WO2013099799A1 - Infrared detector - Google Patents

Infrared detector Download PDF

Info

Publication number
WO2013099799A1
WO2013099799A1 PCT/JP2012/083249 JP2012083249W WO2013099799A1 WO 2013099799 A1 WO2013099799 A1 WO 2013099799A1 JP 2012083249 W JP2012083249 W JP 2012083249W WO 2013099799 A1 WO2013099799 A1 WO 2013099799A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
infrared
pyroelectric element
circuit block
optical filter
Prior art date
Application number
PCT/JP2012/083249
Other languages
French (fr)
Japanese (ja)
Inventor
角 貞幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013099799A1 publication Critical patent/WO2013099799A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Definitions

  • the present invention relates to an infrared detector that includes a pyroelectric element and is configured to detect a change in the amount of infrared rays.
  • a pyroelectric element is generally used as an element for detecting a change in the amount of infrared rays for the purpose of detecting a human body, for example.
  • Infrared detectors using pyroelectric elements are used for automatic control of loads such as lighting in addition to intrusion detectors for crime prevention.
  • Japanese Patent No. 3211074 (hereinafter referred to as “Document 1”) has a metal base part (base part) covered with a metal cap part (cap cover) inside a metal case (package).
  • An infrared detector having a structure containing a pyroelectric element and a signal processing circuit is disclosed.
  • an optical filter that transmits infrared rays is provided on the upper surface of the cap portion, and the infrared rays that have passed through the optical filter enter the detection portion of the pyroelectric element.
  • the infrared detector described in Document 1 is composed of a combination of a bandpass amplifier and a window comparator in the signal processing circuit. Thereby, the infrared detector converts the output of the pyroelectric element into a voltage, takes out a signal of a predetermined frequency by a bandpass amplifier, and outputs an H, L level signal from a window comparator in which a threshold value is set in advance.
  • Japanese utility model registration number 3133907 includes a plurality of pyroelectric elements (pyroelectric infrared detection elements) and a signal processing circuit (detection circuit) in the same casing (package).
  • An infrared detector having the above configuration is disclosed.
  • independent signal processing circuits are connected to the electrodes of a plurality of pyroelectric elements, and an independent signal is output for each pyroelectric element.
  • an infrared detector becomes a structure from which the isolation
  • the infrared detector can simultaneously detect infrared rays in different wavelength ranges and output each detection result independently, the output can be used to identify, for example, the type of detection target or remove noise. It is done.
  • the distribution of the infrared fluctuation amount for each wavelength range is known, it is possible to identify the type of the detection target from this distribution, and from the difference in the infrared fluctuation amount in different wavelength ranges, from the detection target such as a human body. It is considered possible to detect noise components such as environmental temperature.
  • the present invention has been made in view of the above-described reasons, and an object thereof is to provide an infrared detector capable of simultaneously detecting infrared rays in different wavelength ranges and independently outputting each detection result.
  • the infrared detector of the present invention includes a detector (3), a circuit block (5), a housing (2), and an optical filter (7).
  • the detection body (3) includes at least one pyroelectric element (300) and includes first and second detection units (31 and 32) configured to generate first and second signals, respectively.
  • the circuit block (5) includes first and second amplification units configured to amplify the first and second signals, respectively.
  • casing (2) has a window hole (222), and accommodates the said detection body (3) and the said circuit block (5).
  • the optical filter (7) is provided in the window hole (222) and is configured to transmit infrared rays.
  • the optical filter (7) includes first and second transmission regions (71 and 72) at positions corresponding to the first and second detection units (31 and 32), respectively.
  • the optical filter (7) is configured so that the infrared transmission characteristics of the first transmission region (71) are different from those of the second transmission region (72).
  • the circuit block (5) comprises a signal processing circuit configured to process a signal from the detector (3).
  • the casing (2) includes a base part (21) through which a terminal pin (6) electrically connected to the circuit block (5) is inserted, and a metal casing together with the base part (21).
  • the cap part to comprise is provided.
  • the window hole (222) is an opening provided in a part of the cap part (22).
  • the detection body (3) is supported by the circuit block (5) at a position facing the optical filter (7) in the housing (2).
  • the first and second detectors (31 and 32) are arranged at different positions in a plane along the optical filter (7).
  • the area of the first transmission region (71) is different from that of the second transmission region (72).
  • the infrared detector is disposed in a space between the detection body (3) and the optical filter (7) in the housing (2), and the space is disposed in the first detection unit ( 31) and a partition (8) for partitioning between the second detector (32).
  • the partition (8) has a surface on which a reflective surface for reflecting infrared rays is formed.
  • the detection body (3) includes first and second pyroelectric elements (300a and 300b) constituting the first and second detection units (31 and 32), respectively.
  • the pyroelectric element (300) has a rectangular plate shape and is fixed to the circuit block (5) by at least four fixing points (302). Each of the at least four fixed points (302) is located on a pair of opposite sides on the surface of the pyroelectric element (300).
  • the circuit block (5) includes a substrate (51) having a first surface facing the window hole (222) and a second surface facing the base portion (21).
  • the detector (3) is attached to the first surface of the substrate (51), while the electronic components constituting the signal processing circuit (41, 42) are disposed on the second surface of the substrate (51). It is attached.
  • the detector (3) includes the pyroelectric element (300) and first and second electrode portions (302a and 302b) connected to both ends of the pyroelectric element (300), respectively. Become. The pyroelectric element (300) and the first electrode part (302a) constitute the first detection part (31), while the pyroelectric element (300) and the second electrode part (302b) The second detector (31) is configured.
  • the detection body (3) is connected to the first and second pyroelectric elements (300a and 300b) arranged in parallel and the first and second pyroelectric elements (300a and 300b), respectively.
  • the first and second electrode portions (302a and 302b) are connected to each other.
  • the first pyroelectric element (300a) and the first electrode part (302a) constitute the first detection part (31), while the second pyroelectric element (300b) and the second pyroelectric element (302a)
  • the electrode part (302b) constitutes the second detection part (31).
  • the present invention has an advantage that infrared rays in different wavelength ranges can be simultaneously detected and each detection result can be output independently.
  • FIG. 1A is an external perspective view of the infrared detector according to the first embodiment of the present invention
  • FIG. 1B is a perspective view of the infrared detector with a cap portion removed.
  • 2A and 2B are perspective views of a circuit block in the infrared detector as viewed from the front surface side and the back surface side, respectively.
  • 3A to 3C are explanatory diagrams of the assembly process of the circuit block. It is a perspective view which shows the inside of the circuit block.
  • FIG. 8A to 8C are perspective views showing a main part of an infrared detector according to the second embodiment of the present invention.
  • 9A and 9B are a perspective view and a side view, respectively, of a main part of an infrared detector according to the third embodiment of the present invention.
  • the infrared detector 1 of the present embodiment includes a detector 3 including a pyroelectric element 300 that is an infrared detection element and an IC (integrated IC) including a signal processing circuit in a metal housing 2.
  • the ICs mounted on the circuit block 5 include the first IC 41 and the second IC 42 (see FIG. 2B).
  • IC40 the first IC 41 and the second IC 42 are not particularly distinguished, they are simply “ IC40 ".
  • the casing 2 is a cap formed in a cylindrical shape having a base portion (stem) 21 made of metal and formed in a disk shape, and a flat base 221 made of metal and defining a front surface (upper surface in FIG. 1A). Part 22.
  • the cap part 22 has an open rear surface (lower surface in FIG. 1), and is combined with the base part 21 so as to be covered from the front and joined to the base part 21 to form the housing 2.
  • 1A shows the appearance of the infrared detector 1
  • FIG. 1B shows the infrared detector 1 with the cap portion 22 removed (the cap portion 22 is indicated by a two-dot chain line).
  • the base part 21 has a flat disk shape, and the outer periphery of the front part 210 is set back more than the outer periphery of the rear part, and a flange part 211 is formed on the rear part.
  • the base portion 21 is joined to the cap portion 22 by joining the opening edge of the cap portion 22 to the front surface (upper surface in FIG. 1B) of the flange portion 211.
  • a plurality of (four in this embodiment) terminal pins 6 that are electrically connected to the circuit block 5 are inserted into the base portion 21, and the circuit block 5 inside the housing 2 and the circuit block 5 inside the housing 2 are inserted. It enables electrical connection with.
  • the base portion 21 has a plurality of (four in this embodiment) through holes 212 formed inside the front surface portion 210, and the terminal pins 6 are inserted into the respective through holes 212.
  • the base portion 21 is formed such that the diameter of the through hole 212 is larger than the diameter of the terminal pin 6, and the gap between the inner peripheral surface of the through hole 212 and the terminal pin 6 is filled with a filler.
  • a conductive filler is used for the through hole 212 through which the terminal pin 6 for ground connection is inserted, and the casing 2 is set to the ground potential, and an insulating filler is used for the other through holes 212.
  • a convex portion 213 for positioning is formed on a part of the outer peripheral surface of the flange portion 211.
  • a square (here, square) opening is formed as a window hole 222 for taking infrared rays into the housing 2.
  • An optical filter 7 that transmits infrared rays is provided in the window hole 222 so as to close the window hole 222.
  • the detection body 3 is arranged behind (directly below) the window hole 222 in the housing 2, and thereby infrared rays transmitted through the optical filter 7 from the outside of the housing 2 are applied to the detection body 3. It will be incident.
  • the optical filter 7 is formed by depositing multiple layers of various metal materials on the surface of a support made of single crystal silicon.
  • the optical filter 7 has a rectangular (rectangular) plate shape that is slightly larger than the window hole 222, and the front surface (upper surface) is dug down by one step so that the outer peripheral portion is thinner than other portions. Is adhered to the periphery of the window hole 222 on the back surface (lower surface) of the flat base 221 with a conductive adhesive or the like.
  • the optical filter 7 also has a function as a shield for protecting against external electromagnetic noise.
  • the inner side and the outer side of the cap part 22 may be coated with urethane resin, epoxy resin, or the like.
  • the cap portion 22 is set to have a depth dimension (a dimension in the front-rear direction) smaller than the outer diameter.
  • the detector 3 is composed of a pyroelectric element 300 formed of a material such as lithium tantalate or lead zirconate titanate (PZT) and having spontaneous polarization.
  • the pyroelectric element 300 is formed in a square plate shape.
  • the detection body 3 can detect the amount of change in infrared rays using a phenomenon (pyroelectric effect) in which the surface charge changes according to the temperature change caused by infrared rays incident on the front surface of the pyroelectric element 300.
  • the detection body 3 is supported by the circuit block 5 at a position facing the optical filter 7 in the housing 2 so as to be arranged behind (directly below) the window hole 222.
  • the detection body 3 has a plurality of detection units, for example, a first detection unit 31 and a second detection unit, which are arranged at different positions in the plane facing the optical filter 7. Part 32.
  • the first detector 31 and the second detector 32 arranged side by side facing the optical filter 7 individually receive the infrared rays and generate the first signal and the second signal, respectively.
  • the first detection unit 31 and the second detection unit 32 include one pyroelectric element 300, and are configured to be point-symmetric with respect to the center of the pyroelectric element 300 as a symmetric point.
  • detection unit 30 when the first detection unit 31 and the second detection unit 32 are not particularly distinguished, they are simply referred to as “detection unit 30”.
  • the first detector 31 (30) is a rectangular plate having a thickness of about 5 to 50 ⁇ m made of substantially the same material as the material forming the pyroelectric element 300 on the front and back surfaces (first and second surfaces) of the pyroelectric element 300.
  • the first and second elements 301a (301) having a shape (only the front element is shown in FIG. 1) are formed.
  • the second detector 32 is a rectangular plate having a thickness of about 5 to 50 ⁇ m made of substantially the same material as the material forming the pyroelectric element 300 on the front and back surfaces (first and second surfaces) of the pyroelectric element 300.
  • the first and second elements 301b (301) having a shape are formed.
  • a structure for supporting the element 301 with another material is not necessary.
  • the detection units 30 are arranged with an interval of, for example, 10 ⁇ m or more.
  • a first electrode portion connected to the first and second elements 301a and a second electrode portion connected to the first and second elements 301b are formed on the front surface of the pyroelectric element 300.
  • the first electrode portion includes two electrodes 302a (302)
  • the second electrode portion includes two electrodes 302b (302).
  • the 1st detection part 31 consists of a pyroelectric element 300 and a 1st electrode part
  • the 2nd detection part 32 consists of a pyroelectric element 300 and a 2nd electrode part.
  • the first electrode unit includes an electrode 302a connected to the first element 301a on the front side in the first detection unit 31 and an electrode 302a connected to the second element on the back side.
  • the pyroelectric elements 300 are arranged on the first side of the front surface.
  • the second electrode unit includes an electrode 302b connected to the first element 301b on the front surface side in the second detection unit 32 and an electrode 302b connected to the second element on the back surface side. It is arranged on the second side of the front surface of the element 300.
  • the first side and the second side are a pair of sides facing each other in the direction in which the first detection unit 31 and the second detection unit 32 are arranged on the outer peripheral edge of the pyroelectric element 300.
  • the first and second electrode portions are connected to both ends of the pyroelectric element 300, respectively.
  • a slit 303 is formed in the part.
  • the slits 303 are formed along a pair of sides facing each other in the direction in which the first detection unit 31 and the second detection unit 32 are arranged on the outer peripheral edge of each detection unit 30.
  • the width dimension of the slit 303 is, for example, at least 10 ⁇ m (10 ⁇ m or more). Note that the slits 303 may be provided on the entire periphery of the outer peripheral edge of each detection unit 30 except for the part where the wiring between the element 301 and the electrode 302 needs to be routed.
  • the circuit block 5 includes an insulating substrate 51 formed in a disk shape.
  • the substrate 51 has a first surface facing the window hole 222 of the cap portion 22 and a second surface facing the base portion 21.
  • the circuit block 5 supports the detection body 3 by attaching the detection body (pyroelectric element 300) 3 to the front surface (first surface) of the substrate 51.
  • a plurality of (here, four) element connection pads 52 are formed on the front surface (upper surface) of the substrate 51, and the electrodes 302 are fixed to the element connection pads 52 with a conductive adhesive. By doing so, the detection body 3 is attached.
  • the conductor pattern including the element connection pads 52 is formed by a metal plate, plating, or the like.
  • the conductor pattern includes a via wiring 53 (see FIG. 4) penetrating the substrate 51 in the thickness direction, and the element connection pad 52 is an IC connection pad 54 provided on the back surface of the substrate 51 through the via wiring 53. (See FIG. 2B).
  • the circuit block 5 uses an organic material such as glass fiber and epoxy resin, or an inorganic material such as ceramic as an insulator, and the substrate 51 is also formed of these materials (here, glass epoxy resin). Copper is mainly used as the conductor pattern, and surface treatment with silver or gold is performed according to the connection method.
  • the substrate 51 is not limited to the structure in which the conductive pattern as described above is formed on the insulating base material, but a structure in which a metal plate (for example, a copper plate) formed in a predetermined shape is supported by a molding resin or the like. It may be.
  • a recess 511 that secures a gap for thermal insulation between the pyroelectric element 300 and the pyroelectric element 300 is formed in a portion of the first surface of the substrate 51 that is directly behind the detection unit 30 as shown in FIG. Has been.
  • the recess 511 is slightly smaller than the pyroelectric element 300 and is formed at a position sandwiched between the element connection pads 52 on the front surface of the substrate 51, and the pyroelectric element 300 is disposed across both sides of the recess 511.
  • the depth of the recess 511 is set to at least 0.1 mm (0.1 mm or more), for example.
  • the detection unit 30 does not directly contact the surface of the circuit block 5, so that the thermal insulation between the pyroelectric element 300 and the circuit block 5 can be taken, and the detection body 3. Increased sensitivity.
  • the pyroelectric element 300 is not recessed by the recess 511 for ensuring sensitivity so that the pyroelectric element 300 is not inclined with respect to the normal of the flat base 221 of the cap portion 22 or the surface of the circuit block 5. 511 is installed on both sides.
  • the IC 40 is disposed on the back side of the substrate 51, and ultrasonic waves or heat and ultrasonic waves are transmitted by a thin metal wire (bonding wire) 55 with some terminals made of gold, aluminum, or copper. It is connected to the IC connection pad 54 using the wire bonding technique used together. Furthermore, in addition to the IC connection pad 54, a conductive pad for connecting the IC 40 is formed on the back surface of the substrate 51, and other terminals of the IC 40 are connected to the conductive pad by a thin metal wire 55. A plurality (four in this case) of terminal connection pads 56 for connecting the terminal pins 6 are formed on the back surface of the substrate 51 in correspondence with the terminal pins 6. The four terminal connection pads 56 are arranged at equal intervals along the outer peripheral edge of the back surface of the substrate 51 on the outer peripheral portion of the back surface of the substrate 51.
  • the first IC 41 (40) and the second IC 42 (40) include first and second signal processing circuits, respectively, and the first detection unit 31 and the second detection unit of the detection body 3 are included.
  • the first and second signals from 32 are configured to be processed.
  • Each of the first and second signal processing circuits includes a first amplifier connected to the first detector 31 and a second amplifier connected to the second detector 32. Yes.
  • the first amplification unit and the second amplification unit individually process (amplify) and output the first and second signals from the first detection unit 31 and the second detection unit 32, respectively.
  • the first amplifying unit is configured by the first IC 41
  • the second amplifying unit is configured by the second IC 42. That is, the first IC 41 is connected to the first detection unit 31 to amplify and output the first signal from the first detection unit 31, and the second IC 42 is connected to the second detection unit 32. The second signal from the second detector 32 is amplified and output.
  • the first amplifying unit and the second amplifying unit consist of separate ICs 41 and 42, and one IC includes a plurality of amplifying units (first amplifying unit and second amplifying unit). May be.
  • each IC 40 includes a band-pass amplifier and a window comparator, takes out a signal of a predetermined frequency by the band-pass amplifier, and outputs H and L level signals from a window comparator in which a threshold value is set in advance.
  • the optical filter 7 includes a first transmission region 71 arranged at a position corresponding to the first detection unit 31, and a second transmission region 71. And a second transmission region 72 arranged at a position corresponding to the detection unit 32.
  • the infrared transmission characteristics of the first transmission region 71 are different from those of the second transmission region 72.
  • the first transmission region 71 transmits only the far infrared ray having the first wavelength (wavelength 4 ⁇ m) or more
  • the second transmission region 72 has only the near infrared ray having the second wavelength (wavelength 2 ⁇ m) or less. Where the first wavelength is longer than the second wavelength.
