WO2013097152A1 - pH敏感的透明质酸衍生物和其应用 - Google Patents

pH敏感的透明质酸衍生物和其应用 Download PDF

Info

Publication number
WO2013097152A1
WO2013097152A1 PCT/CN2011/084936 CN2011084936W WO2013097152A1 WO 2013097152 A1 WO2013097152 A1 WO 2013097152A1 CN 2011084936 W CN2011084936 W CN 2011084936W WO 2013097152 A1 WO2013097152 A1 WO 2013097152A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
acid derivative
acid
derivative according
pcl
Prior art date
Application number
PCT/CN2011/084936
Other languages
English (en)
French (fr)
Inventor
杨政典
周怡满
陈瑞祥
刘席玮
王先知
邓泽民
梁祥发
魏明正
吕瑞梅
Original Assignee
财团法人工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 财团法人工业技术研究院 filed Critical 财团法人工业技术研究院
Priority to PCT/CN2011/084936 priority Critical patent/WO2013097152A1/zh
Priority to US14/128,376 priority patent/US20140199349A1/en
Priority to CN201180058517.0A priority patent/CN103298838B/zh
Publication of WO2013097152A1 publication Critical patent/WO2013097152A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins

Definitions

  • the present invention relates to a hyaluronic acid derivative and its use, in particular to a hyaluronic acid having pH sensitivity. Background technique
  • Hyaluronic acid is a linear mucopolysaccharide composed of repeating units formed by N-acetyl-D-glucosamine and D-glucuronic acid.
  • Hyaluronic acid was first discovered in the vitreous of bovine eyeballs and later found in other tissues such as interstitial (ECM), synovial fluid, and the like.
  • ECM interstitial
  • the main function of hyaluronic acid in living organisms is to protect and lubricate cells, regulate the movement of cells on this viscoelastic matrix, stabilize the collagen network and protect the collagen network from mechanical damage.
  • the cell surface receptor for hyaluronic acid is mainly CD44.
  • CD44 By the bonding of hyaluronic acid to CD44, cell activities such as cell aggregation, movement, proliferation and activation, and cell-to-cell adhesion can be promoted.
  • EMT epithelial-mesenchymal transition
  • the binding of hyaluronic acid to CD44 promotes epithelial-mesenchymal transition (EMT) of tumor cells, allowing tumors to infiltrate the blood system or lymphatic system.
  • EMT epithelial-mesenchymal transition
  • the tumor cells are connected to the original cells and function to achieve the metastasis of the tumor cells.
  • Hyaluronic acid is known to form nano-sized micelles in a water-soluble medium when the concentration is higher than the critical micelle concentration (CMC), self-assembly according to thermodynamic principles.
  • CMC critical micelle concentration
  • a number of prior documents have been documented on the formation of microvesicles and coated active drugs by hyaluronic acid, such as U.S. Patent No. 6,350,458 B1, U.S. Patent No. 7,780,982 B1, and the like.
  • U.S. Patent No. 6,350,458 B1 discloses the formation of a macromolecular agent of at least one cell forming material, a hormone or an antibody, an alkali metal sulfonate, an alkali metal salicylate, and a pharmaceutically acceptable edetate.
  • a pharmaceutical composition whereby a pharmaceutical composition can deliver a macromolecular agent that is not readily gastrointestinal (GI) into a tissue or cell.
  • GI gastrointestinal
  • U.S. Patent No. 7,780,982 B1 discloses a hyaluronic acid derivative which is linked to a hydrocarbyl group having a carbon number of 2 to 16 by an amino urethane at a hydroxyl group (-OH) position of hyaluronic acid to enhance the hyaluronic acid derivative.
  • a hyaluronic acid derivative which is linked to a hydrocarbyl group having a carbon number of 2 to 16 by an amino urethane at a hydroxyl group (-OH) position of hyaluronic acid to enhance the hyaluronic acid derivative.
  • the present invention provides a hyaluronic acid derivative comprising at least one repeating unit represented by the following formula (I), Formula (I)
  • HA represents a unit comprising N-acetyl-D-glucosamine and D-glucuronic acid, q represents an integer from 2 to 10000;
  • A represents a biobreakable bond, including hydrazone, acetal At least one group of (acetal), ketal or imine;
  • M represents at least one of a hydrophobic segment, a hydrophilic segment or an amphiphilic segment; and
  • p represents the direct connection of [AM]
  • the number of each HA unit, and p is an integer from 0 to 4, and each of the HA units may not be 0 at the same time; wherein the hyaluronic acid derivative is biodegradable and in an acidic environment pH sensitivity of lysis.
  • the present invention further provides a microcell formed by the above-described transparent S-derivative derivative in a hydrophilic medium. Further, the present invention provides a drug delivery system comprising a carrier coated with a biologically active ingredient, wherein the carrier is comprised of the above hyaluronic acid derivative.
  • the present invention further provides a flavor enhancer comprising the above hyaluronic acid derivative for coating a biologically active substance to reduce the taste of the biologically active substance.
  • Fig. 1 is a view showing the chemical structural formula of HA-g- HZ PCL according to an embodiment of the present invention, wherein ⁇ represents a unit of hyaluronic acid, g represents a graft state, HZ represents a hydrazine linkage, and PCL represents a polycaprolactone segment.
  • Fig. 2 is a view showing the chemical structural formula of HA-g-( HZ PCL-PEG) according to an embodiment of the present invention
  • HA is a unit of hyaluronic acid
  • g is a graft state
  • HZ is a ruthenium linkage
  • PCL is a polycaprolactone segment.
  • PEG stands for ethylene glycol segment.
  • Figure 3 shows the 1 H-NMR spectrum of HA-COONa and HA-TBA.
  • FIG. 4 shows the 1 H-NMR spectrum of HATBA-CHO.
  • Figure 5 shows the FT-IR optical pattern of PCL-hydrazide.
  • Fig. 6 is a view showing the chemical structural formula of HA-g-( HZ- PCL) and its ifi-NMR spectrum of an embodiment of the present invention, wherein HA represents a unit of hyaluronic acid, g represents a graft state, HZ represents a ruthenium linkage, and PCL represents Polycaprolactone segment.
  • Fig. 7 is a chemical structural formula of HA-g-( HZ PCL-PEG) and an ifi-NMR structure identification spectrum thereof, wherein HA represents a unit of hyaluronic acid, g represents a graft state, and HZ represents a ruthenium linkage.
  • PCL represents a polycaprolactone segment;
  • PEG represents an ethylene glycol segment.
  • Figure 8 shows the drug release behavior of the microcell formulation of the present example.
  • Fig. 9 is a view showing the drug release behavior of the microcell formula of the embodiment of the present invention. detailed description
  • a pH sensitive material applied to drug release control is modified, and hyaluronic acid with excellent biocompatibility is selected as a main body, and a hydrophobic segment, a hydrophilic segment, an amphipathic fragment are linked by a biocleavable linkage. Or a combination thereof, a hyaluronic acid derivative having a repeating unit represented by the formula (I) is formed.
  • HA denotes a hyaluronic acid unit comprising N-acetyl-D-glucosamine and D-glucuronic acid.
  • q represents the number of the above hyaluronic acid units, and may be an integer of 2 to 10,000, preferably an integer of 10 to 5,000, but is not limited thereto.
  • A represents a biodegradable bond, and forms a covalent bond with the hydroxyl group (-OH) of at least one of the N-acetyl-D-glucosamine and the D-glucuronic acid.
  • M represents at least one of a hydrophobic fragment, a hydrophilic fragment or an amphiphilic fragment.
  • p is a number indicating that the above [A-M] is directly grafted onto HA.
  • bio-breakable bond is attached to the hydroxyl group (-OH) of N-acetyl-D-glucosamine and D-glucuronic acid. It is known that N-acetyl-D-glucosamine and D-glucuronic acid in hyaluronic acid have 4 hydroxyl groups, and therefore, p represents an integer of 0 to 4, and each of the HA units must not be 0 at the same time. .
  • the present invention does not particularly limit the position of the hydroxyl group of the above biobreakable bond.
  • p biodegradable bond
  • biobreakable bond denotes a group which is capable of breaking bonds in an acidic environment, and a hydroxyl group of at least one of the N-acetyl-D-glucosamine and the D-glucuronic acid (- OH) forms a covalent linkage. Specifically, it includes at least one of hydrazone, acetal, ketal or imine. Group.
  • the "acidic environment” as used herein means an environment having a pH of 7 or less, preferably in the range of pH 6.9 to pH 1.0, more preferably in the range of pH 6.5 to pH 3.0, for example, an organelle of a living body cell. Internal environment or tumor tissue site.
  • M described herein represents at least one of a hydrophobic segment, a hydrophilic segment or an amphiphilic segment.
  • the molecular weight of M is not particularly limited and may be from 100 to 50,000 Daltons (Dalton; Da), preferably from 300 to 30,000 Da, more preferably from 500 to 20,000 Da.
  • hydrophobic fragment means a segment formed by a bioabsorbable polymer as a repeating unit.
  • the repeating unit of the bioabsorbable polymer may include caprolactone, butyrolactone, D-lactide, L-lactide, D- D-lactic acid, L-
  • the bioabsorbable polymer may also have more than one linkage which may be broken in an acidic environment, such as at least one group of an anthracene, an acetal, a ketal or an imine.
