WO2013097736A1 - 一种彩色发光模块及光源 - Google Patents

一种彩色发光模块及光源 Download PDF

Info

Publication number
WO2013097736A1
WO2013097736A1 PCT/CN2012/087608 CN2012087608W WO2013097736A1 WO 2013097736 A1 WO2013097736 A1 WO 2013097736A1 CN 2012087608 W CN2012087608 W CN 2012087608W WO 2013097736 A1 WO2013097736 A1 WO 2013097736A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting module
color
light
fluorescent material
color light
Prior art date
Application number
PCT/CN2012/087608
Other languages
English (en)
French (fr)
Inventor
肖志国
吴粤宁
李茂龙
桑石云
贾涛
杨恩茂
王轶
Original Assignee
大连路明发光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连路明发光科技股份有限公司 filed Critical 大连路明发光科技股份有限公司
Priority to CN201280060511.1A priority Critical patent/CN104169634A/zh
Publication of WO2013097736A1 publication Critical patent/WO2013097736A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/08Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention belongs to the technical field of optoelectronic display and illumination, and relates to a color polymer light-emitting module and a light source which are prepared by using a plurality of fluorescent materials. Background technique
  • LED As a new type of energy-saving light source, LED is widely used in various lighting applications due to its high brightness, energy saving and long life.
  • the current LED lighting devices are usually obtained by encapsulating fluorescent materials.
  • patents such as Chinese patent CN1941431 "White light-emitting components and their manufacturing methods", Chinese patent CN1510766 “Surface-mounted white light-emitting diodes”, Chinese patent CN101186818 "Blue-violet or blue-light-excited phosphors and manufacturing methods and packaged white light diodes” are all mixed with fluorescent materials and coated on LED chips to form white light-emitting devices.
  • the market needs more LED light of other colors.
  • the above patented method can also be used to produce colored light, but the light-emitting device prepared by the method is difficult to ensure uniform brightness, color coordinates, color temperature and color rendering. Sex, and because the phosphor is close to the chip, it is easily aged due to the influence of heat, causing a change in color and a decrease in life.
  • Patent CN1425868 "a kind of colorful decorative lights”
  • patent CN1450301 “Rainbow Light”
  • patent CN201866692U an LED full color light
  • the present invention provides a color light emitting module and a method of fabricating the same.
  • This module has two or more colors at the same time, and can adjust the area and shape occupied by each color on the module. And depending on the use, it can be designed into various shapes to fill the color where it is needed. And because the adjacent areas are not connected by simple bonds Together, the modified polymer material is modified by adding a crosslinking inhibitor and a coupling agent to the system, and then the degree of reaction is controlled by controlling the reaction conditions, and finally the polymer material between the regions is completely completed. The reaction is such that adjacent regions are joined together to form a seamless structure that is integrated.
  • the fluorescent material is uniformly dispersed therein, and the connection between each color is tight.
  • the light source prepared by using the module has uniform light color, and since the fluorescent material is not in close contact with the chip during use, the heat is avoided. The color fades out, which can effectively improve the life of the product.
  • a color light-emitting module is made of a polymer material, the shape of the module is a hollow convex shape, and a color light-emitting module is divided into at least two regions, and the adjacent regions are different in color, and can be excited by light having a wavelength of 380 to 475 nm.
  • the polymer material is modified by adding a crosslinking inhibitor and a coupling agent, and the degree of reaction is controlled by controlling the reaction conditions, and finally the polymer materials between the regions are completely reacted to form a seamless structure. .
  • the present invention includes the following aspects:
  • a first aspect of the present invention provides a color light emitting module, wherein the module has a hollow convex shape and includes at least two adjacent different color regions, wherein the regions are seamlessly connected, each color
  • the area consists of the following components:
  • Fluorescent material 4.0-30.0 %
  • the polymer material may be a silicone rubber material, preferably an additive silicone rubber, and further preferably a two-component addition heating liquid silicone rubber (for example, Dow Corning of Dow Cornin, USA) 6550, Shin-Etsu KE1310ST of Shin-Etsu Corporation of Japan);
  • the diluent is one or more selected from the group consisting of mercapto silicone oil, biguanide silicone oil, ethyl silicone oil, phenyl silicone oil, mercaptoethoxy silicone oil or mercapto vinyl silicone oil;
  • the fluorescent material is one or two selected from the group consisting of an aluminate fluorescent material, a silicate fluorescent material, a silicon nitride fluorescent material, a nitride fluorescent material, a composite oxide fluorescent material or a sulfur oxide fluorescent material.
  • the fluorescent material has a particle diameter of 3-25 ⁇ m;
  • the auxiliary agent may be a coupling agent, or the auxiliary agent may be composed of an antifoaming agent, a coupling agent and a wetting agent; the coupling agent may be selected from a vinyl silicone coupling agent.
  • a vinyl silicone coupling agent eg z-6300 from Dow Cornin, USA
  • amino silicone coupling agents eg aminosilane 1172 from DEGUSSA
  • silicone coupling agents eg z-6030 from Dow Cornin, USA
  • mercapto propylene Acyloxy silicone coupling agent such as KBM-503 from Shin-Etsu Corporation, Japan
  • sulfhydryl-based silicone coupling agent such as Z-6062 from Dow Corning, USA
  • urea-based silicone coupling agent such as American Momentive Advanced Materials
  • the crosslinking inhibitor may be selected from the group consisting of 2-mercapto-3-butyn-2-ol, 3-mercapto-1-pentyn-3-ol, 3-mercapto-3-(trimethyl) Siloxane)-1-butyne, 3-mercapto-3-(trimethylsilyloxy)-1-pentyne, diethyl maleate, N, N, ⁇ ', ⁇ '-tetradecyl Ethyldiamine, azobisphenylbenzene, azobis(indole, fluorenyl-dihydrazinoamide), 2,2'-bipyridine, hydrazine, hydrazine, -diallylbenzamide, hydrazine, hydrazine, One or more of ⁇ ', ⁇ '-tetraallylbenzamide, preferably, the crosslinking inhibitor is selected from 2-mercapto-3-butyn-2-ol, 3- Mercapto-3-(trimethylsilyloxy)-1
  • the color light-emitting module according to the first aspect of the present invention, wherein the color light-emitting module can be illuminated by light having a peak wavelength in the range of 380 to 475 nm.
  • the color light-emitting module is activated to emit at least two kinds of light having a peak wavelength in the range of 430 to 650 nm.
  • the color light-emitting module according to the first aspect of the present invention is characterized in that the mass percentage composition of the polymer material is 70.0 to 75.0%.
  • the color light-emitting module of the first aspect of the present invention is characterized in that the fluorescent material of the mass percentage composition of the component is
  • the color light-emitting module according to the first aspect of the present invention is characterized in that the module has a hemispherical shape, a large hemispherical shape, a candlelight shape, a semi-ellipsoidal shape, a large semi-ellipsoidal shape, and a circle. Tapered or flame shaped.
  • the color light-emitting module according to the first aspect of the present invention, wherein the antifoaming agent is an organosiloxane defoaming agent, for example: BYK-052 of the German BAK Company , BYK-055, BYK-066N, YCK-640 of YCK Company of Canada, Deqian 5500 of Deqian Company of Taiwan, Deqian 6800, Deqian 2700, etc.
  • organosiloxane defoaming agent for example: BYK-052 of the German BAK Company , BYK-055, BYK-066N, YCK-640 of YCK Company of Canada, Deqian 5500 of Deqian Company of Taiwan, Deqian 6800, Deqian 2700, etc.
  • the color light-emitting module according to the first aspect of the present invention, wherein the humectant is an ionic surfactant, for example: Deqian 912, Deqian 920 of Taiwan Deqian Company , Deqian 700, BYK-110, BYK-103, etc. of the German BAK company.
  • the humectant is an ionic surfactant, for example: Deqian 912, Deqian 920 of Taiwan Deqian Company , Deqian 700, BYK-110, BYK-103, etc. of the German BAK company.
  • a second aspect of the present invention provides a method for fabricating a color light-emitting module according to the first aspect of the present invention, which is a step-by-step casting method comprising the following steps:
  • step (2) After the pre-curing of the former area, mix the raw materials of the next area into the mold of step (1), heat it at 80-100 °C for 5-10 minutes, and polymerize it to form a semi-cured form; When there are more than two areas of the light-emitting module, repeat step (2), and so on;
  • a third aspect of the invention provides a light source comprising the color light emitting module of the first aspect of the invention.
  • the light source of the third aspect of the invention comprises a susceptor, an excitation source, and the color illuminating module of the first aspect of the invention.
  • the excitation light source is located on the susceptor, and the color light-emitting module is fixed on the susceptor around the excitation light source to surround the excitation light source therein.
  • the light source of the third aspect of the present invention wherein the excitation light source is a monochromatic or multi-color LED light source, for example, an LED blue light source may be used. And / or red light source.
  • the light source of the third aspect of the invention wherein the color light-emitting module and the base are fixed in a mechanical fixing manner or an adhesive fixing manner.
  • the fluorescent material is excited by light emitted from the LED chip, and is combined with light that is not absorbed by the fluorescent material into white light or light of other colors.
  • the various fluorescent materials have different characteristics of body color and luminescent color, and can be selected according to different situations when manufacturing the color light-emitting module. Select silicate, aluminate luminescent fluorescent material as orange, yellow luminescent fluorescent material, select silicon nitride, sulphur oxide luminescent fluorescent material as red luminescent fluorescent material, yellow luminescent fluorescent material, orange luminescent fluorescent material and red luminescent
  • the composite material of fluorescent materials is used in combination, and the color coordinate, color temperature and color rendering index can be adjusted to achieve the purpose of being suitable for various purposes.
  • the fluorescent material emitting yellow light is used in combination with the fluorescent material emitting red light to improve the color rendering index.
  • the high color rendering index of white light makes it suitable for use in light-emitting devices that require a high color rendering index.
