WO2013099105A1 - Component mounting device - Google Patents
Component mounting device Download PDFInfo
- Publication number
- WO2013099105A1 WO2013099105A1 PCT/JP2012/007575 JP2012007575W WO2013099105A1 WO 2013099105 A1 WO2013099105 A1 WO 2013099105A1 JP 2012007575 W JP2012007575 W JP 2012007575W WO 2013099105 A1 WO2013099105 A1 WO 2013099105A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- head
- heads
- component
- transmission belt
- row
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
- H05K13/0404—Pick-and-place heads or apparatus, e.g. with jaws
- H05K13/0413—Pick-and-place heads or apparatus, e.g. with jaws with orientation of the component while holding it; Drive mechanisms for gripping tools, e.g. lifting, lowering or turning of gripping tools
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
- H05K13/0404—Pick-and-place heads or apparatus, e.g. with jaws
- H05K13/0408—Incorporating a pick-up tool
- H05K13/041—Incorporating a pick-up tool having multiple pick-up tools
Definitions
- the present invention relates to a component mounting apparatus that transports and mounts components on a substrate from a component supply unit.
- each head is supported so as to be rotatable with respect to the head unit, and when a component is sucked and mounted, the rotation angle of each head is controlled in accordance with the component and its mounting position.
- Each head is rotated by a belt transmission mechanism (belt rotation drive mechanism) using a motor as a drive source.
- the belt transmission mechanism is configured to rotate all the heads integrally with one motor, or to group a plurality of heads and rotate all the heads in the group with one motor for each group. It is common (for example, patent document 1). This is because the use of a common motor for a plurality of heads suppresses an increase in size and weight of the head unit.
- the present invention can ensure mounting accuracy with a reasonable configuration while suppressing an increase in size and weight of the head unit due to a nozzle rotation drive mechanism.
- the purpose is to do.
- a component mounting apparatus is a mounting apparatus for mounting a component on a board, and includes a head unit on which a plurality of component mounting heads that are rotatable about a vertical axis are mounted, and the head A head rotation drive mechanism comprising a belt transmission mechanism mounted on the unit and configured to rotationally drive the plurality of heads, the head rotation drive mechanism comprising: a motor having an output shaft; and the plurality of heads.
- FIG. 5 is a schematic cross-sectional view of the head unit (cross-sectional schematic view taken along the line VV in FIG. 4) showing a transmission structure of the transmission belt (located on the lower side).
- FIG. 5 is a schematic plan view (cross-sectional view taken along the line VI-VI in FIG. 4) of the head unit showing a transmission structure of the transmission belt (positioned on the upper side).
- FIG. 1 and 2 show a component mounting apparatus according to the present invention
- FIG. 1 is a plan view
- FIG. 2 is a front view schematically showing the component mounting apparatus.
- XYZ rectangular coordinate axes are shown in order to clarify the directional relationship between the drawings.
- the component mounting apparatus includes a base 1, a substrate transport mechanism 2 that is disposed on the base 1 and transports a substrate 3 such as a printed wiring board (PWB) in the X direction, a component supply unit 4, 5, a component mounting head unit 6, a head unit driving mechanism for driving the head unit 6, an imaging unit 7 for component recognition, and the like.
- a substrate transport mechanism 2 that is disposed on the base 1 and transports a substrate 3 such as a printed wiring board (PWB) in the X direction
- PWB printed wiring board
- the substrate transport mechanism 2 includes a pair of conveyors 2 a and 2 a that transport the substrate 3 on the base 1. These conveyors 2a and 2a receive the board 3 from the right side of the figure, convey it to a predetermined mounting work position (position shown in the figure), and hold the board 3 by a holding device (not shown). Then, after the mounting operation, the holding of the board 3 is released, and the board 3 is carried out to the left side of the figure.
- the component supply units 4 and 5 are arranged on both sides (both sides in the Y direction) of the substrate transport mechanism 2.
- a plurality of tape feeders 4 a arranged in the X direction along the substrate transport mechanism 2 are disposed in one of the component supply units 4 and 5.
- These tape feeders 4a are provided with reels around which small chip components such as ICs, transistors, capacitors, etc. are stored and wound.
- the tape feeders 4a are provided in the vicinity of the substrate transport mechanism 2 while intermittently delivering the tapes from the reels.
- a part is supplied to a predetermined part supply position.
- trays 5a and 5b are set in the component supply unit 5 on the other side at a predetermined interval in the X direction.
- Package-type parts such as QFP (Quad Flat Package) and BGA (Ball Grid Array) are arranged and placed on each tray 5a, 5b so that it can be taken out by the head unit 6 described later. .
- the head unit 6 takes out components from the component supply units 4 and 5 and mounts them on the substrate 3, and is disposed above the substrate transport mechanism 2 and the component supply units 4 and 5.
- the head unit 6 can be moved in the X and Y directions within a certain area by the head unit driving mechanism (corresponding to the moving means of the present invention).
- the head unit driving mechanism is fixed to a pair of elevated frames 1a and 1a provided on the base 1, and extends in parallel with each other in the Y direction, and is supported by these fixed rails 9 in the X direction.
- a ball screw shaft 10 that is screwed into the unit support member 12 and driven by the Y-axis servomotor 11.
- the head unit driving mechanism is fixed to the unit support member 11 and supports the head unit 6 so as to be movable in the X direction.
- the head unit driving mechanism is screwed into the head unit 6 to drive the X-axis servo motor 15.
- the head unit driving mechanism moves the head unit 6 in the X direction via the ball screw shaft 14 by driving the X axis servo motor 15 and also moves the unit via the ball screw shaft 10 by driving the Y axis servo motor 11.
- the support member 12 is moved in the Y direction.
- the head unit 6 moves in the X direction and the Y direction within a certain area.
- the head unit 6 includes a plurality of shaft-like mounting heads 16 supported by the frame of the head unit 6 so as to be movable up and down (moving in the Z direction) and rotating (rotating in the R direction in FIG. 2).
- a head raising / lowering driving mechanism for raising and lowering the head 16 relative to the head unit 6 and a head rotation driving mechanism for rotating the mounting head 16 are provided.
- a total of ten mounting heads 16 are mounted on the head unit 6 as mounting heads 16. These ten mounting heads 16 are supported by the head unit 6 in a state in which a plurality of mounting heads 16 are distributed in front and rear two rows. Specifically, as shown in FIG. 3, it is distributed into six front rows and four rear rows, and is supported by the head unit 6 in a state of being arranged in a row in the X direction for each row.
- the X direction corresponds to the first direction of the present invention
- the Y direction corresponds to the second direction of the present invention.
- the mounting heads 16 in the front row are placed in order from the right side ( ⁇ X direction side).
- the mounting heads 16 in the rear row are called the first rear row head 18a to the fourth rear row head 18d in order from the right side. To do.
- the heads 17a to 17f in the front row mounted on the head unit 6 are adjacent to each other at a constant pitch except that the pitch between the third front row head 17c and the fourth front row head 17d is set wider than the others. They are arranged in a line.
- first and second rear row heads 18a and 18b are respectively disposed between adjacent ones of the first to third front row heads 17a to 17c, and the fourth to sixth front row heads are arranged.
- Third and fourth rear heads 18c and 18d are arranged between adjacent ones of 17d to 17f, respectively.
- mounting heads 16 heads 17a to 17c and 18a, 18b are arranged in a zigzag pattern, and the other five are arranged in the left region (+ X direction region) so as to be symmetrical with respect to the mounting head 16 (heads 17a to 17c and 18a, 18b).
- Mounting heads 16 heads 17d to 17f and 18c, 18d are arranged in a staggered manner.
- Each mounting head 16 is provided with a nozzle at its tip (lower end) for sucking and holding components.
- the nozzles of the mounting heads 16 can communicate with any one of a negative pressure generator, a positive pressure generator, and the atmosphere via an electric switching valve. With this configuration, by supplying a negative pressure to the nozzle, the component can be sucked and held by the nozzle, and thereafter, when the positive pressure is supplied, the sucking and holding of the component is released.
- the head raising / lowering drive mechanism includes an unillustrated air cylinder disposed at the upper end of each mounting head 16, an electric switching valve for switching supply / exhaust of air to / from each air cylinder, and the like.
- Each mounting head 16 is connected to a piston rod of a corresponding air cylinder, and moves up and down in response to switching of the electric switching valve.
- This component mounting apparatus includes first and second head rotation driving mechanisms as the head rotation driving mechanism. Specifically, as shown in FIGS. 3 to 6, the first head for integrally rotating the first to third front row heads 17a to 17c and the first and third rear row heads 18a and 18c. A rotation driving mechanism and a second head rotation driving mechanism for integrally rotating the fourth to sixth front row heads 17d to 17f and the second and fourth rear row heads 18b and 18d are provided. In FIGS. 5 and 6, some of the mounting heads 16 are omitted for the sake of convenience.
- first and second head rotation drive mechanisms are each composed of an R-axis servo motor and a belt transmission mechanism.
- the first head rotation drive mechanism uses the first R-axis servomotor 20 as a drive source and has two transmission belts having different lengths (the right first transmission belt 26A and the right second transmission belt 26B; the first of the present invention).
- the first to third front row heads 17a to 17c and the first and third rear row heads 18a and 18c are integrally driven to rotate via a transmission belt and a second transmission belt).
- the first R-axis servomotor 20 is arranged in front of the first to third heads 17a to 17c (+ Y direction side) in the head unit 6 with the output shaft 20a facing upward. . That is, the first R-axis servomotor 20 includes the first R-axis servomotor 20 and the first and third rear-row heads 18a and 18c (heads of the first head row). It is arranged so as to sandwich (head of the second head row) in the Y direction. As shown in FIGS.
- two upper and lower drive pulleys 22 and 23 are fixed to the output shaft 20 a of the first R-axis servomotor 20, and the upper drive pulley 22 of these drive pulleys 22 and 23,
- the right first transmission belt 26A extends across the driven pulley 30 fixed to the second front row head 17b and the first and third rear row heads 18a and 18c, and the driven pulleys 36 and 38 disposed at predetermined positions. It is being handed over. Specifically, in the clockwise direction, the driving pulley 22, the driven pulley 38, the third rear row head 18c (driven pulley 30), the first rear row head 18a (driven pulley 30), the second front row head 17b (driven pulley).
- the right first transmission belt 26A is wound around the drive pulley 22 and the like.
- the tension pulley 40 is brought into pressure contact with the right first transmission belt 26A from the outer side (outer peripheral side) at a position between the second front row head 17b and the first rear row head 18a.
- the tension of the belt 26A is adjusted to a predetermined value.
- the right second transmission belt 26B having a shorter overall length than the right first transmission belt 26A is stretched over the belt. That is, the second right transmission belt 26B is stretched only on the front row heads 17a and 17c (corresponding to the heads of the second head row of the present invention).
- the drive pulley 23, the third front row head 17c (driven pulley 30), the driven pulley 32, and the first front row head 17a (driven pulley 30) are arranged on the right side of the drive pulley 23 in the clockwise direction.
- the second transmission belt 26B is stretched over. Then, at the position between the drive pulley 23 and the third front row head 17c, the tension pulley 34 is brought into pressure contact with the right second transmission belt 26B from the outer side (outer peripheral side), whereby the right second transmission belt 26B.
- the tension is adjusted to a predetermined value.
- the driven pulley 36 around which the right first transmission belt 26A is stretched and the driven pulley 32 around which the right second transmission belt 26B is spanned are rotatably supported in a state of being vertically aligned on a common shaft body. .
- the second head rotation drive mechanism also has two transmission belts having different lengths (left first transmission belt 27A, left side first drive belt) using the second R-axis servomotor 21 as a drive source.
- the second transmission belt 27B corresponding to the first transmission belt and the second transmission belt of the present invention
- the fourth to sixth heads 17d to 17f in the front row and the second and fourth heads 18b and 18d in the rear row. are integrally driven to rotate.
- the second R-axis servomotor 21 is arranged on the front side (+ Y direction side) of the fourth to sixth front row heads 17d to 17f in the head unit 6 with the output shaft 21a facing upward.
- the second R-axis servomotor 21 includes the second R-axis servomotor 21 and the second and fourth rear-row heads 18b and 18d (the heads of the first head row).
- 17c (the head of the second head row) is sandwiched in the Y direction, and is arranged in a row in the X direction with respect to the first R axis servo motor 20 at the same position as the first R axis servo motor 20 in the Y direction.
- two output pulleys 24 and 25 are fixed to the output shaft 21a of the second R-axis servomotor 21 so as to be aligned in the axial direction.
- the left first transmission belt 27A is stretched over. Specifically, the driving pulley 25, the driven pulley 46, the fifth front row head 17e (driven pulley 30), the fourth rear row head 18d (driven pulley 30), and the second rear row head 18b (driven pulley) are rotated clockwise.
- the left first transmission belt 27A is wound around the drive pulley 25 and the like. Then, at the position between the fifth front row head 17e and the fourth rear row head 18d, the tension pulley 50 is pressed against the left side first transmission belt 27A from the outer side (outer peripheral side), whereby the left side first transmission. The tension of the belt 27A is adjusted to a predetermined value.
- the driven pulley 48 around which the left first transmission belt 27A is stretched and the driven pulley 38 around which the right first transmission belt 26A is stretched are rotatably supported in a state where they are lined up and down on a common shaft body. Yes.
- the left second transmission belt 27B having a shorter overall length than the left first transmission belt 27A is stretched over. That is, the left second transmission belt 27B is stretched only around the front row heads 17a and 17c (corresponding to the heads of the second head row of the present invention).
- the drive pulley 24, the sixth front row head 17f (driven pulley 30), the driven pulley 42, and the fourth front row head 17d (driven pulley 30) are sequentially placed on the drive pulley 24 and the like in the clockwise direction.
- the second transmission belt 27B is stretched over. Then, at the position between the drive pulley 24 and the fourth front row head 17d, the tension pulley 44 is brought into pressure contact with the left second transmission belt 27B from the outer side (outer peripheral side), whereby the left second transmission belt 27B.
- the tension is adjusted to a predetermined value.
- the driven pulley 46, on which the left first transmission belt 27A is stretched, and the driven pulley 42, on which the left second transmission belt 27B is stretched, are rotatably supported in a state of being vertically aligned on a common shaft body. .
- the first head rotation driving mechanism is driven by the first R-axis servomotor 20 to drive the second front row head 17b, the first and third rear row heads 18a, 18c (main) via the right first transmission belt 26A.
- the first and third front row heads 17a and 17c (corresponding to each head of the first group of the invention) are rotated via the right second transmission belt 26B having a shorter overall length than the right first transmission belt 26A.
- Each of the heads of the second group of the present invention is rotated.
- the second head rotation drive mechanism is driven by the second R-axis servomotor 21 to drive the fifth front row head 17e, the second and fourth rear row heads 18b, 18d (the present invention through the left first transmission belt 27A).
- the mounting head 16 on which the right first transmission belt 26A of the first head rotation driving mechanism is stretched is different from the mounting head 16 on which the left first transmission belt 27A of the second head rotation driving mechanism is stretched.
- the mounting head 16 on which the right second transmission belt 26B of the first head rotation drive mechanism is stretched is different from the mounting head 16 on which the left second transmission belt 27B of the second head rotation drive mechanism is stretched.
- the mounting heads 16 are arranged symmetrically in the head unit 6 as described above.
- the first head rotation driving mechanism and the second head rotation driving mechanism are configured symmetrically as shown in FIGS. That is, the arrangement of the first R-axis servomotor 20 constituting the first head rotation drive mechanism and the spanning structure of the transmission belts 26A and 26B, the arrangement of the second R-axis servomotor 21 constituting the second head rotation drive mechanism, and
- the transmission belts 27A and 27B are symmetrical with each other. Accordingly, the right first transmission belt 26A and the left first transmission belt 27A have the same length, and similarly, the right first transmission belt 26A and the left second transmission belt 27B have the same length.
- the right first transmission belt 26A of the first head rotation drive mechanism is stretched over the second front row head 17b and the first and third rear row heads 18a and 18c. Accordingly, among these, the mounting head 16 located at the right end ( ⁇ X direction end) is the first rear row head 18a, and the mounting head 16 located at the left end (+ X direction end) is the third rear row head 18c.
- the left first transmission belt 27A of the second head rotation drive mechanism is stretched over the fifth front row head 17e, the second and fourth rear row heads 18b, 18d. Therefore, among these, the mounting head 16 located at the right end is the second rear row head 18b, and the mounting head 16 located at the left end is the fourth rear row head 18d.
