WO2013097442A1 - 液晶显示面板及驱动方法 - Google Patents

液晶显示面板及驱动方法 Download PDF

Info

Publication number
WO2013097442A1
WO2013097442A1 PCT/CN2012/078225 CN2012078225W WO2013097442A1 WO 2013097442 A1 WO2013097442 A1 WO 2013097442A1 CN 2012078225 W CN2012078225 W CN 2012078225W WO 2013097442 A1 WO2013097442 A1 WO 2013097442A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel unit
sub
grayscale value
liquid crystal
crystal display
Prior art date
Application number
PCT/CN2012/078225
Other languages
English (en)
French (fr)
Inventor
游帅
李洪
马骏
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to EP12850742.3A priority Critical patent/EP2648036A4/en
Publication of WO2013097442A1 publication Critical patent/WO2013097442A1/zh
Priority to US13/951,355 priority patent/US9424803B2/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/026Control of mixing and/or overlay of colours in general
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133622Colour sequential illumination
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources

Definitions

  • the present invention relates to a display device and a driving method, and more particularly to a liquid crystal display panel and a driving method capable of shortening a response time of a liquid crystal.
  • FSC-LCD is a display device with many advantages.
  • the display device uses a reverser to drive red, green, and blue (R, G, B) three-color backlights to illuminate the entire panel at a certain timing, so that red, green, and blue are sequentially emitted on the same pixel unit (R).
  • R, G, B Three kinds of light, the eye produces an afterimage effect and the three colors are mixed, and the human eye feels that the pixel unit is continuously illuminated.
  • the field sequential liquid crystal display device does not require an expensive color filter, and the cost can be greatly reduced; and the field sequential liquid crystal display device does not need to be further divided into three or four sub-pixel units.
  • FIG. 1 is a schematic cross-sectional view of a conventional field sequential liquid crystal display pixel unit.
  • the field sequential liquid crystal display pixel unit specifically includes: an upper substrate 10, a lower substrate 15, and the upper substrate 10 and the lower substrate 15 a liquid crystal layer 18; a backlight 19 having three colors of R, G, and B, wherein the backlight 19 is located on a side of the lower substrate 15 opposite to the upper substrate 10; and the upper substrate 10 is provided with a common electrode 12, A pixel electrode 16 is disposed on the lower substrate 15; a black portion 11 is formed on a portion of the upper substrate 10 and the common electrode 12, and the black matrix 11 is used to block an area other than the pixel electrode 16 of the lower substrate 15.
  • a thin film transistor 17 is formed on the lower substrate 15 at a position corresponding to the black matrix 11 of the upper substrate 10, and the thin film transistor 17 is electrically connected to the pixel electrode 16 as a switching element of the pixel electrode 16.
  • FIG. 2 is a schematic structural diagram of a conventional field sequential liquid crystal display panel, specifically including: a plurality of longitudinal scanning lines 21, each of which is connected to a gate of a thin film transistor 23 of an entire column of pixel units 24;
  • the horizontal data lines 22 are connected to the sources of the thin film transistors 23 of a whole row of pixel units 24; the driving circuit sequentially issues a trigger signal through the scanning lines 21, so that the thin film transistors 23 of the pixel unit 24 are Turning on, pixel unit 24 accepts the emitted image data from data line 22.
  • the driving method includes: scanning all thin film transistors by using scan lines according to corresponding R, G, and B lights, so that pixel electrodes can be received. Corresponding to the image data emitted by the data line; charging and discharging the capacitance in each pixel unit to rearrange the liquid crystal molecules in the liquid crystal layer; using the backlight to cause the pixel unit to emit corresponding light.
  • the period 34 in which one color light is displayed includes the scanning time 31 of all the thin film transistors of the entire display panel, the liquid crystal response time 32, and the illumination time 33 of the backlight.
  • the field sequential liquid crystal display device needs to display three colors in sequence for one frame of image, the thin film transistor needs to be scanned three times, and the liquid crystal molecules of the liquid crystal layer need to be arranged three times, so that the actual light emitting time of the pixel unit becomes short.
  • the gray level of the same pixel will change.
  • the amount of grayscale change of the pixel is small (for example, from grayscale 1 to grayscale 2), the liquid crystal response time of the pixel is longer, which requires high refresh frequency and short liquid crystal response time for the field sequential liquid crystal display panel and the like. In terms of the liquid crystal display panel, it is disadvantageous. Summary of the invention
  • the problem solved by the present invention is that the liquid crystal response time in the liquid crystal display panel of the prior art is limited by the amount of change in the gray scale of the pixel.
  • the present invention provides a liquid crystal display panel, including: a plurality of pixel units arranged in a matrix, the pixel unit including at least two adjacent sub-pixel units; a plurality of scan lines and data lines, each of the sub-pixel units being connected to one scan line and one data line;
  • a driving circuit connected to the scan line and the data line drives each of the sub-pixel units through the scan line and the data line.
  • the pixel unit includes a first sub-pixel unit and a second sub-pixel unit adjacent to the first sub-pixel unit.
  • the first sub-pixel unit and the second sub-pixel unit have the same area.
  • the liquid crystal display panel is a color liquid crystal display panel, and each sub-pixel unit in the same pixel unit displays the same color.
  • the liquid crystal display panel is a black and white liquid crystal display panel.
  • the liquid crystal display panel is a field sequential liquid crystal display panel.
  • a backlight unit is further included, and the backlight unit provides three light sources of red, green, and blue.
  • a relationship between a grayscale value of the pixel unit and a grayscale value of the first subpixel unit and the second subpixel unit is:
  • is a grayscale value of the pixel unit
  • n1 is a grayscale value of the first subpixel unit
  • n2 is a grayscale value of the second subpixel unit
  • X is an area of the first subpixel unit occupying the first subpixel unit
  • Y is a percentage of the area of the second sub-pixel unit to the total area of the first sub-pixel unit and the second sub-pixel unit.
  • the sub-pixel unit grayscale value is greater than or equal to the absolute value of the grayscale value change of the pixel unit.
  • a grayscale value of one of the first sub-pixel unit and the second sub-pixel unit is a first grayscale value.
  • the grayscale value of one of the first sub-pixel unit and the second sub-pixel unit is fixed to the first grayscale value.
  • the grayscale values of the first sub-pixel unit and the second sub-pixel unit are alternately the first grayscale value.
  • the first grayscale value is a maximum grayscale value or a minimum grayscale value.
  • the technical solution of the present invention further provides a driving method of the liquid crystal display panel, comprising: performing grayscale value change on at least one of the first sub-pixel unit and the second sub-pixel unit when displaying an adjacent frame image, so that The grayscale value of the pixel unit is changed, wherein an absolute value of the grayscale value change of the subpixel unit is greater than or equal to an absolute value of a grayscale value change of the pixel unit.
  • the relationship between the grayscale value of the pixel unit and the grayscale value of the first subpixel unit and the second subpixel unit is:
  • ⁇ gamma coefficient ((nl/maximum total gray level) ⁇ gamma coefficient) * ⁇ + (( ⁇ 2/maximum total gray level) ⁇ gamma coefficient) * ⁇ ,
  • is a grayscale value of the pixel unit
  • n1 is a grayscale value of the first subpixel unit
  • n2 is a grayscale value of the second subpixel unit
  • X is an area of the first subpixel unit occupying the first subpixel unit
  • Y is a percentage of the area of the second sub-pixel unit to the total area of the first sub-pixel unit and the second sub-pixel unit.
  • the grayscale value of the pixel unit and the gray of the first sub-pixel unit and the second sub-pixel unit is:
  • ⁇ gamma coefficient ((nl/maximum total grayscale) ⁇ gamma coefficient) *0.5+ (( ⁇ 2/maximum total grayscale) ⁇ gamma coefficient) *0.5,
  • is the grayscale value of the pixel unit
  • nl is the grayscale value of the first subpixel unit
  • n2 is the grayscale value of the second subpixel unit.
  • the grayscale value of at least one of the first sub-pixel unit and the second sub-pixel unit in the current frame is a first grayscale value
  • the current frame is in the current frame.
  • the gray scale value of the sub-pixel unit having the first gray scale value is converted into a corresponding gray scale value
  • the gray scale value of the other sub-pixel unit is converted into the first gray scale value, thereby causing the gray scale value of the pixel unit A change has occurred.
  • the first grayscale value is a maximum grayscale value or a minimum grayscale value.
  • each pixel unit of the liquid crystal display panel includes at least two adjacent sub-pixel units, and the sub-pixel unit can be independently controlled by a driving circuit, Performing a grayscale value change on at least one of the at least two adjacent sub-pixel units, wherein a grayscale value of the pixel unit is changed, wherein an absolute value of the grayscale value change of the sub-pixel unit is greater than or equal to The absolute value of the grayscale value change of the pixel unit.
  • the amount of change of the grayscale value of the sub-pixel unit of the pixel unit is larger than the variation of the grayscale value of the pixel unit, thereby shortening the liquid crystal response time of the pixel unit, and the time saved can be used to extend the backlight.
  • the illumination time can improve the quality of the displayed image and achieve high contrast and high brightness of the displayed image. Even if the gray scale change amount of the pixel unit of the adjacent frame image is small (for example, the amount of change is 1), the gray scale change amount of the sub-pixel unit of the pixel unit can be large, and the liquid crystal response time can be short.
  • FIG. 1 is a schematic cross-sectional view of a conventional field sequential liquid crystal display pixel unit.
  • FIG. 2 is a schematic structural view of a conventional field sequential liquid crystal display panel.
  • FIG. 3 is a schematic diagram of a conventional field sequential liquid crystal display panel.
  • FIG. 4 is a schematic structural view of a liquid crystal display panel according to an embodiment of the present invention; and
  • FIG. 5 is a schematic structural view of a liquid crystal display panel according to another embodiment of the present invention.
  • the liquid crystal response time of the pixel is large when the gray scale value of the pixel changes little.
  • the field sequential liquid crystal display panel needs to scan the thin film transistor three times for one frame image, and the liquid crystal molecules of the liquid crystal layer are arranged three times, occupying a large amount of time, so that the illumination time of the backlight actually used for image display is short. If the liquid crystal response time can be reduced, the time saved is used to extend the illumination time of the backlight, the quality of the displayed image can be improved, and the high contrast and high brightness of the displayed image can be achieved.
  • the gray scales corresponding to the red, green, and blue light emitted by the same pixel unit are different, and the light of different colors needs to be irradiated before
  • the grayscale value of the pixel unit is changed.
  • the change of the gray scale value needs to divide the liquid crystal of the liquid crystal layer