  • hydrophilic segment means a hydrophilic molecular segment, and is not particularly limited, and may be selected from the group consisting of polyethylene glycol (PEG), polyethylene oxide (PEO), and polyvinylpyrrolidone ( Polyvinylpyrolidone, PVP), polyacrylic acid (PAA), polymethacrylic acid (PMA) or a combination thereof.
  • PEG polyethylene glycol
  • PEO polyethylene oxide
  • PVP polyvinylpyrrolidone
  • PAA polyacrylic acid
  • PMA polymethacrylic acid
  • amphiphilic fragment refers to an amphoteric segment having a hydrophilic region and a hydrophobic region.
  • the repeating unit of the hydrophilic region may be ethylene glycol, ethylene oxide or ethylene.
  • the repeating unit of the above hydrophobic region may be exemplified by ⁇ a ( Caprolactone), 1" inyrolactone, D- 13 ⁇ 4 3 ⁇ 4 IB (D-lactide), L- 13 ⁇ 4 3 ⁇ 4 ⁇ (L-lactide), D-lactic acid, L-lactic acid (L- Lactic acid), glycolide, glycolic acid, hydroxy hexonoic acid, hydroxy butyric acid, valerolactone, hydroxy valeric acid , malic acid, the above copolymer, or a combination thereof.
  • the "amphiphilic fragment" may have more than one linkage which may be broken in an acidic environment, such as at least one group of an anthracene, an acetal, a ketal or an imine.
  • the HA in addition to the above-described connection of A and M, the HA may be further connected to a hydrophilic segment by a non-biobreakable bond or a non-fast break bond.
  • a non-native "Material cleavable bond” means a linkage that cannot be acid-decomposed in an acidic environment, including amino phthalate
  • the term "not easy to break the key” refers to a connection that cannot be quickly broken within 24 hours in an acidic environment, including an ester bond.
  • the non-biologically cleavable bond or the "hydrophilic segment" to which the bond is not easily broken can be exemplified by polyethylene glycol (PEG), polyethylene oxide (PEO), polyvinylpyrrolidone. (polyvinylpyrrolidone, P VP), polyacrylic acid (PAA), polymethacrylic acid (PMA), or a combination thereof.
  • the non-biobreakable bond or the fast-breakable bond may be grafted to the hydroxyl group position of the HA, and the hydrophilic segment may be attached by the non-biobreakable bond or the fast-breaking bond, which can be improved.
  • the hyaluronan derivative described in the present invention can also be linked to a protein molecule having a biometric function in a segregating segment.
  • isolated segment means a segment different from the above-mentioned A biodegradable bond or non-biobreakable bond at the position of attachment of HA, which may be a carbon chain or a carbon oxygen chain, for example, a carbon chain having a carbon number of 1 to 1000. Or carbon chain.
  • the isolated segment may have a molecular weight of from 100 to 50,000 Da, preferably from 300 to 30,000 Da, more preferably from 500 to 20,000 Da.
  • the "protein molecule of the biometric function” may be an antibody or a ligand, and is not particularly limited, but is preferably an antibody or a ligand which can recognize a specific tumor cell.
  • the hyaluronic S ⁇ derivative described in the present invention can be self-polymerized to form nanometer-scale cells by applying a hydrophobic segment or an amphiphilic fragment modification at a hydroxyl position, and when the concentration in the hydrophilic medium is greater than the critical cell concentration. structure.
  • hydrophilic medium means a solvent having hydrophilicity, and may be, for example, water, physiological saline, blood, plasma, ethanol or the like, but is not limited thereto.
  • critical cell concentration as used herein means the concentration of the above hyaluronan derivative to form a cell structure in a hydrophilic medium, preferably in the range of 10 to 0.0001% by weight.
  • the hyaluronic acid derivative described in the present invention can be mixed with a biologically active substance and oscillated to form a microcell that coats the biologically active substance.
  • the biologically active substance described herein may be an active ingredient of a therapeutic agent, a vitamin, or the like, particularly a chemotherapeutic agent for cancer treatment, such as rhodamine, doxorubicin, paclitaxel, and the like.
  • the weight ratio of the bioactive substance to the hyaluronic acid forming micronuclei may preferably be from 1:1 to 1:20.
  • pH sensitive refers to the phenomenon of acid hydrolysis in an acidic environment. Transparency of the case Since the acid derivative has the biodegradable bond and is acid-decomposed in an acidic environment, it exhibits pH-sensitive properties.
  • the microcapsules coated with the biologically active substance formed in the present case circulate into the blood of the animal body, the microcells can penetrate and accumulate due to the Enhanced Permeation and Retention Effect (EPR effect).
  • EPR effect Enhanced Permeation and Retention Effect
  • the surrounding tissues are mostly acidic, the bio-breakable bonds of the above hyaluronic acid derivatives are broken by rapid acid hydrolysis, which prompts the rapid release of the biologically active substances carried, thereby achieving the effect of killing tumor cells.
  • the cells coated with the bioactive substance described in the present invention can also enter the animal somatic cells through endocytosis.
  • the biodegradable bond to which the hyaluronic acid derivative described in the present invention is linked is broken by rapid acid hydrolysis, prompting the rapid release of the carried biologically active substance. Rapid acidolysis and desorption of active substances, in addition to achieving the desired therapeutic effect, can also avoid the problem that known microcytes are excreted from the cell by exocytosis.
  • the hyaluronic acid derivative described in the present invention is linked to a protein molecule having a biometric function, specific cells can be specifically identified through the protein molecule, and the specificity of the microcapsule coated with the bioactive substance Delivery to specific cells, particularly tumor cells.
  • the present invention also provides a flavor enhancer for use in the above-mentioned hyaluronic acid S derivative to form a microcapsule, which is coated with a strong odor or a taste odor, or a bioactive substance to reduce odor.
  • the coated drug or biologically active substance is not particularly limited.
  • the acidic environment of the gastrointestinal tract can cause the micelles described in this case to form a rapid acid-decomposing bond, which in turn releases the coated drug or biologically active substance. Therefore, the flavor enhancer described in the present application can also be applied to a nutrient for oral or gastrointestinal administration.
  • water-soluble polysaccharide hyaluronic acid and tetrabutylammonium hydroxide are combined by ion adsorption to form an organic solvent-soluble transparent S-tetrabutylammonium hydroxide (HA-TBA). figure 1).
  • the pH sensitive group is modified at the hydroxyl position of the hyaluronic acid.
  • aldehyde-2,2,6,6-tetradecylpiperidine oxide 2,2,6,6-tetramethyl-piperidin- 1 -oxyl, TEMPO
  • BAIB Iodobenzene diacetate
  • a hydrophobic segment containing a hydrazide at one end is prepared to react with the acid group of HA-TBA-CHO to form a pH-sensitive hydrazone.
  • tin catalyst stannous octoate
  • n-dodecanool as a starting agent
  • ⁇ -caprolactone ⁇ -caprolactone
  • lactone poly(8-caprolactone); PCL
  • PCL-OH is deprotonated with triethylamine, followed by addition ring-opening reaction with 4-dimethylaminopyridine as a catalyst and succinic anhydride.
  • a carboxylic acid polycaprolactone (PCL-COOH) whose terminal is modified to a carboxylic acid functional group is obtained.
  • PCL-COOH is deprotonated by N-methylmorpholine (NMM), and then addition-elimination reaction is carried out with isobutylchloroformate (IBCF). , a more reactive intermediate PCL-anhydride is formed.
  • the intermediate PCL-anhydride is further reacted with a 1 M hydrazine tetrahydrofran solution to obtain a hydrophobic PCL-ruthenium precursor which is terminally modified to a hydrazide functional group (;
  • the body can be formed into an amphiphilic fragment (such as the following formula) in a PCL hydrophilic fragment, such as ethylene glycol (PEG), before the terminal is modified to a hydrazide functional group.
  • a PCL hydrophilic fragment such as ethylene glycol (PEG)
  • PEGPCL-hydrazide the aforementioned PCL- ⁇ or PEG-PCL- ⁇ precursor is mixed with the aforementioned HATBA-CHO precursor, and the stoichiometry of the target graft ratio is controlled to form PCL- ⁇ or PEG-PCL- ⁇ .
  • Hydrazone linkage Obtained a pH-sensitive biodegradable hyaluronic acid derivative HA-g (Hz-PCL) copolymer or H as shown below.
  • HA-COOH aqueous solution obtained above was added to an equimolar volume of 40% tetrabutylammonium hydroxide 9.8 mL (Fluka). After the reaction was stirred at room temperature for 16 hours, lyophilized to give 9.2 g (yield: 99%) of a white form of HA-TBA solid.
  • the NMR structure of HA-TBA is identified by light as shown in Figure 3.