- the first R-axis servomotor 20 of the first head rotation drive mechanism and the second R-axis servomotor 21 of the second head rotation drive mechanism are arranged in order from the right side ( ⁇ X direction side).
- first transmission belts 26A and 27A of each head rotation driving mechanism are mounted on the mounting head 16 (the first head) positioned at the right end of the mounting head 16 around which the right first transmission belt 26A of the first head rotation driving mechanism is stretched.
- the rear-row head 18a) and the mounting head 16 (second rear-row head 18b) located at the right end among the mounting heads 16 on which the left first transmission belt 27A of the second head rotation driving mechanism is stretched are each rotation driving mechanism. These are mounted on the mounting heads 16 so as to correspond to the arrangement of the R-axis servomotors 20 and 21.
- the mounting head 16 (first rear row head 18a) at the right end on which the right first transmission belt 26A is stretched is positioned on the right side, and the mounting head on which the left first transmission belt 27A is stretched on the left side thereof.
- the first transmission belts 26 ⁇ / b> A and 27 ⁇ / b> A are stretched over the mounting head 16 so that 16 (second rear row head 18 b) is adjacent to each other.
- first transmission belts 26A and 27A of each head rotation drive mechanism are mounted heads 16 (third ones) located at the left end of the mounting head 16 around which the right first transmission belt 26A of the first head rotation drive mechanism is stretched.
- the rear head 18c) and the mounting head 16 (fourth rear head 18d) located at the left end among the mounting heads 16 around which the left first transmission belt 27A of the second head rotation drive mechanism is stretched are the same as described above.
- the mounting head 16 is stretched so as to correspond to the arrangement of the R-axis servomotors 20, 21.
- the leftmost mounting head 16 (third rear row head 18c) on which the right first transmission belt 26A is stretched is positioned on the right side, and on the left side thereof, the mounting head on which the left first transmission belt 27A is stretched.
- the first transmission belts 26 ⁇ / b> A and 27 ⁇ / b> A are stretched over the mounting head 16 so that 16 (the fourth rear row head 18 b) is adjacent to each other.
- the image pickup unit 7 picks up images of components taken out from the component supply units 4 and 5 prior to mounting in order to recognize an image of the holding state of the components by the mounting head 16.
- the imaging unit 7 is disposed on the base 1 and at a position between the trays 5a and 5b.
- the imaging unit 7 is fixedly arranged on the base 1, and includes a camera that captures an image of a component held by the mounting head 16 from below and an illumination device that provides imaging illumination to the component.
- the head unit 6 moves above the image pickup unit 7 after picking up the components from the component supply units 4 and 5, the holding components of each mounting head 16 are imaged, and the image data is transferred to the controller described later. 60 (image processing unit 63).
- This component mounting apparatus further includes a controller 60 (shown in FIG. 2) that comprehensively controls its operation.
- the controller 60 includes a CPU that executes logical operations, a ROM that stores various programs for controlling the CPU, a RAM that temporarily stores various data, an HDD, and the like.
- the controller 60 includes a drive control unit 61 (corresponding to the control means of the present invention), a storage unit 62, an image processing unit 63, and the like as its functional configuration.
- the drive control unit 61 stores the storage unit 62 in the storage unit 62.
- Each drive mechanism (servo motors 11, 15, 20, 21, etc.) is comprehensively controlled according to the mounted program.
- the controller 60 performs predetermined mounting work by performing image recognition of the components held in the mounting head 16 and various arithmetic processes based on the image data input from the imaging unit 7 to the image processing unit 63. It is configured to proceed.
- the drive control unit 61 controls driving of the head unit 6 and the like based on the component data stored in the storage unit 62. That is, the storage unit 62 stores component / head correspondence data that defines the mounting head 16 suitable for attracting (holding) each component. The drive control unit 61 stores the component / head correspondence data. The driving of the head unit 6 and the like is controlled based on the head correspondence data.
- the mounting heads 16 front row heads 17a to 17f and rear row heads 18a to 18d
- the component supply unit 5 tray
- 5a, 5b for package type parts (corresponding to specific parts of the present invention)
- only the first, third, fourth and sixth front row heads 17a, 17c, 17d and 17f are used.
- the part / head correspondence data is defined in FIG. That is, a package-type component that is larger than the chip component is more easily affected by the rotation error of the mounting head 16 than the chip component (mounting deviation is likely to occur).
- the first, third, fourth, and sixth front row heads 17a that are rotationally driven through the second transmission belts 26B and 27B that are shorter than the first transmission belts 26A and 27A, 17c, 17d, and 17f, that is, the component / head correspondence data is determined so that the component mounting is performed using only the mounting head 16 that is less likely to be accompanied by a rotation error due to the belt extension among the ten mounting heads 16. Yes.
- the head unit 6 moves onto the component supply units 4 and 5, and the components are picked up by the mounting heads 16, whereby the components are taken out from the component supply units 4 and 5.
- the head control unit 61 and the like are controlled by the drive control unit 61 based on the component / head correspondence data stored in the storage unit 62, so that all the mounting heads 16 (front row)
- the chip components are taken out using the heads 17a to 17f and the rear row heads 18a to 18d), while the first, third, fourth, and sixth front row heads 17a and 17c are used for the package type components.
- 17d, and 17f are used to take out the package type part.
- the head unit 6 passes over the imaging unit 7 along the X direction.
- the components held by the mounting heads 16 are imaged by the imaging unit 7, and the drive control unit 61 recognizes the suction state of the components held by the mounting heads 16 based on the images. If there is a defective part or an uncorrectable suction state among the parts held by each mounting head 16, the drive control unit 61 registers the part as a disposal target.
- the head unit 6 moves onto the substrate 3, and components other than the discard target are sequentially mounted on the substrate 3.
- the position of the head unit 6 and the rotation angle of each mounting head 16 are controlled for each component by the drive control unit 51.
- the position of the head unit 6 and each mounting according to the component recognition result. By correcting the rotation angle of the head 16, components are accurately mounted at each mounting point on the substrate 3.
- the head unit 6 moves onto a component disposal box (not shown) and discards the components to be discarded.
- a component disposal box not shown
- this component mounting apparatus includes five mounting heads 16 (first to third front row heads 17a to 17c and first and third rear row heads 18a and 18c among ten mounting heads 16). ) By the first R-axis servomotor 20 and the remaining five mounting heads 16 (fourth to sixth front row heads 17d to 17f, and second and fourth rear rows). And a second nozzle rotation driving mechanism for rotating the heads 18b and 18d) by the second R-axis servomotor 21. In this way, in the component mounting apparatus, since the R-axis servo motor is shared by the plurality of mounting heads, the increase in size and weight of the head unit 6 can be effectively suppressed.
- the first to third front row heads 17a to 17c and the first and third rear row heads 18a and 18c are not rotationally driven through the same transmission belt.
- the heads 17a to 17c, 18a, and 18c are divided into two groups, and the heads are rotationally driven via two transmission belts 26A and 26B having different lengths for each group.
- a first nozzle rotation drive mechanism is configured.
- the fourth to sixth front row heads 17d to 17f and the second and fourth rear row heads 18b and 18d are divided into two groups, and each group is divided.
- the second nozzle rotation drive mechanism is configured such that the head is rotationally driven via two transmission belts 27A and 27B having different lengths.
- the drive control unit 61 is configured to control the head unit 6 and the like based on the head correspondence data. Therefore, according to this component mounting apparatus, the mounting accuracy required for each of the chip component and the package component can be satisfactorily secured with a reasonable configuration. That is, a package type component that is larger than a chip component is more susceptible to a rotation error of the mounting head 16 than a chip component (a mounting deviation is likely to occur).
- the parts are first, third, fourth, and sixth front row heads 17a, 17c, 17d, which are rotationally driven via second transmission belts 26B, 27B having a shorter overall length than the first transmission belts 26A, 27A. 17f, that is, component mounting is performed using only the heads that are difficult to be accompanied by a rotation error due to belt elongation among the ten mounting heads 16. Therefore, according to this component mounting apparatus, it is particularly easy to ensure the mounting accuracy of the package component, and the required mounting accuracy can be ensured satisfactorily for each of the chip component and the package component.
- this component mounting apparatus since a plurality (10) of the mounting heads 16 are rotationally driven by two nozzle rotation driving mechanisms, the number of mounting heads 16 driven by one R-axis servo motor can be reduced. Moreover, in this component mounting apparatus, a plurality (ten) of the heads 16 are mounted on the head unit 6 in a state of being distributed in two rows, and further, the outside of the arrangement direction of these head rows (in this example, the front side (+ Y direction)) )), The R-axis servomotors 20, 21 of each nozzle rotation drive mechanism are arranged, and these R-axis servomotors 20, 21 are arranged in a line in the X direction.
- the head unit 6 itself can be prevented from being significantly increased in size in the arrangement direction (X direction) of the mounting heads 16.
- this type of component mounting apparatus is often connected in series in the X direction together with other apparatus such as a component mounting apparatus or a screen printing apparatus, and used as one apparatus of a component mounting system. Therefore, from the viewpoint of space saving of the system, it is required to secure a wide movable range of the head unit 6 while making the entire apparatus compact in the X direction.
- the head unit 6 can be prevented from being enlarged in the X direction, which contributes to ensuring a wide movable range of the head unit 6 while making the entire apparatus compact in the X direction.
- the shorter second transmission belts 26B and 27B are arranged in the front row of heads adjacent to the R-axis servomotors 20 and 21 (the second transmission belts 26B and 27B). 1st and 3rd front row heads 17a and 17c and 4th and 6th front row heads 17d and 17f), the belt lengths of these second transmission belts 26B and 27B are very short. It becomes. That is, the first, third, fourth, and sixth front row heads 17a, 17c, 17d, and 17f that are driven via the second transmission belts 26B and 27B are more unlikely to be accompanied by a rotation error due to belt extension. Become. Therefore, according to the component mounting apparatus, it is possible to secure a higher degree of mounting accuracy for components mounted by the front row heads 17a, 17c, 17d, and 17f, in this example, the package type components.
- the first rear row head 18a and the second rear row head 18b are arranged according to the arrangement direction of the R-axis servomotors 20 and 21, while the mounting heads 16 located at the other end (+ X direction side)
- the first transmission belts 26A and 27A are stretched over the mounting head 16 so that the third rear row head 18c and the fourth rear row head 18d) are arranged according to the arrangement direction of the R-axis servomotors 20 and 21.
- the first transmission belts 26A and 27A of the belt rotation driving mechanisms are arranged in a state where the R-axis servomotors 20 and 21 that drive the belts are shifted from each other in the arrangement direction. For this reason, there is no great difference in the belt lengths of the first transmission belts 26A and 27A, and neither of the first transmission belts 26A and 27A jumps and becomes long.
- the rotation error of the mounting head 16 driven by the first transmission belts 26A and 27A that is, the second front row head 17b, the first and third rear row heads 18a and 18c, and the fifth front row head 17e and
- the rotation error with the second and fourth rear row heads 18b and 18d is prevented from increasing, and the mounting operation of the component (chip component in this example) mounted using the mounting head is advanced more accurately. There is an advantage that becomes possible.
- each second transmission belt 26B, 27B of each belt rotation drive mechanism is stretched over the mounting head 16 so as not to overlap each other in the X direction.
- belt length between the transmission belts 26B and 27B, and neither of them is excessively long. Accordingly, rotation errors between the mounting heads 16 driven by the second transmission belts 26B and 27B, that is, the first and third front row heads 17a and 17c and the fourth and sixth front row heads 17d and 17f, This is advantageous in that it is possible to prevent the rotation error from becoming large and to mount the component (package type component in this example) mounted using the mounting head more accurately.
- the component mounting apparatus described above is an example of a preferred embodiment of the component mounting apparatus according to the present invention, and its specific configuration, in particular, the number and arrangement of the mounting heads 16 and the specifics of the nozzle rotation drive mechanism. Such a configuration can be appropriately changed without departing from the gist of the present invention.
- the ten mounting heads 16 are mounted on the head unit 6 in a state where the mounting heads 16 are distributed in two front and rear rows.
- the mounting heads 16 may be arranged in one row or in three rows. It may be the above.
- the nozzle rotation driving mechanism is configured to drive the ten mounting heads 16 by five using the two R-axis servomotors 20 and 21, respectively.
- the configuration may be such that ten mounting heads 16 are driven by one R-axis servomotor.
- the nozzle rotation drive mechanism is configured to transmit the rotation drive force of one R-axis servo motor to one or more mounting heads 16 via two transmission belts having different lengths from each other. Good. According to this configuration, by using the mounting heads 16 according to the components, it is possible to receive the same operational effects as those of the component mounting apparatus of the above embodiment.
- the R-axis servomotors 20 and 21 are arranged at positions on the front side (+ Y direction side) of the mounting head 16 in the head unit 6, but of course, both outer sides of the mounting head 16 in the X direction. You may make it arrange
- all mounting heads 16 front row heads 17a to 17f and rear row heads 18a to 18d
- the first, third, fourth, and sixth components are used for package type components.
- the example in which the component / head correspondence data is determined so as to use only the front row heads 17a, 17c, 17d, and 17f has been described.
- the specific contents of the component / head correspondence data are not limited to this. .
- mounting of components that require higher mounting accuracy is performed by the first, third, fourth, and sixth front row heads 17a, 17c, 17d, and 17f.
- the part / head correspondence data only needs to be determined so as to be performed.
- a component mounting apparatus is a mounting apparatus for mounting a component on a board, and a head unit on which a plurality of component mounting heads that are rotatable about a vertical axis are mounted, and the head unit And a head rotation drive mechanism comprising a belt transmission mechanism for rotationally driving the plurality of heads.
- the head rotation drive mechanism includes a motor having an output shaft and one of the plurality of heads.
- a first transmission belt spanned between a first group of heads composed of a plurality of heads and the output shaft, a total length shorter than the first transmission belt, and the heads of the first group among the plurality of heads
- a second group of heads composed of one or a plurality of other heads and a second transmission belt stretched over the output shaft.
- the second group has a shorter overall length than the first transmission belt that rotationally drives each head of the first group.
- Each head is rotationally driven via the second transmission belt.
- the length of the second transmission belt is shorter than that of the first transmission belt. Compared with rotation error due to belt elongation, it becomes difficult. Therefore, by properly using the heads according to the type of parts, etc., the mounting accuracy required for the parts can be rationalized while the multiple motors mounted on the head unit are rotationally driven by a common motor. It can be secured.
- a component supply unit that supplies a plurality of types of components
- a moving unit that moves the head unit relative to the component supply unit and the substrate
- the moving means is controlled so that the specific component is mounted on the substrate only by the second group of heads.
- This configuration automates the proper use of heads according to the types of parts as described above. That is, for a specific component, the component is taken out from the component supply unit using only the heads of the second group and mounted on the substrate. Therefore, if a component that particularly requires mounting accuracy is set as the specific component, it is advantageous in securing the mounting accuracy of the specific component.
- the package component is set as the specific component, and the control unit can perform the package component only with the head of the second group. It is preferable that the package component is mounted on the substrate, and the moving means is controlled for the chip component so that the chip component is mounted on the substrate by the heads of the first group and the second group. is there.
- component mounting is performed using only the heads of the second group for package-type components, and component mounting is performed using the heads of both groups for chip components. It is possible to proceed with the mounting operation of each component while ensuring the mounting accuracy required for each of the package component and the chip component.
- the head unit includes a first row including a plurality of heads arranged in a row in a first direction, and a plurality of heads arranged in a row in a first direction, and the first unit A second head row arranged in a second direction perpendicular to the first direction with respect to the row, and the motor is configured such that the motor and the first head row in the second direction are the second head row.
- the first transmission belt is stretched between the head and the output shaft with one or more heads of the first head row as the heads of the first group, and the second transmission belt. It is preferable that one or more heads of the second head row are spanned between the head and the output shaft as the heads of the second group.
- a plurality of heads are mounted on a head unit in a state of being divided into two rows, and a motor is disposed outside the arrangement direction of these head rows. According to such a configuration, it is possible to prevent the head unit itself from being significantly increased in size in the head alignment direction (first direction) while a large number of heads are mounted on the head unit.
- the second transmission belt is stretched only on the heads of the second head row.
- the belt length of the second transmission belt can be further shortened. 2 It becomes possible to further improve the mounting accuracy of components by the head driven by the transmission belt.
- the head unit is provided with a plurality of the head rotation driving mechanisms, and the belt rotation driving mechanisms are arranged such that their motors are arranged in a line in the first direction, and are different from each other.
