WO2013094719A1 - Anti-aging agent for rubbers - Google Patents

Anti-aging agent for rubbers Download PDF

Info

Publication number
WO2013094719A1
WO2013094719A1 PCT/JP2012/083188 JP2012083188W WO2013094719A1 WO 2013094719 A1 WO2013094719 A1 WO 2013094719A1 JP 2012083188 W JP2012083188 W JP 2012083188W WO 2013094719 A1 WO2013094719 A1 WO 2013094719A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
weight
parts
aging
rubber composition
Prior art date
Application number
PCT/JP2012/083188
Other languages
French (fr)
Japanese (ja)
Inventor
志津香 岩田
進 森
井山 浩暢
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013094719A1 publication Critical patent/WO2013094719A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone

Definitions

  • the present invention relates to an anti-aging agent for rubber.
  • Patent Document 1 describes a vulcanized rubber composition containing N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, which is an anti-aging material for rubber, and silica. .
  • the conventional vulcanized rubber composition contains the rubber anti-aging substance itself as it is, and its anti-aging effect may not always be sufficiently satisfactory in terms of sustainability.
  • the present invention includes the following inventions.
  • 3 pore volume of the mesopores is equal to or less than 0.84 cm 3 / g or more 5.0 cm 3 / g. Or 2.
  • the peak chemical shift based on 13 C contained in the rubber anti-aging substance supported on the mesoporous silica is based on 13 C contained in the rubber anti-aging substance not supported on the mesoporous silica. 1. It is different from the chemical shift of the peak. ⁇ 3.
  • the mesoporous silica has a mesopore diameter of 6 nm or more and 50 nm or less. ⁇ 4.
  • the rubber anti-aging substance is a compound represented by the formula (I): ⁇ 4. The anti-aging agent for rubber
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 13 carbon atoms.
  • the mesoporous silica is contained in an amount of 0.1 to 100 parts by weight with respect to 10 parts by weight of the rubber anti-aging material. ⁇ 6.
  • gum as described in any one of these.
  • the durability of the antiaging effect of the antiaging substance for rubber contained therein is improved.
  • FIG. 2 is a diagram showing the results of solid state NMR measurement of the rubber anti-aging agent (1) of the present invention obtained in Example 1.
  • FIG. It is a figure explaining the method for measuring the transfer amount of the antiaging substance for rubber
  • the anti-aging substance for rubber in the present invention is an organic substance blended for the purpose of preventing the aging of the rubber product and extending its life. Only one type of rubber anti-aging substance may be used, or two or more types may be used in combination.
  • the anti-aging material for rubber is not particularly limited.
  • amine-based anti-aging material amine-ketone-based anti-aging material, phenol-based anti-aging material, imidazole-based anti-aging material, sulfur-based anti-aging material, phosphorus-based anti-aging material Prevention substances and the like.
  • the anti-aging agent for rubber is more likely to migrate in the vulcanized rubber composition as the molecular weight is lower, but the present invention can suppress the migration even with such a low molecular weight anti-aging agent for rubber. . Therefore, in the present invention, an antiaging material for rubber having a relatively low molecular weight (for example, a molecular weight of about 150 to 400) can be used.
  • an amine-based anti-aging substance is preferable.
  • the amine-based anti-aging substance include a compound represented by the formula (I), a compound represented by the formula (II), or a polymer thereof.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 13 carbon atoms.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 13 carbon atoms.
  • R 3 represents a hydrogen atom or an alkoxy group having 1 to 13 carbon atoms.
  • the alkyl group having 1 to 13 carbon atoms may be linear or branched, and is preferably branched.
  • the number of carbon atoms is preferably 1 to 10, more preferably 2 to 8, and further preferably 3 to 8.
  • the alkoxy group having 1 to 13 carbon atoms may be linear or branched.
  • the number of carbon atoms is preferably 1 to 10, more preferably 1 to 8, and further preferably 1 to 5.
  • R 1 is preferably an alkyl group having 1 to 13 carbon atoms, more preferably a branched alkyl group having 3 to 8 carbon atoms, still more preferably isopropyl or 1,3-dimethylbutyl, and particularly preferably Is 1,3-dimethylbutyl.
  • R 2 is preferably a hydrogen atom.
  • R 3 is preferably a hydrogen atom or an alkoxy group having 1 to 5 carbon atoms, more preferably a hydrogen atom or ethoxy.
  • Examples of the compound represented by the formula (I) include N-isopropyl-N′-phenyl-p-phenylenediamine (IPPD) and N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine. (6PPD).
  • Examples of the compound represented by the formula (II) include 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline (ETMDQ), 2,2,4-trimethyl-1,2-dihydroquinoline and the like. be able to.
  • polymer of the compound represented by the formula (II) examples include poly (2,2,4-trimethyl-1,2-dihydroquinoline) (“Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.). Of these, compounds represented by the formula (I) are preferred, and N-isopropyl-N′-phenyl-p-phenylenediamine and N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine are preferred. N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine is more preferable.
  • mesoporous silica with a mesopore volume exceeding 0.81 cm 3 / g>
  • the composition formula of mesoporous silica is SiO 2 ⁇ nH 2 O, and the CAS registration number of silica is 7631-86-9.
  • mesoporous silica means silica having mesopores, and mesopores mean pores having a diameter of 2 nm or more and 50 nm or less in the catalyst field in IUPAC.
  • the mesoporous silica those having relatively large mesopores on the surface are preferable.
  • the mesopore diameter of the mesoporous silica is preferably 6 nm or more and 50 nm or less.
  • the diameter of the mesopore is an average value of the diameters of the pores measured by the nitrogen adsorption method (BJH method) under the conditions described in the examples described later.
  • the mesoporous silica used in the present invention has a mesopore volume exceeding 0.81 cm 3 / g.
  • the pore volume of the mesopores is preferably not more than 0.84 cm 3 / g or more 5.0 cm 3 / g, more preferably not more than 1.0 cm 3 / g or more 5.0 cm 3 / g, particularly preferably Is 1.3 cm 3 / g or more and 5.0 cm 3 / g or less.
  • the pore volume of the mesopores can be measured by a nitrogen adsorption method (BJH method) under the conditions described in Examples described later.
  • the BET specific surface area of mesoporous silica is preferably 10 m 2 / g or more and 550 m 2 / g or less, more preferably 20 m 2 / g or more and 500 m 2 / g or less, and further preferably 25 m 2 / g or more and 400 m 2 / g or less.
  • This BET specific surface area can be measured by the method described in Examples described later.
  • Examples of commercially available mesoporous silica having a mesopore volume exceeding 0.81 cm 3 / g include Fuji Silysia Silicia 310P, 420, and 530, Fuji Silysia Silophobic 100, 507, and 702.
  • a rubber anti-aging substance is supported on mesoporous silica.
  • the rubber anti-aging substance is preferably supported in the mesopores of mesoporous silica.
  • the content of mesoporous silica in the rubber anti-aging agent of the present invention is, for example, 0.1 to 100 parts by weight, preferably 0.1 to 50 parts by weight, more preferably 0 to 10 parts by weight of the rubber anti-aging substance. 1 to 30 parts by weight.
  • the method for producing the anti-aging agent for rubber of the present invention is not particularly limited as long as the anti-aging agent for rubber can be supported on mesoporous silica, and examples thereof include the following method (1) and the following method (2). be able to.
  • a rubber anti-aging substance is dissolved in a solvent to obtain a solution, and the solution and mesoporous silica are mixed to obtain a mixture.
  • mesoporous silica may be mixed with a solvent to obtain a slurry, and the slurry may be mixed with a solution of an antiaging substance for rubber to prepare a mixture.
  • the solvent is removed from the mixture to obtain the rubber anti-aging agent of the present invention. You may grind
  • the solvent is not particularly limited as long as it can dissolve the anti-aging substance for rubber and can be distilled off.
  • hydrocarbon solvents such as toluene, xylene, hexane, heptane, acetone, methyl ethyl ketone, etc.
  • ketone solvents such as methyl isobutyl ketone
  • alcohol solvents such as methanol, ethanol and isopropanol.
  • a rubber anti-aging material is melted to obtain a melt, the melt and mesoporous silica are mixed to obtain a mixture, and the mixture is cooled to obtain the rubber anti-aging agent of the present invention.
  • the method for cooling the mixture and for example, forced air cooling by blowing or cooling can be employed. You may grind
  • the amount of mesoporous silica added is, for example, 0.1 to 100 parts by weight, preferably 0.1 to 100 parts by weight with respect to 10 parts by weight of the rubber anti-aging substance. 50 parts by weight, more preferably 0.1 to 30 parts by weight.
  • the anti-aging material for rubber is supported on mesoporous silica (particularly in the mesopores).
  • mesoporous silica particularly in the mesopores.
  • the presence or absence of a change in the chemical shift of the peak based on 13 C contained in the rubber anti-aging substance may be observed before and after the rubber anti-aging substance is supported on mesoporous silica.
  • a change occurs in the three-dimensional structure, and as a result, a change in the chemical shift of the peak based on 13 C contained in the anti-aging substance for rubber occurs. And what is necessary is just to confirm that this change exists by solid state NMR measurement.
  • the rubber anti-aging substance is not supported on the mesoporous silica, the interaction between the functional group of the rubber anti-aging substance and the functional group of the mesoporous silica does not occur, and as a result, it is included in the rubber anti-aging substance. No change in peak chemical shift based on 13 C occurs. And what is necessary is just to confirm by solid-state NMR measurement that this change does not exist.
  • ⁇ Use of anti-aging agent for rubber of the present invention a rubber composition containing the antiaging agent for rubber of the present invention and a rubber component will be described. Only one type of anti-aging agent for rubber of the present invention may be used, or two or more types may be used in combination. Similarly, only 1 type may be used for a rubber component and it may use 2 or more types together.
  • the rubber composition is preferably obtained by kneading the rubber anti-aging agent of the present invention and a rubber component. Kneading can be performed by a known method.
  • the rubber composition may be produced by kneading the rubber anti-aging agent of the present invention and the total amount of rubber component to be used, or the rubber anti-aging agent of the present invention and a part of the rubber component to be used. May be produced by first kneading the master batch and the remaining rubber component.
  • the rubber composition may be a master batch.
  • the rubber composition may further contain a filler, zinc oxide, stearic acid, a crosslinking agent, a vulcanization accelerator and the like.
  • the content of the antioxidant for rubber of the present invention in the rubber composition is, for example, 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 1 to 1 part by weight with respect to 100 parts by weight of the rubber component. 20 parts by weight.
  • the content of the anti-aging agent for rubber of the present invention in the rubber composition is, for example, 1 to 990 parts by weight, preferably 1 to 900 parts by weight with respect to 100 parts by weight of the rubber component. More preferably, it is 1 to 700 parts by weight, particularly preferably 1 to 500 parts by weight.
  • Natural rubber and modified natural rubber eg, epoxidized natural rubber, deproteinized natural rubber, etc.
  • SBR styrene / butadiene copolymer rubber
  • BR polybutadiene rubber
  • NBR acrylonitrile / butadiene copolymer rubber
  • IIR isoprene / isobutylene copolymer rubber
  • ethylene / propylene-diene copolymer ethylene / propylene-diene copolymer
  • synthetic rubbers such as rubber (EPDM) and halogenated butyl rubber (HR); Can be mentioned.
  • the rubber component is preferably highly unsaturated, and natural rubber, modified natural rubber, styrene / butadiene copolymer rubber, and polybutadiene rubber are more preferable, and natural rubber is more preferable. Moreover, you may use together the above-mentioned various rubber
  • Examples of the natural rubber include grades of natural rubber such as RSS # 1, RSS # 3, TSR20, and SIR20.
  • Examples of the epoxidized natural rubber include those having a degree of epoxidation of 10 mol% to 60 mol% (specifically, for example, ENR25, ENR50, etc. manufactured by Kumpoulan Guthrie).
  • Examples of the deproteinized natural rubber include deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less.
  • Examples of other modified natural rubbers include, for example, 4-vinylpyridine, N, N-dialkylaminoethyl acrylate (specifically, for example, N, N-diethylaminoethyl acrylate), 2-hydroxy acrylate, etc. Examples thereof include a modified natural rubber containing a polar group obtained by reaction.
  • SBR styrene / butadiene copolymer rubber
  • examples of the styrene / butadiene copolymer rubber (SBR) include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. Can be mentioned.
  • solution polymerization SBR can be preferably mentioned.
  • solution polymerization SBR in which molecular ends are modified using 4,4′-bis- (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd., “SL574” manufactured by JSR, etc.
  • silane-modified solution polymerized SBR such as “E10” and “E15” manufactured by Asahi Kasei Co., Ltd., lactam compounds, amide compounds, urea compounds, N, N -A dialkylacrylamide compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (for example, trialkoxysilane) and an aminosilane compound alone, or a tin compound, an alkylacrylamide compound, and a silane compound having an alkoxy group
  • two or more different compounds such as More preferred examples include solution polymerization SBR having nitrogen, tin, silicon, or a plurality of these elements at the molecular terminals obtained by modifying the molecular terminals.
  • oil-added SBR in which oil such as process oil and aroma oil is added after emulsion polymerization SBR and solution polymerization SBR can be preferably exemplified as a rubber for tread.
  • BR polybutadiene rubber
  • solution polymerization BR such as a high cis BR having 90% or more of cis 1,4 bond and a low cis BR having a cis bond of around 35%.
  • low cis BR having a high vinyl content can be used.
  • tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon, 4,4′-bis- (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, An N, N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (trialkoxysilane compound, etc.), an aminosilane compound alone, or a tin compound, an alkylacrylamide compound, an alkoxy group
  • a solution polymerization BR or the like having any one of nitrogen, tin, silicon, or a plurality of these elements at the molecular ends obtained by modifying the molecular ends using two or more different compounds such as silane compounds having Can be mentioned.
  • BRs can be preferably cited as tread rubber or sidewall rubber.
  • BR is normally used by the blend with SBR and / or natural rubber.
  • SBR and / or natural rubber is 60 to 100% by weight and BR is 40 to 0% by weight with respect to the total rubber weight.
  • sidewall rubber for example, SBR and / or natural rubber is 10 to 70% by weight, BR is 90 to 30% by weight, preferably natural rubber is 40 to 60% by weight based on the total rubber weight.
  • % BR is 60 to 40% by weight.
  • a blend of modified SBR and non-modified SBR, and blend of modified BR and non-modified BR are also preferred.
  • the filler examples include carbon black, silica, talc, clay, titanium oxide and the like that are usually used in the rubber field.
  • carbon black, silica, etc. are mentioned, for example. More preferably, carbon black etc. can be mentioned, for example.
  • Examples of carbon black include those described on page 494 of the “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association.
  • HAF High-Abrasion-Furnace
  • SAF Super-Abrasion-Furnace
  • ISAF Intermediate-Surf
  • FEF Fluorescence-Furnace
  • MAF Medium-Abrasion-Furnace
  • GPF General-Purpose-Furnace
  • SRF Carbon black such as Reinforcing (Furnace).
  • a CTAB Cosmetic Acid Bromide
  • a nitrogen adsorption specific surface area of 20 m 2 / g to 200 m 2 / g
  • a particle diameter of 10 nm to A preferred example is 50 nm carbon black.
  • More preferable examples include carbon black having a CTAB specific surface area of 70 m 2 / g to 180 m 2 / g.
  • N110, N220, N234, N299, N326, N330, N330T, N339, N343, N351 and the like can be mentioned.
  • a surface-treated carbon black in which 0.1 to 50% by weight of silica is attached to the surface of the carbon black can also be preferably exemplified. More preferably, for example, a combination of several kinds of fillers such as a combination of carbon black and silica is used. In the case of the tire tread rubber composition, for example, carbon black alone and both carbon black and silica can be preferably exemplified.
  • carbon black having a CTAB specific surface area of 20 m 2 / g to 60 m 2 / g and a particle diameter of 40 nm to 100 nm can be preferably exemplified.
  • N330, N339, N343, N351, N550, N568, N582, N630, N642, N660, N662, N754, N762 and the like can be mentioned.
  • silica used as the filler examples include silica having a CTAB specific surface area of 50 m 2 / g to 180 m 2 / g, silica having a nitrogen adsorption specific surface area of 50 m 2 / g to 300 m 2 / g, and the like.
  • AQ and “AQ-N” manufactured by Tosoh Silica Co., Ltd. “Ultra Gil (registered trademark) VN3”, “Ultra Gil (registered trademark) 360”, and “Ultra Gil (registered trademark)” manufactured by Degussa.
  • silica having a pH of 6 to 8 silica containing 0.2 to 1.5% by weight of sodium, true spherical silica having a roundness of 1 to 1.3, silicone oil such as dimethyl silicone oil, ethoxy It is also preferable to blend an organosilicon compound containing a silyl group, silica surface-treated with an alcohol such as ethanol or polyethylene glycol; a mixture of two or more types of silica having different nitrogen adsorption specific surface areas; and the like.
  • the amount used is not particularly limited, but is 5 to 120 parts by weight, preferably 5 to 100 parts by weight, and more preferably 10 to 100 parts by weight with respect to 100 parts by weight of the rubber component. 100 parts by weight.
  • the amount of carbon black used is preferably 30 to 80 parts by weight with respect to 100 parts by weight of the rubber component.
  • the amount of carbon black used is, for example, 5 to 60 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the rubber component. Examples of the weight ratio of silica / carbon black include a range of 0.7 / 1 to 1 / 0.1.
  • silica bis (3-triethoxysilylpropyl) tetrasulfide (Degussa “Si-69”), bis (3-triethoxysilylpropyl) disulfide (Degussa “Si-75”) )), Bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester (“3-octanoylthio” “NXT silane” manufactured by General Electronic Silicons Co., Ltd.), octanethioic acid S- [3- (2- ⁇ 3- [2- (3-mercaptopropyl) -4,4,6-trimethyl] [1,3,2] Dioxacillinan-2-yloxy] -1,1-dimethyl Toxi ⁇ -4
  • the addition timing of the compound capable of binding to silica is not particularly limited, but it is preferable to add to the rubber at the same time as silica.
  • the blending amount is, for example, 2 to 10 parts by weight, preferably 7 to 9 parts by weight with respect to 100 parts by weight of silica.
  • Examples of the compounding temperature when compounding a compound capable of binding to silica with rubber include 80 ° C. to 200 ° C., for example. Preferably, for example, 110 ° C. to 180 ° C. may be mentioned.
  • silica when silica is used as the filler, for example, in addition to silica and a compound capable of binding to silica, monohydric alcohols such as ethanol, butanol and octanol; ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene Polyhydric alcohols such as glycol, pentaerythritol, and polyether polyols; N-alkylamines; amino acids; liquid polybutadienes whose molecular ends are carboxyl-modified or amine-modified;
  • monohydric alcohols such as ethanol, butanol and octanol
  • ethylene glycol diethylene glycol, triethylene glycol
  • polyethylene glycol polypropylene
  • Polyhydric alcohols such as glycol, pentaerythritol, and polyether polyols
  • N-alkylamines amino acids
  • liquid polybutadienes whose molecular ends are carboxyl
  • the amount used is, for example, 1 to 15 parts by weight, preferably 1 to 8 parts by weight with respect to 100 parts by weight of the rubber component.
  • the amount used is, for example, 0.5 to 10 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the rubber component.
  • the crosslinking agent examples include sulfur.
  • sulfur examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Of these, powdered sulfur is preferred.
  • insoluble sulfur is preferable.
  • the sulfur does not contain a vulcanization accelerator.
  • the amount of sulfur used is, for example, 0.3 to 5 parts by weight, preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the rubber component.
  • vulcanization accelerator examples include thiazole vulcanization accelerators and sulfenamide vulcanization accelerators described in pages 412 to 413 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. And guanidine vulcanization accelerators.
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BSS
  • DCBS benzothiazolylsulfenamide
  • MBT 2-mercaptobenzothiazole
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • morpholine disulfide which is a known vulcanizing agent, can be used.
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • BSS N-tert-butyl-2-benzothiazolylsulfenamide
  • DPG diphenylguanidine
  • silica and carbon black are used in combination as fillers, for example, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS) N, N-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) is preferably used in combination with diphenylguanidine (DPG).
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • BSS N-tert-butyl-2-benzothiazolylsulfenamide
  • DCBS N-dicyclohexyl-2-benzothiazolylsulfenamide
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • Compounding agents include, for example, oils; fatty acids such as stearic acid; Coumarone resin G-90 (softening point 80 ° C. to 100 ° C.) manufactured by Nikkaku Chemical, and process resin AC8 (softening point 95 ° C.) manufactured by Kobe Oil Chemical Co., Ltd. ), Etc .; Terpene resins such as terpene resin, terpene / phenol resin, aromatic modified terpene resin; “Nikanol (registered trademark) HP-100” manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Xylene / formaldehyde resins such as “Ester gum” series and “Neotor” series manufactured by Arakawa Chemical Co., Ltd .; Hydrogenated rosin derivatives; Novolac alkylphenol resins; Resole alkylphenol resins; C5 petroleum resins; Liquid polybutadienes; Can be mentioned.
  • Examples of the oil include process oil and vegetable oil.
  • Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • the vulcanized rubber composition containing the antiaging agent for rubber of the present invention is usually obtained by heat-treating a rubber composition obtained by kneading the antiaging agent for rubber of the present invention, a rubber component and a crosslinking agent.
  • temperature conditions in the heat treatment include 120 ° C. to 180 ° C.
  • the heat treatment may be usually performed at normal pressure or under pressure.
  • the vulcanized rubber composition containing the rubber anti-aging agent of the present invention is suitably used for tires.
  • the tire include a pneumatic tire and a solid tire.
  • the vulcanized rubber composition containing the rubber anti-aging agent of the present invention is a tire comprising a steel cord coated with each member constituting the tire (for example, a vulcanized rubber composition containing the rubber anti-aging agent of the present invention).
  • Sidewall for tires comprising a belt for tires, a carcass for tires containing a carcass fiber cord coated with a vulcanized rubber composition containing an antioxidant for rubber of the present invention, and a vulcanized rubber composition containing an antioxidant for rubber of the present invention , Tire inner liner, tire cap tread or tire under tread).
  • the vulcanized rubber composition containing the antiaging agent for rubber of the present invention can extend the life of rubber materials such as tires. Further, the vulcanized rubber composition can be used not only for the above-mentioned tire use but also as an anti-vibration rubber for automobiles such as an engine mount, a strut mount, a bush, and an exhaust hanger.
  • Example 1 (Production Example of Anti-aging Agent for Rubber of the Present Invention) A 500 mL beaker is charged with 20 g of mesoporous silica (B1), and 200 mL of methanol is added thereto to form a slurry liquid. On the other hand, 20 g of rubber anti-aging substance (A1) was charged into a 100 mL Erlenmeyer flask, and 50 mL of methanol was added thereto to obtain a methanol solution.
  • the resulting mixture was stirred at 25 ° C. under air for 1 day. After the stirring was completed, the resulting mixture was dried by an evaporator to obtain an antiaging agent for rubber of the present invention (1) as a gray solid.
  • Example 2 (Production Example of Anti-aging Agent for Rubber of the Present Invention) An anti-aging agent (2) for rubber of the present invention was obtained in the same manner as in Example 1 except that the mesoporous silica (B1) was changed to the mesoporous silica (B2).
  • Example 3 (Production example of the anti-aging agent for rubber of the present invention)
  • the rubber anti-aging agent (3) of the present invention was obtained in the same manner as in Example 1 except that the mesoporous silica (B1) was changed to the mesoporous silica (B3).
  • Measuring device BELSORP-mini (manufactured by Nippon BEL Co., Ltd.)
  • Pretreatment device BELPREP-vacII (manufactured by Nippon BEL Co., Ltd.)
  • Test method Nitrogen adsorption method
  • Pretreatment method Vacuum degassing at 120 ° C.
  • the BET specific surface area was calculated by subjecting the measurement results obtained under the above conditions to a specific surface area analysis by the BET method. Moreover, said equilibrium waiting time is a waiting time after reaching an adsorption equilibrium state.
  • Reference Example 3 (Production Example of Basic Rubber Composition) A 10-liter kneader was charged with 50 parts by weight of each of commercially available natural rubber (product name: SMR-CV60) and butadiene rubber (product name: JSR BR01, manufactured by JSR Corporation) and kneaded for 2 minutes. After adding materials other than natural rubber and butadiene rubber shown in Table 2 to the obtained kneaded material, the mixture was further kneaded for 10 minutes to obtain a basic rubber composition. The discharge temperature of the rubber composition from the kneader was 95 ° C.
  • Comparative Example 2 (Production Example of Vulcanized Rubber Composition not Containing Antiaging Agent for Rubber of the Present Invention) 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 A rubber composition was obtained by kneading parts by weight and 1.5 parts by weight of sulfur with an open roll machine having a roll set temperature of 60 ° C. The resulting rubber composition was heat-press molded at 145 ° C.
  • TBBS N-tert-butyl-2-benzothiazolesulfenamide
  • a vulcanized rubber composition width 15.5 cm, length 16.0 cm, thickness containing neither an antiaging agent for rubber nor mesoporous silica 2 mm sheet shape
  • a vulcanized rubber composition width 15.5 cm, length 16.0 cm, thickness containing neither an antiaging agent for rubber nor mesoporous silica 2 mm sheet shape
  • Reference Example 4 Method for measuring the migration amount of anti-aging substances for rubber
  • the amount of migration of the rubber anti-aging substance was measured.
  • Three blank sheets manufactured from a vulcanized rubber composition that does not contain both an antioxidant for rubber and mesoporous silica, and a vulcanized rubber composition that contains an antioxidant for rubber and does not contain mesoporous silica The initial weight of each sheet was measured for three measurement sheets to be measured.
  • FIG. 3 is a diagram for explaining a method for measuring the amount of migration of the rubber anti-aging substance in the vulcanized rubber composition.
  • the entire laminate was made of aluminum. Wrapped with foil 7, and then wrapped with aluminum laminate 8 from above. About 3 kg of weights 9 were placed on the aluminum foil 7 and the aluminum laminate 8 package thus obtained. The package on which the weight was placed was left in a thermostatic chamber at 25 ° C. for 6 days, then the aluminum foil and the aluminum laminate package were opened, each sheet was taken out, and the weight of each sheet was measured. The amount of migration of the rubber anti-aging substance was a change in weight from the initial weight of the blank sheet.
  • Example 4 (Production Example of Vulcanized Rubber Composition Containing Antiaging Agent for Rubber of the Present Invention) 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading, by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for rubber of the present invention (1) obtained in Example 1 with an open roll machine having a roll set temperature of 60 ° C. A rubber composition was obtained.
  • TBBS N-tert-butyl-2-benzothiazolesulfenamide
  • the obtained rubber composition is heated and press-molded at 145 ° C., so that a vulcanized rubber composition containing the antiaging agent for rubber of the present invention (a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm).
  • a vulcanized rubber composition containing the antiaging agent for rubber of the present invention (a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm).
  • a vulcanized rubber composition containing the antiaging agent for rubber of the present invention a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm.
  • the amount of migration of the rubber anti-aging substance was measured in the same manner as in Reference Example 4. did.
  • Example 5 (Production Example of Vulcanized Rubber Composition Containing Antiaging Agent for Rubber of the Present Invention) 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading, by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for rubber of the present invention (2) obtained in Example 2 with an open roll machine having a roll set temperature of 60 ° C. A rubber composition was obtained.
  • TBBS N-tert-butyl-2-benzothiazolesulfenamide
  • the obtained rubber composition is heated and press-molded at 145 ° C., so that a vulcanized rubber composition containing the antiaging agent for rubber of the present invention (a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm).
  • a vulcanized rubber composition containing the antiaging agent for rubber of the present invention (a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm).
  • a vulcanized rubber composition containing the antiaging agent for rubber of the present invention a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm.
  • the amount of migration of the rubber anti-aging substance was measured in the same manner as in Reference Example 4. did.
  • Example 6 (Production Example of Vulcanized Rubber Composition Containing Antiaging Agent for Rubber of the Present Invention) 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading parts by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for rubber of the present invention (3) obtained in Example 3 with an open roll machine having a roll set temperature of 60 ° C, A rubber composition was obtained.
  • a vulcanization accelerator N-tert-butyl-2-benzothiazolesulfenamide (TBBS)
  • the obtained rubber composition is heated and press-molded at 145 ° C., so that a vulcanized rubber composition containing the antiaging agent for rubber of the present invention (a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm).
  • a vulcanized rubber composition containing the antiaging agent for rubber of the present invention (a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm).
  • a vulcanized rubber composition containing the antiaging agent for rubber of the present invention a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm.
  • the amount of migration of the rubber anti-aging substance was measured in the same manner as in Reference Example 4. did.
  • Comparative Example 3 ((X1) Production Example of Vulcanized Rubber Composition Containing Anti-aging Agent for Supported Rubber) 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading parts by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for supported rubber (X1) obtained in Comparative Example 1 with an open roll machine having a roll set temperature of 60 ° C., rubber is obtained. A composition was obtained. The obtained rubber composition was hot-pressed at 145 ° C.
  • TBBS N-tert-butyl-2-benzothiazolesulfenamide
  • a vulcanized rubber composition sheet having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm
  • (X1) an anti-aging agent for a supported rubber shape
  • X1 an anti-aging agent for a supported rubber.
  • Shape shape
  • 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
  • Reference Example 5 ((X2) Production Example of Vulcanized Rubber Composition Containing Antiaging Agent for Supported Rubber) 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading the weight part, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for supported rubber (X2) obtained in Reference Example 1 with an open roll machine having a roll set temperature of 60 ° C., rubber is obtained. A composition was obtained. The obtained rubber composition was heat-press molded at 145 ° C.
  • TBBS N-tert-butyl-2-benzothiazolesulfenamide
  • a vulcanized rubber composition sheet having a width of 15.5 cm, a length of 16.0 cm and a thickness of 2 mm
  • (X2) an anti-aging agent for a supported rubber shape
  • X2 an anti-aging agent for a supported rubber.
  • Shape a vulcanized rubber composition
  • Reference Example 6 ((X3) Production Example of Vulcanized Rubber Composition Containing Anti-aging Agent for Supported Rubber) 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading parts by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for supported rubber (X3) obtained in Reference Example 2 with an open roll machine having a roll set temperature of 60 ° C., rubber is obtained. A composition was obtained. The obtained rubber composition was hot-pressed at 145 ° C.
  • TBBS N-tert-butyl-2-benzothiazolesulfenamide
  • a vulcanized rubber composition sheet having a width of 15.5 cm, a length of 16.0 cm and a thickness of 2 mm
  • (X3) an anti-aging agent for a supported rubber shape
  • X3 an anti-aging agent for a supported rubber.
  • Table 3 shows the compositions of the vulcanized rubber compositions obtained in Examples 4 to 6, Comparative Examples 2 and 3, and Reference Examples 5 and 6, and the composition of the rubber anti-aging agent used.
  • Table 4 shows the transition speed.
  • the unit of numerical values shown in Table 3 is parts by weight.
  • the “migration rate of the rubber anti-aging substance” described in Table 4 includes the rubber anti-aging substance obtained in Comparative Example 2, and the rubber for the vulcanized rubber composition containing no mesoporous silica. This is the relative transfer amount of the anti-aging material for rubber when the transfer amount of the anti-aging material is 100. The smaller the value, the slower the migration rate of the anti-aging material for rubber, which means that the durability of the anti-aging effect in the vulcanized rubber composition is improved.
  • Reference Example 7 (Production Example of Vulcanized Rubber Composition)
  • the vulcanized rubber composition obtained by the following first step and second step is suitable for undertread.
  • First step> (Procedure 1) Using a Banbury mixer (600 mL lab plast mill manufactured by Toyo Seiki Seisakusho), 100 parts by weight of styrene / butadiene copolymer rubber SBR # 1502 (manufactured by Sumitomo Chemical Co., Ltd.), ISAF-HM (manufactured by Asahi Carbon Co., Ltd., product name “Asahi # 80”) ] 35 parts by weight, stearic acid 2 parts by weight, zinc oxide 3 parts by weight, anti-aging agent for rubber of the present invention obtained in Example 1 (1) 8 parts by weight and wax (“OZOACE-0355” manufactured by Nippon Seiwa) 2) 2 parts by weight are kneaded in a range of 160 ° C.
  • Reference Example 8 (Production Example of Vulcanized Rubber Composition)
  • the vulcanized rubber composition obtained by the following first step and second step is suitable for a belt.
  • First step> (Procedure 1) Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Seisakusho), 100 parts by weight of commercially available natural rubber (RSS # 1), 45 parts by weight of HAF (Asahi Carbon Co., Ltd., product name “Asahi # 70”), stearic acid 3 parts by weight, zinc oxide 5 parts by weight, hydrous silica ("Nipsil (registered trademark) AQ" manufactured by Tosoh Silica Co., Ltd.) 10 parts by weight, anti-aging agent for rubber of the present invention (1) obtained in Example 1 (16) A rubber composition is obtained by kneading 2 parts by weight of resorcin and 2 parts by weight of cobalt naphthenate within a range of 160 ° C.
  • Reference Example 9 (Production Example of Vulcanized Rubber Composition)
  • the vulcanized rubber composition obtained by the following first step and second step is suitable for an inner liner.
  • First step> (Procedure 1) Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Seisakusho), halogenated butyl rubber (“Br-IIR2255” manufactured by ExxonMobil) 100 parts by weight, GPF 60 parts by weight, stearic acid 1 part by weight, zinc oxide 3 parts by weight
  • a rubber composition is obtained by kneading 10 parts by weight of paraffin oil (“Diana Process Oil” manufactured by Idemitsu Kosan Co., Ltd.) within a range of 160 ° C. to 175 ° C.
  • Reference Example 10 (Production Example of Vulcanized Rubber Composition)
  • the vulcanized rubber composition obtained by the following first step and second step is suitable for side walls.
  • First step> (Procedure 1) Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Seisakusho), 40 parts by weight of commercially available natural rubber (RSS # 3), 60 parts by weight of polybutadiene rubber (“BR150B” manufactured by Ube Industries), 50 parts by weight of FEF, stearic acid 2.5 parts by weight, zinc oxide 3 parts by weight, anti-aging agent for rubber of the present invention obtained in Example 1 (1) 16 parts by weight, process oil (“NC-140” manufactured by Cosmo Oil Co., Ltd.) 10 parts by weight
  • a rubber composition was prepared by kneading 2 parts by weight of wax (“Sannok (registered trademark) wax” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) within a range of 160 ° C.
  • Reference Example 11 (Production Example of Vulcanized Rubber Composition)
  • the vulcanized rubber composition obtained by the following first step and second step is suitable for carcass.
  • First step> (Procedure 1) Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Seisakusho), 70 parts by weight of commercially available natural rubber (TSR20), 30 parts by weight of styrene-butadiene copolymer rubber SBR # 1502 (manufactured by Sumitomo Chemical Co., Ltd.), N339 (Mitsubishi Chemical) 60 parts by weight, stearic acid 2 parts by weight, zinc oxide 5 parts by weight, process oil (“Diana Process PS32” by Idemitsu Kosan Co., Ltd.) 7 parts by weight within a range of 160 ° C.
  • a rubber composition is obtained by kneading at a rotation speed of a mixer of 50 rpm.
  • a rubber kneaded product is obtained by kneading 3 parts by weight of sulfur and 8 parts by weight of the antiaging agent for rubber of the present invention (1) obtained in Example 1.
  • ⁇ Second step> The rubber kneaded product obtained in the first step (procedure 2) is heat-treated at 145 ° C. to obtain a vulcanized rubber.
  • Reference Example 12 (Production Example of Vulcanized Rubber Composition)
  • the vulcanized rubber composition obtained by the following first step and second step is suitable for cap treads.
  • First step> (Procedure 1) Using a Banbury mixer (600 mL Laboplast Mill, manufactured by Toyo Seiki Seisakusho), 100 parts by weight of styrene / butadiene copolymer rubber SBR # 1500 (manufactured by JSR), silica (product name: “Ultrasil® VN3-G”) 78.4 parts by weight of Degussa), 6.4 parts by weight of carbon black (product name “N-339” manufactured by Mitsubishi Chemical), silane coupling agent (bis (3-triethoxysilylpropyl) tetrasulfide: product name 6.4 parts by weight of “Si-69” manufactured by Degussa Co., Ltd., 47.6 parts by weight of process oil (product name “NC-140” manufactured by Cosmo Oil Co., Ltd.
  • Reference Example 13 (Production Example of Vulcanized Rubber Composition)
  • SBR solution-polymerized SBR
  • SBR # 1500 styrene-butadiene copolymer rubber
  • Reference Example 14 (Production Example of Vulcanized Rubber Composition)
  • SBR # 1712 manufactured by JSR
  • SBR # 1500 manufactured by JSR
  • the amount of process oil used was changed to 21 parts by weight, and zinc oxide was charged.
  • a vulcanized rubber composition is obtained in the same manner as in Reference Example 12 except that the timing is changed to Procedure 2.
  • the resulting vulcanized rubber composition is suitable for cap treads.
  • the vulcanized rubber composition is the same as in Reference Examples 7-14. Things are obtained.
  • the durability of the antiaging effect of the antiaging substance for rubber contained therein is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Abstract

The present invention provides an anti-aging agent for rubbers, which comprises: mesoporous silica in which the pore volume of each mesopore is more than 0.81 cm3/g; and an anti-aging substance for rubbers which is supported on the mesoporous silica.

