WO2013097415A1 - 复合材料多维织造成形机 - Google Patents

复合材料多维织造成形机 Download PDF

Info

Publication number
WO2013097415A1
WO2013097415A1 PCT/CN2012/076582 CN2012076582W WO2013097415A1 WO 2013097415 A1 WO2013097415 A1 WO 2013097415A1 CN 2012076582 W CN2012076582 W CN 2012076582W WO 2013097415 A1 WO2013097415 A1 WO 2013097415A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
plate
guide
forming machine
disposed
Prior art date
Application number
PCT/CN2012/076582
Other languages
English (en)
French (fr)
Inventor
单忠德
李希文
刘丰
乔娟娟
陈海波
秦绍衍
Original Assignee
机械科学研究总院先进制造技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 机械科学研究总院先进制造技术研究中心 filed Critical 机械科学研究总院先进制造技术研究中心
Priority to ES12863114T priority Critical patent/ES2772399T3/es
Priority to RU2014129028/12A priority patent/RU2590809C2/ru
Priority to KR1020147021534A priority patent/KR101699523B1/ko
Priority to US14/369,630 priority patent/US9103054B2/en
Priority to JP2014549305A priority patent/JP6046744B2/ja
Priority to EP12863114.0A priority patent/EP2799604B1/en
Publication of WO2013097415A1 publication Critical patent/WO2013097415A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C3/00Braiding or lacing machines
    • D04C3/02Braiding or lacing machines with spool carriers guided by track plates or by bobbin heads exclusively
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D41/00Looms not otherwise provided for, e.g. for weaving chenille yarn; Details peculiar to these looms
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D41/00Looms not otherwise provided for, e.g. for weaving chenille yarn; Details peculiar to these looms
    • D03D41/004Looms for three-dimensional fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C3/00Braiding or lacing machines
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • D04C1/04Carbonised or like lace
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C3/00Braiding or lacing machines
    • D04C3/02Braiding or lacing machines with spool carriers guided by track plates or by bobbin heads exclusively
    • D04C3/04Braiding or lacing machines with spool carriers guided by track plates or by bobbin heads exclusively with spool carriers guided and reciprocating in non-endless paths
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/20Industrial for civil engineering, e.g. geotextiles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2507/00Sport; Military