- the head may be rotationally driven.
- the motor can be miniaturized and the head unit can be made compact in the second direction.
- a plurality of motors are arranged in the first direction. Since this is the direction in which the heads are arranged, the influence of increasing the size of the head unit in the first direction due to the arrangement of the motors in the first direction. There is almost no.
- the plurality of head rotation drive mechanisms include a first head rotation drive mechanism and a second head rotation drive mechanism in which the first transmission belt is stretched over the plurality of heads, respectively.
- the first transmission belt includes a head positioned at one end in the first direction among the plurality of heads around which the first transmission belt of the first head rotation driving mechanism is stretched, and a second head rotation driving mechanism.
- the head located at the one end is arranged in an order corresponding to the arrangement of the motors of each rotation drive mechanism, and the first head rotation Of the plurality of heads around which the first transmission belt of the drive mechanism is stretched, the head located at the other end in the first direction and the first transmission belt of the second head rotation drive mechanism are spanned.
- a head located at the end of the other side so as to be arranged in the order corresponding to the arrangement of the motor, it is preferable that is stretched to the head.
- the first transmission belts of the respective belt rotation driving mechanisms are arranged while being shifted from each other in the arrangement direction of the motors that drive the respective belt rotation driving mechanisms. Therefore, there is a large difference between the lengths of the first transmission belts. In addition, none of them will be too long. As a result, it is possible to prevent the difference in rotation error of the heads from increasing, and it is possible to proceed with the component mounting work by the heads of each first group while ensuring the required mounting accuracy.
- the second transmission belts of the plurality of head rotation driving mechanisms are stretched over the heads so as to be aligned in the specific direction without overlapping each other in the specific direction.
- the second transmission belts of the belt rotation driving mechanisms are arranged while being completely displaced from each other in the direction in which the motors that drive the belts are arranged. There is no significant difference between the two, and none of them is excessively long. As a result, it is possible to prevent the difference in rotational error between the heads from increasing, and it is possible to proceed with the mounting work of each component by the heads of the second group while ensuring the required mounting accuracy.
- the component mounting apparatus can ensure mounting accuracy with a rational configuration while suppressing the increase in size and weight of the head unit. It is useful in the manufacturing field.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Supply And Installment Of Electrical Components (AREA)
- Manipulator (AREA)
Abstract
A component mounting device comprising a head unit provided with a plurality of heads for mounting a component, wherein the component mounting device is provided with a head rotation driving mechanism, which is for rotationally driving the heads and which is provided to the head unit. The head rotation driving mechanism comprises: a motor having an output shaft; a first transmission belt looped between the output shaft and heads in a first group comprising one or a plurality of heads from amongst the heads; and a second transmission belt having a shorter total length than that of the first transmission belt, the second transmission belt being looped between the output shaft and heads in a second group comprising one or a plurality of heads, other than those belonging to the first group, from amongst the heads.
Description
本発明は、部品供給部から基板上に部品を搬送して実装する部品実装装置に関るものである。
The present invention relates to a component mounting apparatus that transports and mounts components on a substrate from a component supply unit.
従来から、部品実装用の複数のヘッドを備えたヘッドユニットを備え、前記ヘッドにより部品供給部から部品を吸着して基板上に搬送し、当該基板上の所定位置に前記部品を実装する部品実装装置が知られている。各ヘッドは、ヘッドユニットに対して回転可能に支持されており、部品の吸装着時には、部品やその搭載位置などに応じて各ヘッドの回転角度が制御される。各ヘッドの回転は、モータを駆動源とするベルト伝動機構(ベルト回転駆動機構)により行われる。この場合、一つのモータで全てのヘッドを一体に回転させる、又は複数のヘッドをグループ分けし、グループ毎に、当該グループ内の全ヘッドを一つのモータで回転させるようにベルト伝動機構が構成されるのが一般的である(例えば、特許文献1)。これは、複数のヘッドについてモータを共通化することで、ヘッドユニットの大型化や高重量化を抑制するためである。
Conventionally, it is equipped with a head unit having a plurality of heads for mounting components, and the components are picked up from the component supply unit by the head and transported onto the substrate, and the components are mounted at predetermined positions on the substrate. The device is known. Each head is supported so as to be rotatable with respect to the head unit, and when a component is sucked and mounted, the rotation angle of each head is controlled in accordance with the component and its mounting position. Each head is rotated by a belt transmission mechanism (belt rotation drive mechanism) using a motor as a drive source. In this case, the belt transmission mechanism is configured to rotate all the heads integrally with one motor, or to group a plurality of heads and rotate all the heads in the group with one motor for each group. It is common (for example, patent document 1). This is because the use of a common motor for a plurality of heads suppresses an increase in size and weight of the head unit.
近年、実装効率を高める観点から、より多くのヘッドがヘッドユニットに搭載される傾向がある。そのため、ベルト伝動機構については、より多くのヘッドを回転駆動することが求められる結果、伝動ベルトの長尺化が進んでいる。このような伝動ベルトの長尺化は、ベルト伸びを生じ易くし、例えばロストモーション等、回転誤差をもたらす原因となる。
In recent years, there is a tendency that more heads are mounted on the head unit from the viewpoint of improving mounting efficiency. For this reason, the belt transmission mechanism is required to rotate and drive more heads. As a result, the transmission belt is becoming longer. Such an increase in the length of the transmission belt tends to cause belt elongation, and causes a rotation error such as lost motion.
ベルト伸びに起因する回転誤差への影響は比較的小さく、実装精度に直接影響を与えることは殆どない。しかし、ヘッド数の増加に伴い伝動ベルトの長尺化が進行すれば、例えば大型のパッケージ部品などは、ベルト伸びに起因する回転誤差が実装精度上無視できなくなることが考えられる。
回 転 The effect on the rotation error due to belt elongation is relatively small, and there is almost no direct impact on mounting accuracy. However, if the length of the transmission belt is increased as the number of heads increases, for example, a large package component or the like may have a rotational error due to belt elongation that cannot be ignored in terms of mounting accuracy.
本発明は、複数のヘッドがヘッドユニットに搭載された部品実装装置において、ノズル回転駆動機構によるヘッドユニットの大型化や高重量化を抑制しつつ、合理的な構成で実装精度を確保できるようにすることを目的とする。
In a component mounting apparatus in which a plurality of heads are mounted on a head unit, the present invention can ensure mounting accuracy with a reasonable configuration while suppressing an increase in size and weight of the head unit due to a nozzle rotation drive mechanism. The purpose is to do.
そして、本発明の一の局面による部品実装装置は、基板に部品を実装する実装装置であって、垂直軸回りに回転可能な部品実装用の複数のヘッドが搭載されたヘッドユニットと、前記ヘッドユニットに搭載され、前記複数のヘッドを回転駆動するためのベルト伝動機構からなるヘッド回転駆動機構と、を備え、前記ヘッド回転駆動機構は、出力軸を有するモータと、前記複数のヘッドのうち、一乃至複数のヘッドからなる第1グループのヘッドと前記出力軸とに掛け渡される第1伝動ベルトと、前記第1伝動ベルトよりも全長が短く、前記複数のヘッドのうち、前記第1グループのヘッドとは別の一乃至複数のヘッドからなる第2グループのヘッドと前記出力軸とに掛け渡される第2伝動ベルトと、を備えるものである。
A component mounting apparatus according to one aspect of the present invention is a mounting apparatus for mounting a component on a board, and includes a head unit on which a plurality of component mounting heads that are rotatable about a vertical axis are mounted, and the head A head rotation drive mechanism comprising a belt transmission mechanism mounted on the unit and configured to rotationally drive the plurality of heads, the head rotation drive mechanism comprising: a motor having an output shaft; and the plurality of heads. A first transmission belt spanned between a first group of heads composed of one or a plurality of heads and the output shaft, and an overall length shorter than the first transmission belt, and among the plurality of heads, the first group of heads A second group of heads composed of one or a plurality of heads different from the heads, and a second transmission belt stretched over the output shaft are provided.
以下、添付図面を参照しながら本発明の好ましい実施の一形態について詳述する。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
図1及び図2は、本発明に係る部品実装装置を示しており、図1は平面図で、図2は正面図で、それぞれ部品実装装置を概略的に示している。図1、図2及び後に説明する図面には、各図の方向関係を明確にするためにXYZ直角座標軸が示されている。
1 and 2 show a component mounting apparatus according to the present invention, FIG. 1 is a plan view, and FIG. 2 is a front view schematically showing the component mounting apparatus. In FIG. 1, FIG. 2, and the drawings described later, XYZ rectangular coordinate axes are shown in order to clarify the directional relationship between the drawings.
部品実装装置は、基台1と、この基台1上に配置されてプリント配線板(PWB;Printed Wiring Board)等の基板3をX方向に搬送する基板搬送機構2と、部品供給部4、5と、部品実装用のヘッドユニット6と、このヘッドユニット6を駆動するヘッドユニット駆動機構と、部品認識のための撮像ユニット7等と、を備える。
The component mounting apparatus includes a base 1, a substrate transport mechanism 2 that is disposed on the base 1 and transports a substrate 3 such as a printed wiring board (PWB) in the X direction, a component supply unit 4, 5, a component mounting head unit 6, a head unit driving mechanism for driving the head unit 6, an imaging unit 7 for component recognition, and the like.
前記基板搬送機構2は、基台1上において基板3を搬送する一対のコンベア2a、2aを含む。これらコンベア2a、2aは、同図の右側から基板3を受け入れて所定の実装作業位置(同図に示す位置)に搬送し、図略の保持装置により当該基板3を保持する。そして、実装作業後、当該基板3の保持を解除し、この基板3を同図の左側に搬出する。
The substrate transport mechanism 2 includes a pair of conveyors 2 a and 2 a that transport the substrate 3 on the base 1. These conveyors 2a and 2a receive the board 3 from the right side of the figure, convey it to a predetermined mounting work position (position shown in the figure), and hold the board 3 by a holding device (not shown). Then, after the mounting operation, the holding of the board 3 is released, and the board 3 is carried out to the left side of the figure.
前記部品供給部4、5は、前記基板搬送機構2の両側(Y方向両側)に配置されている。これら部品供給部4、5のうち一方側の部品供給部4には、基板搬送機構2に沿ってX方向に並ぶ複数のテープフィーダ4aが配置されている。これらテープフィーダ4aは、IC、トランジスタ、コンデンサ等の小片状のチップ部品を収納、保持したテープが巻回されたリールを備え、このリールから間欠的にテープを繰り出しながら基板搬送機構2近傍の所定の部品供給位置に部品を供給する。一方、他方側の部品供給部5には、X方向に所定の間隔を隔ててトレイ5a、5bがセットされている。各トレイ5a、5bには、後述するヘッドユニット6による取出しが可能となるように、QFP(Quad Flat Package)やBGA(Ball Grid Array)等のパッケージ型の部品が整列して載置されている。
The component supply units 4 and 5 are arranged on both sides (both sides in the Y direction) of the substrate transport mechanism 2. A plurality of tape feeders 4 a arranged in the X direction along the substrate transport mechanism 2 are disposed in one of the component supply units 4 and 5. These tape feeders 4a are provided with reels around which small chip components such as ICs, transistors, capacitors, etc. are stored and wound. The tape feeders 4a are provided in the vicinity of the substrate transport mechanism 2 while intermittently delivering the tapes from the reels. A part is supplied to a predetermined part supply position. On the other hand, trays 5a and 5b are set in the component supply unit 5 on the other side at a predetermined interval in the X direction. Package-type parts such as QFP (Quad Flat Package) and BGA (Ball Grid Array) are arranged and placed on each tray 5a, 5b so that it can be taken out by the head unit 6 described later. .
前記ヘッドユニット6は、部品供給部4、5から部品を取り出して基板3上に実装するものであり、基板搬送機構2および部品供給部4,5等の上方に配置されている。
The head unit 6 takes out components from the component supply units 4 and 5 and mounts them on the substrate 3, and is disposed above the substrate transport mechanism 2 and the component supply units 4 and 5.
前記ヘッドユニット6は、前記ヘッドユニット駆動機構(本発明の移動手段に相当する)により一定の領域内でX方向およびY方向に移動可能とされている。このヘッドユニット駆動機構は、基台1上に設けられる一対の高架フレーム1a、1aにそれぞれ固定され、Y方向に互いに平行に延びる一対の固定レール9と、これら固定レール9に支持されてX方向に延びるユニット支持部材12と、このユニット支持部材12に螺合挿入されてY軸サーボモータ11より駆動されるボールねじ軸10と、を含む。また、前記ヘッドユニット駆動機構は、ユニット支持部材11に固定され、ヘッドユニット6をX方向に移動可能に支持する固定レール13と、ヘッドユニット6に螺合挿入されてX軸サーボモータ15を駆動源として駆動されるボールねじ軸14と、を含む。つまり、ヘッドユニット駆動機構は、X軸サーボモータ15の駆動によりボールねじ軸14を介してヘッドユニット6をX方向に移動させる共に、Y軸サーボモータ11の駆動によりボールねじ軸10を介してユニット支持部材12をY方向に移動させる。その結果、ヘッドユニット6が一定の領域内でX方向およびY方向に移動する。
The head unit 6 can be moved in the X and Y directions within a certain area by the head unit driving mechanism (corresponding to the moving means of the present invention). The head unit driving mechanism is fixed to a pair of elevated frames 1a and 1a provided on the base 1, and extends in parallel with each other in the Y direction, and is supported by these fixed rails 9 in the X direction. And a ball screw shaft 10 that is screwed into the unit support member 12 and driven by the Y-axis servomotor 11. The head unit driving mechanism is fixed to the unit support member 11 and supports the head unit 6 so as to be movable in the X direction. The head unit driving mechanism is screwed into the head unit 6 to drive the X-axis servo motor 15. And a ball screw shaft 14 driven as a source. That is, the head unit driving mechanism moves the head unit 6 in the X direction via the ball screw shaft 14 by driving the X axis servo motor 15 and also moves the unit via the ball screw shaft 10 by driving the Y axis servo motor 11. The support member 12 is moved in the Y direction. As a result, the head unit 6 moves in the X direction and the Y direction within a certain area.
前記ヘッドユニット6は、当該ヘッドユニット6のフレームに昇降(Z方向の移動)及び回転(図2中のR方向の回転)可能に支持される複数本の軸状の実装ヘッド16と、これら実装ヘッド16をヘッドユニット6に対して昇降させるためのヘッド昇降駆動機構と、前記実装ヘッド16を回転させるためのヘッド回転駆動機構等とを備える。
The head unit 6 includes a plurality of shaft-like mounting heads 16 supported by the frame of the head unit 6 so as to be movable up and down (moving in the Z direction) and rotating (rotating in the R direction in FIG. 2). A head raising / lowering driving mechanism for raising and lowering the head 16 relative to the head unit 6 and a head rotation driving mechanism for rotating the mounting head 16 are provided.
前記ヘッドユニット6には、実装ヘッド16として合計10本の実装ヘッド16が搭載されている。これら10本の実装ヘッド16は、複数本ずつ前後2列に振り分けられた状態でヘッドユニット6に支持されている。具体的には、図3に示すように、前列6本、後列4本に振り分けられ、列毎にX方向に一列に配列された状態でヘッドユニット6に支持されている。当例では、X方向が本発明の第1方向に相当し、Y方向が本発明の第2方向に相当する。
A total of ten mounting heads 16 are mounted on the head unit 6 as mounting heads 16. These ten mounting heads 16 are supported by the head unit 6 in a state in which a plurality of mounting heads 16 are distributed in front and rear two rows. Specifically, as shown in FIG. 3, it is distributed into six front rows and four rear rows, and is supported by the head unit 6 in a state of being arranged in a row in the X direction for each row. In this example, the X direction corresponds to the first direction of the present invention, and the Y direction corresponds to the second direction of the present invention.
なお、以下の説明において特に各実装ヘッド16を区別する必要がある場合には、前列(本発明の第2ヘッド列に相当する)の各実装ヘッド16を右側(-X方向側)から順に第1前列ヘッド17a~第6前列ヘッド17fと呼び、後列(本発明の第1ヘッド列に相当する)の各実装ヘッド16を右側から順に第1後列ヘッド18a~第4後列ヘッド18dと呼ぶことにする。
In the following description, when it is particularly necessary to distinguish the mounting heads 16, the mounting heads 16 in the front row (corresponding to the second head row of the present invention) are placed in order from the right side (−X direction side). The mounting heads 16 in the rear row (corresponding to the first head row of the present invention) are called the first rear row head 18a to the fourth rear row head 18d in order from the right side. To do.