Description

ゴム用老化防止剤Anti-aging agent for rubber
 本発明は、ゴム用老化防止剤に関する。 The present invention relates to an anti-aging agent for rubber.
 特許文献1には、ゴム用老化防止物質であるN-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミンと、シリカと、を含む加硫ゴム組成物が記載されている。 Patent Document 1 describes a vulcanized rubber composition containing N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, which is an anti-aging material for rubber, and silica. .
特開2011-132471号公報JP 2011-132471 A
 従来の加硫ゴム組成物は、ゴム用老化防止物質自体をそのままの状態で含むものであり、その老化防止効果が、持続性の面において、必ずしも充分に満足できない場合があった。 The conventional vulcanized rubber composition contains the rubber anti-aging substance itself as it is, and its anti-aging effect may not always be sufficiently satisfactory in terms of sustainability.
 本発明は、以下の発明を含む。
1. メソ孔の細孔容積が0.81cm/gを超えるメソポーラスシリカと、
 前記メソポーラスシリカに担持されたゴム用老化防止物質と
を含有することを特徴とするゴム用老化防止剤(以下「本発明ゴム用老化防止剤」という場合がある。)。
2. ゴム用老化防止物質を、メソ孔の細孔容積が0.81cm/gを超えるメソポーラスシリカに担持して得られることを特徴とするゴム用老化防止剤。
3. メソ孔の細孔容積が0.84cm/g以上5.0cm/g以下であることを特徴とする1.又は2.記載のゴム用老化防止剤。
4. 固体NMR測定において、前記メソポーラスシリカに担持されたゴム用老化防止物質に含まれる13Cに基づくピークのケミカルシフトが、前記メソポーラスシリカに担持されていないゴム用老化防止物質に含まれる13Cに基づくピークのケミカルシフトと比較して異なることを特徴とする1.~3.のいずれか一つに記載のゴム用老化防止剤。
5. メソポーラスシリカのメソ孔の直径が、6nm以上50nm以下であることを特徴とする1.~4.のいずれか一つに記載のゴム用老化防止剤。
6. ゴム用老化防止物質が、式(I)で示される化合物であることを特徴とする1.~4.のいずれか一つに記載のゴム用老化防止剤。
The present invention includes the following inventions.
1. Mesoporous silica having a pore volume of mesopores exceeding 0.81 cm 3 / g;
A rubber anti-aging agent containing the rubber anti-aging substance supported on the mesoporous silica (hereinafter sometimes referred to as “anti-aging agent for rubber of the present invention”).
2. A rubber anti-aging agent obtained by supporting a rubber anti-aging material on mesoporous silica having a mesopore pore volume exceeding 0.81 cm 3 / g.
3. 1 pore volume of the mesopores is equal to or less than 0.84 cm 3 / g or more 5.0 cm 3 / g. Or 2. Antiaging agent for rubber of description.
4). In solid state NMR measurement, the peak chemical shift based on 13 C contained in the rubber anti-aging substance supported on the mesoporous silica is based on 13 C contained in the rubber anti-aging substance not supported on the mesoporous silica. 1. It is different from the chemical shift of the peak. ~ 3. The anti-aging agent for rubber | gum as described in any one of these.
5. The mesoporous silica has a mesopore diameter of 6 nm or more and 50 nm or less. ~ 4. The anti-aging agent for rubber | gum as described in any one of these.
6). 1. The rubber anti-aging substance is a compound represented by the formula (I): ~ 4. The anti-aging agent for rubber | gum as described in any one of these.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(I)中、Rは、水素原子又は炭素数1~13のアルキル基を表す。)
7. ゴム用老化防止物質10重量部に対して、前記メソポーラスシリカ0.1~100重量部を含有することを特徴とする1.~6.のいずれか一つに記載のゴム用老化防止剤。
(In the formula (I), R 1 represents a hydrogen atom or an alkyl group having 1 to 13 carbon atoms.)
7). The mesoporous silica is contained in an amount of 0.1 to 100 parts by weight with respect to 10 parts by weight of the rubber anti-aging material. ~ 6. The anti-aging agent for rubber | gum as described in any one of these.
 本発明ゴム用老化防止剤を含む加硫ゴム組成物では、その中に含まれるゴム用老化防止物質の老化防止効果の持続性が向上する。 In the vulcanized rubber composition containing the antiaging agent for rubber of the present invention, the durability of the antiaging effect of the antiaging substance for rubber contained therein is improved.
ゴム用老化防止物質の固体NMR測定の結果を示す図である。It is a figure which shows the result of the solid-state NMR measurement of the antiaging substance for rubber | gum. 実施例1で得られた本発明ゴム用老化防止剤(1)の固体NMR測定の結果を示す図である。2 is a diagram showing the results of solid state NMR measurement of the rubber anti-aging agent (1) of the present invention obtained in Example 1. FIG. 加硫ゴム組成物の中でのゴム用老化防止物質の移行量を測定するための方法を説明する図である。It is a figure explaining the method for measuring the transfer amount of the antiaging substance for rubber | gum in a vulcanized rubber composition.
<ゴム用老化防止物質>
 本発明におけるゴム用老化防止物質は、ゴム製品の老化を防ぎ、その寿命を長くする目的で配合される有機物質である。ゴム用老化防止物質は、1種のみを使用してもよく、2種以上を併用してもよい。
<Rubber aging prevention substances>
The anti-aging substance for rubber in the present invention is an organic substance blended for the purpose of preventing the aging of the rubber product and extending its life. Only one type of rubber anti-aging substance may be used, or two or more types may be used in combination.
 ゴム用老化防止物質としては、特に限定されないが、例えば、アミン系老化防止物質、アミン-ケトン系老化防止物質、フェノール系老化防止物質、イミダゾール系老化防止物質、硫黄系老化防止物質、リン系老化防止物質などが挙げられる。具体的には、日本ゴム協会編「ゴム工業便覧<第四版>」の第436頁~第443頁に記載されるもの、アニリンとアセトンとの反応生成物(TMDQ)、合成ワックス(パラフィンワックス等)、植物性ワックス等が挙げられる。 The anti-aging material for rubber is not particularly limited. For example, amine-based anti-aging material, amine-ketone-based anti-aging material, phenol-based anti-aging material, imidazole-based anti-aging material, sulfur-based anti-aging material, phosphorus-based anti-aging material Prevention substances and the like. Specifically, those described in pages 436 to 443 of “Rubber Industry Handbook <Fourth Edition>” edited by Japan Rubber Association, reaction products of aniline and acetone (TMDQ), synthetic wax (paraffin wax) Etc.), vegetable waxes and the like.
 ゴム用老化防止物質は、低分子量ほど加硫ゴム組成物中で移行しやすいが、本発明は、このような低分子量のゴム用老化防止物質であっても、その移行を抑制することができる。そのため本発明では、比較的低分子量(例えば、分子量が150~400程度)であるゴム用老化防止物質を使用することができる。 The anti-aging agent for rubber is more likely to migrate in the vulcanized rubber composition as the molecular weight is lower, but the present invention can suppress the migration even with such a low molecular weight anti-aging agent for rubber. . Therefore, in the present invention, an antiaging material for rubber having a relatively low molecular weight (for example, a molecular weight of about 150 to 400) can be used.
 ゴム用老化防止物質としては、アミン系老化防止物質が好ましい。アミン系老化防止物質としては、例えば、式(I)で示される化合物、式(II)で示される化合物又はそのポリマー等を挙げることができる。 As the rubber anti-aging substance, an amine-based anti-aging substance is preferable. Examples of the amine-based anti-aging substance include a compound represented by the formula (I), a compound represented by the formula (II), or a polymer thereof.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003

(式(I)中、Rは、水素原子又は炭素数1~13のアルキル基を表す。)