  • Example 1 A 250 mL two-necked flask was prepared and the HATBA 4g ( 6.44 mmol) of Example 1 was weighed and the water was removed in a vacuum system for 2 hours at room temperature. Thereafter, 71.7 mL of anhydrous dimethyl hydrazide was added to dissolve. After further adding 5.41 g of sodium hydrogencarbonate (64.4 mmol) and 0.403 g of 2,2,6,6-tetradecylpiperidine oxide (2.58 mmol), the temperature was lowered to 0 °C. Thereafter, 2.07 g of iodobenzene diacetate ( 6.44 mmol) was added, and the reaction was naturally carried out for 6 hours to obtain a crude product of HATBA-CHO.
  • HA-TBA hyaluronic acid-quaternary ammonium salt
  • TEMPO 2,2,6,6-tetramethylpiperidine oxide
  • BAIB [bis(acetoxy) oxime] [[bis(acetoxy)iodo] ]benzene)
  • SC solid content.
  • the newly formed aldehyde signal is located at ⁇ 9.46 ppm and ⁇ 9.26 ppm.
  • the conversion ratio can be calculated compared to the integral ratio of hydrogen No. 12 of HA, and the conversion rate after adjusting the amount of oxidant can be provided.
  • Numerical change information, NMR structure identification spectra of HA-TBA-CHO are indicated in Figure 4.
  • DMAP 4-diaminoguanidine pyridine
  • succinic anhydride 8.43 mmol
  • PCL-OH solution was slowly added dropwise to a mixed solution of DMAP and succinic anhydride, and reacted at room temperature for 48 hours. Thereafter, the tetrahydrofuran solvent was removed by concentration under reduced pressure to obtain a crude product of PCL-COOH.
  • a 250 ml cylindrical glass was used as a reaction device, and the temperature was raised to 100 ° C before the polymerization, and nitrogen gas was passed for 30 minutes.
  • 120 g of polyethylene glycol monoterpene ether (Methoxypolyethylene Glycol, mPEG, molecular weight 5000 g/mole) and 48 g of caprolactone ( ⁇ -caprolactone) were sequentially added to the reactor to slowly increase the temperature until completely dissolved.
  • Terolactone ⁇ -caprolactone
  • the product was first dissolved in dichloromethane, reprecipitated with diethyl ether, and dried under vacuum at 25 ° C for 24 hours to give PEG-PCL-OH as a white powder.
  • the PEG-PCL-OH produced by different PEG chain lengths and different stoichiometric ratios is shown in Table 3 below.
  • SA succinate liver
  • DMAP 4-dimethylaminopyridine
  • Et3N triethylamine
  • THF tetrahydrofuran
  • IBCF isobutyl chloroformate
  • NMM N-methylmorphin
  • NH 2 N3 ⁇ 4 in THF hydrazine tetrahydrofuran solution
  • THF tetrahydrofuran.
  • Example 2 The HATBA-CHO (0.805 mmol) 0.5 g obtained in Example 2 was weighed into a 25 mL double-necked flask, and dissolved in 5.6 mL of absolute ethanol. Further, 0.344 g of PCL-hydrazide (0.0805 mmol) obtained in Example 4 was dissolved in 4 mL of absolute ethanol, and then slowly added dropwise to the HATBA-CHO ethanol solution. After reacting at 65 ° C for 8 hours, it was cooled to room temperature to obtain a crude product of HATBA 16k -g-( Hz PCL) (PCL graft ratio: 10%).
  • the above crude product of HATBA 16k -g-( Hz PCL) was loaded into a dialysis membrane (molecular weight cut out (MWCO) 12,000 ⁇ , ⁇ ) and purified by dialysis in an environment of 16.
  • an aqueous solution of the purified HA-g-( Hz PCL) product was obtained.
  • freeze-drying the HA-g-( Hz PCL) aqueous solution the final product HA 16k -g-( Hz PCL) / ( Hz PCL graft ratio: 10%) was obtained.
  • the HA 16k -g-( Hz PCL) structure was identified by ifi-NMR as shown in Fig. 6.
  • the No. 12 proton signal ( ⁇ 1.97 ppm, s ) was used to calculate the PCL graft ratio, and its integral value was relative to the hydrazone linkage proton signal ( ⁇ 8.33 ppm, s ).
  • the grafting rate of PCL in the HA 16k -g-( Hz PCL) structure was determined.
  • Example 2 The HATBA-CHO 2g (3.22 mmol) obtained in Example 2 was weighed into a 100 mL two-necked flask and dissolved in 20 mL of absolute ethanol. Another sample of the sample obtained in Example 5 was 131.06 g (PEG 55 - PCL 3000 - hydrazide) (0.39 mmol), dissolved in 15 mL of absolute ethanol, and then slowly added dropwise to HATBA-CHO. In ethanol solution. After reacting at 65 ° C for 8 hours, the temperature was lowered to room temperature to obtain a crude product of HATBA 16k -g- ( Hz PCL 3 - PEG 55 ) (PCL 3 - PEG 55. graft ratio 12%).
  • the crude product of HATBA 16k -g-( Hz PCL 3QQ(r PEG 55Q ) was loaded into the dialysis membrane (MWCO 12,000 ⁇ 14,000 ) and purified by dialysis at 16 ° C.
  • purified HA 16k -g- ( Hz PCL 3 . - PEG 55. ) Aqueous solution. After lyophilizing the aqueous solution, HA 16k -g-( Hz PCL ⁇ -PEG 550 ) final product (PCL ⁇ -PEG 550 grafting rate 12%) was obtained as a yellow solid.
  • the structure of HA 16k -g-( Hz PCL 3000 -PEG 550 ) was identified by ifi-NMR as shown in the figure.
  • the No. 12 proton signal ( ⁇ 1.91 ppm, s ) was used to calculate the PCL graft ratio, and its integral value was relative to the hydrazone linkage proton signal hi ( ⁇ 9.10 ppm, s ) and h2 ( ⁇ 6.51 ppm, s ), the PCL grafting ratio in the HA 16k -g-( Hz PCL-PEG) structure was obtained.
  • the PEG-PCL-OH sample 13 obtained in Example 5 was weighed 1. 1.87 g (0.54 mmol) in a double-necked flask, and water was azeotropically removed at 65 to 70 ° C using a solvent of toluene. Then, 4.8 mL of Dimethyl sulfoxide (DMSO) was added to dissolve the above PEG-PCL-OH. Add 6000 ppm of triethylene diamine (DABCO) and 3000 ppm of stannous octoate (Sn II)) as a catalyst.
  • DABCO triethylene diamine
  • Sn II stannous octoate
  • HA 16k- TBA 3 g (4.84 mmol) obtained in Example 2 was placed in a 50 mL flask. After adding 13 mL of DMSO, the reaction flask was heated to 60 ° C to dissolve, and then completely dissolved and then added.
  • HA-g-(PCL-PEG) was charged into a dialysis membrane (MWCO 12,000 to 14,000) and purified by dialysis at 16 °C.
  • TB A was replaced with a sodium ion exchange resin to obtain a purified HA-g-(PCL-PEG) crude product aqueous solution.
  • the aqueous solution was freeze-dried to obtain a yellow solid HA-g-(PCL-PEG) final product (PCL-PEG graft ratio: 10%).
  • Table 7 The results of HA-g-(PCL-PEG) produced by different PCL-PEG chain length compositions and different stoichiometric ratios are shown in Table 7 below.
  • CMC Critical cell concentration
  • the particle size analysis step is: weigh the test sample 20 mg, add 2 mL DMSO solvent, at room temperature Dissolve and dissolve for 20 minutes. Add 1 mL of secondary deionized water and shake at room temperature for 20 minutes until completely dissolved. Next, the above solution was dialyzed against 1000 mL of secondary deionized water in a MWCO 6000 to 8000 dialysis bag at room temperature for 24 hours to remove the DMSO solvent. At the end of the dialysis, the sample solution in the dialysis bag is collected, and a solution of 100 times the critical cell concentration (CMC) of the test sample is prepared, and the particle size test is performed.
  • the particle size analyzer was used as a COULTER, N4 Plus particle size analyzer.
  • test sample was filtered through a 0.45 ⁇ filter before testing.
  • the sample aqueous solution was placed in a quartz sample cell, the test temperature was set to 25 ° C, the light scattering angle was 90 degrees, and the average particle size and particle size distribution were recorded. The results are shown in Table 9 below.
  • the HA-g-( HZ PCL-PEG) material of the sample 40 obtained in Example 7 was weighed and prepared into 5 groups of HA-g-( HZ PCL-PEG) microcapsules of the same concentration (concentration of 100 times concentration of CMC). , pH 5.0).
  • the NMR hydrogen spectrum was used to calculate the change of the hyton signal on the hyaluronic acid ( ⁇ 1.97 ppm, s) relative to the NMR hydrogen spectrum ( ⁇ 1.2-2.5 ppm), and the HA-g-( HZ PCL-PEG) material was formed.
  • Example 7 The sample obtained in Example 7 was weighed out of 34 mg and 2.0 mg of rhodamine-123 (rhodamine-123) in DMSO (10 mL). The solution was dissolved by ultrasonic vibration for 5 minutes, and after standing for one day at room temperature, the solution was transferred to a dialysis bag (Spectrum, MWCO 3, 500). The second aqueous solution of pH 8.0 was dialyzed for 2 days (the uncoated rhodamine-123 was surely removed), and the resulting solution of the coating of rhodamine-123 was dried by freeze-drying.
  • D/P ratio ratio of doxorubicin to child material
  • P.S. particle size
  • ⁇ . ⁇ . coverage ratio
  • D/P ratio ratio of doxorubicin to child material
  • P.S. particle size
  • molecular weight dispersion
  • [DXR] doxorubicin concentration
  • ⁇ . ⁇ . coverage rate.
  • the doxorubicin drug was coated in the micelles of different material structures to perform the translation behavior test.
  • the sampling time is from 0 hours to 24 hours, and the results are shown in Figs. 8 and 9.
  • Figure 8 shows the interpretation curve of HA-g-( Hz PCL-PEG) of Example 13 at different pH values.
  • the results showed that the drug translation in the acidic environment was significantly higher than that in the neutral environment, and the ratio was about 2 times. This result indicates that the release of the drug in an acidic environment can be accelerated by the action of an acid-soluble linkage ( ⁇ linkage).
  • Figure 9 shows the drug release effect of different PEG chain lengths in the HA-g-( Hz PCL-PEG) material of Example 13.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开一种pH敏感的透明质酸衍生物,包括至少一个如下式(I)所示之重复单元,其中HA表示包括N-乙酰基-D-葡醣胺和D-葡醣醛酸之单元,q表示2至10000之整数;A表示生物可断裂键,包括腙、缩醛、缩酮或亚胺之至少一种基团;M表示疏水片段、亲水片段或两亲性片段之至少一种,以及p表示该[A-M]直接接枝于每一该HA单元之数量,且p为0至4之整数,且每一该HA单元之p不得同时为0。