前記ヘッドユニット6に搭載される前列の各ヘッド17a~17fは、第3前列ヘッド17cと第4前列ヘッド17dとのピッチが他より広く設定される以外、隣接するもの同士が互いに一定のピッチで並ぶように配列されている。そして、X方向において、第1~第3の前列ヘッド17a~17cのうち隣接するもの同士の間にそれぞれ第1、第2の後列ヘッド18a、18bが配置され、第4~第6の前列ヘッド17d~17fのうち隣接するもの同士の間にそれぞれ第3、第4の後列ヘッド18c、18dが配置されている。これにより、当例では、図3に示すように、全体として、ヘッドユニット6の中間位置から右側の領域(-X方向側の領域)に5本の実装ヘッド16(ヘッド17a~17c及び18a、18b)が千鳥状に配置されるとともに、当該実装ヘッド16(ヘッド17a~17c及び18a、18b)に対して左右対称となるように、左側の領域(+X方向側の領域)に他の5本の実装ヘッド16(ヘッド17d~17f及び18c、18d)が千鳥状に配置されている。
The heads 17a to 17f in the front row mounted on the head unit 6 are adjacent to each other at a constant pitch except that the pitch between the third front row head 17c and the fourth front row head 17d is set wider than the others. They are arranged in a line. In the X direction, first and second rear row heads 18a and 18b are respectively disposed between adjacent ones of the first to third front row heads 17a to 17c, and the fourth to sixth front row heads are arranged. Third and fourth rear heads 18c and 18d are arranged between adjacent ones of 17d to 17f, respectively. Thus, in this example, as shown in FIG. 3, as a whole, five mounting heads 16 (heads 17a to 17c and 18a, 18b) are arranged in a zigzag pattern, and the other five are arranged in the left region (+ X direction region) so as to be symmetrical with respect to the mounting head 16 (heads 17a to 17c and 18a, 18b). Mounting heads 16 (heads 17d to 17f and 18c, 18d) are arranged in a staggered manner.
各実装ヘッド16は、その先端(下端)に、部品を吸着、保持するためのノズルを備えている。各実装ヘッド16のノズルは、それぞれ電動切替弁を介して負圧発生装置、正圧発生装置および大気の何れかに連通可能とされている。この構成により、前記ノズルに負圧が供給されることで当該ノズルによる部品の吸着保持が可能となり、その後、正圧が供給されることで当該部品の吸着保持が解除される。
Each mounting head 16 is provided with a nozzle at its tip (lower end) for sucking and holding components. The nozzles of the mounting heads 16 can communicate with any one of a negative pressure generator, a positive pressure generator, and the atmosphere via an electric switching valve. With this configuration, by supplying a negative pressure to the nozzle, the component can be sucked and held by the nozzle, and thereafter, when the positive pressure is supplied, the sucking and holding of the component is released.
前記ヘッド昇降駆動機構は、各実装ヘッド16の上端部にそれぞれ配置される図外のエアシリンダ、及び各エアシリンダへのエアの給排を切り換える電動切替弁等を含む。各実装ヘッド16は、それぞれ対応するエアシリンダのピストンロッドに連結されており、前記電動切替弁の切替え応じて昇降する。
The head raising / lowering drive mechanism includes an unillustrated air cylinder disposed at the upper end of each mounting head 16, an electric switching valve for switching supply / exhaust of air to / from each air cylinder, and the like. Each mounting head 16 is connected to a piston rod of a corresponding air cylinder, and moves up and down in response to switching of the electric switching valve.
この部品実装装置は、前記ヘッド回転駆動機構として、第1、第2の2つのヘッド回転駆動機構を備えている。具体的には、図3~図6に示すように、第1~第3の前列ヘッド17a~17c及び第1、第3の後列ヘッド18a、18cを一体的に回転駆動するための第1ヘッド回転駆動機構と、第4~第6の前列ヘッド17d~17f及び第2、第4の後列ヘッド18b、18dを一体的に回転駆動するための第2ヘッド回転駆動機構とを備えている。なお、図5、図6では、便宜上、一部の実装ヘッド16を省略して描いている。
This component mounting apparatus includes first and second head rotation driving mechanisms as the head rotation driving mechanism. Specifically, as shown in FIGS. 3 to 6, the first head for integrally rotating the first to third front row heads 17a to 17c and the first and third rear row heads 18a and 18c. A rotation driving mechanism and a second head rotation driving mechanism for integrally rotating the fourth to sixth front row heads 17d to 17f and the second and fourth rear row heads 18b and 18d are provided. In FIGS. 5 and 6, some of the mounting heads 16 are omitted for the sake of convenience.
これら第1、第2の各ヘッド回転駆動機構は、それぞれR軸サーボモータとベルト伝動機構とから構成されている。第1ヘッド回転駆動機構は、第1R軸サーボモータ20を駆動源として、互いに長さの異なる2本の伝動ベルト(右側第1伝動ベルト26A、右側第2伝動ベルト26Bという;本発明の第1伝動ベルト及び第2伝動ベルトに相当する)を介して第1~第3の前列ヘッド17a~17c及び第1、第3の後列ヘッド18a、18cを一体に回転駆動するように構成されている。
These first and second head rotation drive mechanisms are each composed of an R-axis servo motor and a belt transmission mechanism. The first head rotation drive mechanism uses the first R-axis servomotor 20 as a drive source and has two transmission belts having different lengths (the right first transmission belt 26A and the right second transmission belt 26B; the first of the present invention). The first to third front row heads 17a to 17c and the first and third rear row heads 18a and 18c are integrally driven to rotate via a transmission belt and a second transmission belt).
詳しく説明すると、前記第1R軸サーボモータ20は、その出力軸20aを上向きにした状態で、ヘッドユニット6における第1~第3のヘッド17a~17cの前方(+Y方向側)に配置されている。すなわち、第1R軸サーボモータ20は、当該第1R軸サーボモータ20と第1、第3の後列ヘッド18a、18c(第1ヘッド列のヘッド)とで第1~第3の前列ヘッド17a~17c(第2ヘッド列のヘッド)をY方向に挟むように配置されている。図4、図6に示すように、第1R軸サーボモータ20の出力軸20aには、上下2つの駆動プーリ22、23が固定され、これら駆動プーリ22、23のうち上側の駆動プーリ22と、第2前列ヘッド17b及び第1、第3の後列ヘッド18a、18cにそれぞれ固定される被駆動プーリ30と、所定位置に配置される従動プーリ36、38とに亘って右側第1伝動ベルト26Aが掛け渡されている。具体的には、時計回りに、駆動プーリ22、従動プーリ38、第3後列ヘッド18c(被駆動プーリ30)、第1後列ヘッド18a(被駆動プーリ30)、第2前列ヘッド17b(被駆動プーリ30)及び従動プーリ36の順番で当該駆動プーリ22等に右側第1伝動ベルト26Aが掛け渡されている。そして、第2前列ヘッド17bと第1後列ヘッド18aとの間の位置で、右側第1伝動ベルト26Aに対してその外側(外周側)からテンションプーリ40が圧接されることにより、右側第1伝動ベルト26Aの張力が所定値に調節されている。
More specifically, the first R-axis servomotor 20 is arranged in front of the first to third heads 17a to 17c (+ Y direction side) in the head unit 6 with the output shaft 20a facing upward. . That is, the first R-axis servomotor 20 includes the first R-axis servomotor 20 and the first and third rear- row heads 18a and 18c (heads of the first head row). It is arranged so as to sandwich (head of the second head row) in the Y direction. As shown in FIGS. 4 and 6, two upper and lower drive pulleys 22 and 23 are fixed to the output shaft 20 a of the first R-axis servomotor 20, and the upper drive pulley 22 of these drive pulleys 22 and 23, The right first transmission belt 26A extends across the driven pulley 30 fixed to the second front row head 17b and the first and third rear row heads 18a and 18c, and the driven pulleys 36 and 38 disposed at predetermined positions. It is being handed over. Specifically, in the clockwise direction, the driving pulley 22, the driven pulley 38, the third rear row head 18c (driven pulley 30), the first rear row head 18a (driven pulley 30), the second front row head 17b (driven pulley). 30) and the driven pulley 36, the right first transmission belt 26A is wound around the drive pulley 22 and the like. The tension pulley 40 is brought into pressure contact with the right first transmission belt 26A from the outer side (outer peripheral side) at a position between the second front row head 17b and the first rear row head 18a. The tension of the belt 26A is adjusted to a predetermined value.
また、図4、図5に示すように、下側の駆動プーリ23と、第1前列ヘッド17a及び第3前列ヘッド17cにそれぞれ固定される被駆動プーリ30と、所定位置に配置される従動プーリ32とに亘って、前記右側第1伝動ベルト26Aよりも全長が短い右側第2伝動ベルト26Bが掛け渡されている。すなわち、右側第2伝動ベルト26Bは、前列ヘッド17a、17c(本発明の第2ヘッド列のヘッドに相当する)にのみ掛け渡されている。具体的には、時計回りに、駆動プーリ23、第3前列ヘッド17c(被駆動プーリ30)、従動プーリ32及び第1前列ヘッド17a(被駆動プーリ30)の順番で当該駆動プーリ23等に右側第2伝動ベルト26Bが掛け渡されている。そして、駆動プーリ23と第3前列ヘッド17cとの間の位置で、右側第2伝動ベルト26Bに対してその外側(外周側)からテンションプーリ34が圧接されることにより、右側第2伝動ベルト26Bの張力が所定値に調節されている。
4 and 5, the lower drive pulley 23, the driven pulley 30 fixed to the first front row head 17a and the third front row head 17c, respectively, and the driven pulley arranged at a predetermined position. 32, the right second transmission belt 26B having a shorter overall length than the right first transmission belt 26A is stretched over the belt. That is, the second right transmission belt 26B is stretched only on the front row heads 17a and 17c (corresponding to the heads of the second head row of the present invention). Specifically, the drive pulley 23, the third front row head 17c (driven pulley 30), the driven pulley 32, and the first front row head 17a (driven pulley 30) are arranged on the right side of the drive pulley 23 in the clockwise direction. The second transmission belt 26B is stretched over. Then, at the position between the drive pulley 23 and the third front row head 17c, the tension pulley 34 is brought into pressure contact with the right second transmission belt 26B from the outer side (outer peripheral side), whereby the right second transmission belt 26B. The tension is adjusted to a predetermined value.
なお、右側第1伝動ベルト26Aが掛け渡される従動プーリ36と、右側第2伝動ベルト26Bが掛け渡される従動プーリ32とは、共通の軸体に上下並んだ状態で回転自在に支持されている。
The driven pulley 36 around which the right first transmission belt 26A is stretched and the driven pulley 32 around which the right second transmission belt 26B is spanned are rotatably supported in a state of being vertically aligned on a common shaft body. .
前記第2ヘッド回転駆動機構も、第1ヘッド回転駆動機構と同様に、第2R軸サーボモータ21を駆動源として、互いに長さの異なる2本の伝動ベルト(左側第1伝動ベルト27A、左側第2伝動ベルト27Bという;本発明の第1伝動ベルト及び第2伝動ベルトに相当する)を介して前列の第4~第6のヘッド17d~17f及び後列の第2、第4のヘッド18b、18dを一体的に回転駆動するように構成されている。
Similarly to the first head rotation drive mechanism, the second head rotation drive mechanism also has two transmission belts having different lengths (left first transmission belt 27A, left side first drive belt) using the second R-axis servomotor 21 as a drive source. The second transmission belt 27B; corresponding to the first transmission belt and the second transmission belt of the present invention), and the fourth to sixth heads 17d to 17f in the front row and the second and fourth heads 18b and 18d in the rear row. Are integrally driven to rotate.
詳しく説明すると、第2R軸サーボモータ21は、その出力軸21aを上向きにした状態で、ヘッドユニット6における第4~第6の前列ヘッド17d~17fの前側(+Y方向側)に配置されている。すなわち、第2R軸サーボモータ21は、当該第2R軸サーボモータ21と第2、第4の後列ヘッド18b、18d(第1ヘッド列のヘッド)とで、第4~第6の前列ヘッド17a~17c(第2ヘッド列のヘッド)をY方向に挟み、かつ、Y方向における前記第1R軸サーボモータ20と同じ位置で当該第1R軸サーボモータ20に対してX方向に一列に並ぶように配置されている。図4、図5に示すように、第2R軸サーボモータ21の出力軸21aには、軸方向に並ぶように上下2つの駆動プーリ24、25が固定され、これら駆動プーリ24、25のうち下側の駆動プーリ25と、第5前列ヘッド17e及び第2、第4の後列ヘッド18b、18dにそれぞれ固定される被駆動プーリ30と、所定位置に配置される従動プーリ46、48とに亘って左側第1伝動ベルト27Aが掛け渡されている。具体的には、時計回りに、駆動プーリ25、従動プーリ46、第5前列ヘッド17e(被駆動プーリ30)、第4後列ヘッド18d(被駆動プーリ30)、第2後列ヘッド18b(被駆動プーリ30)及び従動プーリ48の順番で当該駆動プーリ25等に左側第1伝動ベルト27Aが掛け渡されている。そして、第5前列ヘッド17eと第4後列ヘッド18dとの間の位置で、左側第1伝動ベルト27Aに対してその外側(外周側)からテンションプーリ50が圧接されることにより、左側第1伝動ベルト27Aの張力が所定値に調節されている。なお、左側第1伝動ベルト27Aが掛け渡される従動プーリ48と、前記右側第1伝動ベルト26Aが掛け渡される従動プーリ38とは、共通の軸体に上下並んだ状態で回転自在に支持されている。
More specifically, the second R-axis servomotor 21 is arranged on the front side (+ Y direction side) of the fourth to sixth front row heads 17d to 17f in the head unit 6 with the output shaft 21a facing upward. . That is, the second R-axis servomotor 21 includes the second R-axis servomotor 21 and the second and fourth rear-row heads 18b and 18d (the heads of the first head row). 17c (the head of the second head row) is sandwiched in the Y direction, and is arranged in a row in the X direction with respect to the first R axis servo motor 20 at the same position as the first R axis servo motor 20 in the Y direction. Has been. As shown in FIGS. 4 and 5, two output pulleys 24 and 25 are fixed to the output shaft 21a of the second R-axis servomotor 21 so as to be aligned in the axial direction. Side driven pulley 25, driven pulley 30 fixed to the fifth front row head 17e and second and fourth rear row heads 18b and 18d, and driven pulleys 46 and 48 arranged at predetermined positions, respectively. The left first transmission belt 27A is stretched over. Specifically, the driving pulley 25, the driven pulley 46, the fifth front row head 17e (driven pulley 30), the fourth rear row head 18d (driven pulley 30), and the second rear row head 18b (driven pulley) are rotated clockwise. 30) and the driven pulley 48, the left first transmission belt 27A is wound around the drive pulley 25 and the like. Then, at the position between the fifth front row head 17e and the fourth rear row head 18d, the tension pulley 50 is pressed against the left side first transmission belt 27A from the outer side (outer peripheral side), whereby the left side first transmission. The tension of the belt 27A is adjusted to a predetermined value. The driven pulley 48 around which the left first transmission belt 27A is stretched and the driven pulley 38 around which the right first transmission belt 26A is stretched are rotatably supported in a state where they are lined up and down on a common shaft body. Yes.
また、図4、図6に示すように、上側の駆動プーリ24と、第4前列ヘッド17d及び第6前列ヘッド17fにそれぞれ固定される被駆動プーリ30と、所定位置に配置される従動プーリ42とに亘って、前記左側第1伝動ベルト27Aよりも全長が短い左側第2伝動ベルト27Bが掛け渡されている。すなわち、左側第2伝動ベルト27Bは、前列ヘッド17a、17c(本発明の第2ヘッド列のヘッドに相当する)にのみ掛け渡されている。具体的には、時計回りに、駆動プーリ24、第6前列ヘッド17f(被駆動プーリ30)、従動プーリ42及び第4前列ヘッド17d(被駆動プーリ30)の順番で当該駆動プーリ24等に左側第2伝動ベルト27Bが掛け渡されている。そして、駆動プーリ24と第4前列ヘッド17dとの間の位置で、左側第2伝動ベルト27Bに対してその外側(外周側)からテンションプーリ44が圧接されることにより、左側第2伝動ベルト27Bの張力が所定値に調節されている。
Further, as shown in FIGS. 4 and 6, the upper drive pulley 24, the driven pulley 30 fixed to the fourth front row head 17d and the sixth front row head 17f, and the driven pulley 42 arranged at a predetermined position, respectively. The left second transmission belt 27B having a shorter overall length than the left first transmission belt 27A is stretched over. That is, the left second transmission belt 27B is stretched only around the front row heads 17a and 17c (corresponding to the heads of the second head row of the present invention). Specifically, the drive pulley 24, the sixth front row head 17f (driven pulley 30), the driven pulley 42, and the fourth front row head 17d (driven pulley 30) are sequentially placed on the drive pulley 24 and the like in the clockwise direction. The second transmission belt 27B is stretched over. Then, at the position between the drive pulley 24 and the fourth front row head 17d, the tension pulley 44 is brought into pressure contact with the left second transmission belt 27B from the outer side (outer peripheral side), whereby the left second transmission belt 27B. The tension is adjusted to a predetermined value.