(In the formula (I), R 1 represents a hydrogen atom or an alkyl group having 1 to 13 carbon atoms.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(II)中、Rは、水素原子又は炭素数1~13のアルキル基を表す。Rは、水素原子又は炭素数1~13のアルコキシ基を表す。) (In the formula (II), R 2 represents a hydrogen atom or an alkyl group having 1 to 13 carbon atoms. R 3 represents a hydrogen atom or an alkoxy group having 1 to 13 carbon atoms.)
 炭素数1~13のアルキル基は、直鎖状又は分枝鎖状のいずれでもよく、好ましくは分枝鎖状である。その炭素数は、好ましくは1~10、より好ましくは2~8、さらに好ましくは3~8である。炭素数1~13のアルコキシ基は、直鎖状又は分枝鎖状のいずれでもよい。その炭素数は、好ましくは1~10、より好ましくは1~8、さらに好ましくは1~5である。 The alkyl group having 1 to 13 carbon atoms may be linear or branched, and is preferably branched. The number of carbon atoms is preferably 1 to 10, more preferably 2 to 8, and further preferably 3 to 8. The alkoxy group having 1 to 13 carbon atoms may be linear or branched. The number of carbon atoms is preferably 1 to 10, more preferably 1 to 8, and further preferably 1 to 5.
 Rは、好ましくは炭素数1~13のアルキル基、より好ましくは分枝鎖状の炭素数3~8のアルキル基であり、さらに好ましくはイソプロピル又は1,3-ジメチルブチルであり、特に好ましくは1,3-ジメチルブチルである。Rは、好ましくは水素原子である。Rは、好ましくは水素原子又は炭素数1~5のアルコキシ基であり、より好ましくは水素原子又はエトキシである。 R 1 is preferably an alkyl group having 1 to 13 carbon atoms, more preferably a branched alkyl group having 3 to 8 carbon atoms, still more preferably isopropyl or 1,3-dimethylbutyl, and particularly preferably Is 1,3-dimethylbutyl. R 2 is preferably a hydrogen atom. R 3 is preferably a hydrogen atom or an alkoxy group having 1 to 5 carbon atoms, more preferably a hydrogen atom or ethoxy.
 式(I)で示される化合物としては、例えば、N-イソプロピル-N’-フェニル-p-フェニレンジアミン(IPPD)、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン(6PPD)等を挙げることができる。式(II)で示される化合物としては、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン(ETMDQ)、2,2,4-トリメチル-1,2-ジヒドロキノリン等を挙げることができる。式(II)で示される化合物のポリマーとしては、例えば、ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)(松原産業社製「アンチオキシダントFR」)等を挙げることができる。これらの中では、式(I)で示される化合物が好ましく、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミンがより好ましく、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミンがさらに好ましい。 Examples of the compound represented by the formula (I) include N-isopropyl-N′-phenyl-p-phenylenediamine (IPPD) and N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine. (6PPD). Examples of the compound represented by the formula (II) include 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline (ETMDQ), 2,2,4-trimethyl-1,2-dihydroquinoline and the like. be able to. Examples of the polymer of the compound represented by the formula (II) include poly (2,2,4-trimethyl-1,2-dihydroquinoline) (“Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.). Of these, compounds represented by the formula (I) are preferred, and N-isopropyl-N′-phenyl-p-phenylenediamine and N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine are preferred. N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine is more preferable.
<メソ孔の細孔容積が0.81cm/gを超えるメソポーラスシリカ>
 メソポーラスシリカの組成式はSiO・nHOであり、シリカのCAS登録番号は7631-86-9である。ここでメソポーラスシリカとは、メソ孔を有するシリカを意味し、メソ孔とは、IUPACでは触媒分野において直径2nm以上50nm以下の細孔をいう。
<Mesoporous silica with a mesopore volume exceeding 0.81 cm 3 / g>
The composition formula of mesoporous silica is SiO 2 · nH 2 O, and the CAS registration number of silica is 7631-86-9. Here, mesoporous silica means silica having mesopores, and mesopores mean pores having a diameter of 2 nm or more and 50 nm or less in the catalyst field in IUPAC.
 メソポーラスシリカとしては、その表面に比較的大きなメソ孔を持つものが好ましい。メソポーラスシリカが有するメソ孔の直径は、好ましくは6nm以上50nm以下である。このメソ孔の直径は、後述する実施例に記載の条件での窒素吸着法(BJH法)により測定される孔の直径の平均値である。 As the mesoporous silica, those having relatively large mesopores on the surface are preferable. The mesopore diameter of the mesoporous silica is preferably 6 nm or more and 50 nm or less. The diameter of the mesopore is an average value of the diameters of the pores measured by the nitrogen adsorption method (BJH method) under the conditions described in the examples described later.
 本発明で使用するメソポーラスシリカのメソ孔の細孔容積は、0.81cm/gを超える。メソ孔の細孔容積は、好ましくは0.84cm/g以上5.0cm/g以下であり、より好ましくは、1.0cm/g以上5.0cm/g以下であり、特に好ましくは、1.3cm/g以上5.0cm/g以下である。このメソ孔の細孔容積は、後述する実施例に記載の条件での窒素吸着法(BJH法)により測定することができる。 The mesoporous silica used in the present invention has a mesopore volume exceeding 0.81 cm 3 / g. The pore volume of the mesopores is preferably not more than 0.84 cm 3 / g or more 5.0 cm 3 / g, more preferably not more than 1.0 cm 3 / g or more 5.0 cm 3 / g, particularly preferably Is 1.3 cm 3 / g or more and 5.0 cm 3 / g or less. The pore volume of the mesopores can be measured by a nitrogen adsorption method (BJH method) under the conditions described in Examples described later.
 メソポーラスシリカのBET比表面積は、好ましくは10m/g以上550m/g以下、より好ましくは20m/g以上500m/g以下、さらに好ましくは25m/g以上400m/g以下である。このBET比表面積は、後述する実施例に記載の方法によって測定することができる。 The BET specific surface area of mesoporous silica is preferably 10 m 2 / g or more and 550 m 2 / g or less, more preferably 20 m 2 / g or more and 500 m 2 / g or less, and further preferably 25 m 2 / g or more and 400 m 2 / g or less. . This BET specific surface area can be measured by the method described in Examples described later.
 メソ孔の細孔容積が0.81cm/gを超えるメソポーラスシリカの市販品としては、例えば富士シリシア製サイリシア310P、420、530、富士シリシア製サイロホービック100、507、702等が挙げられる。 Examples of commercially available mesoporous silica having a mesopore volume exceeding 0.81 cm 3 / g include Fuji Silysia Silicia 310P, 420, and 530, Fuji Silysia Silophobic 100, 507, and 702.
 本発明ゴム用老化防止剤では、ゴム用老化防止物質がメソポーラスシリカに担持されている。本発明ゴム用老化防止剤は、ゴム用老化防止物質がメソポーラスシリカのメソ孔内に担持されていることが好ましい。 In the rubber anti-aging agent of the present invention, a rubber anti-aging substance is supported on mesoporous silica. In the rubber anti-aging agent of the present invention, the rubber anti-aging substance is preferably supported in the mesopores of mesoporous silica.
 本発明ゴム用老化防止剤におけるメソポーラスシリカの含有量は、ゴム用老化防止物質10重量部に対して、例えば0.1~100重量部、好ましくは0.1~50重量部、より好ましくは0.1~30重量部である。 The content of mesoporous silica in the rubber anti-aging agent of the present invention is, for example, 0.1 to 100 parts by weight, preferably 0.1 to 50 parts by weight, more preferably 0 to 10 parts by weight of the rubber anti-aging substance. 1 to 30 parts by weight.
<本発明ゴム用老化防止剤の製造方法>
 本発明ゴム用老化防止剤の製造方法は、ゴム用老化防止物質をメソポーラスシリカに担持できる方法であれば特に限定されないが、例えば下記(1)の方法や、下記(2)の方法等を挙げることができる。
<Method for producing anti-aging agent for rubber of the present invention>
The method for producing the anti-aging agent for rubber of the present invention is not particularly limited as long as the anti-aging agent for rubber can be supported on mesoporous silica, and examples thereof include the following method (1) and the following method (2). be able to.
(1)ゴム用老化防止物質を溶媒に溶解させて溶液を得、該溶液とメソポーラスシリカとを混合して混合物を得る。或いはメソポーラスシリカを溶媒と混合してスラリー液を得、該スラリー液とゴム用老化防止物質の溶液とを混合して混合物を調製してもよい。次いで、該混合物から溶媒を除去して、本発明ゴム用老化防止剤を得る。得られた本発明ゴム用老化防止剤を、必要に応じて粉砕してもよい。ここで溶媒としては、ゴム用老化防止物質を溶解でき、且つ留去が可能であるものであれば、特に限定されないが、例えば、トルエン、キシレン、ヘキサン、ヘプタン等の炭化水素溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒、メタノール、エタノール、イソプロパノール等のアルコール溶媒等を挙げることができる。 (1) A rubber anti-aging substance is dissolved in a solvent to obtain a solution, and the solution and mesoporous silica are mixed to obtain a mixture. Alternatively, mesoporous silica may be mixed with a solvent to obtain a slurry, and the slurry may be mixed with a solution of an antiaging substance for rubber to prepare a mixture. Next, the solvent is removed from the mixture to obtain the rubber anti-aging agent of the present invention. You may grind | pulverize the obtained anti-aging agent for rubber | gum of this invention as needed. Here, the solvent is not particularly limited as long as it can dissolve the anti-aging substance for rubber and can be distilled off. For example, hydrocarbon solvents such as toluene, xylene, hexane, heptane, acetone, methyl ethyl ketone, etc. And ketone solvents such as methyl isobutyl ketone, and alcohol solvents such as methanol, ethanol and isopropanol.
(2)ゴム用老化防止物質を溶融して溶融液を得、該溶融液とメソポーラスシリカとを混合して混合物を得、該混合物を冷却して本発明ゴム用老化防止剤を得る。混合物の冷却方法に特に限定は無く、例えば、ブローによる強制空冷又は放冷などを採用し得る。冷却後に得られた本発明ゴム用老化防止剤を、必要に応じて粉砕してもよい。 (2) A rubber anti-aging material is melted to obtain a melt, the melt and mesoporous silica are mixed to obtain a mixture, and the mixture is cooled to obtain the rubber anti-aging agent of the present invention. There is no particular limitation on the method for cooling the mixture, and for example, forced air cooling by blowing or cooling can be employed. You may grind | pulverize the antiaging agent for rubber | gum of this invention obtained after cooling as needed.
 上記(1)の方法及び上記(2)の方法において、メソポーラスシリカの添加量としては、ゴム用老化防止物質10重量部に対して、例えば0.1~100重量部、好ましくは0.1~50重量部、より好ましくは0.1~30重量部である。 In the method (1) and the method (2), the amount of mesoporous silica added is, for example, 0.1 to 100 parts by weight, preferably 0.1 to 100 parts by weight with respect to 10 parts by weight of the rubber anti-aging substance. 50 parts by weight, more preferably 0.1 to 30 parts by weight.
 得られた本発明ゴム用老化防止剤において、ゴム用老化防止物質がメソポーラスシリカ(特にそのメソ孔内)に担持されていることは、例えば、固体NMR測定によって容易に確認することができる。具体的には例えば、ゴム用老化防止物質をメソポーラスシリカに担持する前後において、ゴム用老化防止物質に含まれる13Cに基づくピークのケミカルシフトの変化の有無を観測すればよい。
 ゴム用老化防止物質がメソポーラスシリカに担持されることにより、ゴム用老化防止物質の官能基とメソポーラスシリカの官能基との相互作用、及びゴム用老化防止物質がメソ孔内に担持されることでその立体構造に変化が生じ、その結果、ゴム用老化防止物質に含まれる13Cに基づくピークのケミカルシフトの変化が起きる。そして、該変化が存在することを固体NMR測定により確認すればよい。一方、ゴム用老化防止物質がメソポーラスシリカに担持されていなければ、ゴム用老化防止物質の官能基とメソポーラスシリカの官能基との相互作用が生ぜず、その結果、ゴム用老化防止物質に含まれる13Cに基づくピークのケミカルシフトの変化が起きない。そして、該変化が存在しないことを固体NMR測定により確認すればよい。
In the obtained anti-aging agent for rubber of the present invention, it can be easily confirmed, for example, by solid NMR measurement that the anti-aging material for rubber is supported on mesoporous silica (particularly in the mesopores). Specifically, for example, the presence or absence of a change in the chemical shift of the peak based on 13 C contained in the rubber anti-aging substance may be observed before and after the rubber anti-aging substance is supported on mesoporous silica.
By supporting the rubber anti-aging substance on the mesoporous silica, the interaction between the functional group of the rubber anti-aging substance and the functional group of the mesoporous silica and the rubber anti-aging substance are supported in the mesopores. A change occurs in the three-dimensional structure, and as a result, a change in the chemical shift of the peak based on 13 C contained in the anti-aging substance for rubber occurs. And what is necessary is just to confirm that this change exists by solid state NMR measurement. On the other hand, if the rubber anti-aging substance is not supported on the mesoporous silica, the interaction between the functional group of the rubber anti-aging substance and the functional group of the mesoporous silica does not occur, and as a result, it is included in the rubber anti-aging substance. No change in peak chemical shift based on 13 C occurs. And what is necessary is just to confirm by solid-state NMR measurement that this change does not exist.
<本発明ゴム用老化防止剤の利用>
 次に、本発明ゴム用老化防止剤とゴム成分とを含むゴム組成物を説明する。本発明ゴム用老化防止剤は、1種のみを使用してもよく、2種以上を併用してもよい。同様に、ゴム成分は、1種のみを使用してもよく、2種以上を併用してもよい。ゴム組成物は、本発明ゴム用老化防止剤とゴム成分とを混練して得られることが好ましい。混練は公知の手法で行なうことができる。ゴム組成物は、本発明ゴム用老化防止剤と使用予定の全量のゴム成分とを混練することによって製造してもよく、或いは本発明ゴム用老化防止剤と使用予定量の一部のゴム成分とを予備混練することによって、まずマスターバッチを製造し、このマスターバッチと残りのゴム成分とを混練することによって製造してもよい。なお、ゴム組成物がマスターバッチであってもよい。
 ゴム組成物は、更に、充填剤、酸化亜鉛、ステアリン酸、架橋剤、加硫促進剤等を含んでもよい。
<Use of anti-aging agent for rubber of the present invention>
Next, a rubber composition containing the antiaging agent for rubber of the present invention and a rubber component will be described. Only one type of anti-aging agent for rubber of the present invention may be used, or two or more types may be used in combination. Similarly, only 1 type may be used for a rubber component and it may use 2 or more types together. The rubber composition is preferably obtained by kneading the rubber anti-aging agent of the present invention and a rubber component. Kneading can be performed by a known method. The rubber composition may be produced by kneading the rubber anti-aging agent of the present invention and the total amount of rubber component to be used, or the rubber anti-aging agent of the present invention and a part of the rubber component to be used. May be produced by first kneading the master batch and the remaining rubber component. The rubber composition may be a master batch.
The rubber composition may further contain a filler, zinc oxide, stearic acid, a crosslinking agent, a vulcanization accelerator and the like.
 ゴム組成物中の本発明ゴム用老化防止剤の含有量は、ゴム成分100重量部に対して、例えば0.1~50重量部、好ましくは0.5~30重量部、より好ましくは1~20重量部である。
 ゴム組成物がマスターバッチである場合、ゴム組成物中の本発明ゴム用老化防止剤の含有量は、ゴム成分100重量部に対して、例えば1~990重量部、好ましくは1~900重量部、より好ましくは1~700重量部、特に好ましくは1~500重量部である。
The content of the antioxidant for rubber of the present invention in the rubber composition is, for example, 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 1 to 1 part by weight with respect to 100 parts by weight of the rubber component. 20 parts by weight.
When the rubber composition is a master batch, the content of the anti-aging agent for rubber of the present invention in the rubber composition is, for example, 1 to 990 parts by weight, preferably 1 to 900 parts by weight with respect to 100 parts by weight of the rubber component. More preferably, it is 1 to 700 parts by weight, particularly preferably 1 to 500 parts by weight.
 ゴム成分としては、例えば、
 天然ゴム及び変性天然ゴム(例えば、エポキシ化天然ゴム、脱蛋白天然ゴム等);
 ポリイソプレンゴム(IR)、スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、イソプレン・イソブチレン共重合ゴム(IIR)、エチレン・プロピレン-ジエン共重合ゴム(EPDM)、ハロゲン化ブチルゴム(HR)等の各種の合成ゴム;
を挙げることができる。
 ゴム成分は、高不飽和性であることが好ましく、天然ゴム、変性天然ゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴムがより好ましく、天然ゴムがさらに好ましい。また、上述の各種ゴムは併用してもよい。併用の例としては、天然ゴムとスチレン・ブタジエン共重合ゴムとの併用、天然ゴムとポリブタジエンゴムとの併用等が挙げられる。
As a rubber component, for example,
Natural rubber and modified natural rubber (eg, epoxidized natural rubber, deproteinized natural rubber, etc.);
Polyisoprene rubber (IR), styrene / butadiene copolymer rubber (SBR), polybutadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene-diene copolymer Various synthetic rubbers such as rubber (EPDM) and halogenated butyl rubber (HR);
Can be mentioned.
The rubber component is preferably highly unsaturated, and natural rubber, modified natural rubber, styrene / butadiene copolymer rubber, and polybutadiene rubber are more preferable, and natural rubber is more preferable. Moreover, you may use together the above-mentioned various rubber | gum. Examples of combined use include use of natural rubber and styrene / butadiene copolymer rubber, use of natural rubber and polybutadiene rubber, and the like.
 天然ゴムとしては、例えば、RSS#1、RSS#3、TSR20、SIR20等のグレードの天然ゴム等を挙げることができる。
 エポキシ化天然ゴムとしては、例えば、エポキシ化度10モル%~60モル%のもの(具体的には例えば、クンプーラン ガスリー社製ENR25、ENR50等)等を挙げることができる。
 脱蛋白天然ゴムとしては、例えば、総窒素含有率が0.3重量%以下である脱蛋白天然ゴム等を挙げることができる。
 その他の変性天然ゴムとしては、例えば、天然ゴムに予め4-ビニルピリジン、N,N-ジアルキルアミノエチルアクリレート(具体的には例えば、N,N-ジエチルアミノエチルアクリレート等)、2-ヒドロキシアクリレート等を反応させて得られる、極性基を含有する変性天然ゴム等を挙げることができる。
Examples of the natural rubber include grades of natural rubber such as RSS # 1, RSS # 3, TSR20, and SIR20.
Examples of the epoxidized natural rubber include those having a degree of epoxidation of 10 mol% to 60 mol% (specifically, for example, ENR25, ENR50, etc. manufactured by Kumpoulan Guthrie).
Examples of the deproteinized natural rubber include deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less.
Examples of other modified natural rubbers include, for example, 4-vinylpyridine, N, N-dialkylaminoethyl acrylate (specifically, for example, N, N-diethylaminoethyl acrylate), 2-hydroxy acrylate, etc. Examples thereof include a modified natural rubber containing a polar group obtained by reaction.
 スチレン・ブタジエン共重合ゴム(SBR)としては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の第210頁~第211頁に記載されている乳化重合SBR及び溶液重合SBR等を挙げることができる。 Examples of the styrene / butadiene copolymer rubber (SBR) include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Can be mentioned.
 トレッド用ゴムとしては、例えば、溶液重合SBRを好ましく挙げることができる。更には、例えば、日本ゼオン社製「Nipol(登録商標)NS116」等の4,4’-ビス-(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、旭化成社製「E10」、「E15」等のシラン変性溶液重合SBRの市販品、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(例えばトリアルコキシシラン等)及びアミノシラン化合物のいずれかを単独で用いて、又はスズ化合物、アルキルアクリルアミド化合物、アルコキシ基を有するシラン化合物等の異なった化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、又はそれら複数の元素を有する溶液重合SBR等をより好ましく挙げることができる。
 また、乳化重合SBR及び溶液重合SBRに重合した後、プロセスオイル、アロマオイル等のオイルを添加した油添SBRも、トレッド用ゴムとして好ましく挙げることができる。
As the rubber for tread, for example, solution polymerization SBR can be preferably mentioned. Further, for example, solution polymerization SBR in which molecular ends are modified using 4,4′-bis- (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd., “SL574” manufactured by JSR, etc. Polymerized SBR with molecular ends modified using a tin halide compound of No. 1, commercial products of silane-modified solution polymerized SBR such as “E10” and “E15” manufactured by Asahi Kasei Co., Ltd., lactam compounds, amide compounds, urea compounds, N, N -A dialkylacrylamide compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (for example, trialkoxysilane) and an aminosilane compound alone, or a tin compound, an alkylacrylamide compound, and a silane compound having an alkoxy group Using two or more different compounds such as More preferred examples include solution polymerization SBR having nitrogen, tin, silicon, or a plurality of these elements at the molecular terminals obtained by modifying the molecular terminals.
Further, oil-added SBR in which oil such as process oil and aroma oil is added after emulsion polymerization SBR and solution polymerization SBR can be preferably exemplified as a rubber for tread.
 ポリブタジエンゴム(BR)としては、例えば、シス1,4結合が90%以上の高シスBR、シス結合が35%前後の低シスBR等の溶液重合BR等を挙げることができる。好ましくは、例えば、高ビニル含量の低シスBR等が挙げられる。更には、例えば、日本ゼオン製「Nipol(登録商標)BR 1250H」等のスズ変性BR、4,4’-ビス-(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(トリアルコキシシラン化合物等)、アミノシラン化合物のいずれかを単独で用いて、又はスズ化合物、アルキルアクリルアミド化合物、アルコキシ基を有するシラン化合物等の異なった化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、又はそれら複数の元素を有する溶液重合BR等をより好ましく挙げることができる。 Examples of the polybutadiene rubber (BR) include solution polymerization BR such as a high cis BR having 90% or more of cis 1,4 bond and a low cis BR having a cis bond of around 35%. Preferably, for example, low cis BR having a high vinyl content can be used. Further, for example, tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon, 4,4′-bis- (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, An N, N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (trialkoxysilane compound, etc.), an aminosilane compound alone, or a tin compound, an alkylacrylamide compound, an alkoxy group More preferable is a solution polymerization BR or the like having any one of nitrogen, tin, silicon, or a plurality of these elements at the molecular ends obtained by modifying the molecular ends using two or more different compounds such as silane compounds having Can be mentioned.
 これらBRは、トレッド用ゴム又はサイドウォール用ゴムとして好ましく挙げることができる。尚、BRは、通常、SBR及び/又は天然ゴムとのブレンドで使用される。BRの比率としては、トレッド用ゴムの場合には、総ゴム重量に対して、例えば、SBR及び/又は天然ゴムが60~100重量%、BRが40~0重量%である。また、サイドウォール用ゴムの場合には、総ゴム重量に対して、例えば、SBR及び/又は天然ゴムが10~70重量%、BRが90~30重量%、好ましくは天然ゴムが40~60重量%、BRが60~40重量%である。変性SBRと非変性SBRとのブレンド、変性BRと非変性BRとのブレンドも好ましい。 These BRs can be preferably cited as tread rubber or sidewall rubber. In addition, BR is normally used by the blend with SBR and / or natural rubber. As for the ratio of BR, in the case of rubber for treads, for example, SBR and / or natural rubber is 60 to 100% by weight and BR is 40 to 0% by weight with respect to the total rubber weight. In the case of sidewall rubber, for example, SBR and / or natural rubber is 10 to 70% by weight, BR is 90 to 30% by weight, preferably natural rubber is 40 to 60% by weight based on the total rubber weight. %, BR is 60 to 40% by weight. A blend of modified SBR and non-modified SBR, and blend of modified BR and non-modified BR are also preferred.