  • the color light-emitting module is combined with the LED chip to synthesize a white light source or a light source of other colors, and is used in a light source device of a lamp, a digital tube, and a backlight.
  • the color light-emitting module of the present invention simultaneously comprises at least two different color regions, and the phosphor in each region emits light having a peak wavelength of 430-650 nm after being excited by an LED chip having a peak wavelength of 380 to 475 nm.
  • the emitted light is combined with the light from the excitation source to form a white or other color of light; the entire module can simultaneously emit different colors of light.
  • the fluorescent material described in the present invention can be an LED phosphor of Dalian Luming Luminescence Technology Co., Ltd.
  • the yellow phosphor may be a silicate fluorescent material, an aluminate fluorescent material or a composite oxide, and the models are LMS-4453-B, LMA-4453-B, and LMY-4453HB, respectively;
  • the red phosphor may be silicon nitride.
  • nitride fluorescent material or sulfur oxide type LAMS-R-6633, LAM-R-6633, LMS-R-6633; green phosphor can be silicate and aluminate fluorescent material, model LMS-2564 and LMA-2564; blue-green phosphor can be silicate fluorescent material and aluminate fluorescent material, model LMS-1858 and LMA-1858; orange phosphor can be silicate fluorescent material, model LMS-5841.
  • the polymer material of the present invention may be a silicone rubber.
  • a two-component addition-heating vulcanized liquid silicone rubber having good transparency, softness and elasticity may be used, such as a two-component silicone rubber material Dow Corning 6550.
  • Shin-Etsu KE1310ST This resin has good thermal oxidation stability, excellent electrical insulation properties, excellent moisture resistance, water resistance, rust resistance, cold resistance, ozone resistance and weather resistance.
  • the resin does not yellow when it is used for a long time under high temperature, and has the characteristics of softness and elasticity after curing, has a certain strength, can be bent and deformed at will, and is suitable for use in irregularly shaped devices.
  • the surface of the silicone rubber has a low surface polarity and is not easily bonded to other substances. Even if it is bonded to the silicone itself, the strength is small and it is easy to peel off.
  • the present invention reduces the cross-linking reaction of the silicone rubber by adding a crosslinking inhibitor and a coupling agent to the system, improves the surface activity, and forms a seamless structure between adjacent regions.
  • the crosslinking inhibitor can sufficiently inhibit the occurrence of cross-linking reaction of the silicone rubber when preparing the light-emitting module of a single region; the silicone rubber is modified by adding a coupling agent, and a reactive functional group is introduced to make the light-emitting module
  • the reaction is carried out during the thermal curing of the silicone rubber, and the degree of reaction of the surface functional groups of the silicone rubber is controlled by controlling the reaction process conditions, and finally the entire module is completely cured, so that the adjacent regions form a seamless structural connection and are integrated.
  • the invention adopts the silicone rubber, the diluent, the fluorescent material, the auxiliary agent and the crosslinking inhibitor to be uniformly mixed and injected into the mold, and is solidified by heating polymerization to form the same product as the inner cavity of the mold.
  • the casting method is used to get rid of the traditional packaging method to prepare the LED form. Only the color light emitting module and the LED chip need to be combined to form an LED light source, and the light emitting effect is very close to the LED light source prepared by the package form.
  • the process step is greatly reduced, the production efficiency is high, the production automation is easy to be realized, the operating environment is improved, and more importantly, the fluorescent material is uniformly dispersed in the polymer resin, and the consistency of the light-emitting device made by the device is greatly improved and the light conversion effect is improved. it is good.
  • the fluorescent material is an inorganic material, the material is easily blackened and loses luminescent properties in the process of rubbing with the metal material.
  • the fluorescent material is Friction, extrusion There is a problem of blackening and illuminating performance, and the casting method can effectively avoid this phenomenon.
  • the conventional casting method still has certain limitations for the preparation of the color light-emitting module.
  • the color light-emitting module prepared by the conventional casting method has insufficient joint strength between the regions, because the surface of the added silicone rubber has low polarity and is not easily adhered to other substances. Even if it is bonded to the silicone itself, the strength is small and it is easy to peel off. Therefore, there is an urgent need to improve it.
  • the innovative invention of the present application has a step-by-step casting method, and at the same time, the preparation of the color light-emitting module has been successfully realized by simultaneously adding a coupling agent and a crosslinking inhibitor to the system. The connection between the areas of the color light-emitting module is high and seamless.
  • the color module of the present invention has a uniform distribution of fluorescent materials, seamless connection between several colors, natural color change of light emission, good light emission consistency, and avoiding color due to heat due to the fact that the fluorescent material does not stick to the chip. Reducing the problem can effectively improve the life of the product.
  • Embodiment 3 uses a light source of a conical color light-emitting module
  • Embodiment 5 uses a light source of a large hemispherical color light-emitting module
  • Example 1 The fluorescent materials used in Examples 1-6 of the present invention were all purchased from Dalian Luming Luminescence Technology Co., Ltd. The materials and components used are not indicated by the manufacturer, and are all conventional products that can be obtained commercially.
  • Example 1 The fluorescent materials used in Examples 1-6 of the present invention were all purchased from Dalian Luming Luminescence Technology Co., Ltd. The materials and components used are not indicated by the manufacturer, and are all conventional products that can be obtained commercially.
  • Example 1 Example 1:
  • a polymer material, a diluent, a fluorescent material, an auxiliary agent and a crosslinking inhibitor are used as raw materials to prepare a hemispherical module as shown in FIG. Divided into upper and lower areas: the upper end 31 is yellow and the lower end 33 is orange.
  • the quality of each region is as follows:
  • the mass composition of the upper yellow area is:
  • Wetting agent 2.% Coupling agent 1.4% Defoamer 1% Silicate fluorescent material (Model LMS-5841, orange, particle size 15 ⁇ ) 10% Crosslinking inhibitor 0.1% of which polymer material is two-component Addition of warming liquid silicone rubber Dow Corning 6550 (purchased from Dow Cornin, USA), the diluent is sulfhydryl silicone oil.
  • the crosslinking agent was a vinyl silicone coupling agent z-6300 (purchased from Dow Cornin, USA), and the crosslinking inhibitor was azobis(N,N-dimercaptoamide).
  • the wetting agent is ionic surfactant Deqian 912 (purchased from Deqian Company of Taiwan), and the defoaming agent is an organosiloxane defoamer BYK-052 (purchased from BAK, Germany).
  • the preparation process is as follows:
  • the raw material in the lower end region is uniformly mixed and injected into the mold of the step (1), and the newly injected liquid raw material is semi-cured in the previous step.
  • the upper end module 31 is in contact with, heated at 80 ° C for 10 min, polymerized and semi-cured, to obtain a lower color module 33 of another color;
  • the color light-emitting module 3 can be used with an LED blue light source, as shown in FIG. 1 , the structure includes a base 1, an excitation light source 2 and a hemispherical color light-emitting module 3; the excitation light source 2 uses an LED blue light source, and is located at the base 1 , the hemispherical color light-emitting module 3 is fixed on the susceptor 1 around the excitation light source by an adhesive, and the excitation light source 2 is enclosed therein; the excitation light source 2 has an emission spectrum peak at 380 to 475 nm.
  • the color light-emitting module 3 When the color light-emitting module 3 is not excited, the upper end is yellow and the lower end is orange; after being excited by the blue LED light source, the upper end emits warm white light and the lower end emits positive white light.
  • a polymer material, a diluent, a fluorescent material, an auxiliary agent and a crosslinking inhibitor are used as raw materials to prepare a hemispherical module as shown in FIG. Divided into upper and lower areas: the upper end 31 is orange and the lower end 33 is yellow.
  • the quality of each region is as follows:
  • the mass composition of the upper orange area is:
  • Silicate fluorescent material (model LMS-5841, orange, particle size 20 ⁇ ) 10% crosslinking inhibitor 0.1%
  • the mass of the lower yellow region is:
  • Silicate fluorescent material (model LMS-4453-B, yellow, particle size 25 ⁇ ) 10% crosslinking inhibitor 0.5% of which polymer material is two-component addition heating vulcanized liquid silicone rubber Shin-Etsu KE1310ST (purchased from Japan Shin-Etsu), the diluent is ethyl silicone oil.
  • the coupling agent was an aminosilicone coupling agent > J ⁇ silane 1172 (available from DEGUSSA), and the crosslinking inhibitor was 2-mercapto-3-butyn-2-ol.
  • the wetting agent was ionic surfactant Deqian 920 (purchased from Deqian Company of Taiwan), and the defoaming agent was an organosiloxane defoamer BYK-055 (purchased from BAK, Germany).
  • the preparation process is as follows:
  • the raw material in the lower end region is uniformly mixed and injected into the mold of the step (1), and the newly injected liquid raw material is semi-cured in the previous step.
  • the upper end module 31 is contacted, heated at 100 ° C for 5 min, polymerized and semi-cured, to obtain a lower color module 33 of another color;
  • the color light emitting module can be used together with the LED blue light source, as shown in FIG. 2, the structure comprises a base 1, an excitation light source 2 and a hemispherical color light emitting module 3; the excitation light source 2 is an LED blue light source, located at the base 1
  • the hemispherical color light-emitting module 3 is fixed on the susceptor 1 around the excitation light source 2 by an adhesive, and the excitation light source 2 is enclosed therein; the excitation light source 2 has an emission spectrum peak at 380 to 475 nm.