Definitions

  • the present invention relates to the field of composite material weaving forming technology, and in particular to a composite material multi-dimensional weaving forming machine.
  • High-strength fibers such as carbon fiber, aramid, polyethylene, and glass fiber and composite products thereof are part of China's strategic emerging industries, and have the advantages of light weight, high strength, corrosion resistance and unique concealment.
  • Composite materials are widely used in wind energy, aerospace, automotive, rail transit, construction, weapons, armor, shipbuilding, chemical and sports competitions, and have always been an important industry in the world for priority development and competition. In the cutting-edge industries such as aerospace, composite materials are the key materials.
  • composite technology is the first key technology for Boeing and Airbus hegemony. It is also one of the main bottleneck technologies for China's large aircraft projects.
  • Boeing 787 aircraft use more than 50% of the total mass of the aircraft; the shell of the stealth fighter is basically made of absorbing composite materials; at the same time, composite materials are one of the basic elements of aircraft and ship stealth.
  • composite materials have many excellent properties, the composite materials must be further expanded.
  • the following weaknesses must be improved: First, the existing fiber composites are easy to crack. The fiber composites such as fiber cloth and prepreg are added together. To a certain thickness, it is cured by a resin matrix.
  • the two-dimensional direction of the sheet plane is several times stronger than steel due to the presence of super-strong fibers, which can reach more than 3000 MPa.
  • the interlayer strength is very low, only about 100 MPa, and the strength of the fibers in the layer and the interlayer plastic are more than 30 times. Therefore, the easy cracking between the layers is a congenital weakness of the fiber composite material. Due to the low strength between the composites, the impact strength and compressive strength of the composites are also low, especially when subjected to impact loads and compressive fatigue loads. Interlaminar cracking is the main failure mode of composites.
  • inter-layer sewing, three-dimensional weaving, three-dimensional weaving and the like may be employed. Although some progress has been made in the development of these technologies, the process complexity is high and the use is limited. However, the application of a wide variety of multi-axial warp-knitted composite materials is limited by the thickness, and the overall three-dimensional structure cannot be obtained. This shows that the easy cracking between layers is the main weakness that plagues the performance of composite materials. Therefore, how to improve the interlayer strength of fiber composites at low cost has become a long-term world problem.
  • the fiber sheets are usually made of yarn, and the fiber sheets are laminated to a certain thickness to obtain a composite sheet or article.
  • the application of long fibers as a material must go through the process of line, surface, and plate/body, but in the entire production process for producing fiber composite products, only the line to the surface can be efficiently produced using textile technology. Due to the difficulty in automating the mechanical operation of fiber sheets, only the cutting-edge industries that require high stacking accuracy for fiber sheets, such as aircraft manufacturing, can use expensive fiber automated layup equipment, so in the composites industry, fiber sheets are used.
  • the lamination process of lamination to the board and the product is mostly manual lamination, which has low production efficiency and high labor cost.
  • high-strength fibers such as carbon fiber, aramid, and high-mold polyethylene are expensive because of the low interlayer strength of the fiber composite, low lamination efficiency, and high labor cost in the lamination process, which limits the use of the composite material, and also makes carbon fiber
  • High-strength fibers such as aramid and high-modulus polyethylene are mainly used in high-end products, and the market capacity is limited. Coupled with the technological monopoly of carbon fiber, aramid fiber and high-modulus polyethylene fiber in developed countries, these high-strength fibers are naturally very expensive.
  • An object of the present invention is to provide a composite multi-dimensional weaving forming machine to solve the technical problem of a manufacturing apparatus which does not have a high degree of automation and can weave a high-strength composite material in the prior art.
  • the present invention provides a composite multi-dimensional weaving forming machine, comprising: a guiding template comprising a plurality of cylindrical guiding bodies arranged according to the geometry of the preform; an electronically controlled three-dimensional moving mechanism located above the guiding template
  • the electronically controlled three-dimensional motion mechanism comprises: a control signal receiving end for receiving a motion control signal corresponding to the geometry of the preform; a three-dimensional motion output end, forming a motion track according to the motion control signal; and a weaving mechanism, comprising: a knitting needle, Connected to the three-dimensional motion output end, the woven fiber is moved along the movement track between the cylindrical guide bodies, so that the woven fibers are distributed between the cylindrical guide bodies according to the geometry of the preform.
  • the guiding template comprises a woven plate, the woven plate is provided with a plurality of uniformly distributed first through holes, the woven plate is provided with a perforated plate below, and the porous plate is provided with a plurality of height-adjustable guiding columns, the perforated plate Having a plurality of second through holes coaxially corresponding to the first through holes, the guide posts pass through the first through holes and the second through holes, and the cylindrical guide body is a height selectable cylindrical sleeve sleeved on the guide post cylinder.
  • a pneumatic chuck for gripping the knitting needle, the cylindrical guide body and/or the guide post is disposed on the three-dimensional motion output end.
  • the guide post is provided with a card slot which is equidistantly distributed in the axial direction, and a movable adjustment plate is arranged below the perforated plate, and a guide post plate which is relatively stationary with the perforated plate is disposed below the movable adjustment plate, and is movable
  • the adjusting plate is slidable relative to the perforated plate, and the movable adjusting plate is provided with a plurality of oblong holes corresponding to the positions of the second through holes of the perforated plate, and the guiding column passes through the oblong hole and is in the long circle under the movement of the movable adjusting plate Move inside the hole.
  • the movable adjusting plate is provided with a locking member matched with the card slot, and the movable adjusting plate has a locking position for engaging the locking member with the card slot to lock the height of the guiding column and the locking member and the card slot Separate unlocked position.
  • the locking member is a spring piece which is disposed at one end in the extending direction of the oblong hole and extends obliquely toward the guide post located in the oblong hole, the card slot being defined by the conical portion of the guide post and the flange provided at the small diameter end of the conical portion Formed.
  • a first support frame is disposed under the movable adjustment plate, and the first support frame is provided with a first support frame on the outer circumference of the movable adjustment plate, and the first support frame is provided with a positioning plate, and the side of the positioning plate is disposed A horizontally extending adjustment screw, the first end of the adjustment screw being fixedly coupled to the movable adjustment plate.
  • the bottom surface of the movable adjustment plate is fixedly provided with a fork, and the first end of the adjustment screw is fixedly connected with the movable adjustment plate through the fork, and the second end of the adjustment screw is provided with an adjustment handle.
  • the positioning plate is further provided with a connecting hole for connecting with the first supporting frame.
  • the first support frame includes four first legs, and the guide post plates are disposed between the four first legs.
  • the perforated plate is further provided with a plurality of positioning sleeves coaxially matched with the second through holes, and the guiding columns pass through the positioning sleeve.
  • the upper end of the guide post is provided with a first ring table extending outward in the radial direction.
  • the outer circumference of the cylindrical guide body is provided with a plurality of annular grooves for limiting the woven fibers.
  • the upper end of the cylindrical guide body is provided with a second ring table projecting outward in the radial direction.
  • the electronically controlled three-dimensional motion mechanism further comprises: an X-axis motion unit, comprising: an X-axis support body extending along the first direction; an X-axis guide rail disposed on the X-axis support body; and an X-axis synchronous belt motion mechanism, along the X
  • the shaft guide is arranged with an X-axis slider;
  • the Y-axis motion unit includes: a Y-axis support body connected to the X-axis slider and extending in a second direction perpendicular to the first direction; and a Y-axis guide rail disposed on the Y-axis support
  • the Y-axis synchronous belt moving mechanism is disposed along the Y-axis guide rail and has a Y-axis sliding block;
  • the Z-axis moving unit includes: a Z-axis supporting body, which is perpendicular to a plane formed by the first direction and the second direction The three-axis extension; the z-axis guide rail is disposed on
  • the X-axis support body includes two first support bodies and a second support body disposed in parallel, and the X-axis guide rail includes first and second guide rails respectively disposed on the first support body and the second support body, X
  • the shaft timing belt moving mechanism is disposed on the first support body, and the timing belt of the X-axis synchronous belt moving mechanism is connected to the first end of the Y-axis support body;
  • the X-axis slide block includes a first slider located on the first rail and located at a second slider on the second rail; the first slider and the second slider are respectively located below the first end and the second end of the Y-axis support.
  • the composite multi-dimensional weaving forming machine further comprises a cylindrical guiding body storage rack located on the first side of the guiding template, the cylindrical guiding body storage frame comprising a guiding body storage supporting frame and a guiding body storage support
  • the storage board on the rack, the storage board prestores a plurality of cylindrical guides of different heights.
  • the storage plate is provided with a plurality of evenly distributed threaded holes, and the threaded holes are provided with a storage support rod for supporting the cylindrical guide body, and the lower end of the storage support rod is provided with an external thread that cooperates with the threaded hole.
  • the weaving mechanism further includes a fiber feeding wire and a tensioning mechanism located on the second side of the guiding template.
  • the fiber feeding and tensioning mechanism comprises: a third bracket; a fiber roll mounting frame disposed on the support beam of the third bracket, having a strut for supporting the fiber coil; and a tensioning wheel seat plate, disposed at the On the support beam of the three brackets, the tension wheel base plate is provided with a tensioning wheel and a guide wheel for supplying the fiber needle to the knitting needle.
  • the fiber feeding and tensioning mechanism further comprises a knitting needle holder for storing the knitting needle, the knitting needle holder being located at one side of the tensioning wheel seat plate.
  • the invention has the following beneficial effects:
  • the composite multi-dimensional weaving forming machine provided by the invention utilizes a cylindrical guiding body and an electronically controlled three-dimensional moving mechanism, so that the knitting needle drives the braided wire to be distributed along the movement track between the cylindrical guiding bodies to form a guiding template. It can be applied to multi-dimensional weaving forming of large and complex composite materials, which can effectively improve the interlaminar strength of composite materials.
  • the forming machine applies rapid prototyping technology to multi-dimensional weaving of composite materials and automates the process.
  • the present invention has other objects, features and advantages. The invention will now be described in further detail with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in FIG.
  • FIG. 1 is a perspective view of a composite material multi-dimensional weaving forming machine according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural view of a guiding template of a preferred embodiment of the present invention
  • FIG. 4 is a schematic view showing the surface structure of a cylindrical guide body according to a preferred embodiment of the present invention
  • FIG. 5 is a schematic view showing the adjustment structure of the movable adjustment plate under the guide template according to a preferred embodiment of the present invention
  • FIG. 7 is a schematic view showing the positional relationship between the locking member and the card slot when the movable adjusting plate is in the locking position after the knitting is completed;
  • FIG. 1 is a perspective view of a composite material multi-dimensional weaving forming machine according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural view of a guiding template of a preferred embodiment of the present invention
  • FIG. 4 is a schematic view showing the surface structure of a cylindrical guide body according to a preferred embodiment of the present invention
  • FIG. 8 is a schematic view showing the positional relationship between the locking member and the card slot when the movable adjusting plate is in the locking position;
