WO2013094752A1 - Mold release film - Google Patents

Mold release film Download PDF

Info

Publication number
WO2013094752A1
WO2013094752A1 PCT/JP2012/083337 JP2012083337W WO2013094752A1 WO 2013094752 A1 WO2013094752 A1 WO 2013094752A1 JP 2012083337 W JP2012083337 W JP 2012083337W WO 2013094752 A1 WO2013094752 A1 WO 2013094752A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
stress
film
fluorine
copolymer
Prior art date
Application number
PCT/JP2012/083337
Other languages
French (fr)
Japanese (ja)
Inventor
洋和 小森
達也 樋口
政二 小森
辰也 村上
勝史 奥村
剛志 稲葉
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020147019435A priority Critical patent/KR20140106691A/en
Priority to CN201280054301.1A priority patent/CN103917347A/en
Publication of WO2013094752A1 publication Critical patent/WO2013094752A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92028Force; Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92266Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92523Force; Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92761Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a release film.
  • the mold release film is sandwiched between the mold and the resin in order to release the resin (sealing material) from the mold after molding in the molding process of the resin using a molding apparatus. Used to release the molded resin and the mold.
  • the film elongation is small and the followability to the mold becomes insufficient, and the film is likely to be wrinkled.
  • the wrinkles of the generated film are transferred to the mold resin, the surface of the product is roughened, and the yield is reduced.
  • a mold release film for resin molding made of a thermoplastic tetrafluoroethylene copolymer has been proposed (see Patent Document 1). Further, a release film for sealing a semiconductor chip is proposed, which is a laminated film in which a film made of a fluororesin is laminated on at least one surface of a base film made of a stretched polyester resin film (patent) Reference 2).
  • a release laminated film having a layer made of a modified polyolefin resin and a layer made of an adhesive fluororesin laminated on at least one surface of the layer and interposed between a press plate of a press machine and a printed substrate.
  • This release film is a release film for laminated press molding that presses a thermosetting adhesive at the time of laminate molding of a wiring board at a high temperature and high pressure to mold the laminated product without deviation, so the press pressure is uniform.
  • the film thickness is about 0.1 mm.
  • a release film having excellent conformity and strength to the shape of the mold and having low gas permeability there are three layers: a fluorine-containing polymer layer, a fluorine-free polymer layer, and a fluorine-containing polymer layer.
  • a release film having a specific thickness and a fluorine-containing polymer having a specific adhesive functional group has been proposed (see Patent Document 4).
  • An object of the present invention is to provide a release film in which thickness unevenness due to non-uniform elongation does not occur when stretched in molding by a mold in view of the above-described present situation.
  • the present invention is a release film made of a fluorine-containing resin, and the release film has a difference between the stress in the longitudinal direction of the film and the stress in the width direction of 1.80 MPa or less, and the stress is measured according to ASTM D1708.
  • a release film characterized in that it is a value obtained by measurement under the conditions of an atmospheric temperature of 120 ° C. and a tensile speed of 100 mm / min by a method based on ⁇ 02a.
  • the release film preferably has a stretch ratio in the longitudinal direction and the width direction of the film of 0.50% or less.
  • the fluororesin is at least one selected from the group consisting of a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, and an ethylene-tetrafluoroethylene copolymer. Preferably it is a seed.
  • the fluororesin is preferably an ethylene-tetrafluoroethylene copolymer.
  • the release film preferably has a tetrafluoroethylene unit content of 50 mol% or more based on all monomer units constituting the ethylene-tetrafluoroethylene copolymer.
  • the release film is preferably used for molding a light emitting diode sealing material.
  • the present inventors prevent uneven thickness of the film from occurring when the film is molded with a mold. As a result, it has been found that a molded product having a desired surface shape can be obtained, and the present invention has been completed.
  • the release film of the present invention is uniformly stretched during molding of the resin with a mold and is less likely to cause unevenness in thickness, it is possible to suitably obtain a molded product of a resin having a desired surface shape without roughening. it can.
  • the present invention is a release film made of a fluorine-containing resin, and the release film has a difference between the stress in the longitudinal direction of the film and the stress in the width direction of 1.80 MPa or less, and the stress is measured according to ASTM D1708.
  • a release film characterized in that it is a value obtained under the conditions of an atmospheric temperature of 120 ° C. and a tensile speed of 100 mm / min by a method based on ⁇ 02a. For this reason, the release film of the present invention is uniformly stretched when stretched by molding with a mold and does not cause unevenness in thickness.
  • the difference between the stress in the longitudinal direction (also referred to as “MD”) and the stress in the width direction (also referred to as “TD”) is 1.80 MPa or less. If the difference in stress exceeds 1.80 MPa, there is a risk of uneven thickness when stretched in molding with a mold or the like.
  • the difference in stress is preferably 1.20 MPa or less, more preferably 0.85 MPa or less, and even more preferably 0.70 MPa or less, because the surface of the molded product obtained by molding at high temperature is less likely to be rough. 0.50 MPa or less is still more preferred, 0.30 MPa or less is particularly preferred, and 0.10 MPa or less is most preferred.
  • the stress in the longitudinal direction and the stress in the width direction are values obtained by measurement under the conditions of an atmospheric temperature of 120 ° C. and a tensile speed of 100 mm / min, respectively, in accordance with ASTM D1708-02a. Specifically, as shown in FIG. 1, a stress-strain curve (SS curve) is prepared by the above-described method, and the X-axis strain (elongation) of the curve is 60% (a). Is the value (b) of the stress on the Y-axis. The stress difference is the absolute value of the difference between these values.
  • the stress in the longitudinal direction and the stress in the width direction are preferably 7.3 MPa or less, more preferably 6.0 MPa or less, and 3.0 MPa or less in terms of the ability to follow the mold during evacuation. More preferably.
  • the release film of the present invention also has the above-described stress-strain in the longitudinal and width directions in that the surface of the molded product does not become rough even when the release film is stretched using a mold having a more complicated shape.
  • the Y-axis stress value when the longitudinal X-axis strain (elongation) is 120%
  • the Y-axis stress value when the width-direction X-axis strain (elongation) is 120%.
  • the difference is preferably 1.80 MPa or less.
  • the value of the Y-axis stress when the X-axis strain (elongation) is 180% in the longitudinal direction and the X-axis strain (elongation) in the width direction.
  • the difference from the Y-axis stress value at 180% is preferably 1.80 MPa or less.
  • the stretch ratio in the longitudinal direction (MD) and the width direction (TD) of the film is preferably 0.50% or less, and more preferably 0.30% or less. If the expansion / contraction ratio exceeds 0.50%, the surface of the molded body may be roughened.
  • the expansion / contraction rate is more preferably 0.50 to ⁇ 1.60%.
  • the said expansion / contraction rate is a value obtained by the method (115 degreeC x 10 minutes) based on JISK7133.
  • the release film of the present invention is made of a fluorine-containing resin.
  • the fluorine-containing resin is a polymer (homopolymer or copolymer) having a repeating unit derived from at least one fluorine-containing ethylenic monomer, and is a polymer having melt processability.
  • the fluorine-containing ethylenic monomer is an olefinically unsaturated monomer having at least one fluorine atom.
  • Specific examples of the fluorine-containing ethylenic monomer include tetrafluoroethylene [TFE], vinylidene fluoride [VDF], chlorotrifluoroethylene [CTFE], vinyl fluoride, hexafluoropropylene [HFP], hexafluoroisobutene.
  • TFE tetrafluoroethylene
  • VDF vinylidene fluoride
  • CTFE chlorotrifluoroethylene
  • vinyl fluoride vinyl fluoride
  • HFP hexafluoropropylene
  • HFP hexafluoroisobutene.
  • Formula (1): CH 2 CX 1 (CF 2 ) n X 2 (1) (Wherein, X 1 is H or F, X 2 is H, F or Cl, and n is an integer of 1 to 10), and perfluor
  • perfluoro (alkyl vinyl ether) [PAVE] examples include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro ( Butyl vinyl ether) and the like.
  • the fluorine-containing resin may be a copolymer having the fluorine-containing ethylenic monomer unit and an ethylenic monomer unit having no fluorine.
  • the ethylenic monomer having no fluorine is preferably an ethylenic monomer having 5 or less carbon atoms from the viewpoint of good heat resistance and chemical resistance, specifically, ethylene, propylene, 1-butene. 2-butene, vinyl chloride, vinylidene chloride and the like.
  • fluororesin examples include polytetrafluoroethylene [PTFE], polychlorotrifluoroethylene [PCTFE], ethylene [Et] -TFE copolymer [ETFE], Et-chlorotrifluoroethylene [CTFE] copolymer, It should be at least one selected from the group consisting of CTFE-TFE copolymer, TFE-HFP copolymer [FEP], TFE-PAVE copolymer [PFA], and polyvinylidene fluoride [PVdF]. preferable.
  • the fluorine-containing resin is more preferably at least one fluorine-containing copolymer selected from the group consisting of PFA, FEP, and ETFE, and more preferably ETFE.
  • PFA is not particularly limited, but a copolymer having a molar ratio of TFE units to PAVE units (TFE units / PAVE units) of 70 to 99/30 to 1 is preferable. A more preferred molar ratio is 80 to 98.5 / 20 to 1.5.
  • PFA has a monomer unit derived from a monomer copolymerizable with TFE and PAVE in an amount of 0.1 to 10 mol%, and a total of 90 to 99.9 mol% of TFE units and PAVE units.
  • a polymer is also preferred.