  • the color light-emitting module 3 When the color light-emitting module 3 is not excited, the upper end is orange and the lower end is yellow; after being excited by the blue LED light source, the upper end emits positive white light and the lower end emits warm white light.
  • a polymer material, a diluent, a fluorescent material, an auxiliary agent and a crosslinking inhibitor are used as raw materials to prepare a conical module as shown in FIG. Divided into upper and lower areas: the upper end 31 is green, and the lower end 33 is blue-green.
  • the quality of each region is as follows:
  • the mass composition of the upper green area is:
  • Aluminate Fluorescent Material (Model LMA-2564, Green, Particle Size 6 ⁇ ) 10% Crosslinking Inhibitor 1%
  • the quality of the lower blue-green area is:
  • Aluminate Fluorescent Material (Model LMA-1858, Blue Green, Particle Size 3 ⁇ ) 10% Crosslinking Inhibitor 1%
  • the polymer material is a two-component addition and heating vulcanization liquid silicone rubber Shin-Etsu
  • the coupling agent was a cyclic silicone coupling agent z-6030 (purchased from Dow Cornin, USA), and the crosslinking inhibitor was N, N, ⁇ ', ⁇ '-tetraallylbenzamide.
  • the wetting agent was an ionic surfactant BYK-110 (purchased from the German company Bick), and the defoaming agent was an organosiloxane defoamer ⁇ -066 ⁇ (purchased from the German company Bick).
  • the preparation process is as follows:
  • the raw material in the lower end region is uniformly mixed and injected into the mold of the step (1), and the newly injected liquid raw material is semi-cured in the previous step.
  • the upper end module 31 is in contact with, heated at 90 ° C for 8 min, polymerized and semi-cured to form a lower color module 33 of another color;
  • the color light-emitting module 3 can be used together with an LED blue light source, as shown in FIG. 3, the structure includes a base 1, an excitation light source 2 and a conical color light-emitting module 3; the excitation light source 2 is an LED blue light source, located at the base On the seat 1, the conical color light-emitting module 3 is fixed on the susceptor 1 around the excitation light source 2 by an adhesive, and the excitation light source 2 is enclosed therein; the excitation light source 2 has an emission spectrum peak at 380 to 475 nm.
  • the color light-emitting module 3 is not activated, the upper end is green and the lower end is blue-green; after being excited by the blue LED light source, the upper end emits green light and the lower end emits blue-green light.
  • Example 4 Example 4:
  • a polymer material, a diluent, a fluorescent material, an auxiliary agent and a crosslinking inhibitor are used as raw materials, and a candle-shaped module as shown in FIG. 4 is prepared. It is divided into upper, middle and lower regions: the upper end 31 is dark red, the middle end 32 is orange red, and the lower end 33 is orange yellow. The quality of each region is as follows: The mass composition of the upper dark red area is:
  • the polymer material is a two-component addition and heating liquid silicone rubber Dow Corning 6550 (purchased from Dow Corning, USA), and the diluent is phenyl silicone oil.
  • the coupling agent is a mercaptoacryloxy silicone coupling agent KBM-503 (purchased from Shin-Etsu Corporation, Japan), and the crosslinking inhibitor is 2,2'-bipyridyl.
  • the wetting agent was ionic surfactant BYK-103 (purchased from BAK, Germany), and the defoamer was an organosiloxane defoamer YCK-640 (purchased from Y.C.K, Canada).
  • the preparation process is as follows:
  • the raw material in the middle end region is uniformly mixed and injected into the mold of the step (1), and the newly injected liquid raw material is half in the previous step.
  • the cured upper end module 31 is contacted, heated at 95 ° C for 6 min, and polymerized and semi-cured to obtain a middle-end module 32 of another color; the raw material of the lower end region is uniformly mixed and injected into the mold at 90°. C heated for 7min, polymerized and semi-cured to form a lower color module 33 of another color;
  • the color light-emitting module 3 can be used together with an LED blue light source, as shown in FIG. 4, the structure includes a base 1, an excitation light source 2, and a candle-shaped color light-emitting module 3; the excitation light source 2 is an LED blue light source, located at the base 1 , the candle-shaped color light-emitting module 3 is mechanically fixed on the susceptor 1 around the excitation light source 2, and the excitation light source 1 is enclosed therein; the excitation light source 2 has an emission spectrum peak at 380 to 475 nm.
  • the upper end When the color light-emitting module 3 is not excited, the upper end is dark red, the middle end is orange-red, and the lower end is orange-yellow; after being excited by the blue LED light source, the upper end emits red light, the middle end emits orange-red light, and the lower end emits orange-yellow light. .
  • a polymer material, a diluent, a fluorescent material, an auxiliary agent, and a crosslinking inhibitor are used as raw materials to prepare a large hemispherical module as shown in FIG. 5.
  • a polymer material, a diluent, a fluorescent material, an auxiliary agent, and a crosslinking inhibitor are used as raw materials to prepare a large hemispherical module as shown in FIG. 5.
  • End 31 is dark yellow
  • middle end 32 is yellow
  • lower end 33 is light yellow.
  • the quality of each region is as follows:
  • the mass composition of the upper dark yellow area is:
  • Composite oxide fluorescent material (LMY-4453HB, yellow, particle size 8 ⁇ ) 13% crosslinking inhibitor 0.3%
  • the mass content of the mid-end yellow region is:
  • Coupling agent 1.0% composite oxide fluorescent material (LMY-4453HB, yellow, particle size 8 ⁇ ) 4% crosslinking inhibitor 1% of which polymer material is two-component addition heating vulcanized liquid silicone rubber Shin-Etsu KE1310ST (purchased Since Shin-Etsu Corporation of Japan, the thinner is a bismuth-based silicone oil.
  • the coupling agent is a sulfur-based silicone coupling agent ⁇ -6062 (purchased from Dow Corning, USA), and the crosslinking inhibitor is Malay. Diethyl acid.
  • the wetting agent is ionic surfactant Deqian 700 (purchased from Deqian Company of Taiwan), and the defoaming agent is organosiliconic defoamer Deqian 5500 (purchased from Taiwan Deqian Company).
  • the preparation process is as follows:
  • the raw material in the middle end region is uniformly mixed and injected into the mold of the step (1), and the newly injected liquid raw material is half in the previous step.
  • the cured upper end module 31 is contacted, heated at 90 ° C for 8 min, and polymerized and semi-cured to obtain a lower color module 32 of another color;
  • the raw material of the lower end region is uniformly mixed and injected into the mold at 90 ° C Heating for 8min, polymerizing and semi-curing, to obtain a lower color module 33 of another color;
  • the color light-emitting module 3 can be used with an LED blue light source, as shown in FIG. 5, the structure includes a base 1, an excitation light source 2, and a large hemispherical color light-emitting module 3; the excitation light source 2 is an LED blue light source, located at the base 1 , the large hemispherical color light-emitting module 3 is mechanically fixed on the susceptor 1 around the excitation light source 2, and the excitation light source 2 is enclosed therein; the emission light source of the excitation light source 1 has a peak value of 380 to 475 nm.
  • the color light-emitting module 3 When the color light-emitting module 3 is not excited, the upper end is dark yellow, the middle end is yellow, and the lower end is light yellow; after being excited by the blue LED light source, the whole emits uniform positive white light.
  • the distance between the top and the root of the color light-emitting module is significantly different from that of the light source, and the efficiency of excitation is different. Therefore, by adjusting the content of the fluorescent material at different positions, the light color emitted after being excited is uniform.
  • a polymer material, a diluent, a fluorescent material, an auxiliary agent, and a crosslinking inhibitor are used as raw materials, and a candle-shaped module as shown in FIG. 6 is prepared. It is divided into upper, middle and lower regions: the upper end 31 is orange-red, the middle end 32 is orange, and the lower end 33 is yellow.
  • the quality of each region is as follows: The mass composition of the upper orange-red region is:
  • Silicate Fluorescent Material (Model LMS-5841, Orange, Particle Size 12 ⁇ ) 13% Crosslinking Inhibitor 0.6%
  • the mass content of the mid-range orange region is:
  • Coupling agent 1.5% defoamer 1%
  • Aluminate Fluorescent Material (Model LMA-4453-B, Yellow, Particle Size 10 ⁇ ) 10% Silicate Fluorescent Material (Model LMS-5841, Orange, Particle Size 12 ⁇ ) 4% Crosslinking Inhibitor 0.5% Lower Orange Yellow Area
  • the quality composition is:
  • Coupling agent 2.5%
  • Crosslinking inhibitor 0.5% of which polymer material is two groups Addition and heating liquid silicone rubber Dow Corning 6550 (available from Dow Cornin, USA) and the diluent is a mercapto vinyl silicone oil.
  • the coupling agent is urea-based silicone coupling agent A-1160 (produced by Maxtor High-tech Materials Co., Ltd., purchased from Guangzhou Jianyi Chemicals Import & Export Co., Ltd.), and the crosslinking inhibitor is 3-mercapto-3- (three-inch) Silicon oxy)-1-butyne.
  • the wetting agent is ionic surfactant BYK-103 (purchased from the German company Bick), and the defoaming agent is the organosilicon oxime defoamer Deqian 6800 (purchased from Taiwan Deqian Company).
  • the preparation process is as follows:
  • the raw material in the middle end region is uniformly mixed and injected into the mold of the step (1), and the newly injected liquid raw material is half in the previous step.
  • the cured module is contacted, heated at 80 ° C for 10 min, and polymerized and semi-cured to obtain a lower color module 32 of another color;
  • the raw material of the lower end region is uniformly mixed and injected into the mold, and heated at 80 ° C for 10 min.
  • the polymer is semi-cured to form a lower color module 33 of another color;
  • the color light-emitting module 3 can be used in combination with an LED blue light source and a red light source, as shown in FIG. 6, the structure includes a base 1, an excitation light source 2, and a candle-shaped color light-emitting module 3; the excitation light source 2 adopts LED blue light.
  • the light source and the red light source are located on the susceptor 1, and the candle-shaped color illuminating module 3 is mechanically fixed on the susceptor 1 around the excitation light source 2, and the excitation light source 2 is enclosed therein; the emission spectrum peak of the excitation light source 2 is 380. ⁇ 475nm.
  • the color light-emitting module When the color light-emitting module is not excited, the upper end is orange-red, the middle end is orange, and the lower end is yellow. After being mixed by the blue light and the red light LED light source, the upper end emits red light, the middle end emits orange-red light, and the lower end emits orange-yellow. Light.