  • the sub-torsion is performed, and the speed and angle of the twist are determined by the voltage applied by the pixel electrode and the common electrode.
  • the inventors have found through research that when the gray scale value is from the smallest to the largest or from the largest to the smallest, the angle of twist of the liquid crystal molecules is the largest, and the difference between the voltage applied between the pixel electrode and the common electrode is also the largest, but due to the twist of the liquid crystal molecules.
  • the speed is also the fastest, and the LCD response time is the shortest. If the gray scale value changes little, since the angle at which the liquid crystal molecules need to be twisted is small, the difference in voltage applied between the pixel electrode and the common electrode is also small, the twisting speed of the liquid crystal molecules is also slow, and the liquid crystal response time is rather long.
  • a liquid crystal display panel comprising: a plurality of pixel units arranged in a matrix, the pixel unit comprising at least two adjacent sub-pixel units; a plurality of scanning lines and a plurality of data lines, each The sub-pixel unit is connected to one scan line and one data line; a driving circuit connected to the scan line and the data line drives each of the sub-pixel units through the scan line and the data line.
  • the embodiment of the present invention provides a liquid crystal display panel. Referring to FIG. 1
  • a schematic structural diagram of a liquid crystal display panel includes: a plurality of pixel units 110 arranged in a matrix, each of the pixel units 110 including a first sub-pixel unit 111 and a second sub-pixel unit 112 adjacent to the first sub-pixel unit 111, wherein the first sub-pixel unit 111 and the second sub-pixel unit 112 are connected with a thin film transistor (not shown)
  • the capacitor of the thin film transistor is further connected with a capacitor, the capacitor includes a storage capacitor (not shown) and a liquid crystal capacitor (not shown) for charging a pixel electrode (not shown); a plurality of laterally arranged data lines 120, the source of the thin film transistor of each sub-pixel unit being connected to a data line 120; a plurality of vertically arranged scan lines 130, a gate and a thin film transistor of each sub-pixel unit
  • the scan lines 130 are connected, and
  • the data line 120 connected to the first sub-pixel unit 111 is located at one side of the first sub-pixel unit 111,
  • the area surrounded by the corresponding two adjacent data lines 120 and the adjacent scan lines 130 has the pixel unit 110 including the first sub-pixel unit 111 and the second sub-pixel unit 112
  • the scan driving circuit 135 is connected to each scan line 130 for controlling the switching state of the thin film transistor of the corresponding sub-pixel unit; the data driving circuit 125 is connected to each data line 120 for transmitting image data to Corresponding sub-pixel unit.
  • the liquid crystal display panel may be a field sequential liquid crystal display panel.
  • the first sub-pixel unit and the second sub-pixel unit are displayed in a field sequential driving manner.
  • the specific structure of the sub-pixel unit of the liquid crystal display panel of the embodiment of the present invention is the same as that of the sub-pixel unit of the liquid crystal display panel of the prior art, and details are not described herein.
  • the liquid crystal display panel is a color sequential liquid crystal display panel, and the liquid crystal display panel further includes a backlight unit, and the backlight unit can provide three light sources of red, green, and blue, such that the liquid crystal display panel is a color liquid crystal display panel. .
  • the backlight unit can only provide light of one color at the same time, the colors of the light displayed by the first sub-pixel unit and the second sub-pixel unit are the same.
  • the liquid crystal display panel may also be a TN-LCD, an IPS-LCD, an FFS-LCD, or a VA-LCD.
  • the liquid crystal display panel of the embodiment of the invention may be a black and white liquid crystal display panel or a color liquid crystal display panel. If the liquid crystal display panel of the embodiment of the present invention is a color liquid crystal display panel, each sub-pixel unit in the same pixel unit displays the same color.
  • the color liquid crystal display panel is not a field sequential liquid crystal display panel, for example, when one pixel is composed of R sub-pixels, G sub-pixels, and B sub-pixels, then the R sub-pixel includes the first R sub-pixel and the second R sub-pixel.
  • the G sub-pixel includes a first G sub-pixel and a second G sub-pixel; the B sub-pixel includes a first B sub-pixel and a second B sub-pixel.
  • the first sub-pixel unit 111 and the second sub-pixel unit 112 are spaced apart in the longitudinal direction, and the first sub-pixel unit and the second sub-pixel unit adjacent in the longitudinal direction form one pixel unit, and the same
  • the first sub-pixel unit 111 and the second sub-pixel unit 112 in the pixel unit 110 are connected to the same scanning line 130, and can simultaneously control the thin film transistor of the first sub-pixel unit 111 and the thin film transistor of the second sub-pixel unit 112.
  • the switching state is such that the grayscale value change of the first sub-pixel unit 111 and the grayscale value change of the second sub-pixel unit 112 can be simultaneously performed.
  • the first sub-pixel unit and the second sub-pixel unit are spaced apart in the lateral direction, and the first sub-pixel unit and the second sub-pixel unit adjacent in the lateral direction form one pixel unit, and the first sub-pixel unit And the second sub-pixel unit is connected to the same data line.
  • the first sub-pixel unit 111 and the second sub-pixel unit 112 have the same area and are rectangular in shape, and the shape of the pixel unit 110 composed of two adjacent first sub-pixel units 111 and second sub-pixel units 112 is square.
  • the area of the two adjacent first sub-pixel units and the second sub-pixel unit may be different, and may be adjusted according to actual needs of the liquid crystal display panel manufacturer, the two adjacent first sub-children
  • the shape of the pixel unit composed of the pixel unit and the second sub-pixel unit is a square.
  • the pixel unit may further include three or more sub-pixel units, each of which is independently connected to the driving circuit through the scan line and the data line, and the area of each sub-pixel unit.
  • the shape of the pixel unit composed of the three or more sub-pixel units is square or the same or different.
  • the data line 120 connected to the first sub-pixel unit 111 is located at one side of the first sub-pixel unit in, and the data line 120 connected to the second sub-pixel unit 112 is located at the side.
  • the opposite side of the second sub-pixel unit 112 is such that a region surrounded by the corresponding two adjacent data lines 120 and the adjacent scan lines 130 has one pixel unit 110.
  • the data line 120' connected to the first sub-pixel unit 111 and the second sub-pixel unit 112 is located at the first sub-pixel unit 111 and the second sub-pixel unit 112.
  • the area surrounded by the adjacent data line 120' and the adjacent scan line 130 has one sub-pixel unit.
  • the first sub-pixel unit 111 and the second sub-pixel unit 112 are spaced apart in the longitudinal direction, and the first sub-pixel unit 111 and the second sub-pixel are adjacent in the longitudinal direction.
  • the pixel unit 112 constitutes one pixel unit 110, and the first sub-pixel unit 111 and the second sub-pixel unit 112 of the same pixel unit 110 are connected to the same scanning line 130, and the thin film transistor of the first sub-pixel unit 111 can be simultaneously controlled.
  • the switching state of the thin film transistor of the second sub-pixel unit 112 is such that the grayscale value change of the first sub-pixel unit 111 and the grayscale value change of the second sub-pixel unit 112 can be simultaneously performed.
  • the first sub-pixel unit and the second sub-pixel unit are spaced apart in the lateral direction, and the first sub-pixel unit and the second sub-pixel unit adjacent in the lateral direction form a a pixel unit, wherein the first sub-pixel unit and the second sub-pixel unit are connected to the same data line.
  • the data driving circuit 125 and the scan driving circuit 135 are separately disposed and respectively connected to the data line 120 and the scanning line 130 for respectively driving each sub-pixel unit of the liquid crystal display panel.
  • the data driving circuit and the scan driving circuit may be combined in the same driving circuit, and the driving circuit is connected to the data line and the scan line for respectively driving each sub-pixel of the liquid crystal display panel. unit.
  • a trigger signal is sequentially issued from the leftmost scan line to the rightmost scan line.
  • the trigger signal may also be sequentially sent from the rightmost scan line to the leftmost scan line.
  • the data is transferred to the source of the thin film transistor corresponding to the sub-pixel unit, and then transmitted to a capacitor (including a storage capacitor and a liquid crystal capacitor) connected to the drain of the thin film transistor, so that the capacitor can be charged according to the image data, thereby controlling the sub-controll
  • a capacitor including a storage capacitor and a liquid crystal capacitor
  • the driving method of the liquid crystal display panel will be described in detail below by taking a liquid crystal display panel of 64 gray scale as an example.
  • the liquid crystal display panel is 64 gray scales, that is, each pixel unit can display 64 brightness levels, and the first sub-pixel unit and the second sub-pixel unit can also display 64 brightness levels, corresponding grays.
  • the order value is 0 ⁇ 63.
  • the relationship between the relative brightness of the pixel unit and the corresponding grayscale value is:
  • L (N / maximum total gray level) ⁇ gamma coefficient ( 1 )
  • L is the relative brightness of the pixel unit
  • is the gray level value corresponding to the pixel unit.
  • the maximum gray scale value is equal to the total gray scale of the liquid crystal display panel minus one. In this embodiment, the total gray scale number is 64, and the maximum gray scale value is 63. In other embodiments, The total gray level is 2 ⁇ ⁇ , and when the ⁇ is greater than or equal to 4, the maximum gray level is 2 ⁇ ⁇ -1. Since the gamma coefficient commonly used for display devices is usually 2.2, in the present embodiment, the gamma coefficient is 2.2. Since the pixel unit includes one first sub-pixel unit and the second sub-pixel unit, a weighted average of the brightness of the light emitted by the first sub-pixel unit and the second sub-pixel unit is the brightness of the pixel unit. which is:
  • L L1*X+L2*Y ( 2 )
  • L is the relative luminance of the pixel unit
  • L1 is the relative luminance of the first sub-pixel unit
  • L3 is the relative luminance of the second sub-pixel unit
  • X is the first sub-pixel
  • the area of the cell occupies a percentage of the total area of all sub-pixel units in one pixel unit
  • the relationship between the grayscale value of the pixel unit and the grayscale value of the first subpixel unit and the second subpixel unit can be obtained for the same frame image, that is, :
  • is a grayscale value of the pixel unit
  • n1 is a grayscale value of the first subpixel unit
  • n2 is a grayscale value of the second subpixel unit.
  • the grayscale value of the pixel unit in the embodiment is the first sub-pixel unit and the second sub-pixel.
  • the relationship of the grayscale values of the pixel unit is:
  • the pixel unit when the pixel unit includes at least three sub-pixel units, since the brightness of the pixel unit is a weighted average of the brightness of the at least three sub-pixel units, by changing the gray of at least one of the sub-pixel units The order value can also change the grayscale value of the corresponding pixel unit. And by controlling the absolute value of the grayscale value change of the sub-pixel unit to be greater than or equal to the absolute value of the grayscale value change of the pixel unit, the liquid crystal response time can also be shortened, thereby making the actual illumination time of the pixel unit longer. , can improve the quality of the displayed image.