  • FEP is not particularly limited, but a copolymer having a molar ratio of TFE units to HFP units (TFE units / HFP units) of 70 to 99/30 to 1 is preferable. A more preferred molar ratio is 80 to 97/20 to 3.
  • TFE units / HFP units a copolymer having a molar ratio of TFE units to HFP units (TFE units / HFP units) of 70 to 99/30 to 1 is preferable.
  • a more preferred molar ratio is 80 to 97/20 to 3.
  • FEP has a monomer unit derived from a monomer copolymerizable with TFE and HFP in an amount of 0.1 to 10 mol%, and a total of 90 to 99.9 mol% of TFE units and HFP units.
  • a polymer is also preferred.
  • the monomer copolymerizable with TFE and HFP include PAVE and alkyl perfluorovinyl ether derivatives.
  • ETFE is preferably a copolymer having a molar ratio of TFE units to ethylene units (TFE units / ethylene units) of 20 to 90/80 to 10. A more preferred molar ratio is 37 to 85/63 to 15, and a still more preferred molar ratio is 38 to 80/62 to 20.
  • ETFE may be a copolymer composed of TFE, ethylene, and a monomer copolymerizable with TFE and ethylene.
  • fluorine-containing vinyl monomers represented by CX 3 Rf 4 At least one selected from the group consisting of fluorine-containing vinyl monomers represented by CX 3 Rf 4 is more preferable.
  • fluorine-containing vinyl monomer examples include CH 2 ⁇ CH—C 4 F 9 , CH 2 ⁇ CF—CF 2 —CF 2 —CF 2 H, CH 2 ⁇ CH—C 6 F 13, and the like.
  • the monomer copolymerizable with TFE and ethylene may be an aliphatic unsaturated carboxylic acid such as itaconic acid or itaconic anhydride.
  • the monomer copolymerizable with TFE and ethylene is preferably from 0.1 to 10 mol%, more preferably from 0.1 to 5 mol%, particularly preferably from 0.2 to 4 mol%, based on the fluoropolymer. preferable.
  • ETFE is preferable in that the content of TFE units with respect to all monomer units constituting ETFE is 50 mol% or more, more preferably 55 mol% or more, in terms of good releasability. More preferably, it is 65 mol% or more.
  • the content of each monomer in the copolymer described above can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
  • the fluororesin preferably has a melt flow rate (MFR) of 60 g / 10 min or less. If it exceeds 60 g / 10 min, when the resin (sealing material) is removed from the mold after molding, the releasability between the resin and the release film may be reduced.
  • the MFR is more preferably 45 g / 10 min or less, further preferably 30 g / 10 min or less, particularly preferably less than 25 g / 10, and most preferably 18 g / 10 min or less.
  • the MFR is preferably 1.5 g / 10 min or more, more preferably 4 g / 10 min or more, and even more preferably 10 g / 10 min or more in that the surface of the molded product does not become rough even at high stretch. 20 g / 10 min or more is particularly preferable.
  • the MFR is a value obtained by measurement by a method according to ASTM D 3159.
  • the fluororesin preferably has a melting point of 180 to 270 ° C.
  • the melting point of the fluororesin is preferably 230 to 270 ° C. from the viewpoint of heat resistance, more preferably 200 to 230 ° C. from the viewpoint of low elastic modulus, and 190 to 230 ° C. More preferably it is.
  • the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
  • the release film of the present invention may contain other components as necessary within a range not impairing the effects of the present invention.
  • other components include various fillers such as inorganic powder, glass fiber, carbon fiber, metal oxide, or carbon, pigments, ultraviolet absorbers, other optional additives, other fluorine-containing polymers and thermoplastics.
  • resins such as resins and thermosetting resins, and synthetic rubbers. By blending these, it is possible to improve mechanical properties, improve weather resistance, impart design properties, prevent static electricity, improve moldability, and the like.
  • the release film comprising the fluororesin of the present invention may be a release film comprising a single layer or a release film having a laminated structure.
  • the release film having a laminated structure may be composed of two or more layers made of a fluorine-containing resin, or a layer made of one or more fluorine-containing resins and one or more resins other than the fluorine-containing resin. It may consist of a layer consisting of
  • the release film of the present invention is preferably composed of a single layer.
  • the release film of the present invention preferably has a thickness of 15 to 100 ⁇ m. If it is less than 15 ⁇ m, the strength is not sufficient, and the release film may be loosened or broken during stretching. If it exceeds 100 ⁇ m, the followability to the mold is lowered, and there is a risk that wrinkles are likely to occur in the molded product.
  • the thickness is a value obtained according to the JIS K 7130 A method.
  • the release film of the present invention preferably has an elastic modulus at 25 ° C. of 350 to 600 MPa in the longitudinal direction (MD) and 350 to 550 MPa in the width direction (TD).
  • the release film of the present invention preferably has an elastic modulus at 120 ° C. of 20 to 70 MPa in the longitudinal direction (MD) and 20 to 75 MPa in the width direction (TD).
  • the above elastic modulus is a value obtained by measurement according to ASTM D-1708.
  • the release film of the present invention can be produced by molding the fluorine-containing resin alone or a mixture of the fluorine-containing resin and the other components into a film shape.
  • the mixing method of the fluororesin and the other components include a melt kneading method.
  • the method for forming the film include a melt extrusion method, an inflation method, and a T-die method.
  • the T-die method is preferable in terms of high film thickness accuracy.
  • the molten resin is stretched in the extrusion direction (MD direction) when being formed into a film while being wound with a roll.
  • the film is formed by reducing the orientation of the formed film as much as possible by narrowing the lip width of the die or shortening the air gap. It is preferable.
  • the lip width of the die is narrowed, the lip width is preferably less than 1.5 mm.
  • the air gap is preferably 145 mm or less. The air gap refers to the distance from the die outlet until the molten resin contacts the cooling roll.
  • the release film of the present invention can be suitably applied as a release film for resin molding that is used when a molded product is produced by molding a resin.
  • a molded product produced using the release film of the present invention has little surface roughness and a high yield.
  • the molding of the semiconductor sealing material is performed at a molding temperature of 170 to 180 ° C.
  • the molding of the light emitting diode sealing material is performed at a molding temperature of 100 to 150 ° C. Since the release film of the present invention hardly causes thickness unevenness even at high temperatures, it is suitably used in the molding of a semiconductor sealing material or a light emitting diode sealing material performed in the above-described molding temperature range.
  • the release film of the present invention is sandwiched between a sealing material and a mold of a molding machine in the molding of a semiconductor sealing material or a light emitting diode sealing material. It can apply especially suitably as a mold release film for resin mold formation for releasing.
  • the release film of the present invention is less likely to cause thickness unevenness even when a mold having a plurality of bowl-shaped depressions provided at equal intervals is pressed. For this reason, it is especially preferable that the release film of the present invention is used in molding of a light emitting diode sealing material.
  • Example 1 Using ETFE (1) (neoflon ETFE EP-610 (trade name), melting point 223 ° C., MFR 30.0 g / 10 min, manufactured by Daikin Industries, Ltd.), by using a T-die method using a T-die, The mold was extruded and melt-molded at a die temperature of 305 ° C. under a condition in which the lip width was narrowed (0.8 mm) and the orientation of the resin in the extrusion direction was suppressed. MD: -1.15%, TD: 0.25%).
  • Example 2 In Example 1, ETFE (2) (neoflon ETFE EP-543 (trade name), melting point 258 ° C., MFR 6.0 g / 10 min, manufactured by Daikin Industries, Ltd.) was used instead of ETFE (1). A release film (thickness 50 ⁇ m, stretch rate (115 ° C., 10 minutes) MD: ⁇ 0.65%, TD: ⁇ 0.66%) was obtained in the same manner as in Example 1 except that the temperature was 340 ° C. It was.
  • ETFE (2) non ETFE EP-543 (trade name), melting point 258 ° C., MFR 6.0 g / 10 min, manufactured by Daikin Industries, Ltd.
  • a release film (thickness 50 ⁇ m, stretch rate (115 ° C., 10 minutes) MD: ⁇ 0.65%, TD: ⁇ 0.66%) was obtained in the same manner as in Example 1 except that the temperature was 340 ° C. It was.
  • Example 3 In Example 1, ETFE (3) (neoflon ETFE EP-546 (trade name), melting point 253 ° C., MFR 6.0 g / 10 min, manufactured by Daikin Industries, Ltd.) was used instead of ETFE (1). A release film (thickness 50 ⁇ m, stretch rate (115 ° C., 10 minutes) MD: ⁇ 0.82%, TD: 0.29%) was obtained in the same manner as in Example 1 except that the temperature was 340 ° C. .
  • Example 4 In Example 1, FEP (neoflon FEP NP-120 (trade name), melting point 265 ° C., MFR 7.0 g / 10 min, manufactured by Daikin Industries, Ltd.) was used instead of ETFE (1), and the die temperature was 360. A release film (thickness 50 ⁇ m, stretch rate (115 ° C., 10 minutes) MD: 0.21%, TD: ⁇ 1.52%) was obtained in the same manner as in Example 1 except that the temperature was changed to 0 ° C.
  • FEP nanooflon FEP NP-120 (trade name), melting point 265 ° C., MFR 7.0 g / 10 min, manufactured by Daikin Industries, Ltd.
  • Example 1 A release film (thickness: 50 ⁇ m, stretch rate (115 ° C., 10 minutes) MD: ⁇ 4.64 in the same manner as in Example 1, except that the lip width was widened (1.5 mm) in Example 3. %, TD: 0.20%).
  • the breaking strength and breaking elongation in the longitudinal direction and the width direction of the obtained release film were measured using Autograph AG-1KNIS (manufactured by Shimadzu Corporation) under the following conditions.
  • the tension conditions at 28 ° C. the sample shape was a strip shape (10 mm width), and the tensile speed was 500 mm / min (based on JIS K 7127).
  • the tensile conditions at 120 ° C. were that the sample shape was a micro dumbbell (thickness 50 ⁇ m) and the tensile speed was 100 mm / min (according to ASTM D1708-02a).
  • the release film of the present invention can be suitably applied as a mold release film for releasing a resin from a mold during molding.