  • FIG. 9 is a schematic view showing the structure of the X-axis moving unit of the preferred embodiment of the present invention;
  • FIG. 11 is a schematic structural view of the X-axis moving unit of the preferred embodiment of the present invention;
  • FIG. 12 is a schematic structural view of a Y-axis moving unit of a preferred embodiment of the present invention;
  • FIG. 13 is a schematic view of the B-direction structure of FIG. ;
  • FIG. 14 is a partially enlarged schematic view of the structure in FIG. 8 30a; and
  • the present invention provides a composite multi-dimensional weaving forming machine, comprising: a guiding template 60 comprising a plurality of cylindrical guiding bodies 62 arranged according to the shape of the prefabricated member; electronically controlled three-dimensional movement The mechanism 30 is located above the guiding template 60.
  • the electronically controlled three-dimensional moving mechanism 30 comprises: a control signal receiving end for receiving a motion control signal; a three-dimensional motion output end 30a for forming a motion track according to the motion control signal;
  • the multi-dimensional weaving forming machine further includes a weaving mechanism 50 comprising: a knitting needle 14 coupled to the three-dimensional motion output end 30a for driving the braided wire to be distributed between the cylindrical guide bodies 62 along the motion path.
  • the guide template 60 includes a woven plate 60a.
  • the woven plate 60a is provided with a plurality of uniformly distributed first through holes, and the woven plate 60a is supported by a rectangular frame 59.
  • a porous plate 65 is disposed under the 60a.
  • the porous plate 65 has a plurality of second through holes coaxially corresponding to the first through holes.
  • a plurality of height-adjustable guide posts 61 are disposed below the porous plate 65. The upper end passes through the first through hole and the second through hole above the woven plate 60a, and the cylindrical guide body 62 is a height selectable cylindrical sleeve that is sleeved on the guide post 61.
  • the guide post 61 is provided with a card groove 61a which is equidistantly distributed in the axial direction, and the card groove 61a can be formed by a conical portion on the guide post 61 and a flange portion provided at the small diameter end of the conical portion.
  • the upper end of the guide post 61 is provided with a first ring stage 61c that projects radially outward.
  • the portion below the first ring stage 61c can be grasped by the clamping device to move the guide post 61.
  • the outer circumference of the cylindrical guide body 62 is provided with a plurality of annular grooves 62a for limiting the woven fibers, each ring groove 62a is formed by a plurality of radially outwardly extending flanges on the cylindrical guide 62.
  • the upper end of the cylindrical guide body 62 may be provided with a second ring table 62c extending outward in the radial direction, and the portion below the second ring table 62c may be clamped by the chuck.
  • the clamping guide 62 is gripped.
  • a movable adjustment plate 68 is disposed below the perforated plate 65, and a guide post plate 64 that is relatively stationary with the perforated plate 65 is disposed below the movable adjustment plate 68, as the guide post 61 (see FIG.
  • the lower end of the guide post 61 is located on the guide post plate 64, the movable adjustment plate 68 is slidable relative to the perforated plate 65, and the movable adjustment plate 68 is provided with a plurality of positions corresponding to the through holes of the perforated plate 65.
  • the oblong hole 72 see Fig. 6
  • the guide post 61 passes through the oblong hole 72 and moves within the oblong hole 72 under the movement of the movable adjustment plate 68.
  • the movable adjusting plate 68 is provided with a locking member that cooperates with the card slot 61a.
  • the movable adjusting plate 68 has a locking position for the locking member to cooperate with the locking groove 61a to lock the height of the guiding post 61 and to make the locking member and the locking member
  • the card slot 61a separates the unlocking position where the height of the guide post 61 continues to be adjusted.
  • a first support frame 58 (see FIG. 2) is disposed below the movable adjustment plate 68, and the first support frame 58 is provided with a first support frame 58a on the outer circumference of the movable adjustment plate 68. Referring to FIG. 5, the first support frame 58a is provided with a positioning plate 63.
  • the positioning plate 63 is provided with an internally threaded hole.
  • the internal threaded hole is provided with an adjusting screw 69 matched with the internally threaded hole, and the telescopic end of the adjusting screw 69 is adjusted. It is fixedly connected to the movable adjustment plate 65.
  • the lock member may be a spring piece 71 that is provided at one end in the extending direction of the oblong hole 72 and that extends obliquely toward the guide post 61 located in the oblong hole 72.
  • the bottom surface of the movable adjustment plate 68 is fixedly provided with a fork 70.
  • the first end of the adjustment screw 69 is fixedly coupled to the fork 70, and the second end of the adjustment screw 69 is provided with an adjustment handle 69a.
  • the adjusting screw 69 is rotated by the adjusting handle 69a, and the adjusting screw 69 is telescoped in the internal threaded hole of the positioning plate 63 to drive the fork 70 to move, thereby driving the movable adjusting plate 68 to move, so that the spring piece 71 cooperates with the card slot 61a, and guides The column 61 is locked.
  • the guide post 61 can only be raised and cannot be lowered; after the knitting of the component is completed, the movable adjustment plate 68 is linearly moved by the relative linear motion of the adjusting screw 69 and the positioning plate 63 to make the guiding column
  • the 61 is not clamped by the spring piece 71 and is free to fall onto the guide post plate 64.
  • a positioning hole 63a for connecting to the first support frame 58a is further disposed on the positioning plate 63.
  • the first support frame 58 includes four first legs 58c disposed between the four first legs 58c.
  • the perforated plate 65 is further provided with a plurality of positioning sleeves 66 (see FIGS. 2 and 5) that are coaxially matched with the second through holes, and the guide posts 61 pass through the positioning sleeves 66.
  • the cylindrical guide 62 in the guide template 60 may change the size or shape of the arrangement according to the shape characteristics of the pre-woven component, and the height of the guide post 61 for supporting the cylindrical guide 62 may be based on the shape characteristics of the pre-woven component.
  • the perforated plate 65 is fixed on the first supporting frame 58, and the perforated plate 65 is mounted with a positioning sleeve 66 sleeved on the outer circumference of the guiding post 61 for increasing the rigidity of the guiding post 61;
  • the movable adjusting plate 68 passes through the perforated plate 65 fixed perforated plate mount 67 (see Fig. 5) is hoisted under the perforated plate 65 and can move linearly with respect to the perforated plate 65;
  • the movable adjustment plate 68 has a spring piece 71 and an oblong hole 72 matched to achieve The guide post 61 is clamped and released.
  • the cylindrical guide storage plate 83 (see FIG. 1) can store the cylindrical guides 62 having different height specifications.
  • the electronically controlled three-dimensional motion mechanism 30 further includes: an X-axis motion unit, comprising: an X-axis support body extending in a first direction; an X-axis guide rail disposed on the X-axis support body; and an X-axis synchronous belt motion
  • the mechanism is disposed along the X-axis guide rail and has an X-axis slide block
  • the Y-axis movement unit includes: a Y-axis support body 12 connected to the X-axis slide block and extending in a second direction perpendicular to the first direction; the Y-axis guide rail 11
  • the Y-axis synchronous belt moving mechanism is disposed along the Y-axis guide rail 11 and has a Y-axis sliding block 31
  • the Z-axis moving unit includes: a Z-axis supporting body 8 along the first direction a
  • the X-axis support body may include two first support bodies 3 and a second support body 6 disposed in parallel, and the X-axis guide rails are respectively disposed on the first support body 3 and the second support body.
  • the first rail 5 and the second rail 7 are respectively provided with a first timing belt moving mechanism and a second timing belt moving mechanism, and the first timing belt moving mechanism and the second timing belt moving mechanism respectively have a first slider 17 (see FIG. 9) and a second slider 27 (shown in FIG. 11); both ends of the Y-axis support body 12 are respectively connected to the first slider 17 and the second slider 27.
  • the X-axis motion system includes a first rail 5 and a second rail 7 which are disposed in parallel; the first rail is supported by the first support body 3, and the second rail 7 is supported by the second support body 6, the first support body 3 And a distance between the second support body 6 and a predetermined distance; the distance between the first support body 3 and the second support body 6 can be determined by the width of the guide template 60 (see FIG.
  • the distance between the two supports 6 is set to a larger distance, and the guide template 60 is correspondingly enlarged to accommodate the space required for knitting of large-sized parts.
  • the first slider 17 is disposed on the first rail 5, and the second slider 27 is disposed on the second rail 7, and the first support body 3 and the second support body 6 are connected by a transverse connecting rod 13 (see Fig. 8).
  • One end of the Y-axis support body 12 may be coupled to the first slider 17 through the XY link plate 18 (see FIG. 9); the X-axis timing belt 21 in the X-axis timing belt mechanism is supported by the X-axis timing belt fixing plate 26 and the Y-axis.
  • the X-axis active timing pulley 22 is coupled to the X-axis reducer 24 fixed to the first support body 3 via a rolling bearing, and the X-axis passive timing pulley 19 is mounted on the X-axis through a bearing and a shaft end retaining ring.
  • Passive axle 50 The X-axis passive axle 50 is screwed to the first support body 3, and the X-axis motion unit is powered by the X-axis motor 25 and the X-axis reducer 24, and the X-axis motor synchronous drive pulley is driven by the X-axis motor 25.
  • the Z-axis moving unit includes a Z-axis guide 9, which is supported by the Z-axis support 8, the Z-axis slider 33 is disposed on the Z-axis guide 9, and the Z-axis slider 33 is connected through the YZ right angle.
  • the plate 10 is coupled to the Y-axis slider 31.
  • the Y-axis timing belt joint pressure plate 38 in the Y-axis timing belt mechanism presses the Y-axis timing belt 32 against the Y-axis timing belt fixing plate 39, and is fixed on the YZ right angle connection plate 10, and the Y-axis active timing pulley 35 passes the rolling bearing.
  • the Y-passive timing pulley 29 is mounted on the Y-axis passive axle 49 via bearings and shaft end retaining rings, and the Y-axis driven axle 49 is fastened to the Y-axis support body 12 Above (see Fig.
  • the Y-axis motion system uses the Y-axis motor 37 and the Y-axis reducer 36 as the power unit, and the Y-axis motor 37 and the Y-axis actively drive the timing pulley 35 as the transmission unit to drive the Y-axis slider.
  • the Z-axis active timing pulley base 42 is fixed to the YZ right angle connecting plate 10
  • the Z-axis active timing pulley 47 is connected to the Z-axis speed reducer 40 fixed to the Z-axis active timing pulley pulley 42 by a rolling bearing.
  • the Z-axis active timing belt 47 is changed in direction by the timing belt pulley 45.
  • the composite multi-dimensional weaving forming machine of the present invention further includes a cylindrical guide storage rack 80 located on a first side of the guide template 60, the cylindrical guide storage rack 80 including a guide storage support 81 and A storage plate 83 is disposed on the guide storage support frame 81, and a plurality of cylindrical guides 62 of different heights are prestored on the storage plate 83.
  • the storage plate 83 is provided with a plurality of evenly distributed threaded holes.
  • the threaded holes are provided with a storage support rod (not shown) for supporting the cylindrical guide body 62.
  • the lower end of the storage support rod is provided with the threaded hole.
  • External thread As shown in FIG. 14, the three-dimensional motion output end 30a is provided with a pneumatic chuck 15 for gripping the knitting needle and the cylindrical guide 62 pre-existing on the storage plate 83.
  • the pneumatic collet 15 can be of an existing standard.
  • the braiding mechanism 50 of the composite multi-dimensional weaving machine of the present invention further includes a fiber feed and tensioning mechanism located on the second side of the guide template 60. As shown in FIG.
  • the fiber feeding and tensioning mechanism includes: a third bracket 57; a fiber roll mounting bracket 56 disposed on a support beam 57a of the third bracket 57, having a strut for supporting the fiber coil 55;
  • the tensioning wheel seat plate 52 is disposed on a support beam 57a, located obliquely above the fiber roll mounting frame 56, and is provided with a knitting needle
  • a tensioning pulley 53 and a guide wheel 54 are provided.
  • the fiber roll mount 56 is bolted to the support beam 57a
  • the fiber roll 55 is transverse to the fiber roll mount 56
  • the tension wheel base plate 52 and the braided needle base 51 are both bolted to the other support beam 57a.
  • the tension pulley 53 and the guide wheel 54 are mounted on the tension wheel base plate 52.
  • the fiber filaments of the fiber roll 55 are guided by the guide wheel 54 and then tensioned by the tension pulley 53, and then carried by the knitting needle 14 (see Fig. 1) for knitting.
  • the above are only the preferred embodiments of the present invention, and are not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Looms (AREA)
  • Woven Fabrics (AREA)
  • Knitting Machines (AREA)
  • Knitting Of Fabric (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)