  • the embodiment of the present invention provides a driving method using the liquid crystal display panel as shown in FIG.
  • the step value is changed such that the grayscale value of the pixel unit changes, wherein an absolute value of the grayscale value change of the subpixel unit is greater than or equal to an absolute value of a grayscale value change of the pixel unit.
  • the grayscale value of one of the first sub-pixel unit and the second sub-pixel unit is a first grayscale value.
  • the first embodiment of the driving method of the liquid crystal display panel of the present invention specifically includes: when displaying an adjacent frame image, one of the first sub-pixel unit and the second sub-pixel unit
  • the grayscale value is fixed to the first grayscale value, and the grayscale value of the pixel unit is changed by changing the grayscale value of the other subpixel unit.
  • the grayscale value of one of the first sub-pixel unit and the second sub-pixel unit is a first grayscale value.
  • the grayscale value of the first sub-pixel unit and the grayscale value of the second sub-pixel unit and the grayscale value of the pixel unit formed by the two satisfy the formula (3).
  • the first gray scale value is a maximum gray scale value, a minimum gray scale value, or other gray scale values approximately equal to a maximum gray scale value and a minimum gray scale value.
  • the grayscale value of the first sub-pixel unit is the first grayscale value
  • the second sub-pixel unit may be the first grayscale value, or may not be the first grayscale value.
  • the grayscale value of the first sub-pixel unit is still the first grayscale value, and the grayscale value of the second sub-pixel unit is calculated according to the formula (3).
  • the absolute value of the grayscale value change of the other sub-pixel unit is greater than or equal to the absolute value of the grayscale value change of the corresponding pixel unit, Therefore, the liquid crystal response time of the sub-pixel unit is shorter than that of the pixel unit of the related art, and since the gray scale value of one of the sub-pixel units does not change, the liquid crystal layer does not require a response time, so that the pixel unit of the embodiment of the present invention is utilized.
  • the liquid crystal response time is shorter than the liquid crystal response time of the pixel unit of the prior art, so that the illumination time of the backlight becomes longer, the quality of the displayed image can be improved, and the high contrast and high brightness of the display image can be achieved.
  • the maximum grayscale value is 63 and the minimum grayscale value is 0.
  • the first grayscale value is 0.
  • the grayscale value of the second sub-pixel unit may be 0 or not 0; when the image of the next frame is displayed, the grayscale value of the second sub-pixel unit is changed, so that the corresponding pixel unit is The grayscale value changes.
  • the first behavior in Table 1 corresponds to the ones digit of the grayscale value of the pixel unit.
  • the first column in Table 1 is the tens digit of the grayscale value of the corresponding pixel unit.
  • the data in the remaining grids, the value before the comma is the grayscale value of the first sub-pixel unit, and the value after the comma is the second sub-number.
  • the gray scale value of the corresponding pixel unit needs to be changed from 06 to 43, the gray scale value of the first sub-pixel unit is fixed, both are 0, and the liquid crystal molecules do not need to be deflected; the gray scale value of the second sub-pixel unit is from 8 becomes 59, since the absolute value of the grayscale value change of the pixel unit is 37, and the absolute value of the grayscale value change of the second subpixel unit is 51, the liquid crystal response time of the second subpixel unit is compared with the prior art.
  • the pixel unit liquid crystal response time is short, so that the liquid crystal display panel using the liquid crystal display panel of the embodiment of the present invention has a shorter response time than the pixel unit liquid crystal response time of the prior art.
  • the grayscale value of the second subpixel unit when the grayscale value of the pixel unit is 46, the grayscale value of the second subpixel unit has a maximum grayscale value of 63, and thus the grayscale value range of the pixel unit
  • the grayscale value of the first sub-pixel unit and the second sub-pixel unit is the same as the grayscale value of the pixel unit, and the grayscale of the first sub-pixel unit and the second sub-pixel unit
  • the absolute value of the value change The absolute value of the gray scale value change of the pixel unit is the same, and the liquid crystal response time cannot be shortened.
  • a liquid crystal display panel capable of displaying a higher gray scale image is used to display an image of a lower gray scale, for example, using a display capable of displaying 64 gray scale images.
  • the liquid crystal display panel displays an image having 32 gray levels, and fixes a grayscale value of one of the first sub-pixel unit and the second sub-pixel unit to a first grayscale value by changing a gray of another sub-pixel unit a step value such that the grayscale value of the pixel unit changes.
  • a third embodiment of the driving method of the liquid crystal display panel of the present invention includes: when displaying adjacent frame images, the grayscale values of the first sub-pixel unit and the second sub-pixel unit are alternately the first grayscale value. Meanwhile, for each frame image, the grayscale value of one of the first sub-pixel unit and the second sub-pixel unit is a first grayscale value.
  • the grayscale value of the first sub-pixel unit and the grayscale value of the second sub-pixel unit and the grayscale value of the pixel unit formed by the two satisfy the formula (3).
  • the grayscale value of the first sub-pixel unit is the first grayscale value
  • the grayscale value of the second sub-pixel unit is calculated according to the formula (3), which may be the first grayscale value, May not be the first grayscale value
  • the grayscale value of the second subpixel unit is changed to the first grayscale value
  • the grayscale value of the first subpixel unit is changed to the corresponding grayscale a value
  • the corresponding grayscale value is calculated according to the formula (3), so that the grayscale value of the pixel unit changes.
  • the first gray scale value is a maximum gray scale value, a minimum gray scale value, or other gray scale values approximately equal to a maximum gray scale value and a minimum gray scale value.
  • the absolute value of the grayscale value change of the two sub-pixel units of the same pixel unit is greater than the absolute value of the grayscale value change of the pixel unit, the liquid crystal response time of the two sub-pixel units is smaller than that of the prior art pixel unit.
  • the time is short, so that the liquid crystal response time of the liquid crystal display panel using the embodiment of the present invention is shorter than that of the pixel unit of the prior art, so that the illumination time of the backlight becomes longer, the quality of the displayed image can be improved, and the display can be realized. High contrast and high brightness of the image.
  • the maximum grayscale value is 63, and the minimum grayscale value is 0.
  • the first grayscale value is 0.
  • the grayscale value of the first sub-pixel unit is 0, and the grayscale value of the second sub-pixel unit may be 0 or not 0; displaying the next frame In the image, the grayscale value of the second sub-pixel unit is changed from the original grayscale value to 0, and the grayscale value of the first sub-pixel unit is changed from 0 to a corresponding grayscale value, wherein the first subpixel
  • the gray scale value corresponding to the unit can be obtained according to the formula (4).
  • the gray scale value of the corresponding pixel unit needs to be changed from 36 to 43, since the gray scale value of one sub-pixel unit corresponding to the pixel unit 36 is 0, and the gray scale value of the other sub-pixel unit is 49, and the pixel unit 43 Corresponding one sub-pixel unit has a grayscale value of 0, another sub-pixel unit has a grayscale value of 59, and the grayscale value of the one of the sub-pixel units is changed from 0 to 59, and the other sub-pixel is The grayscale value of the cell is changed from 49 to 0, since the absolute values of the grayscale value changes of the two subpixel units are 59 and 49, and the absolute value of the grayscale value change of the pixel unit is 7, using the embodiment of the present invention.
  • the LCD response time of the liquid crystal display panel is shorter than that of the pixel unit of the prior art, so that the illumination time of the backlight becomes longer, the quality of the displayed image can be improved, and the high contrast and high brightness of the display image can be achieved.
  • the switching states of the thin film transistors of the first sub-pixel unit and the second sub-pixel unit may be simultaneously controlled, so that the first The grayscale value change of one sub-pixel unit and the grayscale value change of the second sub-pixel unit can be performed simultaneously, which is advantageous for shortening the liquid crystal response time.
  • the grayscale value of the pixel unit is 46
  • the grayscale value of the second subpixel unit is already the maximum grayscale value of 63
  • the grayscale value range of the pixel unit When the value is 47-63, the grayscale value of the first sub-pixel unit and the second sub-pixel unit is the same as the grayscale value of the pixel unit, and the grayscale of the first sub-pixel unit and the second sub-pixel unit
  • the absolute value of the value change is the same as the absolute value of the gray scale value change of the pixel unit, and the liquid crystal response time cannot be shortened.
  • a liquid crystal display panel capable of displaying a higher gray scale image is used to display an image of a lower gray scale, for example, by displaying a 64 gray scale image.
  • the liquid crystal display panel displays an image of 32 gray scales, and the gray scale value of at least one of the first sub-pixel unit and the second sub-pixel unit is a first gray scale value, and the gray scale value of the other sub-pixel unit is changed to
  • the first grayscale value changes the grayscale value of the sub-pixel unit that is originally the first grayscale value to a corresponding grayscale value, so that the grayscale value of the pixel unit changes.
  • each pixel unit of the liquid crystal display panel of the embodiment of the present invention includes at least two adjacent sub-pixel units, and the sub-pixel units are independently controllable by a driving circuit, and at least two adjacent sub-pixel units are Performing a grayscale value change on at least one of the grayscale values, wherein an absolute value of the grayscale value change of the subpixel unit is greater than or equal to an absolute value of a grayscale value change of the pixel unit value.
  • the liquid crystal response time of the pixel unit is shortened, and the time saved can be used to extend the illumination time of the backlight. It can improve the quality of the displayed image and achieve high contrast and high brightness of the displayed image. Even if the gray scale variation of the pixel unit of the adjacent frame image is small, the gray scale variation of the sub-pixel unit of the pixel unit can be large, and the liquid crystal response time can be short.
  • the present invention has been disclosed in the preferred embodiments as described above, but it is not intended to limit the invention, and the present invention may be utilized by the method and technical contents disclosed above without departing from the spirit and scope of the invention. The technical solutions make possible changes and modifications, and therefore, the scope of protection of the technical solutions of the present invention is not deviated from the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种液晶显示面板及驱动方法,包括:若干个呈矩阵排列的像素单元(110),所述像素单元(110)包括至少两个相邻的子像素单元(111,112);若干条扫描线(130)和数据线(120),每个所述子像素单元(111,112)与一条扫描线(130)和一条数据线(120)相连;与所述扫描线(130)和数据线(120)相连接的驱动电路(135,125),通过所述扫描线(130)和数据线(120)驱动各个所述子像素单元(111,112)。通过改变其中至少一个子像素单元(111,112)的灰阶值,使得对应的像素单元(110)的灰阶值发生改变,所述子像素单元(111,112)灰阶值改变的绝对值大于或等于所述像素单元(110)灰阶值改变的绝对值,使得所述子像素单元(111,112)对应的液晶响应时间小于或等于所述像素单元(110)对应的液晶响应时间,从而使得背光的照射时间变长。