Description

pH敏感的透明质酸衍生物和其应用 技术领域
本发明涉及一种透明质酸衍生物及其应用, 特别是关于具有 pH敏感性 的透明质酸^^生物。 背景技术
透明质酸 (hyaluronic acid) 为由乙酰基葡萄糖胺 (N-acetyl-D-glucosamine) 与 D-葡萄糖醛酸 (D-glucuronic acid)所形成的重复单元所组成的线性黏多糖 ( linear mucopolysaccharide ) 。 透明质酸最早在牛眼球的玻璃体中被发现, 之后在其它组织, 例如细胞间质(ECM )、 关节滑液等中发现。 生物体中的 透明质酸主要功能在于保护及润滑细胞、 调节细胞在此黏弹性基质上的移 动、 稳定胶原网状结构及保护该胶原网状结构免于机械性破坏。
透明质酸的细胞表面受体主要为 CD44。透过透明质酸与 CD44的接合, 可促使细胞聚集、移动、增殖及活化以及细胞与细胞间的黏合等的细胞活动。 在肿瘤转移的机制上,透明质酸与 CD44的接合促进肿瘤细胞的上皮-间质转 化 (epithelial-mesenchymal transition; EMT) , 使得肿瘤细月包浸润血液系统或淋 巴系统。最后,使得肿瘤细胞与原始细胞连接及作用而达到肿瘤细胞的转移。
透明质酸已知在水溶性介质中当浓度高于临界微胞浓度 (critical micelle concentration, CMC)时, 遵照热力学原则自我聚集 (self-assembly)而形成纳米 尺寸的微胞。 目前已有多篇先前文献记载透明质酸形成微胞及包覆活性药物 的技术, 例如美国专利 USP 6,350,458B1、 美国专利 USP 7,780,982B1等。
美国专利 USP 6,350,458B1揭示由至少一种 胞形成材料、 荷尔蒙或抗 体等的大分子药剂、 碱金属磺酸烷酯、 水杨酸碱金属盐、 及医药可接受的依 地酸 (edetate)所形成的医药组合物,藉由此医药组合物将不易通过肠胃道 (GI) 的大分子药剂递送至组织或细胞中。
美国专利 USP 7,780,982B1揭示一种透明质酸衍生物, 于透明质酸之羟 基 (-OH)位置以氨基曱酸酯基 (urethane)连接碳数 2〜16的烃基,以提高该透明 质酸衍生物及其所形成可包覆药物的微胞的生物可分解性。
然而, 已知包覆活性药物的微胞在透过胞吞作用(endocytosis)进入肿瘤 细胞后, 通常在尚未译放出活性药物以毒杀肿瘤细胞之前, 该微胞已被肿瘤 细胞经胞吐作用(exocytosis)排出。 因此对于透明质酸及其所形成的 胞仍有 改良的需求。 发明内容
本案提供一种透明质酸衍生物, 其包括至少一种下式 (I)所示之重复单 元,
Figure imgf000004_0001
(I)
式中, HA表示包括 N-乙酰基 -D-葡醣胺和 D-葡醣醛酸之单元, q表示 2 至 10000之整数; A表示一生物可断裂键, 包括腙 (hydrazone)、 缩醛 (acetal)、 缩酮 (ketal)或亚胺 (imine)之至少一种基团; M表示一疏水片段、 亲水片段或 两亲性片段之至少一种; 以及 p表示该 [A-M]直接接枝于每一该 HA单元之 数量, 且 p为 0至 4之整数, 且每一该 HA单元之 p不得同时为 0; 其中, 该透明质酸衍生物具有生物可分解性及在酸性环境中裂解的 pH敏感性。
本案更提供一种微胞, 由上述之透明质 S史衍生物于一亲水介质中形成。 本案再提供一种药物递送系统, 包括一载体包覆一生物活性成分, 其中 该载体为上述之透明质酸衍生物所构成。
再者, 本案更提供一种风味增强剂, 由上述之透明质酸衍生物所构成, 用以包覆一生物活性物质以减少该生物活性物质的味道。 附图说明
【图式简单说明】
第 1图显示本案一实施例之 HA-g-HZPCL的化学结构式,ΗΑ表示透明质酸 之单元, g表示接枝状态, HZ表示腙连接, PCL表示聚己内酯链段。
第 2图显示本案一实施例之 HA-g-(HZPCL-PEG) 的化学结构式, HA表示 透明质酸之单元, g表示接枝状态, HZ表示腙连接, PCL表示聚己内酯链段; PEG表示乙二醇链段。
第 3图显示 HA-COONa及 HA-TBA之1 H-NMR光谱图。
第 4图显示 HATBA-CHO之1 H-NMR光谱图。
第 5图显示 PCL-酰肼的 FT-IR光语图。 第 6图显示本案一实施例之 HA-g-(HZ-PCL)的化学结构式及其 ifi-NMR光 谱图, HA表示透明质酸之单元, g表示接枝状态, HZ表示腙连接, PCL表示 聚己内酯链段。
第 7图为本案一实施例之 HA-g-(HZPCL-PEG) 的化学结构式及其 ifi-NMR结构鉴定光谱图, HA表示透明质酸之单元, g表示接枝状态, HZ表 示腙连接, PCL表示聚己内酯链段; PEG表示乙二醇链段。
第 8图显示本案实施例之微胞配方的药物译放行为。
第 9图显示本案实施例之微胞配方的药物译放行为。 具体实施方式
本案一实施例为改良应用于药物译放控制的 pH敏感材料, 选用生物兼 容性优异的透明质酸作为主体, 以生物可断裂键 (biocleavable linkage)连接疏 水片段、 亲水片段、 两亲性片段或其组合, 形成具有如式 (I)所示之重复单元 的透明质酸衍生物。
如下式 (I)所示之单元中,
[ A - ]
L LJ Λ
q 式 (I)
HA表示包括 N-乙酰基 -D-葡醣胺和 D-葡醣醛酸之透明质酸单元。 q表 示上述透明质酸单元的数目, 可为 2至 10000之整数, 优选为 10〜5000之整 数, 但不限于此。 A表示生物可断裂键, 与该 N-乙酰基 -D-葡醣胺及该 D- 葡醣醛酸之至少一个的羟基 (-OH)形成共价连接。 M表示疏水片段、 亲水片 段或两亲性片段之至少一种。 p为表示上述 [A-M]直接接枝于 HA上的数目。 由于该生物可断裂键系连接于 N-乙酰基 -D-葡醣胺和 D-葡醣醛酸的羟基 (-OH)上。 已知透明质酸中的 N-乙酰基 -D-葡醣胺和 D-葡醣醛酸具有 4个羟 基, 因此, p表示 0至 4之整数, 且每一该 HA单元之 不得同时为 0。 然 而, 本案不特别限定上述生物可断裂键的羟基连接位置。 但为了使本案技术 内容容易了解, 以下说明皆以一个生物可断裂键 (p=l)为例。
此述的 "生物可断裂键"表示在酸性的环境下可断键的基团, 其与该 N- 乙酰基 -D-葡醣胺及该 D-葡醣醛酸之至少一个的羟基 (-OH)形成共价连接。具 体地包括腙 (hydrazone)、 缩醛 (acetal)、 缩酮 (ketal)或亚胺 (imine)之至少一种 基团。 此述的 "酸性环境,,系指 pH值 7以下的环境, 优选为 pH6.9〜pH1.0 的范围, 更优选为 pH6.5〜pH3.0的范围, 例如, 生物体细胞之胞器内环境或 肿瘤组织部位。
此述的 M表示疏水片段、 亲水片段或两亲性片段之至少一种。 M的分 子量没有特别限制, 可为 100至 50,000道尔顿 (Dalton; Da), 优选为 300至 30,000Da, 更优选为 500至 20,000Da。
此述 "疏水片段"表示由生物可吸收的高分子为重复单元所形成的链段。 该生物可吸收的高分子之重复单元可包括己内酯(caprolactone)、 丁内酯 (butyrolactone), D-丙交酯 (D-lactide)、 L-丙交酯 (L-lactide)、 D-乳酸 (D-lactic acid), L-|LS¾(L- lactic acid) , 乙交酷 (glycolide) , 乙醇酸 (glycolic acid), 基已酸 (hydroxy hexonoic acid) , 基丁酸 (hydroxy butyric acid) , 成内酷 (valerolactone) , 基成酸 (hydroxy valeric acid)、 苹果酸 (malic acid)、 上述之 共聚物、 或上述之组合。 该生物可吸收的高分子也可具有一个以上于酸性环 境中可断键的连接, 例如腙、 缩醛、 缩酮或亚胺之至少一种基团。
此述 "亲水片段"表示亲水性的分子链段, 没有特别限定, 可选自聚乙 二醇 (polyethylene glycol, PEG)、 聚环氧乙烷 (polyethylene oxide, PEO)、 聚乙 烯吡咯烷酮 (polyvinylpyrrolidone, PVP)、 聚丙烯酸 (polyacrylic acid, PAA)、 聚 曱基丙烯酸 (polymethacrylic acid, PMA)或上述之组合。
此述 "两亲性片段,,表示具有亲水区域与疏水区域的两性链段。 上述亲 水区域的重复单元可列举乙二醇 (ethylene glycol)、 环氧乙烷 (ethylene oxide)、 乙婦口比洛坑酮 (vinylpyrrolidone)、丙婦酸 (acrylic acid),曱基丙婦酸 (methacrylic acid), 上述之共聚物、 或上述之组合。 上述疏水区域的重复单元可列举己内 酉 a (caprolactone)、 1"内酉 B (butyrolactone)、 D- 1¾ ¾ IB (D-lactide)、 L- 1¾ ¾ ΙΘ (L-lactide)、 D-乳酸 (D-lactic acid)、 L-乳酸 (L- lactic acid)、 乙交酯 (glycolide)、 乙醇酸 (glycolic acid) , 基已酸 (hydroxy hexonoic acid) , 基丁酸 (hydroxy butyric acid)、 成内酷 (valerolactone), 基成酸 (hydroxy valeric acid)、 苹果酸 (malic acid), 上述之共聚物、 或上述之组合。 此述"两亲性片段"可更具有一 个以上于酸性环境中可断键的连接, 例如腙、 缩醛、 缩酮或亚胺之至少一种 基团。
本案另一实施例中, 除上述的 A及 M的连接之外, 上述的 HA也可更 透过一非生物可断裂键或一不易快速断键以连接一亲水片段。 此述的 "非生 物可断裂键"是指在酸性环境中无法酸解断键的连接, 包括氨基曱酸酯
(urethane)键。 此述之 "不易快速断键"是指在酸性环境中无法在 24小时内快 速断键的连接, 包括酯 (ester)键。 此述之非生物可断裂键或不易快速断键所 连接的 "亲水片段", 可列举聚乙二醇 (polyethylene glycol, PEG), 聚环氧乙 烷 (polyethylene oxide, PEO)、聚乙烯吡咯烷酮 (polyvinylpyrrolidone, P VP)、聚 丙婦酸 (polyacrylic acid, PAA)、 聚曱基丙婦酸 (polymethacrylic acid, PMA)、 或上述之组合。 此述之非生物可断裂键或不易快速断键亦可接枝于 HA的羟 基位置, 透过此述之非生物可断裂键或不易快速断键来连接一亲水片段, 可 提高本案所述的透明质酸衍生物在水溶性介质中的溶解性, 以及降低本案所 述的透明质酸衍生物所形成之微胞于生物体血液循环系统中被生物体免疫 系统辨识的机会, 提高该微胞在血液中的循环时间。
