WO2013097754A1 - 一种空口数据同步处理的方法和装置 - Google Patents

一种空口数据同步处理的方法和装置 Download PDF

Info

Publication number
WO2013097754A1
WO2013097754A1 PCT/CN2012/087769 CN2012087769W WO2013097754A1 WO 2013097754 A1 WO2013097754 A1 WO 2013097754A1 CN 2012087769 W CN2012087769 W CN 2012087769W WO 2013097754 A1 WO2013097754 A1 WO 2013097754A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless device
data frame
reo
air interface
time
Prior art date
Application number
PCT/CN2012/087769
Other languages
English (en)
French (fr)
Inventor
董国立
张瑜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013097754A1 publication Critical patent/WO2013097754A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for air interface data synchronization processing. Background technique
  • the Common Public Radio Interface (CPRI) Alliance is an industrial cooperative organization dedicated to the main interface specification between Radio Equipment Control (REC) and Radio Equipment (RE) in wireless base stations.
  • the formulation work The Open Base Station Architecture Initiative (OBSAI) is an international organization that promotes the standardization of internal interfaces of wireless communication base stations. It is also committed to implementing Radio Equipment Control (REC) and wireless in the wireless base station. Interface standardization between devices (Radio Equipment, RE).
  • OBSAI Open Base Station Architecture Initiative
  • the two most commonly used baseband radio interface protocols in the world are the Common Public Radio Interface (CPRI) and the Open Base Architecture Protocol (OBSAI) interface. Both the Common Public Radio Interface (CPRI) and the Open Base Architecture Protocol (OBSAI) interface define the maximum loopback transmission delay and delay jitter specifications.
  • the so-called maximum loopback transmission delay refers to the transmission link between the REC and the RE ( It does not include the bidirectional maximum transmission delay of the transmission medium, such as fiber.
  • the delay jitter refers to the instability of the transmission link between REC and RE, and there is drift in time.
  • CPRI Common Public Radio Interface
  • OBSAI Open Base Architecture Protocol
  • air interface time synchronization means that the same frame number data of each antenna or station between stations needs to be transmitted at the time of air interface alignment, that is, The antenna data transmission between the stations or between the stations needs to meet the time synchronization requirements to ensure the performance indicators defined by the wireless communication protocol.
  • a bearer transmission network such as a public telecommunication network (PTN), an optical transmission network (OTN), or a Synchronous Digital Hierarchy (SDH) is separated from each RE. Synchronization, and the processing mode (including the standard and specifications) and the transmission level (multi-hop) of the bearer transmission network cause the transmission delay and the jitter of these transmission delays, so that the processing time of each RE air interface is not synchronized, and some of them cannot be satisfied.
  • Embodiments of the present invention provide a method and apparatus for air interface data synchronization processing to ensure the same
  • the data frame of the frame number is synchronously transmitted on the air interface of each wireless device, eliminating the influence of the transmission delay and its jitter.
  • An embodiment of the present invention provides a method for air interface data synchronization processing, including: a wireless device REo receiving a data frame sent by a wireless device control center to a wireless device REo via a bearer transmission network.
  • the wireless device REo reads the data frame D/ from the internal buffer unit, and after processing by the radio frequency processing unit, transmits the data frame D/ from the air interface at the air interface transmission time Tse «rf.
  • the radio frequency processing unit is a processing module between the internal cache unit and the air interface.
  • the air interface sending time Tse «rf is sent from the air interface.
  • the reading of the data frame D/ from the internal buffer unit further comprises: measuring, by the radio frequency processing unit, the data The time required for any data in frame D/.
  • the buffer unit further includes: the wireless device REo acquiring the second pulse and the absolute time information to synchronize the time of the wireless device REo with the time of the other wireless device REs and the wireless device control center.
  • the acquiring, by the wireless device RE, the second pulse and the absolute time information includes: the wireless device REo acquiring the second pulse and absolute time information by using a networked clock; or the wireless device The standby REo acquires the second pulse and absolute time information by using a global positioning system external to the wireless device REo; or the wireless device REo acquires the second pulse by a previous primary transmission device of the wireless device REo in the bearer transmission network And absolute time information.
  • the partial cache unit further includes: reserving a maximum cache space for the internal cache unit of the wireless device REo.
  • An embodiment of the present invention provides an apparatus for performing air interface data synchronization processing, where the apparatus is a wireless device REo, and the apparatus includes: a receiving module, configured to receive data sent by the wireless device control center to the wireless device REo via a bearer transmission network.
  • a cache module configured to store the data frame D/ into an internal cache unit of the wireless device REo;
  • a synchronization module configured to read the data frame D/ from the internal buffer unit, and after processing by the radio frequency processing unit, send the data frame D/ from the air interface at the air interface sending time Tse «rf, the radio frequency processing unit Exporting the internal cache unit to a processing module between the air ports.
  • the synchronization module includes: a reading unit, configured to read the data frame D/ from the internal buffer unit at the air interface sending time Ts rf minus a time delay obtained by the internal buffer unit a time required for the radio frequency processing unit to process any one of the data frames D/; a first output unit, configured to output the data frame D/T read by the reading unit to the radio frequency Processing unit processing; the second output unit is configured to send the data frame D/#T processed by the radio frequency processing unit to an air interface to send the data frame D/ from the air interface.
  • the device further includes: a delay measurement module, configured to measure a time required by the radio frequency processing unit to process any one of the data frames D/.
  • a delay measurement module configured to measure a time required by the radio frequency processing unit to process any one of the data frames D/.
  • the device further includes: a time information acquiring module, configured to acquire the second pulse and the absolute time information, so that the time of the wireless device REo is synchronized with the time of the other wireless device REs and the wireless device control center.
  • a time information acquiring module configured to acquire the second pulse and the absolute time information, so that the time of the wireless device REo is synchronized with the time of the other wireless device REs and the wireless device control center.
  • the time information obtaining module includes: a first acquiring unit, configured to use a network
  • the second clock is used to acquire the second pulse and the absolute time information; or the second acquiring unit is configured to acquire the second pulse and the absolute time information by using a global positioning system external to the wireless device REo; or
  • the second pulse and absolute time information are acquired by a previous stage transmission device of the wireless device REo in the bearer transmission network.
  • the device further includes: a cache reservation module, configured to reserve a maximum cache space for the internal cache unit.
  • a cache reservation module configured to reserve a maximum cache space for the internal cache unit.
  • the wireless device can first store the data frame sent by the wireless device control center through the bearer transmission network into its internal buffer unit, and read the data frame from the internal buffer unit and process it through the RF processing module.
  • the data frame is sent out from the air interface at the time of the air interface transmission. Therefore, compared with the prior art, the method provided by the embodiment of the present invention eliminates the influence of the transmission delay and the jitter of the data frame during the transmission process, so that the data frames of the same frame number can be synchronized in the air interfaces of the wireless devices. Sending, can meet the requirements of some wireless communication protocols that need to be strictly synchronized in the time of sending data on the air interface.
  • FIG. 1 is a schematic flowchart of a method for synchronizing air interface data according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of networking of a bearer transmission network on a wireless device
  • FIG. 2b is a schematic diagram of a data frame transmitted from a wireless device control center to each wireless device;
  • FIG. 3 is a schematic diagram of a data frame with the same frame number being synchronously transmitted at each wireless device air interface according to an embodiment of the present invention;
  • FIG. 4 is a schematic diagram of a data frame with the same frame number being synchronously transmitted at each air interface of a wireless device according to another embodiment of the present invention
  • 5 is a schematic structural diagram of an apparatus for synchronizing air interface data according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an apparatus for synchronizing air interface data according to another embodiment of the present invention
  • FIG. 7 is an air interface according to another embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of an apparatus for synchronizing air interface data according to another embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of an apparatus for synchronizing air interface data according to another embodiment of the present invention
  • the device structure of the air interface data synchronization processing provided by another embodiment of the present invention is schematic
  • FIG. 1 is a schematic flowchart of a method for synchronizing air interface data provided by an embodiment of the present invention.
  • the method illustrated in Fig. 1 can be used for transmitting antenna data on a wireless device (RE), and is also applicable to a packet CPRI system, a non-packet CPRI system, a packet OBSAI system, and a non-packet OBSAI system, and mainly includes the steps of:
  • the wireless device REo receives the data frame D/ sent by the wireless device control center to the wireless device RE0 via the bearer transmission network.
  • the channel interconnected between the RE and the REC is mainly provided by a bearer transmission network such as PTN, OTN, or SDH, and the related data is completed between the central office (including the REC) and the external site (including the RE).
  • the transmission that is, the data sent by the wireless device control center to the wireless device first passes through the bearer transmission network, and then is forwarded to the RE by the transmission device on the bearer transmission network. Due to the difference in network load and the prioritization of data processing, the data may not be processed in the first time. Therefore, the transmission delay of each frame of data arriving at the wireless device is different, and the jitter of the transmission delay of the transmission transmission network is introduced. S102.
  • the wireless device REo stores the data frame D/ into an internal buffer unit of the wireless device REo.
  • FIG. 2a it is a networking diagram of a bearer transmission network on a radio equipment (RE).
  • a Radio Equipment Control (REC) access for example, a convergence ring device between the REC and the bearer transmission network
  • REC Radio Equipment Control