Abstract

一种复合材料多维织造成形机,包括:导向模板(60),包括多个根据预制件的几何形状布置的柱形导向体(62);电控三维运动机构(30),包括:控制信号接收端,用于接收与预制件的几何形状相对应的运动控制信号;三维运动输出端(30a),根据运动控制信号形成运动轨迹;编织针(14),与三维运动输出端(30a)相连,使编织纤维按照预制件的几何形状在柱形导向体(62)之间分布。该复合材料多维织造成形机利用柱形导向体及电控三维运动机构,使编织针带动编织线沿运动轨迹在柱形导向体之间分布形成导向模板,能够适用于大型、复杂的复合材料的多维织造成形,能有效提高复合材料的层间强度,该成形机将快速成形技术应用于复合材料多维织造成形,工艺过程实现自动化。

Description

复合材料多维织造成形机 技术领域 本发明涉及复合材料织造成形技术领域, 特别地, 涉及一种复合材料多维织造成 形机。 背景技术 碳纤维、 芳纶、 聚乙烯、 玻纤等高强纤维及其复合材料制品作为中国战略性新兴 产业的一部分, 具有质量轻、 强度高、 耐腐蚀和隐蔽性独特等优点。 复合材料被广泛 地应用于风能、 航空航天、 汽车、 轨道交通、 建筑、 兵器、 装甲、 船舶、 化工和体育 竞技等领域, 一直是世界各国优先发展和竞争激烈的重要行业。 在航空航天等尖端行 业, 复合材料是基础关键材料, 例如, 复合材料技术是波音和空中客车争霸的第一关 键技术, 也是我国民用大飞机项目的主要瓶颈制约技术之一。 波音 787飞机使用的复 合材料已占飞机总质量的 50%以上;隐形战斗机的外壳基本是由吸波的复合材料制造; 同时, 复合材料是飞机和舰艇隐形的基本要素之一。 虽然复合材料有许多优异性能, 但复合材料要进一步扩大应用, 必须改进下列制约弱点: 第一, 层间易开裂 现有纤维复合材料多由纤维布、 预浸布等纤维片材垒叠相加到一定厚度, 经树脂 基体固化而成。片材平面的二维方向由于有超强纤维,强度比钢强几倍,可达 3000MPa 以上。 然而片材之间是树脂塑料基体, 层间强度很低, 仅有 lOOMPa左右, 层内纤维 与层间塑料强度相差 30多倍, 所以, 层间易开裂是纤维复合材料的先天弱点。 由于复 合材料层间强度低, 复合材料的抗冲击强度和抗压强度也较低, 尤其是受到冲击载荷 和受压疲劳载荷时, 层间开裂更是复合材料的主要失效方式。 为提高复合材料的层间强度, 可采用层间缝纫、 三维纺织、 三维编织等方法, 虽 然这些技术的研发取得了一些进展, 但工艺复杂成本很高, 使用受限。 而应用较广的 多轴向经编复合材料, 受厚度所限, 无法获得整体三维结构。 这说明, 层间易开裂是 困扰复合材料性能的主要弱点, 因而, 如何低成本增强纤维复合材料层间强度也成为 长期以来的世界难题。 第二, 叠层效率低, 劳动成本高 要使用长纤维做结构材料, 通常由纱线做成纤维片, 纤维片层合到一定厚度得到 复合材料板或制品。 应用长纤维做材料必然要经过线、 面、 板 /体的过程, 但是在生产 纤维复合材料制品的整个生产流程中, 只有线到面可以使用纺织技术高效率生产。 由 于难于自动化机械操作纤维片材, 只有飞机制造等对纤维片材的叠层准确性要求很高 的尖端行业才能够采用昂贵的纤维自动化铺层设备, 因而在复合材料行业中, 将纤维 片材叠层到板和制品的 层合过程多采用手工叠层, 生产效率低下, 劳动成本高。 其中, 手工叠层效率低 下是复合材料生产过程的一个主要瓶颈。 第三, 碳纤维、 芳纶、 高模聚乙烯等高强纤维价格昂贵 由于纤维复合材料的层间强度低、 叠层效率低、 叠层工序劳动成本高, 使得复合 材料的使用范围受限, 也使得碳纤维、 芳纶、 高模聚乙烯等高强纤维主要用在高端产 品, 市场容量受限; 再加上发达国家对碳纤维、 芳纶、 高模聚乙烯纤维的技术垄断, 这些高强纤维自然就十分昂贵。 可喜的是, 中国近几年逐步攻克了碳纤维和高模聚乙 烯生产的难关, 实现了国产化, 芳纶纤维的国产化也胜利在望。 如果复合材料层间强度提高, 叠层实现低成本自动化, 复合材料的应用需求将急 剧扩大, 碳纤维、 芳纶、 高模聚乙烯的产量也会大幅提高, 它们的制造成本就有望下 降。 发明内容 本发明目的在于提供一种复合材料多维织造成形机, 以解决现技术中不存在自动 化程度高、 能够织造出高强度的复合材料的制造设备的技术问题。 为实现上述目的, 本发明提供了一种复合材料多维织造成形机, 包括: 导向模板, 包括多个根据预制件的几何形状布置的柱形导向体; 电控三维运动机构, 位于导向模 板的上方, 电控三维运动机构包括: 控制信号接收端, 用于接收与预制件的几何形状 相对应的运动控制信号; 三维运动输出端, 根据运动控制信号形成运动轨迹; 编织机 构, 包括: 编织针, 与三维运动输出端相连, 带动编织纤维沿运动轨迹在柱形导向体 之间运动, 使编织纤维按照预制件的几何形状在柱形导向体之间分布。 进一步地, 导向模板包括编织平板,编织平板上设置有多个均匀分布的第一通孔, 编织平板的下方设置有多孔板, 多孔板的下方设置有多个高度可调的导向柱, 多孔板 具有多个与第一通孔同轴对应的第二通孔, 导向柱穿过第一通孔和第二通孔, 柱形导 向体为套设在导向柱上的高度可选择的柱形套筒。 进一步地, 三维运动输出端上设置有用于夹取编织针、 柱形导向体和 /或导向柱的 气动夹头。 进一步地, 导向柱上设置有沿轴向等距分布的卡槽, 多孔板的下方设有可移动调 节板, 可移动调节板的下方设置有与多孔板相对静止的导向柱托板, 可移动调节板相 对于多孔板可滑动, 可移动调节板上设置有多个与多孔板的第二通孔位置相对应的长 圆孔, 导向柱穿过长圆孔并在可移动调节板的运动下在长圆孔内移动。 进一步地, 可移动调节板上设置有与卡槽配合的锁止件, 可移动调节板具有使锁 止件与卡槽配合将导向柱的高度锁定的锁止位置及使锁止件与卡槽分离的解锁位置。 进一步地, 锁止件为设置在长圆孔的延伸方向的一端的倾斜地向位于长圆孔内的 导向柱延伸的弹簧片,卡槽由导向柱的圆锥部和设置在圆锥部的小径端的凸缘部形成。 进一步地, 可移动调节板的下方设置有第一支撑框架, 第一支撑框架设置有位于 可移动调节板外周的第一支撑框, 第一支撑框上设置有定位板, 定位板的侧面设置有 水平延伸的调节螺杆, 调节螺杆的第一端与可移动调节板固定连接。 进一步地, 可移动调节板的底面固定设置有拔叉, 调节螺杆的第一端通过拔叉与 可移动调节板固定连接, 调节螺杆的第二端设置有调节把手。 进一步地, 定位板上还设置有用于与第一支撑框相连的连接孔。 进一步地, 第一支撑框架包括四条第一支腿, 导向柱托板设置于四条第一支腿之 间。 进一步地, 多孔板上还设置有与第二通孔同轴匹配的多个定位套, 导向柱穿过定 位套。 进一步地, 导向柱的上端设置有沿径向向外伸出的第一环台。 进一步地, 柱形导向体的外周设置有多层用于对编织纤维限位的环槽。 进一步地, 柱形导向体的上端设置有沿径向向外伸出的第二环台。 进一步地, 电控三维运动机构还包括: X轴运动单元, 包括: X轴支撑体, 沿第 一方向延伸; X轴导轨, 设置在 X轴支撑体上; X轴同步带运动机构, 沿 X轴导轨设 置, 具有 X轴滑块; Y轴运动单元, 包括: Y轴支撑体, 与 X轴滑块相连, 沿与第一 方向垂直的第二方向延伸; Y轴导轨, 设置在 Y轴支撑体上; Y轴同步带运动机构, 沿 Y轴导轨设置, 并具有 Y轴滑块; Z轴运动单元, 包括: Z轴支撑体, 沿与第一方 向和第二方向形成的平面垂直的第三方向延伸; z轴导轨, 设置在 Z轴支撑体上; Z 轴同步带运动机构, 沿 z轴导轨设置, 并具有 Z轴滑块, Z轴滑块与 Y轴滑块固定连 接, 其中, Z轴支撑体的下端形成三维运动输出端。 进一步地, X轴支撑体包括两个平行设置的第一支撑体和第二支撑体, X轴导轨 包括分别设置在第一支撑体和第二支撑体上的第一导轨和第二导轨, X轴同步带运动 机构设置在第一支撑体上, X轴同步带运动机构的同步带与 Y轴支撑体的第一端相连; X轴滑块包括位于第一导轨上的第一滑块和位于第二导轨上的第二滑块; 第一滑块和 第二滑块分别位于 Y轴支撑体的第一端和第二端的下方。 