在一实施例中, 本案所述之透明质衍生物还可以一隔离链段连接一具有 生物辨识功能的蛋白质分子。 此述 "隔离链段"表示与上述 A生物可断裂键 或非生物可断裂键在 HA的连接位置不同之链段, 其可为碳链或碳氧链, 例 如碳数 1至 1000的碳链或碳氧链。此述隔离链段的分子量可为 100至 50,000 Da, 优选为 300至 30,000 Da, 更优选为 500至 20,000 Da。 此述 "生物辨识 功能的蛋白质分子"可为抗体或配体 (ligand), 没有特别限制, 但优选为可辨 识特定肿瘤细胞之抗体或配体。
本案所述之透明质 S炱衍生物, 由于羟基位置施以疏水片段或两亲性片段 改质, 当在亲水介质中的浓度大于临界微胞浓度后, 可自我聚合形成纳米尺 度的微胞结构。 此述的 "亲水介质"系指具有亲水性的溶剂, 可例如水、 生 理食盐水、 血液、 血浆、 乙醇等, 但不限于此。 此述的 "临界微胞浓度,,系 指上述透明质衍生物在亲水介质中形成微胞结构的浓度,优选为 10至 0.0001 重量%之范围。
在一实施例中, 本案所述之透明质酸衍生物可与具生物活性的物质混 合、 震荡, 形成包覆上述生物活性物质之微胞。 此述之具有生物活性的物质 可为具有疗效的药剂、 维生素等的活性成分, 特别是癌症治疗的化疗药剂, 例如若丹明 (rhodamine)、 阿霉素 (doxorubicin), 紫杉醇 (paclitaxel)等。 在本案 所述之包覆生物活性物质的微胞中,该生物活性物质与形成微胞的透明质酸 ^ ^生物的重量比优选可为 1 : 1至 1 : 20。
本案所述之 "pH敏感"系指在酸性环境中发生酸解的现象。 本案之透明 质酸衍生物因具有该生物可断裂键, 于酸性环境中酸解断键, 因此呈现 pH 敏感的特性。
另一方面,本案所形成的包覆生物活性物质的微胞在进入动物体血液中 循环时, 该微胞可因促进性渗透与滞留效应 (Enhanced Permeation and Retention effect, EPR effect )而渗透并累积在细胞或组织间隙较大之部位,特 别是肿瘤组织。 由于肿瘤组织周围多呈现偏酸性, 上述透明质酸衍生物所连 接的生物可断裂键因快速酸解而断键, 促使所携带的生物活性物质快速释 出, 达到毒杀肿瘤细胞的效果。 再一方面, 本案所述之包覆生物活性物质的 胞也可透过胞吞作用(endocytosis)进入动物体细胞中。 当细胞内呈现酸性 环境时,本案所述之透明质酸衍生物所连接的生物可断裂键因快速酸解而断 键, 促使所携带的生物活性物质快速释出。 快速的酸解及译放活性物质, 除 可达到预期的治疗效果外, 也可避免已知微胞经胞吐作用(exocytosis)被排出 细胞外的问题。 再者, 当本案所述之透明质酸衍生物连接具有生物辨识功能 的蛋白质分子的情形时, 可透过该蛋白质分子专一性辨识特定细胞, 将包覆 生物活性物质的微胞专一性的递送至特定细胞, 特别是肿瘤细胞。
本案还提供以上述透明质 S史衍生物形成微胞, 包覆有强烈气味或味觉臭 味的药物或生物活性物质以降低气味的风味增强剂用途。作为风味增强剂的 用途时, 包覆的药物或生物活性物质没有特别限定。 特别是在经口服或肠胃 道投药时, 肠胃道的酸性环境可促使本案所述之微胞形成快速酸解断键, 进 而译放出所包覆的药物或生物活性物质。 因此, 本案所述之风味增强剂也可 适用于经口或肠胃道投药的营养品。
以下说明制备本案之透明质 S史衍生物之一优选实施态样。
首先使用离子吸附方式将水溶性多醣类的透明质酸与四丁基氢氧化铵 ( tetrabutylammonium hydroxide; TBAOH )结合成有机溶剂可溶解之透明质 S史-四丁基氢氧化铵 (HA-TBA) (如下示流程图 1)。
Figure imgf000008_0001
流程图 1
之后, 将于透明质酸之羟基位置进行 pH敏感之基团改质。 选用对一级 或二级醇类具有选择性氧化成醛类之氧化试剂 -2,2,6,6-四曱基哌啶氧化物 ( 2,2,6,6-tetramethyl-piperidin- 1 -oxyl, TEMPO ) , 并辅以二乙酸破苯 ( Iodobenzene diacetate, BAIB )进行 HA-TBA之羟基位置氧化反应获得中间 产物 HA-TBA-CHO (如下式)。
Figure imgf000009_0001
HATBA-CHO 然后 , 制备一末端含有酰肼 (hydrazide)之疏水链段以与 HA-TBA-CHO之 酸基反应进而形成具有 pH敏感性质之腙基 (hydrazone)。首先于高温下利用锡 触媒 (辛酸锡) ( stannous octoate )作为催化剂, 正十二醇(1-dodecanol)作为起 始剂与 ε-己内酯 ( ε-caprolactone ) 进行开环聚合反应得聚己内酯 ( poly(8-caprolactone); PCL)疏水性聚合物。 继之进行两步骤的末端官能基 改质反应。 第一步骤以三乙基胺(triethylamine )将 PCL-OH去质子化, 接着 以 4-二曱胺基吡啶 ( 4-dimethylaminopyridine ) 作为催化剂和丁二酸酐 ( succinic anhydride )进行加成开环反应, 获得末端改质为羧酸官能基之羧 酸聚己内酯 (PCL-COOH)。 第二步骤以 N-曱基吗琳( N-methylmorpholine; NMM )将 PCL-COOH去质子化, 再和氯曱酸异丁酯( isobutylchloroformate; IBCF )行加成 -脱去( addition-elimination )反应, 生成反应性较高的中间产 物 PCL-酸酐。 该中间产物 PCL-酸酐再和 1 M 四氢呋喃肼(hydrazine tetrahydrof ran)溶液反应, 得到末端改质为酰肼官能基之疏水性 PCL-肼前体 物 (;
Figure imgf000009_0002
本案另一实施例中, 在上述末端改质为酰肼官能基之前体物可于 PCL 亲水片段, 例如乙二醇 (PEG), 形成两亲性片段 (如下式)。 PEGPCL-hydrazide 最后, 将前述 PCL-肼或 PEG-PCL-肼前体物与前述 HATBA-CHO前体 物混合, 并控制目标接枝率之化学计量, 使 PCL-肼或者 PEG-PCL-肼形成腙 连接 (hydrazone linkage 获得具有 pH敏感生物可分解性透明质酸衍生物 HA-g(Hz-PCL)共聚物或 H 如下所示。
Figure imgf000010_0001
Figure imgf000010_0002
本发明之具体实施详细说明如下, 然而以下的实施例仅用于进一步公开 本发明之技术内容, 不应藉以限制本案的发明范畴。
【实施例 1】
透明质酸-四级铵盐 (HA-TB A)的制备
首先取 500 mL体积的氢离子交换树脂 (ROHM HAAS, 食品等级)倒 入层析管柱中, 以二次水清洗氢离子交换树脂。 接下来取透明质酸钠 (HA-COONa)粉末 6 g (分子量 Mw=16,000 )加入 600 mL二次水配制成 1%水 溶液,倒入已清洗完毕的氢离子交换树酯的层析管柱中进行钠离子与氢离子 的置换, 得到 HA-COONa置换成 HA-COOH的中间产物。 继之将上述所得 之 HA-COOH水溶液中间产物加入等摩尔体积量之 40%四丁基氢氧化铵 9.8 mL(Fluka ) 。 于室温下搅拌反应 16 小时后, 冷冻干燥后可得白色片状之 HA-TBA固体 9.2 g (产率 99% ) 。 HA-TBA的 NMR结构鉴定光"普如第 3图 所示。
【实施例 2】
透明质酸四级铵盐-醛 (HATBA-CHO)制备
准备一 250 mL双颈瓶并称取实施例 1的 HATBA 4g ( 6.44 mmol ) , 以 真空系统室温除水 2小时。 之后, 加入 71.7 mL无水二曱基曱酰胺溶解。 再 加入 5.41g的碳酸氢钠 ( 64.4 mmol )和 0.403g的 2,2,6,6-四曱基哌啶氧化物 ( 2.58 mmol )后, 降至 0°C。 之后加入 2.07g的二乙酸碘苯( 6.44 mmol ) , 自然回温反应 6小时, 得到 HATBA-CHO粗产物。 真空减压旋转浓缩二曱 基曱酰胺溶剂至 20 mL呈橘红色浓稠态后,緩慢滴入 1000 mL冰乙酸乙酯进 行沉淀并离心。 得到 HATBA-CHO 白色固体粗产物。 继之, 将前述 HATBA-CHO白色固体粗产物加入 20 mL的乙醇溶解,再行緩慢滴加至乙醚 与四氢呋喃混和溶剂 (乙醚: 四氢呋喃 = 2: 1 ) 中析出大量白色固体。 以 离心移除溶剂后减压浓缩, 并在真空室温干燥 1 天后, 得到 3.05g 白色 HATBA-CHO 固体产物。 经化学计量添加调整, HA-TBA 转化为 HATBA-CHO的转化率如下表 1所示。
Figure imgf000011_0001
Figure imgf000011_0002
* HA-TBA:透明质酸 -四级铵盐; TEMPO:2,2,6,6-四甲基哌啶氧化物 ; BAIB: [双(乙 酸基)捵]苯 ([bis(acetoxy)iodo]benzene); S.C.:固含量。 HA-TBA进行氧化反应后, 新生成的醛类讯号位于 δ 9.46 ppm与 δ 9.26 ppm,相较于 HA的 12号氢的积分比值可计算得转换率, 并可提供调整氧化剂 量后的转换率数值变化信息, HA-TBA-CHO的 NMR结构鉴定光谱如第 4图所 标示。
【实施例 3】
½聚己内酯 (PCL-COOH)制备
将十二醇(1-dodecanol)置于柱状玻璃反应器, 加入二价锡触媒 Sn(Oct)2 ( stannous octoate )并升温至 130 °C ,緩曼力口入己内酷 ( epsilon-caprolactone ) 单体。 待聚合反应完成后粗产物冷却回到室温, 以等体积二氯曱烷 (dichloromethane)溶解。 于 4 °C二乙醚 (diethyl ether)进行沉淀, 并于 -20°C静 置 1小时。 将白色沉淀物以抽气过滤法收集, 真空室温干燥 24小时, 得到白 色固体聚己内酯单醇 (PCL-OH)产物。 各化学计量可得到不同分子量 PCL-OH 产物如下表 2所示。
[表 2]