  • the transmission delay and the jitter of these transmission delays Due to the processing mode (including the standard and specifications) of the bearer transmission network and the transmission delay (multi-hop), the transmission delay and the jitter of these transmission delays, the time when the data frame of the same frame number sent by the REC arrives at each RE May not be consistent.
  • the REC simultaneously transmits the data frame D/ with the frame number FA at the time of Ta, and the data frame D'/ (the data frame D/ is the same as the data frame D'/ ⁇ , but the content can be Different).
  • the transmission device 0 transmits the data frame D/ to the wireless device 0 (RE0), and the data frame D'/ is continuously transmitted on the bearer transmission network.
  • the transmission device 1 After the data frame D'/ arrives at the transmission device 1 (RE1), the transmission device 1 transmits the data frame D'/T ⁇ wireless device 1 (RE1).
  • the wireless device 0 (RE0) and the wireless device 1 (RE1) at the time Ta are not arrived at the same time.
  • RE1 the wireless device 0 (RE0) and the wireless device 1 are not arrived at the same time.
  • the data frame D/ finally arrives at the wireless device 0 (RE0) at time To, and the data frame D'/ arrives at the wireless device 1 (RE1) at time Ti.
  • data frames with the same frame number sent from the wireless device control center through the bearer transmission network may be stored in the data frame of the same frame number.
  • Internal cache unit For example, for Figure 2a and For the example of FIG. 2b, the data frame D/ and the data frame D'/ having the same frame number may be first stored in the respective internal buffer units of the wireless device 0 (RE0) and the wireless device 1 (RE1).
  • the wireless device REo reads the data frame D/ from the internal buffer unit, and after processing by the radio frequency processing unit, sends the data frame D/ from the air interface at the air interface sending time Tse «rf, and the RF processing unit is the internal buffer unit outlet to the air interface. Processing module between.
  • the data frame D/ arrives at the wireless device 0 (RE0) at the time of To, the data frame D'/ arrives at the wireless device 1 (RE1) at the time Ti, and passes through the wireless device 0 (RE0) and the wireless device 1 respectively ( RE1)
  • the time at which other functional modules (eg, radio processing unit, etc.) after the internal buffer unit are processed is Too and Til. If the wireless device 0 (RE0) and the wireless device 1 (RE1) send the data frame D/ and the data frame D'/ from the respective air ports at the Too time and the Til time, respectively, since the Too time and the Til time are probably not the time.
  • the data frame D/ and the data frame D'/ are not transmitted synchronously at the air interface.
  • the wireless device REo and the wireless device RE1 can respectively read the data frame D/ and the data frame D from the respective internal buffer units. / After processing by the radio frequency processing unit, the data frame D/ and the data frame D'/ are transmitted from the respective air ports at the air interface transmission time ⁇ d.
  • the air interface transmission time T Si ⁇ is a moment that, for a data frame having the same frame number, each wireless device needs to be simultaneously transmitted with other wireless devices at its air interface at its air interface.
  • the moment of the data frame with the same frame number (but the content of the data frame can be different).
  • the air interface transmission time T Si ⁇ is a data frame D ⁇ J that needs to be received.
  • Wireless device 0 at the air interface of wireless device 0 with the received data frame D'/ ⁇ J wireless device 1 (or other wireless device, eg, wireless device N, if wireless device N also receives a frame with data frame D/ ⁇ J The same data frame)
  • the data frame D/ and the data frame D'/ ⁇ J are simultaneously transmitted at the air interface of the wireless device 1, as shown in FIG.
  • the wireless device 0 transmits the received data frame D/
  • the wireless device 1 transmits the received data frame D'/, thereby ensuring the data frame D/sum.
  • Data frame D'/ at The air interface is sent synchronously.
  • the wireless device For the acquisition of the air interface transmission time T Si ⁇ , the wireless device can be derived according to the system adopted by the wireless device and based on the second pulse information and the absolute time information, and the derivation process is defined by the communication protocol, and details are not described herein.
  • the method for synchronizing the air interface data provided by the embodiment of the present invention can be known that, because the air interface transmission time is a time when the wireless device simultaneously transmits the data frame with the same frame number at the air interface of the other wireless device at the air interface thereof,
  • the wireless device may first store the data frame sent by the wireless device control center through the bearer transmission network into its internal buffer unit, read the data frame from the internal buffer unit, and process the data frame through the RF processing module. The data frame is sent out from the air interface at the time of transmission.
  • the method provided by the embodiment of the present invention eliminates the influence of the transmission delay and the jitter of the data frame during the transmission process, so that the data frames of the same frame number can be synchronized in the air interfaces of the wireless devices.
  • the transmission can meet the requirements of a wireless communication protocol that requires strict synchronization at the time of transmitting data on the air interface.
  • the wireless device REo can read the data frame D from the internal buffer unit in the following manner. After processing by the radio processing unit after the internal buffer unit, the wireless interface sends the data frame D/: at the air interface transmission time Tsend.
  • the air interface transmission time T Si ⁇ is used as a reference point, and the wireless device advances the data frame D/ from the internal buffer unit of the wireless device by the time delay, wherein the delay is the internal of the wireless device.
  • the wireless device REo advances the time delay ⁇ (), that is, from the time Tsto ⁇ o, reads the data frame D from its internal buffer unit.
  • radio frequency components such as an up/down conversion module, a finite impulse response filter, a digital pre-distortion module, and an add/drop cyclic prefix module between the outlet and the air interface of the internal buffer unit of the wireless device RE0.
  • the processing unit converts the baseband signal of the wireless device RE0 into a radio frequency signal.
  • the data frame D/ is processed from the last function module of the RF processing unit, it is output to the air interface and sent by the air interface data frame D/.
  • the time required for the radio processing unit in each wireless device to process any one of the data frames is fixed for each wireless device.
  • the time required for the radio frequency processing unit to process any one of the data frames in each wireless device may be obtained by a measurement method.
  • ReO for the wireless device may be in the air interface transmission time T se «rf obtained by subtracting the delay time from Î ⁇ / internal cache unit prior to reading the data frame D, ⁇ ⁇ for delay measurement, i.e., measuring the wireless device ReO The time required for the RF processing unit to process any one of the data frames D/.
  • the wireless device can obtain the second pulse and the absolute time information before the data frame sent by the wireless device control center through the bearer transmission network is stored in the internal buffer unit, so that the time of the wireless device and other wireless devices are obtained. Time synchronization between the device and the wireless device control center. For example, for the wireless device REo in the foregoing embodiment, the wireless device REo acquires the second pulse and the absolute time information to make the time of the wireless device REo before storing the data frame D/transmitted by the wireless device control center side into the internal buffer unit. Synchronize with the time of the Wireless Device Control Center and other wireless device REs.
  • the specific method may be that the wireless device acquires the second pulse and the absolute time information through a networked clock, or through a global positioning system external to the wireless device, or acquires a second pulse and a previous transmission device that carries the wireless device REo in the transmission network.
  • Absolute time information For example, for the wireless device REo in the foregoing embodiment, the wireless device REo obtains a 1588v2 time packet by using a Boundary Clock (BC)/Source Clock (OC) through the network port, and parses the time packet.
  • BC Boundary Clock
  • OC Source Clock
  • the second pulse and absolute time information or obtain the second pulse and absolute time information through the global positioning system connected to the wireless device REo, or the wireless device REo's previous transmission device as the networked clock termination point, and the wireless device REo passes Certain defined interfaces obtain second-pulse and absolute clock information from the previous-stage transmission device.
  • the technical solution of the embodiment of the present invention does not specifically limit the manner of acquiring the second pulse and the absolute time information.
  • the cache space of the internal cache unit of the wireless device can be reserved.
  • the wireless device RE0 reserves the maximum buffer space for the internal cache unit before the received wireless device control center stores the data frame sent by the bearer transmission network to the wireless device RE0 into the internal buffer unit.
  • the maximum buffer space may be reserved for the internal buffer unit according to the system frame data limit, and the basis for the maximum buffer space reservation is: in the case of the maximum processing specification, the data buffer space of the maximum processing frame number of the wireless device can be reserved.
  • Each wireless device may vary depending on the wireless system and bandwidth.
  • FIG. 5 is a schematic structural diagram of an apparatus for synchronizing air interface data according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the apparatus for the air interface data synchronization processing illustrated in FIG. 5 may be a wireless device (hereinafter, the wireless device REo is taken as an example), and includes a receiving module 501, a cache module 502, and a synchronization module 503, where:
  • the receiving module 501 is configured to receive a data frame D/ sent by the wireless device control center to the wireless device REo via the bearer transmission network.
  • a channel interconnected between a radio equipment (RE) and a radio equipment control (REC) is mainly a public telecommunication network (PTN) and an optical transmission network (optical).
  • the transfer that is, the data sent by the wireless device control center to the wireless device first passes through the bearer transmission network, and then is forwarded by the transmission device on the bearer transmission network to the wireless device. Due to the difference in network load and the prioritization of data processing, the data may not be processed in the first time. Therefore, the transmission delay of each frame of data arriving at the wireless device is different, and the jitter of the transmission delay of the bearer transmission network is introduced.
  • the cache module 502 is configured to store the data frame D/ into the internal cache unit of the wireless device REo.
  • FIG. 2a it is a networking diagram of a bearer transmission network on a wireless device.
  • the wireless device control center accesses (e.g., through a convergence ring device between the wireless device control center and the bearer transmission network) to carry the transmission network, and if the wireless device control center transmits data to the wireless device.
  • the transmission device on the bearer transmission network for example, the transmission device 0, the transmission device 1 transmission device N, etc., is required to reach the wireless device.
  • the transmission delay and the jitter of these transmission delays cause the data frames of the same frame number sent by the wireless device control center to arrive at each
  • the moments of the wireless device may be inconsistent.