进一步地, 本发明提供的复合材料多维织造成形机, 还包括柱形导向体存储架, 位于导向模板的第一侧, 柱形导向体存储架包括导向体存储支撑架和设置在导向体存 储支撑架上的存储板, 存储板上预存有多个不同高度的柱形导向体。 进一步地, 存储板上设置有多个均匀分布的螺纹孔, 螺纹孔内设置有用于支撑柱 形导向体的存储支撑杆, 存储支撑杆的下端设置有与所述螺纹孔配合的外螺纹。 进一步地, 编织机构还包括纤维送丝及张紧机构, 位于导向模板的第二侧。 进一步地, 纤维送丝及张紧机构包括: 第三支架; 纤维卷安装架, 设置在第三支 架的支撑梁上, 具有用于支撑纤维卷的支杆; 张紧轮座板, 设置在第三支架的支撑梁 上, 张紧轮座板上设置有用于为编织针提供纤维丝的张紧轮和导向轮。 进一步地, 纤维送丝及张紧机构还包括用于存放所编织针的编织针座, 编织针座 位于张紧轮座板的一侧。 本发明具有以下有益效果: 本发明提供的复合材料多维织造成形机利用柱形导向体及电控三维运动机构, 使 编织针带动编织线沿运动轨迹在柱形导向体之间分布形成导向模板,能够适用于大型、 复杂的复合材料的多维织造成形, 能有效提高复合材料的层间强度, 该成形机将快速 成形技术应用于复合材料多维织造成形, 工艺过程实现自动化。 除了上面所描述的目的、特征和优点之外, 本发明还有其它的目的、特征和优点。 下面将参照图, 对本发明作进一步详细的说明。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是本发明优选实施例的复合材料多维织造成形机的立体结构示意图; 图 2是本发明优选实施例的导向模板的组成结构示意图; 图 3是本发明优选实施例的导向体支撑杆的结构示意图; 图 4是本发明优选实施例的柱形导向体的表面结构示意图; 图 5是本发明优选实施例的导向模板下方的可移动调节板的调节结构示意图; 图 6是编织完成后导向体支撑杆自由下落时锁止件与卡槽的位置关系示意图; 图 7是可移动调节板位于锁止位置时, 锁止件与卡槽的位置关系示意图; 图 8是本发明优选实施例的电控三维运动机构的结构示意图; 图 9是图 8中的 II部放大结构示意图; 图 10是本发明优选实施例的 X轴运动单元的结构示意图; 图 11是图 10中的 A向的局部放大结构示意图; 图 12是本发明优选实施例的 Y轴运动单元的结构示意图; 图 13是图 12中的 B向结构示意图; 图 14是图 8中的 30a的局部放大结构示意图; 以及 图 15是本发明优选实施例的纤维送丝及张紧机构的局部放大结构示意图。 具体实施方式 以下结合附图对本发明的实施例进行详细说明, 但是本发明可以由权利要求限定 和覆盖的多种不同方式实施。 如图 1所示, 本发明提供了一种复合材料多维织造成形机, 包括: 导向模板 60, 该导向模板 60包括多个根据预造件的形状布置的柱形导向体 62; 电控三维运动机构 30, 位于导向模板 60的上方, 电控三维运动机构 30包括: 控制信号接收端, 用于接 收运动控制信号; 三维运动输出端 30a, 根据运动控制信号形成运动轨迹; 本发明提 供的复合材料多维织造成形机还包括编织机构 50, 该编织机构 50包括: 编织针 14, 与三维运动输出端 30a相连, 带动编织线沿运动轨迹在柱形导向体 62之间分布。 如图 2所示, 为了实现导向模板 60的成形, 该导向模板 60包括编织平板 60a, 编织平板 60a上设置有多个均匀分布的第一通孔, 编织平板 60a由矩形框架 59支撑, 编织平板 60a的下方设置有多孔板 65, 多孔板 65具有多个与第一通孔同轴对应的第 二通孔, 多孔板 65的下方设置有多个高度可调的导向柱 61, 导向柱 61的上端穿过第 一通孔和第二通孔位于编织平板 60a的上方, 柱形导向体 62为套设在导向柱 61上的 高度可选择的柱形套筒。 如图 3所示, 导向柱 61上设置有沿轴向等距分布的卡槽 61a, 卡槽 61a可以由导 向柱 61上的圆锥部和设置在圆锥部的小径端的凸缘部形成。 导向柱 61的上端设置有 沿径向向外伸出的第一环台 61c。 可以利用夹紧装置抓取该第一环台 61c下面的部分, 移动导向柱 61。 如图 4所示, 为了使编织纤维能够定位在柱形导向体 62的表面, 柱形导向体 62 的外周设置有用于对所述编织纤维限位的多层的环槽 62a, 每个环槽 62a由柱形导向 体 62上多个沿径向向外伸出的凸缘形成。 为了便于对柱形导向体 62的抓取, 柱形导 向体 62的上端可以设置有沿径向向外伸出的第二环台 62c, 可以利用夹头夹住第二环 台 62c下面的部分, 对柱形导向体 62进行夹取动作。 如图 5所示, 多孔板 65的下方设置有可移动调节板 68, 可移动调节板 68的下方 设置有与多孔板 65相对静止的导向柱托板 64, 当导向柱 61 (参见图 2)全部落下时, 导向柱 61的下端位于导向柱托板 64上, 可移动调节板 68相对于多孔板 65可滑动, 可移动调节板 68上设置有多个与多孔板 65通孔的位置相对应的长圆孔 72(参见图 6), 导向柱 61穿过长圆孔 72并在可移动调节板 68的运动下在长圆孔 72内移动。 可移动调节板 68上设置有与卡槽 61a配合的锁止件, 可移动调节板 68具有使锁 止件将卡槽 61a配合将导向柱 61的高度锁定的锁止位置及使锁止件与卡槽 61a分离将 导向柱 61的高度继续调节的解锁位置。 可移动调节板 68 的下方设置有第一支撑框架 58 (参见图 2), 第一支撑框架 58 设置有位于可移动调节板 68外周的第一支撑框 58a。 再看图 5, 第一支撑框 58a上设 置有定位板 63, 定位板 63上设置有内螺纹孔, 内螺纹孔内设置有与内螺纹孔相配合 的调节螺杆 69, 调节螺杆 69的伸缩端与可移动调节板 65固定连接。 如图 6和图 7所示,锁止件可以是设置在长圆孔 72的延伸方向的一端的倾斜地向 位于该长圆孔 72内的导向柱 61延伸的弹簧片 71。 再看图 5, 可移动调节板 68的底面固定设置有拔叉 70, 调节螺杆 69的第一端与 拔叉 70固定连接, 调节螺杆 69的第二端设置有调节把手 69a。 利用调节把手 69a旋 转调节螺杆 69, 调节螺杆 69在定位板 63的内螺纹孔内伸缩, 带动拔叉 70运动, 进 而带动可移动调节板 68移动,使弹簧片 71与卡槽 61a配合,将导向柱 61锁止,此时, 导向柱 61 只能升高不能降低; 在零部件编织完成后, 通过调节螺杆 69与定位板 63 的相对直线运动带动可移动调节板 68进行直线运动,使导向柱 61不被弹簧片 71卡紧, 自由降落到导向柱托板 64上。 定位板 63上还设置有用于与第一支撑框 58a相连的连接孔 63a。 再看图 2, 第一支撑框架 58包括四条第一支腿 58c, 导向柱托板 64设置于四条第 一支腿 58c之间。 多孔板 65上还设置有与第二通孔同轴匹配的多个定位套 66 (参见图 2和图 5 ), 导向柱 61穿过定位套 66。 导向模板 60中的柱形导向体 62可以根据预织造零部件的外形特征改变布置的尺 寸或形状, 用于支撑柱形导向体 62的导向柱 61的高度可以根据预织造零部件的外形 特征进行调节; 多孔板 65固定在第一支撑框架 58上, 多孔板 65上安装有套设在导向 柱 61外周的定位套 66, 用于增加导向柱 61的刚度; 可移动调节板 68通过与多孔板 65固定的多孔板安装座 67 (参见图 5 ) 吊装在多孔板 65下, 并可以相对于多孔板 65 做直线运动; 可移动调节板 68上有弹簧片 71和长圆孔 72相配合, 实现对导向柱 61 的卡紧与放开。 柱形导向体储存板 83 (参见图 1 )可以储存高度规格不同的柱形导向体 62, 根据 所编织零部件的外观形状, 选取不同高度的柱形导向体 62套在导向柱 62点阵上, 进 行近似编织。 