  • the optical filter 7 provided in the window hole 222 of the cap portion 22 has a plurality of transmission regions, that is, the first transmission regions 71 in the direction in which the first detection unit 31 and the second detection unit 32 are arranged. And a second transmissive region 72.
  • the optical filter 7 is divided into two equal parts in the direction in which the first detection unit 31 and the second detection unit 32 are arranged, and the portion facing the first detection unit 31 is the first transmission. The portion that becomes the region 71 and faces the second detection unit 32 becomes the second transmission region 72.
  • the first detection unit 31 is located in the vertical projection plane of the first transmission region 71 with respect to the front surface of the detection body 3, and the second detection unit 32 is perpendicular to the second transmission region 72 with respect to the front surface of the detection body 3. Located in the projection plane. Therefore, when infrared rays are incident on the window hole 222, infrared rays that have passed through the first transmission region 71 are incident on the first detection unit 31, and the second detection region 32 is transmitted through the second transmission region 72. Incident infrared rays.
  • the first detection unit 31 and the second detection unit 32 simultaneously receive infrared rays having different wavelength ranges. It will be incident.
  • the output of the first detection unit 31 and the output of the second detection unit 32 are mutually transmitted by the first IC (first amplification unit) 41 and the second IC (second amplification unit) 42. Since the processing is performed independently and independently, the output of the first detection unit 31 and the output of the second detection unit 32 are not mixed. Therefore, since the infrared detector 1 outputs separately the detection results corresponding to the infrared rays having different wavelength ranges incident on the first detection unit 31 and the second detection unit 32 at the same time, as a result, different wavelength ranges are obtained. Infrared rays can be detected at the same time, and each detection result can be output independently.
  • the optical filter 7 is formed by a method such as vapor deposition using a metal mask on a single silicon single crystal support, for example, transmission regions having different transmission characteristics (the first transmission region 71 and the second transmission region). 72) is formed.
  • the present invention is not limited to this configuration, and a plurality of (two) optical filters having different transmission characteristics are separated into individual pieces, and the plurality of optical filters are arranged side by side and attached to the support, whereby the first optical filter is used for each optical filter.
  • the transmissive region 71 and the second transmissive region 72 may be configured.
  • the infrared transmission characteristics are not limited to the wavelength range, and may be, for example, the polarization direction.
  • the first transmission region 71 and the second transmission region 72 are made of polarizing filters having different polarization directions, and the first detection unit 31 and the second detection unit 32 simultaneously receive infrared rays having different polarization directions. It will be incident.
  • the infrared transmission wavelength (for example, 4 ⁇ m or more) of the first transmission region 71 may be the same as that of the second transmission region 72.
  • FIG. 3A to 3C show a state in which the circuit block 5 is viewed from the mounting surface (hereinafter referred to as the back surface) side of the IC 40.
  • FIG. 3A to 3C show a state in which the circuit block 5 is viewed from the mounting surface (hereinafter referred to as the back surface) side of the IC 40.
  • the worker who performs the assembly mounts and fixes each IC 40 on the back surface of the substrate 51 on which the conductor pattern is formed with epoxy resin or the like, and further attaches each IC 40 to the conductor pattern on the substrate 51 with the metal thin wire 55.
  • the connection between the conductor pattern and the terminal of the IC 40 is performed by using a combination of heating and ultrasonic waves using a thin metal wire 55 such as aluminum, gold, or copper, or by using only ultrasonic waves. Performed by solid phase diffusion.
  • the sealing frame 57 is formed in a substantially annular shape that is slightly smaller than the outer periphery of the back surface of the substrate 51, and the height dimension from the back surface of the substrate 51 is at least larger than the IC 40 and the fine metal wire 55. Further, in the sealing frame 57, the portions corresponding to the four terminal connection pads 56 are recessed inward so as to avoid the terminal connection pads 56.
  • the operator fills the sealing frame 57 with a sealing material 58 such as a liquid epoxy resin and heat cures the sealing material 58.
  • a sealing material 58 such as a liquid epoxy resin and heat cures the sealing material 58.
  • the enclosed IC 40 and fine metal wire 55 are sealed with a sealing material 58.
  • the sealing material 58 is prevented from turning around the front surface of the substrate 51 (the mounting surface of the detection unit 3) and the terminal connection pads 56.
  • the operator turns the board 51 upside down so that the mounting surface of the detection unit 3 faces up, mounts and bonds the board 51 to the central portion of the front surface of the base 21 holding the terminal pins 6, and faces the terminal pins 6 facing each other.
  • the terminal connection pad 56 are made conductive with a conductive adhesive or the like. Then, the operator places the pyroelectric element 300 on the substrate 51 and fixes the electrode 302 to the element connection pad 52 with a conductive adhesive, thereby fixing the detector 3 to the circuit block 5 and electrically connecting it.
  • the terminal connection pad 56 connected to the terminal pin 6 may have a shape in which a step is formed and a conductive adhesive can be applied from a gap between the terminal pin 6 and the terminal pin 6 generated by the step.
  • the housing 2 is a so-called CAN package, which can improve the shielding effect against external noise and improve weather resistance by improving airtightness.
  • the change in surface charge due to the incidence of infrared rays on the detection body 3 including the pyroelectric element 300 is very small.
  • the IC 40 constituting the signal processing circuit generates a relatively large output of the detection body 3 in the housing 2. Amplify to signal. Therefore, it is desirable to provide a function for preventing the detection body 3 and the IC 40 from being capacitively coupled also in the housing (CAN package) 2 that protects against electromagnetic noise.
  • a shield plate 59 having a ground potential is provided in the circuit block 5 as shown in FIG.
  • the shield plate 59 is a thin plate-like conductor parallel to the back surface of the substrate 51, and is embedded in the substrate 51 so as to be positioned between the detection body 3 and the IC 40.
  • the detection body 3 and the IC 40 are connected to each other.
  • the through-hole 591 is vacant only in the portion through which the via wiring 53 to be connected is passed.
  • a reference pattern 592 of the reference potential of the signal processing circuit may be provided in the 591.
  • the reference pattern 592 is formed in an arc shape that is separated from the periphery of the through hole 591 of the shield plate 59 and surrounds one via wiring 53 of the pair of via wirings 53 connected to each detection unit 30. It is connected to the other via wiring 53.
  • the shield plate 59 and the reference pattern 592 are not limited to a structure in which a pattern formed on an insulating base material constituting the substrate 51 is formed, but a metal plate (copper plate) formed in a predetermined shape. A structure in which a conductive adhesive is attached to the material may be used.
  • the terminal pin 6 may be configured to penetrate the substrate 51 and be connected to the circuit block 5 on the mounting surface side of the detection unit 3 in the substrate 51.
  • a shield plate 59 that prevents capacitive coupling between the output of the IC 40 and the detection body 3 is also disposed between the terminal pin 6 connected to the output of the IC 40 and the detection body 3. Is desirable.
  • the infrared detector 1 of the present embodiment since the transmission characteristics of the first transmission region 71 of the optical filter 7 are different from those of the second transmission region 72, the first detector 31 and the second detector The detection unit 32 can simultaneously detect infrared rays having different wavelength ranges. Further, the output of the first detection unit 31 and the output of the second detection unit 32 are separately processed by the first IC (first amplification unit) 41 and the second IC (second amplification unit) 42. Therefore, infrared rays in different wavelength ranges can be detected simultaneously, and each detection result can be output independently.
  • the type of detection target can be identified and noise can be removed.
  • the distribution of the infrared fluctuation amount for each wavelength range is known, it is possible to identify the type of the detection target from this distribution, and from the difference in the infrared fluctuation amount in different wavelength ranges, from the detection target such as a human body. Detection that removes noise components such as environmental temperature becomes possible.
  • the infrared detector 1 sets a plurality of wavelength ranges to be detected, thereby distinguishing and detecting heat sources having different temperatures, such as humans and small animals, and improving detection accuracy by comparing with reference light. It becomes possible.
  • the infrared transmission wavelengths of the first transmission region 71 and the second transmission region 7 are set to the same value (for example, 4 ⁇ m or more), and the polarization directions of the first transmission region 71 and the second transmission region 72 are made different.
  • the moving direction (vertical, horizontal) of the heat source can be determined from the output of the infrared detector 1.
  • a filter having a large number of grooves on the surface is used as the optical filter 7, and the movement direction of the heat source (similarly by changing the direction of the grooves in the first transmission region 71 and the second transmission region 72 ( (Vertical, horizontal) can be discriminated.
  • thermal stress from the circuit block 5 may be applied to the pyroelectric element 300. Since the surface charge of the pyroelectric element 300 also responds to stress, the detector 3 may generate an output in response to the thermal stress from the circuit block 5 regardless of the incidence of infrared rays. In particular, if a thermal stress is applied to the detection unit 30, the signal is directly output as a signal. Therefore, it is desirable to reduce the influence of the thermal stress on the pyroelectric element 300 as much as possible.
  • the pyroelectric element 300 is fixed to the circuit block 5 with each electrode 302 as a fixing point by fixing the electrodes 302 formed at four places to the element connection pads 52 of the circuit block 5 with a conductive adhesive.
  • these four fixed electrodes 302 are arranged one by one on each side of the front surface of the pyroelectric element 300, depending on the difference in coefficient of linear expansion and elastic coefficient with the circuit block 5. Since the applied stress is applied to the pyroelectric element 300 from each side, the influence of the thermal stress becomes relatively large.
  • the four electrodes 302 as these fixed points are on a pair of sides (first side, second side) facing each other on the front surface of the pyroelectric element 300 as described above. They are arranged separately. That is, the fixed points of the pyroelectric element 300 are both positioned on a pair of sides facing each other on the surface of the pyroelectric element 300.
  • the thermal stress from the circuit block 5 to the pyroelectric element 300 can be unidirectional, and there is an advantage that the influence of the thermal stress can be reduced.
  • the detection body 3 does not allow the temperature change detected by each detection unit 30 to escape to the outside, and each detection unit 30 has a reduced heat capacity to improve detection sensitivity.
  • a slit 303 is formed in a part of the outer peripheral edge of the. Since the slit 303 is formed between the electrode 302 as a fixed point and the detection unit 30, thermal stress from the circuit block 5 to the detection unit 30 can be further reduced.
  • the detection body 3 may further include a detection unit in addition to the two detection units 30 of the first detection unit 31 and the second detection unit 32. That is, the detection body 3 includes at least the first detection unit 31 and the second detection unit 32 such as the first detection unit 31, the second detection unit 32, the third detection unit, and so on.
  • One pyroelectric element 300 may have three or more detection units. For example, when there are first to third detection units, the third detection unit is connected to the third amplification unit, and the optical filter 7 includes the first transmission region 71, the second transmission region 72, The infrared transmission characteristics are different from those of the third transmission region arranged at a position corresponding to the three detection units.
  • each detection unit is different. Infrared rays in the wavelength range can be detected simultaneously, and each detection result can be output independently.
  • the arrangement of a plurality of (two or more) detectors on the pyroelectric element 300 constituting the detector 3 may be a matrix, a row, or a random.
  • the detection body 3 may include a plurality of pyroelectric elements 300, and the first detection unit 31 and the second detection unit 32 may be formed in separate pyroelectric elements 300.
  • the detection body 3 includes a first pyroelectric element 300a (300) and a second pyroelectric element 300b (300), and the first detection unit 31 is formed by the first pyroelectric element 300a.
  • the second detection unit 32 is formed by the second pyroelectric element 300b.
  • These pyroelectric elements 300 are arranged on the front surface of the substrate 51 at a predetermined interval.
  • Each pyroelectric element 300 has at least two electrodes 302, and each electrode 302 is fixed to the circuit block 5 by fixing the electrode 302 to the element connection pad 52 of the circuit block 5 with a conductive adhesive. Connected. Furthermore, even when the detection body 3 includes a plurality of pyroelectric elements 300, a plurality of detection units may be formed in each pyroelectric element 300.
  • the optical filter 7 may be formed using single crystal silicon having a curved surface so as to have a light collecting function.
  • the optical filter 7 has a curved surface on the front surface (front surface) exposed from the window hole 222 to the outside of the housing 2, whereby infrared rays transmitted through the optical filter 7 are collected in the detection unit 30. To be lighted.
  • the wiring between the detector 3 and the IC 40 has sufficient insulation (for example, 1 T ⁇ or more) with respect to the wiring of other potential.
  • the IC 40 including the signal processing circuit is formed by using a semiconductor integrated circuit manufacturing technique, and is formed on the surface of a silicon single crystal. Therefore, a plurality of amplifying sections (first amplifying section and second amplifying section) may be formed on the surface of a single silicon single crystal, or amplifying sections may be formed individually on each of the plurality of silicon single crystals. May be.
  • connection of the detection body 3 and the power source to the signal processing circuit (IC 40) is not limited to the wire bonding technique, but the flip chip technique using the metal protrusion formed on the electrode on the silicon single crystal, or copper or eutectic metal. You may perform using the soldering technique using.
  • a multi-component eutectic metal may be bonded with a material having a melting point of 300 ° C. or higher after heat treatment at a temperature of 250 ° C. or lower.
  • a sealing material 58 such as an epoxy resin, a urethane resin, or a silicone resin in order to protect from the external environment and ensure strength.
  • the infrared detector 1 is not limited to use as a human body detection, but may be used as a gas sensor, for example. Specific examples of infrared transmission characteristics of the first transmission region 71 and the second transmission region 72 when used as a gas sensor are shown below.
  • the first transmission region 71 is a band-pass filter having a transmission center wavelength of 4.26 ⁇ m and a half-value width of 0.18 ⁇ m
  • the second transmission region 72 is a band-pass filter having a transmission center wavelength of 3.95 ⁇ m and a half-value width of 0.16 ⁇ m. It may be used vessel 1 as CO 2 sensor. In this case, infrared rays that pass through the first transmission region 71 and enter the first detection unit 31 become the detection wavelength range, and infrared rays that pass through the second transmission region 72 and enter the second detection unit 32 This is the reference wavelength region.
  • the first transmission region 71 is a bandpass filter having a transmission center wavelength of 3.30 ⁇ m and a half width of 0.16 ⁇ m
  • the second transmission region 72 is a transmission center wavelength of 3.95 ⁇ m and a half width of 0.16 ⁇ m.
  • the infrared detector 1 can be used as a CH 4 sensor. In this case, infrared rays that pass through the first transmission region 71 and enter the first detection unit 31 become the detection wavelength range, and infrared rays that pass through the second transmission region 72 and enter the second detection unit 32 This is the reference wavelength region.
  • the infrared detector 1 of this embodiment is different from the infrared detector 1 of the first embodiment in that the optical filter 7 has a different area for each transmission region.
  • symbol is attached
  • the area of the first transmission region 71 is different from that of the second transmission region 72 as shown in FIGS. 8A to 8C.
  • the optical filter 7 is not divided into two equal parts, and the second transmission region 72 is divided so as to be larger than the first transmission region 71.
  • the window hole 222 is formed in a shape in which the width of the portion corresponding to the second transmission region 72 is made smaller than the portion corresponding to the first transmission region 71, and the second transmission region 72 is formed. It is smaller than the first transmission region 71.
  • two window holes 222 are provided, and the window hole 222 provided with the second transmission region 72 is formed smaller than the window hole 222 provided with the first transmission region 71.
  • the second transmission region 72 is smaller than the first transmission region 71.
  • the infrared transmission factor itself may be different.
  • the area of the first transmission region 71 is the first transmission region 71.
  • the optical filter 7 By configuring the optical filter 7 so as to be different from that of the two transmission regions 72, the difference in transmittance can be absorbed.
  • the transmittance of the first transmission region 71 and the second transmission region 72 so that there is no bias between the amount of infrared light incident on the first detection unit 31 and the amount of infrared light incident on the second detection unit 32. It is sufficient that the light receiving area of each transmission region is adjusted according to the above.
  • each detection unit 30 in the detection body 3 may also be changed according to the transmission region.
  • Other configurations and functions are the same as those in the first embodiment.
  • the infrared detector 1 of the present embodiment is disposed in a space between the detector 3 and the optical filter 7 in the housing 2, and the space is connected to the first detector 31.
  • the infrared detector according to the first embodiment is different from the first embodiment in that a partition 8 for partitioning with the second detector 32 is provided.
  • a partition 8 for partitioning with the second detector 32 is provided.
  • the detection body 3 has a plurality of detection units 30 and the outputs of the detection units 30 are processed by separate amplification units.
  • a partition 8 is provided between the plurality of detection units 30 so that interference does not occur as much as possible.
  • the partition 8 is formed between adjacent detectors 30 and prevents infrared rays incident on each detector 30 from interfering with other detectors 30. That is, the partition 8 partitions the space between the detection body 3 and the optical filter 7 in the housing 2, and the infrared light that has passed through the first transmission region 71 enters the second detection unit 32. The infrared rays transmitted through the second transmission region 72 are prevented from entering the first detection unit 31.
  • the partition 8 may be formed, for example, on the surface of the circuit block 5 by molding, or may be configured as a separate member from the circuit block 5 and fixed (adhered) on the circuit block 5.
  • the partition 8 may be formed of a support (silicon single crystal) or a vapor deposition body of the optical filter 7, or may be formed as a separate member from the optical filter 7 and fixed (adhered) to the optical filter 7. Good.
  • the partition 8 may be formed integrally with the cap part 22 by a metal constituting the cap part 22, or may be configured as a separate member from the cap part 22 and fixed (adhered) to the cap part 22.
  • the partition 8 by providing the partition 8, it is possible to prevent the infrared rays transmitted through the first transmission region 71 from entering the second detection unit 32, and the second transmission region. Infrared rays that have passed through 72 can be prevented from entering the first detector 31. Therefore, it is possible to suppress infrared interference between the plurality of detection units 30.
  • the partition 8 may be formed of a material that reflects infrared light, or may be subjected to surface treatment such as mirror finishing so that the surface thereof forms a reflective surface that reflects infrared light.
  • the partition 8 since the infrared light incident on the partition 8 is reflected by the surface of the partition 8 and enters the detection unit 30, the provision of the partition 8 can suppress a reduction in the amount of infrared light incident on the detection unit 30.
  • partition 8 demonstrated by this embodiment is not restricted to the structure of 1st Embodiment, You may employ
  • Other configurations and functions are the same as those in the first embodiment.