なお、左側第1伝動ベルト27Aが掛け渡される従動プーリ46と、左側第2伝動ベルト27Bが掛け渡される従動プーリ42とは、共通の軸体に上下並んだ状態で回転自在に支持されている。
The driven pulley 46, on which the left first transmission belt 27A is stretched, and the driven pulley 42, on which the left second transmission belt 27B is stretched, are rotatably supported in a state of being vertically aligned on a common shaft body. .
この構成により、第1ヘッド回転駆動機構は、第1R軸サーボモータ20の駆動により、右側第1伝動ベルト26Aを介して第2前列ヘッド17b、第1及び第3の後列ヘッド18a、18c(本発明の第1グループの各ヘッドに相当する)を回転させるとともに、この右側第1伝動ベルト26Aよりも全長が短い右側第2伝動ベルト26Bを介して第1及び第3の前列ヘッド17a、17c(本発明の第2グループの各ヘッドに相当する)をそれぞれ回転させる。また、第2ヘッド回転駆動機構は、第2R軸サーボモータ21の駆動により、左側第1伝動ベルト27Aを介して第5前列ヘッド17e、第2及び第4の後列ヘッド18b、18d(本発明の第1グループの各ヘッドに相当する)を回転させるとともに、この左側第1伝動ベルト27Aよりも全長の短い左側第2伝動ベルト27Bを介して第4及び第6の前列ヘッド17d、17f(本発明の第2グループの各ヘッドに相当する)をそれぞれ回転させるようになっている。すなわち、第1ヘッド回転駆動機構の右側第1伝動ベルト26Aが掛け渡される実装ヘッド16と、第2ヘッド回転駆動機構の左側第1伝動ベルト27Aが掛け渡される実装ヘッド16とは互いに異なっており、同様に、第1ヘッド回転駆動機構の右側第2伝動ベルト26Bが掛け渡される実装ヘッド16と、第2ヘッド回転駆動機構の左側第2伝動ベルト27Bが掛け渡される実装ヘッド16とは互いに異なっている。
With this configuration, the first head rotation driving mechanism is driven by the first R-axis servomotor 20 to drive the second front row head 17b, the first and third rear row heads 18a, 18c (main) via the right first transmission belt 26A. The first and third front row heads 17a and 17c (corresponding to each head of the first group of the invention) are rotated via the right second transmission belt 26B having a shorter overall length than the right first transmission belt 26A. Each of the heads of the second group of the present invention is rotated. Further, the second head rotation drive mechanism is driven by the second R-axis servomotor 21 to drive the fifth front row head 17e, the second and fourth rear row heads 18b, 18d (the present invention through the left first transmission belt 27A). 4th and 6th front row heads 17d and 17f (the present invention) via the left second transmission belt 27B having a shorter overall length than the left first transmission belt 27A. Corresponding to each head of the second group). That is, the mounting head 16 on which the right first transmission belt 26A of the first head rotation driving mechanism is stretched is different from the mounting head 16 on which the left first transmission belt 27A of the second head rotation driving mechanism is stretched. Similarly, the mounting head 16 on which the right second transmission belt 26B of the first head rotation drive mechanism is stretched is different from the mounting head 16 on which the left second transmission belt 27B of the second head rotation drive mechanism is stretched. ing.
なお、各実装ヘッド16は、上記の通りヘッドユニット6において左右対称に配列されている。そして、第1ヘッド回転駆動機構と第2ヘッド回転駆動機構とは、図4及び図5に示すように左右対称に構成されている。つまり、第1ヘッド回転駆動機構を構成する第1R軸サーボモータ20の配置及び各伝動ベルト26A、26Bの掛け渡し構造と、第2ヘッド回転駆動機構を構成する第2R軸サーボモータ21の配置及び伝動ベルト27A、27Bの掛け渡し構造とは左右対称である。従って、右側第1伝動ベルト26Aと左側第1伝動ベルト27Aとは同じ長さであり、同様に、右側第1伝動ベルト26Aと左側第2伝動ベルト27Bとは同じ長さである。
The mounting heads 16 are arranged symmetrically in the head unit 6 as described above. The first head rotation driving mechanism and the second head rotation driving mechanism are configured symmetrically as shown in FIGS. That is, the arrangement of the first R-axis servomotor 20 constituting the first head rotation drive mechanism and the spanning structure of the transmission belts 26A and 26B, the arrangement of the second R-axis servomotor 21 constituting the second head rotation drive mechanism, and The transmission belts 27A and 27B are symmetrical with each other. Accordingly, the right first transmission belt 26A and the left first transmission belt 27A have the same length, and similarly, the right first transmission belt 26A and the left second transmission belt 27B have the same length.
また、第1ヘッド回転駆動機構の右側第1伝動ベルト26Aは、第2前列ヘッド17b、第1及び第3の後列ヘッド18a、18cに掛け渡されている。従って、これらのうち右端(-X方向端)に位置する実装ヘッド16は第1後列ヘッド18aであり、左端(+X方向端)に位置する実装ヘッド16は第3後列ヘッド18cである。一方、第2ヘッド回転駆動機構の左側第1伝動ベルト27Aは、第5前列ヘッド17e、第2及び第4の後列ヘッド18b、18dに掛け渡されている。従って、これらのうち右端に位置する実装ヘッド16は第2後列ヘッド18bであり、左端に位置する実装ヘッド16は第4後列ヘッド18dである。そして、上記の通り、第1ヘッド回転駆動機構の第1R軸サーボモータ20と第2ヘッド回転駆動機構の第2R軸サーボモータ21とが右側(-X方側)から順に並んでいる。
Further, the right first transmission belt 26A of the first head rotation drive mechanism is stretched over the second front row head 17b and the first and third rear row heads 18a and 18c. Accordingly, among these, the mounting head 16 located at the right end (−X direction end) is the first rear row head 18a, and the mounting head 16 located at the left end (+ X direction end) is the third rear row head 18c. On the other hand, the left first transmission belt 27A of the second head rotation drive mechanism is stretched over the fifth front row head 17e, the second and fourth rear row heads 18b, 18d. Therefore, among these, the mounting head 16 located at the right end is the second rear row head 18b, and the mounting head 16 located at the left end is the fourth rear row head 18d. As described above, the first R-axis servomotor 20 of the first head rotation drive mechanism and the second R-axis servomotor 21 of the second head rotation drive mechanism are arranged in order from the right side (−X direction side).
つまり、各ヘッド回転駆動機構の第1伝動ベルト26A、27Aは、第1ヘッド回転駆動機構の右側第1伝動ベルト26Aが掛け渡される実装ヘッド16のうち、右端に位置する実装ヘッド16(第1後列ヘッド18a)と、第2ヘッド回転駆動機構の左側第1伝動ベルト27Aが掛け渡される実装ヘッド16のうち、右端に位置する実装ヘッド16(第2後列ヘッド18b)とが、各回転駆動機構のR軸サーボモータ20、21の配列に対応した並びとなるように各実装ヘッド16に掛け渡されている。より具体的には、右側第1伝動ベルト26Aが掛け渡される右端の実装ヘッド16(第1後列ヘッド18a)が右側に位置し、その左側に、左側第1伝動ベルト27Aが掛け渡される実装ヘッド16(第2後列ヘッド18b)が隣接するように、各第1伝動ベルト26A、27Aが実装ヘッド16に掛け渡されている。
In other words, the first transmission belts 26A and 27A of each head rotation driving mechanism are mounted on the mounting head 16 (the first head) positioned at the right end of the mounting head 16 around which the right first transmission belt 26A of the first head rotation driving mechanism is stretched. The rear-row head 18a) and the mounting head 16 (second rear-row head 18b) located at the right end among the mounting heads 16 on which the left first transmission belt 27A of the second head rotation driving mechanism is stretched are each rotation driving mechanism. These are mounted on the mounting heads 16 so as to correspond to the arrangement of the R- axis servomotors 20 and 21. More specifically, the mounting head 16 (first rear row head 18a) at the right end on which the right first transmission belt 26A is stretched is positioned on the right side, and the mounting head on which the left first transmission belt 27A is stretched on the left side thereof. The first transmission belts 26 </ b> A and 27 </ b> A are stretched over the mounting head 16 so that 16 (second rear row head 18 b) is adjacent to each other.
また、各ヘッド回転駆動機構の第1伝動ベルト26A、27Aは、第1ヘッド回転駆動機構の右側第1伝動ベルト26Aが掛け渡される実装ヘッド16のうち、左端に位置する実装ヘッド16(第3後列ヘッド18c)と、第2ヘッド回転駆動機構の左側第1伝動ベルト27Aが掛け渡される実装ヘッド16のうち、左端に位置する実装ヘッド16(第4後列ヘッド18d)とが、上記と同様に、R軸サーボモータ20、21の配列に対応した並びとなるように、実装ヘッド16に掛け渡されている。より具体的には、右側第1伝動ベルト26Aが掛け渡される左端の実装ヘッド16(第3後列ヘッド18c)が右側に位置し、その左側に、左側第1伝動ベルト27Aが掛け渡される実装ヘッド16(第4後列ヘッド18b)が隣接するように、各第1伝動ベルト26A、27Aが実装ヘッド16に掛け渡されている。
Further, the first transmission belts 26A and 27A of each head rotation drive mechanism are mounted heads 16 (third ones) located at the left end of the mounting head 16 around which the right first transmission belt 26A of the first head rotation drive mechanism is stretched. The rear head 18c) and the mounting head 16 (fourth rear head 18d) located at the left end among the mounting heads 16 around which the left first transmission belt 27A of the second head rotation drive mechanism is stretched are the same as described above. , The mounting head 16 is stretched so as to correspond to the arrangement of the R- axis servomotors 20, 21. More specifically, the leftmost mounting head 16 (third rear row head 18c) on which the right first transmission belt 26A is stretched is positioned on the right side, and on the left side thereof, the mounting head on which the left first transmission belt 27A is stretched. The first transmission belts 26 </ b> A and 27 </ b> A are stretched over the mounting head 16 so that 16 (the fourth rear row head 18 b) is adjacent to each other.
前記撮像ユニット7は、実装ヘッド16による部品の保持状態を画像認識するために、部品供給部4、5から取り出された部品を実装に先立ち撮像するものである。撮像ユニット7は、前記基台1上であって前記トレイ5a、5bの間の位置に配置されている。撮像ユニット7は、基台1上に固定的に配置されており、実装ヘッド16に保持された部品をその下側から撮像するカメラと、部品に対して撮像用の照明を与える照明装置とを備えており、部品供給部4、5からの部品吸着後、前記ヘッドユニット6が当該撮像ユニット7の上方を移動する際に、各実装ヘッド16の保持部品を撮像し、その画像データを後記コントローラ60(画像処理部63)に出力する。
The image pickup unit 7 picks up images of components taken out from the component supply units 4 and 5 prior to mounting in order to recognize an image of the holding state of the components by the mounting head 16. The imaging unit 7 is disposed on the base 1 and at a position between the trays 5a and 5b. The imaging unit 7 is fixedly arranged on the base 1, and includes a camera that captures an image of a component held by the mounting head 16 from below and an illumination device that provides imaging illumination to the component. When the head unit 6 moves above the image pickup unit 7 after picking up the components from the component supply units 4 and 5, the holding components of each mounting head 16 are imaged, and the image data is transferred to the controller described later. 60 (image processing unit 63).
この部品実装装置は、その動作を統括的に制御するコントローラ60(図2に示す)をさらに備えている。このコントローラ60は、論理演算を実行するCPU、そのCPUを制御する種々のプログラムなどを記憶するROM、種々のデータを一時的に記憶するRAMおよびHDD等から構成されている。
This component mounting apparatus further includes a controller 60 (shown in FIG. 2) that comprehensively controls its operation. The controller 60 includes a CPU that executes logical operations, a ROM that stores various programs for controlling the CPU, a RAM that temporarily stores various data, an HDD, and the like.
このコントローラ60は、その機能構成として、駆動制御部61(本発明の制御手段に相当する)、記憶部62及び画像処理部63等を含んでおり、駆動制御部61が、記憶部62に記憶されている実装プログラムに従い、各駆動機構等(サーボモータ11、15、20、21等)を統括的に制御する。また、コントローラ60は、前記撮像ユニット7から画像処理部63に入力される画像データに基づき、実装ヘッド16に保持された部品の画像認識や各種演算処理等を行うことにより、所定の実装作業を進めるように構成されている。
The controller 60 includes a drive control unit 61 (corresponding to the control means of the present invention), a storage unit 62, an image processing unit 63, and the like as its functional configuration. The drive control unit 61 stores the storage unit 62 in the storage unit 62. Each drive mechanism ( servo motors 11, 15, 20, 21, etc.) is comprehensively controlled according to the mounted program. Further, the controller 60 performs predetermined mounting work by performing image recognition of the components held in the mounting head 16 and various arithmetic processes based on the image data input from the imaging unit 7 to the image processing unit 63. It is configured to proceed.
特に、前記実装ヘッド16による部品供給部4、5からの部品の取り出しの際には、前記実装ヘッド16のうち、部品毎に予め定められた実装ヘッド16により当該部品が吸着されるように、前記記憶部62に記憶されている部品データに基づき駆動制御部61がヘッドユニット6等の駆動を制御する。すなわち、前記記憶部62には、部品毎にその部品を吸着(保持)するのに適した実装ヘッド16を定めた部品/ヘッド対応データが記憶されており、駆動制御部61は、この部品/ヘッド対応データに基づきヘッドユニット6等の駆動を制御する。当例では、部品供給部4(テープフィーダ4a)により供給されるチップ部品については、全ての実装ヘッド16(前列ヘッド17a~17f及び後列ヘッド18a~18d)を用いる一方、部品供給部5(トレイ5a、5b)により供給されるパッケージ型部品(本発明の特定部品に相当する)については、第1、第3、第4、第6の各前列ヘッド17a、17c、17d、17fのみを用いるように前記部品/ヘッド対応データが定められている。つまり、チップ部品よりも大きいパッケージ型部品は、チップ部品に比べて実装ヘッド16の回転誤差による影響を受け易い(実装ずれを生じ易い)。そのため、パッケージ部品については、第1伝動ベルト26A、27Aよりも全長が短い第2伝動ベルト26B、27Bを介して回転駆動される第1、第3、第4、第6の各前列ヘッド17a、17c、17d、17f、つまり、10本の実装ヘッド16のうちで、よりベルト伸びによる回転誤差を伴い難い実装ヘッド16のみを用いて部品実装が行われるように部品/ヘッド対応データが定められている。
In particular, when the component is taken out from the component supply units 4 and 5 by the mounting head 16, the component is attracted by the mounting head 16 predetermined for each component of the mounting head 16. The drive control unit 61 controls driving of the head unit 6 and the like based on the component data stored in the storage unit 62. That is, the storage unit 62 stores component / head correspondence data that defines the mounting head 16 suitable for attracting (holding) each component. The drive control unit 61 stores the component / head correspondence data. The driving of the head unit 6 and the like is controlled based on the head correspondence data. In this example, for the chip components supplied by the component supply unit 4 (tape feeder 4a), all the mounting heads 16 (front row heads 17a to 17f and rear row heads 18a to 18d) are used, while the component supply unit 5 (tray). 5a, 5b) for package type parts (corresponding to specific parts of the present invention), only the first, third, fourth and sixth front row heads 17a, 17c, 17d and 17f are used. The part / head correspondence data is defined in FIG. That is, a package-type component that is larger than the chip component is more easily affected by the rotation error of the mounting head 16 than the chip component (mounting deviation is likely to occur). Therefore, for the package parts, the first, third, fourth, and sixth front row heads 17a that are rotationally driven through the second transmission belts 26B and 27B that are shorter than the first transmission belts 26A and 27A, 17c, 17d, and 17f, that is, the component / head correspondence data is determined so that the component mounting is performed using only the mounting head 16 that is less likely to be accompanied by a rotation error due to the belt extension among the ten mounting heads 16. Yes.