如图 8所示, 电控三维运动机构 30还包括: X轴运动单元, 包括: X轴支撑体, 沿第一方向延伸; X轴导轨, 设置在 X轴支撑体上; X轴同步带运动机构, 沿 X轴导 轨设置, 具有 X轴滑块; Y轴运动单元, 包括: Y轴支撑体 12, 与 X轴滑块相连, 沿与第一方向垂直的第二方向延伸; Y轴导轨 11, 设置在 Y轴支撑体 12上; Y轴同 步带运动机构, 沿 Y轴导轨 11设置, 并具有 Y轴滑块 31 ; Z轴运动单元, 包括: Z 轴支撑体 8, 沿与第一方向和第二方向形成的平面垂直的第三方向延伸; Z轴导轨 9, 设置在 Z轴支撑体 8上; Z轴同步带运动机构, 沿 Z轴导轨 9设置, 并具有 Z轴滑块 33 , Z轴滑块 33与 Y轴滑块 31固定连接, 其中, Z轴支撑体 8的下端形成三维运动 输出端 30a。 为了增加电控三维运动单元的支撑强度, X轴支撑体可以包括两个平行设置的第 一支撑体 3和第二支撑体 6, X轴导轨包括分别设置在第一支撑体 3和第二支撑体 6 上的第一导轨 5和第二导轨 7。 第一导轨 5和第二导轨 7上分别设置有第一同步带运 动机构和第二同步带运动机构, 第一同步带运动机构和第二同步带运动机构分别具有 第一滑块 17 (参见图 9 ) 和第二滑块 27 (如图 11所示); Y轴支撑体 12的两端分别 与第一滑块 17和第二滑块 27相连。 实际上, 也可以采用四轴运动单元或五轴运动单元等更多维的运动单元, 进而实 现复合材料的多维织造。 具体地说, X轴运动系统包括平行设置的第一导轨 5和第二导轨 7; 第一导轨由 第一支撑体 3支撑, 第二导轨 7由第二支撑体 6支撑, 第一支撑体 3和第二支撑体 6 之间相隔预定距离; 第一支撑体 3和第二支撑体 6之间的距离可以由导向模板 60 (参 见图 1 ) 的宽度确定, 可以将第一支撑体 3和第二支撑体 6之间的距离设定成较大的 距离, 导向模板 60相应加大, 以适应大尺寸零部件编织所需要的空间。 第一滑块 17 设置在第一导轨 5上,第二滑块 27设置在第二导轨 7上,第一支撑体 3和第二支撑体 6通过横连接杆 13 (参见图 8 ) 连接。 Y轴支撑体 12的一端可以通过 XY连接板 18 (参见图 9 ) 与第一滑块 17连接; X轴同步带机构中的 X轴同步带 21通过 X轴同步 带固定板 26与 Y轴支撑体 12的另一端连接。 如图 10所示, X轴主动同步带轮 22通过滚动轴承与固定在第一支撑体 3上的 X 轴减速机 24连接, X轴被动同步带轮 19通过轴承和轴端挡圈安装在 X轴被动轮轴 50 上, X轴被动轮轴 50通过螺纹紧固在第一支撑体 3上, X轴运动单元以 X轴电机 25 和 X轴减速机 24为动力单元, 以 X轴电机 25驱动 X轴主动同步带轮 22作为传动单 元, 达到驱动第一滑块 17和第二滑块 27在第一导轨 5和第二导轨 7上移动的效果。 如图 12所示, Z轴运动单元包括 Z轴导轨 9, Z轴导轨 9由 Z轴支撑体 8支撑, Z轴滑块 33设置在 Z轴导轨 9上, Z轴滑块 33通过 YZ直角连接板 10与 Y轴滑块 31连接。 Y轴同步带机构中的 Y轴同步带接头压板 38将 Y轴同步带 32压在 Y轴同 步带固定板 39上, 并固定在 YZ直角连接板 10上, Y轴主动同步带轮 35通过滚动轴 承与 Y轴支撑体 12上的 Y轴减速机 36连接, Y被动同步带轮 29通过轴承和轴端挡 圈安装在 Y轴被动轮轴 49上, Y轴被动轮轴 49紧固在 Y轴支撑体 12上(参见图 9), Y轴运动系统以 Y轴电机 37和 Y轴减速机 36为动力单元, 以 Y轴电机 37和 Y轴主 动驱动同步带轮 35作为传动单元, 达到驱动 Y轴滑块 31在 Y轴导轨 11上移动的效 果。 如图 13所示, Z轴主动同步带轮座 42固定在 YZ直角连接板 10上, Z轴主动同 步带轮 47通过滚动轴承与固定在 Z轴主动同步带轮座 42的 Z轴减速机 40连接, Z 轴主动同步带 47通过同步带滑轮 45改变方向,同步带滑轮 45通过轴承及轴端卡圈安 装在同步带滑轮轴 48上, 同步带滑轮轴 48通过螺纹紧固在 Z轴主动同步带轮座 42 上。 再看图 1,本发明提供的复合材料多维织造成形机,还包括柱形导向体存储架 80, 位于导向模板 60的第一侧,柱形导向体存储架 80包括导向体存储支撑架 81和设置在 导向体存储支撑架 81上的存储板 83, 存储板 83上预存有多个不同高度的柱形导向体 62。 存储板 83上设置有多个均匀分布的螺纹孔,螺纹孔内设置有用于支撑柱形导向体 62的存储支撑杆 (图中未示出), 存储支撑杆的下端设置有与螺纹孔配合的外螺纹。 如图 14所示, 三维运动输出端 30a上设置有用于夹取编织针和预存在存储板 83 上的柱形导向体 62的气动夹头 15。 该气动夹头 15可以采用一个现有的标准件。 再看图 1, 本发明提供的复合材料多维织造成形机的编织机构 50还包括纤维送丝 及张紧机构, 位于导向模板 60的第二侧。 如图 15所示, 纤维送丝及张紧机构包括: 第三支架 57; 纤维卷安装架 56, 设置 在第三支架 57的一个支撑梁 57a上,具有用于支撑纤维卷 55的支杆;张紧轮座板 52, 设置在一个支撑梁 57a上, 位于纤维卷安装架 56的斜上方, 其上设置有用于为编织针 提供纤维丝的张紧轮 53和导向轮 54。纤维卷安装架 56通过螺栓安装在支撑梁 57a上, 纤维卷 55横置在纤维卷安装架 56上, 张紧轮座板 52和编织针座 51都是通过螺栓安 装在另一个支撑梁 57a上, 张紧轮 53和导向轮 54安装在张紧轮座板 52上。 纤维卷 55的纤维丝通过导向轮 54导向后经过张紧轮 53张紧, 然后被编织针 14 (参见图 1 ) 携带进行编织。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种复合材料多维织造成形机, 其特征在于, 包括:
导向模板(60), 包括多个根据预制件的几何形状布置的柱形导向体(62); 电控三维运动机构(30), 位于所述导向模板(60) 的上方, 所述电控三维 运动机构 (30) 包括: 控制信号接收端, 用于接收与预制件的几何形状相对应的运动控制信号; 三维运动输出端 (30a), 根据所述运动控制信号形成运动轨迹; 编织机构 (50), 包括:
编织针(14), 与所述三维运动输出端相连, 带动编织纤维沿所述运动轨迹 在所述柱形导向体 (62) 之间运动, 使所述编织纤维按照所述预制件的几何形 状在所述柱形导向体 (62) 之间分布。
2. 根据权利要求 1所述的复合材料多维织造成形机, 其特征在于, 所述导向模板
( 60)包括编织平板(60a), 所述编织平板(60a)上设置有多个均匀分布的第 一通孔, 所述编织平板 (60a) 的下方设置有多孔板 (65 ), 所述多孔板 (65 ) 的下方设置有多个高度可调的导向柱(61 ), 所述多孔板(65 )具有多个与所述 第一通孔同轴对应的第二通孔, 所述导向柱 (61 ) 穿过所述第一通孔和所述第 二通孔, 所述柱形导向体 (62) 为套设在所述导向柱 (61 ) 上的高度可选择的 柱形套筒。
3. 根据权利要求 2所述的复合材料多维织造成形机, 其特征在于, 所述三维运动 输出端 (30a) 上设置有用于夹取所述编织针 (14)、 所述柱形导向体 (62) 或 所述导向柱 (61 ) 的气动夹头 (15 )。
4. 根据权利要求 2所述的复合材料多维织造成形机,其特征在于,所述导向柱 ( 61 ) 上设置有沿轴向等距分布的卡槽 (61a), 所述多孔板 (65 ) 的下方设有可移动 调节板(68), 所述可移动调节板(68 ) 的下方设置有与所述多孔板(65 )相对 静止的导向柱托板(64), 所述可移动调节板(68 )相对于所述多孔板(65 )可 滑动, 所述可移动调节板 (68 ) 上设置有多个与所述多孔板 (65 ) 的第二通孔 位置相对应的长圆孔(72), 所述导向柱(61 ) 穿过所述长圆孔(72)并在所述 可移动调节板 (68 ) 的运动下在所述长圆孔 (72) 内移动。