Abstract

Provided is a mold release film, which does not have uneven thickness resulting from inhomogeneous stretching during drawing when molded with a die. The mold release film obtained from a fluorine-containing resin is characterized in that for the mold release film, the difference between the stress in the longitudinal direction of the film and the stress in the transverse direction is 1.80 MPa or less, the stress being a value obtained with a method conforming to ASTM D1708-02a under the conditions of a 120°C atmospheric temperature and a 100 mm/min pulling speed.

Description

離型フィルムRelease film
本発明は、離型フィルムに関する。 The present invention relates to a release film.
モールド成形用離型フィルムは、モールド成形装置を用いた樹脂の成形加工において、モールド成形後に金型から樹脂(封止材料)を脱型するために、金型と樹脂の間に挟み込み、モールド成形された樹脂と金型とを離型するために使用される。 The mold release film is sandwiched between the mold and the resin in order to release the resin (sealing material) from the mold after molding in the molding process of the resin using a molding apparatus. Used to release the molded resin and the mold.
しかし、離型フィルムとして、汎用のPETフィルムや高耐熱性のポリイミドフィルムを用いた場合は、フィルムの伸度が小さいため、金型への追随性が不充分となり、フィルムにシワが発生しやすい。また、発生したフィルムのシワが、モールド樹脂に転写され、製品の表面に荒れが発生して、歩留まりが低下する。 However, when a general-purpose PET film or a highly heat-resistant polyimide film is used as the release film, the film elongation is small and the followability to the mold becomes insufficient, and the film is likely to be wrinkled. . In addition, the wrinkles of the generated film are transferred to the mold resin, the surface of the product is roughened, and the yield is reduced.
生産性及び歩留まりの向上を目的として、熱可塑性のテトラフルオロエチレン系共重合体よりなる樹脂モールド成形用離型フィルムが提案されている(特許文献1参照)。また、延伸ポリエステル樹脂フィルムからなる基材フィルムの少なくとも片面に、フッ素樹脂からなるフィルムが積層されてなる積層フィルムであることを特徴とする半導体チップ封止用離型フィルムが提案されている(特許文献2参照)。 For the purpose of improving productivity and yield, a mold release film for resin molding made of a thermoplastic tetrafluoroethylene copolymer has been proposed (see Patent Document 1). Further, a release film for sealing a semiconductor chip is proposed, which is a laminated film in which a film made of a fluororesin is laminated on at least one surface of a base film made of a stretched polyester resin film (patent) Reference 2).
また、変性ポリオレフィン樹脂からなる層及びこの層の少なくとも一方の面に積層された接着性フッ素樹脂からなる層を有する、プレス加工機のプレス板とプリント基材の間に介在させる離型用積層フィルムが提案されている(特許文献3参照)。この離型フィルムは、配線基板の積層成形時の熱硬化性接着剤を高温、高圧でプレスして積層品をズレなく成形する積層プレス成形用離型フィルムであることから、プレス圧を均一にするため、またプリプレグの流出を防ぐため、クッション性を有する必要があり、0.1mm程度のフィルム厚みである。 In addition, a release laminated film having a layer made of a modified polyolefin resin and a layer made of an adhesive fluororesin laminated on at least one surface of the layer and interposed between a press plate of a press machine and a printed substrate. Has been proposed (see Patent Document 3). This release film is a release film for laminated press molding that presses a thermosetting adhesive at the time of laminate molding of a wiring board at a high temperature and high pressure to mold the laminated product without deviation, so the press pressure is uniform. In order to prevent the prepreg from flowing out, it is necessary to have cushioning properties, and the film thickness is about 0.1 mm.
また、金型の形状への追従性及び強度に優れ、ガスの低透過性を有する離型フィルムとして、含フッ素ポリマーの層、フッ素非含有ポリマーの層、及び、含フッ素ポリマーの層の3層からなり、特定の厚みを有し、含フッ素ポリマーが特定の接着性官能基を有する離型フィルムが提案されている(特許文献4参照)。 Also, as a release film having excellent conformity and strength to the shape of the mold and having low gas permeability, there are three layers: a fluorine-containing polymer layer, a fluorine-free polymer layer, and a fluorine-containing polymer layer. A release film having a specific thickness and a fluorine-containing polymer having a specific adhesive functional group has been proposed (see Patent Document 4).
特開2001-310336号公報JP 2001-310336 A 特開2006-49850号公報JP 2006-49850 A 国際公開第2005/115751号パンフレットInternational Publication No. 2005/115751 Pamphlet 特開2009-285990号公報JP 2009-285990 A
しかしながら、このような従来の離型フィルムは、金型の形状への追従性は改善されたものの、成形時にフィルムが延伸されると、フィルムが不均一に伸びて、厚みムラが発生する。その結果、フィルムの厚みムラが成形品に転写されて、表面に荒れが生じ、所望の表面形状を有する成形品が得られず、歩留まりが低下するといった問題があった。 However, such a conventional release film has improved followability to the shape of the mold, but when the film is stretched at the time of molding, the film stretches unevenly and thickness unevenness occurs. As a result, the thickness unevenness of the film is transferred to the molded product, the surface is roughened, a molded product having a desired surface shape cannot be obtained, and the yield is reduced.
本発明は、上記現状を鑑みて、金型による成形において延伸された際、不均一な伸びによる厚みムラが生じない離型フィルムを提供することを目的とする。 An object of the present invention is to provide a release film in which thickness unevenness due to non-uniform elongation does not occur when stretched in molding by a mold in view of the above-described present situation.
本発明は、含フッ素樹脂からなる離型フィルムであって、上記離型フィルムは、フィルムの長手方向の応力と幅方向の応力との差が1.80MPa以下であり、上記応力は、ASTM D1708-02aに準拠した方法で、雰囲気温度120℃、引張速度100mm/分の条件で測定して得られる値であることを特徴とする離型フィルムである。
上記離型フィルムは、フィルムの長手方向及び幅方向の伸縮率がいずれも0.50%以下であることが好ましい。
上記含フッ素樹脂は、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、及び、エチレン-テトラフルオロエチレン共重合体からなる群より選択される少なくとも1種であることが好ましい。
上記含フッ素樹脂は、エチレン-テトラフルオロエチレン共重合体であることが好ましい。
上記離型フィルムは、エチレン-テトラフルオロエチレン共重合体を構成する全単量体単位に対するテトラフルオロエチレン単位の含有量が50モル%以上であることが好ましい。
上記離型フィルムは、発光ダイオード封止材料のモールド成形に用いられることが好ましい。
The present invention is a release film made of a fluorine-containing resin, and the release film has a difference between the stress in the longitudinal direction of the film and the stress in the width direction of 1.80 MPa or less, and the stress is measured according to ASTM D1708. A release film characterized in that it is a value obtained by measurement under the conditions of an atmospheric temperature of 120 ° C. and a tensile speed of 100 mm / min by a method based on −02a.
The release film preferably has a stretch ratio in the longitudinal direction and the width direction of the film of 0.50% or less.
The fluororesin is at least one selected from the group consisting of a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, and an ethylene-tetrafluoroethylene copolymer. Preferably it is a seed.
The fluororesin is preferably an ethylene-tetrafluoroethylene copolymer.
The release film preferably has a tetrafluoroethylene unit content of 50 mol% or more based on all monomer units constituting the ethylene-tetrafluoroethylene copolymer.
The release film is preferably used for molding a light emitting diode sealing material.
本発明者らは、離型フィルムにおいて、長手方向と幅方向との応力の差が一定以下である場合に、金型による成形時に、フィルムの不均一な伸びにより厚みムラが発生するのを防止でき、その結果、所望の表面形状を有する成形品を得ることができることを見出し、本発明を完成するに至った。 In the release film, when the difference in stress between the longitudinal direction and the width direction is below a certain level, the present inventors prevent uneven thickness of the film from occurring when the film is molded with a mold. As a result, it has been found that a molded product having a desired surface shape can be obtained, and the present invention has been completed.
本発明の離型フィルムは、金型による樹脂の成形時において、均一に延伸され、厚みムラが発生しにくいため、荒れのない、所望の表面形状を有する樹脂の成形品を好適に得ることができる。 Since the release film of the present invention is uniformly stretched during molding of the resin with a mold and is less likely to cause unevenness in thickness, it is possible to suitably obtain a molded product of a resin having a desired surface shape without roughening. it can.
応力-ひずみ曲線から応力の値を規定する方法を示した図である。It is the figure which showed the method of prescribing | regulating the value of stress from a stress-strain curve.
本発明は、含フッ素樹脂からなる離型フィルムであって、上記離型フィルムは、フィルムの長手方向の応力と幅方向の応力との差が1.80MPa以下であり、上記応力は、ASTM D1708-02aに準拠した方法で、雰囲気温度120℃、引張速度100mm/分の条件で得られる値であることを特徴とする離型フィルムである。
このため、本発明の離型フィルムは、金型による成形において延伸された際、均一に延伸され、厚みムラが生じないものである。
The present invention is a release film made of a fluorine-containing resin, and the release film has a difference between the stress in the longitudinal direction of the film and the stress in the width direction of 1.80 MPa or less, and the stress is measured according to ASTM D1708. A release film characterized in that it is a value obtained under the conditions of an atmospheric temperature of 120 ° C. and a tensile speed of 100 mm / min by a method based on −02a.
For this reason, the release film of the present invention is uniformly stretched when stretched by molding with a mold and does not cause unevenness in thickness.
本発明の離型フィルムは、長手方向(「MD」ともいう)の応力と、幅方向(「TD」ともいう)の応力との差が1.80MPa以下である。
上記応力の差が1.80MPaを超えると、金型による成形等において延伸された際に厚みムラが発生するおそれがある。
上記応力の差は、高温で成形しても得られる成形品の表面に荒れが生じにくくなることから、1.20MPa以下が好ましく、0.85MPa以下がより好ましく、0.70MPa以下が更に好ましく、0.50MPa以下がより更に好ましく、0.30MPa以下が特に好ましく、0.10MPa以下が最も好ましい。
In the release film of the present invention, the difference between the stress in the longitudinal direction (also referred to as “MD”) and the stress in the width direction (also referred to as “TD”) is 1.80 MPa or less.