Abstract

This infrared detector includes: a detecting body, which is configured of at least one pyroelectric element, and which is provided with first and second detecting sections that are configured to respectively generate first and second signals; a circuit block, which is provided with first and second amplifying sections that are configured to respectively amplify the first and second signals; a housing, which has a window hole, and which houses the detecting body and the circuit block; and an optical filter, which is provided in the window hole, and which is configured to transmit infrared. The optical filter has first and second transmitting regions at respective positions that correspond to the first and second detecting sections. The optical filter is configured such that infrared transmitting characteristics of the first transmitting region are different from those of the second transmitting region.

Description

赤外線検出器Infrared detector
 本発明は、焦電素子を備え、赤外線量の変化を検出するように構成される赤外線検出器に関する。 The present invention relates to an infrared detector that includes a pyroelectric element and is configured to detect a change in the amount of infrared rays.
 従来から、たとえば人体検知などの目的で赤外線量の変化を検出する素子として、焦電素子が一般的に用いられている。焦電素子を用いた赤外線検出器は、防犯用の侵入検知器の他、照明等の負荷の自動制御用として使われている。 Conventionally, a pyroelectric element is generally used as an element for detecting a change in the amount of infrared rays for the purpose of detecting a human body, for example. Infrared detectors using pyroelectric elements are used for automatic control of loads such as lighting in addition to intrusion detectors for crime prevention.
 例えば、日本国特許番号3211074(以下「文献1」という)は、金属製の土台部(ベース部)に金属製のキャップ部(キャップカバー)を被せてなる金属製の筐体(パッケージ)内部に、焦電素子および信号処理回路を収容した構造の赤外線検出器を開示する。この検出器では、キャップ部の上面に赤外線を透過する光学フィルタ(赤外線フィルタ)が設けられており、光学フィルタを透過した赤外線が焦電素子の検知部に入射する。 For example, Japanese Patent No. 3211074 (hereinafter referred to as “Document 1”) has a metal base part (base part) covered with a metal cap part (cap cover) inside a metal case (package). An infrared detector having a structure containing a pyroelectric element and a signal processing circuit is disclosed. In this detector, an optical filter that transmits infrared rays (infrared filter) is provided on the upper surface of the cap portion, and the infrared rays that have passed through the optical filter enter the detection portion of the pyroelectric element.
 さらに、文献1に記載の赤外線検出器は、信号処理回路にバンドパスアンプおよびウインドコンパレータの組み合わせで構成している。これにより、赤外線検出器は、焦電素子の出力を電圧に変換後、バンドパスアンプで所定周波数の信号を取り出し、予めしきい値を設定したウインドコンパレータからH,Lレベルの信号を出力する。 Furthermore, the infrared detector described in Document 1 is composed of a combination of a bandpass amplifier and a window comparator in the signal processing circuit. Thereby, the infrared detector converts the output of the pyroelectric element into a voltage, takes out a signal of a predetermined frequency by a bandpass amplifier, and outputs an H, L level signal from a window comparator in which a threshold value is set in advance.
 日本国実用新案登録番号3133907(以下「文献2」という)は、複数の焦電素子(焦電型赤外線検出素子)と信号処理回路(検出回路)とを同一の筐体(パッケージ)内に収めた構成の赤外線検出器を開示する。この赤外線検出器は、複数の焦電素子の電極にそれぞれ独立した信号処理回路が接続されており、焦電素子ごとに独立した信号を出力する。これにより、赤外線検出器は、分離独立した赤外線検出領域並びに検出角度が得られる構成となる。 Japanese utility model registration number 3133907 (hereinafter referred to as “Document 2”) includes a plurality of pyroelectric elements (pyroelectric infrared detection elements) and a signal processing circuit (detection circuit) in the same casing (package). An infrared detector having the above configuration is disclosed. In this infrared detector, independent signal processing circuits are connected to the electrodes of a plurality of pyroelectric elements, and an independent signal is output for each pyroelectric element. Thereby, an infrared detector becomes a structure from which the isolation | separation independent infrared detection area | region and detection angle are obtained.
 ところで、赤外線検出器は、異なる波長域の赤外線を同時に検出し各検出結果を独立して出力することができれば、その出力を用いてたとえば検知対象の種別の識別やノイズ除去などが可能になると考えられる。すなわち、波長域ごとの赤外線変動量の分布が分かれば、この分布から検知対象の種別を識別することが可能になり、また、異なる波長域の赤外線変動量の差分から、人体等の検知対象から環境温度等のノイズ成分を除去した検知が可能になると考えられる。 By the way, if the infrared detector can simultaneously detect infrared rays in different wavelength ranges and output each detection result independently, the output can be used to identify, for example, the type of detection target or remove noise. It is done. In other words, if the distribution of the infrared fluctuation amount for each wavelength range is known, it is possible to identify the type of the detection target from this distribution, and from the difference in the infrared fluctuation amount in different wavelength ranges, from the detection target such as a human body. It is considered possible to detect noise components such as environmental temperature.
 しかし、文献1の構成では、1つの焦電素子から1つの出力が得られるだけであるので、異なる波長域の赤外線を同時に検出し各検出結果を独立して出力することはできない。また、文献2の構成であっても、複数の焦電素子および複数の信号処理回路を用いることにより赤外線の検出領域を焦電素子ごとに空間的に分離しているだけであるから、異なる波長域の赤外線を同時に検出し各検出結果を独立して出力することはできない。 However, in the configuration of Document 1, since only one output can be obtained from one pyroelectric element, it is impossible to simultaneously detect infrared rays in different wavelength ranges and output the detection results independently. Further, even in the configuration of Reference 2, since the infrared detection area is spatially separated for each pyroelectric element by using a plurality of pyroelectric elements and a plurality of signal processing circuits, different wavelengths are used. It is not possible to detect the infrared rays in the region simultaneously and output each detection result independently.
 本発明は上記事由に鑑みて為されており、異なる波長域の赤外線を同時に検出し各検出結果を独立して出力することが可能な赤外線検出器を提供することを目的とする。 The present invention has been made in view of the above-described reasons, and an object thereof is to provide an infrared detector capable of simultaneously detecting infrared rays in different wavelength ranges and independently outputting each detection result.
 本発明の赤外線検出器は、検知体(3)、回路ブロック(5)、筐体(2)および光学フィルタ(7)を備える。検知体(3)は、少なくとも1つの焦電素子(300)から成り、第1および第2信号をそれぞれ発生するように構成される第1および第2の検知部(31および32)を備える。回路ブロック(5)は、前記第1および第2信号をそれぞれ増幅するように構成される第1および第2の増幅部を備える。筐体(2)は、窓孔(222)を有し、前記検知体(3)および前記回路ブロック(5)を収納する。光学フィルタ(7)は、窓孔(222)に設けられ、赤外線を透過するように構成される。前記光学フィルタ(7)は、前記第1および第2の検知部(31および32)に対応する位置にそれぞれ第1および第2の透過領域(71および72)を備える。また、前記光学フィルタ(7)は、前記第1の透過領域(71)の赤外線透過特性が前記第2の透過領域(72)のそれと異なるように構成されている。 The infrared detector of the present invention includes a detector (3), a circuit block (5), a housing (2), and an optical filter (7). The detection body (3) includes at least one pyroelectric element (300) and includes first and second detection units (31 and 32) configured to generate first and second signals, respectively. The circuit block (5) includes first and second amplification units configured to amplify the first and second signals, respectively. A housing | casing (2) has a window hole (222), and accommodates the said detection body (3) and the said circuit block (5). The optical filter (7) is provided in the window hole (222) and is configured to transmit infrared rays. The optical filter (7) includes first and second transmission regions (71 and 72) at positions corresponding to the first and second detection units (31 and 32), respectively. The optical filter (7) is configured so that the infrared transmission characteristics of the first transmission region (71) are different from those of the second transmission region (72).
 一実施形態において、前記回路ブロック(5)は、前記検知体(3)からの信号を処理するように構成される信号処理回路を備える。前記筐体(2)は、前記回路ブロック(5)に電気的に接続される端子ピン(6)が挿通された土台部(21)と、前記土台部(21)と共に金属製の筐体を構成するキャップ部とを備える。前記窓孔(222)は、前記キャップ部(22)の一部に設けられた開口である。前記検知体(3)は、前記筐体(2)内で前記光学フィルタ(7)と対向する位置に前記回路ブロック(5)にて支持されている。前記第1および第2の検知部(31および32)は、前記光学フィルタ(7)に沿う面内で異なる位置に配置される。 In one embodiment, the circuit block (5) comprises a signal processing circuit configured to process a signal from the detector (3). The casing (2) includes a base part (21) through which a terminal pin (6) electrically connected to the circuit block (5) is inserted, and a metal casing together with the base part (21). The cap part to comprise is provided. The window hole (222) is an opening provided in a part of the cap part (22). The detection body (3) is supported by the circuit block (5) at a position facing the optical filter (7) in the housing (2). The first and second detectors (31 and 32) are arranged at different positions in a plane along the optical filter (7).
 一実施形態において、前記第1の透過領域(71)の面積は、前記第2の透過領域(72)のそれと異なる。 In one embodiment, the area of the first transmission region (71) is different from that of the second transmission region (72).
 一実施形態において、赤外線検出器は、前記筐体(2)内における前記検知体(3)と前記光学フィルタ(7)との間の空間に配置され、その空間を前記第1の検知部(31)と前記第2の検知部(32)との間で仕切る間仕切り(8)を更に備える。 In one embodiment, the infrared detector is disposed in a space between the detection body (3) and the optical filter (7) in the housing (2), and the space is disposed in the first detection unit ( 31) and a partition (8) for partitioning between the second detector (32).
 一実施形態において、前記間仕切り(8)は、赤外線を反射する反射面が形成された表面を持つ。 In one embodiment, the partition (8) has a surface on which a reflective surface for reflecting infrared rays is formed.
 一実施形態において、前記検知体(3)は、前記第1および第2の検知部(31および32)をそれぞれ構成する第1および第2の焦電素子(300aおよび300b)から成る。 In one embodiment, the detection body (3) includes first and second pyroelectric elements (300a and 300b) constituting the first and second detection units (31 and 32), respectively.
 一実施形態において、前記焦電素子(300)は、矩形板状であって前記回路ブロック(5)に少なくとも4つの固定点(302)で固定されている。前記少なくとも4つの固定点(302)の各々は、前記焦電素子(300)の面における向き合う一対の辺上に位置する。 In one embodiment, the pyroelectric element (300) has a rectangular plate shape and is fixed to the circuit block (5) by at least four fixing points (302). Each of the at least four fixed points (302) is located on a pair of opposite sides on the surface of the pyroelectric element (300).
 一実施形態において、前記回路ブロック(5)は、前記窓孔(222)に面する第1面と前記土台部(21)に面する第2面とを有する基板(51)を備える。前記検知体(3)は、前記基板(51)の第1面に取り付けられている一方、前記信号処理回路(41,42)を構成する電子部品は、前記基板(51)の第2面に取り付けられている。 In one embodiment, the circuit block (5) includes a substrate (51) having a first surface facing the window hole (222) and a second surface facing the base portion (21). The detector (3) is attached to the first surface of the substrate (51), while the electronic components constituting the signal processing circuit (41, 42) are disposed on the second surface of the substrate (51). It is attached.
 一実施形態において、前記検知体(3)は、前記焦電素子(300)と、その焦電素子(300)の両端にそれぞれ接続される第1および第2の電極部(302aおよび302b)より成る。前記焦電素子(300)と前記第1の電極部(302a)が前記第1の検知部(31)を構成する一方、前記焦電素子(300)と前記第2の電極部(302b)が前記第2の検知部(31)を構成する。 In one embodiment, the detector (3) includes the pyroelectric element (300) and first and second electrode portions (302a and 302b) connected to both ends of the pyroelectric element (300), respectively. Become. The pyroelectric element (300) and the first electrode part (302a) constitute the first detection part (31), while the pyroelectric element (300) and the second electrode part (302b) The second detector (31) is configured.
 一実施形態において、前記検知体(3)は、並設される第1および第2の焦電素子(300aおよび300b)と、前記第1および第2の焦電素子(300aおよび300b)にそれぞれ接続される第1および第2の電極部(302aおよび302b)とにより成る。前記第1の焦電素子(300a)と前記第1の電極部(302a)が前記第1の検知部(31)を構成する一方、前記第2の焦電素子(300b)と前記第2の電極部(302b)が前記第2の検知部(31)を構成する。 In one embodiment, the detection body (3) is connected to the first and second pyroelectric elements (300a and 300b) arranged in parallel and the first and second pyroelectric elements (300a and 300b), respectively. The first and second electrode portions (302a and 302b) are connected to each other. The first pyroelectric element (300a) and the first electrode part (302a) constitute the first detection part (31), while the second pyroelectric element (300b) and the second pyroelectric element (302a) The electrode part (302b) constitutes the second detection part (31).
 本発明は、異なる波長域の赤外線を同時に検出し各検出結果を独立して出力することが可能であるという利点がある。 The present invention has an advantage that infrared rays in different wavelength ranges can be simultaneously detected and each detection result can be output independently.
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
図1Aは本発明の第1実施形態に係る赤外線検出器の外観斜視図であり、図1Bはキャップ部を外した状態の赤外線検出器の斜視図である。 図2Aおよび2Bは、それぞれ、同赤外線検出器における回路ブロックを表面側および裏面側から見た斜視図である。 図3A~3Cは、同回路ブロックの組立工程の説明図である。 同回路ブロックの内部を示す斜視図である。 第1実施形態に係る赤外線検出器の回路ブロックの内部を示す一例の斜視図である。 第1実施形態に係る赤外線検出器の一例を、キャップ部を外した状態で示す斜視図である。 第1実施形態に係る赤外線検出器の光学フィルタの断面図である。 図8A~8Cは本発明の第2実施形態に係る赤外線検出器の要部を示す斜視図である。 図9Aおよび9Bは、それぞれ、本発明の第3実施形態に係る赤外線検出器の要部の斜視図および側面図である。
Preferred embodiments of the invention are described in further detail. Other features and advantages of the present invention will be better understood with reference to the following detailed description and accompanying drawings.
FIG. 1A is an external perspective view of the infrared detector according to the first embodiment of the present invention, and FIG. 1B is a perspective view of the infrared detector with a cap portion removed. 2A and 2B are perspective views of a circuit block in the infrared detector as viewed from the front surface side and the back surface side, respectively. 3A to 3C are explanatory diagrams of the assembly process of the circuit block. It is a perspective view which shows the inside of the circuit block. It is a perspective view of an example which shows the inside of the circuit block of the infrared detector which concerns on 1st Embodiment. It is a perspective view which shows an example of the infrared detector which concerns on 1st Embodiment in the state which removed the cap part. It is sectional drawing of the optical filter of the infrared detector which concerns on 1st Embodiment. 8A to 8C are perspective views showing a main part of an infrared detector according to the second embodiment of the present invention. 9A and 9B are a perspective view and a side view, respectively, of a main part of an infrared detector according to the third embodiment of the present invention.
 (実施形態1)
 本実施形態の赤外線検出器1は、図1に示すように、金属製の筐体2内に、赤外線検知素子である焦電素子300から成る検知体3と、信号処理回路を含むIC(集積回路)が搭載された回路ブロック5とを収納して構成されている。なお、回路ブロック5に搭載されるICには第1のIC41と第2のIC42とがあるが(図2B参照)、以下、第1のIC41と第2のIC42とを特に区別しないときには単に「IC40」という。
(Embodiment 1)
As shown in FIG. 1, the infrared detector 1 of the present embodiment includes a detector 3 including a pyroelectric element 300 that is an infrared detection element and an IC (integrated IC) including a signal processing circuit in a metal housing 2. Circuit block 5 on which a circuit) is mounted. The ICs mounted on the circuit block 5 include the first IC 41 and the second IC 42 (see FIG. 2B). Hereinafter, when the first IC 41 and the second IC 42 are not particularly distinguished, they are simply “ IC40 ".
 筐体2は、金属製であって円盤状に形成された土台部(ステム)21と、金属製であって前面(図1Aでは上面)を定める平ベース221を持つ円筒状に形成されたキャップ部22とで構成されている。キャップ部22は、背面(図1では下面)が開放されており、土台部21に前方から被せるように組み合わされて土台部21と接合されることにより、筐体2を形成する。図1Aは赤外線検出器1の外観を示し、図1Bはキャップ部22を外した状態(キャップ部22は2点差線で示す)の赤外線検出器1を示している。 The casing 2 is a cap formed in a cylindrical shape having a base portion (stem) 21 made of metal and formed in a disk shape, and a flat base 221 made of metal and defining a front surface (upper surface in FIG. 1A). Part 22. The cap part 22 has an open rear surface (lower surface in FIG. 1), and is combined with the base part 21 so as to be covered from the front and joined to the base part 21 to form the housing 2. 1A shows the appearance of the infrared detector 1, and FIG. 1B shows the infrared detector 1 with the cap portion 22 removed (the cap portion 22 is indicated by a two-dot chain line).
 土台部21は、平円盤形状であり、前面部210の外周が背面部の外周よりもセットバックされ、背面部にフランジ部211を形成している。土台部21は、キャップ部22の開口縁がフランジ部211の前面(図1Bでは上面)に接合されることにより、キャップ部22と接合される。土台部21には、回路ブロック5に電気的に接続される複数本(本実施形態では4本)の端子ピン6が挿通されており、筐体2の外部と筐体2内の回路ブロック5との電気的な接続を可能にしている。 The base part 21 has a flat disk shape, and the outer periphery of the front part 210 is set back more than the outer periphery of the rear part, and a flange part 211 is formed on the rear part. The base portion 21 is joined to the cap portion 22 by joining the opening edge of the cap portion 22 to the front surface (upper surface in FIG. 1B) of the flange portion 211. A plurality of (four in this embodiment) terminal pins 6 that are electrically connected to the circuit block 5 are inserted into the base portion 21, and the circuit block 5 inside the housing 2 and the circuit block 5 inside the housing 2 are inserted. It enables electrical connection with.
 具体的には、土台部21は前面部210の内側に複数個(本実施形態では4個)の貫通孔212が形成されており、各貫通孔212に端子ピン6が挿通されている。ここで、土台部21は、貫通孔212の径が端子ピン6の径よりも大きく形成されており、貫通孔212の内周面と端子ピン6との間の隙間が充填材にて埋められることにより端子ピン6を保持している。なお、グランド接続用の端子ピン6が挿通された貫通孔212には導電性の充填材が用いられて筐体2をグランド電位とし、その他の貫通孔212には絶縁性の充填材が用いられて筐体2と端子ピン6との絶縁性を確保する。フランジ部211の外周面の一部には、位置決め用の凸部213が形成されている。 Specifically, the base portion 21 has a plurality of (four in this embodiment) through holes 212 formed inside the front surface portion 210, and the terminal pins 6 are inserted into the respective through holes 212. Here, the base portion 21 is formed such that the diameter of the through hole 212 is larger than the diameter of the terminal pin 6, and the gap between the inner peripheral surface of the through hole 212 and the terminal pin 6 is filled with a filler. Thus, the terminal pin 6 is held. A conductive filler is used for the through hole 212 through which the terminal pin 6 for ground connection is inserted, and the casing 2 is set to the ground potential, and an insulating filler is used for the other through holes 212. Thus, insulation between the housing 2 and the terminal pins 6 is ensured. A convex portion 213 for positioning is formed on a part of the outer peripheral surface of the flange portion 211.