Abstract

提供一种彩色发光模块(3)及包含其的光源。彩色发光模块为空心凸起型,包括至少两个相邻的不同颜色区域(31,33),区域间无缝连接而成,每个颜色区域内的荧光材料可以被同一个LED芯片(2)发出的光激发,同时发出两种或两种以上颜色的光。彩色发光模块的荧光材料分布均匀,发光颜色转变自然,发光一致性好。由于荧光材料不紧贴LED芯片,避免了由于热量导致的颜色消退问题,可提高产品的寿命。

Description

一种彩色发光模块及光源 技术领域
本发明属于光电子显示和照明技术领域, 涉及一种使用多种荧光 材料制成的彩色高分子发光模块及光源。 背景技术
LED作为一种新型的节能光源, 因其亮度高, 节约能源, 寿命长等 优点, 被广泛地应用在各种照明场合。
目前的 LED照明装置通常是采用封装荧光发光材料方式得到的, 此类专利也已经有很多, 如中国专利 CN1941431《白色发光元件及其 制造方法》 , 中国专利 CN1510766《表面安装型白色发光二极管》 , 中国专利 CN101186818《蓝紫光或蓝光激发的荧光体及制造方法与封 装的白光二极管》 , 均为荧光材料混合在树脂中涂抹在 LED芯片上制 成白色发光器件。 但是除了白光 LED,市场需要更多其它颜色的 LED 光, 采用以上专利方法也可以制成彩色光, 但是由于该方法制备出的 发光器件很难保证亮度、 色坐标、 色温和显色性的一致性, 并且由于 荧光粉贴近芯片, 受到热量的影响很容易老化以至于引起颜色的改变, 寿命降低。
专利 CN1425868《一种多彩装饰灯》,专利 CN1450301《彩虹灯》, 专利 CN201866692U《一种 LED全彩灯》都介绍了彩色灯的研制, 但 是这几项专利都是通过电路方式, 使不同颜色芯片单独或同时发光来 改变灯光的颜色。 这样造成了电路的复杂性和大批量使用芯片的浪费。 发明内容
为了克服上述缺陷, 本发明提供了一种彩色发光模块及其制备方 法。 这种模块同时有两种或两种以上的颜色, 可以任意调整各个颜色 在模块上占有的面积和形状。 并根据使用的情况可设计成各种形状, 在需要的部位填补颜色。 并且由于相邻区域间不是通过简单的粘结连 接在一起, 而是通过向体系内添加交联抑制剂和偶联剂对成型的高分 子材料进行改性, 进而通过控制反应的条件来控制其反应程度, 最后使 区域间的高分子材料完全反应,从而使相邻区域连接在一起形成无缝结 构, 浑然一体。 成型后的彩色发光模块, 荧光材料均匀分散在其中, 每个颜色之间连接紧密, 采用这种模块制备的光源光色均匀, 并且由 于荧光材料在使用中没有紧贴芯片, 避免了由于热量导致的颜色消退 问题, 可有效提高产品的寿命。
本发明的技术方案为:
一种彩色发光模块, 由高分子材料制成, 模块的形状是空心的凸 起形, 一个彩色发光模块分为至少两个区域, 相邻区域颜色不同, 都 可以被波长 380 ~ 475nm的光激发; 区域间通过添加交联抑制剂和偶联 剂对高分子材料进行改性, 进而通过控制反应的条件来控制其反应程 度, 最后使区域间的高分子材料完全反应, 从而连接成无缝结构。
具体地, 本发明包括以下几个方面:
本发明的第一方面提供一种彩色发光模块, 其特征在于所述模块为 空心凸起形, 包括至少两个相邻的不同颜色区域, 所述的区域间无缝连 接而成, 每个颜色区域由以下组分的组成:
组分 盾量百分比
高分子材料 45.0 94.0 %
稀释齐 j 0.0-20.0 %
荧光材料 4.0-30.0 %
助剂 1.0~5.0 %
制剂 0.1~1.0 % 所述的高分子材料可以为有机硅橡胶材料, 优选为加成型有机硅橡 胶, 进一步优选为双组份加成型加温 υ化液体硅橡胶(例如美国 Dow Cornin 公司的 Dow Corning 6550、日本信越公司的信越 KE1310ST );
所述的稀释剂为选自曱基硅油、双曱基硅油、 乙基硅油、苯基硅油、 曱基乙氧基硅油或者曱基乙烯基硅油中的一种或多种; 所述的荧光材料为选自铝酸盐荧光材料、 硅酸盐荧光材料、 硅氮化 物荧光材料、 氮化物荧光材料、 复合氧化物荧光材料或硫氧化物荧光材 料中的一种或两种, 优选地, 所述的荧光材料的粒径为 3-25μιη;
所述的助剂可以为偶联剂, 或者所述的助剂可以为消泡剂、 偶联剂 和润湿剂共同构成; 所述的偶联剂可以为选自乙烯基有机硅偶联剂 (例 如美国 Dow Cornin 公司的 z-6300 ) 、 氨基有机硅偶联剂 (例如 DEGUSSA公司的 氨基硅烷 1172 ) 、 环 ^有机硅偶联剂 (例如美国 Dow Cornin 公司的 z-6030 ) 、 曱基丙烯酰氧基有机硅偶联剂 (例如 日本信越公司的 KBM-503 )、巯基有机硅偶联剂(例如美国 Dow Corning 的 Z-6062 )或脲基有机硅偶联剂(例如美国迈图高新材料集团公司生产 的 A-1160 ) 中的一种;
所述的交联抑制剂可以为选自 2-曱基 -3-丁炔 -2-醇、 3-曱基 -1-戊炔 -3-醇、 3-曱基 -3- (三曱基硅氧) -1-丁炔、 3-曱基 -3- (三曱基硅氧) -1- 戊炔、 马来酸二乙酯、 N, N, Ν', Ν'-四曱基亚乙基二胺、 偶氮二曱苯、 偶氮二(Ν, Ν-二曱基酰胺) 、 2,2'-联吡啶、 Ν, Ν, -二烯丙基苯曱酰 胺、 Ν, Ν, Ν', Ν'-四烯丙基苯曱酰胺中的一种或多种, 优选地, 所述 的交联抑制剂为选自 2-曱基 -3-丁炔 -2-醇、 3-曱基 -3- (三曱基硅氧) -1- 丁炔、 马来酸二乙酯、 偶氮二(Ν, Ν-二曱基酰胺) 、 2,2'-联吡啶、 Ν, Ν, Ν', Ν'-四烯丙基苯曱酰胺中的一种或多种。
在本发明的一个具体的实施方案中, 本发明第一方面所述的彩色发 光模块, 其中所述的彩色发光模块可以被峰值波长在 380 ~ 475nm范围 内的光激发后发光。
在本发明的一个具体的实施方案中, 其中所述的彩色发光模块被激 发后发射出至少两种峰值波长在 430 ~ 650nm范围内的光。
在本发明的一个具体的实施方案中, 本发明第一方面所述的彩色发 光模块, 其特征在于所述的高分子材料的质量百分组成为 70.0~75.0%。
在本发明的一个具体的实施方案中, 本发明第一方面所述的彩色发 光模块, 其特征在于所述组分的质量百分组成中荧光材料为
10·0~20·0%。 在本发明的一个具体的实施方案中, 本发明第一方面所述的彩色发 光模块, 其特征在于所述模块的形状为半球形、 大半球形、 烛光形、 半 椭球形、 大半椭球形、 圓锥形或火焰形。
在本发明的一个具体的实施方案中, 本发明第一方面所述的彩色发 光模块, 其中所述的消泡剂为有机硅氧烷类消泡剂, 例如: 德国比克公 司的 BYK-052、 BYK-055, BYK-066N,加拿大 Y.C.K公司的 YCK-640, 台湾德谦公司的德谦 5500、 德谦 6800、 德谦 2700等。
在本发明的一个具体的实施方案中, 本发明第一方面所述的彩色发 光模块, 其中所述的湿润剂为离子型表面活性剂, 例如: 台湾德谦公司 的德谦 912、德谦 920、德谦 700, 德国比克公司的 BYK-110、 BYK-103 等。
本发明的第二方面提供一种本发明第一方面所述的彩色发光模块 的制备方法, 该制备方法为分步浇铸法, 其包括如下步骤:
( 1 ) 按比例将发光模块的一个颜色区域的原料混合均匀后注入模 具内, 在 80-100°C加热 5-10min, 使其聚合半固化成型, 制得一种颜色 半固化模块;
( 2 ) 前一区域半固化成型后, 将下一个区域的原料混合均句后注 入步骤 (1)的模具内, 在 80-100°C加热 5-10min, 使其聚合半固化成型; 当彩色发光模块的区域多于两个时, 重复步骤(2 ) , 以此类推;
( 3 )将半固化的整个模块在 150-180°C加热 10-15min,进行完全固 化, 制成无缝连接的彩色发光模块。