If the difference in stress exceeds 1.80 MPa, there is a risk of uneven thickness when stretched in molding with a mold or the like.
The difference in stress is preferably 1.20 MPa or less, more preferably 0.85 MPa or less, and even more preferably 0.70 MPa or less, because the surface of the molded product obtained by molding at high temperature is less likely to be rough. 0.50 MPa or less is still more preferred, 0.30 MPa or less is particularly preferred, and 0.10 MPa or less is most preferred.
上記長手方向の応力、及び、幅方向の応力は、それぞれ、ASTM D1708-02aに準拠した方法で、雰囲気温度120℃、引張速度100mm/分の条件で測定して得られる値である。具体的には、図1に示すように、上述の方法にて、応力-ひずみ曲線(S-Sカーブ)を作成し、該曲線における、X軸のひずみ(伸度)60%(a)のときのY軸の応力の値(b)である。上記応力の差は、これらの値の差の絶対値である。
上記長手方向の応力及び幅方向の応力は、真空引き時の金型への追従性の点で、7.3MPa以下であることが好ましく、6.0MPa以下であることがより好ましく、3.0MPaであることがさらに好ましい。
The stress in the longitudinal direction and the stress in the width direction are values obtained by measurement under the conditions of an atmospheric temperature of 120 ° C. and a tensile speed of 100 mm / min, respectively, in accordance with ASTM D1708-02a. Specifically, as shown in FIG. 1, a stress-strain curve (SS curve) is prepared by the above-described method, and the X-axis strain (elongation) of the curve is 60% (a). Is the value (b) of the stress on the Y-axis. The stress difference is the absolute value of the difference between these values.
The stress in the longitudinal direction and the stress in the width direction are preferably 7.3 MPa or less, more preferably 6.0 MPa or less, and 3.0 MPa or less in terms of the ability to follow the mold during evacuation. More preferably.
本発明の離型フィルムはまた、より複雑な形状の金型を用いて離型フィルムを延伸した場合でも成形品の表面に荒れが発生しない点で、上述の長手方向と幅方向の応力-ひずみ曲線において、長手方向のX軸のひずみ(伸度)120%のときのY軸の応力の値と、幅方向のX軸のひずみ(伸度)120%のときのY軸の応力の値との差が1.80MPa以下であることが好ましい。
また、上述の長手方向と幅方向の応力-ひずみ曲線において、長手方向におけるX軸のひずみ(伸度)180%のときのY軸の応力の値と、幅方向におけるX軸のひずみ(伸度)180%のときのY軸の応力の値との差が1.80MPa以下であることが好ましい。
The release film of the present invention also has the above-described stress-strain in the longitudinal and width directions in that the surface of the molded product does not become rough even when the release film is stretched using a mold having a more complicated shape. In the curve, the Y-axis stress value when the longitudinal X-axis strain (elongation) is 120%, and the Y-axis stress value when the width-direction X-axis strain (elongation) is 120%. The difference is preferably 1.80 MPa or less.
In the stress-strain curves in the longitudinal direction and the width direction, the value of the Y-axis stress when the X-axis strain (elongation) is 180% in the longitudinal direction and the X-axis strain (elongation) in the width direction. ) The difference from the Y-axis stress value at 180% is preferably 1.80 MPa or less.
本発明の離型フィルムは、フィルムの長手方向(MD)及び幅方向(TD)の伸縮率が、いずれも0.50%以下であることが好ましく、0.30%以下がより好ましい。伸縮率が0.50%を超えると、成形体表面に荒れが発生するおそれがある。
上記伸縮率は、0.50~-1.60%であることがより好ましい。
上記伸縮率は、JIS K 7133に準拠した方法(115℃×10分)により得られる値である。
In the release film of the present invention, the stretch ratio in the longitudinal direction (MD) and the width direction (TD) of the film is preferably 0.50% or less, and more preferably 0.30% or less. If the expansion / contraction ratio exceeds 0.50%, the surface of the molded body may be roughened.
The expansion / contraction rate is more preferably 0.50 to −1.60%.
The said expansion / contraction rate is a value obtained by the method (115 degreeC x 10 minutes) based on JISK7133.
本発明の離型フィルムは、含フッ素樹脂からなる。
上記含フッ素樹脂は、少なくとも1種の含フッ素エチレン性モノマーから誘導される繰り返し単位を有する重合体(単独重合体又は共重合体)であって、溶融加工性を有する重合体である。
The release film of the present invention is made of a fluorine-containing resin.
The fluorine-containing resin is a polymer (homopolymer or copolymer) having a repeating unit derived from at least one fluorine-containing ethylenic monomer, and is a polymer having melt processability.
上記含フッ素エチレン性モノマーは、少なくとも1つのフッ素原子を有するオレフィン性不飽和モノマーである。上記含フッ素エチレン性モノマーとしては、具体的には、テトラフルオロエチレン〔TFE〕、フッ化ビニリデン〔VDF〕、クロロトリフルオロエチレン〔CTFE〕、フッ化ビニル、ヘキサフルオロプロピレン〔HFP〕、ヘキサフルオロイソブテン、式(1):
 CH=CX(CF (1)
(式中、XはH又はFであり、XはH、F又はClであり、nは1~10の整数である。)で示されるモノマー、及び、パーフルオロ(アルキルビニルエーテル)等が挙げられる。
The fluorine-containing ethylenic monomer is an olefinically unsaturated monomer having at least one fluorine atom. Specific examples of the fluorine-containing ethylenic monomer include tetrafluoroethylene [TFE], vinylidene fluoride [VDF], chlorotrifluoroethylene [CTFE], vinyl fluoride, hexafluoropropylene [HFP], hexafluoroisobutene. Formula (1):
CH 2 = CX 1 (CF 2 ) n X 2 (1)
(Wherein, X 1 is H or F, X 2 is H, F or Cl, and n is an integer of 1 to 10), and perfluoro (alkyl vinyl ether) Can be mentioned.
上記パーフルオロ(アルキルビニルエーテル)〔PAVE〕としては、例えば、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、及び、パーフルオロ(ブチルビニルエーテル)等が挙げられる。 Examples of the perfluoro (alkyl vinyl ether) [PAVE] include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro ( Butyl vinyl ether) and the like.
上記含フッ素樹脂は、上記含フッ素エチレン性モノマー単位及びフッ素を有さないエチレン性モノマー単位を有する共重合体であってもよい。 The fluorine-containing resin may be a copolymer having the fluorine-containing ethylenic monomer unit and an ethylenic monomer unit having no fluorine.
上記フッ素を有さないエチレン性モノマーは、耐熱性や耐薬品性が良好となる点で、炭素数5以下のエチレン性モノマーであることが好ましく、具体的には、エチレン、プロピレン、1-ブテン、2-ブテン、塩化ビニル、塩化ビニリデン等が挙げられる。 The ethylenic monomer having no fluorine is preferably an ethylenic monomer having 5 or less carbon atoms from the viewpoint of good heat resistance and chemical resistance, specifically, ethylene, propylene, 1-butene. 2-butene, vinyl chloride, vinylidene chloride and the like.
上記含フッ素樹脂としては、ポリテトラフルオロエチレン〔PTFE〕、ポリクロロトリフルオロエチレン〔PCTFE〕、エチレン〔Et〕-TFE共重合体〔ETFE〕、Et-クロロトリフルオロエチレン〔CTFE〕共重合体、CTFE-TFE共重合体、TFE-HFP共重合体〔FEP〕、TFE-PAVE共重合体〔PFA〕、及び、ポリビニリデンフルオライド〔PVdF〕からなる群より選択される少なくとも1種であることが好ましい。 Examples of the fluororesin include polytetrafluoroethylene [PTFE], polychlorotrifluoroethylene [PCTFE], ethylene [Et] -TFE copolymer [ETFE], Et-chlorotrifluoroethylene [CTFE] copolymer, It should be at least one selected from the group consisting of CTFE-TFE copolymer, TFE-HFP copolymer [FEP], TFE-PAVE copolymer [PFA], and polyvinylidene fluoride [PVdF]. preferable.
上記含フッ素樹脂は、PFA、FEP及びETFEからなる群より選択される少なくとも1種の含フッ素共重合体であることがより好ましく、ETFEであることが更に好ましい。 The fluorine-containing resin is more preferably at least one fluorine-containing copolymer selected from the group consisting of PFA, FEP, and ETFE, and more preferably ETFE.
PFAとしては、特に限定されないが、TFE単位とPAVE単位とのモル比(TFE単位/PAVE単位)が70~99/30~1である共重合体が好ましい。より好ましいモル比は、80~98.5/20~1.5である。TFE単位が少なすぎると機械物性が低下する傾向があり、多すぎると融点が高くなりすぎ成形性が低下する傾向がある。 PFA is not particularly limited, but a copolymer having a molar ratio of TFE units to PAVE units (TFE units / PAVE units) of 70 to 99/30 to 1 is preferable. A more preferred molar ratio is 80 to 98.5 / 20 to 1.5. When there are too few TFE units, there exists a tendency for a mechanical physical property to fall, and when too much, melting | fusing point becomes high too much and there exists a tendency for a moldability to fall.
PFAは、TFE及びPAVEと共重合可能な単量体に由来する単量体単位が0.1~10モル%であり、TFE単位及びPAVE単位が合計で90~99.9モル%である共重合体であることも好ましい。
TFE及びPAVEと共重合可能な単量体としては、HFP、CZ=CZ(CF(式中、Z、Z及びZは、同一若しくは異なって、水素原子又はフッ素原子を表し、Zは、水素原子、フッ素原子又は塩素原子を表し、nは2~10の整数を表す。)で表されるビニル単量体、及び、CF=CF-OCH-Rf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体等が挙げられる。
PFA has a monomer unit derived from a monomer copolymerizable with TFE and PAVE in an amount of 0.1 to 10 mol%, and a total of 90 to 99.9 mol% of TFE units and PAVE units. A polymer is also preferred.
Monomers copolymerizable with TFE and PAVE include HFP, CZ 1 Z 2 = CZ 3 (CF 2 ) n Z 4 (wherein Z 1 , Z 2, and Z 3 are the same or different, hydrogen An atom or a fluorine atom, Z 4 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n represents an integer of 2 to 10), and CF 2 ═CF—OCH Examples include alkyl perfluorovinyl ether derivatives represented by 2- Rf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 5 carbon atoms).
FEPとしては、特に限定されないが、TFE単位とHFP単位とのモル比(TFE単位/HFP単位)が70~99/30~1である共重合体が好ましい。より好ましいモル比は、80~97/20~3である。TFE単位が少なすぎると機械物性が低下する傾向があり、多すぎると融点が高くなりすぎ成形性が低下する傾向がある。 FEP is not particularly limited, but a copolymer having a molar ratio of TFE units to HFP units (TFE units / HFP units) of 70 to 99/30 to 1 is preferable. A more preferred molar ratio is 80 to 97/20 to 3. When there are too few TFE units, there exists a tendency for a mechanical physical property to fall, and when too much, melting | fusing point becomes high too much and there exists a tendency for a moldability to fall.
FEPは、TFE及びHFPと共重合可能な単量体に由来する単量体単位が0.1~10モル%であり、TFE単位及びHFP単位が合計で90~99.9モル%である共重合体であることも好ましい。TFE及びHFPと共重合可能な単量体としては、PAVE、アルキルパーフルオロビニルエーテル誘導体等が挙げられる。 FEP has a monomer unit derived from a monomer copolymerizable with TFE and HFP in an amount of 0.1 to 10 mol%, and a total of 90 to 99.9 mol% of TFE units and HFP units. A polymer is also preferred. Examples of the monomer copolymerizable with TFE and HFP include PAVE and alkyl perfluorovinyl ether derivatives.