 キャップ部22の平ベース221の中央部には、四角状(ここでは正方形状)の開口が筐体2内に赤外線を取り込むための窓孔222として形成されている。この窓孔222には赤外線を透過させる光学フィルタ7が窓孔222を塞ぐように設けられている。詳しくは後述するが、筐体2内における窓孔222の後方(真下)に検知体3が配置されており、これにより、筐体2の外側から光学フィルタ7を透過した赤外線が検知体3に入射することになる。 In the central portion of the flat base 221 of the cap portion 22, a square (here, square) opening is formed as a window hole 222 for taking infrared rays into the housing 2. An optical filter 7 that transmits infrared rays is provided in the window hole 222 so as to close the window hole 222. As will be described in detail later, the detection body 3 is arranged behind (directly below) the window hole 222 in the housing 2, and thereby infrared rays transmitted through the optical filter 7 from the outside of the housing 2 are applied to the detection body 3. It will be incident.
 光学フィルタ7は、単結晶シリコンからなる支持体の表面に多種の金属材料などを何層も蒸着することにより形成されている。光学フィルタ7は、窓孔222よりも一回り大きい四角(矩形)板状であって、外周部が他の部位よりも薄肉となるように前面(上面)を一段掘り下げられており、その外周部が導電性接着剤などで平ベース221の背面(下面)における窓孔222の周囲に接着されている。これにより、光学フィルタ7は外界の電磁ノイズから保護するシールドとしての機能も持つ。さらに信頼性を高めるために、ウレタン樹脂やエポキシ樹脂等でキャップ部22の内側や外側がコーティングされていてもよい。 The optical filter 7 is formed by depositing multiple layers of various metal materials on the surface of a support made of single crystal silicon. The optical filter 7 has a rectangular (rectangular) plate shape that is slightly larger than the window hole 222, and the front surface (upper surface) is dug down by one step so that the outer peripheral portion is thinner than other portions. Is adhered to the periphery of the window hole 222 on the back surface (lower surface) of the flat base 221 with a conductive adhesive or the like. As a result, the optical filter 7 also has a function as a shield for protecting against external electromagnetic noise. Furthermore, in order to improve reliability, the inner side and the outer side of the cap part 22 may be coated with urethane resin, epoxy resin, or the like.
 なお、本実施形態では、赤外線検出器1の低背化を図るべく、キャップ部22は深さ寸法(前後方向の寸法)が外径に比べて小さく設定されている。 In this embodiment, in order to reduce the height of the infrared detector 1, the cap portion 22 is set to have a depth dimension (a dimension in the front-rear direction) smaller than the outer diameter.
 検知体3は、タンタル酸リチウムやチタン酸ジルコン酸鉛(PZT)などの材料より形成され自発分極を持つ焦電素子300からなる。本実施形態では焦電素子300は正方形状の板状に形成されている。この検知体3は、焦電素子300の前面に入射した赤外線による温度変化に応じて、表面電荷が変化する現象(焦電効果)を用いて赤外線の変化量を検知することができる。検知体3は、窓孔222の後方(真下)に配置されるように、筐体2内において光学フィルタ7と対向する位置に回路ブロック5にて支持されている。 The detector 3 is composed of a pyroelectric element 300 formed of a material such as lithium tantalate or lead zirconate titanate (PZT) and having spontaneous polarization. In this embodiment, the pyroelectric element 300 is formed in a square plate shape. The detection body 3 can detect the amount of change in infrared rays using a phenomenon (pyroelectric effect) in which the surface charge changes according to the temperature change caused by infrared rays incident on the front surface of the pyroelectric element 300. The detection body 3 is supported by the circuit block 5 at a position facing the optical filter 7 in the housing 2 so as to be arranged behind (directly below) the window hole 222.
 本実施形態においては、検知体3は、図1Bに示すように、光学フィルタ7に面する面内で異なる位置に配置された複数の検知部、例えば第1の検知部31と第2の検知部32とを有している。このように光学フィルタ7に面して並べて配置された第1の検知部31と第2の検知部32は、各々個別に赤外線を受光し且つ各々第1の信号および第2の信号を発生する。第1の検知部31と第2の検知部32は1つの焦電素子300から成り、焦電素子300の中心を対称点として点対称に構成されている。以下、第1の検知部31と第2の検知部32とを特に区別しないときには単に「検知部30」という。 In the present embodiment, as shown in FIG. 1B, the detection body 3 has a plurality of detection units, for example, a first detection unit 31 and a second detection unit, which are arranged at different positions in the plane facing the optical filter 7. Part 32. Thus, the first detector 31 and the second detector 32 arranged side by side facing the optical filter 7 individually receive the infrared rays and generate the first signal and the second signal, respectively. . The first detection unit 31 and the second detection unit 32 include one pyroelectric element 300, and are configured to be point-symmetric with respect to the center of the pyroelectric element 300 as a symmetric point. Hereinafter, when the first detection unit 31 and the second detection unit 32 are not particularly distinguished, they are simply referred to as “detection unit 30”.
 第1の検知部31(30)は、焦電素子300の表裏(第1および第2面)にそれぞれ焦電素子300を形成する材料と略同じ材料からなる厚さ5~50μm程度の矩形板状の第1および第2のエレメント301a(301)(図1では前面のエレメントのみ図示している)が形成されることによって構成されている。同様に、第2の検知部32は、焦電素子300の表裏(第1および第2面)にそれぞれ焦電素子300を形成する材料と略同じ材料からなる厚さ5~50μm程度の矩形板状の第1および第2のエレメント301b(301)が形成されることによって構成されている。なお、エレメント301を別材料によって支持する構造は必要ない。また、検知部30同士はたとえば10μm以上の間隔を空けて並べられている。 The first detector 31 (30) is a rectangular plate having a thickness of about 5 to 50 μm made of substantially the same material as the material forming the pyroelectric element 300 on the front and back surfaces (first and second surfaces) of the pyroelectric element 300. The first and second elements 301a (301) having a shape (only the front element is shown in FIG. 1) are formed. Similarly, the second detector 32 is a rectangular plate having a thickness of about 5 to 50 μm made of substantially the same material as the material forming the pyroelectric element 300 on the front and back surfaces (first and second surfaces) of the pyroelectric element 300. The first and second elements 301b (301) having a shape are formed. A structure for supporting the element 301 with another material is not necessary. The detection units 30 are arranged with an interval of, for example, 10 μm or more.
 焦電素子300の前面には、第1および第2のエレメント301aに接続された第1の電極部と、第1および第2のエレメント301bに接続された第2の電極部が形成されている。第1の電極部は2つの電極302a(302)を含み、第2の電極部は2つの電極302b(302)を含む。このように、第1の検知部31は、焦電素子300と、第1の電極部とから成り、第2の検知部32は、焦電素子300と、第2の電極部とから成る。より詳しくは、第1の電極部は、第1の検知部31における前面側の第1のエレメント301aに接続された電極302aと、背面側の第2のエレメントに接続された電極302aとを含み、焦電素子300の前面の第1の辺上に配列されている。また、第2の電極部は、第2の検知部32における前面側の第1のエレメント301bに接続された電極302bと背面側の第2のエレメントに接続された電極302bとを含み、焦電素子300の前面の第2の辺上に配列されている。第1の辺と第2の辺は、焦電素子300の外周縁において第1の検知部31と第2の検知部32とが並ぶ方向に対向する一対の辺である。要するに、第1および第2の電極部は、焦電素子300の両端にそれぞれ接続されている。 A first electrode portion connected to the first and second elements 301a and a second electrode portion connected to the first and second elements 301b are formed on the front surface of the pyroelectric element 300. . The first electrode portion includes two electrodes 302a (302), and the second electrode portion includes two electrodes 302b (302). Thus, the 1st detection part 31 consists of a pyroelectric element 300 and a 1st electrode part, and the 2nd detection part 32 consists of a pyroelectric element 300 and a 2nd electrode part. More specifically, the first electrode unit includes an electrode 302a connected to the first element 301a on the front side in the first detection unit 31 and an electrode 302a connected to the second element on the back side. The pyroelectric elements 300 are arranged on the first side of the front surface. The second electrode unit includes an electrode 302b connected to the first element 301b on the front surface side in the second detection unit 32 and an electrode 302b connected to the second element on the back surface side. It is arranged on the second side of the front surface of the element 300. The first side and the second side are a pair of sides facing each other in the direction in which the first detection unit 31 and the second detection unit 32 are arranged on the outer peripheral edge of the pyroelectric element 300. In short, the first and second electrode portions are connected to both ends of the pyroelectric element 300, respectively.
 さらに、検知体3は、各検知部30で検知した温度変化を外に逃がさず、また各検知部30の熱容量を小さくして検知感度を向上するために、各検知部30の外周縁の一部にスリット303が形成されている。図1の例では、スリット303は、各検知部30の外周縁のうち第1の検知部31と第2の検知部32とが並ぶ方向に対向する一対の辺に沿って形成されている。このようなスリット303を設けることにより、検知体3が回路ブロック5に搭載された状態で回路ブロック5からの熱応力が検知部30に与える影響を抑制することもできる。スリット303の幅寸法はたとえば少なくとも10μm(10μm以上)である。なお、スリット303は、各検知部30の外周縁のうちエレメント301-電極302間の配線を引き回す必要がある部位を除く全周に設けられていてもよい。 Further, the detection body 3 does not allow the temperature change detected by each detection unit 30 to escape to the outside, and also reduces the heat capacity of each detection unit 30 to improve the detection sensitivity. A slit 303 is formed in the part. In the example of FIG. 1, the slits 303 are formed along a pair of sides facing each other in the direction in which the first detection unit 31 and the second detection unit 32 are arranged on the outer peripheral edge of each detection unit 30. By providing such a slit 303, it is possible to suppress the influence of the thermal stress from the circuit block 5 on the detection unit 30 in a state where the detection body 3 is mounted on the circuit block 5. The width dimension of the slit 303 is, for example, at least 10 μm (10 μm or more). Note that the slits 303 may be provided on the entire periphery of the outer peripheral edge of each detection unit 30 except for the part where the wiring between the element 301 and the electrode 302 needs to be routed.
 一方、回路ブロック5は、円盤状に形成された絶縁性の基板51を含む。基板51は、キャップ部22の窓孔222に面する第1面と土台部21に面する第2面とを有する。回路ブロック5は、基板51の前面(第1面)に検知体(焦電素子300)3が取り付けられることにより検知体3を支持している。基板51は、図2Aに示すように、前面(上面)に複数個(ここでは4個)の素子接続パッド52が形成されており、これら素子接続パッド52に電極302を導電性接着剤で固定することにより検知体3が取り付けられる。素子接続パッド52を含む導体パターンは、金属板やメッキなどによって形成されている。ここで、導体パターンは、基板51を厚み方向に貫通するビア配線53(図4参照)を含んでおり、素子接続パッド52はビア配線53を通して基板51の背面に設けられているIC接続パッド54(図2B参照)に接続されている。 On the other hand, the circuit block 5 includes an insulating substrate 51 formed in a disk shape. The substrate 51 has a first surface facing the window hole 222 of the cap portion 22 and a second surface facing the base portion 21. The circuit block 5 supports the detection body 3 by attaching the detection body (pyroelectric element 300) 3 to the front surface (first surface) of the substrate 51. As shown in FIG. 2A, a plurality of (here, four) element connection pads 52 are formed on the front surface (upper surface) of the substrate 51, and the electrodes 302 are fixed to the element connection pads 52 with a conductive adhesive. By doing so, the detection body 3 is attached. The conductor pattern including the element connection pads 52 is formed by a metal plate, plating, or the like. Here, the conductor pattern includes a via wiring 53 (see FIG. 4) penetrating the substrate 51 in the thickness direction, and the element connection pad 52 is an IC connection pad 54 provided on the back surface of the substrate 51 through the via wiring 53. (See FIG. 2B).
 回路ブロック5は、ガラス繊維およびエポキシ樹脂などの有機材料やセラミックのような無機材料を絶縁体として用いており、基板51もこれらの材料(ここではガラスエポキシ樹脂とする)で形成されている。導体パターンとしては主に銅が用いられ、接続方法に応じて銀や金による表面処理が施されている。なお、基板51は、絶縁性の基材に対して上述したような導体パターンが形成される構造に限らず、所定の形状に形成された金属板(たとえば銅板)を成形樹脂などで支持した構造であってもよい。 The circuit block 5 uses an organic material such as glass fiber and epoxy resin, or an inorganic material such as ceramic as an insulator, and the substrate 51 is also formed of these materials (here, glass epoxy resin). Copper is mainly used as the conductor pattern, and surface treatment with silver or gold is performed according to the connection method. The substrate 51 is not limited to the structure in which the conductive pattern as described above is formed on the insulating base material, but a structure in which a metal plate (for example, a copper plate) formed in a predetermined shape is supported by a molding resin or the like. It may be.
 また、本実施形態では、基板51の第1面における検知部30の後方直下に当たる部位に、図2Aに示すように焦電素子300との間に熱絶縁用の隙間を確保する凹部511が形成されている。凹部511は焦電素子300よりも一回り小さく、基板51の前面における素子接続パッド52に挟まれた位置に形成されており、焦電素子300は凹部511の両側に跨って配置される。凹部511の深さは、たとえば少なくとも0.1mm(0.1mm以上)に設定されている。このような凹部511が形成されることにより、検知部30は回路ブロック5の表面に直接接しなくなるので、焦電素子300と回路ブロック5との間の熱絶縁をとることができ、検知体3の感度が高くなる。ただし、感度確保のための凹部511によって焦電素子300がキャップ部22の平ベース221や回路ブロック5の表面の法線に対して傾斜してしまうことがないように、焦電素子300は凹部511の両側に架設されている。 Further, in the present embodiment, a recess 511 that secures a gap for thermal insulation between the pyroelectric element 300 and the pyroelectric element 300 is formed in a portion of the first surface of the substrate 51 that is directly behind the detection unit 30 as shown in FIG. Has been. The recess 511 is slightly smaller than the pyroelectric element 300 and is formed at a position sandwiched between the element connection pads 52 on the front surface of the substrate 51, and the pyroelectric element 300 is disposed across both sides of the recess 511. The depth of the recess 511 is set to at least 0.1 mm (0.1 mm or more), for example. By forming such a recess 511, the detection unit 30 does not directly contact the surface of the circuit block 5, so that the thermal insulation between the pyroelectric element 300 and the circuit block 5 can be taken, and the detection body 3. Increased sensitivity. However, the pyroelectric element 300 is not recessed by the recess 511 for ensuring sensitivity so that the pyroelectric element 300 is not inclined with respect to the normal of the flat base 221 of the cap portion 22 or the surface of the circuit block 5. 511 is installed on both sides.
 IC40は、図2Bに示すように、基板51の背面側に配置され、一部の端子が金やアルミや銅からなる金属細線(ボンディングワイヤ)55にて、超音波あるいは熱と超音波とを併用したワイヤボンディング技術を用いてIC接続パッド54に接続されている。さらに、基板51の背面にはIC接続パッド54以外にも、IC40を接続するための導電パッドが形成されており、IC40の他の端子が金属細線55にて導電パッドに接続される。また、基板51の背面には、端子ピン6を接続するための端子接続パッド56が端子ピン6に対応して複数(ここでは4つ)形成されている。4つの端子接続パッド56は、基板51の背面の外周部に、基板51の背面の外周縁に沿って等間隔で配置されている。 As shown in FIG. 2B, the IC 40 is disposed on the back side of the substrate 51, and ultrasonic waves or heat and ultrasonic waves are transmitted by a thin metal wire (bonding wire) 55 with some terminals made of gold, aluminum, or copper. It is connected to the IC connection pad 54 using the wire bonding technique used together. Furthermore, in addition to the IC connection pad 54, a conductive pad for connecting the IC 40 is formed on the back surface of the substrate 51, and other terminals of the IC 40 are connected to the conductive pad by a thin metal wire 55. A plurality (four in this case) of terminal connection pads 56 for connecting the terminal pins 6 are formed on the back surface of the substrate 51 in correspondence with the terminal pins 6. The four terminal connection pads 56 are arranged at equal intervals along the outer peripheral edge of the back surface of the substrate 51 on the outer peripheral portion of the back surface of the substrate 51.
 ここで、第1のIC41(40)および第2のIC42(40)は、それぞれ、第1および第2の信号処理回路を含み、検知体3の第1の検知部31および第2の検知部32からの第1および第2の信号を処理するように構成される。第1および第2の信号処理回路は、それぞれ、第1の検知部31に接続される第1の増幅部と、第2の検知部32に接続される第2の増幅部とを有している。第1の増幅部と第2の増幅部は、それぞれ、第1の検知部31と第2の検知部32からの第1および第2の信号を個別に処理(増幅)して出力する。 Here, the first IC 41 (40) and the second IC 42 (40) include first and second signal processing circuits, respectively, and the first detection unit 31 and the second detection unit of the detection body 3 are included. The first and second signals from 32 are configured to be processed. Each of the first and second signal processing circuits includes a first amplifier connected to the first detector 31 and a second amplifier connected to the second detector 32. Yes. The first amplification unit and the second amplification unit individually process (amplify) and output the first and second signals from the first detection unit 31 and the second detection unit 32, respectively.
 本実施形態では、第1の増幅部は第1のIC41にて構成され、第2の増幅部は第2のIC42にて構成されている。つまり、第1のIC41は第1の検知部31に接続されて第1の検知部31からの第1の信号を増幅して出力し、第2のIC42は第2の検知部32に接続されて第2の検知部32からの第2の信号を増幅して出力する。ただし、第1の増幅部と第2の増幅部が別々のIC41,42からなることは必須ではなく、1つのICに複数の増幅部(第1の増幅部および第2の増幅部)が含まれてもよい。本実施形態では、各IC40は、バンドパスアンプおよびウインドコンパレータを含み、バンドパスアンプで所定周波数の信号を取り出し、予めしきい値を設定したウインドコンパレータからH,Lレベルの信号を出力する。 In the present embodiment, the first amplifying unit is configured by the first IC 41, and the second amplifying unit is configured by the second IC 42. That is, the first IC 41 is connected to the first detection unit 31 to amplify and output the first signal from the first detection unit 31, and the second IC 42 is connected to the second detection unit 32. The second signal from the second detector 32 is amplified and output. However, it is not essential that the first amplifying unit and the second amplifying unit consist of separate ICs 41 and 42, and one IC includes a plurality of amplifying units (first amplifying unit and second amplifying unit). May be. In this embodiment, each IC 40 includes a band-pass amplifier and a window comparator, takes out a signal of a predetermined frequency by the band-pass amplifier, and outputs H and L level signals from a window comparator in which a threshold value is set in advance.
 ところで、本実施形態の赤外線検出器1において、光学フィルタ7は、図1Aおよび1Bに示すように、第1の検知部31に対応する位置に配置された第1の透過領域71と、第2の検知部32に対応する位置に配置された第2の透過領域72とに区分される。第1の透過領域71の赤外線透過特性は、第2の透過領域72のそれと異なっている。一例として、第1の透過領域71は第1の波長(波長4μm)以上の遠赤外線のみを透過するのに対し、第2の透過領域72は第2の波長(波長2μm)以下の近赤外線のみを透過し、ここで第1の波長は第2の波長よりも長い。 By the way, in the infrared detector 1 of this embodiment, as shown in FIGS. 1A and 1B, the optical filter 7 includes a first transmission region 71 arranged at a position corresponding to the first detection unit 31, and a second transmission region 71. And a second transmission region 72 arranged at a position corresponding to the detection unit 32. The infrared transmission characteristics of the first transmission region 71 are different from those of the second transmission region 72. As an example, the first transmission region 71 transmits only the far infrared ray having the first wavelength (wavelength 4 μm) or more, whereas the second transmission region 72 has only the near infrared ray having the second wavelength (wavelength 2 μm) or less. Where the first wavelength is longer than the second wavelength.