本发明的第三方面提供一种光源, 其包括本发明第一方面所述的彩 色发光模块。
在一个具体的实施方案中, 本发明第三方面所述的光源, 其结构包 括基座、激发光源和本发明第一方面所述的彩色发光模块。所述的激发 光源位于基座上, 所述的彩色发光模块固定在激发光源周围的基座上, 将激发光源包围在其中。
在一个具体的实施方案中, 本发明第三方面所述的光源, 其中所述 的激发光源为单色或多色的 LED光源, 例如可以采用 LED蓝光光源 和 /或红光光源。
在一个具体的实施方案中, 本发明第三方面所述的光源, 其中所述 的彩色发光模块与基座的固定方式可以为机械固定方式或胶黏剂固定 方式。
发明详述
本发明所述的彩色发光模块中, 所述的荧光材料被 LED芯片发出 的光激发发光, 并且与未被荧光材料吸收的光复合成白光或其他颜色的 光。 所述的各种荧光材料其体色及发光颜色具有不同的特征, 在制造彩 色发光模块时可依据各自不同的情况加以选用。 选择硅酸盐、 铝酸盐发 光荧光材料作为橙色、 黄色发光荧光材料, 选择硅氮化物、 硫氧化物发 光荧光材料作为红色发光荧光材料, 可将黄色发光荧光材料、 橙色发光 荧光材料和红色发光荧光材料复合使用, 复合使用可调整色坐标、 色温 和显色指数, 达到适用于多种用途的目的, 采用发出黄色光的荧光材料 与发出红色光的荧光材料复合使用, 提高显色指数, 得到高显色指数的 白光, 使其适用于需要高显色指数的发光器件中。 所述彩色发光模块与 LED芯片复合,合成白色的光源或其它色彩的光源,用于灯具、数码管、 背光源的光源器件中。 本发明的彩色发光模块同时包含至少两种不同的 颜色区域, 每个区域内的荧光粉在被峰值波长在 380 ~ 475nm 的 LED 芯片激发后发射出峰值波长在 430 ~ 650nm的光, 荧光材料所发的光与 激发光源所发的光复合成白色或其它颜色的光; 整个模块便可以同时发 出不同颜色的光。
本发明中所述的荧光材料可以采用大连路明发光科技股份有限公 司的 LED荧光粉。 例如, 黄色荧光粉可采用硅酸盐荧光材料、 铝酸盐 荧光材料或复合氧化物, 型号分别为 LMS-4453-B , LMA-4453-B , LMY-4453HB; 红色荧光粉可采用硅氮化物、 氮化物荧光材料或硫氧化 物, 型号 LAMS-R-6633, LAM-R-6633, LMS-R-6633; 绿色荧光粉可 采用硅酸盐和铝酸盐荧光材料, 型号为 LMS-2564和 LMA-2564; 蓝绿 色荧光粉可采用硅酸盐荧光材料和铝酸盐荧光材料, 型号为 LMS-1858 和 LMA-1858; 橙色荧光粉可采用硅酸盐荧光材料, 型号为 LMS-5841。 本发明所述的高分子材料可采用有机硅橡胶, 例如, 可以采用透明 性好、 柔软、 弹性好的双组份加成型加温硫化液体硅橡胶, 如双组分有 机硅橡胶材料 Dow Corning 6550、信越 KE1310ST。 这种树脂具有热氧 化稳定性好、 优异的电绝缘性能、 卓越的耐潮、 防水、 防锈、 耐寒、 耐 臭氧和耐候性能。 该树脂在长时间高温状态下工作也不会黄变, 并且固 化后仍然具有柔软有弹性的特点, 并具有一定的强度, 可以随意弯曲变 形, 适用于不规则形状的器件使用。 但加成型有机硅橡胶表面极性低, 不易和其它物质粘接, 即使与硅胶自身粘接, 强度也很小, 容易剥离。 因此, 本发明通过向体系内添加交联抑制剂和偶联剂, 降低有机硅橡胶 的交联副反应, 改善其表面活性, 使相邻区域间反应形成无缝结构。 交 联抑制剂使在制备单个区域的发光模块时, 能充分抑制有机硅橡胶的交 联副反应的发生; 通过添加偶联剂对有机硅橡胶进行改性, 引入易反应 的官能团, 使发光模块的区域间在硅橡胶热固化时进行反应, 同时通过 控制反应工艺条件控制有机硅橡胶表面官能团的反应程度, 最后使整个 模块进行完全固化, 从而使相邻区域形成无缝结构连接, 浑然一体。
本发明采用的是有机硅橡胶、 稀释剂、 荧光材料、 助剂和交联抑制 剂混合均匀后注入模具内, 经加热聚合而固化成型, 变成与模具内腔形 状相同的制品。 采用浇铸的方法摆脱了传统的封装方法制备 LED的形 式, 只需要将彩色发光模块与 LED芯片组合使用即可形成 LED光源, 发光效果与封装形式制备出的 LED光源十分接近。 大大减化工艺步骤, 其生产效率高、 易实现生产自动化、 改善操作环境, 更重要的是荧光材 料在高分子树脂中分散均匀, 用它制成的发光器件的一致性大大改良、 光转换效果好。
同时, 还可以根据实际使用情况浇铸出合适的形状和需要的颜色。 可以有效实现二次配光设计、 提高出光效率、 优化光学分布。 采用这种 方式制备的发光器件安装、 维修、 更换十分方便, 简化了施工工艺, 生 产出的产品更加灵活多样。 本发明的另外一个优点是, 由于荧光材料是 一种无机材料, 这种材料在与金属材料摩擦的过程中极易变黑、 失去发 光性能, 当采用如注塑等方式进行成型时, 荧光材料由于摩擦、 挤压会 出现变黑, 发光性能下降的问题, 而采用浇铸方式则可以有效的避免这 种现象。 但常规的浇铸方法对于制备彩色发光模块仍具有一定的局限 性, 常规浇铸方法制备的彩色发光模块其区域间连接强度不够, 因为加 成型有机硅橡胶表面极性低, 不易和其它物质粘接, 即使与硅胶自身粘 接, 强度也很小, 容易剥离。 因此迫切需要对其进行改进, 为此本申请 创新性的发明了分步浇铸法, 同时通过同时向体系内添加偶联剂和交联 抑制剂的方式成功地实现了彩色发光模块的制备, 使彩色发光模块的区 域间的连接强度高, 同时无缝连接。
综上所述, 本发明提供的彩色模块荧光材料分布均匀, 几种颜色之 间无缝连接, 发光颜色转变自然, 发光一致性好, 由于荧光材料不紧贴 芯片, 避免了由于热量导致的颜色消退问题, 可有效提高产品的寿命。 附图说明
图 1 实施例 1中采用半球形彩色发光模块的光源
图 2 实施例 2中采用半球形彩色发光模块的光源
图 3 实施例 3中采用圆锥形彩色发光模块的光源
图 4 实施例 4中采用烛光形彩色发光模块的光源
图 5 实施例 5中采用大半球形彩色发光模块的光源
图 6 实施例 6中采用烛光形彩色发光模块的光源
其中附图标记:
1 基座;
2 激发光源;
3 彩色发光模块;
31上端; 32中端; 33下端。 具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述, 但是本领 域技术人员将会理解, 下列实施例仅用于说明本发明, 而不应视为限 定本发明的范围。 实施例中未注明具体条件者, 按照常规条件或制造 商建议的条件进行。 本发明实施例 1-6中所用的荧光材料均购自大连 路明发光科技股份有限公司。 所用材料、 组分未注明生产厂商者, 均 为可以通过市购获得的常规产品。 实施例 1:
本实施例采用高分子材料、 稀释剂、 荧光材料、 助剂和交联抑制剂 为原料, 制备成如图 1所示的半球形模块。 分为上下两个区域: 上端 31 是黄色, 下端 33是橙色。 其各区域的质量组成如下:
上端黄色区域的质量组成为:
高分子材料 75.0% 稀释剂 9.5% 助剂
润湿剂 2.5% 偶联剂 1.5% 消泡剂 1% 铝酸盐荧光材料(型号 LMA-4453-B, 黄色, 粒径 ΙΟμιη ) 10% 交联抑制剂 0.5% 下端橙色区域的质量组成为:
高分子材料 76.0% 稀释剂 9.5% 助剂
润湿剂 2.% 偶联剂 1.4% 消泡剂 1% 硅酸盐荧光材料(型号 LMS-5841, 橙色, 粒径 15μιη ) 10% 交联抑制剂 0.1% 其中的高分子材料为双组份加成型加温 化液体硅橡胶 Dow Corning 6550 (购自美国 Dow Cornin 公司), 稀释剂为曱基硅油。 偶 联剂为乙烯基有机硅偶联剂 z-6300 (购自美国 Dow Cornin 公司), 交 联抑制剂为偶氮二(N, N-二曱基酰胺) 。 润湿剂为离子型表面活性剂 德谦 912(购自台湾德谦公司),消泡剂为有机硅氧烷类消泡剂 BYK-052 (购自德国比克公司) 。