 充填剤としては、例えば、ゴム分野で通常使用されているカーボンブラック、シリカ、タルク、クレイ、酸化チタン等を挙げることができる。好ましくは、例えば、カーボンブラック、シリカ等が挙げられる。より好ましくは、例えば、カーボンブラック等を挙げることができる。 Examples of the filler include carbon black, silica, talc, clay, titanium oxide and the like that are usually used in the rubber field. Preferably, carbon black, silica, etc. are mentioned, for example. More preferably, carbon black etc. can be mentioned, for example.
 カーボンブラックとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の第494頁に記載されるものを挙げることができる。好ましくは、例えば、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、FEF(Fast Extrusion Furnace)、MAF(Medium Abrasion Furnace)、GPF(General Purpose Furnace)、SRF(Semi-Reinforcing Furnace)等のカーボンブラックが挙げられる。 Examples of carbon black include those described on page 494 of the “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Preferably, for example, HAF (High-Abrasion-Furnace), SAF (Super-Abrasion-Furnace), ISAF (Intermediate-Surf), FEF (Fast-Extrusion-Furnace), MAF (Medium-Abrasion-Furnace), GPF (General-Purpose-Furnace) -SRF (SRF) Carbon black such as Reinforcing (Furnace).
 タイヤトレッド用ゴム組成物の場合には、CTAB(Cetyl Tri-methyl Ammonium Bromide)比表面積40m2/g~250m2/g、窒素吸着比表面積20m2/g~200m2/g、粒子径10nm~50nmのカーボンブラックを好ましく挙げることができる。より好ましくは、例えば、CTAB比表面積70m2/g~180m2/gであるカーボンブラック等が挙げられる。具体的には例えば、ASTMの規格において、N110、N220、N234、N299、N326、N330、N330T、N339、N343、N351等を挙げることができる。また、カーボンブラックの表面にシリカを0.1~50重量%付着させた表面処理カーボンブラックも好ましく挙げることができる。より好ましくは、例えば、カーボンブラックとシリカとの併用等、数種の充填剤の組合せが挙げられる。
 タイヤトレッド用ゴム組成物の場合には、例えば、カーボンブラック単独、カーボンブラックとシリカとの両方を好ましく挙げることができる。
In the case of a tire tread rubber composition, a CTAB (Cetyl Tri-methyl Ammonium Bromide) specific surface area of 40 m 2 / g to 250 m 2 / g, a nitrogen adsorption specific surface area of 20 m 2 / g to 200 m 2 / g, and a particle diameter of 10 nm to A preferred example is 50 nm carbon black. More preferable examples include carbon black having a CTAB specific surface area of 70 m 2 / g to 180 m 2 / g. Specifically, for example, in the ASTM standard, N110, N220, N234, N299, N326, N330, N330T, N339, N343, N351 and the like can be mentioned. A surface-treated carbon black in which 0.1 to 50% by weight of silica is attached to the surface of the carbon black can also be preferably exemplified. More preferably, for example, a combination of several kinds of fillers such as a combination of carbon black and silica is used.
In the case of the tire tread rubber composition, for example, carbon black alone and both carbon black and silica can be preferably exemplified.
 カーカス用ゴム組成物・サイドウォール用ゴム組成物の場合には、CTAB比表面積20m2/g~60m2/g、粒子径40nm~100nmのカーボンブラックを好ましく挙げることができる。具体的には例えば、ASTMの規格において、N330、N339、N343、N351、N550、N568、N582、N630、N642、N660、N662、N754、N762等を挙げることができる。 In the case of the rubber composition for carcass and the rubber composition for sidewall, carbon black having a CTAB specific surface area of 20 m 2 / g to 60 m 2 / g and a particle diameter of 40 nm to 100 nm can be preferably exemplified. Specifically, for example, in the ASTM standard, N330, N339, N343, N351, N550, N568, N582, N630, N642, N660, N662, N754, N762 and the like can be mentioned.
 充填剤として使用するシリカとしては、例えば、CTAB比表面積50m/g~180m/gのシリカ、窒素吸着比表面積50m2/g~300m2/gのシリカ等を挙げることができる。具体的には例えば、東ソー・シリカ社製「AQ」、「AQ-N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」、日本シリカ社製「ニップシール(登録商標)AQ」等の市販品を挙げることができる。また、例えば、pHが6~8であるシリカ;ナトリウムを0.2~1.5重量%含むシリカ;真円度が1~1.3の真球状シリカ;ジメチルシリコーンオイル等のシリコーンオイル、エトキシシリル基を含有する有機ケイ素化合物、エタノール、ポリエチレングリコール等のアルコールで表面処理したシリカ;二種類以上の異なった窒素吸着比表面積を有するシリカの混合物;等を配合することも好ましい。 Examples of the silica used as the filler include silica having a CTAB specific surface area of 50 m 2 / g to 180 m 2 / g, silica having a nitrogen adsorption specific surface area of 50 m 2 / g to 300 m 2 / g, and the like. Specifically, for example, “AQ” and “AQ-N” manufactured by Tosoh Silica Co., Ltd., “Ultra Gil (registered trademark) VN3”, “Ultra Gil (registered trademark) 360”, and “Ultra Gil (registered trademark)” manufactured by Degussa. 7000 ”,“ Zeosil (registered trademark) 115GR ”,“ Zeosil (registered trademark) 1115MP ”,“ Zeosil (registered trademark) 1205MP ”,“ Zeosil (registered trademark) Z85MP ”manufactured by Rhodia, (Registered trademark) AQ "and the like. Further, for example, silica having a pH of 6 to 8, silica containing 0.2 to 1.5% by weight of sodium, true spherical silica having a roundness of 1 to 1.3, silicone oil such as dimethyl silicone oil, ethoxy It is also preferable to blend an organosilicon compound containing a silyl group, silica surface-treated with an alcohol such as ethanol or polyethylene glycol; a mixture of two or more types of silica having different nitrogen adsorption specific surface areas; and the like.
 充填剤を使用する場合、その使用量は、特に限定されるものではないが、ゴム成分100重量部に対して、例えば5~120重量部、好ましくは5~100重量部、より好ましくは10~100重量部である。充填剤としてカーボンブラックのみを使用する場合には、カーボンブラックの使用量は、ゴム成分100重量部に対して、好ましくは30~80重量部である。充填剤としてカーボンブラックとシリカとを併用する場合には、カーボンブラックの使用量は、ゴム成分100重量部に対して、例えば5~60重量部、好ましくは5~50重量部である。シリカ/カーボンブラックの重量比としては、例えば、0.7/1~1/0.1の範囲を挙げることができる。 When the filler is used, the amount used is not particularly limited, but is 5 to 120 parts by weight, preferably 5 to 100 parts by weight, and more preferably 10 to 100 parts by weight with respect to 100 parts by weight of the rubber component. 100 parts by weight. When only carbon black is used as the filler, the amount of carbon black used is preferably 30 to 80 parts by weight with respect to 100 parts by weight of the rubber component. When carbon black and silica are used in combination as fillers, the amount of carbon black used is, for example, 5 to 60 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the rubber component. Examples of the weight ratio of silica / carbon black include a range of 0.7 / 1 to 1 / 0.1.
 充填剤としてシリカを用いる場合には、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si-75」)、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3-ジエトキシメチルシリルプロピル)ジスルフィド、オクタンチオ酸S-[3-(トリエトキシシリル)プロピル]エステル(「3-オクタノイルチオプロピルトリエトキシシラン」ともいう、ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)、オクタンチオ酸S-[3-(2-{3-[2-(3-メルカプトプロピル)-4,4,6-トリメチル[1,3,2]ジオキサシリナン-2-イルオキシ]-1,1-ジメチルブトキシ}-4,4,6-トリメチル[1,3,2]ジオキサシリナン-2-イル)プロピル]エステル、オクタンチオ酸S-[3-(2-{3-[2-(3-メルカプトプロピル)-4-メチル[1,3,2]ジオキサシリナン-2-イルオキシ]ブトキシ}-4-メチル[1,3,2]ジオキサシリナン-2-イル)プロピル]エステル、ウンデカンチオ酸S-[3-(2-{3-[2-(3-メルカプトプロピル)-4-メチル[1,3,2]ジオキサシリナン-2-イルオキシ]ブトキシ}-4-メチル[1,3,2]ジオキサシリナン-2-イル)プロピル]エステル、オクタンチオ酸S-[3-((3-ヒドロキシ-2-メチルプロポキシ){3-[{3-[(3-ヒドロキシ-2-メチルプロポキシ)(3-メルカプトプロピル)メチルシラニロキシ]-2-メチルプロポキシ}メチル(3-オクタノイルスルファニルプロピル)シラニロキシ]-2-メチルプロポキシ}メチルシラニル)プロピル]エステル、オクタンチオ酸S-[3-((3-ヒドロキシ-2-メチルプロポキシ){3-[{3-[(3-ヒドロキシ-2-メチルプロポキシ)(3-メルカプトプロピル)メチルシラニロキシ]-2-メチルプロポキシ}(3-メルカプトプロピル)メチルシラニロキシ]-2-メチルプロポキシ}メチルシラニル)プロピル]エステル、オクタンチオ酸S-[3-((3-ヒドロキシ-2-メチルプロポキシ){3-[{3-[ビス(3-ヒドロキシ-2-メチルプロポキシ)(3-メルカプトプロピル)シラニロキシ]-2-メチルプロポキシ}(3-メルカプトプロピル)(3-ヒドロキシ-2-メチルプロポキシ)シラニロキシ]-2-メチルプロポキシ}(3-ヒドロキシ-2-メチルプロポキシ)シラニル)プロピル]エステル、フェニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、(3-グリシドキシプロピル)トリエトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリエトキシシラン、3-イソシアナトプロピルトリメトキシシラン及び3-イソシアナトプロピルトリエトキシシランからなる群から選択される1種以上のシランカップリング剤等のシリカと結合可能な元素又は官能基(例えばアルコキシシリル基等)を有する化合物(以下「シリカと結合可能な化合物」という場合がある。)を添加することが好ましい。シリカと結合可能な化合物の中で、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si-75」)、3-オクタノイルチオプロピルトリエトキシシラン(ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)が好ましい。 When silica is used as the filler, bis (3-triethoxysilylpropyl) tetrasulfide (Degussa “Si-69”), bis (3-triethoxysilylpropyl) disulfide (Degussa “Si-75”) )), Bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester (“3-octanoylthio” “NXT silane” manufactured by General Electronic Silicons Co., Ltd.), octanethioic acid S- [3- (2- {3- [2- (3-mercaptopropyl) -4,4,6-trimethyl] [1,3,2] Dioxacillinan-2-yloxy] -1,1-dimethyl Toxi} -4,4,6-trimethyl [1,3,2] dioxacillinan-2-yl) propyl] ester, octanethioic acid S- [3- (2- {3- [2- (3-mercaptopropyl)- 4-methyl [1,3,2] dioxacillinan-2-yloxy] butoxy} -4-methyl [1,3,2] dioxacillinan-2-yl) propyl] ester, undecanethioic acid S- [3- (2- {3- [2- (3-Mercaptopropyl) -4-methyl [1,3,2] dioxacillinan-2-yloxy] butoxy} -4-methyl [1,3,2] dioxacillinan-2-yl) propyl] Esters, octanethioic acid S- [3-((3-hydroxy-2-methylpropoxy) {3-[{3-[(3-hydroxy-2-methylpropoxy) (3-mercaptopropi ) Methylsilanyloxy] -2-methylpropoxy} methyl (3-octanoylsulfanylpropyl) silanyloxy] -2-methylpropoxy} methylsilanyl) propyl] ester, octanethioic acid S- [3-((3-hydroxy-2- Methylpropoxy) {3-[{3-[(3-hydroxy-2-methylpropoxy) (3-mercaptopropyl) methylsilanyloxy] -2-methylpropoxy} (3-mercaptopropyl) methylsilanyloxy]- 2-methylpropoxy} methylsilanyl) propyl] ester, octanethioic acid S- [3-((3-hydroxy-2-methylpropoxy) {3-[{3- [bis (3-hydroxy-2-methylpropoxy) (3 -Mercaptopropyl) silanyloxy] -2-methylpropoxy} (3-merca Ptopropyl) (3-hydroxy-2-methylpropoxy) silanyloxy] -2-methylpropoxy} (3-hydroxy-2-methylpropoxy) silanyl) propyl] ester, phenyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane , Methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, vinyltrimethoxysilane, Vinyltriethoxysilane, vinyltri (methoxyethoxy) silane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, 3-methacryloxy Propyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (3-glycidoxypropyl) triethoxysilane, 2- (3,4-epoxycyclohexyl) ) One or more selected from the group consisting of ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane Bondable with silica such as silane coupling agent Motomata is sometimes referred to as the compound having a functional group (e.g., an alkoxysilyl group, etc.) (hereinafter "silica capable of binding compound." ) Is preferably added. Among compounds capable of binding to silica, bis (3-triethoxysilylpropyl) tetrasulfide (“Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (“Si-75 manufactured by Degussa) “), 3-octanoylthiopropyltriethoxysilane (“ NXT silane ”manufactured by General Electronic Silicones) is preferred.
 シリカと結合可能な化合物の添加時期は特に限定されないが、シリカと同時期にゴムに配合することがよい。その配合量としては、シリカ100重量部に対して、例えば2~10重量部、好ましくは7~9重量部である。 The addition timing of the compound capable of binding to silica is not particularly limited, but it is preferable to add to the rubber at the same time as silica. The blending amount is, for example, 2 to 10 parts by weight, preferably 7 to 9 parts by weight with respect to 100 parts by weight of silica.
 シリカと結合可能な化合物をゴムに配合する際の配合温度としては、例えば、80℃~200℃を挙げることができる。好ましくは、例えば、110℃~180℃が挙げられる。 Examples of the compounding temperature when compounding a compound capable of binding to silica with rubber include 80 ° C. to 200 ° C., for example. Preferably, for example, 110 ° C. to 180 ° C. may be mentioned.
 尚、充填剤としてシリカを用いる場合には、例えば、シリカ及びシリカと結合可能な化合物に加えて、エタノール、ブタノール、オクタノール等の1価アルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ペンタエリスリトール、ポリエーテルポリオール等の多価アルコール;N-アルキルアミン;アミノ酸;分子末端がカルボキシル変性又はアミン変性された液状ポリブタジエン;等を配合してもよい。 When silica is used as the filler, for example, in addition to silica and a compound capable of binding to silica, monohydric alcohols such as ethanol, butanol and octanol; ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene Polyhydric alcohols such as glycol, pentaerythritol, and polyether polyols; N-alkylamines; amino acids; liquid polybutadienes whose molecular ends are carboxyl-modified or amine-modified;
 酸化亜鉛を使用する場合、その使用量は、ゴム成分100重量部に対して、例えば1~15重量部、好ましくは1~8重量部である。 When zinc oxide is used, the amount used is, for example, 1 to 15 parts by weight, preferably 1 to 8 parts by weight with respect to 100 parts by weight of the rubber component.
 ステアリン酸を使用する場合、その使用量は、ゴム成分100重量部に対して、例えば0.5~10重量部、好ましくは1~5重量部である。 When stearic acid is used, the amount used is, for example, 0.5 to 10 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the rubber component.
 架橋剤としては、例えば、硫黄等を挙げることができる。硫黄としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄等を挙げることができる。これらの中で、粉末硫黄が好ましい。また、加硫ゴム組成物をベルト用部材等の硫黄量が多いタイヤ部材に用いる場合には、例えば、不溶性硫黄が好ましい。尚、上記の硫黄には加硫促進剤は含まれないものとする。硫黄の使用量は、ゴム成分100重量部に対して、例えば0.3~5重量部、好ましくは0.5~3重量部である。 Examples of the crosslinking agent include sulfur. Examples of sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Of these, powdered sulfur is preferred. Further, when the vulcanized rubber composition is used for a tire member having a large amount of sulfur such as a belt member, for example, insoluble sulfur is preferable. Note that the sulfur does not contain a vulcanization accelerator. The amount of sulfur used is, for example, 0.3 to 5 parts by weight, preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the rubber component.
 加硫促進剤としては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の第412頁~第413頁に記載されるチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤等を挙げることができる。 Examples of the vulcanization accelerator include thiazole vulcanization accelerators and sulfenamide vulcanization accelerators described in pages 412 to 413 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. And guanidine vulcanization accelerators.
 具体的には例えば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)、2-メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)等を挙げることができる。また、公知の加硫剤であるモルフォリンジスルフィドを用いることもできる。 Specifically, for example, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2- Examples include benzothiazolylsulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS), and diphenylguanidine (DPG). Also, morpholine disulfide, which is a known vulcanizing agent, can be used.
 充填剤としてカーボンブラックを用いる場合には、例えば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)、ジベンゾチアジルジスルフィド(MBTS)のいずれかとジフェニルグアニジン(DPG)とを併用することが好ましい。 When carbon black is used as the filler, for example, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N It is preferable to use either dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG).
 充填剤としてシリカとカーボンブラックとを併用する場合には、例えば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)、ジベンゾチアジルジスルフィド(MBTS)のいずれかとジフェニルグアニジン(DPG)とを併用することが好ましい。 When silica and carbon black are used in combination as fillers, for example, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS) N, N-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) is preferably used in combination with diphenylguanidine (DPG).
 硫黄と加硫促進剤との重量比は特に制限されないが、例えば、硫黄/加硫促進剤=2/1~1/2を挙げることができる。
 天然ゴムを主とするゴム部材において耐熱性を向上させる方法である硫黄/加硫促進剤の重量比を1以下にするEV加硫は、耐熱性向上が必要な用途において好ましく用いられる。
The weight ratio of sulfur and vulcanization accelerator is not particularly limited, and examples thereof include sulfur / vulcanization accelerator = 2/1 to 1/2.
EV vulcanization in which the weight ratio of sulfur / vulcanization accelerator is 1 or less, which is a method for improving heat resistance in a rubber member mainly composed of natural rubber, is preferably used in applications where heat resistance needs to be improved.
 その他、ゴム分野で通常用いられている各種の配合剤を配合してもよい。配合剤としては、例えば、オイル;ステアリン酸等の脂肪酸類;日塗化学社製クマロン樹脂G-90(軟化点80℃~100℃)、神戸油化学工業社製プロセスレジンAC8(軟化点95℃)等のクマロン・インデン樹脂;テルペン樹脂、テルペン・フェノール樹脂、芳香族変性テルペン樹脂等のテルペン系樹脂;三菱ガス化学社製「ニカノール(登録商標)HP-100」(軟化点105~125℃)等のキシレン・ホルムアルデヒド樹脂;荒川化学社製「エステルガム」シリーズ、「ネオトール」シリーズ等のロジン誘導体;水素添加ロジン誘導体;ノボラック型アルキルフェノール樹脂;レゾール型アルキルフェノール樹脂;C5系石油樹脂;液状ポリブタジエン;を挙げることができる。 In addition, various compounding agents usually used in the rubber field may be blended. Compounding agents include, for example, oils; fatty acids such as stearic acid; Coumarone resin G-90 (softening point 80 ° C. to 100 ° C.) manufactured by Nikkaku Chemical, and process resin AC8 (softening point 95 ° C.) manufactured by Kobe Oil Chemical Co., Ltd. ), Etc .; Terpene resins such as terpene resin, terpene / phenol resin, aromatic modified terpene resin; “Nikanol (registered trademark) HP-100” manufactured by Mitsubishi Gas Chemical Co., Ltd. (softening point 105 to 125 ° C.) Xylene / formaldehyde resins such as “Ester gum” series and “Neotor” series manufactured by Arakawa Chemical Co., Ltd .; Hydrogenated rosin derivatives; Novolac alkylphenol resins; Resole alkylphenol resins; C5 petroleum resins; Liquid polybutadienes; Can be mentioned.
 上記のオイルとしては、例えば、プロセスオイル、植物油脂等を挙げることができる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル等を挙げることができる。 Examples of the oil include process oil and vegetable oil. Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
<本発明ゴム用老化防止剤を含む加硫ゴム組成物>
 本発明ゴム用老化防止剤を含む加硫ゴム組成物は、通常、本発明ゴム用老化防止剤とゴム成分と架橋剤とを混練して得られるゴム組成物を熱処理して得られる。熱処理における温度条件としては、例えば、120℃~180℃を挙げることができる。熱処理は、通常、常圧又は加圧下で行えばよい。
<Vulcanized rubber composition containing anti-aging agent for rubber of the present invention>
The vulcanized rubber composition containing the antiaging agent for rubber of the present invention is usually obtained by heat-treating a rubber composition obtained by kneading the antiaging agent for rubber of the present invention, a rubber component and a crosslinking agent. Examples of temperature conditions in the heat treatment include 120 ° C. to 180 ° C. The heat treatment may be usually performed at normal pressure or under pressure.
 本発明ゴム用老化防止剤を含む加硫ゴム組成物は、タイヤ用として好適に用いられる。タイヤとしては、例えば、空気入りタイヤ、ソリッドタイヤ等を挙げることができる。
 また、本発明ゴム用老化防止剤を含む加硫ゴム組成物は、タイヤを構成する各部材(例えば、本発明ゴム用老化防止剤を含む加硫ゴム組成物で被覆されたスチールコードを含むタイヤ用ベルト、本発明ゴム用老化防止剤を含む加硫ゴム組成物で被覆されたカーカス繊維コードを含むタイヤ用カーカス、本発明ゴム用老化防止剤を含む加硫ゴム組成物を含むタイヤ用サイドウォール、タイヤ用インナーライナー、タイヤ用キャップトレッド又はタイヤ用アンダートレッド)を製造するために好適に用いられる。
The vulcanized rubber composition containing the rubber anti-aging agent of the present invention is suitably used for tires. Examples of the tire include a pneumatic tire and a solid tire.
Further, the vulcanized rubber composition containing the rubber anti-aging agent of the present invention is a tire comprising a steel cord coated with each member constituting the tire (for example, a vulcanized rubber composition containing the rubber anti-aging agent of the present invention). Sidewall for tires comprising a belt for tires, a carcass for tires containing a carcass fiber cord coated with a vulcanized rubber composition containing an antioxidant for rubber of the present invention, and a vulcanized rubber composition containing an antioxidant for rubber of the present invention , Tire inner liner, tire cap tread or tire under tread).
 本発明ゴム用老化防止剤を含む加硫ゴム組成物は、タイヤ等のゴム材料の長寿命化を図ることができる。また、該加硫ゴム組成物は、上記のタイヤ用途のみならず、エンジンマウント、ストラットマウント、ブッシュ、エグゾーストハンガー等の自動車用防振ゴムとしても使用できる。 The vulcanized rubber composition containing the antiaging agent for rubber of the present invention can extend the life of rubber materials such as tires. Further, the vulcanized rubber composition can be used not only for the above-mentioned tire use but also as an anti-vibration rubber for automobiles such as an engine mount, a strut mount, a bush, and an exhaust hanger.
 以下、実施例、参考例及び比較例等を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
<ゴム用老化防止物質>
A1:住友化学社製 アンチゲン6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
<メソポーラスシリカ>
B1:富士シリシア社製 サイリシア310P
B2:富士シリシア社製 サイリシア420
B3:富士シリシア社製 サイリシア530
X1:鈴木油脂社製   ゴッドボールB-6C
X2:富士シリシア社製 サイリシア710
X3:富士シリシア社製 サイリシア730
EXAMPLES Hereinafter, although an Example, a reference example, a comparative example, etc. are given and this invention is demonstrated concretely, this invention is not limited to these.
<Rubber aging prevention substances>
A1: Antigen 6C (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd.
<Mesoporous silica>
B1: Silicia 310P manufactured by Fuji Silysia
B2: Silicia 420 manufactured by Fuji Silysia
B3: Silicia 530 manufactured by Fuji Silysia
X1: God ball B-6C made by Suzuki Yushi Co., Ltd.
X2: Silicia 710 manufactured by Fuji Silysia
X3: Silicia 730 manufactured by Fuji Silysia
実施例1 (本発明ゴム用老化防止剤の製造例)
 500mLビーカーにメソポーラスシリカ(B1)20gを仕込み、これにメタノール200mLを添加し、スラリー液とする。一方、100mL三角フラスコに、ゴム用老化防止物質(A1)20gを仕込み、これにメタノール50mLを添加しメタノール溶液を得た。先に調製しておいたシリカゲルスラリー液のビーカーに、前記ゴム用老化防止物質(A1)のメタノール溶液を加え、更に前記メタノール溶液が入った100mL三角フラスコを20mLのメタノールで洗浄して生じた洗浄液も加えることにより、混合物を得た。得られた混合物を25℃、大気下で1日間攪拌した。攪拌終了後、得られた混合物をエバポレーターにより乾燥することにより、灰色の固体として本発明ゴム用老化防止剤(1)を得た。
Example 1 (Production Example of Anti-aging Agent for Rubber of the Present Invention)