  • the wireless device control center simultaneously transmits the data frame D/ with the frame number FA at the time of Ta, and the data frame D'/ (data frame D/ and data frame 0'/number are the same, but the content Can be different).
  • the transmission device 0 transmits the data frame D/ ⁇ J to the wireless device 0 (RE0) while the data frame is continuously transmitted on the bearer transmission network.
  • Data frame D'/arrival transmission After device 1 (RE1), transmission device 1 transmits data frame D'/ ⁇ J wireless device 1 (RE1).
  • the time taken by the data frame D/transfer from the REC to the transmission device 0 and the time T0 elapsed from the transmission device 0 to the wireless device 0 (RE0) ⁇ + T ⁇ o, and the data frame D' / Time elapsed from the transmission of the REC to the transmission device 0, ⁇ o, and the time it takes to transfer from the transmission device 0 to the transmission device 1
  • the buffer module 502 can transmit the data frame with the same frame number sent from the wireless device control center through the bearer transmission network.
  • the cache module 502 of the wireless device 0 and the cache module 502 of the wireless device 1 may first store the data frame D/ and the data frame D'/ having the same frame number in the wireless.
  • the synchronization module 503 is configured to read the data frame D/ from the internal buffer unit of the wireless device REo, and after processing by the radio frequency processing unit, send the data frame D/ from the air interface at the air interface transmission time T Si ⁇ .
  • the data frame D/ arrives at the wireless device 0 (RE0) at the time of To, the data frame D'/ arrives at the wireless device 1 (RE1) at the time Ti, and passes through the wireless device 0 (RE0) and the wireless device 1 respectively ( RE1)
  • the time at which other functional modules (eg, radio processing unit, etc.) after the internal buffer unit are processed is Too and Til. If the wireless device 0 (RE0) and the wireless device 1 (RE1) send the data frame D/ and the data frame D'/ from the respective air interfaces at the time of Too and Til, respectively, since the Too time and the Til time are probably not the time.
  • the data frame D/ and the data frame D'/ are not transmitted synchronously at the air interface.
  • the synchronization module 503 of the wireless device RE0 and the wireless device RE1 may respectively be from respective internal cache units. After reading the data frame D/ and the data frame D, /, after processing by the radio frequency processing unit, the data frame D/ and the data frame D'/ are transmitted from the respective air ports at the air interface transmission time Tse «rf.
  • the air interface transmission time T Si ⁇ is a moment that, for a data frame having the same frame number, each wireless device needs to be simultaneously transmitted with other wireless devices at its air interface at its air interface.
  • the moment of the data frame with the same frame number (but the content of the data frame can be different).
  • the air interface transmission time T Si ⁇ is a data frame D ⁇ J that needs to be received.
  • Wireless device 0 at the air interface of wireless device 0 with the received data frame D'/ ⁇ J wireless device 1 (or other wireless device, eg, wireless device N, if wireless device N also receives a frame with data frame D/ ⁇ J The same data frame)
  • the data frame D/ and the data frame D'/ ⁇ J are simultaneously transmitted at the air interface of the wireless device 1, as shown in FIG.
  • the wireless device 0 transmits the received data frame D/
  • the wireless device 1 transmits the received data frame D'/, thereby ensuring the data frame D/sum.
  • the data frame D'/ is sent synchronously at the air interface.
  • the wireless device For the acquisition of the air interface transmission time T Si ⁇ , the wireless device can be derived according to the system adopted by the wireless device and based on the second pulse information and the absolute time information, and the derivation process is defined by the communication protocol, and details are not described herein.
  • each functional module is merely an example, and the actual application may be based on requirements, such as configuration requirements of the corresponding hardware or convenience of implementation of the software.
  • the above function assignment is completed by different functional modules, and the internal structure of the device for synchronous processing of air interface data is divided into different functional modules to complete all or part of the functions described above.
  • the corresponding functional modules in this embodiment may be implemented by corresponding hardware, or may be executed by corresponding hardware.
  • the foregoing cache module may have the foregoing data to be executed.
  • the frame D/ hardware stored in the internal buffer unit of the wireless device REo may also be a general processor or other hardware device capable of executing a corresponding computer program to perform the foregoing functions; and the foregoing transmitting module may have Performing the above-mentioned air transmission timing T Si ⁇ from the air interface transmission
  • the data frame D/function hardware stored in the cache unit, such as a transmitter may also be a general processor or other hardware device capable of executing a corresponding computer program to perform the foregoing functions (the various embodiments provided in the present specification may apply the above). Describe the principle).
  • the transmitting module 503 of the example of FIG. 5 may further include a reading unit 601, a first output unit 602, and a second output unit, such as the apparatus for synchronizing air interface data provided by another embodiment of the present invention, as shown in FIG.
  • the reading unit 601 is configured to read the data frame D/ from the internal buffer unit at the time when the air interface transmits the time Tse «rf minus the delay, and the delay 1 ⁇ is the RF processing unit processes any data in the data frame D/ time needed.
  • the time Tse «rf is transmitted as the reference point by the air interface, and the reading unit 601 reads the data frame D/ from the internal buffer unit of the wireless device with the advance length being the delay time, wherein the delay is wireless The time required for the radio processing unit between the egress of the internal buffer unit of the device to process any one of the data frames.
  • the reading unit 601 of the wireless device REo advance length of the delay time, i.e., from time Tsto ⁇ , read from the internal cache unit
  • the data frame D/ takes the air interface transmission time Tsend as a reference point
  • the reading unit 601 of the wireless device REi advances the time of the delay ⁇ ⁇ , that is, from the time Tw i, reads the data frame D' from its internal buffer unit. / (with the same frame number as the data frame D/).
  • the first output unit 602 is configured to output the data frame D/T read by the reading unit 601 to the radio processing unit after the internal buffer unit.
  • the RF processing unit is configured to convert the baseband signal of the wireless device RE0 or the wireless device RE1 into a radio frequency signal.
  • the second output unit 603 is configured to output the data frame D/after processed by the radio frequency processing unit to the air interface to send the data frame D/ from the air interface.
  • the time required for the radio processing unit in each wireless device to process any one of the data frames that is, the delay is fixed for each wireless device.
  • the time required for the radio frequency processing unit to process any one of the data frames in each wireless device may be obtained by a measurement method. For example, for the wireless device REo, the delay ⁇ ⁇ can be measured, ie, the wireless device, before the data frame D/ is read from its internal buffer unit at the time when the air interface transmission time T se «rf minus the delay time.
  • the apparatus for air interface data synchronization processing illustrated in FIG. 6 may further include a delay measurement module 701, such as the apparatus for air interface data synchronization processing provided by another embodiment of the present invention.
  • the delay measurement module 701 is configured to measure a time required for the radio frequency processing unit of the wireless device REo to process any one of the data frames D/.
  • the apparatus for the air interface data synchronization processing of the example shown in FIG. 5 may further include a time information acquisition module 801, such as the apparatus for synchronous processing of air interface data provided by another embodiment of the present invention as shown in FIG.
  • the time information acquisition module 801 is configured to acquire the second pulse and absolute time information to synchronize the time of the wireless device REo with the time of the wireless device control center and other wireless devices REs.
  • the time information acquisition module 801 illustrated in FIG. 8 may further include a first acquisition unit 901, a second acquisition unit 902, or a third acquisition unit 903, as shown in FIG. 9 for the air interface data synchronization processing provided by another embodiment of the present invention.
  • Device where:
  • the first obtaining unit 901 is configured to acquire a second pulse and absolute time information by using a networked clock. For example, for the wireless device REo in this embodiment, the first acquiring unit 901 of the wireless device REo obtains a 1588v2 time information packet by using a Boundary Clock (BC)/Source Clock (OC) through the network port. The time packet is parsed to obtain a second pulse and absolute time information.
  • BC Boundary Clock
  • OC Source Clock
  • the second obtaining unit 902 is configured to acquire the second pulse and the absolute time information by using a global positioning system external to the wireless device REo.
  • the third obtaining unit 903 is configured to acquire the second pulse and the absolute time information by using a previous-stage transmission device that carries the wireless device REo in the transmission network. For example, the transmission of the previous level of the wireless device REo As a networked clock termination point, the third obtaining unit 903 of the wireless device REo acquires the second pulse and the absolute clock information from the previous primary transmission device through some defined interfaces.
  • the technical solution of the embodiment of the present invention does not specifically limit the manner of acquiring the second pulse and the absolute time information.
  • the apparatus for the air interface data synchronization processing of the example shown in FIG. 5 may further include a cache reservation module 1001, such as the apparatus for air interface data synchronization processing provided by another embodiment of the present invention as shown in FIG.
  • the cache reservation module 1001 is configured to reserve a maximum buffer space for the internal cache unit of the wireless device REo.
  • the cache reservation module 1001 may reserve a maximum buffer space for the internal cache unit according to the system frame data limit, and the basis for the maximum cache space reservation is: in the case of the maximum processing specification, the maximum number of processing frames of the wireless device can be reserved. Data cache space.
  • Each wireless device may vary depending on the wireless system and bandwidth.
  • the wireless device REo receives the data frame transmitted by the wireless device control center to the wireless device REo via the bearer transmission network D/;
  • the wireless device REo stores the data frame D/ into the internal buffer unit of the wireless device REo;
  • the wireless device REo reads the data frame D/ from the internal buffer unit, and after processing by the radio processing unit, sends the data frame D/ from the air interface at the air interface sending time T Si ⁇ , and the RF processing unit processes the internal buffer unit to the air interface. Module.
  • the program can be stored in a computer readable storage medium.
  • the storage medium can include: Read Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明实施例提供一种空口数据同步处理的方法和装置,以保证相同帧号的数据帧在各个无线设备的空口同步发送,消除传输时延及其抖动带来的影响。所述方法包括:无线设备RE0接收无线设备控制中心经过承载传输网络向所述无线设备RE0发送的数据帧Df;所述无线设备RE0将所述数据帧Df存入所述无线设备RE0的内部缓存单元;所述无线设备RE0从所述内部缓存单元读取所述数据帧Df,经过射频处理单元处理后,在空口发送时刻Tsend从空口发送所述数据帧Df。本发明实施例提供的方法使得相同帧号的数据帧在各个无线设备的空口能够同步发送,能够满足一些在空口发送数据时间上需要严格同步的无线通讯协议的要求。