 すなわち、キャップ部22の窓孔222に設けられている光学フィルタ7は、第1の検知部31と第2の検知部32とが並ぶ方向において、複数の透過領域、即ち第1の透過領域71と第2の透過領域72に分割されている。図1Aの例では光学フィルタ7は、第1の検知部31と第2の検知部32とが並ぶ方向に2等分されており、第1の検知部31に対向する部分が第1の透過領域71になり、第2の検知部32に対向する部分が第2の透過領域72になる。 That is, the optical filter 7 provided in the window hole 222 of the cap portion 22 has a plurality of transmission regions, that is, the first transmission regions 71 in the direction in which the first detection unit 31 and the second detection unit 32 are arranged. And a second transmissive region 72. In the example of FIG. 1A, the optical filter 7 is divided into two equal parts in the direction in which the first detection unit 31 and the second detection unit 32 are arranged, and the portion facing the first detection unit 31 is the first transmission. The portion that becomes the region 71 and faces the second detection unit 32 becomes the second transmission region 72.
 言い換えれば、第1の検知部31は検知体3前面に対する第1の透過領域71の垂直投影面内に位置し、第2の検知部32は検知体3前面に対する第2の透過領域72の垂直投影面内に位置している。そのため、窓孔222に赤外線が入射した際、第1の検知部31には第1の透過領域71を透過した赤外線が入射し、第2の検知部32には第2の透過領域72を透過した赤外線が入射する。ここで、第1の透過領域71の赤外線透過特性は第2の透過領域72のそれと異なっているので、第1の検知部31と第2の検知部32には互いに波長域の異なる赤外線が同時に入射することになる。 In other words, the first detection unit 31 is located in the vertical projection plane of the first transmission region 71 with respect to the front surface of the detection body 3, and the second detection unit 32 is perpendicular to the second transmission region 72 with respect to the front surface of the detection body 3. Located in the projection plane. Therefore, when infrared rays are incident on the window hole 222, infrared rays that have passed through the first transmission region 71 are incident on the first detection unit 31, and the second detection region 32 is transmitted through the second transmission region 72. Incident infrared rays. Here, since the infrared transmission characteristics of the first transmission region 71 are different from those of the second transmission region 72, the first detection unit 31 and the second detection unit 32 simultaneously receive infrared rays having different wavelength ranges. It will be incident.
 第1の検知部31の出力と第2の検知部32の出力は、上述したように第1のIC(第1の増幅部)41と第2のIC(第2の増幅部)42で互いに独立して別々に処理されるので、第1の検知部31の出力と第2の検知部32の出力が混ざり合うことはない。したがって、赤外線検出器1においては、第1の検知部31と第2の検知部32に同時に入射した波長域の異なる赤外線に応じた検出結果を別々に出力するので、結果的に、異なる波長域の赤外線を同時に検出し各検出結果を独立して出力可能になる。 As described above, the output of the first detection unit 31 and the output of the second detection unit 32 are mutually transmitted by the first IC (first amplification unit) 41 and the second IC (second amplification unit) 42. Since the processing is performed independently and independently, the output of the first detection unit 31 and the output of the second detection unit 32 are not mixed. Therefore, since the infrared detector 1 outputs separately the detection results corresponding to the infrared rays having different wavelength ranges incident on the first detection unit 31 and the second detection unit 32 at the same time, as a result, different wavelength ranges are obtained. Infrared rays can be detected at the same time, and each detection result can be output independently.
 ここにおいて、光学フィルタ7は、1枚のシリコン単結晶の支持体上にたとえばメタルマスクを用いた蒸着などの方法で、異なる透過特性の透過領域(第1の透過領域71および第2の透過領域72)が形成されている。ただし、この構成に限らず、透過特性の異なる複数枚(2枚)の光学フィルタを個片化し、これら複数枚の光学フィルタを並べて支持体に貼り付けることにより、各光学フィルタにて第1の透過領域71と第2の透過領域72とを構成してもよい。 Here, the optical filter 7 is formed by a method such as vapor deposition using a metal mask on a single silicon single crystal support, for example, transmission regions having different transmission characteristics (the first transmission region 71 and the second transmission region). 72) is formed. However, the present invention is not limited to this configuration, and a plurality of (two) optical filters having different transmission characteristics are separated into individual pieces, and the plurality of optical filters are arranged side by side and attached to the support, whereby the first optical filter is used for each optical filter. The transmissive region 71 and the second transmissive region 72 may be configured.
 ここで、赤外線の透過特性は、波長域に限らず、たとえば偏光方向であってもよい。この場合、第1の透過領域71と第2の透過領域72は互いに偏光方向が異なる偏光フィルタからなり、第1の検知部31と第2の検知部32には互いに偏光方向の異なる赤外線が同時に入射することになる。この場合、第1の透過領域71の赤外線の透過波長(たとえば4μm以上)は、第2の透過領域72のそれと同じであってよい。 Here, the infrared transmission characteristics are not limited to the wavelength range, and may be, for example, the polarization direction. In this case, the first transmission region 71 and the second transmission region 72 are made of polarizing filters having different polarization directions, and the first detection unit 31 and the second detection unit 32 simultaneously receive infrared rays having different polarization directions. It will be incident. In this case, the infrared transmission wavelength (for example, 4 μm or more) of the first transmission region 71 may be the same as that of the second transmission region 72.
 次に、上述した赤外線検出器1の組み立て手順について、図3を参照して簡単に説明する。なお、図3A~3Cは回路ブロック5をIC40の搭載面(以下、背面という)側から見た状態を表している。 Next, the assembly procedure of the infrared detector 1 described above will be briefly described with reference to FIG. 3A to 3C show a state in which the circuit block 5 is viewed from the mounting surface (hereinafter referred to as the back surface) side of the IC 40. FIG.
 組み立てを行う作業者は、図3Aに示すように、導体パターンが形成された基板51の背面に各IC40をエポキシ樹脂などで搭載固定し、さらに基板51上の導体パターンに各IC40を金属細線55にて導通接続する。導体パターンとIC40の端子との接続は、アルミや金や銅などの金属細線55を用いて加熱および超音波の併用や、超音波のみなどの方法で、金属細線55の先端と導体パターン表面を固相拡散させて行われる。 As shown in FIG. 3A, the worker who performs the assembly mounts and fixes each IC 40 on the back surface of the substrate 51 on which the conductor pattern is formed with epoxy resin or the like, and further attaches each IC 40 to the conductor pattern on the substrate 51 with the metal thin wire 55. Conductive connection with. The connection between the conductor pattern and the terminal of the IC 40 is performed by using a combination of heating and ultrasonic waves using a thin metal wire 55 such as aluminum, gold, or copper, or by using only ultrasonic waves. Performed by solid phase diffusion.
 その後、作業者は、図3Bに示すように、基板51の背面に合成樹脂性の封止枠57を搭載し接着する。封止枠57は、基板51の背面の外周よりもやや小さい略円環状に形成されており、基板51の背面からの高さ寸法は少なくともIC40や金属細線55よりも大きく形成されている。さらに、封止枠57は、4つの端子接続パッド56に対応する部位が、端子接続パッド56を避けるように内側に窪んでいる。 Thereafter, as shown in FIG. 3B, the operator mounts and adheres a synthetic resin sealing frame 57 to the back surface of the substrate 51. The sealing frame 57 is formed in a substantially annular shape that is slightly smaller than the outer periphery of the back surface of the substrate 51, and the height dimension from the back surface of the substrate 51 is at least larger than the IC 40 and the fine metal wire 55. Further, in the sealing frame 57, the portions corresponding to the four terminal connection pads 56 are recessed inward so as to avoid the terminal connection pads 56.
 それから、作業者は、図3Cに示すように、封止枠57の内側に液状のエポキシ樹脂などの封止材58を充填して封止材58を加熱硬化させることにより、封止枠57に囲まれたIC40や金属細線55を封止材58にて封止する。このとき、基板51の前面(検知部3の搭載面)並びに端子接続パッド56に封止材58がまわらないようにする。 Then, as shown in FIG. 3C, the operator fills the sealing frame 57 with a sealing material 58 such as a liquid epoxy resin and heat cures the sealing material 58. The enclosed IC 40 and fine metal wire 55 are sealed with a sealing material 58. At this time, the sealing material 58 is prevented from turning around the front surface of the substrate 51 (the mounting surface of the detection unit 3) and the terminal connection pads 56.
 その後、作業者は、基板51を裏返して検知部3の搭載面を上にし、端子ピン6を保持する土台部21の前面の中央部分に基板51を搭載して接着し、向かい合った端子ピン6と端子接続パッド56とを導電性接着剤などで導通させる。それから、作業者は、焦電素子300を基板51に載せ、素子接続パッド52に電極302を導電性接着剤で固定することにより検知体3を回路ブロック5に固定し且つ電気的に接続する。なお、端子ピン6と接続される端子接続パッド56は、段差が形成され、この段差によって生じる端子ピン6との隙間から導電性接着剤を塗布できる形状であってもよい。 Thereafter, the operator turns the board 51 upside down so that the mounting surface of the detection unit 3 faces up, mounts and bonds the board 51 to the central portion of the front surface of the base 21 holding the terminal pins 6, and faces the terminal pins 6 facing each other. And the terminal connection pad 56 are made conductive with a conductive adhesive or the like. Then, the operator places the pyroelectric element 300 on the substrate 51 and fixes the electrode 302 to the element connection pad 52 with a conductive adhesive, thereby fixing the detector 3 to the circuit block 5 and electrically connecting it. In addition, the terminal connection pad 56 connected to the terminal pin 6 may have a shape in which a step is formed and a conductive adhesive can be applied from a gap between the terminal pin 6 and the terminal pin 6 generated by the step.
 それから、作業者は、キャップ部22を抵抗溶接などの方法で土台部21に接合して、検知体3および回路ブロック5を金属製の筐体2内に密封する。筐体2は所謂CANパッケージであり、外来ノイズに対するシールド効果を高めるとともに、気密性の向上による耐候性の向上を図ることができる。 Then, the operator joins the cap portion 22 to the base portion 21 by a method such as resistance welding, and seals the detection body 3 and the circuit block 5 in the metal housing 2. The housing 2 is a so-called CAN package, which can improve the shielding effect against external noise and improve weather resistance by improving airtightness.
 また、焦電素子300からなる検知体3の赤外線入射による表面電荷の変化は非常に微小であり、一方、信号処理回路を構成するIC40は検知体3の出力を筐体2内で比較的大きな信号に増幅する。そのため、電磁波ノイズから保護する筐体(CANパッケージ)2内においても、検知体3とIC40とが容量結合しないための機能を設けることが望ましい。 In addition, the change in surface charge due to the incidence of infrared rays on the detection body 3 including the pyroelectric element 300 is very small. On the other hand, the IC 40 constituting the signal processing circuit generates a relatively large output of the detection body 3 in the housing 2. Amplify to signal. Therefore, it is desirable to provide a function for preventing the detection body 3 and the IC 40 from being capacitively coupled also in the housing (CAN package) 2 that protects against electromagnetic noise.
 そこで、本実施形態では、IC40の出力と検知体3との間の容量結合による誤動作を予防する為に、図4に示すようにグランド電位のシールド板59が回路ブロック5に設けられている。シールド板59は、基板51の背面に平行な薄板状の導電体であって、検知体3とIC40との間に位置するように基板51内に埋め込まれており、検知体3とIC40とを接続するビア配線53を通す部位にだけ透孔591が空いている。 Therefore, in this embodiment, in order to prevent malfunction due to capacitive coupling between the output of the IC 40 and the detector 3, a shield plate 59 having a ground potential is provided in the circuit block 5 as shown in FIG. The shield plate 59 is a thin plate-like conductor parallel to the back surface of the substrate 51, and is embedded in the substrate 51 so as to be positioned between the detection body 3 and the IC 40. The detection body 3 and the IC 40 are connected to each other. The through-hole 591 is vacant only in the portion through which the via wiring 53 to be connected is passed.
 さらに、グランド電位のシールド板59とビア配線53とが近接することで検知体3にて発生した電荷がグランドに漏洩することを防止するため、図5に示すように、シールド板59の透孔591内に信号処理回路の基準電位の基準パターン592を設けてもよい。基準パターン592は、シールド板59の透孔591の周縁からは離間し、各検知部30に接続された一対のビア配線53のうち一方のビア配線53を囲むような弧状に形成されており、他方のビア配線53に対して接続されている。なお、シールド板59および基準パターン592は、基板51を構成する絶縁性の基材上に形成されたパターンが形成される構造に限らず、所定の形状に形成された金属板(銅板)が基材に導電接着剤で貼り付けた構造であってもよい。 Furthermore, in order to prevent the electric charge generated in the detection body 3 from leaking to the ground due to the proximity of the shield plate 59 of the ground potential and the via wiring 53, as shown in FIG. A reference pattern 592 of the reference potential of the signal processing circuit may be provided in the 591. The reference pattern 592 is formed in an arc shape that is separated from the periphery of the through hole 591 of the shield plate 59 and surrounds one via wiring 53 of the pair of via wirings 53 connected to each detection unit 30. It is connected to the other via wiring 53. The shield plate 59 and the reference pattern 592 are not limited to a structure in which a pattern formed on an insulating base material constituting the substrate 51 is formed, but a metal plate (copper plate) formed in a predetermined shape. A structure in which a conductive adhesive is attached to the material may be used.
 また、端子ピン6は、基板51を貫通して基板51における検知部3の搭載面側で回路ブロック5と接続可能な構成であってもよい。ただし、この場合、IC40の出力と検知体3との間の容量結合を防止するシールド板59が、IC40の出力に接続される端子ピン6と検知体3との間にも配置されていることが望ましい。 In addition, the terminal pin 6 may be configured to penetrate the substrate 51 and be connected to the circuit block 5 on the mounting surface side of the detection unit 3 in the substrate 51. However, in this case, a shield plate 59 that prevents capacitive coupling between the output of the IC 40 and the detection body 3 is also disposed between the terminal pin 6 connected to the output of the IC 40 and the detection body 3. Is desirable.
 以上説明した本実施形態の赤外線検出器1によれば、光学フィルタ7の第1の透過領域71の透過特性が第2の透過領域72のそれと異なるので、第1の検知部31と第2の検知部32は、波長域の異なる赤外線を同時に検出可能である。さらに、第1の検知部31の出力と第2の検知部32の出力は、第1のIC(第1の増幅部)41と第2のIC(第2の増幅部)42で別々に処理されるので、異なる波長域の赤外線を同時に検出し各検出結果を独立して出力可能になる。 According to the infrared detector 1 of the present embodiment described above, since the transmission characteristics of the first transmission region 71 of the optical filter 7 are different from those of the second transmission region 72, the first detector 31 and the second detector The detection unit 32 can simultaneously detect infrared rays having different wavelength ranges. Further, the output of the first detection unit 31 and the output of the second detection unit 32 are separately processed by the first IC (first amplification unit) 41 and the second IC (second amplification unit) 42. Therefore, infrared rays in different wavelength ranges can be detected simultaneously, and each detection result can be output independently.
 したがって、この赤外線検出器1の出力を用いることにより、たとえば検知対象の種別の識別やノイズ除去などが可能になる。すなわち、波長域ごとの赤外線変動量の分布が分かれば、この分布から検知対象の種別を識別することが可能になり、また、異なる波長域の赤外線変動量の差分から、人体等の検知対象から環境温度等のノイズ成分を除去した検知が可能になる。具体的には、赤外線検出器1は、検知対象の波長域を複数設定することで、人と小動物など温度の異なる熱源を区別して検知することや、参照光との対比により検知精度を向上することが可能になる。 Therefore, by using the output of this infrared detector 1, for example, the type of detection target can be identified and noise can be removed. In other words, if the distribution of the infrared fluctuation amount for each wavelength range is known, it is possible to identify the type of the detection target from this distribution, and from the difference in the infrared fluctuation amount in different wavelength ranges, from the detection target such as a human body. Detection that removes noise components such as environmental temperature becomes possible. Specifically, the infrared detector 1 sets a plurality of wavelength ranges to be detected, thereby distinguishing and detecting heat sources having different temperatures, such as humans and small animals, and improving detection accuracy by comparing with reference light. It becomes possible.
 また、第1の透過領域71と第2の透過領域7との赤外線の透過波長を同値(たとえば4μm以上)とし、第1の透過領域71と第2の透過領域72で偏光方向を異ならせることにより、赤外線検出器1の出力から、熱源の移動方向(縦、横)が判別可能になる。なお、たとえば表面に多数の溝が形成されたフィルタを光学フィルタ7とし、第1の透過領域71と第2の透過領域72で溝の向きを異ならせることによっても、同様に熱源の移動方向(縦、横)が判別可能になる。 Further, the infrared transmission wavelengths of the first transmission region 71 and the second transmission region 7 are set to the same value (for example, 4 μm or more), and the polarization directions of the first transmission region 71 and the second transmission region 72 are made different. Thus, the moving direction (vertical, horizontal) of the heat source can be determined from the output of the infrared detector 1. For example, a filter having a large number of grooves on the surface is used as the optical filter 7, and the movement direction of the heat source (similarly by changing the direction of the grooves in the first transmission region 71 and the second transmission region 72 ( (Vertical, horizontal) can be discriminated.
 また、本実施形態では、焦電素子300が回路ブロック5に固定されているので、回路ブロック5からの熱応力が焦電素子300にかかることがある。焦電素子300の表面電荷は応力にも反応するので、検知体3は、赤外線の入射にかかわらず、回路ブロック5からの熱応力に反応して出力を生じる可能性がある。とくに、検知部30に熱応力がかかると、より直接的に信号として出力されてしまうので、焦電素子300への熱応力の影響は極力軽減することが望ましい。 In this embodiment, since the pyroelectric element 300 is fixed to the circuit block 5, thermal stress from the circuit block 5 may be applied to the pyroelectric element 300. Since the surface charge of the pyroelectric element 300 also responds to stress, the detector 3 may generate an output in response to the thermal stress from the circuit block 5 regardless of the incidence of infrared rays. In particular, if a thermal stress is applied to the detection unit 30, the signal is directly output as a signal. Therefore, it is desirable to reduce the influence of the thermal stress on the pyroelectric element 300 as much as possible.
 ここで、焦電素子300は、4箇所に形成された電極302を回路ブロック5の素子接続パッド52に導電性接着剤で固定されることにより、各電極302を固定点として回路ブロック5に固定されている。仮に、これら固定点としての4箇所の電極302が、焦電素子300の前面の各辺に1つずつ配置されているとすれば、回路ブロック5との線膨張係数や弾性係数の差に応じた応力が各辺から焦電素子300にかかるため、熱応力の影響が比較的大きくなる。 Here, the pyroelectric element 300 is fixed to the circuit block 5 with each electrode 302 as a fixing point by fixing the electrodes 302 formed at four places to the element connection pads 52 of the circuit block 5 with a conductive adhesive. Has been. If these four fixed electrodes 302 are arranged one by one on each side of the front surface of the pyroelectric element 300, depending on the difference in coefficient of linear expansion and elastic coefficient with the circuit block 5. Since the applied stress is applied to the pyroelectric element 300 from each side, the influence of the thermal stress becomes relatively large.