A 500 mL beaker is charged with 20 g of mesoporous silica (B1), and 200 mL of methanol is added thereto to form a slurry liquid. On the other hand, 20 g of rubber anti-aging substance (A1) was charged into a 100 mL Erlenmeyer flask, and 50 mL of methanol was added thereto to obtain a methanol solution. A washing solution produced by adding a methanol solution of the rubber anti-aging substance (A1) to a silica gel slurry beaker prepared in advance and washing the 100 mL Erlenmeyer flask containing the methanol solution with 20 mL of methanol. Was added to obtain a mixture. The resulting mixture was stirred at 25 ° C. under air for 1 day. After the stirring was completed, the resulting mixture was dried by an evaporator to obtain an antiaging agent for rubber of the present invention (1) as a gray solid.
実施例2 (本発明ゴム用老化防止剤の製造例)
 メソポーラスシリカ(B1)をメソポーラスシリカ(B2)に変更したこと以外は実施例1と同様にして、本発明ゴム用老化防止剤(2)を得た。
Example 2 (Production Example of Anti-aging Agent for Rubber of the Present Invention)
An anti-aging agent (2) for rubber of the present invention was obtained in the same manner as in Example 1 except that the mesoporous silica (B1) was changed to the mesoporous silica (B2).
実施例3 (本発明ゴム用老化防止剤の製造例)
 メソポーラスシリカ(B1)をメソポーラスシリカ(B3)に変更したこと以外は実施例1と同様にして、本発明ゴム用老化防止剤(3)を得た。
Example 3 (Production example of the anti-aging agent for rubber of the present invention)
The rubber anti-aging agent (3) of the present invention was obtained in the same manner as in Example 1 except that the mesoporous silica (B1) was changed to the mesoporous silica (B3).
比較例1 (本発明の範囲外のゴム用老化防止剤の製造例)
 メソポーラスシリカ(B1)をメソポーラスシリカ(X1)に変更したこと以外は実施例1と同様にして、本発明の範囲外のゴム用老化防止剤(以下「(X1)担持ゴム用老化防止剤」と記載する)を得た。
Comparative Example 1 (Production example of rubber anti-aging agent outside the scope of the present invention)
Except that the mesoporous silica (B1) was changed to the mesoporous silica (X1), in the same manner as in Example 1, a rubber anti-aging agent (hereinafter referred to as “(X1) supported rubber anti-aging agent” outside the scope of the present invention. Described).
参考例1 (本発明の範囲外のゴム用老化防止剤の製造例)
 メソポーラスシリカ(B1)をメソポーラスシリカ(X2)に変更したこと以外は実施例1と同様にして、本発明の範囲外のゴム用老化防止剤(以下「(X2)担持ゴム用老化防止剤」と記載する)を得た。
Reference Example 1 (Production example of rubber anti-aging agent outside the scope of the present invention)
Except that the mesoporous silica (B1) was changed to the mesoporous silica (X2), in the same manner as in Example 1, a rubber anti-aging agent (hereinafter referred to as “(X2) supported rubber anti-aging agent” outside the scope of the present invention. Described).
参考例2 (本発明の範囲外のゴム用老化防止剤の製造例)
 メソポーラスシリカ(B1)をメソポーラスシリカ(X3)に変更したこと以外は実施例1と同様にして、本発明の範囲外のゴム用老化防止剤(以下「(X3)担持ゴム用老化防止剤」と記載する)を得た。
Reference Example 2 (Production example of rubber anti-aging agent outside the scope of the present invention)
Except that the mesoporous silica (B1) is changed to the mesoporous silica (X3), the rubber anti-aging agent (hereinafter referred to as “(X3) supported rubber anti-aging agent” outside the scope of the present invention is the same as in Example 1. Described).
 実施例1~3で使用したメソポーラスシリカ(B1)~(B3)、並びに比較例1、参考例1及び2で使用したメソポーラスシリカ(X1)~(X3)のメソ孔の直径及び細孔容積、並びにこれらのBET比表面積の測定を下記条件で行った。結果を表1に示す。 Mesoporous silicas (B1) to (B3) used in Examples 1 to 3 and mesoporous silicas (X1) to (X3) used in Comparative Example 1 and Reference Examples 1 and 2, respectively, These BET specific surface areas were measured under the following conditions. The results are shown in Table 1.
[メソポーラスシリカのBET比表面積、メソ孔の直径及び細孔容積の測定条件]
測定装置:BELSORP-mini(日本BEL(株)製)
前処理装置:BELPREP-vacII(日本BEL(株)製)
試験方法:窒素吸着法
前処理方法:120℃で8時間、真空脱気を行う
測定方法:定容法を用いて、窒素による吸着脱離等温線を測定
吸着温度:77K
吸着質:窒素
飽和蒸気圧:実測
吸着質断面積:0.162nm
平衡待ち時間:500sec
比表面積:BET法により算出
メソ孔の直径:BJH法により算出
メソ孔の細孔容積:BJH法により算出
[Measurement conditions of BET specific surface area, mesopore diameter and pore volume of mesoporous silica]
Measuring device: BELSORP-mini (manufactured by Nippon BEL Co., Ltd.)
Pretreatment device: BELPREP-vacII (manufactured by Nippon BEL Co., Ltd.)
Test method: Nitrogen adsorption method Pretreatment method: Vacuum degassing at 120 ° C. for 8 hours Measurement method: Measurement of adsorption / desorption isotherm by nitrogen using constant volume method Adsorption temperature: 77K
Adsorbate: Nitrogen saturated vapor pressure: Measured adsorbate cross section: 0.162 nm 2
Equilibrium waiting time: 500 sec
Specific surface area: calculated by BET method Mesopore diameter: calculated by BJH method Mesopore pore volume: calculated by BJH method
 なお、BET比表面積は、上記条件で得られた測定結果をBET法による比表面積解析にかけて算出した。また、上記の平衡待ち時間とは、吸着平衡状態に達してからの待ち時間である。 The BET specific surface area was calculated by subjecting the measurement results obtained under the above conditions to a specific surface area analysis by the BET method. Moreover, said equilibrium waiting time is a waiting time after reaching an adsorption equilibrium state.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<固体NMR測定によるメソポーラスシリカへのゴム用老化防止物質の担持確認>
 実施例1で得られた本発明ゴム用老化防止剤(1)を下記条件での固体NMR測定を行った。その結果を図1及び図2に示す。
 メソポーラスシリカへのゴム用老化防止物質の担持前後を比較すると、ゴム用老化防止物質に含まれる13Cに基づくピークのケミカルシフトの変化が観測されたことから、メソポーラスシリカへのゴム用老化防止物質の担持が確認できた。
<Confirmation of loading of rubber anti-aging agent on mesoporous silica by solid state NMR measurement>
The antiaging agent for rubber of the present invention (1) obtained in Example 1 was subjected to solid state NMR measurement under the following conditions. The results are shown in FIGS.
Comparison of before and after loading of rubber anti-aging material on mesoporous silica showed a change in the chemical shift of the peak based on 13 C contained in rubber anti-aging material, so that rubber anti-aging material on mesoporous silica was observed. Was confirmed.
[固体NMR測定条件]
装置:ECA400[日本電子(株)製]
MAS:6kHz
測定:13C CPMAS
contact time:2ms
積算:10000回
[Solid state NMR measurement conditions]
Device: ECA400 [manufactured by JEOL Ltd.]
MAS: 6kHz
Measurement: 13 C CPMAS
contact time: 2ms
Integration: 10,000 times
参考例3 (基本ゴム組成物の製造例)
 10Lのニーダーに市販の天然ゴム(製品名:SMR-CV60)とブタジエンゴム(製品名:JSR BR01、JSR株式会社製)との両者をそれぞれ50重量部投入し、2分間混練した。得られた混練物に、表2に示す天然ゴム及びブタジエンゴム以外の材料を加えた後、更に10分間混練することにより、基本ゴム組成物を得た。尚、混練機からのゴム組成物の排出温度は95℃であった。
Reference Example 3 (Production Example of Basic Rubber Composition)
A 10-liter kneader was charged with 50 parts by weight of each of commercially available natural rubber (product name: SMR-CV60) and butadiene rubber (product name: JSR BR01, manufactured by JSR Corporation) and kneaded for 2 minutes. After adding materials other than natural rubber and butadiene rubber shown in Table 2 to the obtained kneaded material, the mixture was further kneaded for 10 minutes to obtain a basic rubber composition. The discharge temperature of the rubber composition from the kneader was 95 ° C.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
比較例2 (本発明ゴム用老化防止剤を含まない加硫ゴム組成物の製造例)
 参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、ゴム用老化防止物質とメソポーラスシリカとの両者を含まない加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
 次に、参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部と、ゴム用老化防止物質(A1)3重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、ゴム用老化防止物質を含み、メソポーラスシリカを含まない加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
Comparative Example 2 (Production Example of Vulcanized Rubber Composition not Containing Antiaging Agent for Rubber of the Present Invention)
163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 A rubber composition was obtained by kneading parts by weight and 1.5 parts by weight of sulfur with an open roll machine having a roll set temperature of 60 ° C. The resulting rubber composition was heat-press molded at 145 ° C. to obtain a vulcanized rubber composition (width 15.5 cm, length 16.0 cm, thickness containing neither an antiaging agent for rubber nor mesoporous silica) 2 mm sheet shape) was obtained. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
Next, 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) A rubber composition was obtained by kneading 0.8 parts by weight, 1.5 parts by weight of sulfur, and 3 parts by weight of an anti-aging agent for rubber (A1) with an open roll machine having a roll set temperature of 60 ° C. . The resulting rubber composition was heat-press molded at 145 ° C. to give a vulcanized rubber composition containing a rubber anti-aging substance and no mesoporous silica (width 15.5 cm, length 16.0 cm, thickness 2 mm). Sheet shape). Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
参考例4 (ゴム用老化防止物質の移行量測定方法)
 比較例2で得られた二つの加硫ゴム組成物を用いて、ゴム用老化防止物質の移行量を測定した。
 ゴム用老化防止物質とメソポーラスシリカとの両者を含まない加硫ゴム組成物から製造されるブランク用シート3枚と、ゴム用老化防止物質を含み、メソポーラスシリカを含まない加硫ゴム組成物から製造される測定用シート3枚とについて、各シートの初期重量を測定した。
 図3は、加硫ゴム組成物の中でのゴム用老化防止物質の移行量を測定するための方法を説明する図である。重量測定後の6枚のシート(ゴム用老化防止物質を含む測定用シート1~3、ゴム用老化防止物質を含まないブランク用シート4~6)を積層した後、該積層物の全体をアルミホイル7で包み、更にその上からアルミラミネート8で包んだ。このようにして得られたアルミホイル7及びアルミラミネート8梱包体の上に、約3kgの錘9を載せた。
 錘が載せられた梱包体を25℃の恒温室内に6日間放置した後、アルミホイル及びアルミラミネート梱包を開封して各シートを取り出し、そして各シートの重量を測定した。
 ゴム用老化防止物質の移行量はブランク用シートの初期重量からの重量変化とした。尚、別途、各シートの加硫ゴム組成物からゴム用老化防止物質を抽出・定量した結果、前記の重量変化はゴム用老化防止物質の移行によるものであることが確認された。
Reference Example 4 (Method for measuring the migration amount of anti-aging substances for rubber)
Using the two vulcanized rubber compositions obtained in Comparative Example 2, the amount of migration of the rubber anti-aging substance was measured.
Three blank sheets manufactured from a vulcanized rubber composition that does not contain both an antioxidant for rubber and mesoporous silica, and a vulcanized rubber composition that contains an antioxidant for rubber and does not contain mesoporous silica The initial weight of each sheet was measured for three measurement sheets to be measured.
FIG. 3 is a diagram for explaining a method for measuring the amount of migration of the rubber anti-aging substance in the vulcanized rubber composition. After stacking the 6 sheets after the weight measurement (measurement sheets 1 to 3 containing a rubber anti-aging substance, and blank sheets 4 to 6 not containing a rubber anti-aging substance), the entire laminate was made of aluminum. Wrapped with foil 7, and then wrapped with aluminum laminate 8 from above. About 3 kg of weights 9 were placed on the aluminum foil 7 and the aluminum laminate 8 package thus obtained.
The package on which the weight was placed was left in a thermostatic chamber at 25 ° C. for 6 days, then the aluminum foil and the aluminum laminate package were opened, each sheet was taken out, and the weight of each sheet was measured.
The amount of migration of the rubber anti-aging substance was a change in weight from the initial weight of the blank sheet. Separately, as a result of extracting and quantifying the anti-aging agent for rubber from the vulcanized rubber composition of each sheet, it was confirmed that the weight change was caused by the migration of the anti-aging agent for rubber.
実施例4
(本発明ゴム用老化防止剤を含む加硫ゴム組成物の製造例)
 参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部と、実施例1で得られた本発明ゴム用老化防止剤(1)6重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、本発明ゴム用老化防止剤を含む加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
Example 4
(Production Example of Vulcanized Rubber Composition Containing Antiaging Agent for Rubber of the Present Invention)
163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading, by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for rubber of the present invention (1) obtained in Example 1 with an open roll machine having a roll set temperature of 60 ° C. A rubber composition was obtained. The obtained rubber composition is heated and press-molded at 145 ° C., so that a vulcanized rubber composition containing the antiaging agent for rubber of the present invention (a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm). Got. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
(ゴム用老化防止物質を含まない加硫ゴム組成物の製造例)
 一方、参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、ゴム用老化防止物質を含まない加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
(Production example of vulcanized rubber composition not containing rubber anti-aging substance)
On the other hand, 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0 A rubber composition was obtained by kneading 0.8 parts by weight and 1.5 parts by weight of sulfur with an open roll machine having a roll set temperature of 60 ° C. The resulting rubber composition was heated and press-molded at 145 ° C. to obtain a vulcanized rubber composition (width 15.5 cm, length 16.0 cm, sheet thickness 2 mm) containing no rubber anti-aging substance. Obtained. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
 本発明ゴム用老化防止剤を含む加硫ゴム組成物、及びゴム用老化防止物質を含まない加硫ゴム組成物を用いて、参考例4と同様にしてゴム用老化防止物質の移行量を測定した。 Using the vulcanized rubber composition containing the rubber anti-aging agent and the vulcanized rubber composition not containing the rubber anti-aging substance, the amount of migration of the rubber anti-aging substance was measured in the same manner as in Reference Example 4. did.
実施例5
(本発明ゴム用老化防止剤を含む加硫ゴム組成物の製造例)
 参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部と、実施例2で得られた本発明ゴム用老化防止剤(2)6重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、本発明ゴム用老化防止剤を含む加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
Example 5
(Production Example of Vulcanized Rubber Composition Containing Antiaging Agent for Rubber of the Present Invention)
163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading, by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for rubber of the present invention (2) obtained in Example 2 with an open roll machine having a roll set temperature of 60 ° C. A rubber composition was obtained. The obtained rubber composition is heated and press-molded at 145 ° C., so that a vulcanized rubber composition containing the antiaging agent for rubber of the present invention (a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm). Got. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
(ゴム用老化防止物質を含まない加硫ゴム組成物の製造例)
 一方、参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、ゴム用老化防止物質を含まない加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
(Production example of vulcanized rubber composition not containing rubber anti-aging substance)
On the other hand, 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0 A rubber composition was obtained by kneading 0.8 parts by weight and 1.5 parts by weight of sulfur with an open roll machine having a roll set temperature of 60 ° C. The resulting rubber composition was heated and press-molded at 145 ° C. to obtain a vulcanized rubber composition (width 15.5 cm, length 16.0 cm, sheet thickness 2 mm) containing no rubber anti-aging substance. Obtained. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
 本発明ゴム用老化防止剤を含む加硫ゴム組成物、及びゴム用老化防止物質を含まない加硫ゴム組成物を用いて、参考例4と同様にしてゴム用老化防止物質の移行量を測定した。 Using the vulcanized rubber composition containing the rubber anti-aging agent and the vulcanized rubber composition not containing the rubber anti-aging substance, the amount of migration of the rubber anti-aging substance was measured in the same manner as in Reference Example 4. did.
実施例6
(本発明ゴム用老化防止剤を含む加硫ゴム組成物の製造例)
 参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部と、実施例3で得られた本発明ゴム用老化防止剤(3)6重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、本発明ゴム用老化防止剤を含む加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
Example 6
(Production Example of Vulcanized Rubber Composition Containing Antiaging Agent for Rubber of the Present Invention)
163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading parts by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for rubber of the present invention (3) obtained in Example 3 with an open roll machine having a roll set temperature of 60 ° C, A rubber composition was obtained. The obtained rubber composition is heated and press-molded at 145 ° C., so that a vulcanized rubber composition containing the antiaging agent for rubber of the present invention (a sheet shape having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm). Got. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
(ゴム用老化防止物質を含まない加硫ゴム組成物の製造例)
 一方、参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、ゴム用老化防止物質を含まない加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
(Production example of vulcanized rubber composition not containing rubber anti-aging substance)
On the other hand, 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0 A rubber composition was obtained by kneading 0.8 parts by weight and 1.5 parts by weight of sulfur with an open roll machine having a roll set temperature of 60 ° C. The resulting rubber composition was heated and press-molded at 145 ° C. to obtain a vulcanized rubber composition (width 15.5 cm, length 16.0 cm, sheet thickness 2 mm) containing no rubber anti-aging substance. Obtained. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
 本発明ゴム用老化防止剤を含む加硫ゴム組成物、及びゴム用老化防止物質を含まない加硫ゴム組成物を用いて、参考例4と同様にしてゴム用老化防止物質の移行量を測定した。 Using the vulcanized rubber composition containing the rubber anti-aging agent and the vulcanized rubber composition not containing the rubber anti-aging substance, the amount of migration of the rubber anti-aging substance was measured in the same manner as in Reference Example 4. did.
比較例3
((X1)担持ゴム用老化防止剤を含む加硫ゴム組成物の製造例)
 参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部と、比較例1で得られた(X1)担持ゴム用老化防止剤6重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、(X1)担持ゴム用老化防止剤を含む加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
Comparative Example 3
((X1) Production Example of Vulcanized Rubber Composition Containing Anti-aging Agent for Supported Rubber)
163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading parts by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for supported rubber (X1) obtained in Comparative Example 1 with an open roll machine having a roll set temperature of 60 ° C., rubber is obtained. A composition was obtained. The obtained rubber composition was hot-pressed at 145 ° C. to obtain a vulcanized rubber composition (sheet having a width of 15.5 cm, a length of 16.0 cm, and a thickness of 2 mm) containing (X1) an anti-aging agent for a supported rubber. Shape). Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
(ゴム用老化防止物質を含まない加硫ゴム組成物の製造例)
 一方、参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、ゴム用老化防止物質を含まない加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
(Production example of vulcanized rubber composition not containing rubber anti-aging substance)
On the other hand, 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0 A rubber composition was obtained by kneading 0.8 parts by weight and 1.5 parts by weight of sulfur with an open roll machine having a roll set temperature of 60 ° C. The resulting rubber composition was heated and press-molded at 145 ° C. to obtain a vulcanized rubber composition (width 15.5 cm, length 16.0 cm, sheet thickness 2 mm) containing no rubber anti-aging substance. Obtained. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
 (X1)担持ゴム用老化防止剤を含む加硫ゴム組成物、及びゴム用老化防止物質を含まない加硫ゴム組成物を用いて、参考例4と同様にしてゴム用老化防止物質の移行量を測定した。 (X1) The amount of migration of the rubber anti-aging substance in the same manner as in Reference Example 4, using the vulcanized rubber composition containing the antioxidant for the supported rubber and the vulcanized rubber composition not containing the anti-aging substance for rubber. Was measured.
参考例5
((X2)担持ゴム用老化防止剤を含む加硫ゴム組成物の製造例)
 参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部と、参考例1で得られた(X2)担持ゴム用老化防止剤6重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、(X2)担持ゴム用老化防止剤を含む加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
Reference Example 5
((X2) Production Example of Vulcanized Rubber Composition Containing Antiaging Agent for Supported Rubber)
163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading the weight part, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for supported rubber (X2) obtained in Reference Example 1 with an open roll machine having a roll set temperature of 60 ° C., rubber is obtained. A composition was obtained. The obtained rubber composition was heat-press molded at 145 ° C. to obtain a vulcanized rubber composition (sheet having a width of 15.5 cm, a length of 16.0 cm and a thickness of 2 mm) containing (X2) an anti-aging agent for a supported rubber. Shape). Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