ETFEとしては、TFE単位とエチレン単位とのモル比(TFE単位/エチレン単位)が20~90/80~10である共重合体が好ましい。より好ましいモル比は37~85/63~15であり、更に好ましいモル比は38~80/62~20である。 ETFE is preferably a copolymer having a molar ratio of TFE units to ethylene units (TFE units / ethylene units) of 20 to 90/80 to 10. A more preferred molar ratio is 37 to 85/63 to 15, and a still more preferred molar ratio is 38 to 80/62 to 20.
ETFEは、TFE、エチレン、並びに、TFE及びエチレンと共重合可能な単量体からなる共重合体であってもよい。
TFE及びエチレンと共重合可能な単量体としては、下記式
CH=CXRf、CF=CFRf、CF=CFORf、CH=C(Rf
(式中、Xは水素原子またはフッ素原子、Rfはエーテル結合性酸素原子を含んでいてもよいフルオロアルキル基を表す。)で表される単量体が挙げられ、なかでも、CF=CFRf、CF=CFORf及びCH=CXRfで表される含フッ素ビニルモノマーからなる群より選択される少なくとも1種であることが好ましく、HFP、CF=CF-ORf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)〔PAVE〕及びRfが炭素数1~8のフルオロアルキル基であるCH=CXRfで表される含フッ素ビニルモノマーからなる群より選択される少なくとも1種であることがより好ましい。
上記含フッ素ビニルモノマーとしては、例えば、CH=CH-C、CH=CF-CF-CF-CFH、CH=CH-C13等が挙げられる。
また、TFE及びエチレンと共重合可能な単量体としては、イタコン酸、無水イタコン酸等の脂肪族不飽和カルボン酸であってもよい。
TFE及びエチレンと共重合可能な単量体は、含フッ素重合体に対して0.1~10モル%が好ましく、0.1~5モル%がより好ましく、0.2~4モル%が特に好ましい。
ETFE may be a copolymer composed of TFE, ethylene, and a monomer copolymerizable with TFE and ethylene.
As a monomer copolymerizable with TFE and ethylene, the following formulas CH 2 = CX 3 Rf 2 , CF 2 = CFRf 2 , CF 2 = CFORf 2 , CH 2 = C (Rf 2 ) 2
(Wherein, X 3 represents a hydrogen atom or a fluorine atom, and Rf 2 represents a fluoroalkyl group which may contain an ether-bonded oxygen atom), among which CF 2 = CFRf 2 , CF 2 = CFORf 2 and CH 2 = CX 3 It is preferably at least one selected from the group consisting of fluorine-containing vinyl monomers represented by Rf 2 , HFP, CF 2 = CF-ORf 3 (In the formula, Rf 3 represents a perfluoroalkyl group having 1 to 5 carbon atoms) and perfluoro (alkyl vinyl ether) [PAVE] represented by the formula (1) and Rf 4 is a fluoroalkyl group having 1 to 8 carbon atoms. 2 = At least one selected from the group consisting of fluorine-containing vinyl monomers represented by CX 3 Rf 4 is more preferable.
Examples of the fluorine-containing vinyl monomer include CH 2 ═CH—C 4 F 9 , CH 2 ═CF—CF 2 —CF 2 —CF 2 H, CH 2 ═CH—C 6 F 13, and the like.
The monomer copolymerizable with TFE and ethylene may be an aliphatic unsaturated carboxylic acid such as itaconic acid or itaconic anhydride.
The monomer copolymerizable with TFE and ethylene is preferably from 0.1 to 10 mol%, more preferably from 0.1 to 5 mol%, particularly preferably from 0.2 to 4 mol%, based on the fluoropolymer. preferable.
ETFEは、離型性が良好となる点で、ETFEを構成する全単量体単位に対するTFE単位の含有量が50モル%以上であることが好ましく、55モル%以上であることがより好ましく、65モル%以上であることが更に好ましい。 ETFE is preferable in that the content of TFE units with respect to all monomer units constituting ETFE is 50 mol% or more, more preferably 55 mol% or more, in terms of good releasability. More preferably, it is 65 mol% or more.
上述した共重合体の各単量体の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる。 The content of each monomer in the copolymer described above can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
上記含フッ素樹脂は、メルトフローレート(MFR)が60g/10分以下であることが好ましい。60g/10分を超えると、モールド成形後に金型から樹脂(封止材料)を脱型する際に、樹脂と離型フィルム間の離型性が低下するおそれがある。上記MFRは、45g/10分以下がより好ましく、30g/10分以下が更に好ましく、25g/10未満が特に好ましく、18g/10分以下であることが最も好ましい。
また、上記MFRは、高延伸時でも成形品の表面に荒れが発生しない点で、1.5g/10分以上が好ましく、4g/10分以上がより好ましく、10g/10分以上が更に好ましく、20g/10分以上が特に好ましい。
上記MFRは、ASTM D 3159に準拠する方法で測定して得られる値である。
The fluororesin preferably has a melt flow rate (MFR) of 60 g / 10 min or less. If it exceeds 60 g / 10 min, when the resin (sealing material) is removed from the mold after molding, the releasability between the resin and the release film may be reduced. The MFR is more preferably 45 g / 10 min or less, further preferably 30 g / 10 min or less, particularly preferably less than 25 g / 10, and most preferably 18 g / 10 min or less.
The MFR is preferably 1.5 g / 10 min or more, more preferably 4 g / 10 min or more, and even more preferably 10 g / 10 min or more in that the surface of the molded product does not become rough even at high stretch. 20 g / 10 min or more is particularly preferable.
The MFR is a value obtained by measurement by a method according to ASTM D 3159.
上記含フッ素樹脂は、融点が180~270℃であることが好ましい。
上記含フッ素樹脂の融点は、耐熱性の観点からは、230~270℃であることがより好ましく、低弾性率の観点からは、200~230℃であることがより好ましく、190~230℃であることが更に好ましい。
上記融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
The fluororesin preferably has a melting point of 180 to 270 ° C.
The melting point of the fluororesin is preferably 230 to 270 ° C. from the viewpoint of heat resistance, more preferably 200 to 230 ° C. from the viewpoint of low elastic modulus, and 190 to 230 ° C. More preferably it is.
The melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
本発明の離型フィルムは、本発明の効果を損なわない範囲で、必要に応じて他の成分を含んでいてもよい。他の成分としては、例えば、無機質粉末、ガラス繊維、炭素繊維、金属酸化物、又はカーボンなどの種々の充填剤、顔料、紫外線吸収剤、その他任意の添加剤、他の含フッ素ポリマーや熱可塑性樹脂、熱硬化性樹脂などの樹脂、合成ゴムなどが挙げられる。これらを配合することにより、機械特性の改善、耐候性の改善、意匠性の付与、静電防止、成形性改善などが可能となる。 The release film of the present invention may contain other components as necessary within a range not impairing the effects of the present invention. Examples of other components include various fillers such as inorganic powder, glass fiber, carbon fiber, metal oxide, or carbon, pigments, ultraviolet absorbers, other optional additives, other fluorine-containing polymers and thermoplastics. Examples thereof include resins such as resins and thermosetting resins, and synthetic rubbers. By blending these, it is possible to improve mechanical properties, improve weather resistance, impart design properties, prevent static electricity, improve moldability, and the like.
本発明の含フッ素樹脂からなる離型フィルムは、単層からなる離型フィルムであってもよく、積層構造を有する離型フィルムであってもよい。積層構造を有する離型フィルムは、含フッ素樹脂からなる2つ以上の層からなるものであってもよいし、1つ以上の含フッ素樹脂からなる層と1つ以上の含フッ素樹脂以外の樹脂からなる層からなるものであってもよい。本発明の離型フィルムは、単層からなるものが好ましい。 The release film comprising the fluororesin of the present invention may be a release film comprising a single layer or a release film having a laminated structure. The release film having a laminated structure may be composed of two or more layers made of a fluorine-containing resin, or a layer made of one or more fluorine-containing resins and one or more resins other than the fluorine-containing resin. It may consist of a layer consisting of The release film of the present invention is preferably composed of a single layer.
本発明の離型フィルムは、厚みが15~100μmであることが好ましい。15μm未満であると、強度が充分でなく、離型フィルムが弛んだり、延伸時に破れるおそれがある。100μmを超えると、金型への追従性が低くなり、成形品にシワが発生しやすくなるおそれがある。
上記厚みは、JIS K 7130 A法に従って得られる値である。
The release film of the present invention preferably has a thickness of 15 to 100 μm. If it is less than 15 μm, the strength is not sufficient, and the release film may be loosened or broken during stretching. If it exceeds 100 μm, the followability to the mold is lowered, and there is a risk that wrinkles are likely to occur in the molded product.
The thickness is a value obtained according to the JIS K 7130 A method.
本発明の離型フィルムは、25℃での弾性率が、長手方向(MD)で350~600MPa、幅方向(TD)で350~550MPaであることが好ましい。
また、本発明の離型フィルムは、120℃での弾性率が、長手方向(MD)で20~70MPa、幅方向(TD)で20~75MPaであることが好ましい。
上記弾性率は、ASTM D-1708に準拠して測定して得られる値である。
The release film of the present invention preferably has an elastic modulus at 25 ° C. of 350 to 600 MPa in the longitudinal direction (MD) and 350 to 550 MPa in the width direction (TD).
The release film of the present invention preferably has an elastic modulus at 120 ° C. of 20 to 70 MPa in the longitudinal direction (MD) and 20 to 75 MPa in the width direction (TD).
The above elastic modulus is a value obtained by measurement according to ASTM D-1708.
本発明の離型フィルムは、上記含フッ素樹脂単体、又は、上記含フッ素樹脂と上記他の成分との混合物を、フィルム状に成形して製造することができる。
上記含フッ素樹脂と上記他の成分との混合方法としては、例えば、溶融混練法等が挙げられる。
上記フィルム状に成形する方法としては、溶融押出し法、インフレーション法、Tダイ法が挙げられる。フィルム厚みの精度が高い点で、Tダイ法が好ましい。
The release film of the present invention can be produced by molding the fluorine-containing resin alone or a mixture of the fluorine-containing resin and the other components into a film shape.
Examples of the mixing method of the fluororesin and the other components include a melt kneading method.
Examples of the method for forming the film include a melt extrusion method, an inflation method, and a T-die method. The T-die method is preferable in terms of high film thickness accuracy.
Tダイ法では、溶融樹脂をロールで巻き取りながらフィルム状に成形する際、押出方向(MD方向)に延伸される。このようなTダイ法において本発明の離型フィルムを製造する場合、ダイスのリップ幅を狭くしたり、エアギャップを短くしたりして、形成されるフィルムの配向を可能な限り抑えて成形することが好ましい。
例えば、ダイスのリップ幅を狭くする場合、リップ幅は1.5mm未満が好ましい。
また、エアギャップを短くする場合、エアギャップは145mm以下が好ましい。
なお、上記エアギャップとは、ダイス出口から溶融樹脂が冷却ロールに接するまでの間の距離をいう。
In the T-die method, the molten resin is stretched in the extrusion direction (MD direction) when being formed into a film while being wound with a roll. When the release film of the present invention is produced by such a T-die method, the film is formed by reducing the orientation of the formed film as much as possible by narrowing the lip width of the die or shortening the air gap. It is preferable.
For example, when the lip width of the die is narrowed, the lip width is preferably less than 1.5 mm.