Description

一种空口数据同步处理的方法和装置 本申请要求于 2011 年 12 月 29 日提交中国专利局、 申请号为 201110451429.9、发明名称为"一种空口数据同步处理的方法和装置"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种空口数据同步处理的方法和装置。 背景技术
通用公共无线接口(Common Public Radio Interface, CPRI)联盟是一个工 业合作组织, 致力于从事无线基站内部无线设备控制中心 (Radio Equipment Control, REC)及无线设备 (Radio Equipment, RE)之间主要接口规范的制定 工作。 开放基站架构协议 (Open Base Station Architecture Initiative, OBSAI) 是一个旨在推动无线通信基站内部接口标准化的一个国际化组织, 同样致 力于实现无线基站内部无线设备控制中心 (Radio Equipment Control , REC) 及无线设备 (Radio Equipment , RE)之间的接口标准化。
目前世界上使用最多的两种基带射频接口协议就是通用公共无线接口 (CPRI)和开放基站架构协议 (OBSAI)接口。 通用公共无线接口(CPRI)和开放 基站架构协议 (OBSAI)接口均定义了最大环回传输时延和时延抖动指标要 求, 所谓最大环回传输时延, 是指 REC与 RE间传输链路(不包括传输媒 介, 如光纤) 的双向最大传输时延, 时延抖动是指 REC与 RE间传输链路 时延不稳定,在时间上存在漂移。尽管通用公共无线接口(CPRI)和开放基站 架构协议 (OBSAI)接口系统釆用时分数据流传输方式, 理论上 REC 与 RE 间传输链路时延固定不变, 但是因为存在各种影响时延抖动的因素, 包括 电磁干扰、 线路串扰以及元器件的各种噪声 (例如, 散射噪声、 闪烁噪声 和热噪声等 ), 所以导致 REC与 RE间存在传输链路时延抖动。
同样, 存在时间同步要求的无线通讯协议, 对于空口天线数据发射定 义了时间同步要求, 所谓空口时间同步, 是指站内各天线或站间各天线相 同帧号数据需要在空口对齐时刻点发射,即站内或站间的 RE间天线数据发 送需要满足时间同步要求, 以保证无线通讯协议定义的性能指标。
目前, 通讯运营商存在降低网络建设成本的较大压力, 导致无线通讯技 术向更高性能、 更优网络规划的方向演进, 如无线基站集中放置技术、 长 期演进( Long Term Evolution , LTE )技术等, 以减少无线基站机房建设、 传输光纤铺设, 实现无线基站的集中维护, 提升用户体验等, 实现降低网 络建设成本的目标。 但现有的 REC与 RE间釆用通用公共无线接口(CPRI) 和开放基站架构协议 (OBSAI)接口的点对点或点对多点的传输方案,严重限 制了这些技术方向的演进, 亟需解决。 其中, REC与 RE间通过承载传输 网络传输数据是一种重要技术方向, 该技术打破了现有的通用公共无线接 口(CPRI)和开放基站架构协议 (OBSAI)接口的数据传输机制, 会引入较大的 传输时延抖动, 影响无线通讯协议对空口天线数据发射的时间同步要求。
由于 REC 与各 RE 之间间隔了诸如公共电信网络( Public Telecom Network, PTN )、 光传输网络( Optical Transmission Network, OTN )或同 步数字体系( Synchronous Digital Hierarchy, SDH )等之类的承载传输网络, 同步, 而承载传输网络的处理方式(包括制式和规格等)和传输级数(多 跳 )导致传输时延以及这些传输时延存在的抖动 ,使各 RE空口处理时间不 同步, 不能满足一些在空口发送数据时间上需要严格同步的无线通讯协议 的要求。 发明内容
本发明实施例提供一种空口数据同步处理的方法和装置, 以保证相同 帧号的数据帧在各个无线设备的空口同步发送, 消除传输时延及其抖动带 来的影响。
本发明实施例提供一种空口数据同步处理的方法, 包括: 无线设备 REo 接收无线设备控制中心经过承载传输网络向所述无线设备 REo发送的数据 帧 D/
部緩存单 所述无线设备 REo从所述内部緩存单元读取所述数据帧 D/,经过射频处 理单元处理后, 在空口发送时刻 Tse«rf从空口发送所述数据帧 D/, 所述射频 处理单元为所述内部緩存单元出口至空口之间的处理模块。
可选地,所述无线设备 REo从所述内部緩存单元读取所述数据帧 D/经过 所述内部緩存单元之后的射频处理单元处理后 , 在空口发送时刻 Tse«rf从空 口发送所述数据帧 D/包括: 在所述空口发送时刻 Tse«rf减去时延 所得时 刻 Τ, 从所述内部緩存单元读取所述数据帧 D/, 所述时延 为所述射频处 理单元处理所述数据帧 D/中任意一个数据需要的时间; 将读取的所述数据 帧 D/输出给所述射频处理单元处理; 将所述射频处理单元处理后的所述数 据帧 D/#T出至空口以从所述空口发送所述数据帧 D/。
可选地,在所述空口发送时刻 Tse«rf减去时延 所得时刻 T,从所述内 部緩存单元读取所述数据帧 D/之前还包括: 测量所述射频处理单元处理所 述数据帧 D/中任意一个数据需要的时间。 部緩存单元之前还包括: 所述无线设备 REo获取秒脉冲和绝对时间信息, 以 使所述无线设备 REo的时间与其他无线设备 REs和所述无线设备控制中心的 时间同步。
可选地, 所述无线设备 REo获取秒脉冲和绝对时间信息包括: 所述无线 设备 REo通过网络化时钟获取所述秒脉冲和绝对时间信息;或者所述无线设 备 REo通过所述无线设备 REo外接的全球定位系统获取所述秒脉冲和绝对时 间信息; 或者所述无线设备 REo通过承载传输网络中所述无线设备 REo的前 一级传输设备获取所述秒脉冲和绝对时间信息。 部緩存单元之前还包括: 为所述无线设备 REo的内部緩存单元预留最大緩存 空间。
本发明实施例提供一种空口数据同步处理的装置, 所述装置为无线设 备 REo, 所述装置包括: 接收模块, 用于接收无线设备控制中心经过承载传 输网络向所述无线设备 REo发送的数据帧 D/
緩存模块, 用于将所述数据帧 D/存入所述无线设备 REo的内部緩存单 元;
同步模块, 用于从所述内部緩存单元读取所述数据帧 D/, 经过射频处 理单元处理后, 在空口发送时刻 Tse«rf从空口发送所述数据帧 D/, 所述射频 处理单元为所述内部緩存单元出口至空口之间的处理模块。
可选地, 所述同步模块包括: 读取单元, 用于在所述空口发送时刻 Ts rf 减去时延 所得时刻 T, 从所述内部緩存单元读取所述数据帧 D/, 所述时 延 为所述射频处理单元处理所述数据帧 D/中任意一个数据需要的时 间; 第一输出单元, 用于将所述读取单元读取的所述数据帧 D/ T出给所述 射频处理单元处理; 第二输出单元, 用于将所述射频处理单元处理后的所 述数据帧 D/#T出至空口以从所述空口发送所述数据帧 D/。
可选地, 所述装置还包括: 时延测量模块, 用于测量所述射频处理单 元处理所述数据帧 D/中任意一个数据需要的时间。
可选地, 所述装置还包括: 时间信息获取模块, 用于获取秒脉冲和绝 对时间信息, 以使所述无线设备 REo的时间与其他无线设备 REs和所述无线 设备控制中心的时间同步。
可选地, 所述时间信息获取模块包括: 第一获取单元, 用于通过网络 化时钟获取所述秒脉冲和绝对时间信息; 或者, 第二获取单元, 用于通过 所述无线设备 REo外接的全球定位系统获取所述秒脉冲和绝对时间信息;或 者, 第三获取单元, 用于通过承载传输网络中所述无线设备 REo的前一级传 输设备获取所述秒脉冲和绝对时间信息。
可选地, 所述装置还包括: 緩存预留模块, 用于为所述内部緩存单元 预留最大緩存空间。
从上述本发明实施例可知, 由于无线设备可以先将无线设备控制中心 经过承载传输网络发送过来的数据帧存入其内部緩存单元, 从内部緩存单 元读取该数据帧并经过射频处理模块处理后, 在空口发送时刻从空口将该 数据帧发送出去。 因此, 与现有技术相比, 本发明实施例提供的方法消除 了数据帧在传输过程中传输时延及其抖动带来的影响, 使得相同帧号的数 据帧在各个无线设备的空口能够同步发送, 能够满足一些在空口发送数据 时间上需要严格同步的无线通讯协议的要求。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对现有技术或实 施例描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域技术人员来讲, 还可以如这 些附图获得其他的附图。
图 1是本发明实施例提供的空口数据同步处理的方法流程示意图; 图 2a是无线设备上承载传输网络的组网示意图;
图 2b是数据帧从无线设备控制中心发送到达各无线设备的示意图; 图 3是本发明实施例提供的具有相同帧号的数据帧在各个无线设备空 口处同步发送的示意图;