Description

液晶显示面板及驱动方法
本申请要求 2011年 12月 29日提交中国专利局、 申请号为 201110453546.9、 发明名称为"液晶显示面板及驱动方法"的中国专利申请的优先权,其全部内容 通过引用结合在本申请中。 技术领域
本发明涉及显示装置及驱动方法,特别涉及一种能缩短液晶响应时间的液 晶显示面板及驱动方法。
背景技术
场序式液晶显示装置 (Field-Sequential Color Liquid Crystal Display ,
FSC-LCD )是一种具有诸多优点的显示装置。该显示装置利用一个倒向器驱动 红、 绿、 蓝(R、 G、 B )三色背光源按照一定的时序照亮整个面板, 使得在同 一个像素单元上依次射出红、 绿、 蓝(R、 G、 B )三种光, 使眼睛产生余像效 应而使三色混合,人眼感觉像素单元在持续照亮。较其他现有的液晶显示装置, 场序式液晶显示装置不需要昂贵的彩色滤光片, 可以大幅降低成本; 且所述场 序式液晶显示装置不需要再分成三个或四个子像素单元,可以做到较高的分辨 率; 由于彩色滤光片对光的吸收非常厉害, 场序式液晶显示装置不需要彩色滤 光片, 可以很好的提高背光源的利用率, 提高显示器的亮度, 降低功耗。 图 1是现有的场序式液晶显示像素单元的剖面结构示意图, 所述场序式液 晶显示像素单元具体包括: 上基板 10、 下基板 15、 以及位于所述上基板 10、 下 基板 15之间的液晶层 18; 具有 R、 G、 B三色的背光源 19, 所述背光源 19位于下 基板 15的与上基板 10相对的一侧; 所述上基板 10上设置有公共电极 12, 所述下 基板 15上设置有像素电极 16;所述上基板 10和公共电极 12之间的部分区域形成 有黑底 11 , 所述黑底 11用来遮挡下基板 15的像素电极 16以外区域的光; 在所述 下基板 15上对应于上基板 10的黑底 11的位置形成有薄膜晶体管 17,所述薄膜晶 体管 17与像素电极 16电连接, 用来作为像素电极 16的开关元件。
图 2为现有的场序式液晶显示面板的结构示意图, 具体包括: 多条纵向的 扫描线 21 , 每一条扫描线 21与一整列像素单元 24的薄膜晶体管 23的栅极相连 接; 多条横向的数据线 22,每一条数据线 22与一整行像素单元 24的薄膜晶体管 23的源极相连接; 驱动电路通过所述扫描线 21依次发出触发信号,使得像素单 元 24的薄膜晶体管 23被打开, 像素单元 24接受来自数据线 22的发出的图像数 据。
图 3为现有的场序式液晶显示面板的驱动方法的时序图, 所述驱动方法包 括: 根据对应的 R、 G、 B光, 利用扫描线扫描所有的薄膜晶体管, 使得像素电 极能接收到对应数据线发出的图像数据; 对每个像素单元中的电容进行充放 电,使得液晶层中的液晶分子重新排列; 利用背光源使得像素单元发出对应的 光。其中显示一种颜色光的周期 34包括完成整个显示面板所有薄膜晶体管的扫 描时间 31、 液晶响应时间 32、 背光的照射时间 33。 由于所述场序式液晶显示装 置显示一帧图像需要依次显示三种颜色,对薄膜晶体管需要扫描三次,对液晶 层的液晶分子需要排列三次, 使得像素单元实际的发光时间变短。
无论是场序式液晶显示面板还是其他液晶显示面板 (如 TN-LCD、 IPS-LCD, FFS-LCD、 VA-LCD )在显示多帧图像时, 同一像素的灰阶会发生 改变。 像素的灰阶改变量越小, 其液晶响应时间就越长; 像素的灰阶改变量越 大, 其液晶响应时间就越短。 若像素的灰阶的改变量很小 (如从灰阶 1变为灰 阶 2 ) , 像素的液晶响应时间就较长, 这对于场序式液晶显示面板等需要高刷 新频率、 短液晶响应时间的液晶显示面板而言是 4艮不利的。 发明内容
本发明解决的问题是现有技术的液晶显示面板中液晶响应时间受到像素 灰阶的变化量的限制。
为解决上述问题, 本发明技术方案提出了一种液晶显示面板, 包括: 若干个呈矩阵排列的像素单元,所述像素单元包括至少两个相邻的子像素 单元; 若干条扫描线和数据线,每个所述子像素单元与一条扫描线和一条数据线 相连接;
与所述扫描线和数据线相连接的驱动电路,通过所述扫描线和数据线驱动 各个所述子像素单元。
可选的,所述像素单元包括第一子像素单元和与第一子像素单元相邻的第 二子像素单元。
可选的, 所述第一子像素单元与第二子像素单元的面积相同。
可选的, 所述液晶显示面板为彩色液晶显示面板, 同一所述像素单元中的 各个子像素单元显示的颜色相同。
可选的, 所述液晶显示面板为黑白液晶显示面板。
可选的, 所述液晶显示面板为场序式液晶显示面板。
可选的, 还包括背光单元, 所述背光单元提供红、 绿、 蓝三种光源。 可选的, 对于同一帧图像, 所述像素单元的灰阶值与第一子像素单元、 第 二子像素单元的灰阶值的关系式为:
( N/最大总灰阶数) Λ伽马系数= ( ( nl/最大总灰阶数) Λ伽马系数) *Χ+
( ( η2/最大总灰阶数) Λ伽马系数) *Υ,
其中, Ν为像素单元的灰阶值, nl为第一子像素单元的灰阶值, n2为第 二子像素单元的灰阶值, X为第一子像素单元的面积占第一子像素单元和第二 子像素单元总面积的百分比, Y为第二子像素单元的面积占第一子像素单元和 第二子像素单元总面积的百分比。
可选的, 对于相邻帧图像, 当像素单元的灰阶值发生改变时, 第一子像素 单元和第二子像素单元中至少一个发生灰阶值改变,且所述子像素单元灰阶值 改变的绝对值大于或等于所述像素单元灰阶值改变的绝对值。
可选的,对于同一帧图像, 所述第一子像素单元和第二子像素单元其中一 个的灰阶值为第一灰阶值。
可选的,对于相邻帧图像, 第一子像素单元和第二子像素单元其中一个的 灰阶值固定为第一灰阶值。
可选的,对于相邻帧图像, 第一子像素单元和第二子像素单元的灰阶值交 替为第一灰阶值。 可选的, 所述第一灰阶值为最大灰阶值或最小灰阶值。
本发明技术方案还提供了一种所述液晶显示面板的驱动方法, 包括: 显示相邻帧图像时,对第一子像素单元和第二子像素单元中至少一个进行 灰阶值改变, 使得所述像素单元的灰阶值发生改变, 其中, 所述子像素单元灰 阶值改变的绝对值大于或等于所述像素单元的灰阶值改变的绝对值。
可选的, 显示同一帧图像时, 所述像素单元的灰阶值与第一子像素单元、 第二子像素单元的灰阶值的关系式为:
( N/最大总灰阶数) Λ伽马系数= ( ( nl/最大总灰阶数) Λ伽马系数) *Χ+ ( ( η2/最大总灰阶数) Λ伽马系数) *Υ,
其中, Ν为像素单元的灰阶值, nl为第一子像素单元的灰阶值, n2为第 二子像素单元的灰阶值, X为第一子像素单元的面积占第一子像素单元和第二 子像素单元总面积的百分比, Y为第二子像素单元的面积占第一子像素单元和 第二子像素单元总面积的百分比。
可选的, 当所述第一子像素单元、 第二子像素单元的面积相同, 显示同一 帧图像时, 所述像素单元的灰阶值与第一子像素单元、第二子像素单元的灰阶 值的关系式为:
( N/最大总灰阶数) Λ伽马系数= ( ( nl/最大总灰阶数) Λ伽马系数) *0.5+ ( ( η2/最大总灰阶数) Λ伽马系数) *0.5,
其中, Ν为像素单元的灰阶值, nl为第一子像素单元的灰阶值, n2为第 二子像素单元的灰阶值。
可选的,显示相邻帧图像时,将第一子像素单元和第二子像素单元其中一 个的灰阶值固定为第一灰阶值,通过转换另一个子像素单元的灰阶值,从而使 得所述像素单元的灰阶值发生变化。
可选的,显示相邻帧图像时, 当前帧中所述第一子像素单元和第二子像素 单元中至少一个的灰阶值为第一灰阶值, 下一帧中,将当前帧中具有第一灰阶 值的子像素单元的灰阶值转换成对应的灰阶值,将另一个子像素单元的灰阶值 转换为第一灰阶值, 从而使得所述像素单元的灰阶值发生变化。