(ゴム用老化防止物質を含まない加硫ゴム組成物の製造例)
 一方、参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、ゴム用老化防止物質を含まない加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
(Production example of vulcanized rubber composition not containing rubber anti-aging substance)
On the other hand, 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0 A rubber composition was obtained by kneading 0.8 parts by weight and 1.5 parts by weight of sulfur with an open roll machine having a roll set temperature of 60 ° C. The resulting rubber composition was heated and press-molded at 145 ° C. to obtain a vulcanized rubber composition (width 15.5 cm, length 16.0 cm, sheet thickness 2 mm) containing no rubber anti-aging substance. Obtained. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
 (X2)担持ゴム用老化防止剤を含む加硫ゴム組成物、及びゴム用老化防止物質を含まない加硫ゴム組成物を用いて、参考例4と同様にしてゴム用老化防止物質の移行量を測定した。 (X2) Amount of migration of rubber anti-aging substance using a vulcanized rubber composition containing an antioxidant for supported rubber and a vulcanized rubber composition not containing an anti-aging substance for rubber in the same manner as in Reference Example 4. Was measured.
参考例6
((X3)担持ゴム用老化防止剤を含む加硫ゴム組成物の製造例)
 参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部と、参考例2で得られた(X3)担持ゴム用老化防止剤6重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、(X3)担持ゴム用老化防止剤を含む加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
Reference Example 6
((X3) Production Example of Vulcanized Rubber Composition Containing Anti-aging Agent for Supported Rubber)
163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0.8 By kneading parts by weight, 1.5 parts by weight of sulfur, and 6 parts by weight of the anti-aging agent for supported rubber (X3) obtained in Reference Example 2 with an open roll machine having a roll set temperature of 60 ° C., rubber is obtained. A composition was obtained. The obtained rubber composition was hot-pressed at 145 ° C. to obtain a vulcanized rubber composition (sheet having a width of 15.5 cm, a length of 16.0 cm and a thickness of 2 mm) containing (X3) an anti-aging agent for a supported rubber. Shape). Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
(ゴム用老化防止物質を含まない加硫ゴム組成物の製造例)
 一方、参考例3で得られた基本ゴム組成物163.5重量部と、酸化亜鉛2重量部と、加硫促進剤(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド(TBBS))0.8重量部と、硫黄1.5重量部とを、ロール設定温度60℃のオープンロール機で混練することにより、ゴム組成物を得た。得られたゴム組成物を145℃で加熱プレス成形することにより、ゴム用老化防止物質を含まない加硫ゴム組成物(幅15.5cm、長さ16.0cm、厚さ2mmのシート形状)を得た。尚、JIS K 6300-2に準拠して測定されたゴム組成物の90%加硫時間(t(90))より5分間延長した時間を加硫時間とした。
(Production example of vulcanized rubber composition not containing rubber anti-aging substance)
On the other hand, 163.5 parts by weight of the basic rubber composition obtained in Reference Example 3, 2 parts by weight of zinc oxide, and a vulcanization accelerator (N-tert-butyl-2-benzothiazolesulfenamide (TBBS)) 0 A rubber composition was obtained by kneading 0.8 parts by weight and 1.5 parts by weight of sulfur with an open roll machine having a roll set temperature of 60 ° C. The resulting rubber composition was heated and press-molded at 145 ° C. to obtain a vulcanized rubber composition (width 15.5 cm, length 16.0 cm, sheet thickness 2 mm) containing no rubber anti-aging substance. Obtained. Incidentally, between 90% vulcanization of the measured rubber composition in conformity with JIS K 6300-2 to (t c (90)) than the extended 5 minutes time and the vulcanization time.
 (X3)担持ゴム用老化防止剤を含む加硫ゴム組成物、及びゴム用老化防止物質を含まない加硫ゴム組成物を用いて、参考例4と同様にしてゴム用老化防止物質の移行量を測定した。 (X3) Amount of migration of rubber anti-aging substance using a vulcanized rubber composition containing an antioxidant for supported rubber and a vulcanized rubber composition not containing an anti-aging substance for rubber in the same manner as in Reference Example 4. Was measured.
 実施例4~6、比較例2および3並びに参考例5及び6で得られた加硫ゴム組成物の組成および使用したゴム用老化防止剤の組成を表3に示し、ゴム用老化防止物質の移行速度を表4に示す。なお、表3に示す数値の単位は重量部である。また、表4の中に記載された「ゴム用老化防止物質の移行速度」は、比較例2で得られたゴム用老化防止物質を含み、メソポーラスシリカを含まない加硫ゴム組成物におけるゴム用老化防止物質の移行量を100とした時の、ゴム用老化防止物質の相対的な移行量である。数値が小さいほどゴム用老化防止物質の移行速度が遅く、加硫ゴム組成物における老化防止効果の持続性が向上することを意味する。 Table 3 shows the compositions of the vulcanized rubber compositions obtained in Examples 4 to 6, Comparative Examples 2 and 3, and Reference Examples 5 and 6, and the composition of the rubber anti-aging agent used. Table 4 shows the transition speed. The unit of numerical values shown in Table 3 is parts by weight. The “migration rate of the rubber anti-aging substance” described in Table 4 includes the rubber anti-aging substance obtained in Comparative Example 2, and the rubber for the vulcanized rubber composition containing no mesoporous silica. This is the relative transfer amount of the anti-aging material for rubber when the transfer amount of the anti-aging material is 100. The smaller the value, the slower the migration rate of the anti-aging material for rubber, which means that the durability of the anti-aging effect in the vulcanized rubber composition is improved.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
参考例7 (加硫ゴム組成物の製造例)
 下記の第1工程及び第2工程により得られる加硫ゴム組成物は、アンダートレッド用として好適である。
<第1工程>
(手順1)
 バンバリーミキサー(東洋精機製作所製600mLラボプラストミル)を用いて、スチレン・ブタジエン共重合ゴムSBR#1502(住友化学社製)100重量部、ISAF-HM(旭カーボン社製、製品名「旭#80」)35重量部、ステアリン酸2重量部、酸化亜鉛3重量部、実施例1で得られた本発明ゴム用老化防止剤(1)8重量部及びワックス(日本精蝋製「OZOACE-0355」)2重量部を、160℃~175℃の範囲内で、5分間、50rpmのミキサーの回転数で混練することにより、ゴム組成物を得る。
(手順2)
 オープンロール機で60℃~80℃の範囲内で、手順1で得られるゴム組成物と、加硫促進剤であるN-シクロへキシル-2-ベンゾチアゾールスルフェンアミド(CBS)2重量部、加硫促進剤であるジフェニルグアニジン(DPG)0.5重量部、加硫促進剤であるジベンゾチアジルジスルフィド(MBTS)0.8重量部及び硫黄1重量部とを混練することにより、ゴム混練物を得る。
<第2工程>
 第1工程(手順2)で得られるゴム混練物を145℃で熱処理することにより、加硫ゴム組成物を得る。
Reference Example 7 (Production Example of Vulcanized Rubber Composition)
The vulcanized rubber composition obtained by the following first step and second step is suitable for undertread.
<First step>
(Procedure 1)
Using a Banbury mixer (600 mL lab plast mill manufactured by Toyo Seiki Seisakusho), 100 parts by weight of styrene / butadiene copolymer rubber SBR # 1502 (manufactured by Sumitomo Chemical Co., Ltd.), ISAF-HM (manufactured by Asahi Carbon Co., Ltd., product name “Asahi # 80”) ] 35 parts by weight, stearic acid 2 parts by weight, zinc oxide 3 parts by weight, anti-aging agent for rubber of the present invention obtained in Example 1 (1) 8 parts by weight and wax (“OZOACE-0355” manufactured by Nippon Seiwa) 2) 2 parts by weight are kneaded in a range of 160 ° C. to 175 ° C. for 5 minutes at a rotation speed of a mixer of 50 rpm to obtain a rubber composition.
(Procedure 2)
Within a range of 60 ° C. to 80 ° C. with an open roll machine, the rubber composition obtained in Procedure 1 and 2 parts by weight of N-cyclohexyl-2-benzothiazole sulfenamide (CBS) as a vulcanization accelerator, A rubber kneaded product is obtained by kneading 0.5 part by weight of diphenylguanidine (DPG) as a vulcanization accelerator, 0.8 part by weight of dibenzothiazyl disulfide (MBTS) as a vulcanization accelerator and 1 part by weight of sulfur. Get.
<Second step>
The rubber kneaded product obtained in the first step (procedure 2) is heat-treated at 145 ° C. to obtain a vulcanized rubber composition.
参考例8 (加硫ゴム組成物の製造例)
 下記の第1工程及び第2工程により得られる加硫ゴム組成物は、ベルト用として好適である。
<第1工程>
(手順1)
 バンバリーミキサー(東洋精機製作所製600mLラボプラストミル)を用いて、市販の天然ゴム(RSS#1)100重量部、HAF(旭カーボン社製、製品名「旭#70」)45重量部、ステアリン酸3重量部、酸化亜鉛5重量部、含水シリカ(東ソー・シリカ社製「Nipsil(登録商標)AQ」10重量部、実施例1で得られた本発明ゴム用老化防止剤(1)16重量部、レゾルシン2重量部及びナフテン酸コバルト2重量部を、160℃~175℃の範囲内で、5分間、50rpmのミキサーの回転数で混練することにより、ゴム組成物を得る。
(手順2)
 オープンロール機で60℃~80℃の範囲内で、手順1で得られるゴム組成物と、加硫促進剤であるN,N-ジシクロへキシル-2-ベンゾチアゾールスルフェンアミド(DCBS)1重量部、硫黄6重量部及びメトキシ化メチロールメラミン樹脂(住友化学社製「スミカノール507AP」)3重量部とを混練することにより、ゴム混練物を得る。
<第2工程>
 第1工程(手順2)で得られるゴム混練物を145℃で熱処理することにより、加硫ゴム組成物を得る。
Reference Example 8 (Production Example of Vulcanized Rubber Composition)
The vulcanized rubber composition obtained by the following first step and second step is suitable for a belt.
<First step>
(Procedure 1)
Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Seisakusho), 100 parts by weight of commercially available natural rubber (RSS # 1), 45 parts by weight of HAF (Asahi Carbon Co., Ltd., product name “Asahi # 70”), stearic acid 3 parts by weight, zinc oxide 5 parts by weight, hydrous silica ("Nipsil (registered trademark) AQ" manufactured by Tosoh Silica Co., Ltd.) 10 parts by weight, anti-aging agent for rubber of the present invention (1) obtained in Example 1 (16) A rubber composition is obtained by kneading 2 parts by weight of resorcin and 2 parts by weight of cobalt naphthenate within a range of 160 ° C. to 175 ° C. for 5 minutes at a rotation speed of a mixer of 50 rpm.
(Procedure 2)
In a range of 60 ° C. to 80 ° C. with an open roll machine, the rubber composition obtained in the procedure 1 and 1 weight of N, N-dicyclohexyl-2-benzothiazolesulfenamide (DCBS) as a vulcanization accelerator Parts by weight, 6 parts by weight of sulfur and 3 parts by weight of methoxylated methylol melamine resin (“SUMIKANOL 507AP” manufactured by Sumitomo Chemical Co., Ltd.) to obtain a rubber kneaded product.
<Second step>
The rubber kneaded product obtained in the first step (procedure 2) is heat-treated at 145 ° C. to obtain a vulcanized rubber composition.
参考例9 (加硫ゴム組成物の製造例)
 下記の第1工程及び第2工程により得られる加硫ゴム組成物は、インナーライナー用として好適である。
<第1工程>
(手順1)
 バンバリーミキサー(東洋精機製作所製600mLラボプラストミル)を用いて、ハロゲン化ブチルゴム(エクソンモービル社製「Br-IIR2255」)100重量部、GPF 60重量部、ステアリン酸1重量部、酸化亜鉛3重量部及びパラフィンオイル(出光興産社製「ダイアナプロセスオイル」)10重量部を、160℃~175℃の範囲内で、5分間、50rpmのミキサーの回転数で混練することにより、ゴム組成物を得る。
(手順2)
 オープンロール機で60℃~80℃の範囲内で、手順1で得られるゴム組成物と、実施例1で得られた本発明ゴム用老化防止剤(1)2重量部、加硫促進剤であるジベンゾチアジルジスルフィド(MBTS)1重量部及び硫黄2重量部とを混練することにより、ゴム混練物を得る。
<第2工程>
 第1工程(手順2)で得られるゴム混練物を145℃で熱処理することにより、加硫ゴム組成物を得る。
Reference Example 9 (Production Example of Vulcanized Rubber Composition)
The vulcanized rubber composition obtained by the following first step and second step is suitable for an inner liner.
<First step>
(Procedure 1)
Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Seisakusho), halogenated butyl rubber (“Br-IIR2255” manufactured by ExxonMobil) 100 parts by weight, GPF 60 parts by weight, stearic acid 1 part by weight, zinc oxide 3 parts by weight A rubber composition is obtained by kneading 10 parts by weight of paraffin oil (“Diana Process Oil” manufactured by Idemitsu Kosan Co., Ltd.) within a range of 160 ° C. to 175 ° C. for 5 minutes at a rotation speed of a mixer of 50 rpm.
(Procedure 2)
In the range of 60 ° C. to 80 ° C. with an open roll machine, the rubber composition obtained in Procedure 1, the anti-aging agent for rubber of the present invention (1) obtained in Example 1, 2 parts by weight, and a vulcanization accelerator A rubber kneaded material is obtained by kneading 1 part by weight of a certain dibenzothiazyl disulfide (MBTS) and 2 parts by weight of sulfur.
<Second step>
The rubber kneaded product obtained in the first step (procedure 2) is heat-treated at 145 ° C. to obtain a vulcanized rubber composition.
参考例10 (加硫ゴム組成物の製造例)
 下記の第1工程及び第2工程により得られる加硫ゴム組成物は、サイドウォール用として好適である。
<第1工程>
(手順1)
 バンバリーミキサー(東洋精機製作所製600mLラボプラストミル)を用いて、市販の天然ゴム(RSS#3)40重量部、ポリブタジエンゴム(宇部興産社製「BR150B」)60重量部、FEF50重量部、ステアリン酸2.5重量部、酸化亜鉛3重量部、実施例1で得られた本発明ゴム用老化防止剤(1)16重量部、プロセスオイル(コスモ石油社製「NC-140」)10重量部及びワックス(大内新興化学工業社製「サンノック(登録商標)ワックス」)2重量部を、160℃~175℃の範囲内で、5分間、50rpmのミキサーの回転数で混練することにより、ゴム組成物を得る。
(手順2)
 オープンロール機で60℃~80℃の範囲内で、手順1で得られるゴム組成物と、加硫促進剤であるN-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)0.75重量部及び硫黄1.5重量部とを混練することにより、ゴム混練物を得る。
<第2工程>
 第1工程(手順2)で得られるゴム混練物を145℃で熱処理することにより、加硫ゴム組成物を得る。
Reference Example 10 (Production Example of Vulcanized Rubber Composition)
The vulcanized rubber composition obtained by the following first step and second step is suitable for side walls.
<First step>
(Procedure 1)
Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Seisakusho), 40 parts by weight of commercially available natural rubber (RSS # 3), 60 parts by weight of polybutadiene rubber (“BR150B” manufactured by Ube Industries), 50 parts by weight of FEF, stearic acid 2.5 parts by weight, zinc oxide 3 parts by weight, anti-aging agent for rubber of the present invention obtained in Example 1 (1) 16 parts by weight, process oil (“NC-140” manufactured by Cosmo Oil Co., Ltd.) 10 parts by weight A rubber composition was prepared by kneading 2 parts by weight of wax (“Sannok (registered trademark) wax” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) within a range of 160 ° C. to 175 ° C. for 5 minutes at a rotation speed of a mixer of 50 rpm. Get things.
(Procedure 2)
Within the range of 60 ° C. to 80 ° C. with an open roll machine, the rubber composition obtained in Procedure 1 and N-tert-butyl-2-benzothiazolylsulfenamide (BBS) 0.75 as a vulcanization accelerator A rubber kneaded material is obtained by kneading parts by weight and 1.5 parts by weight of sulfur.
<Second step>
The rubber kneaded product obtained in the first step (procedure 2) is heat-treated at 145 ° C. to obtain a vulcanized rubber composition.
参考例11 (加硫ゴム組成物の製造例)
 下記の第1工程及び第2工程により得られる加硫ゴム組成物は、カーカス用として好適である。
<第1工程>
(手順1)
 バンバリーミキサー(東洋精機製作所製600mLラボプラストミル)を用いて、市販の天然ゴム(TSR20)70重量部、スチレン・ブタジエン共重合ゴムSBR#1502(住友化学社製)30重量部、N339(三菱化学社製)60重量部、ステアリン酸2重量部、酸化亜鉛5重量部、プロセスオイル(出光興産社製「ダイアナプロセスPS32」)7重量部を、160℃~175℃の範囲内で、5分間、50rpmのミキサーの回転数で混練することにより、ゴム組成物を得る。
(手順2)
 オープンロール機で60℃~80℃の範囲内で、手順1で得られるゴム組成物と、加硫促進剤であるN-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)1重量部、硫黄3重量部、実施例1で得られた本発明ゴム用老化防止剤(1)8重量部とを混練することにより、ゴム混練物を得る。
<第2工程>
 第1工程(手順2)で得られるゴム混練物を145℃で熱処理することにより、加硫ゴムを得る。
Reference Example 11 (Production Example of Vulcanized Rubber Composition)
The vulcanized rubber composition obtained by the following first step and second step is suitable for carcass.
<First step>
(Procedure 1)
Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Seisakusho), 70 parts by weight of commercially available natural rubber (TSR20), 30 parts by weight of styrene-butadiene copolymer rubber SBR # 1502 (manufactured by Sumitomo Chemical Co., Ltd.), N339 (Mitsubishi Chemical) 60 parts by weight, stearic acid 2 parts by weight, zinc oxide 5 parts by weight, process oil (“Diana Process PS32” by Idemitsu Kosan Co., Ltd.) 7 parts by weight within a range of 160 ° C. to 175 ° C. for 5 minutes. A rubber composition is obtained by kneading at a rotation speed of a mixer of 50 rpm.
(Procedure 2)
The rubber composition obtained in step 1 and 1 part by weight of N-tert-butyl-2-benzothiazolylsulfenamide (BBS) as a vulcanization accelerator within the range of 60 ° C. to 80 ° C. in an open roll machine A rubber kneaded product is obtained by kneading 3 parts by weight of sulfur and 8 parts by weight of the antiaging agent for rubber of the present invention (1) obtained in Example 1.
<Second step>
The rubber kneaded product obtained in the first step (procedure 2) is heat-treated at 145 ° C. to obtain a vulcanized rubber.
参考例12 (加硫ゴム組成物の製造例)
 下記の第1工程及び第2工程により得られる加硫ゴム組成物は、キャップトレッド用として好適である。
<第1工程>
(手順1)
 バンバリーミキサー(東洋精機製作所製600mLラボプラストミル)を用いて、スチレン・ブタジエン共重合ゴムSBR#1500(JSR社製)100重量部、シリカ(製品名:「ウルトラジル(登録商標)VN3-G」デグッサ社製)78.4重量部、カーボンブラック(製品名「N-339」三菱化学社製)6.4重量部、シランカップリング剤(ビス(3-トリエトキシシリルプロピル)テトラスルフィド:製品名「Si-69」デグッサ社製)6.4重量部、プロセスオイル(製品名「NC-140」コスモ石油社製)47.6重量部、実施例1で得られた本発明ゴム用老化防止剤(1)12重量部、酸化亜鉛2重量部、ステアリン酸2重量部を、70℃~120℃の範囲内で、5分間、80rpmのミキサーの回転数で混練し、引き続き70℃~120℃の範囲内で、5分間、100rpmのミキサーの回転数で混練することにより、ゴム組成物を得る。
(手順2)
 オープンロール機で30℃~80℃の範囲内で、手順1で得られるゴム組成物と、加硫促進剤であるN-シクロへキシル-2-ベンゾチアゾールスルフェンアミド(CBS)1重量部、加硫促進剤であるジフェニルグアニジン(DPG)1重量部、ワックス(製品名「サンノック(登録商標)N」大内新興化学工業社製)1.5重量部及び硫黄1.4重量部とを混練することにより、ゴム混練物を得る。
<第2工程>
 第1工程(手順2)で得られるゴム混練物を160℃で熱処理することにより、加硫ゴム組成物を得る。
Reference Example 12 (Production Example of Vulcanized Rubber Composition)
The vulcanized rubber composition obtained by the following first step and second step is suitable for cap treads.
<First step>
(Procedure 1)
Using a Banbury mixer (600 mL Laboplast Mill, manufactured by Toyo Seiki Seisakusho), 100 parts by weight of styrene / butadiene copolymer rubber SBR # 1500 (manufactured by JSR), silica (product name: “Ultrasil® VN3-G”) 78.4 parts by weight of Degussa), 6.4 parts by weight of carbon black (product name “N-339” manufactured by Mitsubishi Chemical), silane coupling agent (bis (3-triethoxysilylpropyl) tetrasulfide: product name 6.4 parts by weight of “Si-69” manufactured by Degussa Co., Ltd., 47.6 parts by weight of process oil (product name “NC-140” manufactured by Cosmo Oil Co., Ltd.), anti-aging agent for rubber of the present invention obtained in Example 1 (1) 12 parts by weight, 2 parts by weight of zinc oxide and 2 parts by weight of stearic acid are kneaded in the range of 70 ° C. to 120 ° C. for 5 minutes at a rotation speed of a mixer of 80 rpm. Continuing in the range of 70 ℃ ~ 120 ℃, 5 minutes, by kneading at a rotation speed of 100rpm of mixer to obtain a rubber composition.
(Procedure 2)
Within the range of 30 ° C. to 80 ° C. in an open roll machine, the rubber composition obtained in Procedure 1 and 1 part by weight of N-cyclohexyl-2-benzothiazole sulfenamide (CBS) as a vulcanization accelerator, 1 part by weight of diphenylguanidine (DPG), a vulcanization accelerator, 1.5 parts by weight of wax (product name “Sunnock (registered trademark) N” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) and 1.4 parts by weight of sulfur By doing so, a rubber kneaded material is obtained.
<Second step>
The rubber kneaded product obtained in the first step (procedure 2) is heat-treated at 160 ° C. to obtain a vulcanized rubber composition.
参考例13 (加硫ゴム組成物の製造例)
 参考例12において、スチレン・ブタジエン共重合ゴムSBR#1500(JSR社製)に代えて溶液重合SBR(「アサプレン(登録商標)」旭化成ケミカルズ社製)を用いること以外は、参考例12と同様にして、加硫ゴム組成物を得る。得られる加硫ゴム組成物はキャップトレッド用として好適である。
Reference Example 13 (Production Example of Vulcanized Rubber Composition)
In Reference Example 12, the same procedure as in Reference Example 12 was used, except that solution-polymerized SBR (“ASAPREN (registered trademark)” manufactured by Asahi Kasei Chemicals) was used instead of styrene-butadiene copolymer rubber SBR # 1500 (manufactured by JSR). Thus, a vulcanized rubber composition is obtained. The resulting vulcanized rubber composition is suitable for cap treads.
参考例14 (加硫ゴム組成物の製造例)
 参考例12において、スチレン・ブタジエン共重合ゴムSBR#1500(JSR社製)に代えてSBR#1712(JSR社製)を用い、プロセスオイルの使用量を21重量部に変更し、酸化亜鉛を仕込むタイミングを手順2に変更すること以外は、参考例12と同様にして、加硫ゴム組成物を得る。得られる加硫ゴム組成物はキャップトレッド用として好適である。
Reference Example 14 (Production Example of Vulcanized Rubber Composition)
In Reference Example 12, SBR # 1712 (manufactured by JSR) was used instead of styrene-butadiene copolymer rubber SBR # 1500 (manufactured by JSR), the amount of process oil used was changed to 21 parts by weight, and zinc oxide was charged. A vulcanized rubber composition is obtained in the same manner as in Reference Example 12 except that the timing is changed to Procedure 2. The resulting vulcanized rubber composition is suitable for cap treads.
 本発明ゴム用老化防止剤(1)を本発明ゴム用老化防止剤(2)又は本発明ゴム用老化防止剤(3)に置き換えても、参考例7~14と同様に、加硫ゴム組成物が得られる。 Even if the anti-aging agent for rubber of the present invention (1) is replaced with the anti-aging agent for rubber of the present invention (2) or the anti-aging agent for rubber of the present invention (3), the vulcanized rubber composition is the same as in Reference Examples 7-14. Things are obtained.
 本発明ゴム用老化防止剤を含む加硫ゴム組成物では、その中に含まれるゴム用老化防止物質の老化防止効果の持続性が向上する。 In the vulcanized rubber composition containing the antiaging agent for rubber of the present invention, the durability of the antiaging effect of the antiaging substance for rubber contained therein is improved.
1,2,3 ゴム用老化防止物質を含む測定用シート
4,5,6 ゴム用老化防止物質を含まないブランク用シート
7 アルミホイル
8 アルミラミネート
9 錘
1,2,3 Measurement sheet 4 containing rubber anti-aging substance 4, 5, 6 Blank sheet not containing rubber anti-aging substance 7 Aluminum foil 8 Aluminum laminate 9 Weight