 これに対して、本実施形態では、これら固定点としての4箇所の電極302は、上述したように焦電素子300の前面における向き合う一対の辺(第1の辺、第2の辺)上に分かれて配置されている。つまり、焦電素子300の固定点は、いずれも焦電素子300の面において、互いに向き合う一対の辺上に位置することになる。これにより、回路ブロック5から焦電素子300への熱応力を一方向化することができ、熱応力の影響を軽減できるという利点がある。 On the other hand, in this embodiment, the four electrodes 302 as these fixed points are on a pair of sides (first side, second side) facing each other on the front surface of the pyroelectric element 300 as described above. They are arranged separately. That is, the fixed points of the pyroelectric element 300 are both positioned on a pair of sides facing each other on the surface of the pyroelectric element 300. Thereby, the thermal stress from the circuit block 5 to the pyroelectric element 300 can be unidirectional, and there is an advantage that the influence of the thermal stress can be reduced.
 さらに本実施形態においては、検知体3は、各検知部30で検知した温度変化を外に逃がさず、また各検知部30の熱容量を小さくして検知感度を向上するために、各検知部30の外周縁の一部にスリット303が形成されている。このスリット303は、固定点としての電極302と検知部30との間に形成されているので、回路ブロック5から検知部30への熱応力をより低減することができる。 Furthermore, in the present embodiment, the detection body 3 does not allow the temperature change detected by each detection unit 30 to escape to the outside, and each detection unit 30 has a reduced heat capacity to improve detection sensitivity. A slit 303 is formed in a part of the outer peripheral edge of the. Since the slit 303 is formed between the electrode 302 as a fixed point and the detection unit 30, thermal stress from the circuit block 5 to the detection unit 30 can be further reduced.
 ところで、検知体3は、第1の検知部31と第2の検知部32との2つの検知部30に加え、さらに検知部を有していてもよい。つまり、検知体3は、第1の検知部31、第2の検知部32、第3の検知部・・・というように、少なくとも第1の検知部31と第2の検知部32とを含む3つ以上の検知部を1つの焦電素子300に有していてもよい。たとえば、第1~3の検知部がある場合、第3の検知部は第3の増幅部に接続され、光学フィルタ7は、第1の透過領域71と、第2の透過領域72と、第3の検知部に対応する位置に配置された第3の透過領域とで赤外線の透過特性が異なる構成となる。このように、検知部ごとに個別の増幅部が設けられ、さらに透過特性の異なる透過領域が設けられることにより、検知体3が3つ以上の検知部を有する場合でも、各検知部にて異なる波長域の赤外線を同時に検出し各検出結果を独立して出力可能になる。 By the way, the detection body 3 may further include a detection unit in addition to the two detection units 30 of the first detection unit 31 and the second detection unit 32. That is, the detection body 3 includes at least the first detection unit 31 and the second detection unit 32 such as the first detection unit 31, the second detection unit 32, the third detection unit, and so on. One pyroelectric element 300 may have three or more detection units. For example, when there are first to third detection units, the third detection unit is connected to the third amplification unit, and the optical filter 7 includes the first transmission region 71, the second transmission region 72, The infrared transmission characteristics are different from those of the third transmission region arranged at a position corresponding to the three detection units. In this manner, by providing a separate amplifying unit for each detection unit and further providing transmission regions having different transmission characteristics, even if the detection body 3 has three or more detection units, each detection unit is different. Infrared rays in the wavelength range can be detected simultaneously, and each detection result can be output independently.
 検知体3を構成する焦電素子300上における複数(2つ以上)の検知部の配置は、マトリクス状であっても列状であってもよく、あるいはランダムであってもよい。 The arrangement of a plurality of (two or more) detectors on the pyroelectric element 300 constituting the detector 3 may be a matrix, a row, or a random.
 また、検知体3は、図6に示すように複数の焦電素子300から成り、第1の検知部31と第2の検知部32が別々の焦電素子300に形成されていてもよい。図6の例では、検知体3は第1の焦電素子300a(300)および第2の焦電素子300b(300)からなり、第1の焦電素子300aにより第1の検知部31が形成され、第2の焦電素子300bにより第2の検知部32が形成されている。これら焦電素子300は、基板51の前面に互いに所定の間隔を空けて配置されている。各焦電素子300は、少なくとも2つの電極302を有しており、各電極302を回路ブロック5の素子接続パッド52に導電性接着剤で固定されることにより、回路ブロック5に固定され且つ電気的に接続される。さらに、検知体3が複数の焦電素子300からなる場合でも、各焦電素子300に複数の検知部が形成されていてもよい。 Further, as shown in FIG. 6, the detection body 3 may include a plurality of pyroelectric elements 300, and the first detection unit 31 and the second detection unit 32 may be formed in separate pyroelectric elements 300. In the example of FIG. 6, the detection body 3 includes a first pyroelectric element 300a (300) and a second pyroelectric element 300b (300), and the first detection unit 31 is formed by the first pyroelectric element 300a. Thus, the second detection unit 32 is formed by the second pyroelectric element 300b. These pyroelectric elements 300 are arranged on the front surface of the substrate 51 at a predetermined interval. Each pyroelectric element 300 has at least two electrodes 302, and each electrode 302 is fixed to the circuit block 5 by fixing the electrode 302 to the element connection pad 52 of the circuit block 5 with a conductive adhesive. Connected. Furthermore, even when the detection body 3 includes a plurality of pyroelectric elements 300, a plurality of detection units may be formed in each pyroelectric element 300.
 また、光学フィルタ7は、図7に示すように、集光機能を有するように、表面が曲面を成す単結晶シリコンを用いて形成されていてもよい。図7の例では、光学フィルタ7は、窓孔222から筐体2外部に露出する表面(前面)が曲面を成しており、これにより、光学フィルタ7を透過した赤外線は検知部30に集光される。 Further, as shown in FIG. 7, the optical filter 7 may be formed using single crystal silicon having a curved surface so as to have a light collecting function. In the example of FIG. 7, the optical filter 7 has a curved surface on the front surface (front surface) exposed from the window hole 222 to the outside of the housing 2, whereby infrared rays transmitted through the optical filter 7 are collected in the detection unit 30. To be lighted.
 なお、回路ブロック5の導体パターンにおいて、検知体3-IC40間の配線は、他電位の配線に対して十分な絶縁性(たとえば1TΩ以上)を確保している。また、信号処理回路を含むIC40は、半導体集積回路の製造技術を用いて形成されており、シリコン単結晶の表面に回路形成されている。そのため、一塊のシリコン単結晶の表面に複数の増幅部(第1の増幅部および第2の増幅部)を形成してもよいし、複数のシリコン単結晶の各々に個別に増幅部を形成してもよい。 In the conductor pattern of the circuit block 5, the wiring between the detector 3 and the IC 40 has sufficient insulation (for example, 1 TΩ or more) with respect to the wiring of other potential. The IC 40 including the signal processing circuit is formed by using a semiconductor integrated circuit manufacturing technique, and is formed on the surface of a silicon single crystal. Therefore, a plurality of amplifying sections (first amplifying section and second amplifying section) may be formed on the surface of a single silicon single crystal, or amplifying sections may be formed individually on each of the plurality of silicon single crystals. May be.
 さらに、信号処理回路(IC40)に対する検知体3や電源などの接続は、ワイヤボンディング技術に限らず、シリコン単結晶上の電極に形成した金属突起を利用したフリップチップ技術、あるいは銅や共晶金属を用いたはんだ付け技術を用いて行ってもよい。または、多元系共晶金属であって、250℃以下の温度で熱処理した後に、融点が300℃以上になる材料で接着してもよい。いずれの接続方法においても、接続界面近傍は外部環境からの保護と強度確保のため、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などの封止材58で保護することが望ましい。 Further, the connection of the detection body 3 and the power source to the signal processing circuit (IC 40) is not limited to the wire bonding technique, but the flip chip technique using the metal protrusion formed on the electrode on the silicon single crystal, or copper or eutectic metal. You may perform using the soldering technique using. Alternatively, a multi-component eutectic metal may be bonded with a material having a melting point of 300 ° C. or higher after heat treatment at a temperature of 250 ° C. or lower. In any connection method, it is desirable to protect the vicinity of the connection interface with a sealing material 58 such as an epoxy resin, a urethane resin, or a silicone resin in order to protect from the external environment and ensure strength.
 また、上記赤外線検出器1は、人体検知としての用途に限らず、たとえばガスセンサとしての用途もある。ガスセンサとして用いる場合の第1の透過領域71、第2の透過領域72の赤外線の透過特性の具体例を以下に示す。 Further, the infrared detector 1 is not limited to use as a human body detection, but may be used as a gas sensor, for example. Specific examples of infrared transmission characteristics of the first transmission region 71 and the second transmission region 72 when used as a gas sensor are shown below.
 第1の透過領域71を透過中心波長4.26μm、半値幅0.18μm、第2の透過領域72を透過中心波長3.95μm、半値幅0.16μmのバンドパスフィルタとすることで、赤外線検出器1をCO2センサとして用いることができる。この場合、第1の透過領域71を透過して第1の検知部31に入射する赤外線が検知波長域となり、第2の透過領域72を透過して第2の検知部32に入射する赤外線が参照波長域となる。 The first transmission region 71 is a band-pass filter having a transmission center wavelength of 4.26 μm and a half-value width of 0.18 μm, and the second transmission region 72 is a band-pass filter having a transmission center wavelength of 3.95 μm and a half-value width of 0.16 μm. It may be used vessel 1 as CO 2 sensor. In this case, infrared rays that pass through the first transmission region 71 and enter the first detection unit 31 become the detection wavelength range, and infrared rays that pass through the second transmission region 72 and enter the second detection unit 32 This is the reference wavelength region.
 一方、第1の透過領域71を透過中心波長3.30μm、半値幅0.16μm、第2の透過領域72を透過中心波長3.95μm、半値幅0.16μmのバンドパスフィルタとすることで、赤外線検出器1をCH4センサとして用いることができる。この場合、第1の透過領域71を透過して第1の検知部31に入射する赤外線が検知波長域となり、第2の透過領域72を透過して第2の検知部32に入射する赤外線が参照波長域となる。 On the other hand, the first transmission region 71 is a bandpass filter having a transmission center wavelength of 3.30 μm and a half width of 0.16 μm, and the second transmission region 72 is a transmission center wavelength of 3.95 μm and a half width of 0.16 μm. The infrared detector 1 can be used as a CH 4 sensor. In this case, infrared rays that pass through the first transmission region 71 and enter the first detection unit 31 become the detection wavelength range, and infrared rays that pass through the second transmission region 72 and enter the second detection unit 32 This is the reference wavelength region.
 (第2実施形態)
 本実施形態の赤外線検出器1は、光学フィルタ7が透過領域ごとに異なる面積を持つ点で、第1実施形態の赤外線検出器1と相違する。以下では、実施形態1と同様の構成については共通の符号を付して適宜説明を省略する。
(Second Embodiment)
The infrared detector 1 of this embodiment is different from the infrared detector 1 of the first embodiment in that the optical filter 7 has a different area for each transmission region. Below, the same code | symbol is attached | subjected about the structure similar to Embodiment 1, and description is abbreviate | omitted suitably.
 すなわち、本実施形態においては、光学フィルタ7は、図8Aから8Cに示すように第1の透過領域71の面積は第2の透過領域72のそれと異なっている。図8Aの例では、光学フィルタ7が2等分ではなく、第2の透過領域72が第1の透過領域71に比べて大きくなるように分割されている。図8Bの例では、窓孔222が、第2の透過領域72に対応する部分の幅を第1の透過領域71に対応する部分よりも小さくした形に形成され、第2の透過領域72が第1の透過領域71に比べて小さくなっている。また、図8Cの例では、窓孔222が2つ設けられており、第2の透過領域72を設けた窓孔222が第1の透過領域71を設けた窓孔222よりも小さく形成されて、第2の透過領域72が第1の透過領域71に比べて小さくなっている。 That is, in the present embodiment, in the optical filter 7, the area of the first transmission region 71 is different from that of the second transmission region 72 as shown in FIGS. 8A to 8C. In the example of FIG. 8A, the optical filter 7 is not divided into two equal parts, and the second transmission region 72 is divided so as to be larger than the first transmission region 71. In the example of FIG. 8B, the window hole 222 is formed in a shape in which the width of the portion corresponding to the second transmission region 72 is made smaller than the portion corresponding to the first transmission region 71, and the second transmission region 72 is formed. It is smaller than the first transmission region 71. In the example of FIG. 8C, two window holes 222 are provided, and the window hole 222 provided with the second transmission region 72 is formed smaller than the window hole 222 provided with the first transmission region 71. The second transmission region 72 is smaller than the first transmission region 71.
 第1の透過領域71と第2の透過領域72とは、赤外線の透過特性が異なるため、赤外線の透過率そのものが異なる場合があるが、上述のように第1の透過領域71の面積が第2の透過領域72のそれと異なるように光学フィルタ7を構成することにより、透過率の差異を吸収することができる。要するに、第1の検知部31に入射する赤外線量と第2の検知部32に入射する赤外線量とで偏りが生じないように、第1の透過領域71および第2の透過領域72の透過率に応じて各透過領域の受光面積が調整されていればよい。 Since the first transmission region 71 and the second transmission region 72 have different infrared transmission characteristics, the infrared transmission factor itself may be different. However, as described above, the area of the first transmission region 71 is the first transmission region 71. By configuring the optical filter 7 so as to be different from that of the two transmission regions 72, the difference in transmittance can be absorbed. In short, the transmittance of the first transmission region 71 and the second transmission region 72 so that there is no bias between the amount of infrared light incident on the first detection unit 31 and the amount of infrared light incident on the second detection unit 32. It is sufficient that the light receiving area of each transmission region is adjusted according to the above.
 なお、検知体3における各検知部30の面積も透過領域に合わせて変更されていてもよい。その他の構成および機能は第1実施形態と同様である。 In addition, the area of each detection unit 30 in the detection body 3 may also be changed according to the transmission region. Other configurations and functions are the same as those in the first embodiment.
 (第3実施形態)
 本実施形態の赤外線検出器1は、図9Aおよび9Bに示すように、筐体2内における検知体3と光学フィルタ7との間の空間に配置され、その空間を第1の検知部31と第2の検知部32との間で仕切る間仕切り8が設けられている点で第1実施形態の赤外線検出器を相違する。以下では、実施形態1と同様の構成については共通の符号を付して適宜説明を省略する。
(Third embodiment)
As shown in FIGS. 9A and 9B, the infrared detector 1 of the present embodiment is disposed in a space between the detector 3 and the optical filter 7 in the housing 2, and the space is connected to the first detector 31. The infrared detector according to the first embodiment is different from the first embodiment in that a partition 8 for partitioning with the second detector 32 is provided. Below, the same code | symbol is attached | subjected about the structure similar to Embodiment 1, and description is abbreviate | omitted suitably.
 すなわち、本実施形態の赤外線検出器1は、検知体3が複数の検知部30を有し且つ各検知部30の出力を別々の増幅部で処理しているので、複数の検知部30間で干渉が極力生じないように、複数の検知部30間に間仕切り8を設けている。間仕切り8は、隣接する検知部30間に形成され、各検知部30に入射する赤外線が他の検知部30に干渉することを防止する。つまり、間仕切り8は、筐体2内において、検知体3と光学フィルタ7との間の空間を仕切っており、第1の透過領域71を透過した赤外線が第2の検知部32に入射するのを防止し、第2の透過領域72を透過した赤外線が第1の検知部31に入射するのを防止する。 That is, in the infrared detector 1 of the present embodiment, the detection body 3 has a plurality of detection units 30 and the outputs of the detection units 30 are processed by separate amplification units. A partition 8 is provided between the plurality of detection units 30 so that interference does not occur as much as possible. The partition 8 is formed between adjacent detectors 30 and prevents infrared rays incident on each detector 30 from interfering with other detectors 30. That is, the partition 8 partitions the space between the detection body 3 and the optical filter 7 in the housing 2, and the infrared light that has passed through the first transmission region 71 enters the second detection unit 32. The infrared rays transmitted through the second transmission region 72 are prevented from entering the first detection unit 31.
 間仕切り8は、たとえば回路ブロック5の表面に成形によって形成されていてもよいし、回路ブロック5と別部材として構成され回路ブロック5上に固定(接着)されてもよい。また、間仕切り8は、光学フィルタ7の支持体(シリコン単結晶)あるいは蒸着体にて形成されていてもよいし、光学フィルタ7と別部材として構成され光学フィルタ7に固定(接着)されてもよい。また、間仕切り8は、キャップ部22を構成する金属によってキャップ部22と一体に形成されていてもよいし、キャップ部22と別部材として構成されキャップ部22に固定(接着)されてもよい。 The partition 8 may be formed, for example, on the surface of the circuit block 5 by molding, or may be configured as a separate member from the circuit block 5 and fixed (adhered) on the circuit block 5. The partition 8 may be formed of a support (silicon single crystal) or a vapor deposition body of the optical filter 7, or may be formed as a separate member from the optical filter 7 and fixed (adhered) to the optical filter 7. Good. Further, the partition 8 may be formed integrally with the cap part 22 by a metal constituting the cap part 22, or may be configured as a separate member from the cap part 22 and fixed (adhered) to the cap part 22.
 以上説明した本実施形態の構成によれば、間仕切り8を設けたことにより、第1の透過領域71を透過した赤外線が第2の検知部32に入射するのを防止でき、第2の透過領域72を透過した赤外線が第1の検知部31に入射するのを防止できる。したがって、複数の検知部30間での赤外線の干渉を抑制することが可能である。 According to the configuration of the present embodiment described above, by providing the partition 8, it is possible to prevent the infrared rays transmitted through the first transmission region 71 from entering the second detection unit 32, and the second transmission region. Infrared rays that have passed through 72 can be prevented from entering the first detector 31. Therefore, it is possible to suppress infrared interference between the plurality of detection units 30.
 さらに、間仕切り8は、その表面が赤外光を反射する反射面を形成するように、赤外線を反射する材料で形成されるか、あるいは鏡面加工などの表面処理が施されていてもよい。この場合、間仕切り8に入射した赤外線は間仕切り8の表面で反射されて検知部30に入射するので、間仕切り8を設けたことにより検知部30へ入射する赤外線量が低減することを抑制できる。 Furthermore, the partition 8 may be formed of a material that reflects infrared light, or may be subjected to surface treatment such as mirror finishing so that the surface thereof forms a reflective surface that reflects infrared light. In this case, since the infrared light incident on the partition 8 is reflected by the surface of the partition 8 and enters the detection unit 30, the provision of the partition 8 can suppress a reduction in the amount of infrared light incident on the detection unit 30.
 なお、本実施形態で説明した間仕切り8は、第1実施形態の構成に限らず、第2実施形態の構成と組み合わせて採用されてもよい。その他の構成および機能は第1実施形態と同様である。 In addition, the partition 8 demonstrated by this embodiment is not restricted to the structure of 1st Embodiment, You may employ | adopt in combination with the structure of 2nd Embodiment. Other configurations and functions are the same as those in the first embodiment.

Claims (10)

  1.  少なくとも1つの焦電素子から成り、第1および第2信号をそれぞれ発生するように構成される第1および第2の検知部を備える検知体と、
     前記第1および第2信号をそれぞれ増幅するように構成される第1および第2の増幅部を備える回路ブロックと、
     窓孔を有し、前記検知体および前記回路ブロックを収納する筐体と、
     窓孔に設けられ、赤外線を透過するように構成される光学フィルタと
     を備え、
     前記光学フィルタは、前記第1および第2の検知部に対応する位置にそれぞれ第1および第2の透過領域を備え、
     前記光学フィルタは、前記第1の透過領域の赤外線透過特性が前記第2の透過領域のそれと異なるように構成されている
     ことを特徴とする赤外線検出器。
    A detector comprising first and second detectors, each comprising at least one pyroelectric element and configured to generate first and second signals, respectively;
    A circuit block comprising first and second amplifiers configured to amplify the first and second signals, respectively;
    A housing having a window hole and housing the detector and the circuit block;
    An optical filter provided in the window hole and configured to transmit infrared rays,
    The optical filter includes first and second transmission regions at positions corresponding to the first and second detection units, respectively.
    The optical filter is configured so that an infrared transmission characteristic of the first transmission region is different from that of the second transmission region.
  2.  前記回路ブロックは、前記検知体からの信号を処理するように構成される信号処理回路を備え、
     前記筐体は、
     前記回路ブロックに電気的に接続される端子ピンが挿通された土台部と、
     前記土台部と共に金属製の筐体を構成するキャップ部と
     を備え、
     前記窓孔は、前記キャップ部の一部に設けられた開口であり、
     前記検知体は、前記筐体内で前記光学フィルタと対向する位置に前記回路ブロックにて支持されており、
     前記第1および第2の検知部は、前記光学フィルタに沿う面内で異なる位置に配置される
     ことを特徴とする請求項1記載の赤外線検出器。
    The circuit block comprises a signal processing circuit configured to process a signal from the sensing body,
    The housing is
    A base portion through which a terminal pin electrically connected to the circuit block is inserted;
    A cap part that forms a metal casing together with the base part,
    The window hole is an opening provided in a part of the cap portion,
    The detector is supported by the circuit block at a position facing the optical filter in the housing,
    The infrared detector according to claim 1, wherein the first and second detection units are arranged at different positions in a plane along the optical filter.
  3.  前記第1の透過領域の面積は、前記第2の透過領域のそれと異なることを特徴とする請求項2記載の赤外線検出器。 The infrared detector according to claim 2, wherein an area of the first transmission region is different from that of the second transmission region.
  4.  前記筐体内における前記検知体と前記光学フィルタとの間の空間に配置され、その空間を前記第1の検知部と前記第2の検知部との間で仕切る間仕切りを更に備えることを特徴とする請求項2または3記載の赤外線検出器。 The apparatus further comprises a partition that is disposed in a space between the detection body and the optical filter in the housing and partitions the space between the first detection unit and the second detection unit. The infrared detector according to claim 2 or 3.
  5.  前記間仕切りは、赤外線を反射する反射面が形成された表面を持つことを特徴とする請求項4記載の赤外線検出器。 The infrared detector according to claim 4, wherein the partition has a surface on which a reflection surface for reflecting infrared rays is formed.
  6.  前記検知体は、前記第1および第2の検知部をそれぞれ構成する第1および第2の焦電素子から成ることを特徴とする請求項2~5のいずれか1項に記載の赤外線検出器。 6. The infrared detector according to claim 2, wherein the detector comprises first and second pyroelectric elements that constitute the first and second detectors, respectively. .
  7.  前記焦電素子は、矩形板状であって前記回路ブロックに少なくとも4つの固定点で固定されており、
     前記少なくとも4つの固定点の各々は、前記焦電素子の板面における向き合う一対の辺上に位置する
     ことを特徴とする請求項2~6のいずれか1項に記載の赤外線検出器。
    The pyroelectric element has a rectangular plate shape and is fixed to the circuit block at at least four fixing points;
    The infrared detector according to any one of claims 2 to 6, wherein each of the at least four fixed points is positioned on a pair of sides facing each other on a plate surface of the pyroelectric element.
  8.  前記回路ブロックは、前記窓孔に面する第1面と前記土台部に面する第2面とを有する基板を備え、
     前記検知体は、前記基板の第1面に取り付けられ、
     前記信号処理回路を構成する電子部品は、前記基板の第2面に取り付けられている
     ことを特徴とする請求項2~7のいずれか1項に記載の赤外線検出器。
    The circuit block includes a substrate having a first surface facing the window hole and a second surface facing the base portion,
    The detector is attached to the first surface of the substrate,
    The infrared detector according to any one of claims 2 to 7, wherein the electronic component constituting the signal processing circuit is attached to the second surface of the substrate.
  9.  前記検知体は、前記焦電素子と、その焦電素子の両端にそれぞれ接続される第1および第2の電極部より成り、
     前記焦電素子と前記第1の電極部が前記第1の検知部を構成する一方、前記焦電素子と前記第2の電極部が前記第2の検知部を構成する
     ことを特徴とする請求項1記載の赤外線検出器。
    The detector comprises the pyroelectric element and first and second electrode portions connected to both ends of the pyroelectric element,
    The pyroelectric element and the first electrode part constitute the first detection part, while the pyroelectric element and the second electrode part constitute the second detection part. Item 1. The infrared detector according to Item 1.
  10.  前記検知体は、並設される第1および第2の焦電素子と、前記第1および第2の焦電素子にそれぞれ接続される第1および第2の電極部とにより成り、
     前記第1の焦電素子と前記第1の電極部が前記第1の検知部を構成する一方、前記第2の焦電素子と前記第2の電極部が前記第2の検知部を構成する
     ことを特徴とする請求項1記載の赤外線検出器。
    The detection body includes first and second pyroelectric elements arranged in parallel, and first and second electrode portions connected to the first and second pyroelectric elements, respectively.
    The first pyroelectric element and the first electrode part constitute the first detection part, while the second pyroelectric element and the second electrode part constitute the second detection part. The infrared detector according to claim 1.
PCT/JP2012/083249 2011-12-28 2012-12-21 Infrared detector WO2013099799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-288749 2011-12-28
JP2011288749A JP2013137259A (en) 2011-12-28 2011-12-28 Infrared detector