5. 根据权利要求 4所述的复合材料多维织造成形机, 其特征在于, 所述可移动调 节板(68)上设置有与所述卡槽(61a)配合的锁止件, 所述可移动调节板(68) 具有使所述锁止件与所述卡槽(61a)配合将所述导向柱(61) 的高度锁定的锁 止位置及使所述锁止件与所述卡槽 (61a) 分离的解锁位置。
6. 根据权利要求 5所述的复合材料多维织造成形机, 其特征在于, 所述锁止件为 设置在所述长圆孔 (72) 的延伸方向的一端的倾斜地向位于所述长圆孔 (72) 内的所述导向柱(61)延伸的弹簧片(71),所述卡槽(61a)由所述导向柱(61) 的圆锥部和设置在所述圆锥部的小径端的凸缘部形成。
7. 根据权利要求 4所述的复合材料多维织造成形机, 其特征在于, 所述可移动调 节板(68) 的下方设置有第一支撑框架(58), 所述第一支撑框架(58)设置有 位于所述可移动调节板(68)外周的第一支撑框(58a), 所述第一支撑框(58a) 上设置有定位板 (63),所述定位板 (63)的侧面设置有水平延伸的调节螺杆 (69), 所述调节螺杆 (69) 的第一端与所述可移动调节板 (68) 固定连接。
8. 根据权利要求 7所述的复合材料多维织造成形机, 其特征在于, 所述可移动调 节板(68) 的底面固定设置有拔叉(70), 所述调节螺杆(69) 的第一端通过所 述拔叉 (70) 与所述可移动调节板 (68) 固定连接, 所述调节螺杆 (69) 的第 二端设置有调节把手 (69a)。
9. 根据权利要求 7所述的复合材料多维织造成形机,其特征在于,所述定位板 (63 ) 上还设置有用于与所述第一支撑框 (58a) 相连的连接孔 (63a)。
10. 根据权利要求 7所述的复合材料多维织造成形机, 其特征在于, 所述第一支撑 框架 (58) 包括四条第一支腿 (58c), 所述导向柱托板 (64) 设置于四条所述 第一支腿 (58c) 之间。
11. 根据权利要求 2所述的复合材料多维织造成形机,其特征在于,所述多孔板 (65) 上还设置有与所述第二通孔同轴匹配的多个定位套(66), 所述导向柱(61)穿 过所述定位套 (66)。
12. 根据权利要求 2所述的复合材料多维织造成形机,其特征在于,所述导向柱 (61) 的上端设置有沿径向向外伸出的第一环台 (61c)。
13. 根据权利要求 1所述的复合材料多维织造成形机, 其特征在于, 所述柱形导向 体 (62) 的外周设置有多层用于对所述编织纤维限位的环槽 (62a)。
14. 根据权利要求 1所述的复合材料多维织造成形机, 其特征在于, 所述柱形导向 体 (62) 的上端设置有沿径向向外伸出的第二环台 (62c)。
15. 根据权利要求 1所述的复合材料多维织造成形机, 其特征在于, 所述电控三维 运动机构 (30) 还包括:
X轴运动单元, 包括:
X轴支撑体, 沿第一方向延伸;
X轴导轨, 设置在所述 X轴支撑体上;
X轴同步带运动机构, 沿所述 X轴导轨设置, 具有 X轴滑块;
Y轴运动单元, 包括:
Y轴支撑体 (12), 与所述 X轴滑块相连, 沿与所述第一方向垂直的 第二方向延伸;
Y轴导轨 (11 ), 设置在所述 Y轴支撑体 (12) 上;
Y轴同步带运动机构, 沿所述 Y轴导轨(11 )设置, 并具有 Y轴滑块
(31 );
Z轴运动单元, 包括:
Z轴支撑体 (8), 沿与所述第一方向和所述第二方向形成的平面垂直 的第三方向延伸;
Z轴导轨 (9), 设置在所述 Z轴支撑体 (8 ) 上;
Z轴同步带运动机构, 沿所述 Z轴导轨(9)设置, 并具有 Z轴滑块(33 ), 所述 Z轴滑块 (33 ) 与所述 Y轴滑块 (31 ) 固定连接,
其中, 所述 Z轴支撑体 (8) 的下端形成所述三维运动输出端。
16. 根据权利要求 15所述的复合材料多维织造成形机, 其特征在于,
所述 X轴支撑体包括两个平行设置的第一支撑体(3 )和第二支撑体(6), 所述 X轴导轨包括分别设置在所述第一支撑体 (3 )和所述第二支撑体(6)上 的第一导轨 (5 ) 和第二导轨 (7), 所述 X轴同步带运动机构设置在所述第一 支撑体 (3 ) 上, 所述 X轴同步带运动机构的同步带与所述 Y轴支撑体 (12) 的第一端相连;
所述 X轴滑块包括位于所述第一导轨 (5 ) 上的第一滑块 (17) 和位于所 述第二导轨 (7) 上的第二滑块 (27); 所述第一滑块(17)和所述第二滑块(27)分别位于所述 Y轴支撑体(12) 的第一端和第二端的下方。
17. 根据权利要求 1至 16中任一项所述的复合材料多维织造成形机, 其特征在于, 还包括柱形导向体存储架(70), 位于所述导向模板(60) 的第一侧, 所述柱形 导向体存储架 (70) 包括导向体存储支撑架 (81 ) 和设置在所述导向体存储支 撑架(81 )上的存储板(83 ), 所述存储板(83 )上预存有多个不同高度的所述 柱形导向体 (62)。
18. 根据权利要求 17 所述的复合材料多维织造成形机, 其特征在于, 所述存储板
( 83 ) 上设置有多个均匀分布的螺纹孔, 所述螺纹孔内设置有用于支撑所述柱 形导向体 (62) 的存储支撑杆, 所述存储支撑杆的下端设置有与所述螺纹孔配 合的外螺纹。
19. 根据权利要求 18所述的复合材料多维织造成形机,其特征在于,所述编织机构
( 50) 还包括纤维送丝及张紧机构, 位于所述导向模板 (60) 的第二侧。
20. 根据权利要求 19所述的复合材料多维织造成形机,其特征在于,所述纤维送丝 及张紧机构包括:
第三支架 (57);
纤维卷安装架 (56), 设置在所述第三支架 (57) 的支撑梁 (57a) 上, 具 有用于支撑纤维卷 (55 ) 的支杆;
张紧轮座板 (52), 设置在所述第三支架 (57 ) 的支撑梁 (57a) 上, 所述 张紧轮座板(52)上设置有用于为所述编织针(14)提供纤维丝的张紧轮(53 ) 和导向轮 (54)。
21. 根据权利要求 20所述的复合材料多维织造成形机,其特征在于,所述纤维送丝 及张紧机构还包括用于存放所述编织针(14)的编织针座(51 ), 所述编织针座
( 51 ) 位于所述张紧轮座板 (52) 的一侧。
PCT/CN2012/076582 2011-12-31 2012-06-07 复合材料多维织造成形机 WO2013097415A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES12863114T ES2772399T3 (es) 2011-12-31 2012-06-07 Máquina de formación de tejido multidimensional para material compuesto
RU2014129028/12A RU2590809C2 (ru) 2011-12-31 2012-06-07 Машина для формирования композитных материалов путем многомерного плетения
KR1020147021534A KR101699523B1 (ko) 2011-12-31 2012-06-07 복합재료의 다차원 직물 성형기
US14/369,630 US9103054B2 (en) 2011-12-31 2012-06-07 Multi-dimensional weaving shaping machine of composite materials
JP2014549305A JP6046744B2 (ja) 2011-12-31 2012-06-07 複合材料の多次元織物成形機
EP12863114.0A EP2799604B1 (en) 2011-12-31 2012-06-07 Multidimensional weaving forming machine for composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110460621.4A CN102517791B (zh) 2011-12-31 2011-12-31 复合材料多维织造成形机
CN201110460621.4 2011-12-31