图 4是本发明另一实施例提供的具有相同帧号的数据帧在各个无线设 备空口处同步发送的示意图; 图 5是本发明实施例提供的空口数据同步处理的装置结构示意图; 图 6是本发明另一实施例提供的空口数据同步处理的装置结构示意图; 图 7是本发明另一实施例提供的空口数据同步处理的装置结构示意图; 图 8是本发明另一实施例提供的空口数据同步处理的装置结构示意图; 图 9是本发明另一实施例提供的空口数据同步处理的装置结构示意图; 图 10是本发明另一实施例提供的空口数据同步处理的装置结构示意
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域技术人员所获得的 所有其他实施例, 都属于本发明保护的范围。
请参阅附图 1 , 是本发明实施例提供的空口数据同步处理的方法流程示 意图。 附图 1示例的方法可用于无线设备(RE )上天线数据的发送, 也适用 于分组 CPRI系统、非分组 CPRI系统、分组 OBSAI系统和非分组 OBSAI系统, 主要包括步骤:
S101 ,无线设备 REo接收无线设备控制中心经过承载传输网络向无线设 备 RE0发送的数据帧 D/。
在本发明实施例中, RE与 REC之间互联的通道主要由 PTN、 OTN或 SDH等承载传输网络提供, 完成相关数据在局端机房(主要包括 REC )与 外部站点 (主要包括 RE )之间的传递, 即, 无线设备控制中心向无线设备 发送的数据首先经过承载传输网络, 再由承载传输网络上的传输设备向 RE 转发。 由于网络负载存在一定的差异以及数据处理具有优先顺序, 数据不 一定会在第一时间得到处理, 因此导致每帧数据到达无线设备的传输时延 存在差异, 引入承载传输网络传输时延的抖动。 S102, 无线设备 REo将数据帧 D/存入无线设备 REo的内部緩存单元。 如附图 2a所示, 是无线设备 ( Radio Equipment, RE )上承载传输网络 的组网示意图。 在附图 2a示意的组网图中, 无线设备控制中心 (Radio Equipment Control , REC )接入(例如, 通过 REC与承载传输网络之间的汇 聚环设备)承载传输网络, 若 REC向 RE发送数据, 需要经过承载传输网络 上的传输设备, 例如, 传输设备 0、 传输设备 1 传输设备 N等等, 才能 到达 RE。
由于承载传输网络的处理方式 (包括制式和规格等)和传输级数(多 跳)导致传输时延以及这些传输时延存在的抖动, 使 REC发送的相同帧号 的数据帧到达各 RE的时刻可能不一致。 如附图 2b所示, 假设 REC在 Ta时刻 同时发送具有帧号均为 FA的数据帧 D/和数据帧 D'/ (数据帧 D/和数据帧 D'/†贞 号相同, 但内容可以不一样)。 数据帧 D/和数据帧 D'/到达传输设备 0后, 传 输设备 0向无线设备 0 ( RE0 )传送数据帧 D/的同时, 数据帧 D'/Μ续在承载 传输网络上传输。 数据帧 D'/到达传输设备 1 ( RE1 )后, 传输设备 1将数据 帧 D'/T^无线设备 1 ( RE1 )传送。 数据帧 D/从 REC传送到传输设备 0耗费的 时间 Ί^ο以及从传输设备 0传送到无线设备 0 ( RE0 )耗费的时间 T o之和 Ί^ο + TreO , 与数据帧 D,/从 REC传送到传输设备 0耗费的时间 T,^o、 再从传输设 备 0传送到传输设备 1耗费的时间 Ί^ι以及最后从传输设备 1传送到无线设备 1 ( RE1 )耗费的时间 Ί^ι之和 T'^o + T^i + T i不相等。 因此, 虽然数据帧 D/和数据帧 D'/在 Ta时刻同时向无线设备 0 ( RE0 )和无线设备 1 ( RE1 )发送, 但最后不是在同一时刻到达无线设备 0 ( RE0 )和无线设备 1 ( RE1 )。 如附 图 2b所示, 数据帧 D/最后在 To时刻到达无线设备 0 ( RE0 ), 数据帧 D'/在 Ti 时刻到达无线设备 1 ( RE1 )。
为了保持具有相同帧号的数据帧在各个无线设备的空口处能够同步发 送, 在本发明实施例中, 可以对从无线设备控制中心经过承载传输网络发 送过来的具有相同帧号的数据帧存入内部緩存单元。 例如, 对于附图 2a和 附图 2b的示例, 可以先将具有相同帧号的数据帧 D/和数据帧 D'/分别存入无 线设备 0 ( RE0 )和无线设备 1 ( RE1 )各自的内部緩存单元。
S103 , 无线设备 REo从内部緩存单元读取数据帧 D/, 经过射频处理单元 处理后, 在空口发送时刻 Tse«rf从空口发送数据帧 D/, 射频处理单元为内部 緩存单元出口至空口之间的处理模块。
如前所述, 数据帧 D/在 To时刻到达无线设备 0 ( RE0 )、 数据帧 D'/在 Ti 时刻到达无线设备 1 ( RE1 )后, 分别经过无线设备 0 ( RE0 )和无线设备 1 ( RE1 )内部緩存单元之后的其他功能模块 (例如, 射频处理单元等)处理 完毕的时刻是 Too和 Til。 若无线设备 0 ( RE0 )和无线设备 1 ( RE1 )分别在 Too时刻和 Til时刻就将数据帧 D/和数据帧 D'/从各自的空口发送出去, 由于 Too时刻和 Til时刻很可能不是时间轴上对齐的时间点,则数据帧 D/和数据帧 D'/在空口处就不是同步发送。
为了使得数据帧 D/和数据帧 D'/在空口处同步发送,在本发明实施例中, 无线设备 REo和无线设备 RE1可以分别从各自内部緩存单元读取数据帧 D/ 和数据帧 D,/, 经过射频处理单元处理后, 在空口发送时刻 τ d从各自的空 口发送数据帧 D/和数据帧 D'/。
这里需要说明的是, 空口发送时刻 TSi ^是这样一种时刻, 即, 对于具 有相同帧号的数据帧而言, 需要每一无线设备在其空口处与其他无线设备 在其空口处同时发送该具有相同帧号的数据帧(但数据帧的内容可以不同) 的时刻。 例如, 在附图 2a和附图 2b的示例, 对于具有相同帧号(FA )的数据 帧 D/和数据帧 D'/而言,空口发送时刻 TSi ^是需要收到数据帧 D ^J无线设备 0 在无线设备 0的空口处与收到数据帧 D'/^J无线设备 1 (或其他无线设备, 例 如, 无线设备 N, 如果无线设备 N也收到与数据帧 D/^J帧号相同的数据帧) 在无线设备 1的空口处同时发送数据帧 D/和数据帧 D'/^J时刻,如附图 3所示。 在图 3示例的空口发送时刻 Tse«rf, 无线设备 0将收到的数据帧 D/发送出去、 无线设备 1将收到的数据帧 D'/发送出去, 就能保证数据帧 D/和数据帧 D'/在 空口处是同步发送的。
关于空口发送时刻 TSi ^的获取, 无线设备可以按照无线设备釆用的制 式并根据秒脉冲信息和绝对时间信息推导出, 该推导过程由通信协议规定, 此处不做赘述。
从上述本发明实施例提供的空口数据同步处理的方法可知, 由于空口 发送时刻是无线设备在其空口处与其他无线设备在其空口处同时发送该具 有相同帧号的数据帧的时刻, 而在本发明实施例中, 无线设备可以先将无 线设备控制中心经过承载传输网络发送过来的数据帧存入其内部緩存单 元, 从内部緩存单元读取该数据帧并经过射频处理模块处理后, 在空口发 送时刻从空口将该数据帧发送出去。 因此, 与现有技术相比, 本发明实施 例提供的方法消除了数据帧在传输过程中传输时延及其抖动带来的影响, 使得相同帧号的数据帧在各个无线设备的空口能够同步发送, 能够满足在 空口发送数据时间上需要严格同步的无线通讯协议的要求。
作为本发明一个实施例,无线设备 REo可以以下述方式从内部緩存单元 读取数据帧 D/经过内部緩存单元之后的射频处理单元处理后, 在空口发送 时刻 Tsend 空口发送数据帧 D/:
S'101 , 在空口发送时刻 Tse«rf减去时延 所得时刻 T从无线设备 REo 的内部緩存单元读取数据帧 D/。
即, 在时间轴上, 以空口发送时刻 TSi ^为基准点, 无线设备提前长度 为时延 的时间从无线设备的内部緩存单元读取数据帧 D/, 其中, 时延 为无线设备的内部緩存单元的出口至空口之间的射频处理单元处理数 据帧中任意一个数据需要的时间。 如附图 4所示, 以空口发送时刻 TSi ^为基 准点, 无线设备 REo提前长度为时延 Τ ()的时间, 即从时刻 Tsto^o开始, 从 其内部緩存单元读取数据帧 D/ 以空口发送时刻 Tse«rf为基准点, 无线设备 REi提前长度为时延 Ί^ ι的时间 , 即从时刻 Tstowi开始 , 从其内部緩存单元 读取数据帧 D'/ (与数据帧 D/具有相同的帧号)。 S'102, 将读取的数据帧 D/输出给射频处理单元处理。
在本发明实施例中,无线设备 RE0的内部緩存单元的出口至空口之间还 有诸如上 /下变频模块、 有限冲击响应滤波器、 数字预矫正模块以及加 /去循 环前缀模块等组成的射频处理单元,将无线设备 RE0的基带信号转换成射频 信号。
S'103 , 将射频处理单元处理完后的数据帧 D/后输出至空口以从空口发 送数据帧 D/。
数据帧 D/从射频处理单元的最后一个功能模块处理完后, 输出至空口, 由空口数据帧 D/发送。