次に、この駆動制御部61の制御に基づく一連の実装動作について説明する。
Next, a series of mounting operations based on the control of the drive control unit 61 will be described.
この部品実装装置では、まず、ヘッドユニット6が部品供給部4、5上に移動し、各実装ヘッド16により部品が吸着されることにより、当該部品供給部4、5から部品が取り出される。この際、上記の通り、記憶部62に記憶されている部品/ヘッド対応データに基づきヘッドユニット6等が駆動制御部61により制御されることで、チップ部品については、全ての実装ヘッド16(前列ヘッド17a~17f及び後列ヘッド18a~18d)を用いられて当該チップ部品の取り出しが行われる一方で、パッケージ型部品については、第1、第3、第4、第6の各前列ヘッド17a、17c、17d、17fのみが用いられて当該パッケージ型部品の取り出しが行われる。
In this component mounting apparatus, first, the head unit 6 moves onto the component supply units 4 and 5, and the components are picked up by the mounting heads 16, whereby the components are taken out from the component supply units 4 and 5. At this time, as described above, the head control unit 61 and the like are controlled by the drive control unit 61 based on the component / head correspondence data stored in the storage unit 62, so that all the mounting heads 16 (front row) The chip components are taken out using the heads 17a to 17f and the rear row heads 18a to 18d), while the first, third, fourth, and sixth front row heads 17a and 17c are used for the package type components. , 17d, and 17f are used to take out the package type part.
部品供給部4、5からの部品の取り出しが完了すると、ヘッドユニット6が撮像ユニット7上をX方向に沿って通過する。これにより、各実装ヘッド16にそれぞれ保持されている部品が撮像ユニット7により撮像され、駆動制御部61により、当該画像に基づき各実装ヘッド16に保持された部品の吸着状態が認識される。そして、各実装ヘッド16に保持された部品のなかに不良部品や補正不可能な吸着状態のものがある場合には、前記駆動制御部61により、当該部品が廃棄対象として登録された上で、ヘッドユニット6が基板3上に移動し、前記廃棄対象以外の部品が順次基板3上に実装される。部品実装時には、部品毎にヘッドユニット6の位置および各実装ヘッド16の回転角度などが駆動制御部51により制御されるが、この際、部品の認識結果に応じてヘッドユニット6の位置および各実装ヘッド16の回転角度が補正されることで、基板3上の各搭載点に部品が正確に実装されることとなる。
When the removal of the components from the component supply units 4 and 5 is completed, the head unit 6 passes over the imaging unit 7 along the X direction. As a result, the components held by the mounting heads 16 are imaged by the imaging unit 7, and the drive control unit 61 recognizes the suction state of the components held by the mounting heads 16 based on the images. If there is a defective part or an uncorrectable suction state among the parts held by each mounting head 16, the drive control unit 61 registers the part as a disposal target. The head unit 6 moves onto the substrate 3, and components other than the discard target are sequentially mounted on the substrate 3. At the time of component mounting, the position of the head unit 6 and the rotation angle of each mounting head 16 are controlled for each component by the drive control unit 51. At this time, the position of the head unit 6 and each mounting according to the component recognition result. By correcting the rotation angle of the head 16, components are accurately mounted at each mounting point on the substrate 3.
こうして基板3上に部品が実装されると、ヘッドユニット6が図外の部品廃棄ボックス上へ移動し、上記廃棄対象の部品を廃棄する。これにより実装動作の一サイクルが終了し、必要に応じてこの動作が繰り返されることで所要の部品が基板3上に実装される。
Thus, when components are mounted on the substrate 3, the head unit 6 moves onto a component disposal box (not shown) and discards the components to be discarded. As a result, one cycle of the mounting operation is completed, and the necessary components are mounted on the substrate 3 by repeating this operation as necessary.
以上説明したように、この部品実装装置は、10本の実装ヘッド16のうち5本の実装ヘッド16(第1~第3の前列ヘッド17a~17cと第1、第3の後列ヘッド18a、18c)を第1R軸サーボモータ20で回転駆動する第1ノズル回転駆動機構と、残りの5本の実装ヘッド16(第4~第6の前列ヘッド17d~ヘッド17fと、第2、第4の後列ヘッド18b、18d)を第2R軸サーボモータ21で回転駆動する第2ノズル回転駆動機構とを備えている。このように、部品実装装置は、複数の実装ヘッドについてR軸サーボモータが共通化されているので、ヘッドユニット6の大型化や高重量化が効果的に抑制される。
As described above, this component mounting apparatus includes five mounting heads 16 (first to third front row heads 17a to 17c and first and third rear row heads 18a and 18c among ten mounting heads 16). ) By the first R-axis servomotor 20 and the remaining five mounting heads 16 (fourth to sixth front row heads 17d to 17f, and second and fourth rear rows). And a second nozzle rotation driving mechanism for rotating the heads 18b and 18d) by the second R-axis servomotor 21. In this way, in the component mounting apparatus, since the R-axis servo motor is shared by the plurality of mounting heads, the increase in size and weight of the head unit 6 can be effectively suppressed.
しかも、第1ノズル回転駆動機構については、第1~第3の前列ヘッド17a~17c及び第1、第3の後列ヘッド18a、18cが同一の伝動ベルトを介して回転駆動されるのではなく、これらのヘッド17a~17c、18a、18cが2つのグループに分けられた上で、グループ毎に互いに長さの異なる2本の伝動ベルト26A、26Bを介して当該ヘッドが回転駆動されるように当該第1ノズル回転駆動機構が構成されている。また、第2ノズル回転駆動機構についても同様に、第4~第6の前列ヘッド17d~17f及び第2、第4の後列ヘッド18b、18dが2つのグループに分けられた上で、グループ毎に互いに長さの異なる2本の伝動ベルト27A、27Bを介して当該ヘッドが回転駆動されるように当該第2ノズル回転駆動機構が構成されている。そしてその上で、パッケージ型部品の実装時には、前列ヘッド17a~17fのうち第1、第3、第4、第6の各前列ヘッド17a、17c、17d、17fのみを用いるように、上記部品/ヘッド対応データに基づいて駆動制御部61がヘッドユニット6等を制御するように構成さている。よって、この部品実装装置によれば、チップ部品及びパッケージ部品それぞれに要求される実装精度を合理的な構成で良好に確保することができる。すなわち、チップ部品よりも大きいパッケージ型部品は、チップ部品に比べて実装ヘッド16の回転誤差による影響を受け易い(実装ずれを生じ易い)が、この部品実装装置によれば、上記の通り、パッケージ部品は、第1伝動ベルト26A、27Aよりも全長が短い第2伝動ベルト26B、27Bを介して回転駆動される第1、第3、第4、第6の各前列ヘッド17a、17c、17d、17f、つまり10本の実装ヘッド16のうちでベルト伸びによる回転誤差を伴い難いヘッドのみを用いて部品実装が行われる。そのため、この部品実装装置によれば、特にパッケージ部品の実装精度を確保し易くなり、チップ部品及びパッケージ部品のそれぞれについて、要求される実装精度を良好に確保することができる。
In addition, with respect to the first nozzle rotation drive mechanism, the first to third front row heads 17a to 17c and the first and third rear row heads 18a and 18c are not rotationally driven through the same transmission belt. The heads 17a to 17c, 18a, and 18c are divided into two groups, and the heads are rotationally driven via two transmission belts 26A and 26B having different lengths for each group. A first nozzle rotation drive mechanism is configured. Similarly, for the second nozzle rotation drive mechanism, the fourth to sixth front row heads 17d to 17f and the second and fourth rear row heads 18b and 18d are divided into two groups, and each group is divided. The second nozzle rotation drive mechanism is configured such that the head is rotationally driven via two transmission belts 27A and 27B having different lengths. In addition, when mounting the package type component, only the first, third, fourth, and sixth front row heads 17a, 17c, 17d, and 17f among the front row heads 17a to 17f are used. The drive control unit 61 is configured to control the head unit 6 and the like based on the head correspondence data. Therefore, according to this component mounting apparatus, the mounting accuracy required for each of the chip component and the package component can be satisfactorily secured with a reasonable configuration. That is, a package type component that is larger than a chip component is more susceptible to a rotation error of the mounting head 16 than a chip component (a mounting deviation is likely to occur). The parts are first, third, fourth, and sixth front row heads 17a, 17c, 17d, which are rotationally driven via second transmission belts 26B, 27B having a shorter overall length than the first transmission belts 26A, 27A. 17f, that is, component mounting is performed using only the heads that are difficult to be accompanied by a rotation error due to belt elongation among the ten mounting heads 16. Therefore, according to this component mounting apparatus, it is particularly easy to ensure the mounting accuracy of the package component, and the required mounting accuracy can be ensured satisfactorily for each of the chip component and the package component.
また、この部品実装装置では、複数(10本)の実装ヘッド16を2つのノズル回転駆動機構で回転駆動する構成であるため、一つのR軸サーボモータで駆動する実装ヘッド16の数を少なくできる。しかも、この部品実装装置では、複数(10本)のヘッド16が2列に振り分けられた状態でヘッドユニット6に搭載され、さらにこれらヘッド列同士の並び方向の外側(当例では前側(+Y方向))に各ノズル回転駆動機構のR軸サーボモータ20、21が配置され、かつこれらR軸サーボモータ20、21がX方向に一列に並ぶように配置されている。従って、ヘッドユニット6に多数の実装ヘッド16が搭載される構成でありながらも、ヘッドユニット6自体が実装ヘッド16の並び方向(X方向)に著しく大型化することが抑制されるという利点もある。すなわち、この種の部品実装装置は、他の部品実装装置やスクリーン印刷装置等の関連装置と共にX方向に直列に連結され、部品実装システムの一装置として使用される場合が多い。そのため、システムの省スペース化の観点から、装置全体をX方向にコンパクト化しつつヘッドユニット6の可動範囲を広く確保することが求められるが、この点に関し、上記部品実装装置によれば、ヘッドユニット6がX方向へ大型化することを抑制することができるので、装置全体をX方向にコンパクト化しつつヘッドユニット6の可動範囲を広く確保することに寄与する。
Further, in this component mounting apparatus, since a plurality (10) of the mounting heads 16 are rotationally driven by two nozzle rotation driving mechanisms, the number of mounting heads 16 driven by one R-axis servo motor can be reduced. . Moreover, in this component mounting apparatus, a plurality (ten) of the heads 16 are mounted on the head unit 6 in a state of being distributed in two rows, and further, the outside of the arrangement direction of these head rows (in this example, the front side (+ Y direction)) )), The R- axis servomotors 20, 21 of each nozzle rotation drive mechanism are arranged, and these R- axis servomotors 20, 21 are arranged in a line in the X direction. Therefore, even though the configuration is such that a large number of mounting heads 16 are mounted on the head unit 6, there is an advantage that the head unit 6 itself can be prevented from being significantly increased in size in the arrangement direction (X direction) of the mounting heads 16. . That is, this type of component mounting apparatus is often connected in series in the X direction together with other apparatus such as a component mounting apparatus or a screen printing apparatus, and used as one apparatus of a component mounting system. Therefore, from the viewpoint of space saving of the system, it is required to secure a wide movable range of the head unit 6 while making the entire apparatus compact in the X direction. In this regard, according to the component mounting apparatus, the head unit 6 can be prevented from being enlarged in the X direction, which contributes to ensuring a wide movable range of the head unit 6 while making the entire apparatus compact in the X direction.
また、ノズル回転駆動機構の伝動ベルトのうち、短い方の第2伝動ベルト26B、27Bについては、これら第2伝動ベルト26B、27Bは、各R軸サーボモータ20、21に近接する前列のヘッド(第1、第3の前列ヘッド17a、17c、および第4、第6の前列ヘッド17d、17f)のみに掛け渡されているので、これら第2伝動ベルト26B、27Bのベルト長が非常に短いものとなる。つまり、第2伝動ベルト26B、27Bを介して駆動される第1、第3、第4、第6の各前列ヘッド17a、17c、17d、17fは、ベルト伸びによる回転誤差をより伴い難いものとなる。従って、上記部品実装装置によれば、当該各前列ヘッド17a、17c、17d、17fにより部品実装が行われる部品、当例では上記パッケージ型部品の実装精度をより高度に確保することができる。
Of the transmission belts of the nozzle rotation drive mechanism, the shorter second transmission belts 26B and 27B are arranged in the front row of heads adjacent to the R-axis servomotors 20 and 21 (the second transmission belts 26B and 27B). 1st and 3rd front row heads 17a and 17c and 4th and 6th front row heads 17d and 17f), the belt lengths of these second transmission belts 26B and 27B are very short. It becomes. That is, the first, third, fourth, and sixth front row heads 17a, 17c, 17d, and 17f that are driven via the second transmission belts 26B and 27B are more unlikely to be accompanied by a rotation error due to belt extension. Become. Therefore, according to the component mounting apparatus, it is possible to secure a higher degree of mounting accuracy for components mounted by the front row heads 17a, 17c, 17d, and 17f, in this example, the package type components.
また、この部品実装装置の各ベルト回転駆動機構では、第1伝動ベルト26A、27Aが掛け渡される実装ヘッド16のうちX方向の一方側(-X方向側)の端部に位置する実装ヘッド16同士(第1後列ヘッド18a及び第2後列ヘッド18b)がR軸サーボモータ20、21の配列方向に準じて並ぶ一方、他方側(+X方向側)の端部に位置する実装ヘッド16同士(第3後列ヘッド18c及び第4後列ヘッド18d)がR軸サーボモータ20、21の配列方向に準じて並ぶように、各第1伝動ベルト26A、27Aが実装ヘッド16に掛け渡されている。つまり、各ベルト回転駆動機構の第1伝動ベルト26A、27Aは、これらをそれぞれ駆動するR軸サーボモータ20、21が並び方向に互いにずれた状態で並んでいる。そのため、第1伝動ベルト26A、27Aのベルト長に大きな差がなくなり、かつ、何れも飛び抜けて長くなることがない。従って、これら第1伝動ベルト26A、27Aにより駆動される実装ヘッド16の回転誤差、すなわち、第2前列ヘッド17b及び第1、第3の各後列ヘッド18a、18cと第5の各前列ヘッド17e及び第2、第4の各後列ヘッド18b、18dとの回転誤差が大きくなることが防止され、当該実装ヘッドを用いて実装される部品(当例ではチップ部品)の実装作業をより精度良く進めることが可能になるという利点がある。
Further, in each belt rotation drive mechanism of this component mounting apparatus, the mounting head 16 located at one end in the X direction (−X direction side) of the mounting head 16 around which the first transmission belts 26A and 27A are stretched. The first rear row head 18a and the second rear row head 18b are arranged according to the arrangement direction of the R- axis servomotors 20 and 21, while the mounting heads 16 located at the other end (+ X direction side) The first transmission belts 26A and 27A are stretched over the mounting head 16 so that the third rear row head 18c and the fourth rear row head 18d) are arranged according to the arrangement direction of the R- axis servomotors 20 and 21. That is, the first transmission belts 26A and 27A of the belt rotation driving mechanisms are arranged in a state where the R- axis servomotors 20 and 21 that drive the belts are shifted from each other in the arrangement direction. For this reason, there is no great difference in the belt lengths of the first transmission belts 26A and 27A, and neither of the first transmission belts 26A and 27A jumps and becomes long. Accordingly, the rotation error of the mounting head 16 driven by the first transmission belts 26A and 27A, that is, the second front row head 17b, the first and third rear row heads 18a and 18c, and the fifth front row head 17e and The rotation error with the second and fourth rear row heads 18b and 18d is prevented from increasing, and the mounting operation of the component (chip component in this example) mounted using the mounting head is advanced more accurately. There is an advantage that becomes possible.
また、この部品実装装置では、各ベルト回転駆動機構の各第2伝動ベルト26B、27Bが互いにX方向に重なることなく同方向に並ぶように実装ヘッド16に掛け渡されているので、各第2伝動ベルト26B、27Bのベルト長に大きな差がなくなり、かつ、何れも飛び抜けて長くなることがない。従って、これら第2伝動ベルト26B、27Bにより駆動される実装ヘッド16相互の回転誤差、すなわち、第1、第3の各前列ヘッド17a、17cと第4、第6の各前列ヘッド17d、17fとの回転誤差が大きくなることが防止され、当該実装ヘッドを用いて実装される部品(当例ではパッケージ型部品)の実装作業をより精度良く進めることが可能になるという利点がある。
Further, in this component mounting apparatus, each second transmission belt 26B, 27B of each belt rotation drive mechanism is stretched over the mounting head 16 so as not to overlap each other in the X direction. There is no significant difference in belt length between the transmission belts 26B and 27B, and neither of them is excessively long. Accordingly, rotation errors between the mounting heads 16 driven by the second transmission belts 26B and 27B, that is, the first and third front row heads 17a and 17c and the fourth and sixth front row heads 17d and 17f, This is advantageous in that it is possible to prevent the rotation error from becoming large and to mount the component (package type component in this example) mounted using the mounting head more accurately.
ところで、以上説明した部品実装装置は、本発明にかかる部品実装装置の好ましい実施形態の一例であって、その具体的な構成、特に、実装ヘッド16の数、配置及びノズル回転駆動機構の具体的な構成については、本発明の要旨を逸脱しない範囲で適宜変更可能である。
The component mounting apparatus described above is an example of a preferred embodiment of the component mounting apparatus according to the present invention, and its specific configuration, in particular, the number and arrangement of the mounting heads 16 and the specifics of the nozzle rotation drive mechanism. Such a configuration can be appropriately changed without departing from the gist of the present invention.
例えば、上記実施形態では、10本の実装ヘッド16が前後2列に振り分けられた状態でヘッドユニット6に搭載されているが、実装ヘッド16の配列は一列であってもよいし、又3列以上であってもよい。また、上記実施形態では、10本の実装ヘッド16を2つのR軸サーボモータ20、21を用いてそれぞれ5本ずつ駆動するようにノズル回転駆動機構が構成されているが、ノズル回転駆動機構は、勿論、10本の実装ヘッド16を一つのR軸サーボモータで駆動する構成であってもよい。要するに、ノズル回転駆動機構は、一つのR軸サーボモータの回転駆動力を互いに長さの異なる2本の伝動ベルトを介してそれぞれ一乃至複数の実装ヘッド16に伝達するように構成されていればよい。この構成によれば、部品に応じて実装ヘッド16を使い分けることで、上記実施形態の部品実装装置と同様の作用効果を享受することができる。
For example, in the above-described embodiment, the ten mounting heads 16 are mounted on the head unit 6 in a state where the mounting heads 16 are distributed in two front and rear rows. However, the mounting heads 16 may be arranged in one row or in three rows. It may be the above. In the above embodiment, the nozzle rotation driving mechanism is configured to drive the ten mounting heads 16 by five using the two R- axis servomotors 20 and 21, respectively. Of course, the configuration may be such that ten mounting heads 16 are driven by one R-axis servomotor. In short, if the nozzle rotation drive mechanism is configured to transmit the rotation drive force of one R-axis servo motor to one or more mounting heads 16 via two transmission belts having different lengths from each other. Good. According to this configuration, by using the mounting heads 16 according to the components, it is possible to receive the same operational effects as those of the component mounting apparatus of the above embodiment.
また、上記実施形態では、R軸サーボモータ20、21は、ヘッドユニット6における実装ヘッド16の前側(+Y方向側)の位置に配置されているが、勿論、X方向における実装ヘッド16の両外側の位置に配置するようにしてもよい。
In the above-described embodiment, the R- axis servomotors 20 and 21 are arranged at positions on the front side (+ Y direction side) of the mounting head 16 in the head unit 6, but of course, both outer sides of the mounting head 16 in the X direction. You may make it arrange | position in this position.
また、上記実施形態では、チップ部品については全ての実装ヘッド16(前列ヘッド17a~17f及び後列ヘッド18a~18d)を用い、パッケージ型部品については第1、第3、第4、第6の各前列ヘッド17a、17c、17d、17fのみを用いるように部品/ヘッド対応データが定められた例について説明したが、勿論、部品/ヘッド対応データの具体的な内容はこれに限定されるものではない。要は、部品供給部4、5により供給される部品のうち、より実装精度が求められる部品の実装が第1、第3、第4、第6の各前列ヘッド17a、17c、17d、17fによって行われるように部品/ヘッド対応データが定められていればよい。
In the above embodiment, all mounting heads 16 (front row heads 17a to 17f and rear row heads 18a to 18d) are used for chip components, and the first, third, fourth, and sixth components are used for package type components. The example in which the component / head correspondence data is determined so as to use only the front row heads 17a, 17c, 17d, and 17f has been described. Of course, the specific contents of the component / head correspondence data are not limited to this. . In short, among the components supplied by the component supply units 4 and 5, mounting of components that require higher mounting accuracy is performed by the first, third, fourth, and sixth front row heads 17a, 17c, 17d, and 17f. The part / head correspondence data only needs to be determined so as to be performed.
以上説明した本発明をまとめると以下の通りである。
The present invention described above is summarized as follows.
本発明の一の局面にかかる部品実装装置は、基板に部品を実装する実装装置であって、垂直軸回りに回転可能な部品実装用の複数のヘッドが搭載されたヘッドユニットと、前記ヘッドユニットに搭載され、前記複数のヘッドを回転駆動するためのベルト伝動機構からなるヘッド回転駆動機構と、を備え、前記ヘッド回転駆動機構は、出力軸を有するモータと、前記複数のヘッドのうち、一乃至複数のヘッドからなる第1グループのヘッドと前記出力軸とに掛け渡される第1伝動ベルトと、前記第1伝動ベルトよりも全長が短く、前記複数のヘッドのうち、前記第1グループのヘッドとは別の一乃至複数のヘッドからなる第2グループのヘッドと前記出力軸とに掛け渡される第2伝動ベルトと、を備えるものである。
A component mounting apparatus according to one aspect of the present invention is a mounting apparatus for mounting a component on a board, and a head unit on which a plurality of component mounting heads that are rotatable about a vertical axis are mounted, and the head unit And a head rotation drive mechanism comprising a belt transmission mechanism for rotationally driving the plurality of heads. The head rotation drive mechanism includes a motor having an output shaft and one of the plurality of heads. A first transmission belt spanned between a first group of heads composed of a plurality of heads and the output shaft, a total length shorter than the first transmission belt, and the heads of the first group among the plurality of heads A second group of heads composed of one or a plurality of other heads and a second transmission belt stretched over the output shaft.
この部品実装装置では、全てのヘッドが同一の伝動ベルトを介して回転駆動されるのではなく、第2グループについては、第1グループの各ヘッドを回転駆動する第1伝動ベルトよりも全長の短い第2伝動ベルトを介して各ヘッドが回転駆動される。この構成によれば、第2伝動ベルトを介して回転駆動される第2グループの各ヘッドについては、第1伝動ベルトよりも第2伝動ベルトのベルト長が短い分、第1グループの各ヘッドに比べてベルト伸びによる回転誤差を伴い難くなる。従って、部品の種類等に応じてヘッドが使い分けられることで、ヘッドユニットに搭載される複数のヘッドを共通のモータで回転駆動する構成でありながらも、部品に要求される実装精度を合理的に確保することが可能となる。
In this component mounting apparatus, not all the heads are rotationally driven via the same transmission belt, but the second group has a shorter overall length than the first transmission belt that rotationally drives each head of the first group. Each head is rotationally driven via the second transmission belt. According to this configuration, for each head of the second group that is rotationally driven via the second transmission belt, the length of the second transmission belt is shorter than that of the first transmission belt. Compared with rotation error due to belt elongation, it becomes difficult. Therefore, by properly using the heads according to the type of parts, etc., the mounting accuracy required for the parts can be rationalized while the multiple motors mounted on the head unit are rotationally driven by a common motor. It can be secured.
より具体的には、複数種類の部品を供給する部品供給部と、前記部品供給部及び基板に対して前記ヘッドユニットを相対的に移動させる移動手段と、前記部品供給部が供給する部品を前記ヘッドユニットの各ヘッドにより保持させて前記基板上に実装させるべく前記移動手段を制御する制御手段と、を備え、この制御手段が、前記複数種類の部品のうち、予め定められた特定部品については、前記第2グループのヘッドのみで当該特定部品を基板上に実装させるべく前記移動手段を制御するものである。
More specifically, a component supply unit that supplies a plurality of types of components, a moving unit that moves the head unit relative to the component supply unit and the substrate, and a component that the component supply unit supplies Control means for controlling the moving means to be held by each head of the head unit and mounted on the substrate, and this control means is for a predetermined specific part among the plurality of types of parts. The moving means is controlled so that the specific component is mounted on the substrate only by the second group of heads.
この構成によれば、上記のような部品の種類等に応じたヘッドの使い分けが自動化される。すなわち、特定部品については、第2グループの各ヘッドのみを用いて部品供給部から部品が取り出されて基板上に実装される。そのため、実装精度が特に要求される部品を特定部品としておけば、当該特定部品の実装精度を確保する上で有利となる。
This configuration automates the proper use of heads according to the types of parts as described above. That is, for a specific component, the component is taken out from the component supply unit using only the heads of the second group and mounted on the substrate. Therefore, if a component that particularly requires mounting accuracy is set as the specific component, it is advantageous in securing the mounting accuracy of the specific component.
この場合、前記複数種類の部品がチップ部品及びパッケージ型部品を含む場合には、前記パッケージ部品を前記特定部品とし、前記制御手段は、前記パッケージ部品については、前記第2グループのヘッドのみで当該パッケージ部品を基板上に実装させ、前記チップ部品については、前記第1グループ及び第2グループの各ヘッドにより当該チップ部品を基板上に実装させるべく前記移動手段を制御するものであるのが好適である。
In this case, when the plurality of types of components include a chip component and a package-type component, the package component is set as the specific component, and the control unit can perform the package component only with the head of the second group. It is preferable that the package component is mounted on the substrate, and the moving means is controlled for the chip component so that the chip component is mounted on the substrate by the heads of the first group and the second group. is there.
すなわち、基板上への部品実装時には、予め定められた所定の回転角度で部品が基板上に実装されるが、最大寸法(基板面に沿った方向の最大寸法)がチップ部品に比べて大きいパッケージ型部品は、チップ部品に比べてヘッドの回転誤差による影響を受け易い(回転誤差により実装ずれが生じ易い)。従って、上記構成によれば、パッケージ型部品については第2グループの各ヘッドのみを用いて部品の実装が行われ、チップ部品については両グループの各ヘッドを用いて部品実装が行われることで、パッケージ部品及びチップ部品それぞれについて要求される実装精度を確保しながら各部品の実装作業を進めることが可能となる。
That is, when a component is mounted on the substrate, the component is mounted on the substrate at a predetermined rotation angle, but the maximum dimension (maximum dimension in the direction along the substrate surface) is larger than that of the chip component. Mold parts are more susceptible to head rotation errors than chip parts (mounting deviations are likely to occur due to rotation errors). Therefore, according to the above configuration, component mounting is performed using only the heads of the second group for package-type components, and component mounting is performed using the heads of both groups for chip components. It is possible to proceed with the mounting operation of each component while ensuring the mounting accuracy required for each of the package component and the chip component.
なお、上記のような部品実装装置において、前記ヘッドユニットは、第1方向に一列に並ぶ複数のヘッドを含む第1列と、第1方向に一列に並ぶ複数のヘッドを含み、かつ前記第1列に対して前記第1方向と直交する第2方向に並ぶ第2ヘッド列とを有し、前記モータは、前記第2方向において、当該モータと前記第1ヘッド列とで前記第2ヘッド列を挟むように配置され、前記第1伝動ベルトは、前記第1ヘッド列の一乃至複数のヘッドを前記第1グループのヘッドとして当該ヘッドと前記出力軸とに掛け渡され、前記第2伝動ベルトは、前記第2ヘッド列の一乃至複数のヘッドを前記第2グループのヘッドとして当該ヘッドと前記出力軸とに掛け渡されているのが好適である。
In the component mounting apparatus as described above, the head unit includes a first row including a plurality of heads arranged in a row in a first direction, and a plurality of heads arranged in a row in a first direction, and the first unit A second head row arranged in a second direction perpendicular to the first direction with respect to the row, and the motor is configured such that the motor and the first head row in the second direction are the second head row. The first transmission belt is stretched between the head and the output shaft with one or more heads of the first head row as the heads of the first group, and the second transmission belt. It is preferable that one or more heads of the second head row are spanned between the head and the output shaft as the heads of the second group.
この部品実装装置では、複数のヘッドが2列に振り分けられた状態でヘッドユニットに搭載され、これらヘッド列の並び方向の外側にモータが配置される。このような構成によれば、ヘッドユニットに多数のヘッドを搭載しながらも、ヘッドユニット自体がヘッドの並び方向(第1方向)に著しく大型化することを抑制することが可能となる。
In this component mounting apparatus, a plurality of heads are mounted on a head unit in a state of being divided into two rows, and a motor is disposed outside the arrangement direction of these head rows. According to such a configuration, it is possible to prevent the head unit itself from being significantly increased in size in the head alignment direction (first direction) while a large number of heads are mounted on the head unit.
この場合、前記第2伝動ベルトは、前記第2ヘッド列のヘッドにのみ掛け渡されているのが好適である。
In this case, it is preferable that the second transmission belt is stretched only on the heads of the second head row.
このように、ベルト長が短い方の第2伝動ベルトを、モータに近い側の第2ヘッド列のヘッドにのみに掛け渡す構成によれば、第2伝動ベルトのベルト長をより短くでき、第2伝動ベルトで駆動されるヘッドによる部品の実装精度をより高めることが可能となる。
As described above, according to the configuration in which the second transmission belt having the shorter belt length is passed only to the head of the second head row on the side closer to the motor, the belt length of the second transmission belt can be further shortened. 2 It becomes possible to further improve the mounting accuracy of components by the head driven by the transmission belt.
なお、前記ヘッドユニットには、複数の前記ヘッド回転駆動機構が備えられており、各ベルト回転駆動機構は、互いのモータ同士が前記第1方向に一列に並ぶように配置され、かつ、互いに異なるヘッドを回転駆動するものであってもよい。
The head unit is provided with a plurality of the head rotation driving mechanisms, and the belt rotation driving mechanisms are arranged such that their motors are arranged in a line in the first direction, and are different from each other. The head may be rotationally driven.
この構成によれば、一つのモータで駆動するヘッドの数を少なくできるので、モータを小型化でき、第2方向にヘッドユニットをコンパクトにできる。なお、第1方向には複数のモータが並ぶことになるが、これはヘッドの並び方向であるため、第1方向にモータが並ぶことによる当該第1方向へのヘッドユニットの大型化への影響は殆どない。
According to this configuration, since the number of heads driven by one motor can be reduced, the motor can be miniaturized and the head unit can be made compact in the second direction. A plurality of motors are arranged in the first direction. Since this is the direction in which the heads are arranged, the influence of increasing the size of the head unit in the first direction due to the arrangement of the motors in the first direction. There is almost no.
この場合、前記複数のヘッド回転駆動機構は、前記第1伝動ベルトがそれぞれ複数のヘッドに掛け渡される、第1ヘッド回転駆動機構および第2ヘッド回転駆動機構を含み、各ヘッド回転駆動機構の第1伝動ベルトは、第1ヘッド回転駆動機構の第1伝動ベルトが掛け渡される前記複数のヘッドのうち、前記第1方向の一方側の端部に位置するヘッドと、第2ヘッド回転駆動機構の第1伝動ベルトが掛け渡される前記複数のヘッドのうち、前記一方側の端部に位置するヘッドとが、各回転駆動機構の前記モータの配列に対応した順序で並び、かつ、第1ヘッド回転駆動機構の第1伝動ベルトが掛け渡される前記複数のヘッドのうち、前記第1方向の他方側の端部に位置するヘッドと、第2ヘッド回転駆動機構の第1伝動ベルトが掛け渡される前記複数のヘッドのうち、前記他方側の端部に位置するヘッドとが、前記モータの配列に対応した順序で並ぶように、前記ヘッドに掛け渡されているのが好適である。
In this case, the plurality of head rotation drive mechanisms include a first head rotation drive mechanism and a second head rotation drive mechanism in which the first transmission belt is stretched over the plurality of heads, respectively. The first transmission belt includes a head positioned at one end in the first direction among the plurality of heads around which the first transmission belt of the first head rotation driving mechanism is stretched, and a second head rotation driving mechanism. Among the plurality of heads around which the first transmission belt is stretched, the head located at the one end is arranged in an order corresponding to the arrangement of the motors of each rotation drive mechanism, and the first head rotation Of the plurality of heads around which the first transmission belt of the drive mechanism is stretched, the head located at the other end in the first direction and the first transmission belt of the second head rotation drive mechanism are spanned. Among the plurality of heads, a head located at the end of the other side, so as to be arranged in the order corresponding to the arrangement of the motor, it is preferable that is stretched to the head.
この構成によれば、各ベルト回転駆動機構の第1伝動ベルトは、これらをそれぞれ駆動するモータの並び方向に互いにずれながら並ぶことになるので、各第1伝動ベルトの長さの間に大きな差がなくなり、かつ、何れも飛び抜けて長くなることがない。これにより、ヘッドの回転誤差の相互差が大きくなることが防止され、要求される実装精度を確保しながら各第1グループのヘッドによる部品の実装作業を進めることが可能となる。
According to this configuration, the first transmission belts of the respective belt rotation driving mechanisms are arranged while being shifted from each other in the arrangement direction of the motors that drive the respective belt rotation driving mechanisms. Therefore, there is a large difference between the lengths of the first transmission belts. In addition, none of them will be too long. As a result, it is possible to prevent the difference in rotation error of the heads from increasing, and it is possible to proceed with the component mounting work by the heads of each first group while ensuring the required mounting accuracy.
また、前記複数のヘッド回転駆動機構の各第2伝動ベルトは、互いに前記特定方向に重なることなく当該特定方向に並ぶように前記ヘッドに掛け渡されているのが好適である。
In addition, it is preferable that the second transmission belts of the plurality of head rotation driving mechanisms are stretched over the heads so as to be aligned in the specific direction without overlapping each other in the specific direction.
この構成によれば、各ベルト回転駆動機構の第2伝動ベルトは、これらをそれぞれ駆動するモータの並ぶ方向に、互いに完全にずれながら並ぶことになるので、各第2伝動ベルトの長さの間に大きな差がなくなり、かつ、何れも飛び抜けて長くなることがない。これにより、ヘッドの回転誤差の相互差が大きくなることが防止され、要求される実装精度を確保しながら各第2グループのヘッドによる各部品の実装作業を進めることが可能となる。
According to this configuration, the second transmission belts of the belt rotation driving mechanisms are arranged while being completely displaced from each other in the direction in which the motors that drive the belts are arranged. There is no significant difference between the two, and none of them is excessively long. As a result, it is possible to prevent the difference in rotational error between the heads from increasing, and it is possible to proceed with the mounting work of each component by the heads of the second group while ensuring the required mounting accuracy.
以上のように、本発明に係る部品実装装置は、ヘッドユニットの大型化や高重量化を抑制しながら、合理的な構成で実装精度を確保することが可能なものであり、部品実装基板の製造分野において有用なものである。
As described above, the component mounting apparatus according to the present invention can ensure mounting accuracy with a rational configuration while suppressing the increase in size and weight of the head unit. It is useful in the manufacturing field.
Claims (8)
- 基板に部品を実装する実装装置であって、
垂直軸回りに回転可能な部品実装用の複数のヘッドが搭載されたヘッドユニットと、
前記ヘッドユニットに搭載され、前記複数のヘッドを回転駆動するためのベルト伝動機構からなるヘッド回転駆動機構と、を備え、
前記ヘッド回転駆動機構は、出力軸を有するモータと、前記複数のヘッドのうち、一乃至複数のヘッドからなる第1グループのヘッドと前記出力軸とに掛け渡される第1伝動ベルトと、前記第1伝動ベルトよりも全長が短く、前記複数のヘッドのうち、前記第1グループのヘッドとは別の一乃至複数のヘッドからなる第2グループのヘッドと前記出力軸とに掛け渡される第2伝動ベルトと、を備えることを特徴とする部品実装装置。 A mounting device for mounting components on a board,
A head unit on which a plurality of heads for mounting components that can rotate around a vertical axis are mounted;
A head rotation drive mechanism that is mounted on the head unit and includes a belt transmission mechanism for rotationally driving the plurality of heads;
The head rotation driving mechanism includes: a motor having an output shaft; a first group of heads including one or more heads of the plurality of heads; a first transmission belt that spans the output shaft; A second transmission that is shorter than one transmission belt and is spanned between a second group of heads that are different from the first group of the plurality of heads and the output shaft. A component mounting apparatus comprising: a belt; - 請求項1に記載の部品実装装置において、
複数種類の部品を供給する部品供給部と、
前記部品供給部及び基板に対して前記ヘッドユニットを相対的に移動させる移動手段と、
前記部品供給部が供給する部品を前記ヘッドユニットの各ヘッドにより保持させて前記基板上に実装させるべく前記移動手段を制御する制御手段と、を備え、
前記制御手段は、前記複数種類の部品のうち、予め定められた特定部品については、前記第2グループのヘッドのみで当該特定部品を基板上に実装させるべく前記移動手段を制御することを特徴とする部品実装装置。 The component mounting apparatus according to claim 1,
A component supply unit for supplying multiple types of components;
Moving means for moving the head unit relative to the component supply unit and the substrate;
Control means for controlling the moving means to hold the component supplied by the component supply unit by each head of the head unit and to mount the component on the substrate;
The control means controls the moving means to mount the specific part on the substrate only with the second group head for a predetermined specific part among the plurality of types of parts. Component mounting device. - 請求項2に記載の部品実装装置において、
前記複数種類の部品はチップ部品及びパッケージ型部品を含み、前記パッケージ部品が前記特定部品であり、
前記制御手段は、前記パッケージ部品については、前記第2グループのヘッドのみで当該パッケージ部品を基板上に実装させ、前記チップ部品については、前記第1グループ及び第2グループの各ヘッドにより当該チップ部品を基板上に実装させるべく前記移動手段を制御することを特徴とする部品実装装置。 In the component mounting apparatus according to claim 2,
The plural types of parts include chip parts and package type parts, and the package parts are the specific parts,
The control means mounts the package component on the substrate only with the second group head for the package component, and the chip component with each head of the first group and the second group for the chip component. A component mounting apparatus, wherein the moving means is controlled so as to be mounted on a substrate. - 請求項1乃至3の何れか一項に記載の部品実装装置において、
前記ヘッドユニットは、第1方向に一列に並ぶ複数のヘッドを含む第1列と、第1方向に一列に並ぶ複数のヘッドを含み、かつ前記第1列に対して前記第1方向と直交する第2方向に並ぶ第2ヘッド列とを有し、
前記モータは、前記第2方向において、当該モータと前記第1ヘッド列とで前記第2ヘッド列を挟むように配置され、
前記第1伝動ベルトは、前記第1ヘッド列の一乃至複数のヘッドを前記第1グループのヘッドとして当該ヘッドと前記出力軸とに掛け渡され、
前記第2伝動ベルトは、前記第2ヘッド列の一乃至複数のヘッドを前記第2グループのヘッドとして当該ヘッドと前記出力軸とに掛け渡されていることを特徴とする部品実装装置。 In the component mounting apparatus according to any one of claims 1 to 3,
The head unit includes a first row including a plurality of heads arranged in a row in a first direction and a plurality of heads arranged in a row in a first direction, and is orthogonal to the first direction with respect to the first row. A second head row arranged in the second direction,
The motor is arranged in the second direction so as to sandwich the second head row between the motor and the first head row,
The first transmission belt spans the head and the output shaft with one or more heads of the first head row as the heads of the first group,
The component mounting apparatus, wherein the second transmission belt is wound around the head and the output shaft by using one or more heads of the second head row as heads of the second group. - 請求項4に記載の部品実装装置において、
前記第2伝動ベルトは、前記第2ヘッド列のヘッドにのみ掛け渡されていることを特徴とする部品実装装置。 In the component mounting apparatus according to claim 4,
The component mounting apparatus, wherein the second transmission belt is stretched only on a head of the second head row. - 請求項4又は5に記載の部品実装装置において、
前記ヘッドユニットには、複数の前記ヘッド回転駆動機構が備えられており、
各ベルト回転駆動機構は、互いのモータ同士が前記第1方向に一列に並ぶように配置され、かつ、互いに異なるヘッドを回転駆動することを特徴とする部品実装装置。 In the component mounting apparatus according to claim 4 or 5,
The head unit includes a plurality of the head rotation drive mechanisms,
Each of the belt rotation driving mechanisms is arranged such that the motors are arranged in a line in the first direction, and different heads are driven to rotate. - 請求項6に記載の部品実装装置において、
前記複数のヘッド回転駆動機構は、前記第1伝動ベルトがそれぞれ複数のヘッドに掛け渡される、第1ヘッド回転駆動機構および第2ヘッド回転駆動機構を含み、
各ヘッド回転駆動機構の第1伝動ベルトは、第1ヘッド回転駆動機構の第1伝動ベルトが掛け渡される前記複数のヘッドのうち、前記第1方向の一方側の端部に位置するヘッドと、第2ヘッド回転駆動機構の第1伝動ベルトが掛け渡される前記複数のヘッドのうち、前記一方側の端部に位置するヘッドとが、各回転駆動機構の前記モータの配列に対応した順序で並び、かつ、第1ヘッド回転駆動機構の第1伝動ベルトが掛け渡される前記複数のヘッドのうち、前記第1方向の他方側の端部に位置するヘッドと、第2ヘッド回転駆動機構の第1伝動ベルトが掛け渡される前記複数のヘッドのうち、前記他方側の端部に位置するヘッドとが、前記モータの配列に対応した順序で並ぶように、前記ヘッドに掛け渡されていることを特徴とする部品実装装置。 In the component mounting apparatus according to claim 6,
The plurality of head rotation drive mechanisms include a first head rotation drive mechanism and a second head rotation drive mechanism in which the first transmission belt is stretched over the plurality of heads, respectively.
The first transmission belt of each head rotation drive mechanism is a head located at one end in the first direction among the plurality of heads around which the first transmission belt of the first head rotation drive mechanism is stretched, Among the plurality of heads around which the first transmission belt of the second head rotation drive mechanism is stretched, the heads located at the one end are arranged in an order corresponding to the arrangement of the motors of each rotation drive mechanism. Among the plurality of heads around which the first transmission belt of the first head rotation drive mechanism is stretched, the head located at the other end in the first direction and the first of the second head rotation drive mechanism Among the plurality of heads around which the transmission belt is stretched, the head located at the other end is stretched over the heads so that they are arranged in an order corresponding to the arrangement of the motors. Parts Apparatus. - 請求項6又は7に記載の部品実装装置において、
前記複数のヘッド回転駆動機構の各第2伝動ベルトは、互いに前記第1方向に重なることなく当該第1方向に並ぶように前記ヘッドに掛け渡されていることを特徴とする部品実装装置。 In the component mounting apparatus according to claim 6 or 7,
Each of the second transmission belts of the plurality of head rotation driving mechanisms is stretched over the head so as to be aligned in the first direction without overlapping in the first direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280010819.5A CN103404250B (en) | 2011-12-28 | 2012-11-26 | Element fixing apparatus |
KR1020137024467A KR101495234B1 (en) | 2011-12-28 | 2012-11-26 | Component mounting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-288922 | 2011-12-28 | ||
JP2011288922A JP5855452B2 (en) | 2011-12-28 | 2011-12-28 | Component mounting equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013099105A1 true WO2013099105A1 (en) | 2013-07-04 |
Family
ID=48696655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/007575 WO2013099105A1 (en) | 2011-12-28 | 2012-11-26 | Component mounting device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5855452B2 (en) |
KR (1) | KR101495234B1 (en) |
CN (1) | CN103404250B (en) |
WO (1) | WO2013099105A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6304855B2 (en) * | 2012-07-10 | 2018-04-04 | ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. | Electronic component mounting equipment |
CN109247007B (en) * | 2018-10-29 | 2024-02-13 | 珠海奇川精密设备有限公司 | Traction type feeding flying machine |
CN109205376B (en) * | 2018-10-29 | 2024-02-13 | 珠海奇川精密设备有限公司 | Telescopic feeding flying device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06237097A (en) * | 1992-12-17 | 1994-08-23 | Yamaha Motor Co Ltd | Nozzle raising and lowering device of mounting device |
JPH08330791A (en) * | 1995-06-01 | 1996-12-13 | Yamaha Motor Co Ltd | Nozzle drive mechanism of mounter |
JP2002009492A (en) * | 2000-06-21 | 2002-01-11 | Matsushita Electric Ind Co Ltd | Method and device for mounting electronic part |
JP2010093177A (en) * | 2008-10-10 | 2010-04-22 | Panasonic Corp | Apparatus for mounting electronic component, and electronic component mounting head |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3804405B2 (en) * | 2000-06-23 | 2006-08-02 | 松下電器産業株式会社 | Electronic component mounting apparatus and suction nozzle unit for electronic component mounting |
JP4319061B2 (en) * | 2004-02-16 | 2009-08-26 | アイパルス株式会社 | Component conveying device, surface mounter and component testing device |
JP4743163B2 (en) * | 2007-05-22 | 2011-08-10 | パナソニック株式会社 | Electronic component mounting device and mounting head |
JP5164592B2 (en) * | 2008-01-31 | 2013-03-21 | 株式会社パイオラックス | Open / close lock device |
JP2010093117A (en) * | 2008-10-09 | 2010-04-22 | Fujitsu Ltd | Magnetoresistive element and method of manufacturing the same, and information storage device |
JP6304855B2 (en) * | 2012-07-10 | 2018-04-04 | ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. | Electronic component mounting equipment |
-
2011
- 2011-12-28 JP JP2011288922A patent/JP5855452B2/en active Active
-
2012
- 2012-11-26 WO PCT/JP2012/007575 patent/WO2013099105A1/en active Application Filing
- 2012-11-26 CN CN201280010819.5A patent/CN103404250B/en active Active
- 2012-11-26 KR KR1020137024467A patent/KR101495234B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06237097A (en) * | 1992-12-17 | 1994-08-23 | Yamaha Motor Co Ltd | Nozzle raising and lowering device of mounting device |
JPH08330791A (en) * | 1995-06-01 | 1996-12-13 | Yamaha Motor Co Ltd | Nozzle drive mechanism of mounter |
JP2002009492A (en) * | 2000-06-21 | 2002-01-11 | Matsushita Electric Ind Co Ltd | Method and device for mounting electronic part |
JP2010093177A (en) * | 2008-10-10 | 2010-04-22 | Panasonic Corp | Apparatus for mounting electronic component, and electronic component mounting head |
Also Published As
Publication number | Publication date |
---|---|
JP2013138140A (en) | 2013-07-11 |
KR101495234B1 (en) | 2015-02-24 |
CN103404250B (en) | 2016-01-06 |
CN103404250A (en) | 2013-11-20 |
JP5855452B2 (en) | 2016-02-09 |
KR20130122977A (en) | 2013-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3402876B2 (en) | Surface mounting machine | |
JP5791408B2 (en) | Electronic component mounting equipment | |
JP6219838B2 (en) | Component mounter | |
JP2006324395A (en) | Surface-mounting machine | |
WO2013099105A1 (en) | Component mounting device | |
JP6022763B2 (en) | Circuit board working machine | |
WO2014207861A1 (en) | Component mounting machine | |
JP2007214494A (en) | Mark recognition method and surface mounter | |
JP5850794B2 (en) | Component conveying device and component mounting machine | |
JP4247023B2 (en) | Electronic component mounting equipment | |
JP2006310647A (en) | Surface-mounting device and component mounting method | |
JP5047772B2 (en) | Mounting board manufacturing method | |
JP2007184648A (en) | Mounting method | |
JP2008091733A (en) | Component mounting equipment | |
JP6650253B2 (en) | Electronic component mounting machine | |
JP4397696B2 (en) | Component conveying device, surface mounter and component testing device | |
WO2004084604A1 (en) | Surface-mounting machine | |
JP5498334B2 (en) | Component mounting equipment | |
JP4339141B2 (en) | Surface mount machine | |
JP5903346B2 (en) | Component mounting equipment | |
WO2024084703A1 (en) | Component-mounting work machine and mounting line | |
JP4969977B2 (en) | Component mounting equipment | |
JP2007128957A (en) | Electronic component transfer apparatus | |
JP4319061B2 (en) | Component conveying device, surface mounter and component testing device | |
JP4011810B2 (en) | Surface mount component mounting machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12861343 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137024467 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12861343 Country of ref document: EP Kind code of ref document: A1 |