Publications (1)

Publication Number Publication Date
WO2013097415A1 true WO2013097415A1 (zh) 2013-07-04

Family

ID=46288840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076582 WO2013097415A1 (zh) 2011-12-31 2012-06-07 复合材料多维织造成形机

Country Status (8)

Country Link
US (1) US9103054B2 (zh)
EP (1) EP2799604B1 (zh)
JP (1) JP6046744B2 (zh)
KR (1) KR101699523B1 (zh)
CN (1) CN102517791B (zh)
ES (1) ES2772399T3 (zh)
RU (1) RU2590809C2 (zh)
WO (1) WO2013097415A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877863A (zh) * 2021-01-14 2021-06-01 北京机科国创轻量化科学研究院有限公司 一种复合材料预制体织造过程中边棒自动放置装置及方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638976B2 (ja) * 2011-02-02 2014-12-10 日立建機株式会社 車両用動力伝達装置
WO2014101006A1 (zh) * 2012-12-26 2014-07-03 机械科学研究总院先进制造技术研究中心 复合材料预制件、其制备方法和复合材料
CN103074732A (zh) * 2013-01-30 2013-05-01 北京大学 点阵复合材料平板自动编织机
CN104162786A (zh) * 2014-05-16 2014-11-26 机械科学研究总院先进制造技术研究中心 消失模数字化成形机
CN104552957B (zh) * 2015-01-27 2016-10-19 广州三迪沃信息技术有限公司 打印碳纤维的3d打印机
CN105442154B (zh) * 2015-12-15 2017-05-10 机械科学研究总院先进制造技术研究中心 一种具有梯度结构的三维预制体织造方法
CN105568513B (zh) * 2016-01-15 2017-05-24 佛山慈慧通达科技有限公司 三维织机编织机构及其使用方法
EP3423619B1 (en) 2016-03-04 2021-06-16 Bauer Hockey Ltd. 3d weaving material and method of 3d weaving for sporting implements
US11471736B2 (en) 2016-03-04 2022-10-18 Bauer Hockey, Llc 3D braiding materials and 3D braiding methods for sporting implements
CN108978026A (zh) * 2017-10-18 2018-12-11 上海钜荷热力技术有限公司 一种用于全预混燃烧器的金属纤维织物的编织设备
CN109873675A (zh) * 2017-12-01 2019-06-11 上海航空电器有限公司 一种基于fpga的飞机蒙皮可见光隐身系统
CN107908151B (zh) * 2017-12-18 2024-03-26 哈尔滨工业大学(威海) 一种z-pin插针控制系统及插补方法
USD876505S1 (en) * 2018-07-05 2020-02-25 Zortrax S.A. Shaping machine
USD876500S1 (en) * 2018-07-05 2020-02-25 Zortrax S.A. Part of shaping machine
CN109295596A (zh) * 2018-10-23 2019-02-01 天津工业大学 一种具有孔板沉入用于编织三维织物的成型工装
CN109112717A (zh) * 2018-10-23 2019-01-01 天津工业大学 一种适用于三维织物自动编织的成型工装
CN109440294B (zh) * 2018-11-30 2023-09-01 南京玻璃纤维研究设计院有限公司 一种碳纤维自动编织装置及编织方法
CN110424088B (zh) * 2019-07-10 2020-11-06 浙江理工大学 一种应用于三维环形四步法编织的送纱方法
US11535962B2 (en) 2020-05-21 2022-12-27 Raytheon Technologies Corporation Weaving assembly and method of using
CN113789611A (zh) * 2021-09-24 2021-12-14 迪赛福创新技术(深圳)有限公司 一种高效的全自动智能编织机
CN114197110B (zh) * 2021-11-23 2022-10-21 南京航空航天大学 一种复合材料自动化三维编织设备及编织方法
CN114657694B (zh) * 2021-12-28 2024-03-22 中车工业研究院有限公司 复合材料三维编织装置及方法
CN114419013B (zh) * 2022-01-21 2022-11-01 南京航空航天大学 一种基于机器视觉的三维织造导向棒在线安插检测方法
CN115341325B (zh) * 2022-08-25 2023-11-10 中国船舶重工集团公司第十二研究所 结构-阻尼复合材料三维预制体及织造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341575A2 (en) * 1988-05-10 1989-11-15 Airfoil Textron Inc. Method for making 3D fiber reinforced metal/matrix composite article
US5767023A (en) * 1991-09-24 1998-06-16 Berger; Michel Process and machine for the manufacture of a composite material reinforced with a three-dimensional continuous fibre structure and composite material so obtained
FR2884836A1 (fr) * 2005-04-26 2006-10-27 Georges Jean Joseph An Cahuzac Tresseuse circulaire multicouche
CN102191627A (zh) * 2010-03-16 2011-09-21 机械科学研究总院先进制造技术研究中心 一种复合材料三维织造成形设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US576723A (en) * 1897-02-09 dobyne
US3955602A (en) * 1967-10-16 1976-05-11 Avco Corporation Apparatus for fabricating three-dimensional fabric material
FR2227748A5 (en) * 1973-04-25 1974-11-22 Aerospatiale Cast mouldings with three dimensional woven reinforcement - made automatically as hollow cylindrical or conical preforms
FR2531459A1 (fr) * 1982-08-09 1984-02-10 Aerospatiale Procede et machine de realisation de pieces complexes par tissage multidirectionnel
JPS60199955A (ja) * 1984-03-23 1985-10-09 工業技術院長 三次元繊維組織体の織成方法及びその装置
US4594122A (en) * 1985-02-26 1986-06-10 E. I. Du Pont De Nemours And Company Apparatus for preparing a contoured preform
JPH07100897B2 (ja) * 1987-11-30 1995-11-01 日産自動車株式会社 3次元繊維構造体の製造方法
JPH0791744B2 (ja) * 1987-12-29 1995-10-04 東レ株式会社 三次元繊維構造体の製織装置
US6105622A (en) * 1998-03-02 2000-08-22 Shenkar College Of Textile, Technology And Fashion Method of weft insertion into a planar warp for high density three dimensional weaving
US5987929A (en) * 1998-04-20 1999-11-23 Bostani; Arman Method and apparatus for fabrication of composite and arbitrary three dimensional objects
CN2439348Y (zh) * 2000-08-31 2001-07-18 华中科技大学 多功能数控成型加工机
US7077167B2 (en) * 2004-06-14 2006-07-18 Massachusetts Institute Of Technology Bias weaving machine
WO2008018438A1 (fr) * 2006-08-07 2008-02-14 Japan Science And Technology Agency Dispositif et procédé de tissage tridimensionnel
CN100434270C (zh) * 2007-02-09 2008-11-19 哈尔滨工业大学 泡沫板穿纤维数控机床
JP5098428B2 (ja) * 2007-05-11 2012-12-12 株式会社豊田自動織機 繊維束配列装置
CN101491843A (zh) * 2008-09-24 2009-07-29 袁焕春 三维多轴联动数控雕铣机
CN101474803B (zh) * 2009-01-16 2012-06-13 华中科技大学 消失模线切割数控加工成形机
CN102192396B (zh) * 2010-03-16 2014-03-12 机械科学研究总院先进制造技术研究中心 一种复合材料三维织造成形方法
CN202509222U (zh) * 2011-12-31 2012-10-31 机械科学研究总院先进制造技术研究中心 复合材料多维织造成形机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341575A2 (en) * 1988-05-10 1989-11-15 Airfoil Textron Inc. Method for making 3D fiber reinforced metal/matrix composite article
US5767023A (en) * 1991-09-24 1998-06-16 Berger; Michel Process and machine for the manufacture of a composite material reinforced with a three-dimensional continuous fibre structure and composite material so obtained
FR2884836A1 (fr) * 2005-04-26 2006-10-27 Georges Jean Joseph An Cahuzac Tresseuse circulaire multicouche
CN102191627A (zh) * 2010-03-16 2011-09-21 机械科学研究总院先进制造技术研究中心 一种复合材料三维织造成形设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877863A (zh) * 2021-01-14 2021-06-01 北京机科国创轻量化科学研究院有限公司 一种复合材料预制体织造过程中边棒自动放置装置及方法

Also Published As

Publication number Publication date
RU2590809C2 (ru) 2016-07-10
CN102517791A (zh) 2012-06-27
CN102517791B (zh) 2014-09-24
EP2799604A1 (en) 2014-11-05
KR101699523B1 (ko) 2017-01-24
JP2015510044A (ja) 2015-04-02
ES2772399T3 (es) 2020-07-07
EP2799604B1 (en) 2020-01-22
EP2799604A4 (en) 2015-08-26
KR20140110993A (ko) 2014-09-17
US9103054B2 (en) 2015-08-11
JP6046744B2 (ja) 2016-12-21
US20140360618A1 (en) 2014-12-11
RU2014129028A (ru) 2016-02-20

Similar Documents

Publication Publication Date Title
WO2013097415A1 (zh) 复合材料多维织造成形机
EP1658172B1 (en) Multiple head automated composite laminating machine for the fabrication of large barrel section components
US7080441B2 (en) Composite fuselage machine and method of automated composite lay up
US8655475B2 (en) Three-dimensional weave-forming equipment for composites
JP4981801B2 (ja) コンポジット部品のためのtfpプロセスによりファイバープリフォームを製造するための装置のための案内装置
US10087042B2 (en) Tank manufacturing method, helical winding device, and filament winding apparatus
US20140037397A1 (en) Manufacturing method of machine tool and machine tool
CN202509222U (zh) 复合材料多维织造成形机
KR101840662B1 (ko) 자동차 휠 림을 포함하는 중공 타입 프리폼 제조 시스템 및 자동차 휠 림을 포함하는 중공 타입 프리폼 제조 방법 및 그 제조 방법에 의해 제조되는 자동차 휠 림용 프리폼
JP5336225B2 (ja) 多軸ステッチ基材とそれを用いたプリフォーム
US20180126598A1 (en) Method and system for automated fabrication of composite preforms
CN216544730U (zh) 旋转缠绕加工制造一体化加筋柱壳及其制造系统
US11718933B2 (en) Penta-axial braiding machine
Sharif Robotic approach to low-cost manufacturing of 3D preforms with dry fibres
AU2022206606A1 (en) Reinforcing fiber base material for resin transfer molding, method for producing same, reinforcing fiber laminate for resin transfer molding, and fiber-reinforced plastic
JP2018039218A (ja) 強化繊維基材の製造方法
JP2009226654A (ja) 穴開き部を有するfrp成形品の製造方法
Jan Development of 3D Braiding Concept for Multi-Axial Textile Preforms
Venkataraman et al. Review on hybrid yarns, textile structures and techniques
Venkataraman et al. Review on Hybrid Yarn, Structure and Techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14369630

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014549305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012863114

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147021534

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014129028

Country of ref document: RU

Kind code of ref document: A