可选的, 所述第一灰阶值为最大灰阶值或最小灰阶值。
可选的,所述第一子像素单元的灰阶值改变和第二子像素单元的灰阶值改 变同时进行。 与现有技术相比, 本发明技术方案具有以下优点: 所述液晶显示面板的每个像素单元包括至少两个相邻的子像素单元,所述 子像素单元通过驱动电路可独立控制,对其中至少两个相邻的子像素单元中的 至少一个进行灰阶值改变, 使得所述像素单元的灰阶值发生改变, 其中, 所述 子像素单元灰阶值改变的绝对值大于或等于所述像素单元的灰阶值改变的绝 对值。也就是说,像素单元的子像素单元灰阶值的变化量比该像素单元的灰阶 值的变化量大, 这样就缩短了像素单元的液晶响应时间,省出的时间可以用于 延长背光的照射时间, 可以提高显示图像的质量, 实现显示图像的高对比度和 高亮度。 即使相邻帧图像的像素单元的灰阶变化量很小 (比如变化量为 1 ), 该像素单元的子像素单元的灰阶变化量也可以很大, 液晶响应时间会很短。
附图说明 图 1是现有的场序式液晶显示像素单元的剖面结构示意图 图 2是现有的场序式液晶显示面板的结构示意图; 图 3为现有的场序式液晶显示面板的驱动方法的时序图; 图 4为本发明一个实施例的液晶显示面板的结构示意图; 图 5为本发明另一个实施例的液晶显示面板的结构示意图。
具体实施方式 背景技术中提到, 由于现有的液晶显示面板,像素的灰阶值变化较小时其 液晶响应时间较大。特别是场序式液晶显示面板显示一帧图像需要对薄膜晶体 管扫描三次, 对液晶层的液晶分子排列三次, 占据了大量的时间, 使得实际用 于图像显示的背光的照射时间较短。如果能减小液晶响应时间,将省出的时间 用于延长背光的照射时间, 可以提高显示图像的质量, 实现显示图像的高对比 度和高亮度。 以场序式液晶显示面板为例,在显示一帧图像的过程中, 同一像素单元发 出的红光、 绿光、 蓝光对应的灰阶各不相同, 在照射不同颜色的光线之前, 需 要将该像素单元的灰阶值进行改变。所述灰阶值的改变需要将液晶层的液晶分 子进行扭转, 扭转的速度和角度通过像素电极和公共电极施加的电压来决定。 发明人经过研究发现, 当灰阶值从最小到最大时或从最大到最小时, 液晶分子 扭转的角度最大,像素电极和公共电极之间施加的电压的差也最大,但由于液 晶分子的扭转速度也最快, 液晶响应时间最短。 如果灰阶值变化较小时, 由于 液晶分子需要扭转的角度较小,像素电极和公共电极之间施加的电压的差也较 小, 液晶分子的扭转速度也较慢, 液晶响应时间反而更长。 因此, 需要尽可能 让像素单元的灰阶值改变的绝对值较大,使得液晶响应时间较短,从而使得背 光的照射时间变长, 可以提高显示图像的质量, 实现显示图像的高对比度和高 亮度。
为此, 发明人提出了一种液晶显示面板, 包括: 若干个呈矩阵排列的像素 单元, 所述像素单元包括至少两个相邻的子像素单元; 若干条扫描线和若干条 数据线,每个所述子像素单元与一条扫描线和一条数据线相连接; 与所述扫描 线和数据线相连接的驱动电路,通过所述扫描线和数据线驱动各个所述子像素 单元。通过改变其中至少一个子像素单元的灰阶值,使得对应的像素单元的灰 阶值发生改变,所述子像素单元灰阶值改变的绝对值大于或等于所述像素单元 灰阶值改变的绝对值,使得所述子像素单元对应的液晶响应时间小于或等于所 述像素单元对应的液晶响应时间,从而使得整个液晶显示面板在显示图像的过 程中背光的照射时间变长。 为使本发明的上述目的、特征和优点能够更为明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。 本发明实施例首先提供了一种液晶显示面板, 请参考图 4, 为本发明实施 例的液晶显示面板的结构示意图, 具体包括: 若干个呈矩阵排列的像素单元 110, 每一个像素单元 110包括第一子像素单元 111和与所述第一子像素单元 111相邻的第二子像素单元 112, 所述第一子像素单元 111、 第二子像素单元 112 都连接有一个薄膜晶体管 (未图示), 所述薄膜晶体管的漏极还连接有电 容, 所述电容包括存储电容(未图示)和液晶电容(未图示), 所述电容用来 为像素电极(未图示)充电; 若干条横向排列的数据线 120, 每一个子像素单 元的薄膜晶体管的源极与一条数据线 120相连接; 若干条纵向排列的扫描线 130, 每一个子像素单元的薄膜晶体管的栅极与一条扫描线 130相连接, 与所 述第一子像素单元 111相连接的数据线 120位于所述第一子像素单元 111的一 侧,与所述第二子像素单元 112相连接的数据线 120位于所述第二子像素单元 112的相对的另一侧,所述相对应的两个相邻的数据线 120和相邻的扫描线 130 围成的区域具有包括第一子像素单元 111 和第二子像素单元 112 的像素单元 110; 扫描驱动电路 135, 与每一条扫描线 130相连接, 用于控制对应子像素 单元的薄膜晶体管的开关状态; 数据驱动电路 125, 与每一条数据线 120相连 接, 用于将图像数据传递到对应的子像素单元。 在本实施例中,所述液晶显示面板可以为场序式液晶显示面板,相对应的, 所述第一子像素单元和第二子像素单元采用场序式驱动方式进行显示。本发明 实施例的液晶显示面板的子像素单元的具体结构与现有技术的液晶显示面板 的子像素单元的具体结构相同,在此不做赘述。 由于所述液晶显示面板为场序 式液晶显示面板, 所述液晶显示面板还包括背光单元, 所述背光单元可以提供 红、 绿、 蓝三种光源, 使得所述液晶显示面板为彩色液晶显示面板。 在显示图 像时, 由于所述背光单元同时只能提供一种颜色的光, 第一子像素单元和第二 子像素单元显示的光的颜色相同。在其他实施例中, 所述液晶显示面板也可以 为 TN-LCD、 IPS-LCD、 FFS-LCD、 VA-LCD。 本发明实施例的液晶显示面板可以是黑白液晶显示面板,也可以是彩色液 晶显示面板。若本发明实施例的液晶显示面板为彩色液晶显示面板, 那么同一 像素单元中的各个子像素单元显示的颜色相同。当彩色液晶显示面板不为场序 式液晶显示面板时, 例如, 一个像素由 R子像素、 G子像素和 B子像素构成 时, 那么 R子像素包括第一 R子像素和第二 R子像素; G子像素包括第一 G 子像素和第二 G子像素; B子像素包括第一 B子像素和第二 B子像素。 在本实施例中,所述第一子像素单元 111和第二子像素单元 112纵向方向 上间隔排列,纵向方向上相邻的第一子像素单元和第二子像素单元组成一个像 素单元, 同一像素单元 110中的第一子像素单元 111和第二子像素单元 112与 同一条扫描线 130相连接,可同时控制第一子像素单元 111的薄膜晶体管和第 二子像素单元 112的薄膜晶体管的开关状态,使得所述第一子像素单元 111的 灰阶值改变和第二子像素单元 112 的灰阶值改变可同时进行。 在其他实施例 中, 所述第一子像素单元和第二子像素单元横向方向上间隔排列,横向方向上 相邻的第一子像素单元和第二子像素单元组成一个像素单元,所述第一子像素 单元和第二子像素单元与同一条数据线相连接。 所述第一子像素单元 111和第二子像素单元 112的面积相同,形状都为长 方形,两个相邻的第一子像素单元 111和第二子像素单元 112组成的像素单元 110的形状为正方形。 在另一实施例中, 两个相邻的第一子像素单元和第二子 像素单元的面积可以不同, 可以根据液晶显示面板厂商的实际需求进行调整, 所述两个相邻的第一子像素单元和第二子像素单元组成的像素单元的形状为 正方形。在其他实施例中, 所述像素单元还可以包括三个或三个以上的子像素 单元,每个子像素单元都通过扫描线和数据线独立地与驱动电路相连接,每一 个子像素单元的面积相同或不同,所述三个或三个以上的子像素单元组成的像 素单元的形状为正方形。 在本实施例中,与所述第一子像素单元 111相连的数据线 120位于所述第 一子像素单元 i n的一侧,与所述第二子像素单元 112相连的数据线 120位于 所述第二子像素单元 112的相对一侧,使得相对应的两个相邻的数据线 120和 相邻的扫描线 130围成的区域具有一个像素单元 110。