PCL-OH C/D a Sn(Oct)2 Mw Mn PDI 样品 1 20.18/1 0.5 mol% b 4281 3071 1.39 样品 2 15.00/1 0.5 mol% b 4815 3521 1.37 样品 3 10.53/1 0.5 mol% b 4108 2933 1.40 样品 4 5.26/1 0.5 mol% b 1387 1172 1.19 样品 5 10.53/1 0.5 mol% b 2573 2093 1.23 样品 6 5.26/1 1 mol% c 1267 1079 1.17 样品 7 5.26/1 0.5 mol% c 1152 1005 1.15 样品 8 43.81/1 0.5 mol% c 5154 3979 1.30 样品 9 20.18/1 0.5 mol% c 2706 2203 1.23 样品 10 43.81/1 0.5 mol% c 3419 2808 1.22 样品 11 20.18/1 0.5 mol% c 2740 2199 1.25 样品 12 43.81/1 0.5 mol% c 7686 4696 1.63 a C/D =表示己内酯 /十二醇的比值, b mol%表示相对于己内酯的摩尔比, c mol%表示相对 于十二醇的摩尔比, PDI表示分子量的分布。 之后, 称取上述获得的 PCL-OH 6g ( Mw = 4281, 1.37 mmol ) 于 100 mL 双颈瓶中。 真空干燥除水, 氮气下加入 15.5 mL无水四氢呋喃, 加热至 60 °C 溶解。 之后加入 1.2 mL三乙基胺(7.44 mmol ) 。 同时将 0.121g的 4-二曱胺基 吡啶( DMAP ) (0.992 mmol )及 0.844g的丁二酸酐( succinic anhydride ) ( 8.43 mmol ) 以 16 mL的无水四氢呋喃溶解完毕。 之后, 将 PCL-OH溶液緩慢滴加 至 DMAP与丁二酸酐的混和溶液中, 室温反应 48小时。 之后减压浓缩移除四 氢呋喃溶剂, 获得 PCL-COOH粗产物。
继之准备 600 mL冰乙醚 /石油醚 ( 1 : 1, v/v ) 混合液, 緩慢将前述 PCL-COOH粗产物加入冰乙酸 /石油醚混合液中。在析出大量白色固体后移至 -20°C静置 2小时, 以抽气过滤法收集白色沉淀固体。 在室温真空干燥, 获得 到 4.6g PCL-COOH。
【实施例 4】
酰肼聚己内酯 (PCL-hydrazide)制备
取上述所得的 PCL-COOH 12g ( Mw = 3576, 3.36 mmol ) 于100 mL双颈 瓶中, 抽真空移除空气。 于氮气下加入 54 mL无水四氢呋喃, 加热至 60 使 之完全溶解后降至室温。 接下来緩慢滴加 1.9 mL N-曱基吗琳 ( N-methylmorpholine, NMM, 16.78 mmol )后降温至 0 °C , 并加入 2.2 mL氯 曱酸异丁酯(Isobutyl chloroformamide, IBCF, 16.78 mmol ) 。 于室温搅拌 30 分钟, 生成 PCL-酸酐中间产物并析出大量白色的盐类固体。
然后, 取前述 PCL-酸酐中间产物的澄清溶液緩慢滴加至装有 33.6 mL联 胺四氢呋喃溶液( 1 M hydrazine in THF, 33.6 mmol )的 150 mL双颈瓶中, 升 温至 40 °C反应 16小时。 减压浓缩移除四氢呋喃溶剂, 得到酰肼聚己内酯 (PCL-hydrazide)粗产物。 最后准备 1200 mL冰乙醚 /石油醚( 1: 1 , v/v )混合液, 緩慢滴加酰肼聚己内酯 (PCL-hydrazide)粗产物至冰乙醚 /石油醚混合液中,析 出大量白色固体。 移至 -20°C静置 2小时, 并以抽气过滤法收集白色沉淀固 体, 室温真空干燥, 得到 7.44g的酰肼聚己内酯 (PCL-hydrazide)产物。 酰肼聚 己内酯(PCL-hydrazide)之 FT-IR光"普如第 5图所示, 其中酰肼聚己内酯 (PCL-hydrazide)的酰胺基(amide)官能基吸收峰位于 1637 cm-1。 【实施例 5】
酰肼聚乙二醇-聚己内酯 (PEG-PCL-hydrazide)制备
首先使用 250ml之柱状玻璃器做为反应装置, 聚合前先升温至 100°C , 并 通氮气 30分钟。 120 g 聚乙二醇单曱醚 (Methoxypolyethylene Glycol, mPEG, 分子量 5000 g/mole) 、 48 g 己内酯( ε -caprolactone)依序加入反应器中緩 慢升高温度直至完全溶解。 温度继续升高至 100 °c时加入触媒辛酸亚锡 (Stannous Octoate, SnOct ) 0.67 ml, 130°C反应 24小时。 产物先以二氯曱烷 溶解, 再以乙醚进行再沉淀后, 于 25 °C之温度下真空干燥 24小时, 得到 PEG-PCL-OH为白色粉末状产物。 不同 PEG链长与不同化学剂量比例产出之 PEG-PCL-OH如下表 3所示。
[表 3]
Figure imgf000014_0001
*PDI表示分子量的分布。 取前述 PEG-PCL-OH产物样品 17 12 g ( Mw = 4928, 2.435 mmol ) 于 100 mL双颈瓶中真空干燥除水。 于氮气下加入 14.1 mL无水四氢呋喃并加热至 60 °C , 待 PEG-PCL-OH均匀溶解后加入 1.1 mL 三乙基胺( 7.305 mmol ) 。 同时将 0.119 g的 4-二曱胺基吡啶( DMAP ) ( 0.974 mmol )及 0.828 g的丁二 酸酐( succinic anhydride ) ( 8.28 mmol ) 以 25 mL的无水四氢呋喃溶解完毕 后。 将前述 PEG-PCL-OH溶液緩慢滴加至 DMAP与丁二酸酐混和溶液中, 室 温反应 48小时后减压浓缩移除四氢呋喃溶剂。 获得 PEG-PCL-COOH (PEG19。。-PCL3。。。-COOH)粗产物。继之, 准备 800 mL冰乙酸 /石油酸( 1: 1 , v/v ) 混合液, 緩慢滴加 PEG19(MrPCL3(KKrCOOH粗产物至冰乙酸 /石油醚混合液中, 析出大量白色固体。 移至 -20 °C静置 2小时, 以抽气过滤法收集白色沉淀固 体, 室温真空干燥得到 11.06 g的 PEG-PCL-COOH (PEG1900-PCL3000-COOH) 。 不同 PEG-PCL-OH链长与不同化学剂量比例产出之 PEG-PCL-COOH结果如 下表 4所示。
[表 4]
Figure imgf000015_0002
SA: 丁二酸肝; DMAP: 4-二甲胺基吡啶; Et3N:三乙胺 (triethylamine); THF: 四氢呋
最后称取上述样品 23 10 g产物 PEG19。。-PCL3。。。-COOH ( Mw = 4928, 2.03 mmol )于 100 mL双颈瓶中, 抽真空移除空气。 氮气下加入 45 mL无水四氢呋 喃加热至 60 °C , 使之完全溶解后降温至室温。 接下来緩慢滴加 1.1 mL N-曱 基吗琳(N-methylmorpholine, NMM, 10.15 mmol )后, 降温至 0 °C , 加入 2.2 mL 氯曱酸异丁酯 (isobutyl chloroformamide, IBCF, 10.15 mmol ) 。 于室温 下搅拌 30分钟生成 PEG o-PCI^,-酸酐中间产物, 并析出大量白色的盐类固 体。 取澄清之 PEG19。。-PCL3。。。-酸酐中间产物溶液, 緩慢滴加至装有 20.3 mL 联胺四氢呋喃溶液( 1 M hydrazine in THF, 20.03 mmol ) 的 150 mL的双颈瓶 中, 升温至 40 °C中反应 16小时。 经过减压浓缩移除四氢呋喃溶剂, 得
Figure imgf000015_0001
继之, 准备 1200 mL 冰乙酸 /石油醚( l:l, v/v )混合液, 緩慢滴加 PEG19。。-PCL3。。。-酰肼粗产物至冰 乙酸 /石油醚混合液中, 析出大量白色固体。 之后移至 -20 °C静置 2小时, 以 抽气过滤法收集白 色沉淀固体。 室温真空干燥 24小时后, 得到 8.76gPEG1900-PCL3000 -酰肼白色粉末状产物。 不同 PEG-PCL-COOH链长与不 同化学剂量比例产出之 PEG-PCL-酰肼结果如下表 5所示。 mPEG PCL 1M
PEG-PCL- mPEG-PCL-COOH IBCF NMM THF
分子 分子 NH2NH2
(g) (ml) (ml) (ml) 酰肼 in THF (ml) 样品 26 550 3000 10 1.9 1.6 28.8 45.1 83.6 样品 27 550 5000 10 1.2 1.1 18.9 45.1 90.8 样品 28 1900 900 10 2.3 2.0 35.7 45.0 51.2 样品 29 1900 3000 10 1.0 0.85 15.5 45.1 87.6 样品 30 1900 6000 10 0.8 0.7 12.5 45.0 90.8 样品 31 5000 1350 10 1.0 0.85 15.5 45.1 90.1
IBCF: 氯甲酸异丁酯; NMM: N-甲基吗琳; NH2N¾ in THF: 联胺四氢呋喃溶液; THF: 四氢呋喃。
【实施例 6】
透明质酸 -g- (腙-聚己内酯)「HA-g-(H7PCL)l制备
称取实施例 2所得的 HATBA-CHO ( 0.805 mmol ) 0.5g于 25 mL双颈瓶中, 加入 5.6 mL绝对乙醇溶解。 另取实施例 4所得的 PCL-酰肼 (0.0805 mmol ) 0.344g,加入 4 mL绝对乙醇溶解后 ,再緩慢滴加至 HATBA-CHO乙醇溶液中。 65°C反应 8小时后回室温冷却, 得到 HATBA16k-g-(HzPCL)粗产物 (PCL接枝率 为 10%)。
接下来将上述 HATBA16k-g-(HzPCL)粗产物装入透析膜( molecular weight cut out (MWCO) 12,000〜 Μ,ΟΟΟ )于16 环境下进行透析纯化。 透析程序为 500 mL DMSO透析一天, 接下来以 pH = 8之饱和食盐水透析二天, 再对 pH = 8的二次水透析两天后。 以钠离子交换树脂置换 TBA后得到以得纯化后的 HA-g-(HzPCL)产物水溶液。再将 HA-g-(HzPCL)水溶液冷冻干燥后,获得最终 产物 HA16k-g-(HzPCL)/( HzPCL接枝率为 10%)。
HA16k-g-(HzPCL) 结构以 ifi-NMR进行鉴定如第 6图所示。以 12号之 proton 讯号( δ 1.97 ppm, s )作为计算 PCL接枝比,其积分值相对于腙连接 (hydrazone linkage)之 proton讯号 (δ 8.33 ppm, s ) 。 求得 HA16k-g-(HzPCL) 结构中 PCL接 枝率。
【实施例 7】