制备工艺如下:
( 1 ) 按所述比例将发光模块的上端颜色区域的原料混合均匀后注 入模具内, 在 80°C加热 10min, 使其聚合半固化成型, 制得一种颜色半 固化的上端模块 31;
( 2 ) 步骤(1 )制得的上端模块 31半固化成型后, 将下端区域的 原料混合均匀后注入步骤 (1)的模具内,此时新注入的液体原料与前一步 骤中已半固化的上端模块 31相接触, 在 80°C加热 10min, 使其聚合半 固化成型, 制得另一种颜色的下端模块 33;
( 3 )将半固化的整个模块在 150°C加热 15min, 进行完全固化, 制 成无缝连接的彩色发光模块 3。
此彩色发光模块 3可以和 LED蓝光光源配套使用, 如图 1所示的 光源, 其结构包括基座 1、 激发光源 2和半球形彩色发光模块 3; 激发 光源 2采用 LED蓝光光源, 位于基座 1上, 半球形彩色发光模块 3由 胶黏剂固定在激发光源周围的基座 1上,将激发光源 2包在其中;激发 光源 2的发射光谱峰值在 380~475nm。 此彩色发光模块 3未被激发时, 上端为黄色, 下端为橙色; 被蓝光 LED光源激发后, 上端发出暖白光, 下端发出正白色光。
实施例 2:
本实施例采用高分子材料、 稀释剂、 荧光材料、 助剂和交联抑制剂 为原料, 制备成如图 2所示的半球形模块。 分为上下两个区域: 上端 31 是橙色, 下端 33是黄色。 其各区域的质量组成如下:
上端橙色区域的质量组成为:
高分子材料 70.0% 稀释剂 15.5% 助剂 润湿剂 2%
偶联剂 1.4% 消泡剂 1%
硅酸盐荧光材料(型号 LMS-5841, 橙色, 粒径 20μιη ) 10% 交联抑制剂 0.1% 下端黄色区域的质量组成为:
高分子材料 75.0% 稀释剂 9.5% 助剂
润湿剂 2.5% 偶联剂 1.5% 消泡剂 1%
硅酸盐荧光材料(型号 LMS-4453-B, 黄色, 粒径 25μιη ) 10% 交联抑制剂 0.5% 其中的高分子材料为双组份加成型加温硫化液体硅橡胶信越 KE1310ST (购自日本信越) , 稀释剂为乙基硅油。 偶联剂为氨基有机 硅偶联剂 > J^硅烷 1172 (购自 DEGUSSA公司) , 交联抑制剂为 2-曱 基 -3-丁炔 -2-醇。 润湿剂为离子型表面活性剂德谦 920 (购自台湾德谦公 司) , 消泡剂为有机硅氧烷类消泡剂 BYK-055 (购自德国比克公司) 。
其制备工艺如下:
( 1 ) 按所述比例将发光模块的上端颜色区域的原料混合均匀后注 入模具内, 在 100°C加热 5min, 使其聚合半固化成型, 制得一种颜色半 固化的上端模块 31;
( 2 ) 步骤(1 )制得的上端模块 31半固化成型后, 将下端区域的 原料混合均匀后注入步骤 (1)的模具内,此时新注入的液体原料与前一步 骤中已半固化的上端模块 31相接触, 在 100°C加热 5min, 使其聚合半 固化成型, 制得另一种颜色的下端模块 33;
( 3 )将半固化的整个模块在 180°C加热 10min, 进行完全固化, 制 成无缝连接的彩色发光模块 3。 此彩色发光模块可以和 LED蓝光光源配套使用, 如图 2所示的光 源, 其结构包括基座 1、 激发光源 2和半球形彩色发光模块 3; 激发光 源 2采用 LED蓝光光源, 位于基座 1上, 半球形彩色发光模块 3由胶 黏剂固定在激发光源 2周围的基座 1上, 将激发光源 2包在其中; 激 发光源 2的发射光谱峰值在 380~475nm。 此彩色发光模块 3未被激发 时, 上端为橙色, 下端为黄色; 被蓝光 LED光源激发后, 上端发出正 白色光, 下端发出暖白色光。
实施例 3:
本实施例采用高分子材料、 稀释剂、 荧光材料、 助剂和交联抑制剂 为原料, 制备成如图 3所示的圓锥形模块。 分为上下两个区域: 上端 31 是绿色, 下端 33是蓝绿色。 其各区域的质量组成如下:
上端绿色区域的质量组成为:
高分子材料 75.0% 稀释剂 10.0% 助剂
润湿剂 1.5% 偶联剂 1.5% 消泡剂 1%
铝酸盐荧光材料(型号 LMA-2564, 绿色, 粒径 6μιη ) 10% 交联抑制剂 1%
下端蓝绿色区域的质量组成为:
高分子材料 75.0% 稀释剂 10.0% 助剂
润湿剂 1.5% 偶联剂 1.5% 消泡剂 1%
铝酸盐荧光材料(型号 LMA-1858, 蓝绿色, 粒径 3μιη ) 10% 交联抑制剂 1% 其中的高分子材料为双组份加成型加温硫化液体硅橡胶信越
KE1310ST (购自日本信越公司) , 稀释剂为曱基乙氧基硅油。 偶联剂 为环 有机硅偶联剂 z-6030 (购自美国 Dow Cornin 公司) , 交联 抑制剂为 N, N, Ν', Ν'-四烯丙基苯曱酰胺。 润湿剂为离子型表面活性 剂 BYK-110 (购自德国比克公司) , 消泡剂为有机硅氧烷类消泡剂 ΒΥΚ-066Ν (购自德国比克公司) 。
其制备工艺如下:
( 1 ) 按所述比例将发光模块的上端颜色区域的原料混合均匀后注 入模具内, 在 90°C加热 8min, 使其聚合半固化成型, 制得一种颜色半 固化的上端模块 31;
( 2 ) 步骤(1 )制得的上端模块 31半固化成型后, 将下端区域的 原料混合均匀后注入步骤 (1)的模具内,此时新注入的液体原料与前一步 骤中已半固化的上端模块 31相接触, 在 90°C加热 8min, 使其聚合半固 化成型, 制得另一种颜色的下端模块 33;
( 3 )将半固化的整个模块在 160°C加热 14min, 进行完全固化, 制 成无缝连接的彩色发光模块 3。
此彩色发光模块 3可以和 LED蓝光光源配套使用, 如图 3所示的 光源, 其结构包括基座 1、 激发光源 2和圓锥形彩色发光模块 3; 激发 光源 2采用 LED蓝光光源, 位于基座 1上, 圓锥形彩色发光模块 3由 胶黏剂固定在激发光源 2周围的基座 1上, 将激发光源 2包在其中; 激发光源 2的发射光谱峰值在 380~475nm。 此彩色发光模块 3未被激 发时, 上端为绿色, 下端为蓝绿色; 被蓝光 LED光源激发后, 上端发 出绿色光, 下端发出蓝绿色光。 实施例 4:
本实施例采用高分子材料、 稀释剂、 荧光材料、 助剂和交联抑制剂 为原料, 制备成如图 4所示的烛光形模块。 分为上中下三个区域: 上端 31是深红色, 中端 32是橙红色, 下端 33是橙黄色。 其各区域的质量组 成如下: 上端深红色区域的质量组成为:
高分子材料 45.0% 稀释剂 20.0% 助剂
润湿剂 2.0% 偶联剂 2.0% 消泡剂 0.2% 硅酸盐荧光材料(型号 LMS-5841, 橙色, 粒径 12μιη ) 20% 氮化物荧光材料(LAM-R-6633, 红色, 粒径 18μιη ) 10% 交联抑制剂 0.8% 中端橙红色区域的质量组成为:
高分子材料 73.0% 稀释剂 10.0% 助剂
润湿剂 2% 偶联剂 1.4% 消泡剂 1% 硅酸盐荧光材料(LMS-4453-B, 黄色, 粒径 15μιη ) 10% 硫化物荧光材料(LMS-R-6633, 红色, 粒径 16μιη ) 2% 交联抑制剂 0.6% 下端橙黄色配方为:
高分子材料 75.0% 稀释剂 10.0% 助剂
润湿剂 2.5% 偶联剂 1%
消泡剂 1%
复合氧化物荧光材料(LMY-4453HB, 黄色, 粒径 12μιη ) 9% 硅氮化物荧光材料(型号 LAMS-R-6633, 红色, 粒径 10μιη ) 1% 交联抑制剂 0.5%
其中的高分子材料为双组份加成型加温 化液体硅橡胶 Dow Corning 6550 (购自美国 Dow Corning公司) , 稀释剂为苯基硅油。 偶 联剂为曱基丙烯酰氧基有机硅偶联剂 KBM-503 (购自日本信越公司) , 交联抑制剂为 2,2'-联吡啶。 润湿剂为离子型表面活性剂 BYK-103 (购 自德国比克公司), 消泡剂为有机硅氧烷类消泡剂 YCK-640 (购自加拿 大 Y.C.K公司) 。
其制备工艺如下:
( 1 ) 按所述比例将发光模块的上端颜色区域的原料混合均匀后注 入模具内, 在 100°C加热 5min, 使其聚合半固化成型, 制得一种颜色半 固化的上端模块 31;
( 2 ) 步骤(1 )制得的上端模块 31半固化成型后, 将中端区域的 原料混合均匀后注入步骤 (1)的模具内,此时新注入的液体原料与前一步 骤中已半固化的上端模块 31相接触, 在 95°C加热 6min, 使其聚合半固 化成型,制得另一种颜色的中端模块 32; 再将下端区域的原料混合均匀 后注入模具内, 在 90°C加热 7min, 使其聚合半固化成型, 制得另一种 颜色的下端模块 33;
( 3 )将半固化的整个模块在 170°C加热 12min, 进行完全固化, 制 成无缝连接的彩色发光模块 3。
此彩色发光模块 3可以和 LED蓝光光源配套使用, 如图 4所示的 光源, 其结构包括基座 1、 激发光源 2和烛光形彩色发光模块 3; 激发 光源 2采用 LED蓝光光源, 位于基座 1上, 烛光形彩色发光模块 3由 机械方式固定在激发光源 2周围的基座 1上, 将激发光源 1包在其中; 激发光源 2的发射光谱峰值在 380~475nm。 此彩色发光模块 3未被激 发时, 上端是深红色, 中端是橙红色, 下端是橙黄色; 被蓝光 LED光 源激发后, 上端发出红色光, 中端发出橙红色光, 下端发出橙黄色光。
实施例 5:
本实施例采用高分子材料、 稀释剂、 荧光材料、 助剂和交联抑制剂 为原料, 制备成如图 5所示的大半球形模块。 分为上中下三个区域: 上 端 31是深黄色, 中端 32是黄色, 下端 33是浅黄色。 其各区域的质量 组成如下:
上端深黄色区域的质量组成为:
高分子材料 72.0% 稀释剂 10.0% 助剂
润湿剂 2.2% 偶联剂 1.5% 消泡剂 1%
复合氧化物荧光材料 ( LMY-4453HB, 黄色, 粒径 8μιη ) 13% 交联抑制剂 0.3% 中端黄色区域的质量组成为:
高分子材料 75.0% 稀释剂 9.5% 助剂
润湿剂 2.5% 偶联剂 1.5% 消泡剂 1% 复合氧化物荧光材料 ( LMY-4453HB, 黄色, 粒径 8μιη ) 10% 交联抑制剂 0.5% 下端浅黄色区域的质量组成为:
高分子材料 94.0% 助剂
偶联剂 1.0% 复合氧化物荧光材料(LMY-4453HB, 黄色, 粒径 8μιη ) 4% 交联抑制剂 1% 其中的高分子材料为双组份加成型加温硫化液体硅橡胶信越 KE1310ST (购自日本信越公司) , 稀释剂为双曱基硅油。 偶联剂为硫 基有机硅偶联剂 Ζ-6062 (购自美国 Dow Corning ), 交联抑制剂为马来 酸二乙酯。 润湿剂为离子型表面活性剂德谦 700 (购自台湾德谦公司), 消泡剂为有机硅氧烷类消泡剂德谦 5500 (购自台湾德谦公司) 。
其制备工艺如下:
( 1 ) 按所述比例将发光模块的上端颜色区域的原料混合均匀后注 入模具内, 在 90°C加热 8min, 使其聚合半固化成型, 制得一种颜色半 固化上端模块 31;
( 2 ) 步骤(1 )制得的上端模块 31半固化成型后, 将中端区域的 原料混合均匀后注入步骤 (1)的模具内,此时新注入的液体原料与前一步 骤中已半固化的上端模块 31相接触, 在 90°C加热 8min, 使其聚合半固 化成型,制得另一种颜色的下端模块 32; 再将下端区域的原料混合均匀 后注入模具内, 在 90°C加热 8min, 使其聚合半固化成型, 制得另一种 颜色的下端模块 33;
( 3 )将半固化的整个模块在 180°C加热 10min, 进行完全固化, 制 成无缝连接的彩色发光模块 3。
此彩色发光模块 3可以和 LED蓝光光源配套使用, 如图 5所示的 光源, 其结构包括基座 1、 激发光源 2和大半球形彩色发光模块 3; 激 发光源 2采用 LED蓝光光源, 位于基座 1上, 大半球形彩色发光模块 3由机械方式固定在激发光源 2周围的基座 1上,将激发光源 2包在其 中; 激发光源 1的发射光语峰值在 380~475nm。 此彩色发光模块 3未 被激发时, 上端是深黄色, 中端是黄色, 下端是浅黄色; 被蓝光 LED 光源激发后, 整体发出均匀的正白光。
因为大半球的形状,彩色发光模块的顶部和根部离光源的距离差距 比较明显, 受到激发的效率不同, 所以通过调整不同位置的荧光材料含 量, 使受激发后, 发出的光色均匀。
实施例 6:
本实施例采用高分子材料、 稀释剂、 荧光材料、 助剂和交联抑制剂 为原料, 制备成如图 6所示的烛光形模块。 分为上中下三个区域: 上端 31是橙红色, 中端 32是橙色, 下端 33是黄色。 其各区域的质量组成如 下: 上端橙红色区域的质量组成为:
高分子材料 72.0% 稀释剂 10.0% 助剂
润湿剂 2%
偶联剂 1.4% 消泡剂 1%
硅酸盐荧光材料(型号 LMS-5841, 橙色, 粒径 12μιη ) 13% 交联抑制剂 0.6% 中端橙色区域的质量组成为:
高分子材料 71.0% 稀释剂 10% 助剂
润湿剂 2%
偶联剂 1.5% 消泡剂 1%
铝酸盐荧光材料(型号 LMA-4453-B, 黄色, 粒径 10μιη ) 10% 硅酸盐荧光材料(型号 LMS-5841, 橙色, 粒径 12μιη ) 4% 交联抑制剂 0.5% 下端橙黄色区域的质量组成为:
高分子材料 72.0% 稀释剂 10.0% 助剂
润湿剂 2.5% 偶联剂 1% 消泡剂 1% 铝酸盐荧光材料(型号 LMA-4453-B, 黄色, 粒径 ΙΟμιη ) 13% 交联抑制剂 0.5% 其中的高分子材料为双组份加成型加温 化液体硅橡胶 Dow Corning 6550 (购自美国 Dow Cornin ) , 稀释剂为曱基乙烯基硅油。 偶联剂为脲基有机硅偶联剂 A-1160 (美国迈图高新材料集团公司生产, 购自广州坚毅化工进出口有限公司) , 交联抑制剂为 3-曱基 -3- (三曱 基硅氧) -1-丁炔。 润湿剂为离子型表面活性剂 BYK-103 (购自德国比 克公司),消泡剂为有机硅氧炕类消泡剂德谦 6800(购自台湾德谦公司)。
其制备工艺如下:
( 1 ) 按所述比例将发光模块的上端颜色区域的原料混合均匀后注 入模具内, 在 80°C加热 10min, 使其聚合半固化成型, 制得一种颜色半 固化的上端模块 31;
( 2 ) 步骤(1 )制得的上端模块 31半固化成型后, 将中端区域的 原料混合均匀后注入步骤 (1)的模具内,此时新注入的液体原料与前一步 骤中已半固化的模块相接触,在 80°C加热 10min,使其聚合半固化成型, 制得另一种颜色的下端模块 32;再将下端区域的原料混合均匀后注入模 具内, 在 80°C加热 10min, 使其聚合半固化成型, 制得另一种颜色的下 端模块 33;
( 3 )将半固化的整个模块在 160°C加热 13min, 进行完全固化, 制 成无缝连接的彩色发光模块 3。
此彩色发光模块 3可以和 LED蓝光光源和红光光源混合配套使用, 如图 6所示的光源, 其结构包括基座 1、 激发光源 2和烛光形彩色发光 模块 3; 激发光源 2采用 LED蓝光光源和红光光源, 位于基座 1上, 烛光形彩色发光模块 3由机械方式固定在激发光源 2周围的基座 1上, 将激发光源 2包在其中; 激发光源 2的发射光谱峰值在 380~475nm。 此彩色发光模块未被激发时,上端是橙红色, 中端是橙色,下端是黄色; 被蓝光和红光 LED光源混合激发后, 上端发出红色光, 中端发出橙红 色光, 下端发出橙黄色光。

Claims

权 利 要 求
1、 一种彩色发光模块, 其特征在于所述模块为空心凸起形, 包括 至少两个相邻的不同颜色区域, 所述的区域间无缝连接而成, 每个颜色 区域由以下组分的组成:
组分 质量百分比
高分子材料 45.0 94.0 %
稀释齐 j 0.0-20.0 %
荧光材料 4.0-30.0 %
助剂 1.0~5.0 %
交联抑制剂 0.1~1.0 %
其中:
所述的高分子材料为有机硅橡胶材料, 优选为加成型有机硅橡胶, 进一步优选为双组份加成型加温疏化液体硅橡胶;
所述的稀释剂为选自曱基硅油、双曱基硅油、 乙基硅油、苯基硅油、 曱基乙氧基硅油或者曱基乙烯基硅油中的一种或多种;
所述的荧光材料为选自铝酸盐荧光材料、 硅酸盐荧光材料、 硅氮化 物荧光材料、 氮化物荧光材料、 复合氧化物荧光材料或硫氧化物荧光材 料中的一种或两种, 优选地, 所述的荧光材料的粒径为 3-25μιη;
所述的助剂为偶联剂, 或者所述的助剂为消泡剂、 偶联剂和润湿剂 共同构成; 所述的偶联剂为选自乙烯基、 氨基、 环氧基、 曱基丙烯酰氧 基、 巯基或脲基有机硅偶联剂中的一种或多种;
所述的交联抑制剂为选自 2-甲基 -3-丁块 -2-醇、 3-甲基 -1-戊块 -3-醇、 3_曱基 _3_ (三曱基硅氧)小丁炔、 3-曱基 -3- (三曱基硅氧) -1-戊炔、 马 来酸二乙酯、 Ν, Ν, Ν', Ν'-四曱基亚乙基二胺、 偶氮二曱苯、 偶氮二 ( Ν, Ν-二曱基酰胺) 、 2,2'-联吡啶、 Ν, Ν, -二烯丙基苯曱酰胺、 Ν, Ν, Ν', Ν'-四烯丙基苯曱酰胺中的一种或多种, 优选地, 所述的交联抑 制剂为选自 2-曱基 -3-丁炔 -2-醇、 3-曱基 -3- (三曱基硅氧) -1-丁炔、 马 来酸二乙酯、 偶氮二(Ν, Ν-二曱基酰胺) 、 2,2'-联吡啶、 Ν, Ν, Ν', Ν'-四烯丙基苯曱酰胺中的一种或多种。
2、 权利要求 1 的彩色发光模块, 其中所述的彩色发光模块可以被 峰值波长在 380 ~ 475nm范围内的光激发后发光。
3、 权利要求 2的彩色发光模块, 其中所述的彩色发光模块被激发 后发射出至少两种峰值波长在 430 ~ 650nm范围内的光。
4、 权利要求 1 的彩色发光模块, 其特征在于所述的高分子材料的 质量百分组成为 70.0~75.0%。
5、 5权利要求 15的彩色发光模块, 其特征在于所述组分的质量百 分组成中荧光材料为 10.0~20.0%。
6、 权利要求 1 的彩色发光模块, 其特征在于所述模块的形状为半 球形、 大半球形、 烛光形、 半椭球形、 大半椭球形、 圆锥形或火焰形。
7、 权利要求 1 的彩色发光模块, 其中所述的消泡剂为有机硅氧烷 类消泡剂。
8、 权利要求 1 的彩色发光模块, 其中所述的湿润剂为离子型表面 活性剂。
9、 权利要求 1至 8任一项的彩色发光模块的制备方法,
该制备方法包括如下步骤:
( 1 ) 按比例将发光模块的一个颜色区域的原料混合均匀后注入模 具内, 在 80-100°C加热 5-10min, 使其聚合半固化成型, 制得一种颜色 半固化模块;
( 2 ) 前一区域半固化成型后, 将下一个区域的原料混合均匀后注 入步骤 (1)的模具内, 在 80-100°C加热 5-10min, 使其聚合半固化成型; 当彩色发光模块的区域多于两个时, 重复步骤(2 ) , 以此类推;
( 3 )将半固化的整个模块在 150-180°C加热 10-15min,进行完全固 化, 制成无缝连接的彩色发光模块。
10、 一种光源, 其包括权利要求 1至 8任一项的彩色发光模块。
PCT/CN2012/087608 2011-12-30 2012-12-27 一种彩色发光模块及光源 WO2013097736A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280060511.1A CN104169634A (zh) 2011-12-30 2012-12-27 一种彩色发光模块及光源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110451988 2011-12-30
CN201110451988.X 2011-12-30

Publications (1)

Publication Number Publication Date
WO2013097736A1 true WO2013097736A1 (zh) 2013-07-04

Family

ID=48696340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087608 WO2013097736A1 (zh) 2011-12-30 2012-12-27 一种彩色发光模块及光源

Country Status (3)

Country Link
CN (1) CN104169634A (zh)
TW (1) TW201333387A (zh)
WO (1) WO2013097736A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127302A (ko) * 2018-05-04 2019-11-13 엘지이노텍 주식회사 조명 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159706A (ja) * 2006-12-21 2008-07-10 Matsushita Electric Works Ltd 発光装置
CN101443192A (zh) * 2006-03-15 2009-05-27 Lg伊诺特有限公司 光致发光板
CN101492602A (zh) * 2009-02-16 2009-07-29 江苏苏博特新材料股份有限公司 用于白光发光装置中的混合荧光粉及采用该混合荧光粉的白光发光装置
JP2010021256A (ja) * 2008-07-09 2010-01-28 Nec Lighting Ltd 発光装置
CN101752483A (zh) * 2008-12-15 2010-06-23 富士迈半导体精密工业(上海)有限公司 发光二极管
CN201803298U (zh) * 2010-08-04 2011-04-20 姜跃忠 多色led
CN102020851A (zh) * 2009-09-16 2011-04-20 大连路明发光科技股份有限公司 一种光转换柔性高分子材料及其用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443192A (zh) * 2006-03-15 2009-05-27 Lg伊诺特有限公司 光致发光板
JP2008159706A (ja) * 2006-12-21 2008-07-10 Matsushita Electric Works Ltd 発光装置
JP2010021256A (ja) * 2008-07-09 2010-01-28 Nec Lighting Ltd 発光装置
CN101752483A (zh) * 2008-12-15 2010-06-23 富士迈半导体精密工业(上海)有限公司 发光二极管
CN101492602A (zh) * 2009-02-16 2009-07-29 江苏苏博特新材料股份有限公司 用于白光发光装置中的混合荧光粉及采用该混合荧光粉的白光发光装置
CN102020851A (zh) * 2009-09-16 2011-04-20 大连路明发光科技股份有限公司 一种光转换柔性高分子材料及其用途
CN201803298U (zh) * 2010-08-04 2011-04-20 姜跃忠 多色led

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127302A (ko) * 2018-05-04 2019-11-13 엘지이노텍 주식회사 조명 장치
JP2021522683A (ja) * 2018-05-04 2021-08-30 エルジー イノテック カンパニー リミテッド 照明モジュール及び照明装置
EP3787049A4 (en) * 2018-05-04 2022-01-26 LG Innotek Co., Ltd. LIGHTING MODULE AND LIGHTING DEVICE
JP7349451B2 (ja) 2018-05-04 2023-09-22 エルジー イノテック カンパニー リミテッド 照明装置
KR102593592B1 (ko) 2018-05-04 2023-10-25 엘지이노텍 주식회사 조명 장치
US11916177B2 (en) 2018-05-04 2024-02-27 Lg Innotek Co., Ltd. Illumination device having a first phosphor layer and second phosphor layer

Also Published As

Publication number Publication date
TW201333387A (zh) 2013-08-16
CN104169634A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2011032356A1 (zh) 一种光转换柔性高分子材料及其用途
CN101571235B (zh) 光转换发光膜及其制备方法
CN103848990B (zh) 一种led封装用高折射率乙烯基苯基硅树脂
CN103489996A (zh) 白光led封装工艺
CN102876282A (zh) 纳米SiO2改性的COB-LED灌封用透明有机硅胶的制备方法
WO2009140829A1 (zh) 一种低衰减高光效led照明装置及制备方法
CN102002269B (zh) 配置白光发光二极管荧光粉涂覆液的方法
CN102437255A (zh) 旋转涂覆法制备白光led用荧光片
CN109742220B (zh) 含液态量子点的白光led及其制备方法
WO2013097736A1 (zh) 一种彩色发光模块及光源
CN202549918U (zh) 一种荧光粉涂敷封装结构
WO2011143792A1 (zh) 可剥离型光转换发光膜
CN101519576B (zh) 高透光的大功率发光二极管用封装胶的制备方法
CN106505138A (zh) 一种led封装结构及其制备方法
Li et al. Color uniformity enhancement for WLEDs using inverted dispensing method
CN105720178B (zh) 一种发光二极管的封装方法
CN201228951Y (zh) 低衰减高光效led照明装置
CN203787466U (zh) Led封装结构
CN105932142A (zh) 一种白光led纳米荧光粉
CN201966248U (zh) 发光二极管晶圆组件
CN206322732U (zh) 一种led封装结构
CN107763568A (zh) 一种关于led远程激发荧光粉层的制备方法
CN204407355U (zh) 一种芯片尺寸白光led的封装结构
CN105047796B (zh) 一种全周光led光源及其制备方法
CN106350000A (zh) 一种TiO2增强发光透明有机硅胶的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861454

Country of ref document: EP

Kind code of ref document: A1