在另一实施例中, 请参考图 5 , 与所述第一子像素单元 111、 第二子像素 单元 112相连的数据线 120'位于所述第一子像素单元 111、第二子像素单元 112 的相同一侧,所述相邻的数据线 120'和相邻的扫描线 130围成的区域具有一个 子像素单元。 同样地, 在图 5所示的实施例中, 所述第一子像素单元 111和第二子像素 单元 112纵向方向上间隔排列,纵向方向上相邻的第一子像素单元 111和第二 子像素单元 112组成一个像素单元 110, 同一像素单元 110中的第一子像素单 元 111和第二子像素单元 112与同一条扫描线 130相连接,可同时控制第一子 像素单元 111的薄膜晶体管和第二子像素单元 112的薄膜晶体管的开关状态, 使得所述第一子像素单元 111的灰阶值改变和第二子像素单元 112的灰阶值改 变可同时进行。在其他实施例中, 所述第一子像素单元和第二子像素单元横向 方向上间隔排列,横向方向上相邻的第一子像素单元和第二子像素单元组成一 个像素单元, 所述第一子像素单元和第二子像素单元与同一条数据线相连接。 在本实施例中,所述数据驱动电路 125和扫描驱动电路 135分开设置且分 别与数据线 120、 扫描线 130相连接, 用于分别驱动液晶显示面板的每一个子 像素单元。在其他实施例中, 所述数据驱动电路和扫描驱动电路可以合并在同 一驱动电路中, 并将所述驱动电路与数据线、 扫描线相连接, 用于分别驱动液 晶显示面板的每一个子像素单元。 在本实施例中,当扫描驱动电路 135通过所述扫描线 130向各个子像素单 元发出触发信号时, 从最左侧的扫描线向最右边的扫描线依次发出触发信号。 在其他实施例中,也可以从最右侧的扫描线向最左边的扫描线依次发出触发信 号。 当所述触发信号传送到对应的第一子像素单元 111和第二子像素单元 112 上的薄膜晶体管的栅极时, 开启对应的薄膜晶体管, 利用数据驱动电路 125 通过多条数据线 120将图像数据传递到对应子像素单元的薄膜晶体管的源极, 再传递至与薄膜晶体管漏极相连接的电容(包括存储电容和液晶电容), 使得 该电容能够根据图像数据进行充电,从而控制所述子像素单元的灰阶值(即该 子像素单元所显示图像的灰阶值)。
为了使得本发明实施例的液晶显示面板的液晶响应时间较短,需要使得相 邻帧的像素单元灰阶值改变的绝对值较大。
下面以 64灰阶的液晶显示面板为例对所述液晶显示面板的驱动方法作详 细说明。 所述液晶显示面板为 64灰阶,即表示每个像素单元能显示出 64个亮度层 次, 所述第一子像素单元和第二子像素单元也都能显示出 64个亮度层次, 对 应的灰阶值为 0~63。 像素单元的相对亮度与对应的灰阶值的关系式为:
L= ( N/最大总灰阶数 ) Λ伽马系数 ( 1 ) 其中, L为像素单元的相对亮度, Ν为像素单元对应的灰阶值。 最大灰阶 值等于所述液晶显示面板的总灰阶数减 1 ,在本实施例中,所述总灰阶数为 64, 所述最大灰阶值为 63 , 在其他实施例中, 当所述总灰阶数为 2ΛΗ, 所述 Η大 于等于 4时, 所述最大灰阶值为 2ΛΗ-1。 由于显示装置常用的伽马系数通常为 2.2 , 在本实施例中, 所述伽马系数为 2.2。 由于所述像素单元包括一个第一子像素单元和第二子像素单元,所述第一 子像素单元和第二子像素单元发出的光的亮度之加权平均值即为所述像素单 元的亮度, 即:
L=L1*X+L2*Y ( 2 ) 其中, L为像素单元的相对亮度, L1 为第一子像素单元的相对亮度, L3 为第二子像素单元的相对亮度, X为第一子像素单元的面积占一个像素单元中 所有子像素单元总面积的百分比, Y为第二子像素单元的面积占一个像素单元 中所有子像素单元总面积的百分比, X+Y= 100%。
将所述式(1 )代入式(2 ), 可以获得对于同一帧图像, 所述像素单元的 灰阶值与第一子像素单元、 第二子像素单元的灰阶值的关系式, 即为:
( Ν/最大总灰阶数) Λ伽马系数= ( ( nl/最大总灰阶数) Λ伽马系数) *Χ+ ( ( η2/最大总灰阶数 ) Λ伽马系数) *Υ ( 3 ) 其中, Ν为所述像素单元的灰阶值, nl为所述第一子像素单元的灰阶值, n2为所述第二子像素单元的灰阶值。 在本实施例中, 由于第一子像素单元的面积和第二子像素单元的面积相 等, X=Y=0.5, 本实施例中像素单元的灰阶值与第一子像素单元、 第二子像素 单元的灰阶值的关系式为:
( Ν/最大总灰阶数) Λ伽马系数= ( ( nl/最大总灰阶数) Λ伽马系数) *0.5+ ( ( η2/最大总灰阶数 ) 伽马系数 ) *0·5 ( 4 ) 利用式(3 ) 的关系式, 通过改变所述至少一个子像素单元的灰阶值, 可 以使得对应的像素单元的灰阶值发生变化 ,且通过控制所述子像素单元灰阶值 改变的绝对值大于或等于所述像素单元的灰阶值改变的绝对值,还可以缩短液 晶响应时间,从而使得像素单元实际的发光时间变长, 可以提高显示图像的质 量。
在其他实施例中, 当所述像素单元包括至少三个子像素单元, 由于所述像 素单元的亮度为所述至少三个子像素单元的亮度之加权平均值,通过改变其中 至少一个子像素单元的灰阶值, 也可以使得对应的像素单元的灰阶值发生变 化,且通过控制所述子像素单元灰阶值改变的绝对值大于或等于所述像素单元 的灰阶值改变的绝对值,还可以缩短液晶响应时间,从而使得像素单元实际的 发光时间变长, 可以提高显示图像的质量。 本发明实施例提供了一种利用如图 4所示的液晶显示面板的驱动方法,包 括: 显示相邻帧图像时,对所述第一子像素单元和第二子像素单元中至少一个 进行灰阶值改变, 使得所述像素单元的灰阶值发生改变, 其中, 所述子像素单 元灰阶值改变的绝对值大于或等于所述像素单元的灰阶值改变的绝对值。为了 筒便起见,对于每一帧图像, 所述第一子像素单元和第二子像素单元其中一个 的灰阶值为第一灰阶值。 具体可以采用如下几种实施方式: 本发明的液晶显示面板的驱动方法的第一实施例具体包括:显示相邻帧图 像时,将所述第一子像素单元和第二子像素单元其中一个的灰阶值固定为第一 灰阶值,通过改变另一个子像素单元的灰阶值,从而使得所述像素单元的灰阶 值发生变化。 同时, 对于每一帧图像, 所述第一子像素单元和第二子像素单元 其中一个的灰阶值为第一灰阶值。第一子像素单元的灰阶值和第二子像素单元 的灰阶值与二者构成的像素单元的灰阶值满足(3 ) 式。 所述第一灰阶值为最 大灰阶值、 最小灰阶值或者约等于最大灰阶值、 最小灰阶值的其他灰阶值。 例 如显示当前帧图像时, 其中第一子像素单元的灰阶值为第一灰阶值, 第二子像 素单元可以为第一灰阶值, 也可以不为第一灰阶值。 显示下一帧图像时, 第一 子像素单元的灰阶值仍为第一灰阶值, 第二子像素单元的灰阶值按照 (3 ) 式 计算得到。由于将同一像素单元中的一个子像素单元的灰阶值固定为第一灰阶 值,另一个子像素单元灰阶值改变的绝对值大于或等于对应的像素单元灰阶值 改变的绝对值,从而使得子像素单元液晶响应时间比现有技术的像素单元液晶 响应时间短,且由于其中一个子像素单元的灰阶值没有变化, 液晶层不需要响 应时间,使得利用本发明实施例的像素单元的液晶响应时间比现有技术的像素 单元的液晶响应时间短,从而使得背光的照射时间的时间变长, 可以提高显示 图像的质量, 实现显示图像的高对比度和高亮度。 