When the air gap is shortened, the air gap is preferably 145 mm or less.
The air gap refers to the distance from the die outlet until the molten resin contacts the cooling roll.
本発明の離型フィルムは、樹脂をモールド成形して成形品を製造する際に使用する、樹脂モールド成形用離型フィルムとして好適に適用することができる。本発明の離型フィルムを用いて製造された成形品は、表面の荒れが少なく、歩留まりが高い。
一般に、半導体封止材料のモールド成形は170~180℃の成形温度で行われ、発光ダイオード封止材料のモールド成形は100~150℃の成形温度で行われる。本発明の離型フィルムは、高温でも厚みムラが生じにくいため、上述した成形温度範囲で行われる半導体封止材料又は発光ダイオード封止材料のモールド成形において好適に用いられる。
具体的には、本発明の離型フィルムは、半導体封止材料又は発光ダイオード封止材料のモールド成形において、封止材料とモールド成形機の金型との間に挟み込み、封止材料と金型とを離型するための樹脂モールド成形用離型フィルムとして特に好適に適用することができる。
特に、本発明の離型フィルムは、複数のお椀状の窪みが等間隔に設けられた金型を押し付けた場合であっても、厚みムラが生じにくい。このため、本発明の離型フィルムは、発光ダイオード封止材料のモールド成形において用いられることが特に好ましい。
The release film of the present invention can be suitably applied as a release film for resin molding that is used when a molded product is produced by molding a resin. A molded product produced using the release film of the present invention has little surface roughness and a high yield.
In general, the molding of the semiconductor sealing material is performed at a molding temperature of 170 to 180 ° C., and the molding of the light emitting diode sealing material is performed at a molding temperature of 100 to 150 ° C. Since the release film of the present invention hardly causes thickness unevenness even at high temperatures, it is suitably used in the molding of a semiconductor sealing material or a light emitting diode sealing material performed in the above-described molding temperature range.
Specifically, the release film of the present invention is sandwiched between a sealing material and a mold of a molding machine in the molding of a semiconductor sealing material or a light emitting diode sealing material. It can apply especially suitably as a mold release film for resin mold formation for releasing.
In particular, the release film of the present invention is less likely to cause thickness unevenness even when a mold having a plurality of bowl-shaped depressions provided at equal intervals is pressed. For this reason, it is especially preferable that the release film of the present invention is used in molding of a light emitting diode sealing material.
次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited only to these Examples.
(実施例1)
ETFE(1)(ネオフロンETFE EP-610(商品名)、融点 223℃、MFR 30.0g/10分、ダイキン工業株式会社製)を用いて、T型ダイスを用いたTダイ法により、ダイスのリップ幅を狭くし(0.8mm)、押出し方向への樹脂の配向を抑えた条件で、ダイ温度305℃で押出溶融成形し、離型フィルム(厚み50μm、伸縮率(115℃、10分)MD:-1.15%、TD:0.25%)を得た。
Example 1
Using ETFE (1) (neoflon ETFE EP-610 (trade name), melting point 223 ° C., MFR 30.0 g / 10 min, manufactured by Daikin Industries, Ltd.), by using a T-die method using a T-die, The mold was extruded and melt-molded at a die temperature of 305 ° C. under a condition in which the lip width was narrowed (0.8 mm) and the orientation of the resin in the extrusion direction was suppressed. MD: -1.15%, TD: 0.25%).
(実施例2)
実施例1において、ETFE(1)の代わりに、ETFE(2)(ネオフロンETFE EP-543(商品名)、融点 258℃、MFR 6.0g/10分、ダイキン工業株式会社製)を用い、ダイ温度を340℃にした以外は、実施例1と同様にして離型フィルム(厚み50μm、伸縮率(115℃、10分)MD:-0.65%、TD:-0.66%)を得た。
(Example 2)
In Example 1, ETFE (2) (neoflon ETFE EP-543 (trade name), melting point 258 ° C., MFR 6.0 g / 10 min, manufactured by Daikin Industries, Ltd.) was used instead of ETFE (1). A release film (thickness 50 μm, stretch rate (115 ° C., 10 minutes) MD: −0.65%, TD: −0.66%) was obtained in the same manner as in Example 1 except that the temperature was 340 ° C. It was.
(実施例3)
実施例1において、ETFE(1)の代わりに、ETFE(3)(ネオフロンETFE EP-546(商品名)、融点 253℃、MFR 6.0g/10分、ダイキン工業株式会社製)を用い、ダイ温度を340℃にした以外は、実施例1と同様にして離型フィルム(厚み50μm、伸縮率(115℃、10分)MD:-0.82%、TD:0.29%)を得た。
(Example 3)
In Example 1, ETFE (3) (neoflon ETFE EP-546 (trade name), melting point 253 ° C., MFR 6.0 g / 10 min, manufactured by Daikin Industries, Ltd.) was used instead of ETFE (1). A release film (thickness 50 μm, stretch rate (115 ° C., 10 minutes) MD: −0.82%, TD: 0.29%) was obtained in the same manner as in Example 1 except that the temperature was 340 ° C. .
(実施例4)
実施例1において、ETFE(1)の代わりに、FEP(ネオフロンFEP NP-120(商品名)、融点 265℃、MFR 7.0g/10分、ダイキン工業株式会社製)を用い、ダイ温度を360℃にした以外は、実施例1と同様にして離型フィルム(厚み50μm、伸縮率(115℃、10分)MD:0.21%、TD:-1.52%)を得た。
(Example 4)
In Example 1, FEP (neoflon FEP NP-120 (trade name), melting point 265 ° C., MFR 7.0 g / 10 min, manufactured by Daikin Industries, Ltd.) was used instead of ETFE (1), and the die temperature was 360. A release film (thickness 50 μm, stretch rate (115 ° C., 10 minutes) MD: 0.21%, TD: −1.52%) was obtained in the same manner as in Example 1 except that the temperature was changed to 0 ° C.
(比較例1)
実施例3において、リップ幅を広くして(1.5mm)成形した以外は、実施例1と同様にして離型フィルム(厚み50μm、伸縮率(115℃、10分)MD:-4.64%、TD:0.20%)を得た。
(Comparative Example 1)
A release film (thickness: 50 μm, stretch rate (115 ° C., 10 minutes) MD: −4.64 in the same manner as in Example 1, except that the lip width was widened (1.5 mm) in Example 3. %, TD: 0.20%).
得られた離型フィルムについて、以下の項目について評価した。得られた結果を表1に示す。
<長手方向(MD)と幅方向(TD)の応力の測定>
雰囲気温度120℃、引張速度100mm/分とした点以外は、ASTM D1708-02aに準じて測定し、長手方向と幅方向の、それぞれの応力-ひずみ曲線(S-S曲線)を得た。そして、得られた各応力-ひずみ曲線のひずみ(伸度)60%の場合の値を、それぞれの応力の値とした。
また、得られた応力-ひずみ曲線において、ひずみ120%と180%の場合の、長手方向と幅方向との応力の値の差を算出した。
About the obtained release film, the following items were evaluated. The obtained results are shown in Table 1.
<Measurement of stress in longitudinal direction (MD) and width direction (TD)>
Measurements were made according to ASTM D1708-02a, except that the atmospheric temperature was 120 ° C. and the tensile speed was 100 mm / min, and respective stress-strain curves (SS curves) in the longitudinal direction and the width direction were obtained. Then, the value of each stress-strain curve obtained when the strain (elongation) was 60% was taken as the value of each stress.
Further, in the obtained stress-strain curve, the difference in stress value between the longitudinal direction and the width direction when the strain was 120% and 180% was calculated.
<破断強度、及び、破断伸度>
得られた離型フィルムの長手方向及び幅方向の破断強度及び破断伸度を、オートグラフAG-1KNIS(株式会社島津製作所製)を用いて下記の条件で測定した。
28℃での引張条件は、サンプル形状が短冊形(10mm幅)であり、引張速度が500mm/分であった(JIS K 7127に準拠)。
120℃での引張条件は、サンプル形状がマイクロダンベル(厚み50μm)であり、引張速度が100mm/分であった(ASTM D1708-02aに準拠)。
<Breaking strength and breaking elongation>
The breaking strength and breaking elongation in the longitudinal direction and the width direction of the obtained release film were measured using Autograph AG-1KNIS (manufactured by Shimadzu Corporation) under the following conditions.
As for the tension conditions at 28 ° C., the sample shape was a strip shape (10 mm width), and the tensile speed was 500 mm / min (based on JIS K 7127).
The tensile conditions at 120 ° C. were that the sample shape was a micro dumbbell (thickness 50 μm) and the tensile speed was 100 mm / min (according to ASTM D1708-02a).
<モールド成形性>
上記で得られた離型フィルムを用いて、以下の条件でモールド成形を行い、得られた成形品について下記の基準にて評価した。
(成形条件)
樹脂モールド成形法で、一定温度(115℃)の金型(直径2.6mmのお椀状窪みで形成された金型)に、離型フィルム(A4サイズ:縦30cm×横20cmの枚葉フィルム)をセットした後(ロールフィルムをロールtoロールでセットしてもよい)、真空吸引して、離型フィルムを金型に追従させた。そこに未硬化の封止用のシリコン樹脂(商品名OE-6370HF(東レダウコーニング社製))を流動させ、120~300秒間保持し、樹脂を硬化させた後、金型を開き、成形品を脱型させ、離型フィルムを剥離した。
(評価方法)
得られた成形品について、表面をマイクロスコープ(DIGITAL MICROSCOPE VHX-900、キーエンス社製、倍率25~100倍)を用いて観察し、下記の基準にて評価した。
(評価基準)
○:表面に荒れが見られなかった。
×:表面に荒れは見られた。
<Mold moldability>
Using the release film obtained above, molding was performed under the following conditions, and the obtained molded product was evaluated according to the following criteria.
(Molding condition)
Release mold (A4 size: 30cm x 20cm wide sheet film) on a mold (mold formed with bowl-shaped depressions with a diameter of 2.6mm) at a constant temperature (115 ° C) by resin molding (The roll film may be set in a roll-to-roll manner), and vacuum suction was performed to cause the release film to follow the mold. An uncured silicone resin for sealing (trade name OE-6370HF (manufactured by Toray Dow Corning)) is flowed there and held for 120 to 300 seconds to cure the resin. Was demolded, and the release film was peeled off.
(Evaluation methods)
The surface of the obtained molded product was observed using a microscope (DIGITAL MICROSCOPE VHX-900, manufactured by Keyence Corporation, magnification: 25 to 100 times) and evaluated according to the following criteria.
(Evaluation criteria)
○: No roughness was observed on the surface.
X: Roughness was observed on the surface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1より、実施例の離型フィルムを用いることで、モールド成形装置を用いた樹脂の成形加工において、良好な表面状態の樹脂成形体を得られることが分かる。 From Table 1, it can be seen that, by using the release film of the example, a resin molded body having a good surface state can be obtained in the resin molding process using the molding apparatus.
本発明の離型フィルムは、モールド成形時に金型から樹脂を離脱するためのモールド成形用離型フィルムとして好適に適用することができる。 The release film of the present invention can be suitably applied as a mold release film for releasing a resin from a mold during molding.

Claims (6)

  1. 含フッ素樹脂からなる離型フィルムであって、
    前記離型フィルムは、フィルムの長手方向の応力と幅方向の応力との差が1.80MPa以下であり、前記応力は、ASTM D1708-02aに準拠した方法で、雰囲気温度120℃、引張速度100mm/分の条件で測定して得られる値であることを特徴とする離型フィルム。
    A release film made of a fluorine-containing resin,
    In the release film, the difference between the stress in the longitudinal direction and the stress in the width direction of the film is 1.80 MPa or less, and the stress is a method according to ASTM D1708-02a, and the ambient temperature is 120 ° C. and the tensile speed is 100 mm. A release film characterized by having a value obtained by measurement under the conditions of / min.
  2. フィルムの長手方向及び幅方向の伸縮率が、いずれも0.50%以下である請求項1記載の離型フィルム。 The release film according to claim 1, wherein the stretch ratio in the longitudinal direction and the width direction of the film is 0.50% or less.
  3. 含フッ素樹脂は、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、及び、エチレン-テトラフルオロエチレン共重合体からなる群より選択される少なくとも1種である請求項1又は2記載の離型フィルム。 The fluorine-containing resin is at least one selected from the group consisting of a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, and an ethylene-tetrafluoroethylene copolymer. The release film according to claim 1 or 2.
  4. 含フッ素樹脂は、エチレン-テトラフルオロエチレン共重合体である請求項1、2又は3記載の離型フィルム。 4. The release film according to claim 1, wherein the fluororesin is an ethylene-tetrafluoroethylene copolymer.
  5. エチレン-テトラフルオロエチレン共重合体を構成する全単量体単位に対するテトラフルオロエチレン単位の含有量が50モル%以上である請求項4記載の離型フィルム。 The release film according to claim 4, wherein the content of the tetrafluoroethylene unit with respect to all monomer units constituting the ethylene-tetrafluoroethylene copolymer is 50 mol% or more.
  6. 発光ダイオード封止材料のモールド成形に用いられる請求項1、2、3、4又は5記載の離型フィルム。 6. A release film according to claim 1, which is used for molding a light emitting diode sealing material.
PCT/JP2012/083337 2011-12-22 2012-12-21 Mold release film WO2013094752A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147019435A KR20140106691A (en) 2011-12-22 2012-12-21 Mold release film
CN201280054301.1A CN103917347A (en) 2011-12-22 2012-12-21 Mold release film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011282079 2011-12-22
JP2011-282079 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094752A1 true WO2013094752A1 (en) 2013-06-27