透明质酸 -g- (腙-聚己内酯-聚乙二醇 )「HA-g-(H7PCL-PEG)l制备
称取实施例 2所得的 HATBA-CHO 2g ( 3.22 mmol ) 于 100 mL双颈瓶中, 加入 20 mL绝对乙醇溶解。 另取实施例 5所得的样品 131.06g (PEG55。-PCL3000- 酰肼)( 0.39 mmol ) ,加入 15 mL绝对乙醇溶解后,再緩慢滴加至 HATBA-CHO 乙醇溶液中 。 65 °C反应 8小 时后 , 回 降温至室温 , 得到 HATBA16k-g-(HzPCL3。。。-PEG55。)粗产物 (PCL3。。。-PEG55。接枝率 12%)。
将 HATBA16k-g-(HzPCL3QQ(rPEG55Q)粗产物装入透析膜 ( MWCO 12,000〜14,000 )中, 于 16°C环境下进行透析纯化。透析程序为 500 mL DMSO 透析一天, 接下来以 pH = 8之饱和食盐水透析二天, 再对 pH = 8的二次水透 析两天。 之后以钠离子交换树脂置换 TBA后, 得到纯化后之 HA16k-g-(HzPCL3。。。-PEG55。)水溶液。再将该水溶液冷冻干燥后,可得为黄色固 体之 HA16k-g-(HzPCL誦 -PEG550)最终产物 (PCL誦 -PEG550接枝率 12%)。不同的
PEG55o-PCL3ooo- 酰肼链长组成 与 不 同 化 学 剂 量 比 例 产 出 之 HA16k-g-(HzPCL3Q(MrPEG55Q)结果如下表 6所示。
另一方面, HA16k-g-(HzPCL3000-PEG550)结构以 ifi-NMR进行鉴定如第 Ί图 所示。 以 12号之 proton讯号 (δ 1.91 ppm, s )作为计算 PCL接枝比, 其积分值 相对于腙连接 (hydrazone linkage)之 proton讯号 hi ( δ 9.10 ppm, s )与 h2 ( δ 6.51 ppm, s ) , 求得 HA16k-g-(HzPCL-PEG) 结构中 PCL接枝率。
[表 6]
Figure imgf000017_0001
【实施例 8】
透明质酸 -g- (聚己内酯 -聚乙二醇)「HA-g-(PCL-PEG)l制备
称取实施例 5所得的 PEG-PCL-OH样品 13 1.87 g ( 0.54 mmol ) 于双颈瓶 中, 利用曱苯溶剂于 65 〜 70°C共沸除水。 接续加入二曱基亚砜 (Dimethyl sulfoxide, DMSO) 4.8mL溶解上述 PEG-PCL-OH。 再加入 6000ppm的三乙二胺 (triethylene diamine) (DABCO)以及 3000ppm的辛酸亚锡 (stannous octoate (Sn II ))做为触媒。 继之, 再加入氢化苯基曱烷二异氰酸酯 (dicyclohexylmthane diisocyanate, H12MDI, 0.23 mL, 0.48 mmol )至反应瓶中, 60°C反应 6小时, 得 到 PEG-PCL-NCO预聚合物溶液。
接下来于 50 mL双颈瓶中加入实施例 2所得的 HA16k-TBA 3 g ( 4.84 mmol )。 加入 13 mL DMSO后将反应瓶加热至 60°C溶解, 待完全溶解再加入
6000ppm三乙二胺以及 3000ppm辛酸亚锡做为触媒。 将前述 PEG-PCL-NCO 预聚合物溶液打入 HA-TBA之反应瓶中, 于 60 °C下反应 16小时, 获得
HA-g-(PCL-PEG)粗产物 (PCL-PEG接枝率为 10%)。
最后将前述 HA-g-(PCL-PEG)粗产 物装入透析膜 ( MWCO 12,000〜14,000 )中, 于 16°C环境下进行透析纯化。透析程序为 500 mL DMSO 透析一天, 接下来以 pH = 8之饱和食盐水透析二天, 再对 pH = 8的二次水透 析两天。 之后以钠离子交换树脂置换 TB A后,得到纯化后之 HA-g-(PCL-PEG) 粗产物水溶液。再将该水溶液冷冻干燥后,可得为黄色固体 HA-g-(PCL-PEG) 最终产物 (PCL-PEG接枝率 10%)。 不同 PCL-PEG链长组成与不同化学剂量比 例产出之 HA-g-(PCL-PEG)结果如下表 7所示。
[表 7]
Figure imgf000019_0001
【实施例 9】
临界微胞浓度 (CMC)分析
称取上列样品配制成 1 mg/ml水溶液,以 50%稀释方式将前述样品依序稀 释至 6x l(T5 mg/ml等 15种浓度。 分别加入 15μ1的 1.8x l(T4 M 芘 (pyrene)丙酮溶 液, 混合均匀后,避光静置 16小时, 真空抽除丙酮。接下来使用荧光光语仪, 以波长设定 390 nm, 激发波长扫瞄设定 270-360nm进行上述 15种浓度扫瞄。 记录于 330-340nm间吸收最强之波长值。以浓度的 Log值与荧光光谱吸收强度 值做图, 找出荧光光谱吸收强度变异起始点为临界微胞浓度值。 下表 8显示 不同微胞材料的临界微胞浓度 (CMC)。
[表 8]
Figure imgf000020_0001
【实施例 10】
粒径分析
粒径分析步骤为, 称取测试样品 20 mg, 加入 2 mL DMSO溶剂, 于室温 震荡溶解 20分钟。 再加入 1 mL二次去离子水, 于室温震荡 20分钟至完全溶 解。 接下来于室温环境下将上述溶液以 MWCO 6000 〜 8000透析袋对二次去 离子水 1000 mL透析 24小时, 去除 DMSO溶剂。 待透析结束, 收集透析袋内 样品溶液, 调配制成测试样品的临界微胞浓度 (CMC) 100倍的溶液, 进行粒 径测试。使用粒径分析仪为 COULTER, N4 Plus粒径仪。测试前先行以 0.45 μιη 滤膜过滤测试样品。 将样品水溶液置于石英样品槽, 测试温度设定为 25 °C , 光散射角度为 90度, 记录平均粒径与粒径分布, 结果如下表 9所示。
[表 9
Figure imgf000021_0001
【实施例 11】
酸解性能测试
称取实施例 7所得的样品 40之 HA-g-(HZPCL-PEG)材料,配制成 5组相同浓 度之 HA-g-(HZPCL-PEG)微胞水溶液 (浓度为 CMC的 100倍浓度, pH值 5.0)。 将 上述 胞水溶液移入 MWCO 12000〜 14000透析袋中, 于 37°C/pH=5.0水中透 析 24小时。 其间分别于不同时间取样, 并迅速将水溶液调整为中性后, 以 DMSO透析 2天, 将酸催化断键之 PEG-PCL-酰肼移除。 继之以 NMR氢谱计算 透明质酸上 (δ 1.97 ppm, s)proton讯号相对于 NMR氢谱 (δ 1.2-2.5 ppm)间变化, 计算出 HA-g-(HZPCL-PEG)材料所形成的微胞于 pH=5.0环境中 S炱解比例,结果 如下表 10所示。
[表 10]
Figure imgf000022_0001
【实施例 12】
微胞材料药物包覆及酸解释放试验
称取实施例 7所得的样品 34 50 mg与 2.0 mg若丹明 -123 (rhodamine-123) 于 DMSO (10 mL)中。 使用超音波震荡 5分钟使之溶解, 于室温环境中静置一 天后, 将溶液转移至透析袋中(Spectrum, MWCO 3,500)。 对 pH 8.0的二次水 透析 2天 (将未包覆的若丹明 -123确实去除), 以冷冻干燥法使上述所得包覆若 丹明 - 123的 胞溶液干燥。
取上述冻干后的微胞 10 mg回溶于水中, 倒入透析袋 (spectrum, MWCO 3,500), 于 pH 5.0的二次水进行酸解试验。 结果显示, 装有包覆若丹明 -123 之微胞水溶液, 外观于 0小时为橘色 (若丹明 -123的原来颜色), 6小时转为浅 黄绿色, 20小时接近无色透明。 此结果显示包覆于微胞内的若丹明 -123因微 胞酸解而释出。 之后, 分别于第 0小时与第 6小时取透析袋内溶液干燥后之产 物, 以1 H-NMR分析比对。 结果显示, 开始前之第 0小时与酸解开始之第 6小 时的微胞材料, 发现 6小时于 δ 9.10、 6.51 ppm的腙 (hydrazone)氢讯号与 δ 1.10-1.32 ppm的 PCL氢讯号均已消失。 此结果代表腙被酸解后, PEG-PCL片 段藉由透析被移除。
【实施例 13】
透明质酸衍生物包覆阿霉素 (Doxorubicin)药物配方
称取 2 mg阿霉素加入 1 ml的 DMSO搅拌。然后加入阿霉素 3倍当量摩尔浓 度的三乙胺 (TEA), 室温搅拌过夜。 之后, 再称取实施例 6至实施例 8所得的 不同微胞材料各 10 mg,加入 2 ml的 DMSO与去离子水的共同溶液 (v/v = 2/1), 搅拌 1小时至完全溶解。 将上述 2溶液互相混合, 搅拌 0.5小时至完全均匀后, 置入透析膜为 MWCO = 3500的透析袋中, 以去离子水或 pH 7.4的 PBS进行透 析一天。 所得到的样品进行后续包覆率与粒径测量。
不同配方组成及其粒径与包覆率结果如下表 11及表 12所示。 结果显示, 亲水性质外, 此配方在酸性环境中之具有酸解能力之连接 (腙连接)断键后, 可以使得包覆在微胞内部的 PEG链段钻出微胞外, 同时译放出药物, 增加药 物在酸性环境的译放量。
[表 11]
Figure imgf000023_0002
D/P比:阿霉素对孩 ί胞材料的比值; P.S.:粒径; Ε.Ε.:包覆率。
Figure imgf000023_0001
D/P比:阿霉素对孩 ί胞材料的比值; P.S.:粒径; ΡΙ:分子量分散; [DXR] :阿霉素浓度; Ε.Ε.:包覆率。
【实施例 14】
透明质酸衍生物包覆阿霉素 (Doxorubicin)之药物释放行为
依照前实施例 13所述之配方及方法,将阿霉素药物包覆于不同材料结构 组成之微胞中进行译放行为测试。 取样时间为第 0小时至 24小时, 结果如第 8 图与第 9图所示。 第 8图显示实施例 13之 HA-g-(HzPCL-PEG)在不同 pH值下的 译放曲线。结果得知,酸性环境下的药物译放明显高于中性环境的药物译放, 其比值约 2倍。此结果表示藉由具有酸解能力之连接 (腙连接)的作用, 可以加 速药物在酸性环境下的译放。 第 9图显示实施例 13之 HA-g-(HzPCL-PEG)材料 中不同 PEG链长的药物译放效果。 结果可观察到, 不同亲水链 (PEG)的长度, 藉由具有酸解能力之连接 (腙连接)的效果, 可以看出 pH敏感的特性。 而且, 亲水链 (PEG)长度愈长, 显示药物译放率的增加。
虽然本发明已以优选实施例公开如上, 然其并非用以限定本发明, 任何 熟悉此项技艺者,在不脱离本发明之精神和范围内,当可做些许变动与润饰, 因此本发明之保护范围当视后附之申请专利要求书范围所界定者为准。