当无线设备 REi也按照上述无线设备 REo的步骤 S'101至步骤 S'103操作 时, 无线设备 REi在空口发送时刻 Tse«rf将数据帧 D'/从其空口发送出去, 如 此, 保证了无线设备 REo和无线设备 REi空口的同步处理。
需要说明的是, 每一个无线设备中射频处理单元处理数据帧中任意一 个数据需要的时间, 即, 时延 对于每一无线设备而言是固定的。 在本 发明实施例中, 每一个无线设备中射频处理单元处理数据帧中任意一个数 据需要的时间可以通过测量的方法获取。 例如, 对于无线设备 REo, 可以在 在空口发送时刻 Tse«rf减去时延 所得时刻 Τ从其内部緩存单元读取数据 帧 D/之前, 对时延 Τ ο进行测量, 即测量无线设备 REo的射频处理单元处 理数据帧 D/中任意一个数据需要的时间。
在本发明实施例中, 无线设备将无线设备控制中心经过承载传输网络 发送过来的数据帧存入其内部緩存单元之前, 可以获取秒脉冲和绝对时间 信息, 以使该无线设备的时间与其他无线设备和无线设备控制中心的时间 同步。 例如, 对于前述实施例中的无线设备 REo, 在将无线设备控制中心侧 发送的数据帧 D/存入内部緩存单元之前,无线设备 REo获取秒脉冲和绝对时 间信息, 以使无线设备 REo的时间与无线设备控制中心和其他无线设备 REs 的时间同步。 具体方法可以是, 无线设备通过网络化时钟, 或者, 通过无线设备外 接的全球定位系统获取秒脉冲和绝对时间信息, 或者, 通过承载传输网络 中无线设备 REo的前一级传输设备获取秒脉冲和绝对时间信息。 例如, 对于 前述实施例中的无线设备 REo,无线设备 REo通过网口以边界时钟( Boundary Clock, BC ) /源时钟 ( Original Clock, OC )等方式获取 1588v2时间信息包, 对该时间信息包解析, 获得秒脉冲和绝对时间信息, 或者, 通过无线设备 REo外接的全球定位系统获取秒脉冲和绝对时间信息, 或者, 无线设备 REo 的前一级传输设备作为网络化时钟终结点,无线设备 REo通过某些定义的接 口从该前一级传输设备获取秒脉冲和绝对时钟信息, 本发明实施例的技术 方案, 对获取秒脉冲和绝对时间信息的方式不做具体限制。
此外, 无线设备的内部緩存单元的緩存空间可以预留。 例如, 在本发 明实施例中,无线设备 RE0将接收到的无线设备控制中心经过承载传输网络 向无线设备 RE0发送的数据帧存入内部緩存单元之前,可以为内部緩存单元 预留最大緩存空间。 具体地, 可以按照系统帧数据极限为内部緩存单元预 留最大緩存空间, 最大緩存空间的预留的依据是: 最大处理规格情况下, 能够预留该无线设备最大处理帧数量的数据緩存空间。 各无线设备可能因 为无线制式和带宽的不同而不同。 例如, 对于 LTE 频分双工 (Frequency Division Duplexing, FDD )这一无线制式,在带宽为 20M、天线为 4收 4发( Four Transmit Four Receive , 4T4R ) 的多输入多输出模式下, 天线的同向分量 数据和正向分量数据都为 16bit (比特), 按照 30.72MHz (与 20M带宽相应) 釆样率, 不考虑压缩等处理方式时, 内部緩存单元緩存一个数据帧需要预 留的最大緩存空间为 30.72 2 16 4 /1000 = 3.93216Mbit„
请参阅附图 5 , 是本发明实施例提供的空口数据同步处理的装置结构示 意图。 为了便于说明, 仅仅示出了与本发明实施例相关的部分。 附图 5示例 的空口数据同步处理的装置可以是无线设备(以下以无线设备 REo为例进行 说明), 其包括接收模块 501、 緩存模块 502和同步模块 503 , 其中: 接收模块 501 , 用于接收无线设备控制中心经过承载传输网络向无线设 备 REo发送的数据帧 D/。
在本发明实施例中, 无线设备 ( Radio Equipment, RE )与无线设备控 制中心 ( Radio Equipment Control, REC )之间互联的通道主要由公共电信 网络(Public Telecom Network, PTN )、 光传输网络 ( Optical Transmission Network, OTN )或同步数字体系 ( Synchronous Digital Hierarchy, SDH ) 等之类的承载传输网络提供, 完成相关数据在局端机房(主要包括无线设 备控制中心) 与外部站点 (主要包括无线设备)之间的传递, 即, 无线设 备控制中心向无线设备发送的数据首先经过承载传输网络, 再由承载传输 网络上的传输设备向无线设备转发。 由于网络负载存在一定的差异以及数 据处理具有优先顺序, 数据不一定会在第一时间得到处理, 因此导致每帧 数据到达无线设备的传输时延存在差异, 引入承载传输网络传输时延的抖 动。
緩存模块 502, 用于将数据帧 D/存入无线设备 REo的内部緩存单元。 如附图 2a所示, 是无线设备上承载传输网络的组网示意图。 在附图 2a 示意的组网图中, 无线设备控制中心接入(例如, 通过无线设备控制中心 与承载传输网络之间的汇聚环设备)承载传输网络, 若无线设备控制中心 向无线设备发送数据, 需要经过承载传输网络上的传输设备, 例如, 传输 设备 0、 传输设备 1 传输设备 N等等, 才能到达无线设备。
由于承载传输网络的处理方式 (包括制式和规格等)和传输级数(多 跳)导致传输时延以及这些传输时延存在的抖动, 使得无线设备控制中心 发送的相同帧号的数据帧到达各无线设备的时刻可能不一致。 如附图 2b所 示, 假设无线设备控制中心在 Ta时刻同时发送具有帧号均为 FA的数据帧 D/ 和数据帧 D'/ (数据帧 D/和数据帧 0'/ 号相同, 但内容可以不一样)。 数据 帧 D/和数据帧 D'/到达传输设备 0后, 传输设备 0向无线设备 0 ( RE0 )传送数 据帧 D/^J同时, 数据帧 续在承载传输网络上传输。 数据帧 D'/到达传输 设备 1 (REl)后, 传输设备 1将数据帧 D'/^J无线设备 1 (RE1 )传送。 数据 帧 D/从 REC传送到传输设备 0耗费的时间 Ί^ο以及从传输设备 0传送到无线 设备 0 (RE0 )耗费的时间 T o之和 Ί^ο + T^o, 与数据帧 D'/从 REC传送到 传输设备 0耗费的时间 T,^o、 再从传输设备 0传送到传输设备 1耗费的时间
Teql以及最后从传输设备 1传送到无线设备 1 ( RE1 )耗费的时间 Ί^Ι之和 T'^0
+ Teqi + T i不相等。 因此, 虽然数据帧 D/和数据帧 D'/在 Ta时刻同时向无线 设备 0 (RE0)和无线设备 1 (RE1 )发送, 但最后不是在同一时刻到达无线 设备 0 (RE0)和无线设备 1 (RE1)。 如附图 2b所示, 数据帧 D/最后在 To时 刻到达无线设备 0 (RE0), 数据帧 D'/在 Ti时刻到达无线设备 1 (RE1)。
为了保持具有相同帧号的数据帧在各个无线设备的空口处能够同步发 送, 在本实施例中, 緩存模块 502可以对从无线设备控制中心经过承载传输 网络发送过来的具有相同帧号的数据帧存入内部緩存单元。 例如, 对于附 图 2a和附图 2b的示例, 无线设备 0的緩存模块 502和无线设备 1的緩存模块 502可以先将具有相同帧号的数据帧 D/和数据帧 D'/分别存入无线设备 0 (RE0)和无线设备 1 (RE1 )各自的内部緩存单元。
同步模块 503, 用于从无线设备 REo的内部緩存单元读取数据帧 D/, 经 过射频处理单元处理后, 在空口发送时刻 TSi ^从空口发送数据帧 D/。
如前所述, 数据帧 D/在 To时刻到达无线设备 0 (RE0)、 数据帧 D'/在 Ti 时刻到达无线设备 1 (RE1 )后, 分别经过无线设备 0 (RE0)和无线设备 1 (RE1 )内部緩存单元之后的其他功能模块 (例如, 射频处理单元等)处理 完毕的时刻是 Too和 Til。 若无线设备 0 (RE0)和无线设备 1 (RE1 )分别在 Too时刻和 Til时刻就将数据帧 D/和数据帧 D'/从各自的空口发送出去, 由于 Too时刻和 Til时刻很可能不是时间轴上对齐的时间点,则数据帧 D/和数据帧 D'/在空口处就不是同步发送。
为了使得数据帧 D/和数据帧 D'/在空口处同步发送,在本发明实施例中, 无线设备 RE0和无线设备 RE1的同步模块 503可以分别从各自内部緩存单元 读取数据帧 D/和数据帧 D,/,经过射频处理单元处理后,在空口发送时刻 Tse«rf 从各自的空口发送数据帧 D/和数据帧 D'/。
这里需要说明的是, 空口发送时刻 TSi ^是这样一种时刻, 即, 对于具 有相同帧号的数据帧而言, 需要每一无线设备在其空口处与其他无线设备 在其空口处同时发送该具有相同帧号的数据帧(但数据帧的内容可以不同) 的时刻。 例如, 在附图 2a和附图 2b的示例, 对于具有相同帧号(FA )的数据 帧 D/和数据帧 D'/而言,空口发送时刻 TSi ^是需要收到数据帧 D ^J无线设备 0 在无线设备 0的空口处与收到数据帧 D'/^J无线设备 1 (或其他无线设备, 例 如, 无线设备 N, 如果无线设备 N也收到与数据帧 D/^J帧号相同的数据帧) 在无线设备 1的空口处同时发送数据帧 D/和数据帧 D'/^J时刻,如附图 3所示。 在图 3示例的空口发送时刻 Tse«rf, 无线设备 0将收到的数据帧 D/发送出去、 无线设备 1将收到的数据帧 D'/发送出去, 就能保证数据帧 D/和数据帧 D'/在 空口处是同步发送的。
关于空口发送时刻 TSi ^的获取, 无线设备可以按照无线设备釆用的制 式并根据秒脉冲信息和绝对时间信息推导出, 该推导过程由通信协议规定, 此处不做赘述。
需要说明的是, 以上空口数据同步处理的装置的实施方式中, 各功能 模块的划分仅是举例说明, 实际应用中可以根据需要, 例如相应硬件的配 置要求或者软件的实现的便利考虑, 而将上述功能分配由不同的功能模块 完成, 即将空口数据同步处理的装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 而且, 实际应用中, 本实施例中的 相应的功能模块可以是由相应的硬件实现, 也可以由相应的硬件执行相应 的软件完成, 例如, 前述的緩存模块, 可以是具有执行前述将将数据帧 D/ 存入无线设备 REo的内部緩存单元的硬件, 例如緩存器, 也可以是能够执行 相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备; 再如 前述的发送模块, 可以是具有执行前述在空口发送时刻 TSi ^从空口发送内 部緩存单元存入的数据帧 D/功能的硬件, 例如发送器, 也可以是能够执行 相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备(本说 明书提供的各个实施例都可应用上述描述原则 )。
附图 5示例的发送模块 503还可以包括读取单元 601、 第一输出单元 602 和第二输出单元, 如附图 6所示本发明另一实施例提供的空口数据同步处理 的装置, 其中:
读取单元 601用于在空口发送时刻 Tse«rf减去时延 所得时刻 Τ , 从内 部緩存单元读取数据帧 D/, 时延 1^ 为射频处理单元处理数据帧 D/中任意 一个数据需要的时间。
即, 在时间轴上, 以空口发送时刻 Tse«rf为基准点, 读取单元 601提前长 度为时延 的时间从无线设备的内部緩存单元读取数据帧 D/, 其中, 时 延 为无线设备的内部緩存单元的出口至空口之间的射频处理单元处理 数据帧中任意一个数据需要的时间。 如附图 4所示, 以空口发送时刻 Tse«rf为 基准点, 无线设备 REo的读取单元 601提前长度为时延 的时间, 即, 从 时刻 Tsto ^开始 , 从其内部緩存单元读取数据帧 D/ 以空口发送时刻 Tsend为 基准点, 无线设备 REi的读取单元 601提前长度为时延 Τ ι的时间, 即, 从 时刻 Tw i开始, 从其内部緩存单元读取数据帧 D'/ (与数据帧 D/具有相同的 帧号)。
第一输出单元 602, 用于将读取单元 601读取的数据帧 D/ T出给内部緩 存单元之后的射频处理单元处理。
在本实施例中, 无线设备 RE0或无线设备 RE1的内部緩存单元的出口至 空口之间还有诸如上 /下变频模块、 有限冲击响应滤波器、 数字预矫正模块 以及加 /去循环前缀模块等组成的射频处理单元, 将无线设备 RE0或无线设 备 RE1的基带信号转换成射频信号。
第二输出单元 603 , 用于将射频处理单元处理后的数据帧 D/后输出至空 口以从空口发送该数据帧 D/。 需要说明的是, 每一个无线设备中射频处理单元处理数据帧中任意一 个数据需要的时间, 即, 时延 对于每一无线设备而言是固定的。 在本 发明实施例中, 每一个无线设备中射频处理单元处理数据帧中任意一个数 据需要的时间可以通过测量的方法获取。 例如, 对于无线设备 REo, 可以在 在空口发送时刻 Tse«rf减去时延 所得时刻 Τ从其内部緩存单元读取数据 帧 D/之前, 对时延 Τ ο进行测量, 即, 测量无线设备 REo的射频处理单元 处理数据帧 D/中任意一个数据需要的时间。 因此, 附图 6示例的空口数据同 步处理的装置还可以包括时延测量模块 701 , 如附图 7所示本发明另一实施 例提供的空口数据同步处理的装置。 时延测量模块 701用于测量无线设备 REo的射频处理单元处理数据帧 D/中任意一个数据所需时间。
附图 5示例的空口数据同步处理的装置还可以包括时间信息获取模块 801 , 如附图 8所示本发明另一实施例提供的空口数据同步处理的装置。 时 间信息获取模块 801用于获取秒脉冲和绝对时间信息, 以使无线设备 REo的 时间与无线设备控制中心和其他无线设备 REs的时间同步。
附图 8示例的时间信息获取模块 801还可以包括第一获取单元 901、 第二 获取单元 902或第三获取单元 903 , 如附图 9所示本发明另一实施例提供的空 口数据同步处理的装置, 其中:
第一获取单元 901 , 用于通过网络化时钟获取秒脉冲和绝对时间信息。 例如, 对于本实施例中的无线设备 REo, 无线设备 REo的第一获取单元 901 通过网口以边界时钟 ( Boundary Clock, BC ) /源时钟( Original Clock, OC ) 等方式获取 1588v2时间信息包, 对该时间信息包解析, 获得秒脉冲和绝对 时间信息。
第二获取单元 902, 用于通过无线设备 REo外接的全球定位系统获取秒 脉冲和绝对时间信息。
第三获取单元 903 , 用于通过承载传输网络中无线设备 REo的前一级传 输设备获取秒脉冲和绝对时间信息。 比如, 以无线设备 REo的前一级传输设 备作为网络化时钟终结点, 无线设备 REo的第三获取单元 903通过某些定义 的接口从该前一级传输设备获取秒脉冲和绝对时钟信息。
需要说明的是, 本发明实施例的技术方案, 对获取秒脉冲和绝对时间 信息的方式不做具体限制。
附图 5示例的空口数据同步处理的装置还可以包括緩存预留模块 1001, 如附图 10所示本发明另一实施例提供的空口数据同步处理的装置。 緩存预 留模块 1001用于为无线设备 REo的内部緩存单元预留最大緩存空间。 具体 地, 緩存预留模块 1001可以按照系统帧数据极限为内部緩存单元预留最大 緩存空间, 最大緩存空间的预留的依据是: 最大处理规格情况下, 能够预 留该无线设备最大处理帧数量的数据緩存空间。 各无线设备可能因为无线 制式和带宽的不同而不同。 例如, 对于 LTE 频分双工 ( Frequency Division Duplexing, FDD )这一无线制式,在带宽为 20M、天线为 4收 4发( Four Transmit Four Receive , 4T4R ) 的多输入多输出模式下, 天线的同向分量数据和正 向分量数据都为 16bit (比特), 按照 30.72MHz (与 20M带宽相应)釆样率, 不考虑压缩等处理方式时, 内部緩存单元緩存一个数据帧需要预留的最大 緩存空间为 30.72 2 16 x 4 /1000 = 3.93216Mbit„
需要说明的是, 上述装置各模块 /单元之间的信息交互、 执行过程等内 容, 由于与本发明方法实施例基于同一构思, 其带来的技术效果与本发明 方法实施例相同, 具体内容可参见本发明方法实施例中的叙述, 此处不再 赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分 步骤是可以通过程序来指令相关的硬件来完成, 比如以下各种方法的一种 或多种或全部:
无线设备 REo接收无线设备控制中心经过承载传输网络向无线设备 REo 发送的数据帧 D/;
无线设备 REo将数据帧 D/存入无线设备 REo的内部緩存单元; 无线设备 REo从内部緩存单元读取数据帧 D/, 经过射频处理单元处理 后, 在空口发送时刻 TSi ^从空口发送数据帧 D/, 射频处理单元为内部緩存 单元出口至空口之间的处理模块。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分 步骤是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算 机可读存储介质中, 存储介质可以包括: 只读存储器 (ROM, Read Only Memory )、 随机存取存储器 ( RAM, Random Access Memory )、 磁盘或光 盘等。
以上对本发明实施例提供的一种空口数据同步处理的方法和装置进行 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同 时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及 应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发 明的限制。

Claims

权利要求
1、 一种空口数据同步处理的方法, 其特征在于, 所述方法包括: 无线设备 REo接收无线设备控制中心经过承载传输网络向所述无线设 备 REo发送的数据帧 D/
部緩存单 所述无线设备 REo从所述内部緩存单元读取所述数据帧 D/,经过射频处 理单元处理后, 在空口发送时刻 Tse«rf从空口发送所述数据帧 D/, 所述射频 处理单元为所述内部緩存单元出口至空口之间的处理模块。
2、 如权利要求 1所述的方法, 其特征在于, 所述无线设备 REo从所述内 部緩存单元读取所述数据帧 D/经过所述内部緩存单元之后的射频处理单元 处理后, 在空口发送时刻 Tse«rf从空口发送所述数据帧 D/包括:
在所述空口发送时刻 Tse«rf减去时延 所得时刻 T,从所述内部緩存单 元读取所述数据帧 D/, 所述时延 为所述射频处理单元处理所述数据帧 D/中任意一个数据需要的时间;
将读取的所述数据帧 D/输出给所述射频处理单元处理; 发送所述数据帧 D/。
3、 如权利要求 2所述的方法, 其特征在于, 在所述空口发送时刻 Tse«rf 减去时延 所得时刻 T,从所述内部緩存单元读取所述数据帧 D/之前还包 括:
测量所述射频处理单元处理所述数据帧 D/中任意一个数据需要的时 间。
4、 如权利要求 1至 3任意一项所述的方法, 其特征在于, 所述无线设备 REo将所述数据帧 D/存入所述无线设备 REo的内部緩存单元之前还包括: 所述无线设备 REo获取秒脉冲和绝对时间信息, 以使所述无线设备 REo 的时间与其他无线设备 REs和所述无线设备控制中心的时间同步。
5、 如权利要求 4所述的方法, 其特征在于, 所述无线设备 REo获取秒脉 冲和绝对时间信息包括: 者
所述无线设备 REo通过所述无线设备 REo外接的全球定位系统获取所述 秒脉冲和绝对时间信息; 或者
所述无线设备 REo通过承载传输网络中所述无线设备 REo的前一级传输 设备获取所述秒脉冲和绝对时间信息。
6、 如权利要求 1至 3任意一项所述的方法, 其特征在于, 所述无线设备 REo将所述数据帧 D/存入所述无线设备 REo的内部緩存单元之前还包括: 为所述无线设备 REo的内部緩存单元预留最大緩存空间。
7、 一种空口数据同步处理的装置, 其特征在于, 所述装置为无线设备 REo, 所述装置包括:
接收模块, 用于接收无线设备控制中心经过承载传输网络向所述无线 设备 REo发送的数据帧 D/;
緩存模块, 用于将所述数据帧 D/存入所述无线设备 REo的内部緩存单 元;
同步模块, 用于从所述内部緩存单元读取所述数据帧 D/, 经过射频处 理单元处理后, 在空口发送时刻 Tse«rf从空口发送所述数据帧 D/, 所述射频 处理单元为所述内部緩存单元出口至空口之间的处理模块。
8、 如权利要求 7所述的装置, 其特征在于, 所述同步模块包括: 读取单元,用于在所述空口发送时刻 Tsem减去时延 所得时刻 T,从 所述内部緩存单元读取所述数据帧 D/, 所述时延 为所述射频处理单元 处理所述数据帧 D/中任意一个数据需要的时间;
第一输出单元, 用于将所述读取单元读取的所述数据帧 D/ T出给所述 射频处理单元处理;
第二输出单元,
至空口以从所述空口发送所述数据帧 D/。
9、 如权利要求 8所述的装置, 其特征在于, 所述装置还包括: 时延测量模块, 用于测量所述射频处理单元处理所述数据帧 D/中任意 一个数据需要的时间。
10、 如权利要求 7至 9任意一项所述的装置, 其特征在于, 所述装置还 包括:
时间信息获取模块, 用于获取秒脉冲和绝对时间信息, 以使所述无线 设备 REo的时间与其他无线设备 REs和所述无线设备控制中心的时间同步。
11、 如权利要求 10所述的装置, 其特征在于, 所述时间信息获取模块 包括:
第一获取单元, 用于通过网络化时钟获取所述秒脉冲和绝对时间信息; 或者,
第二获取单元,用于通过所述无线设备 REo外接的全球定位系统获取所 述秒脉冲和绝对时间信息; 或者,
第三获取单元,用于通过承载传输网络中所述无线设备 REo的前一级传 输设备获取所述秒脉冲和绝对时间信息。
12、 如权利要求 7至 9任意一项所述的装置, 其特征在于, 所述装置还 包括:
緩存预留模块, 用于为所述内部緩存单元预留最大緩存空间。
PCT/CN2012/087769 2011-12-29 2012-12-28 一种空口数据同步处理的方法和装置 WO2013097754A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110451429.9 2011-12-29
CN201110451429.9A CN103188737B (zh) 2011-12-29 2011-12-29 一种空口数据同步处理的方法和装置

Publications (1)

Publication Number Publication Date
WO2013097754A1 true WO2013097754A1 (zh) 2013-07-04

Family

ID=48679624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087769 WO2013097754A1 (zh) 2011-12-29 2012-12-28 一种空口数据同步处理的方法和装置

Country Status (2)

Country Link
CN (1) CN103188737B (zh)
WO (1) WO2013097754A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017071276A1 (zh) * 2015-10-29 2017-05-04 华为技术有限公司 中继系统的空口时间同步方法、设备
CN107548092A (zh) * 2017-08-04 2018-01-05 深圳市盛路物联通讯技术有限公司 一种分布式网络延迟的数据处理方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104507154B (zh) * 2014-11-20 2018-04-10 上海华为技术有限公司 数据传输方法、通信设备及通信系统
CN113765839B (zh) * 2020-06-03 2022-07-29 华为技术有限公司 空口时间同步方法及设备
CN111708624B (zh) * 2020-06-16 2023-09-29 北京百度网讯科技有限公司 基于多传输机的并发度分配方法、装置、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101146257A (zh) * 2007-10-16 2008-03-19 深圳国人通信有限公司 提高数据传输的同步精度的方法和系统
CN101237384A (zh) * 2007-01-31 2008-08-06 华为技术有限公司 多媒体广播/组播业务数据发送的方法、装置、用户面实体和系统
CN101364884A (zh) * 2007-08-10 2009-02-11 华为技术有限公司 发送多媒体广播与组播服务数据包的方法及装置
CN101883329A (zh) * 2010-07-01 2010-11-10 北京邮电大学 一种基于融合的eps支持mbms业务内容同步的方法和装置
CN102469571A (zh) * 2010-11-12 2012-05-23 中兴通讯股份有限公司 一种在分布式基站系统中实现时延补偿的方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394293B (zh) * 2007-09-19 2011-07-13 中兴通讯股份有限公司 实现广播数据全网同步协议的系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237384A (zh) * 2007-01-31 2008-08-06 华为技术有限公司 多媒体广播/组播业务数据发送的方法、装置、用户面实体和系统
CN101364884A (zh) * 2007-08-10 2009-02-11 华为技术有限公司 发送多媒体广播与组播服务数据包的方法及装置
CN101146257A (zh) * 2007-10-16 2008-03-19 深圳国人通信有限公司 提高数据传输的同步精度的方法和系统
CN101883329A (zh) * 2010-07-01 2010-11-10 北京邮电大学 一种基于融合的eps支持mbms业务内容同步的方法和装置
CN102469571A (zh) * 2010-11-12 2012-05-23 中兴通讯股份有限公司 一种在分布式基站系统中实现时延补偿的方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017071276A1 (zh) * 2015-10-29 2017-05-04 华为技术有限公司 中继系统的空口时间同步方法、设备
CN107548092A (zh) * 2017-08-04 2018-01-05 深圳市盛路物联通讯技术有限公司 一种分布式网络延迟的数据处理方法及系统
CN107548092B (zh) * 2017-08-04 2021-01-26 深圳市盛路物联通讯技术有限公司 一种分布式网络延迟的数据处理方法及系统

Also Published As

Publication number Publication date
CN103188737B (zh) 2016-03-30
CN103188737A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
US11950127B2 (en) 5G system support for virtual TSN bridge management, QoS mapping and TSN Qbv scheduling
US11470568B2 (en) Synchronizing TSN master clocks in wireless networks
US20220021624A1 (en) Output pacing in a cellular communications system serving as a time-sensitive networking (tsn) node
CN102244603B (zh) 传输承载时间的报文的方法、设备及系统
WO2016173265A1 (zh) 一种时间同步的方法及系统、网络设备
EP3427445A1 (en) Techniques for wireless access and wireline network integration
WO2020081062A1 (en) Wireless network support for ieee tsn based industrial automation
CN101753578B (zh) Ethernet/e1协议转换方法及协议转换器
CN101741853B (zh) 时钟时间同步的方法、线卡单板和网络设备
US20130235878A1 (en) Data block output apparatus, communication system, data block output method, and communication method
WO2015117501A1 (zh) 一种时间同步方法、可编程逻辑器件、单板及网元
WO2008071131A1 (fr) Procédé de transmission de données cpri (common public radio interface), et procédés et systèmes correspondants
WO2015196685A1 (zh) 时钟同步方法及装置
WO2013097754A1 (zh) 一种空口数据同步处理的方法和装置
WO2014194517A1 (zh) 一种传输数据的方法及设备
WO2012003746A1 (zh) 一种实现边界时钟的方法和装置
EP3278518B1 (en) A network node
WO2011032494A1 (zh) 精确时间协议报文处理方法和时钟设备
EP3295765B1 (en) Systems and methods of transporting internal radio base station (rbs) interface information over a packet switched network
WO2013155944A1 (zh) 一种时钟传输方法、边界时钟及透传时钟
WO2010102565A1 (zh) 时间同步的方法、装置和系统
WO2020103540A1 (zh) 同步的方法和装置
Al-Hares et al. Scheduling in an Ethernet fronthaul network
JP5656306B1 (ja) 同期確立方法
JP5853737B2 (ja) 中継装置、中継装置制御方法、及び、中継装置制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861409

Country of ref document: EP

Kind code of ref document: A1