Claims (7)

  1.  メソ孔の細孔容積が0.81cm/gを超えるメソポーラスシリカと、
     前記メソポーラスシリカに担持されたゴム用老化防止物質と
    を含有することを特徴とするゴム用老化防止剤。
    Mesoporous silica having a pore volume of mesopores exceeding 0.81 cm 3 / g;
    A rubber anti-aging agent comprising the rubber anti-aging substance supported on the mesoporous silica.
  2.  ゴム用老化防止物質を、メソ孔の細孔容積が0.81cm/gを超えるメソポーラスシリカに担持して得られることを特徴とするゴム用老化防止剤。 A rubber anti-aging agent obtained by supporting a rubber anti-aging material on mesoporous silica having a mesopore pore volume exceeding 0.81 cm 3 / g.
  3.  メソ孔の細孔容積が0.84cm/g以上5.0cm/g以下であることを特徴とする請求項1又は2記載のゴム用老化防止剤。 Rubber anti-aging agent according to claim 1 or 2, wherein the pore volume is less than 0.84 cm 3 / g or more 5.0 cm 3 / g of mesopores.
  4.  固体NMR測定において、前記メソポーラスシリカに担持されたゴム用老化防止物質に含まれる13Cに基づくピークのケミカルシフトが、前記メソポーラスシリカに担持されていないゴム用老化防止物質に含まれる13Cに基づくピークのケミカルシフトと比較して異なることを特徴とする請求項1~3のいずれか一項に記載のゴム用老化防止剤。 In solid state NMR measurement, the peak chemical shift based on 13 C contained in the rubber anti-aging substance supported on the mesoporous silica is based on 13 C contained in the rubber anti-aging substance not supported on the mesoporous silica. The anti-aging agent for rubber according to any one of claims 1 to 3, wherein the anti-aging agent for rubber is different from the chemical shift of the peak.
  5.  前記メソポーラスシリカのメソ孔の直径が、6nm以上50nm以下であることを特徴とする請求項1~4のいずれか一項に記載のゴム用老化防止剤。 The rubber anti-aging agent according to any one of claims 1 to 4, wherein the mesoporous silica has a mesopore diameter of 6 nm to 50 nm.
  6.  ゴム用老化防止物質が、式(I)で示される化合物であることを特徴とする請求項1~5のいずれか一項に記載のゴム用老化防止剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Rは、水素原子又は炭素数1~13のアルキル基を表す。)
    6. The rubber anti-aging agent according to claim 1, wherein the rubber anti-aging substance is a compound represented by the formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (I), R 1 represents a hydrogen atom or an alkyl group having 1 to 13 carbon atoms.)
  7.  ゴム用老化防止物質10重量部に対して、前記メソポーラスシリカ0.1~100重量部を含有することを特徴とする請求項1~6のいずれか一項に記載のゴム用老化防止剤。 The rubber anti-aging agent according to any one of claims 1 to 6, comprising 0.1 to 100 parts by weight of the mesoporous silica with respect to 10 parts by weight of the rubber anti-aging substance.
PCT/JP2012/083188 2011-12-21 2012-12-21 Anti-aging agent for rubbers WO2013094719A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-279370 2011-12-21
JP2011279370A JP2013129727A (en) 2011-12-21 2011-12-21 Anti-aging agent for rubber