具体的, 由于最大灰阶值为 63 , 最小灰阶值为 0, 在本实施例中, 所述第 一灰阶值为 0。 在本实施例中, 显示当前帧图像时, 所述第一子像素单元的灰 阶值为 0, 所述第二子像素单元的灰阶值可以为 0也可以不为 0; 显示下一帧 图像时,通过改变第二子像素单元的灰阶值,使得对应的像素单元的灰阶值发 生变化。所述第一子像素单元的灰阶值、第二子像素单元的灰阶值和对应像素 单元的灰阶值请参考表 1 , 表 1中第 1行为对应像素单元的灰阶值的个位数, 表 1中第 1列为对应像素单元的灰阶值的十位数, 其余格子中的数据,逗号前 的数值为第一子像素单元的灰阶值, 逗号后的数值为第二子像素单元的灰阶 值。 由于所述灰阶值为整数, 表 1 中的数据为根据式(4 )计算后四舍五入的 结果。例如对应的像素单元的灰阶值需要从 06变为 43时, 第一子像素单元的 灰阶值固定不变, 都为 0, 液晶分子不需要偏转; 第二子像素单元的灰阶值从 8变为 59, 由于像素单元的灰阶值变化的绝对值为 37, 而第二子像素单元的 灰阶值变化的绝对值为 51 , 所述第二子像素单元液晶响应时间比现有技术的 像素单元液晶响应时间短,使得利用本发明实施例的液晶显示面板液晶响应时 间比现有技术的像素单元液晶响应时间短。
Figure imgf000014_0001
表 1
由于在第一实施例中, 当所述像素单元的灰阶值为 46时, 所述第二子像 素单元的灰阶值已经为最大灰阶值为 63 , 因此在像素单元的灰阶值范围为 47-63时, 所述第一子像素单元、 第二子像素单元的灰阶值与所述像素单元的 灰阶值相同, 所述第一子像素单元、第二子像素单元的灰阶值改变的绝对值与 所述像素单元的灰阶值改变的绝对值相同, 并不能缩短液晶响应时间。 为此,在本发明的液晶显示面板的驱动方法的第二实施例中, 利用可显示 较高灰阶图像的液晶显示面板来显示较低灰阶的图像, 例如利用可显示 64灰 阶图像的液晶显示面板来显示具有 32灰阶的图像, 并将所述第一子像素单元 和第二子像素单元其中一个的灰阶值固定为第一灰阶值,通过改变另一个子像 素单元的灰阶值, 从而使得所述像素单元的灰阶值发生变化。 请参考表 1 , 由 于像素单元显示图像的最大灰阶值为 31时, 对应的第二子像素单元的灰阶值 为 42, 没有超过液晶显示面板的灰阶范围, 使得像素单元的所有灰阶值改变 都能缩短液晶响应时间。 本发明的液晶显示面板的驱动方法的第三实施例包括: 显示相邻帧图像 时, 第一子像素单元和第二子像素单元的灰阶值交替为第一灰阶值。 同时, 对 于每一帧图像,所述第一子像素单元和第二子像素单元其中一个的灰阶值为第 一灰阶值。第一子像素单元的灰阶值和第二子像素单元的灰阶值与二者构成的 像素单元的灰阶值满足(3 ) 式。 例如显示当前帧图像时, 第一子像素单元的 灰阶值为第一灰阶值, 第二子像素单元的灰阶值根据 (3 ) 式计算得出, 可能 为第一灰阶值, 也可能不为第一灰阶值; 显示下一帧图像时, 将第二子像素单 元的灰阶值改变为第一灰阶值,将第一子像素单元的灰阶值改变成对应的灰阶 值, 所述对应的灰阶值根据(3 ) 式计算得出, 从而使得所述像素单元的灰阶 值发生变化。所述第一灰阶值为最大灰阶值、最小灰阶值或者约等于最大灰阶 值、最小灰阶值的其他灰阶值。 当所述同一像素单元的两个子像素单元灰阶值 改变的绝对值大于该像素单元的灰阶值改变的绝对值时,所述两个子像素单元 液晶响应时间比现有技术的像素单元液晶响应时间都短,从而使得利用本发明 实施例的液晶显示面板液晶响应时间比现有技术的像素单元液晶响应时间短 , 从而使得背光的照射时间的时间变长, 可以提高显示图像的质量, 实现显示图 像的高对比度和高亮度。 具体的, 所述最大灰阶值为 63 , 最小灰阶值为 0, 在本实施例中, 所述第 一灰阶值为 0。 在本实施例中, 显示当前帧图像时, 所述第一子像素单元的灰 阶值为 0, 所述第二子像素单元的灰阶值可以为 0也可以不为 0; 显示下一帧 图像时, 将所述第二子像素单元的灰阶值从原来的灰阶值改变为 0, 将第一子 像素单元的灰阶值从 0改变成对应的灰阶值,其中第一子像素单元对应的灰阶 值可根据式(4 )计算获得。 例如对应的像素单元的灰阶值需要从 36变为 43 时, 由于像素单元 36对应的一个子像素单元的灰阶值为 0, 另一个子像素单 元的灰阶值为 49, 而像素单元 43对应的一个子像素单元的灰阶值为 0, 另一 个子像素单元的灰阶值为 59, 将所述其中一个子像素单元的灰阶值从 0变为 59, 将所述另一个子像素单元的灰阶值从 49变为 0, 由于两个子像素单元的 灰阶值改变的绝对值为 59和 49,而所述像素单元的灰阶值改变的绝对值为 7, 利用本发明实施例的液晶显示面板液晶响应时间比现有技术的像素单元液晶 响应时间短,从而使得背光的照射时间的时间变长,可以提高显示图像的质量, 实现显示图像的高对比度和高亮度。 当所述第一子像素单元和第二子像素单元与同一条扫描线相连接时,可同 时对第一子像素单元和第二子像素单元的薄膜晶体管的开关状态进行控制,使 得所述第一子像素单元的灰阶值改变和第二子像素单元的灰阶值改变可同时 进行, 有利于缩短液晶响应时间。 由于在第三实施例中, 当所述像素单元的灰阶值为 46时, 由于第二子像 素单元的灰阶值已经为最大灰阶值为 63 , 因此所述像素单元的灰阶值范围为 47-63时, 所述第一子像素单元、 第二子像素单元的灰阶值与所述像素单元的 灰阶值相同, 所述第一子像素单元、第二子像素单元的灰阶值改变的绝对值与 所述像素单元的灰阶值改变的绝对值相同, 并不能缩短液晶响应时间。 为此,在本发明的液晶显示面板的驱动方法的第四实施例中, 利用可显示 较高灰阶图像的液晶显示面板来显示较低灰阶的图像, 例如利用可显示 64灰 阶图像的液晶显示面板来显示 32灰阶的图像, 所述第一子像素单元和第二子 像素单元中至少一个的灰阶值为第一灰阶值,将另一个子像素单元的灰阶值改 变为第一灰阶值,将原来为第一灰阶值的子像素单元的灰阶值改变成对应的灰 阶值, 从而使得所述像素单元的灰阶值发生变化。 请参考表 1 , 当所述像素单 元显示图像的最大灰阶值为 31时, 对应的第二子像素单元的灰阶值为 42 , 没 有超过液晶显示面板的最大灰阶值,使得像素单元的所有灰阶值改变都能缩短 液晶响应时间。 综上,本发明实施例的液晶显示面板的每个像素单元包括至少两个相邻的 子像素单元, 所述子像素单元通过驱动电路可独立控制,对其中至少两个相邻 的子像素单元中的至少一个进行灰阶值改变,使得所述像素单元的灰阶值发生 改变, 其中, 所述子像素单元灰阶值改变的绝对值大于或等于所述像素单元的 灰阶值改变的绝对值。由于像素单元的子像素单元灰阶值的变化量比该像素单 元的灰阶值的变化量大, 这样就缩短了像素单元的液晶响应时间,省出的时间 可以用于延长背光的照射时间, 可以提高显示图像的质量, 实现显示图像的高 对比度和高亮度。 即使相邻帧图像的像素单元的灰阶变化量很小, 该像素单元 的子像素单元的灰阶变化量也可以很大, 液晶响应时间会很短。 本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何 本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法 和技术内容对本发明技术方案做出可能的变动和修改, 因此, 凡是未脱离本发 改、 等同变化及修饰, 均属于本发明技术方案的保护范围。