Claims

权利要求
1.一种透明质酸^ ^生物, 其具有如式 (I)所示之结构:
[ A - ]
f HA†»»»
q 式 (i) 其中,
HA表示包括 N-乙酰基 -D-葡醣胺和 D-葡醣醛酸之单元, q表示 2 至 10000之整数;
A表示一生物可断裂键, 包括腙 (hydrazone)、 缩醛 (acetal)、 缩酮 (ketal) 或亚胺 (imine)之至少一种基团;
M表示一疏水片段、 亲水片段或两亲性片段之至少一种; 以及
表示该 [A-M]直接接枝于每一该 HA单元之数量, 且 p为 0至 4之整 数, 且每一该 HA单元之 不得同时为 0;
其中, 该透明质酸衍生物具有生物可分解性及在酸性环境中断键的 pH 敏感性。
2. 如权利要求 1所述的透明质酸衍生物,其中,该生物可断裂键是于酸 性环境进行酸解断键。
3. 如权利要求 1所述的透明质酸衍生物,其中,该生物可断裂键是与该 N-乙酰基 -D-葡醣胺及该 D-葡醣醛酸之至少一羟基形成共价连接相互连接。
4. 如权利要求 1所述的透明质酸衍生物,其中,该疏水片段由生物可吸 收高分子的重复单元所构成。
5. 如权利要求 4所述的透明质酸衍生物,其中,该生物可吸收性高分子 的重复单元包括: 己内酯(caprolactone)、 丁内酯 (butyrolactone)、 D-丙交酯 (D-lactide)、 L-丙交酯 (L-lactide)、 D-乳酸 (D-lactic acid)、 L-乳酸 (L- lactic acid)、 乙交酷 (glycolide)、 乙醇酸 (glycolic acid)、 基已酸 (hydroxy hexonoic acid)、 基丁酸 (hydroxy butyric acid) , 成内酷 (valerolactone)、 基成酸 (hydroxy valeric acid)、 苹果酸 (malic acid)、 上述之共聚物、 或上述之组合。
6. 如权利要求 1所述的透明质酸衍生物,其中,该两亲性片段由一疏水 区域及一亲水区域所构成。
7. 如权利要求 6所述的透明质酸衍生物,其中,该疏水区域的重复单元 包括: 己内酯 (caprolactone)、 丁内酯 (butyrolactone)、 D-丙交酯 (D-lactide)、 L-丙交酯 (L-lactide)、 D-乳酸 (D-lactic acid), L-乳酸 (L- lactic acid), 乙交酯 (glycolide)、 乙醇酸 (glycolic acid)、 基已酸 (hydroxy hexonoic acid)、 基丁 酸 (hydroxy butyric acid) , 成内酷 (valerolactone)、 基成酸 (hydroxy valeric acid), 苹果酸 (malic acid)、 上述之共聚物、 或上述之组合。
8. 如权利要求 6所述的透明质酸衍生物,其中,该亲水区域的重复单元 包括:乙二醇(ethylene glycol)、 环氧乙烷(ethylene oxide)、 乙烯吡咯烷酮 (vinylpyrrolidone)、 丙玲酸 (acrylic acid)、 曱基丙玲酸 (methacrylic acid)、 上述 之共聚物、 或上述之组合。
9. 如权利要求 1所述的透明质酸衍生物,其中,该疏水片段或两亲性片 段包含有一个以上于酸性环境可断键之基团。
10. 如权利要求 9所述的透明质酸衍生物, 其中, 该酸性环境可断键之 基团包括: 腙 (Hydrazone)、 缩醛 (acetal)、 缩酮 (ketal)、 亚胺 (imine)之至少一 种基团。
11.如权利要求 1所述的透明质酸衍生物, 其中, 该亲水片段包括:聚乙 二醇 (polyethylene glycol, PEG)、 聚环氧乙烷 (polyethylene oxide, PEO)、 聚乙 烯吡咯烷酮 (polyvinylpyrrolidone, PVP)、 聚丙烯酸 (polyacrylic acid, PAA)、 聚 曱基丙烯酸 (polymethacrylic acid, PMA)、 或上述之组合。
12. 如权利要求 1所述的透明质酸衍生物, 其中, 该 M的分子量为 100 至 50,000 Da的范围。
13. 如权利要求 1所述的透明质酸衍生物, 其还包括一亲水片段, 以一 不易快速断键或者一非生物可断裂键接枝于该 HA。
14. 如权利要求 13所述的透明质酸衍生物,其中,该亲水片段的重复单 元包括:乙二醇 (ethylene glycol) , 环氧乙烷 (ethylene oxide)、 乙烯吡咯烷酮 (vinylpyrrolidone)、 丙婦酸 (acrylic acid)、 曱基丙婦酸 (methacrylic acid)、 上述 之共聚物、 或上述之组合。
15. 如权利要求 13所述的透明质酸衍生物,其中,该不易快速断键包括 酯键。
16. 如权利要求 13所述的透明质酸衍生物,其中,该非生物可断裂键包 括氨基曱酸键。
17. 如权利要求 1所述的透明质酸衍生物, 其还包含一具有生物辨识功 能的蛋白质分子, 以一隔离链段接枝于该 HA。
18. 如权利要求 17所述的透明质酸衍生物,其中,该具有生物辨识功能 的蛋白质分子包括抗体或配体。
19. 一种微胞, 由如权利要求 1-18任一所述的透明质酸衍生物于一亲水 介质中形成。
20. 如权利要求 19所述的微胞,其中该透明质酸衍生物的浓度相对于该 亲水介质为 10 重量%至 0.0001重量%之范围。
21.—种药物递送系统, 包括一载体包覆一生物活性成分,其中该载体为 由权利要求 1-20任一所述的透明质酸衍生物所构成。
22. 如权利要求 21所述的药物递送系统, 其中, 该载体形成微胞构造。
23.如权利要求 21所述的药物递送系统, 其中该生物活性成分包括药物 或营养物质。
24. 如权利要求 21 所述的药物递送系统, 其中该活性成分包括抗癌药 物。
25.如权利要求 21所述的药物递送系统, 其中该生物活性成分与该透明 质酸 ^^生物的重量比为 1 : 1至 1 : 20。
26.—种风味增强剂(flavor enhancer), 由权利要求 1-20任一所述的透明 质酸衍生物所构成, 用以包覆一生物活性物质以减少该生物活性物质的味 道。
PCT/CN2011/084936 2011-12-29 2011-12-29 pH敏感的透明质酸衍生物和其应用 WO2013097152A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2011/084936 WO2013097152A1 (zh) 2011-12-29 2011-12-29 pH敏感的透明质酸衍生物和其应用
US14/128,376 US20140199349A1 (en) 2011-12-29 2011-12-29 Ph-sensitive hyaluronic acid derivative and uses thereof
CN201180058517.0A CN103298838B (zh) 2011-12-29 2011-12-29 pH敏感的透明质酸衍生物和其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/084936 WO2013097152A1 (zh) 2011-12-29 2011-12-29 pH敏感的透明质酸衍生物和其应用

Publications (1)

Publication Number Publication Date
WO2013097152A1 true WO2013097152A1 (zh) 2013-07-04

Family

ID=48696230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084936 WO2013097152A1 (zh) 2011-12-29 2011-12-29 pH敏感的透明质酸衍生物和其应用

Country Status (3)

Country Link
US (1) US20140199349A1 (zh)
CN (1) CN103298838B (zh)
WO (1) WO2013097152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115944745A (zh) * 2022-12-01 2023-04-11 石河子大学 一种具有聚集诱导发光性质的活性氧响应型药物控释体系及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105085817B (zh) * 2015-08-31 2017-06-20 华南理工大学 一种基于透明质酸的阴离子聚合物刷及其制备方法和应用
CN105566511B (zh) * 2016-01-27 2017-11-03 天津医科大学 电荷翻转普鲁兰多糖衍生物及其合成方法和用途
WO2019139071A1 (ja) 2018-01-12 2019-07-18 積水化学工業株式会社 触媒及びその製造方法、並びに前記触媒を用いたジエン化合物の製造方法
CN109054030B (zh) * 2018-06-28 2021-05-14 华南理工大学 一种基于透明质酸的两性离子聚合物刷及其制备方法与应用
US20200038432A1 (en) * 2018-07-31 2020-02-06 The Regents Of The University Of California Hyaluronic acid coated chimeric viral/nonviral nanoparticles
EP4288465A1 (en) * 2021-02-04 2023-12-13 Ariel Scientific Innovations Ltd. Active agent-releasing hyaluronic acid vehicle
CA3207815A1 (en) * 2021-03-09 2022-09-15 Desmond Mascarenhas Modulation of mammalian cell lineage by synthetic immodulins

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790840B1 (en) * 1999-11-26 2004-09-14 The Regents Of The University Of Michigan Reversibly cross-linked hydrogels
WO2005110505A2 (en) * 2004-04-30 2005-11-24 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US20060078588A1 (en) * 2002-09-27 2006-04-13 Advanced Cardiovascular Systems, Inc. Biocompatible coatings for stents
CN101921481A (zh) * 2010-07-27 2010-12-22 北京化工大学 透明质酸和聚天门冬氨酸原位交联型凝胶及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851521A (en) * 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
GB2408741B (en) * 2003-12-04 2008-06-18 Ind Tech Res Inst Hyaluronic acid derivative with urethane linkage
WO2008071009A1 (en) * 2006-12-15 2008-06-19 The Governors Of The University Of Alberta Novel ligand guided block copolymers for targeted drug delivery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790840B1 (en) * 1999-11-26 2004-09-14 The Regents Of The University Of Michigan Reversibly cross-linked hydrogels
US20060078588A1 (en) * 2002-09-27 2006-04-13 Advanced Cardiovascular Systems, Inc. Biocompatible coatings for stents
WO2005110505A2 (en) * 2004-04-30 2005-11-24 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
CN101921481A (zh) * 2010-07-27 2010-12-22 北京化工大学 透明质酸和聚天门冬氨酸原位交联型凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, RUI ET AL.: "Detailed characterization of an injectable hyaluronic acid-polyaspartylhydrazide hydrogel for protein delivery", CARBOHYDRATE POLYMERS, vol. 85, no. 4, July 2011 (2011-07-01) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115944745A (zh) * 2022-12-01 2023-04-11 石河子大学 一种具有聚集诱导发光性质的活性氧响应型药物控释体系及其制备方法和应用
CN115944745B (zh) * 2022-12-01 2024-03-22 石河子大学 一种具有聚集诱导发光性质的活性氧响应型药物控释体系及其制备方法和应用

Also Published As

Publication number Publication date
US20140199349A1 (en) 2014-07-17
CN103298838A (zh) 2013-09-11
CN103298838B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2013097152A1 (zh) pH敏感的透明质酸衍生物和其应用
Barouti et al. Advances in drug delivery systems based on synthetic poly (hydroxybutyrate)(co) polymers
Jommanee et al. Preparation of injectable hydrogels from temperature and pH responsive grafted chitosan with tuned gelation temperature suitable for tumor acidic environment
Rainbolt et al. Recent developments in micellar drug carriers featuring substituted poly (ε-caprolactone) s
US6623729B2 (en) Process for preparing sustained release micelle employing conjugate of anticancer drug and biodegradable polymer
Prabaharan et al. Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery
Dailey et al. The role of branched polyesters and their modifications in the development of modern drug delivery vehicles
CN102770477B (zh) 用于药物递送的生物可降解的嵌段聚合物及其相关方法
EP2766407B1 (en) Pentablock polymers
Moreno et al. Thermosensitive hydrogels of poly (methyl vinyl ether-co-maleic anhydride)–Pluronic® F127 copolymers for controlled protein release
Kim et al. Novel pH-sensitive polyacetal-based block copolymers for controlled drug delivery
Dhanikula et al. Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate
EP2730604B1 (en) Functionalized caprolactone monomers useful for making poly(ethylene oxide)-block-poly(ester) block copolymers
KR20050058291A (ko) 약물 전달을 위한 생분해가능 블록 공중합성 조성물
WO2008136536A1 (ja) 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
Lu et al. Self-assembled micelles prepared from bio-based hydroxypropyl methyl cellulose and polylactide amphiphilic block copolymers for anti-tumor drug release
Efthimiadou et al. New approach in synthesis, characterization and release study of pH-sensitive polymeric micelles, based on PLA-Lys-b-PEGm, conjugated with doxorubicin
Gatti et al. Hydrazone linked doxorubicin-PLA prodrug nanoparticles with high drug loading
Liu et al. A novel biodegradable amphiphilic diblock copolymers based on poly (lactic acid) and hyaluronic acid as biomaterials for drug delivery
Yang et al. Optimization of bioreducible micelles self‐assembled from amphiphilic hyperbranched block copolymers for drug delivery
US8034383B2 (en) Injectable microspheres
US20160058698A1 (en) Composition for controlled delivery of bioactive agents
US10780175B2 (en) Polymer systems and their applications in diagnostics and drug delivery
US20110070320A1 (en) Biodegradable thermoresponsive 3-arm polyethylene glycol poly(lactide-co-glycolide) copolymer for ginseng administration
TWI439287B (zh) 酸鹼敏感的透明質酸衍生物以及應用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14128376

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878751

Country of ref document: EP

Kind code of ref document: A1