Publications (1)

Publication Number Publication Date
WO2013094719A1 true WO2013094719A1 (en) 2013-06-27

Family

ID=48668597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083188 WO2013094719A1 (en) 2011-12-21 2012-12-21 Anti-aging agent for rubbers

Country Status (3)

Country Link
JP (1) JP2013129727A (en)
TW (1) TW201331280A (en)
WO (1) WO2013094719A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213714A (en) * 2021-12-02 2022-03-22 赛轮集团股份有限公司 Porous silicon-loaded anti-aging agent-silver ion compound, and preparation method and application thereof
CN114437408A (en) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 Modified peroxide vulcanizing agent and preparation method and application thereof
CN115536914A (en) * 2022-10-17 2022-12-30 山西浙大新材料与化工研究院 Composite anti-aging agent, preparation method thereof and heat-resistant rubber material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500420A (en) * 2001-08-13 2005-01-06 ソシエテ ド テクノロジー ミシュラン Diene rubber composition for tires containing specific silica as reinforcing filler
JP2007138163A (en) * 2005-10-21 2007-06-07 Hitachi Chem Co Ltd Insulating resin composition
JP2011132472A (en) * 2009-12-25 2011-07-07 Toyo Tire & Rubber Co Ltd Rubber composition, method for producing the same, and pneumatic tire
JP2011132471A (en) * 2009-12-25 2011-07-07 Toyo Tire & Rubber Co Ltd Rubber composition, method for producing the same, and pneumatic tire
JP2011219541A (en) * 2010-04-05 2011-11-04 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500420A (en) * 2001-08-13 2005-01-06 ソシエテ ド テクノロジー ミシュラン Diene rubber composition for tires containing specific silica as reinforcing filler
JP2007138163A (en) * 2005-10-21 2007-06-07 Hitachi Chem Co Ltd Insulating resin composition
JP2011132472A (en) * 2009-12-25 2011-07-07 Toyo Tire & Rubber Co Ltd Rubber composition, method for producing the same, and pneumatic tire
JP2011132471A (en) * 2009-12-25 2011-07-07 Toyo Tire & Rubber Co Ltd Rubber composition, method for producing the same, and pneumatic tire
JP2011219541A (en) * 2010-04-05 2011-11-04 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437408A (en) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 Modified peroxide vulcanizing agent and preparation method and application thereof
CN114437408B (en) * 2020-10-16 2023-07-21 中国石油化工股份有限公司 Modified peroxide vulcanizing agent and preparation method and application thereof
CN114213714A (en) * 2021-12-02 2022-03-22 赛轮集团股份有限公司 Porous silicon-loaded anti-aging agent-silver ion compound, and preparation method and application thereof
CN115536914A (en) * 2022-10-17 2022-12-30 山西浙大新材料与化工研究院 Composite anti-aging agent, preparation method thereof and heat-resistant rubber material
CN115536914B (en) * 2022-10-17 2023-06-09 山西浙大新材料与化工研究院 Composite anti-aging agent, preparation method thereof and heat-resistant rubber material

Also Published As

Publication number Publication date
TW201331280A (en) 2013-08-01
JP2013129727A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5889016B2 (en) Method for producing vulcanized rubber
JP5889017B2 (en) Method for producing vulcanized rubber
JP2013185105A (en) Rubber composition and crosslinked rubber composition
JP5715548B2 (en) Rubber composition and use thereof
WO2013094719A1 (en) Anti-aging agent for rubbers
JP2013249416A (en) Rubber composition and crosslinked rubber composition
JP2013231156A (en) Rubber composition, and crosslinked rubber composition
JP2013129728A (en) Rubber composition
JP2012116813A (en) Thiosulfuric acid compound or salt thereof, and rubber composition containing the same
JP2013249415A (en) Anti-aging agent for rubber
JP2011184614A (en) Vulcanized rubber, and method for producing the same
JP2013124347A (en) Antioxidant for rubber
JP2013124346A (en) Rubber composition
WO2013089214A1 (en) Anti-aging agent for rubber
JP5705089B2 (en) Anti-aging agent for rubber
WO2013133397A1 (en) Anti-aging agent for rubbers
JP5310609B2 (en) Use of S- (5-aminopentyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP5310608B2 (en) Use of S- (4-aminobutyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
WO2013151115A1 (en) Rubber anti-aging agent
JP2011184613A (en) Vulcanized rubber and method for producing the same
WO2013089215A1 (en) Anti-aging agent for rubber
JP2013124351A (en) Antiaging agent for rubber
JP2013124350A (en) Rubber composition
JP2013124348A (en) Rubber composition
JP2013124354A (en) Rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860995

Country of ref document: EP

Kind code of ref document: A1