Claims

权 利 要 求
1. 一种液晶显示面板, 其特征在于, 包括:
若干个呈矩阵排列的像素单元,所述像素单元包括至少两个相邻的子像素 单元;
若干条扫描线和数据线,每个所述子像素单元与一条扫描线和一条数据线 相连接;
与所述扫描线和数据线相连接的驱动电路,通过所述扫描线和数据线驱动 各个所述子像素单元。
2. 如权利要求 1 所述的液晶显示面板, 其特征在于, 所述像素单元包括第一 子像素单元和与第一子像素单元相邻的第二子像素单元。
3. 如权利要求 2所述的液晶显示面板, 其特征在于, 所述第一子像素单元与 第二子像素单元的面积相同。
4. 如权利要求 1 所述的液晶显示面板, 其特征在于, 所述液晶显示面板为彩 色液晶显示面板, 同一所述像素单元中的各个子像素单元显示的颜色相同。
5. 如权利要求 1 所述的液晶显示面板, 其特征在于, 所述液晶显示面板为黑 白液晶显示面板。
6. 如权利要求 1 所述的液晶显示面板, 其特征在于, 所述液晶显示面板为场 序式液晶显示面板。
7. 如权利要求 6所述的液晶显示面板, 其特征在于, 还包括背光单元, 所述 背光单元提供红、 绿、 蓝三种光源。
8. 如权利要求 2所述的液晶显示面板, 其特征在于, 对于同一帧图像, 所述 像素单元的灰阶值与第一子像素单元、 第二子像素单元的灰阶值的关系式 为:
( N/最大总灰阶数) Λ伽马系数= ( ( nl/最大总灰阶数) Λ伽马系数) *Χ+ ( ( η2/最大总灰阶数 ) Λ伽马系数) *Υ,
其中, Ν为像素单元的灰阶值, nl为第一子像素单元的灰阶值, n2为第 二子像素单元的灰阶值, X为第一子像素单元的面积占第一子像素单元和第二 子像素单元总面积的百分比, Y为第二子像素单元的面积占第一子像素单元和 第二子像素单元总面积的百分比。
9. 如权利要求 8所述的液晶显示面板, 其特征在于, 对于相邻帧图像, 当像 素单元的灰阶值发生改变时, 第一子像素单元和第二子像素单元中至少一 个发生灰阶值改变, 且所述子像素单元灰阶值改变的绝对值大于或等于所 述像素单元灰阶值改变的绝对值。
10.如权利要求 9所述的液晶显示面板, 其特征在于, 对于同一帧图像, 所述 第一子像素单元和第二子像素单元其中一个的灰阶值为第一灰阶值。
11.如权利要求 10所述的液晶显示面板, 其特征在于, 对于相邻帧图像, 第一 子像素单元和第二子像素单元其中一个的灰阶值固定为第一灰阶值。
12.如权利要求 10所述的液晶显示面板, 其特征在于, 对于相邻帧图像, 第一 子像素单元和第二子像素单元的灰阶值交替为第一灰阶值。
13.如权利要求 10或 11或 12所述的液晶显示面板, 其特征在于, 所述第一灰 阶值为最大灰阶值或最小灰阶值。
14.一种如权利要求 2所述的液晶显示面板的驱动方法, 其特征在于, 包括: 显示相邻帧图像时,对第一子像素单元和第二子像素单元中至少一个进行 灰阶值改变, 使得所述像素单元的灰阶值发生改变, 其中, 所述子像素单元灰 阶值改变的绝对值大于或等于所述像素单元的灰阶值改变的绝对值。
15.如权利要求 14所述的液晶显示面板的驱动方法, 其特征在于, 显示同一帧 图像时, 所述像素单元的灰阶值与第一子像素单元、 第二子像素单元的灰 阶值的关系式为:
( N/最大总灰阶数) Λ伽马系数= ( ( nl/最大总灰阶数) Λ伽马系数) *Χ+
( ( η2/最大总灰阶数) Λ伽马系数) *Υ,
其中, Ν为像素单元的灰阶值, nl为第一子像素单元的灰阶值, n2为第 二子像素单元的灰阶值, X为第一子像素单元的面积占第一子像素单元和第二 子像素单元总面积的百分比, Y为第二子像素单元的面积占第一子像素单元和 第二子像素单元总面积的百分比。
16.如权利要求 14所述的液晶显示面板的驱动方法, 其特征在于, 当所述第一 子像素单元、 第二子像素单元的面积相同, 显示同一帧图像时, 所述像素 单元的灰阶值与第一子像素单元、 第二子像素单元的灰阶值的关系式为:
( N/最大总灰阶数) Λ伽马系数= ( ( nl/最大总灰阶数) Λ伽马系数) *0.5+ ( ( n2/最大总灰阶数) Λ伽马系数) *0.5 ,
其中, Ν为像素单元的灰阶值, nl为第一子像素单元的灰阶值, n2为第 二子像素单元的灰阶值。
17.如权利要求 14所述的液晶显示面板的驱动方法, 其特征在于, 显示相邻帧 图像时, 将第一子像素单元和第二子像素单元其中一个的灰阶值固定为第 一灰阶值, 通过转换另一个子像素单元的灰阶值, 从而使得所述像素单元 的灰阶值发生变化。
18.如权利要求 14所述的液晶显示面板的驱动方法, 其特征在于, 显示相邻帧 图像时, 当前帧中所述第一子像素单元和第二子像素单元中至少一个的灰 阶值为第一灰阶值, 下一帧中, 将当前帧中具有第一灰阶值的子像素单元 的灰阶值转换成对应的灰阶值, 将另一个子像素单元的灰阶值转换为第一 灰阶值, 从而使得所述像素单元的灰阶值发生变化。
19.如权利要求 17所述的液晶显示面板的驱动方法, 其特征在于, 所述第一灰 阶值为最大灰阶值或最小灰阶值。
20.如权利要求 18所述的液晶显示面板的驱动方法, 其特征在于, 所述第一子 像素单元的灰阶值改变和第二子像素单元的灰阶值改变同时进行。
PCT/CN2012/078225 2011-12-29 2012-07-05 液晶显示面板及驱动方法 WO2013097442A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12850742.3A EP2648036A4 (en) 2011-12-29 2012-07-05 LIQUID CRYSTAL DISPLAY PANEL AND STEERING METHOD FOR THE SAME
US13/951,355 US9424803B2 (en) 2011-12-29 2013-07-25 Liquid crystal display panel and method of driving the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110453546.9 2011-12-29
CN201110453546.9A CN103185975B (zh) 2011-12-29 2011-12-29 液晶显示面板及驱动方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/951,355 Continuation US9424803B2 (en) 2011-12-29 2013-07-25 Liquid crystal display panel and method of driving the same

Publications (1)

Publication Number Publication Date
WO2013097442A1 true WO2013097442A1 (zh) 2013-07-04

Family

ID=48677227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078225 WO2013097442A1 (zh) 2011-12-29 2012-07-05 液晶显示面板及驱动方法

Country Status (4)

Country Link
US (1) US9424803B2 (zh)
EP (1) EP2648036A4 (zh)
CN (1) CN103185975B (zh)
WO (1) WO2013097442A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570430A (zh) * 2015-01-20 2015-04-29 青岛海信电器股份有限公司 一种应用于mva广视角液晶屏的显示方法及装置
CN105182638A (zh) * 2015-08-28 2015-12-23 重庆京东方光电科技有限公司 阵列基板、显示装置及其驱动方法
CN105427776B (zh) * 2016-01-26 2018-08-07 深圳市华星光电技术有限公司 液晶面板影像残留检测方法和装置
CN107144993B (zh) * 2017-06-30 2020-05-05 惠科股份有限公司 一种显示面板检测方法及装置
US11294234B2 (en) * 2020-01-08 2022-04-05 Innolux Corporation Display device
CN115083360B (zh) * 2021-03-10 2023-04-07 成都九天画芯科技有限公司 一种场序时间混色算法
CN113589608B (zh) * 2021-07-09 2023-12-29 Tcl华星光电技术有限公司 显示面板及显示终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402556A (zh) * 2001-08-06 2003-03-12 日本电气株式会社 液晶显示器件
CN101140749A (zh) * 2007-10-31 2008-03-12 友达光电股份有限公司 像素的驱动方法
CN101546543A (zh) * 2008-03-27 2009-09-30 索尼株式会社 液晶显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2042973C1 (ru) * 1992-12-30 1995-08-27 Малое научно-производственное предприятие "ЭЛО" Жидкокристаллическая цветная дисплейная панель с активной матрицей
US6744416B2 (en) * 2000-12-27 2004-06-01 Casio Computer Co., Ltd. Field sequential liquid crystal display apparatus
JP4536440B2 (ja) * 2003-09-09 2010-09-01 シャープ株式会社 液晶表示装置及びその駆動方法
JP2005352134A (ja) * 2004-06-10 2005-12-22 Alps Electric Co Ltd フィールドシーケンシャルocbモード半透過反射型液晶表示装置
JP5031553B2 (ja) * 2005-03-03 2012-09-19 シャープ株式会社 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法
KR20060112043A (ko) * 2005-04-26 2006-10-31 삼성전자주식회사 액정 표시 장치
JP2006349952A (ja) * 2005-06-15 2006-12-28 Sony Corp 画像表示装置及び方法
US20090128467A1 (en) * 2007-11-21 2009-05-21 Innolux Display Corp. Liquid crystal display with pixel region having nine sub-pixels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402556A (zh) * 2001-08-06 2003-03-12 日本电气株式会社 液晶显示器件
CN101140749A (zh) * 2007-10-31 2008-03-12 友达光电股份有限公司 像素的驱动方法
CN101546543A (zh) * 2008-03-27 2009-09-30 索尼株式会社 液晶显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2648036A4 *

Also Published As

Publication number Publication date
US9424803B2 (en) 2016-08-23
EP2648036A1 (en) 2013-10-09
EP2648036A4 (en) 2015-07-29
US20130307883A1 (en) 2013-11-21
CN103185975A (zh) 2013-07-03
CN103185975B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
US10802327B2 (en) Liquid crystal display device and driving method thereof
US9934736B2 (en) Liquid crystal display and method for driving the same
WO2019242118A1 (zh) 显示装置和驱动方法
US10140937B2 (en) Display panel, liquid crystal display and driving method therefor
CN109215598B (zh) 显示面板及其驱动方法
KR20160125562A (ko) 액정표시장치
WO2013097442A1 (zh) 液晶显示面板及驱动方法
US11527213B2 (en) Driving method of display panel for reducing viewing angle color deviation and display device
US10192510B2 (en) Source driving module generating two groups of gamma voltages and liquid crystal display device using same
US20090102777A1 (en) Method for driving liquid crystal display panel with triple gate arrangement
KR20110031115A (ko) 어레이 기판 및 그 구동 방법
US20150294611A1 (en) Displaying method and driving device of lcd panel and lcd device
WO2014000384A1 (zh) 显示面板及其驱动方法、显示装置
JP2008268905A (ja) 液晶表示装置
KR101286535B1 (ko) 액정 표시장치의 구동장치와 그 구동방법
CN106932988B (zh) 一种像素结构、液晶显示面板及液晶显示装置
JP2016071363A (ja) 半透過半反射型液晶パネル
US20200090605A1 (en) Driving Method and Device of Display Panel, and Display Device
TWI416497B (zh) 液晶顯示裝置之驅動方法及其相關裝置
US11114050B2 (en) Driving method and driving device of display panel, and display device
US10796651B2 (en) Driving method and device of display panel, and display device
KR20120090888A (ko) 액정 표시 장치
CN113393787A (zh) 显示面板的驱动方法、显示面板的驱动装置及显示装置
KR20110107585A (ko) 액정 표시장치 및 구동방법
KR101686093B1 (ko) 시야각 제어 액정 표시 장치 및 이의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE