドバンスト・ソフトマテリアルズ株式会社 Composition for polyurethane foam containing polyrotaxane, polyurethane foam derived from composition, and method for producing polyurethane foam
US11053367B2 (en) 2016-01-26 2021-07-06 Asm Inc. Composition for polyurethane foam containing polyrotaxane, polyurethane foam derived from composition, and method for producing polyurethane foam
JPWO2017130998A1 (en) * 2016-01-26 2019-01-17 アドバンスト・ソフトマテリアルズ株式会社 Composition for polyurethane foam containing polyrotaxane, polyurethane foam derived from the composition, and method for producing polyurethane foam
JP2018024838A (en) * 2016-07-29 2018-02-15 東レ株式会社 Resin composition and molded article thereof
JP2018062588A (en) * 2016-10-14 2018-04-19 アドバンスト・ソフトマテリアルズ株式会社 Polyurethane foam derived from polyrotaxane-containing composition
JPWO2018092826A1 (en) * 2016-11-17 2019-10-17 株式会社トクヤマ Urethane resin using polyrotaxane and polishing pad
KR20190077322A (en) * 2016-11-17 2019-07-03 가부시끼가이샤 도꾸야마 Urethane resin and polishing pad using polyrotaxane
WO2018092826A1 (en) * 2016-11-17 2018-05-24 株式会社トクヤマ Urethane resin using polyrotaxane, and polishing pad
JP7130556B2 (en) 2016-11-17 2022-09-05 株式会社トクヤマ Urethane resin using polyrotaxane and polishing pad
KR102415172B1 (en) 2016-11-17 2022-07-01 가부시끼가이샤 도꾸야마 Urethane resin and polishing pad using polyrotaxane
US10920007B2 (en) 2016-11-17 2021-02-16 Tokuyama Corporation Urethane resin comprising a polyrotaxane and polishing pad
WO2018225704A1 (en) 2017-06-06 2018-12-13 アドバンスト・ソフトマテリアルズ株式会社 Polyrotaxane having substituent having polyalkylene oxide chain or derivative thereof in cyclic molecule, and method for producing said polyrotaxane
EP3636674A4 (en) * 2017-06-06 2021-03-31 Advanced Softmaterials Inc. Polyrotaxane having substituent having polyalkylene oxide chain or derivative thereof in cyclic molecule, and method for producing said polyrotaxane
US11072667B2 (en) 2017-06-06 2021-07-27 Asm Inc. Polyrotaxane having substituent having polyalkylene oxide chain or derivative thereof in cyclic molecule, and method for producing said polyrotaxane
JPWO2018225704A1 (en) * 2017-06-06 2020-04-09 アドバンスト・ソフトマテリアルズ株式会社 Polyrotaxane having a substituent having a polyalkylene oxide chain or a derivative thereof in a cyclic molecule and a method for producing the same
JP7133227B2 (en) 2017-06-06 2022-09-08 株式会社Asm Polyrotaxane having substituent having polyalkylene oxide chain or derivative thereof in cyclic molecule and method for producing the same
WO2018235771A1 (en) 2017-06-20 2018-12-27 株式会社トクヤマ Photochromic polyrotaxane compound, and curable composition containing said photochromic polyrotaxane compound
WO2020045325A1 (en) 2018-08-27 2020-03-05 アドバンスト・ソフトマテリアルズ株式会社 Polyrotaxane, thermally curable composition including said polyrotaxane, thermally cured crosslinked object, production method for polyrotaxane, and production method for thermally cured crosslinked object
US12006402B2 (en) 2018-08-27 2024-06-11 Asm Inc. Polyrotaxane, thermally curable composition including said polyrotaxane, thermally cured crosslinked object, production method for polyrotaxane, and production method for thermally cured crosslinked object
CN114008142A (en) * 2019-06-19 2022-02-01 株式会社Asm Polyrotaxane having long-chain alkyl group in cyclic molecule, composition having the same, and method for producing the same

Also Published As

Publication number Publication date
CN104024278B (en) 2016-10-26
JPWO2013099842A1 (en) 2015-05-07
CN104024278A (en) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2013099842A1 (en) Modified polyrotaxane and method for producing same, and material formed using modified polyrotaxane
US9034986B2 (en) Solvent-free crosslinked polyrotaxane material and process for production of same
US8580906B2 (en) Polyrotaxane, aqueous polyrotaxane dispersion composition, crosslinked body of polyrotaxane and polymer and method for producing the same
JP5701853B2 (en) Material having crosslinked polyrotaxane and method for producing the same
WO2012165402A1 (en) Material comprising crosslinked polyrotaxane, and process for producing same
WO2011105532A1 (en) Photocrosslinkable polyrotaxane, composition comprising the photocrosslinkable polyrotaxane, crosslinked body derived from the composition, and methods for producing same
JP2019531361A (en) Polysaccharide-containing polyurethane polymer
JP2008174749A (en) Polyether-polysiloxane polyol
Begines et al. Sugar‐based hydrophilic polyurethanes and polyureas
Barikani et al. Synthesis and characterization of polyurethane elastomers based on chitosan and poly (ε‐caprolactone)
Wu et al. Structure and properties of tough thermoplastic starch modified with polyurethane microparticles
WO2015025761A1 (en) Method for producing cellulose derivative, and cellulose derivative
EP2780320B1 (en) New process of preparation of polyols and polyamines, and products as obtained
US12006402B2 (en) Polyrotaxane, thermally curable composition including said polyrotaxane, thermally cured crosslinked object, production method for polyrotaxane, and production method for thermally cured crosslinked object
WO2018221663A1 (en) Cellulose-based resin, molding material, molded body, and method for manufacturing cellulose-based resin
WO2021230268A1 (en) Polyrotaxane having group that has chain formed by having circular molecule have propyleneoxy repeating unit
JP7345819B2 (en) A polyrotaxane having an oxazoline-derived group in a part of the cyclic molecule, a composition containing the polyrotaxane, and a method for producing the polyrotaxane
Jaikaew et al. Development of hyper-branched polylactide and preparation of silica/polylactide biocomposites for use in packaging application
CN111171279A (en) Sulfone group-containing polyurethane, and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863067

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12863067

Country of ref document: EP

Kind code of ref document: A1