Publications (1)

Publication Number Publication Date
WO2013099799A1 true WO2013099799A1 (en) 2013-07-04

Family

ID=48697286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083249 WO2013099799A1 (en) 2011-12-28 2012-12-21 Infrared detector

Country Status (3)

Country Link
JP (1) JP2013137259A (en)
TW (1) TW201337222A (en)
WO (1) WO2013099799A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131574A1 (en) * 2019-12-26 2021-07-01 株式会社堀場製作所 Infrared detector and gas analyzer
CN116105856A (en) * 2023-04-03 2023-05-12 杭州海康微影传感科技有限公司 Infrared detector and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738075A (en) * 2019-02-15 2019-05-10 东莞传晟光电有限公司 A kind of TO pedestal pyroelectric sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145788A (en) * 1994-11-19 1996-06-07 Horiba Ltd Multi-element pyroelectric detector provided with crosstalk preventing structure
JPH09126885A (en) * 1996-08-13 1997-05-16 Hokuriku Electric Ind Co Ltd Pyroelectric type infrared detector
JPH1038677A (en) * 1996-07-19 1998-02-13 Texas Instr Inc <Ti> Radiation detector
JP2004257885A (en) * 2003-02-26 2004-09-16 Horiba Ltd Multi-element type infrared detector
JP2011112508A (en) * 2009-11-26 2011-06-09 Nippon Ceramic Co Ltd Pyroelectric infrared detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145788A (en) * 1994-11-19 1996-06-07 Horiba Ltd Multi-element pyroelectric detector provided with crosstalk preventing structure
JPH1038677A (en) * 1996-07-19 1998-02-13 Texas Instr Inc <Ti> Radiation detector
JPH09126885A (en) * 1996-08-13 1997-05-16 Hokuriku Electric Ind Co Ltd Pyroelectric type infrared detector
JP2004257885A (en) * 2003-02-26 2004-09-16 Horiba Ltd Multi-element type infrared detector
JP2011112508A (en) * 2009-11-26 2011-06-09 Nippon Ceramic Co Ltd Pyroelectric infrared detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131574A1 (en) * 2019-12-26 2021-07-01 株式会社堀場製作所 Infrared detector and gas analyzer
CN116105856A (en) * 2023-04-03 2023-05-12 杭州海康微影传感科技有限公司 Infrared detector and preparation method thereof
CN116105856B (en) * 2023-04-03 2023-09-19 杭州海康微影传感科技有限公司 Infrared detector and preparation method thereof

Also Published As

Publication number Publication date
JP2013137259A (en) 2013-07-11
TW201337222A (en) 2013-09-16

Similar Documents

Publication Publication Date Title
TWI445932B (en) Splitter
CN103988062B (en) Infrared sensor
EP1388174B1 (en) Shielded housing for optical semiconductor component
US11604093B2 (en) Spectrometer device and method for producing a spectrometer device
JP5645245B2 (en) Infrared sensor module
JP2012008003A (en) Infrared sensor
JP4772557B2 (en) Electronic component and module for electronic component
JP5451957B2 (en) Infrared detector
JP6549840B2 (en) Semiconductor radiation detector having large active area and method of manufacturing the same
WO2013099799A1 (en) Infrared detector
JP2008098309A (en) Optical detector
JPH10318829A (en) Infrared sensor
JP4989139B2 (en) Infrared detector
JP2003270047A (en) Infrared sensor
JP2004170214A (en) Sensor device and its manufacturing method
JP5514167B2 (en) Infrared detector
JP2014142237A (en) Infrared receiving unit and infrared application device including the same
JP2013190243A (en) Sensor device
CN109238474A (en) Thermopile IR detector and using the detector 360oLook around array detecting device
JP2010054250A (en) Infrared detector
JP2003149046A (en) Pyroelectric sensor
JP4925258B2 (en) Infrared detector
JPH04158584A (en) Infrared-ray detecting element
JP6782153B2 (en) Infrared sensor
JPH04158586A (en) Infrared-ray detecting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863591

Country of ref document: EP

Kind code of ref document: A1