Family

ID=48668629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083337 WO2013094752A1 (en) 2011-12-22 2012-12-21 Mold release film

Country Status (5)

Country Link
JP (1) JP5752106B2 (en)
KR (1) KR20140106691A (en)
CN (1) CN103917347A (en)
TW (1) TW201341145A (en)
WO (1) WO2013094752A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848180A (en) * 2015-08-04 2018-03-27 旭硝子株式会社 The manufacture method of fluororesin film

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448363B2 (en) * 2014-12-26 2019-01-09 積水化学工業株式会社 Release film for semiconductor mold
DE112016005195T5 (en) * 2015-11-13 2018-07-26 Asahi Glass Company, Limited Resin film and process for its preparation
MY188513A (en) * 2016-07-04 2021-12-17 Agc Inc Film and method for its production
CN106221595A (en) * 2016-07-21 2016-12-14 苏州泰仑电子材料有限公司 Mould release membrance of ultralight off-type force and preparation method thereof
CN106239885A (en) * 2016-07-29 2016-12-21 苏州睿利斯电子材料科技有限公司 A kind of mould release membrance heating floating device
JP6891048B2 (en) * 2017-06-02 2021-06-18 アピックヤマダ株式会社 Resin mold mold and resin mold equipment
WO2019203243A1 (en) * 2018-04-20 2019-10-24 Agc株式会社 Roll film, method for producing roll film, method for producing copper-clad laminate, and method for producig printed wiring board
CN109760377B (en) * 2018-11-22 2021-03-19 江苏大学 High-release-property silicon-free composite release film and preparation method thereof
TWI698338B (en) 2018-12-04 2020-07-11 南亞塑膠工業股份有限公司 Release film with ultra-low release force and manufacturing method thereof
JP6639009B1 (en) * 2019-03-04 2020-02-05 日本飛行機株式会社 Jig stand
JP2019183175A (en) * 2019-08-01 2019-10-24 ダイキン工業株式会社 Release film
JP7300418B2 (en) * 2020-05-11 2023-06-29 信越化学工業株式会社 Release film, method for sealing semiconductor parts, method for manufacturing resin molding
CN113878835B (en) * 2021-12-08 2022-03-08 国家电投集团氢能科技发展有限公司 Polytetrafluoroethylene/carbon fiber composite release film and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307059A (en) * 2004-04-23 2005-11-04 Mitsui Chemicals Inc Poly(4-methyl-1-pentene) resin film
WO2010079812A1 (en) * 2009-01-08 2010-07-15 旭硝子株式会社 Mold-releasing film and method for manufacturing light emitting diode
WO2011037034A1 (en) * 2009-09-24 2011-03-31 旭硝子株式会社 Mold release film, and method for manufacturing light emitting diode
JP2012206490A (en) * 2011-03-30 2012-10-25 Shin Etsu Polymer Co Ltd Mold release film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791458B2 (en) * 2002-05-23 2006-06-28 旭硝子株式会社 Release film
DE602005016337D1 (en) * 2004-06-29 2009-10-15 Asahi Glass Co Ltd Release film for the encapsulation of semiconductor chips

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307059A (en) * 2004-04-23 2005-11-04 Mitsui Chemicals Inc Poly(4-methyl-1-pentene) resin film
WO2010079812A1 (en) * 2009-01-08 2010-07-15 旭硝子株式会社 Mold-releasing film and method for manufacturing light emitting diode
WO2011037034A1 (en) * 2009-09-24 2011-03-31 旭硝子株式会社 Mold release film, and method for manufacturing light emitting diode
JP2012206490A (en) * 2011-03-30 2012-10-25 Shin Etsu Polymer Co Ltd Mold release film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848180A (en) * 2015-08-04 2018-03-27 旭硝子株式会社 The manufacture method of fluororesin film
KR20180037137A (en) * 2015-08-04 2018-04-11 아사히 가라스 가부시키가이샤 Process for producing fluororesin film
EP3332941A4 (en) * 2015-08-04 2019-03-20 AGC Inc. Process for producing fluororesin film
CN107848180B (en) * 2015-08-04 2019-10-18 Agc株式会社 The manufacturing method of fluororesin film
US10730219B2 (en) 2015-08-04 2020-08-04 AGC Inc. Method for producing fluororesin film
KR102443760B1 (en) 2015-08-04 2022-09-15 에이지씨 가부시키가이샤 Process for producing fluororesin film

Also Published As

Publication number Publication date
KR20140106691A (en) 2014-09-03
JP5752106B2 (en) 2015-07-22
JP2013147026A (en) 2013-08-01
CN103917347A (en) 2014-07-09
TW201341145A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5752106B2 (en) Release film
US20140335634A1 (en) Mold release film and method of process for producing a semiconductor device using the same
US7608216B2 (en) Methods for preparing articles from processable and dimensionally stable elastomer compositions
JP2010120386A (en) Fluoropolymer article
JP6515933B2 (en) Release film, method of manufacturing the same, and method of manufacturing semiconductor package
JP6935797B2 (en) Ethylene-tetrafluoroethylene copolymer film and its manufacturing method
US11318641B2 (en) Laminated film and method for producing semiconductor element
JP4959911B2 (en) Fluororesin film and laminate containing layer of the film
JP2018171912A (en) Laminate and method for producing the same, and gate seal
JP2017119741A (en) Resin and film
JP6780645B2 (en) Fluororesin film manufacturing method
JP2021121504A (en) Laminate
JP2004142305A (en) Laminated film
TWI784350B (en) Manufacturing method of composite materials
Drobny Fabrication of Melt-Processible Fluoropolymers
US20050276944A1 (en) Composite articles and methods of making the same
JP2013231147A (en) Mold release film
JP2018090737A (en) Release sheet
JP2020163311A (en) Method for manufacturing air filter medium
JP2018089913A (en) Release sheet
JP2020012701A (en) Method for inspecting melt processable fluororesin injection molded article and method of manufacturing melt processable fluororesin injection molded article
JP2008087402A (en) Multi-layer blow-molded article
JP2006130832A (en) Article for fluid transportation line and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019435

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12860835

Country of ref document: EP

Kind code of ref document: A1